
Exploiting epistemic uncertainty at inference time
for early-exit power saving
Jack Dymonda;*, Sebastian Steina and Steve Gunna

aElectronics and Computer Science
University of Southampton

United Kingdom
ORCiD ID: Jack Dymond https://orcid.org/0000-0003-2069-716X

Abstract. Distinguishing epistemic from aleatoric uncertainty is
a central idea to out-of-distribution (OOD) detection. By interpret-
ing adversarial and OOD inputs from this perspective, we can col-
lect them into a single unclassifiable group. Rejecting such inputs
mid-inference will reduce resource usage. To achieve this, we ap-
ply k-nearest neighbour (KNN) classifiers to the embedding space of
branched neural networks. This introduces a novel means of addi-
tional power savings, through an early-exit reject.

Our technique works out-of-the-box on any branched neural net-
work and can be competitive on OOD benchmarks, achieving an area
under receiver operator characteristic (AUROC) of over 0.9 in most
datasets, and scores of 0.95+ when identifying perturbed inputs. A
mixed input test set is introduced, we show how OOD inputs can be
identified up to 50% of the time, and adversarial inputs up to 85% of
the time. In a balanced test environment, this equates to power sav-
ings of up to 18% in the OOD scenario and 40% in the adversarial
scenario. This allows a more stringent in-distribution (ID) classifi-
cation policy, leading to accuracy improvements of 15% and 20%
on the OOD and adversarial tests, respectively, when compared to
conventional exit policies operating under the same conditions.

1 Introduction
With the ever-increasing power of deep learning, it is becoming in-
creasingly feasible to apply its methods to a wider range of applica-
tion areas. Yet, these systems have a tendency to over-fit, cut corners
during optimisation, and make overconfident mistakes [16, 20]. This
lack of robustness becomes an issue when applied to safety critical
problems, for example, self-driving cars [18]. Because of this, the
field of robust deep learning has recently become more active [10].

Here, robustness can refer to a variety of things. We focus on deal-
ing with out-of-distribution (OOD) data and adversarial data, data
designed deliberately to fool a classification model. Assuming the
OOD input cannot be classified and the adversarial data successfully
fools the model, we can refer to these collectively as epistemically
uncertain inputs. These are inputs outside of the target distribution of
the classifier and thus induce epistemic uncertainty. In safety critical
scenarios, it could be dangerous for the classifier to process them, for
example, if a self-driving car misclassifies the moon as a traffic light
and stops the car suddenly. In such cases, rejecting the classification
may be more appropriate. Figure 1 demonstrates our concept.

∗ jd5u19@soton.ac.uk

Embedding space

Fr
eq

ue
nc

y

Data
Train
Test
OOD

KNN distance

Aleatoric Epistemic

Reject

Figure 1. 1-dimensional projections of distributions in the embedding
space of neural networks. The expected embedding distributions are shown
in the left figure, and expected KNN distances in the right. The embedding

representation of OOD data is expected to be clustered away from the target
dataset. We label the uncertainty encountered in the KNN distance regions:
aleatoric is that which is close to the the training distribution, epistemic is

characterised with larger KNN distances.

In these environments, it would be better still if these inputs could
be rejected early in the inference process to save power. Branched
neural networks are a subset of neural networks with intermedi-
ate classification branches, which allow for resource saving through
early exiting at inference time [47]. The idea of robustness has sel-
dom been incorporated into the area of early exiting neural networks,
and when it has, the work has focused less on handling epistemic un-
certainty, and more on the classification performance on clean data
[25, 35]. This overlooks an important factor that OOD and adversar-
ial data introduces to the early exiting classifier: resource wastage.

In conventional models, the best case scenario is the input passes
through the model and absolute uncertainty is outputted, e.g. [41], or
a reject option is given to the classifier, e.g. [15]. In the early exiting
field, there is also an opportunity to reject these inputs early and thus
save resource usage. This is the core idea we address in this paper.

Achieving this, however, presents the challenge of distinguishing
aleatoric uncertainty, that is uncertainty due to the randomness of
the target distribution, and epistemic uncertainty, uncertainty arising
due to the data being outside of the target distribution. To address
this challenge, we use two uncertainty measures. Entropy is used to
quantify uncertainty in the aleatorically uncertain inputs, and we use
a KNN-based classifier to catch epistemically uncertain inputs, al-
lowing for distribution-aware early exiting.



To our knowledge this is the first implementation of OOD adver-
sarial detection in early exit architectures. Furthermore, our method
works out-of-the-box, meaning no additional optimisation is re-
quired. Our contributions are as such:

• We present a study of robustness in branched neural networks,
addressing OOD robustness as well as adversarial robustness.

• We introduce an easy to implement KNN-based OOD detection
technique which can be applied out-of-the-box in branched neural
networks.

• A novel distribution-aware early exiting system is introduced,
which incorporates KNN-based OOD detection alongside con-
ventional early exit classification. Our new early exiting system
allows the classifier to save additional power through rejecting in-
puts it is not able to classify.

• A mixed input test set is introduced for distribution-aware early
exiting. Using our method, we can save up to 40% power usage or
improve accuracy by up to 20%, when compared to a conventional
early exiting policy operating under the same constraints.

2 Related Work

Producing models which give confidence aware output distributions
is one method of identifying both adversarial and OOD inputs, and
these models have been studied in great detail [12, 37, 3]. Some
methods incorporate additional data into their methodology [11, 48],
some use data augmentation/generation [32, 26, 21, 40, 45, 49],
while others use probabilistic models to adapt their loss functions
[41, 30, 6, 51]. However, all of these methods adapt the training pro-
cedure for the underlying network, whereas we aimed for a method
to work out-of-the-box, as to not incur additional optimisation costs.

There are a number of methods, like this work, which focus on the
inference process. KNN and distance metrics for anomaly detection
have been studied previously [19, 5, 27], and recently have seen use
in OOD and adversarial detection [39, 1, 43]. Furthermore, the no-
tion of rejecting classification has been studied in depth [15, 23, 4].
However, this line of work often presents a rejection at the end of
inference and so functionally is not dissimilar to methods which cal-
ibrate their outputs. One such paper uses branched neural networks to
classify data hierarchically to assist uncertainty quantification. How-
ever, the architecture chosen is not conducive to power savings due
to the exits being positioned at the end of the model [2].

Since their inception [44, 47], branched networks have remained
an integral part of the dynamic inference research community [50,
24]. More recently, like in this work, the focus has shifted to opti-
mised inference techniques for them [9, 42, 52].

Overconfidence in branched networks has recently been investi-
gated in [35]. However, the authors focus on ID data, and, while this
is important, it was outside of the scope of this work. We instead fo-
cus on a novel method for resource savings when encountering OOD
and adversarial data. Work in [25] most closely aligns with ours. The
authors train branched neural networks to be robust to adversarial at-
tacks, some of which are referred to as slow down attacks, which is
in essence what we describe in this work. However, the authors ap-
proach this problem in a different way, instead opting to classify the
data, meaning inference still requires the use of the whole network.

Branched networks offer a unique opportunity when encountering
OOD and adversarial inputs. Specifically, if they can be detected,
inference can be halted to prevent further time wastage. The existing
literature has yet to explore the idea of rejecting classification early
in the inference process, which we describe as an early exit reject.

To explore this idea, we first examine the effect of OOD and ad-
versarial inputs on pre-trained branched networks. We then explore a
detection method, which we incorporate into an existing early exiting
paradigm. Finally we analyse the results and present our conclusions.

3 Out of Distribution and Adversarial Inputs in
Branched Neural Networks

Branched neural networks are a subset of neural networks which
have intermediate classification branches. We can denote the back-
bone as a function f and each classification branch as fb(x), where
b ∈ {1, 2, ..., B}, and B is the total number of branches. Each branch
will give the softmax output vector: yb. We train these networks
through the joint optimisation of the branches, with a weighted loss
function and a target vector ŷ with K target classes:

Ltotal(y, ŷ) =
∑
b∈B

wbLb(yb, ŷ) (1)

Lb(yb, ŷ) =

K∑
i=1

yb,i log(ŷi) (2)

Here in equation 1, y is the collection of branch outputs and wb

refers to a tunable weighting hyperparameter, satisfying:
∑B

b wb=1.
The branch loss in equation 2 is the cross entropy loss.

Using conventional methods, neural networks are often trained to
give confident classification outputs in the supervised setting. This
presents a challenge when OOD data is encountered. Whilst they
might not give results of high confidence, they do not return results
which are of low confidence. In branched neural networks, confi-
dence is often quantified for early exiting using entropy [46, 25].
To motivate the introduction of an additional classification method
for early exit rejection, we first analyse entropy probability densities
when presented with unclassifiable data, shown in figure 2.

In accordance with the benchmarks set in [54], we pass various
OOD datasets to our model: Describable Textures Dataset (DTD)
[8], CIFAR100 [29], Street View House Numbers (SVHN) [36], and
Tiny-ImageNet [31]. We use a branched ResNet18 [22], which has 3
branches spaced equidistantly, and a final exit which we call the 4th
branch. This is trained to convergence on CIFAR10 [29], achieving
an accuracy of ∼ 95%. We believe our method is not specific to the
ResNet18 architecture, as existing work uses a number of architec-
tures with little variation in general behaviour [47, 25, 13].

0.0 0.5 1.00

2

4

Branch: 1

0.0 0.50

5

10

Branch: 2

0.00 0.25 0.50 0.750

10

20

Branch: 3

0.00 0.25 0.50 0.750

20

Branch: 4

Pr
ob

ab
liit

y 
De

ns
ity

Entropy

ID CIFAR100 SVHN DTD tiny-imagenet

Figure 2. Histograms denoting the entropy probability densities for each
branch on in-distribution (ID) data and various OOD datasets.



As indicated by the probability density graph, we find earlier
branches generally give outputs of lower confidence, except for
DTD, which gives a large quantity of high confidence outputs. As
inputs are processed further through the network, in-distribution (ID)
data is much more likely to prompt low entropy outputs than OOD
data. Importantly, however, it is difficult to distinguish these distribu-
tions in the higher entropy ranges. Therefore, entropy alone is insuf-
ficient for distinguishing ID inputs from OOD inputs. In an early ex-
iting scenario where entropy thresholds are varied at run-time, such
networks will be susceptible to confusing ID data with OOD data.

We also examine adversarial inputs, using the fast gradient sign
method (FGSM) to generate adversarial inputs [17]. This method ap-
plies a perturbation defined using the sign of the gradient, which is
multiplied by a small value ϵ and added to the original input to create
an adversarial example. This perturbation, η, can be defined as:

η = ϵ · sign(∇xL(ϕ, x, y)), (3)

where L refers to the objective function of the model, ϕ the model
parameters, and x and y the input and target, respectively. Using this
for an adversarial attack generates our perturbed input x̃, defined as:

x̃ = x+ η,

In equation 3, we vary ϵ between 0 and 0.3. At 0.3, we find the
performance of the model has degraded completely:

Figure 3. Accuracy
degradation of each branch

of the network when
presented with adversarial
data. We vary ϵ between 0
to 0.3, which is denoted on
the x axis. Classification

accuracy is shown on the y
axis. 0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Branch:
1
2
3
4

Accuracy drops prohibitively when applying the perturbation to
the inputs, but the later branches handle this marginally better than
the earlier branches. To understand the effect of the attacks on en-
tropy, we analyse the entropy distributions in figure 4.

0.0 0.5 1.00

1

2
Branch: 1

0.0 0.50

5

10
Branch: 2

0.0 0.5 1.00

10

Branch: 3

0.0 0.50

10

Branch: 4

0.3

0.2

0.1

0

Pr
ob

ab
ilit

y 
De

ns
ity

Entropy

Figure 4. Histograms denoting the entropy probability densities for each
branch on adversarial data.

Like with the OOD data, the first branch is less susceptible to giv-
ing overconfident outputs, but there is also a lot of overlap with the
adversarial inputs. Once again, this effect lessens later in the network.

Hence, we have shown in this section, in conventional early exit
policies, entropy alone is insufficient for distinguishing an ID input
from an unclassifiable one. We address the challenge of doing so in
the next section.

4 Distinguishing Aleatoric and Epistemic
Uncertainty in Branched Neural Networks

In many scenarios where machine learning is applied, the uncertainty
in the output is as important as the output itself, as it allows the user
to understand how to incorporate it into their system. Uncertainty
in machine learning can be broadly categorised into two domains:
Aleatoric and Epistemic.

Aleatoric uncertainty arises due to the natural randomness of data,
whereas epistemic uncertainty arises due to a distributional change in
the input data, meaning the input is no longer in the range in which
the model was trained. Validation and testing data should fall into
this category to some degree. However, in balanced datasets, like the
benchmarks seen in the field, this effect is not significant. For epis-
temic uncertainty we consider OOD datasets, those which are taken
from different sources and have different class labels. We also con-
sider adversarial inputs. As we show in this section, inputs which
have been sufficiently perturbed have their distribution shifted in the
latent space of the model.

When encountering OOD and adversarial inputs we have shown
conventional deep learning models are susceptible to outputting sim-
ilar predictions to those made on ID data. Hence, we wish to develop
a second method which detects these unclassifiable inputs and allows
us to classify them individually. First, we focus on OOD inputs.

4.1 Out of distribution detection

Following recent work in [43] we employ k-nearest neighbour
(KNN) classification in the penultimate layer embedding space. We
find this is a particularly appropriate method to use, since it can be
applied to any model without the need for additional optimisation.

Consider the distribution in the embedding space, training inputs
will be more tightly clustered than test inputs, but a well optimised
model should position these distributions roughly about the same
mean. OOD inputs, however, should be in a separate cluster. When
translating this to KNN distances, the training inputs will have the
lowest distances, followed closely by the test inputs, then the OOD
inputs should cluster separately from the target dataset.

To test this principle, we train a baseline 4 exit branched neural
network on a target dataset, recording the kth nearest neighbour dis-
tances on the target data test set, and a collection of OOD datasets.
Results with the CIFAR10 target dataset are shown in figure 5.

0.945 0.950 0.955 0.960 0.965 0.970 0.9750

25

50

75

100

125

150

175
Branch: 1

0.91 0.92 0.93 0.94 0.95 0.96 0.970

20

40

60

80

100

120

Branch: 2

0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.950

10

20

30

40

50

Branch: 3

0.86 0.88 0.90 0.92 0.94 0.960

5

10

15

20

25

30

35

Branch: 4Co
un

ts

kth embedding separation

ID CIFAR100 SVHN DTD tiny-imagenet

Figure 5. KNN embedding separation for in distribution (ID) data and
various out of distribution datasets.



We find that there is clear separation between the datasets as the
inputs progress through the model. However, in the early branches,
this separation is minimal. Furthermore, in each branch, there is a
large amount of overlap. This separation increases further along the
inference process, and at the final exit the overlap is minimised. In
some datasets, there is sufficient separation to allow for classifica-
tion in the earlier branches. To examine this further, we analyse the
receiver operator characteristic (ROC) of OOD detection on these
branches using a KNN classifier. To generate this, we vary the posi-
tion of the classification boundary between the distributions, defining
this boundary according to percentiles of the validation distribution.

As shown in figure 5, the later branches are more effective in sep-
arating the OOD inputs from the target dataset. This is reflected in
the area under ROC (AUROC) for each branch, shown in table 1.
In the final branch, there are competitive results, considering there is
no additional optimisation taking place for OOD detection. However,
on some datasets, namely SVHN, there are competitive AUROC re-
sults on the earlier branches. For most of the datasets tested, we find
that identification performance increases further along the network.
However, we do find that for the SVHN dataset, performance is max-
imised in the second branch.

Table 1. Table showing the AUROC for each branch given different OOD
datasets. Recent benchmarks are shown, where † denotes the benchmark
which is implemented out-of-the-box, like ours. The mean and standard

deviation (mean ± std) are taken over 5 runs.

AUROC

Branch/Benchmark Dataset
CIFAR100 SVHN DTD Tiny-Imagenet

1 0.62±0.01 0.65±0.04 0.69±0.04 0.67±0.04
2 0.74±0.01 0.95±0.01 0.81±0.05 0.80±0.01
3 0.84±0.01 0.93±0.01 0.88±0.03 0.88±0.03
4 0.85±0.01 0.88±0.02 0.90±0.02 0.89±0.01

UDG [53] 0.90 0.93 0.94 0.93
ARPL+CS [7, 48] 0.89 0.91 0.91 0.89

RegMixup [38] 0.90 0.97 - 0.90
GROOD [48] 0.97 0.99 0.99 0.96
DNN [43]† - 0.95 0.95 -

DNN w/ CL[43] - 0.99 0.99 -

These results suggest that branched neural networks, even when
trained using conventional supervised methods, are capable of dis-
tinguishing their target dataset from other OOD datasets. However,
when models are deployed into real-world situations, it is not only
OOD inputs they might encounter. In some scenarios they will en-
counter adversarial attacks, designed to deliberately confuse the
model. We consider this case in the next section.

4.2 Detecting adversarial attacks

Adversarial perturbations in the inputs present a different challenge,
since their effect on the output classification is non-binary. That is,
there is a continuous range between the unperturbed inputs and those
that are completely perturbed. Hence, some inputs, whilst being per-
turbed, are still able to be classified.

Therefore, rather than classifying the perturbed from the clean in-
puts, it is more pertinent to identify which inputs will be classified
by the model and which inputs are unclassifiable.

To analyse their distribution in the embedding space, we follow a
similar analysis to the previous section. We analyse the distributional
shift of the perturbation of the CIFAR10 dataset in figure 6.

We find that as the data becomes increasingly perturbed, its distri-
bution in the embedding space separates from the clean data. Much

0.945 0.950 0.955 0.960 0.965 0.9700

20

40

60

80

100

120

140

160

Branch: 1

0.91 0.92 0.93 0.94 0.95 0.960

20

40

60

80

100
Branch: 2

0.88 0.90 0.92 0.940

10

20

30

40

50
Branch: 3

0.86 0.88 0.90 0.92 0.94 0.960

5

10

15

20

25

30

Branch: 4

0.3

0.2

0.1

0

Co
un

ts

kth embedding separation

Figure 6. KNN embedding separation for various perturbation values of
the target dataset, ranging from e = 0 → 0.3. We represent increasing

perturbation visually by varying the distribution colours from green to red.

like the OOD data in section 4.1, the distributional shift is most evi-
dent in the later layers. However, there is a clear shift as perturbation
increases in all branches.

To further examine this, we use the same technique as in the previ-
ous section to determine the ROC curve of the model at each branch,
for each perturbation amount. We show these results in figure 7, and
we present AUROC values in the appendix.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Branch: 1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Branch: 2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Branch: 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Branch: 4

0.3

0.2

0.1

0

TP
R

FPR

Figure 7. ROC curves for each branch on adversarial samples for various
perturbation values of the target dataset. In all cases, the x and y axes denote

the false positive rate (FPR), and true positive rate (TPR), respectively.

We find that the later branches are more successful in identifying
the lower perturbation values. However, as the perturbation increases,
the AUROC performance increases in the earlier branches, and at
the greatest value of ϵ, we find that the first branch distinguishes the
adversarial samples most successfully.

As expected, we find that the KNN classifier does not work at low
values of ϵ. However, at these values the performance of the model
is not prohibitively poor and the performance at greater values of ϵ
is competitive. Hence, by treating significantly perturbed values like
OOD inputs, there is a potential to detect and reject the classification
of such inputs. We consider this scenario and the cost benefits it can
achieve in the next section.



5 Rejecting Classification to Save Power
We have so far established that branched neural networks can detect
OOD inputs, as well as adversarial inputs. We now consider the ben-
eficial situation branched neural networks allow for: using epistemic
uncertainty to minimise resource usage. To accomplish this, we pro-
pose a multi-step modification to the conventional exit policy.

First, the aleatoric uncertainty is handled, ID domain inputs will be
processed normally, this will catch any opportunities to perform an
early exit classification. For this, we employ an entropic decision
policy on the softmax output of each classification branch. We im-
pose a classification threshold on the entropy of this output, defined
as λ. If this condition is not met, we move to the epistemic uncer-
tainty quantification phase, designed to classify inputs outside of the
training distribution using the KNN distance. If this distance exceeds
a certain threshold, δ, then an early exit reject can take place. If
neither condition is met, inference moves to the next branch.

Much like work in [43], we define our KNN threshold using the
validation data distribution on the training set and use the 50th nearest
neighbour, as this empirically produces the best results. We model it
as a Gaussian distribution, and take thresholds on the KNN values
based on the percentiles of this distribution. That is, we define a clas-
sification boundary that contains δ of the validation distribution. We
vary this value between 1.0 and 0.9 at selected intervals.

To test OOD detection we introduce a mixed dataset, D, which
contains in equal parts ID inputs and OOD inputs. We produce these
for four OOD datasets, Describable Textures Dataset1 (DTD), CI-
FAR100, Street View House Numbers (SVHN), and Tiny-ImageNet.
We then pass the dataset to our branched neural network, f . Our
distribution-aware early exiting process is detailed in algorithm 1.

Algorithm 1. Distibution-aware early exiting algorithm
for x in D:

early_exit → False
for b in B:

embedding → fb−1(x)
out → fb(x)

entropy → ent(out)
if entropy < λ:

early_exit → True
pred[x] → argmax(out)
break

knn → get_knn(embedding,train_emb)
if knn[k] > δ:

early_exit → True
pred[x] → -1
break

if early_exit = False:
final_out → fB(x)
pred[x] → argmax(final_out)

Here train_emb refers to the collected train embeddings,
get_knn() a function returning the k nearest neighbours, and k the
value of k. Following work in [43], we find k=50 empirically returns
the best results. Hence, we introduce two conditions for an early exit,
increasing the opportunity for early exits to take place. To understand
the performance of models using such inference methods, we analyse
their operating ranges, much like the work in [13].

We vary the entropy threshold for classification, λ, from 0 to the
maximum value, log(K). This is to understand the operating points
at which the model can work in the accuracy-power space, where
accuracy refers to that on the ID data and power the average MAC
operations at that particular threshold.

We also scale the KNN distance threshold, δ, depending on the en-
tropy threshold. We do this between the KNN distance correspond-

1 Since DTD only has ∼ 5000 input patterns, we use all of the inputs of this
dataset for OOD detection.

ing to the selected detection percentile and that corresponding to the
100th percentile. This is so that as the classification threshold be-
comes more stringent and conservative, the KNN rejection threshold
does the same. In practice we normalise both λ and δ.

The operating range for OOD detection and adversarial detection
are shown in figures 8 and 9 respectively. We show the ID accuracy
against the average power usage, for a given entropy exit threshold.
A number of minimum values for δ are shown. We show a conven-
tional exit policy in red, which without the early exit reject recourse
is forced to process all inputs.

By assuming the accuracy of the model represents a point of a
Gaussian, we can define the confidence interval as:

∆ = σ
√

A(1−A)
n

.

Where σ represents the number of standard deviations from the
mean, n the number of samples, and A the mean accuracy. For the
following results, a σ of 3 is used corresponding to a certainty of
99.7%. This value ∆ is represented by the shaded areas surrounding
the data in figures 8 and 9.

3.0 3.5 4.0 4.5 5.0 5.5
1e8

0.65

0.70

0.75

0.80

0.85

0.90

0.95
CIFAR100

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1e8

0.65

0.70

0.75

0.80

0.85

0.90

0.95
SVHN

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1e8

0.65

0.70

0.75

0.80

0.85

0.90

0.95
DTD

2.5 3.0 3.5 4.0 4.5 5.0 5.5
1e8

0.65

0.70

0.75

0.80

0.85

0.90

0.95
tiny-imagenet

OO
D-

Aw
ar

e 
Ac

cu
ra

cy

Power usage (MACs)

OOD detection percentile: 
None 1.0 0.999 0.995 0.99 0.95 0.9

Figure 8. Operating range of the distribution-aware early exiting algorithm
on various OOD datasets. In all cases the x axis denotes ID accuracy, y axis

denotes average multiply accumulate operations (MACs).

3.5 4.0 4.5 5.0 5.5
1e8

0.65

0.70

0.75

0.80

0.85

0.90

0.95
= 0.0

2.5 3.0 3.5 4.0 4.5 5.0 5.5
1e8

0.65

0.70

0.75

0.80

0.85

0.90

0.95
= 0.1

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1e8

0.65

0.70

0.75

0.80

0.85

0.90

0.95
= 0.2

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1e8

0.65

0.70

0.75

0.80

0.85

0.90

0.95
= 0.3

Pe
rtu

rb
at

io
n-

Aw
ar

e 
Ac

cu
ra

cy

Power usage (MACs)

Adversarial detection percentile: 
None 1.0 0.999 0.995 0.99 0.95 0.9

Figure 9. Operating range of distribution-aware early exiting algorithm on
adversarial inputs with a selection of ϵ values.



We find that modest gains can be achieved with OOD CIFAR100
inputs, where the exit policy can improve accuracy across the entire
power range of the model, and operate at lower power ranges when
the inference policy is at its lowest threshold. The algorithm performs
better on the other datasets. There is a clear distinction between each
inference policy threshold, across most of the MACs range. We find
that the most gains can be achieved on SVHN, with a δ of 0.99, there
is no drop in ID accuracy for large power savings.

On adversarial data, we find that the model has difficulty recog-
nising the adversarial inputs, at small values of ϵ, and hence early
exiting gains are minimal. However, as ϵ increases, the early exiting
gains become more prevalent. At ϵ=0.3 the δ=0.99 exit policy makes
significant power reduction gains across the entire accuracy range. In
both tests the δ of 0.95 and 0.90 policies have greater power savings,
but with significant drops in accuracy.

These findings will allow the model to operate much more strin-
gent ID classification policies, when compared to the conventional
early exiting method which wastes resources on the OOD and adver-
sarial data. When the model is rejecting at most 1% of the ID sam-
ples (δ ≥ 0.99), we do not see this reflected in the ID performance
readings. Hence, any power gain is effectively free compared to the
conventional exit policy. We analyse the performance gains of our
distribution-aware exiting process in more detail in the next section.

6 Results
Since the power savings inherently depend on the ratio of ID inputs
to unclassifiable inputs in D, it is more informative to first consider
the detection accuracy. This is shown for OOD inputs in table 2.

Table 2. OOD detection results for various OOD datasets. Relative ID
accuracy is shown, and we enter results for a number of different detection

percentile thresholds.

OOD Detection (%)
Relative ID

Performance (%)
Threshold
percentile

Dataset
CIFAR100 SVHN DTD Tiny-Imagenet

Zero Loss 1.0 0.36±0.11 0.44±0.29 2.64±1.24 0.77±0.21

99

0.999 3.53±0.72 6.12±3.12 13.29±3.19 6.59±1.06
0.995 10.09±0.53 19.55±4.81 27.06±3.19 17.12±0.92
0.99 13.38±1.17 26.66±5.58 32.79±3.19 22.05±1.18
0.95 12.70±0.62 25.59±5.43 29.99±2.55 20.68±0.71
0.90 10.53±0.19 21.02±3.92 21.94±0.91 16.05±0.67

95

0.999 4.40±0.77 7.89±3.12 15.59±3.15 8.22±1.14
0.995 13.80±1.17 27.53±5.99 33.30±3.54 22.65±1.26
0.99 21.79±0.75 43.97±7.51 45.43±3.45 33.36±1.15
0.95 42.34±0.93 74.11±5.87 66.80±2.70 57.21±2.36
0.90 40.90±1.22 72.58±5.89 65.49±3.24 55.75±2.49

90

0.999 4.77±0.73 8.64±3.25 16.46±3.12 8.82±1.09
0.995 15.08±1.12 30.17±6.02 35.20±3.59 24.45±1.37
0.99 23.61±0.90 47.43±7.92 46.87±3.54 35.70±1.06
0.95 54.43±0.93 85.37±3.36 76.86±3.18 68.97±1.62
0.90 61.95±0.69 90.42±2.18 82.23±2.53 75.62±1.32

We find, as the figures in section 5 suggest, that the optimal thresh-
old depends on the allowable ID accuracy drop. However δ = 0.99
operates well with little drop in performance. We define a zero loss
row, which denotes either a threshold of δ = 1.0 or 100% relative ID
accuracy, detection performance is limited without a small compro-
mise in ID performance.

We find the most liberal exiting policies allow for up to 90% of the
OOD samples to be detected. Whilst a relative performance drop of
1% allows for 10-30% of the OOD inputs to be detected, depending
on the dataset. Table 3 shows similar results for adversarial data.

Since adversarial perturbation is not guaranteed to result in an in-
correct classification, like OOD data, rather than denoting the raw
detection accuracy, we detail the inference accuracy. That is, we al-
low the KNN classifier to predict the correctness of the output, as
opposed to the origin of the input.

Table 3. Adversarial detection results for selected thresholds. We show
results for a variety of relative ID accuracies.

Adversarial Detection Performance (%)
Relative ID

Performance (%)
Threshold
percentile

ϵ
0.0 0.1 0.2 0.3

Zero Loss 1.0 93.26±0.29 30.41±1.90 19.81±3.32 23.40±8.90

99

0.999 93.36±0.30 33.37±2.19 32.57±8.19 43.48±16.57
0.995 93.59±0.30 38.18±2.23 45.64±8.66 60.63±14.24
0.99 93.74±0.29 40.54±2.04 50.85±8.66 66.79±12.96
0.95 93.72±0.29 39.77±1.96 47.51±7.65 61.52±10.93
0.90 93.68±0.29 37.69±1.59 38.34±4.97 47.47±7.83

95

0.999 93.39±0.30 34.14±2.39 35.06±8.88 46.68±16.78
0.995 93.75±0.29 40.79±2.20 51.37±8.67 67.23±13.16
0.99 94.12±0.29 45.83±1.88 60.47±7.38 76.79±9.34
0.95 95.30±0.27 58.47±2.24 76.93±5.32 90.71±3.39
0.90 95.21±0.25 57.70±2.10 75.96±5.52 90.11±3.72

90

0.999 93.40±0.29 34.36±2.38 35.68±8.95 47.34±16.79
0.995 93.81±0.29 41.52±2.21 52.75±8.69 68.79±12.71
0.99 94.22±0.27 46.97±1.97 62.22±7.09 78.51±8.53
0.95 96.20±0.17 66.26±1.81 84.37±3.66 94.72±2.18
0.90 96.88±0.23 71.15±1.93 87.96±2.88 96.41±1.51

We again find a δ=0.99 is the most effective. There is very little
drop in relative performance at an ϵ of 0.0, which is likely due to
the base classifier achieving ∼95% accuracy. However, this perfor-
mance drops as ϵ increases, before rising again. At higher perturba-
tion levels, we find over 30% of these inputs can be classified, with
no performance drop in the classifier. Allowing a 1% drop increases
this detection accuracy to ∼80%. Detection accuracy peaks at ∼86%
when relative performance is at 90%.

To better understand the performance gains this gives rise to, we
analyse the power savings and accuracy benefits from the operating
range curves shown in figures 8 and 9. We can record accuracy in-
creases, and power increases, by taking the difference in these values
from the figures. This is demonstrated in figure 10.

Figure 10. Accuracy
change is denoted by
the distance between

the curves on the y axis,
and power improvement
by the difference on the
x axis. The shaded area

represents the
improvement made over

the conventional
algorithm. Power usage

Ac
cu

ra
cy

Power

Acc

Exiting Algorithm
Conventional
Distribution Aware

We record the maximum increases in each of these metrics for our
exit policies. These values are shown for OOD data and adversarial
data in tables 4 and 5, respectively.

For OOD data we find the highest peak accuracy gains are made in
δ=0.99 and δ=0.95 thresholds, depending on the dataset. It should be
noted, however, that from figure 8 it is evident the δ=0.99 policy can
make similar accuracy gains without moving far from the maximum
accuracy of the base model. Peak performance gains are achieved by
the least stringent detection threshold: δ=0.90. But, accuracy values
show this is at the expense of decreased ID performance.

In the adversarial test, we find that the top performing detection
threshold is dependent in some part on the test data. In this exper-
iment, the δ=0.995 threshold is marginally better than the δ=0.99
threshold. Once again, in figure 9, it is evident the 0.99 policy makes
similar accuracy gains without compromising maximum ID accu-
racy. Peak gains are again achieved by the least stringent detection
threshold: δ=0.90, at the expense of decreased performance.

All recorded results throughout the paper were averaged over 5
runs of the experiment, each trained from random initialisations. Re-
sults using CIFAR100 as the ID dataset are shown in the appendix.



Table 4. Peak improvements made by the early exiting algorithm on D, for
a number of different OOD datasets, when compared to conventional early
exiting algorithms. We compare a number of different detection thresholds,
peak accuracy and power improvements are shown. We highlight the best

performing values for each dataset.

Peak Improvement (%)
Detection
Threshold Improvement Dataset

CIFAR100 SVHN DTD Tiny-Imagenet

1.0 Acc 0.18±0.01 0.23±0.19 1.00±0.52 0.45±0.18
Power 0.08±0.03 0.11±0.07 0.80±0.39 0.20±0.06

0.999 Acc 1.97±0.51 4.03±2.50 4.83±1.38 3.92±0.66
Power 0.75±0.12 1.62±1.04 2.41±0.57 1.49±0.25

0.995 Acc 5.69±0.55 10.96±3.04 8.97±0.76 9.35±0.96
Power 2.79±0.25 6.13±2.05 5.78±0.57 4.76±0.57

0.99 Acc 8.56±0.60 13.91±2.27 10.74±0.50 11.87±0.94
Power 4.84±0.19 10.24±2.31 8.44±0.37 7.64±0.67

0.95 Acc 9.04±1.60 7.20±1.68 9.06±1.59 8.24±2.04
Power 14.77±0.40 24.43±1.47 18.52±0.59 19.62±1.20

0.90 Acc -0.75±2.24 -4.80±2.36 0.89±2.03 -1.81±1.66
Power 22.67±0.66 31.44±1.91 25.30±0.63 27.72±1.26

7 Conclusions

This paper considers a key idea in the robustness space for neural
networks: distinguishing uncertainty of epistemic origin, from that
of aleatoric origin. We introduce KNN classifiers to branched neural
networks in order to detect OOD and adversarial inputs, that is, in-
puts they are not equipped to classify. This allows for an additional
avenue of resource savings in these systems: early exit reject.

We present extensive experimentation on pre-trained branched
neural networks and motivate the detection of such samples. Our pro-
posed approach functions on a number of benchmark OOD tests and
on FGSM adversarial attacks. AUROC results are competitive, given
the out-of-the-box nature of our method.

A novel early exiting algorithm is detailed, which allows for early
exit rejects. To show the entire operating range of the model, we vary
the classification and rejection thresholds in unison. This allows us
to understand the performance gains our exiting algorithm can make
over conventional methods, recording the peak gains.

We show up to ∼90% of OOD data can be detected and rejected
using our methods. When compared to conventional early exiting
methods under the same resource constraints, we show this can lead
to a ∼15% accuracy improvement, or a ∼30% power improvement.

We also find that substantial performance gains can be achieved
through detecting adversarial inputs. We instead consider the final
model accuracy as our detection target and find we can detect up to
∼95% of these inputs. Comparing to a conventional exiting method
under the same constraints, we find our exiting algorithm records ac-
curacy improvements of ∼20% or power saving of ∼40%, depend-
ing on the strength of the adversarial attack. We find our algorithm is
better at detecting the stronger adversarial attacks.

Future work will investigate applications to more advanced adver-
sarial attacks, more advanced detection techniques, and robustness-
aware optimisation of the network backbone.2

Acknowledgements

This work was supported and funded by: The UK Research and Inno-
vation (UKRI) Centre for Doctoral Training in Machine Intelligence
for Nano-electronic Devices and Systems [EP/S024298/1]; the UKRI
Turing AI Acceleration Fellowship on Citizen-Centric AI Systems
[EP/V022067/1]; and the Defence Science and Technology Labora-
tory (Dstl).

2 Source code and supplementary material can be found at:
github.com/J-Dymond/distribution-aware-exiting

Table 5. Peak improvements made by the early exiting algorithm on D, for
a number of different ϵ values, when compared to conventional early exiting

algorithms. We compare a number of different detection thresholds, peak
accuracy and power improvements are shown.

Peak Improvement (%)
Detection
Threshold Improvement ϵ

0.0 0.1 0.2 0.3

1.0 Acc 0.00±0.00 0.66±0.34 5.31±3.04 9.24±5.39
Power 0.00±0.00 0.31±0.15 3.07±1.85 6.99±4.48

0.999 Acc 0.16±0.01 4.14±1.77 12.64±3.45 15.44±4.10
Power 0.14±0.00 1.61±0.75 7.63±3.73 13.06±5.82

0.995 Acc 0.62±0.08 8.67±1.28 15.90±1.83 16.52±1.95
Power 0.70±0.01 4.44±1.10 14.23±4.05 21.78±5.13

0.99 Acc 1.52±0.14 10.88±1.12 15.46±1.83 15.11±2.01
Power 1.37±0.01 6.87±1.18 18.22±3.68 26.11±3.95

0.95 Acc 3.34±0.36 8.61±1.98 5.90±2.64 4.16±1.74
Power 6.42±0.04 17.51±1.35 30.01±2.58 35.74±1.69

0.90 Acc 1.05±1.00 -1.51±2.23 -6.75±1.49 -6.75±1.49
Power 12.20±0.11 25.46±1.51 36.39±1.75 40.33±0.84

References

[1] Ahmed Abusnaina, Yuhang Wu, Sunpreet Arora, Yizhen Wang, Fei
Wang, Hao Yang, and David Mohaisen, ‘Adversarial example detection
using latent neighborhood graph’, in Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pp. 7687–7696,
(October 2021).

[2] Raphaël Achddou, J Matias Di Martino, and Guillermo Sapiro, ‘Nested
learning for multi-level classification’, in ICASSP 2021-2021 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2815–2819. IEEE, (2021).

[3] Ahmed Aldahdooh, Wassim Hamidouche, Sid Ahmed Fezza, and
Olivier Déforges, ‘Adversarial example detection for dnn models: A
review and experimental comparison’, Artificial Intelligence Review,
55(6), 4403–4462, (2022).

[4] Marília Barandas, Duarte Folgado, Ricardo Santos, Raquel Simão, and
Hugo Gamboa, ‘Uncertainty-based rejection in machine learning: Im-
plications for model development and interpretability’, Electronics,
11(3), 396, (2022).

[5] Liron Bergman, Niv Cohen, and Yedid Hoshen, ‘Deep nearest neighbor
anomaly detection’, arXiv preprint arXiv:2002.10445, (2020).

[6] Bertrand Charpentier, Daniel Zügner, and Stephan Günnemann, ‘Poste-
rior network: Uncertainty estimation without ood samples via density-
based pseudo-counts’, Advances in Neural Information Processing Sys-
tems, 33, 1356–1367, (2020).

[7] Guangyao Chen, Peixi Peng, Xiangqian Wang, and Yonghong Tian,
‘Adversarial reciprocal points learning for open set recognition’, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(11),
8065–8081, (2021).

[8] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi, ‘De-
scribing textures in the wild’, in Proceedings of the IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), (2014).

[9] Xin Dai, Xiangnan Kong, and Tian Guo, ‘Epnet: Learning to exit with
flexible multi-branch network’, in Proceedings of the 29th ACM In-
ternational Conference on Information & Knowledge Management,
CIKM ’20, p. 235–244, New York, NY, USA, (2020). Association for
Computing Machinery.

[10] Nathan Drenkow, Numair Sani, Ilya Shpitser, and Mathias Unberath, ‘A
systematic review of robustness in deep learning for computer vision:
Mind the gap?’, arXiv preprint arXiv:2112.00639, (2021).

[11] Xuefeng Du, Xin Wang, Gabriel Gozum, and Yixuan Li, ‘Unknown-
aware object detection: Learning what you don’t know from videos in
the wild’, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13678–13688, (2022).

[12] Jack Dymond, ‘Graceful degradation and related fields’, arXiv preprint
arXiv:2106.11119, (2021).

[13] Jack Dymond, Sebastian Stein, and Steve R Gunn, ‘Adapting branched
networks to realise progressive intelligence’, in 33rd British Machine
Vision Conference 2022, BMVC 2022, London, UK, November 21-24,
2022. BMVA Press, (2022).

[14] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B
Gardner, ‘Detecting adversarial samples from artifacts’, arXiv preprint
arXiv:1703.00410, (2017).

[15] Yonatan Geifman and Ran El-Yaniv, ‘Selectivenet: A deep neural net-



work with an integrated reject option’, in International conference on
machine learning, pp. 2151–2159. PMLR, (2019).

[16] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard
Zemel, Wieland Brendel, Matthias Bethge, and Felix A Wichmann,
‘Shortcut learning in deep neural networks’, Nature Machine Intelli-
gence, 2(11), 665–673, (2020).

[17] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy, ‘Explaining
and harnessing adversarial examples’, arXiv preprint arXiv:1412.6572,
(2014).

[18] Nathan A. Greenblatt, ‘Self-driving cars and the law’, IEEE Spectrum,
53(2), 46–51, (2016).

[19] Xiaoyi Gu, Leman Akoglu, and Alessandro Rinaldo, ‘Statistical anal-
ysis of nearest neighbor methods for anomaly detection’, Advances in
Neural Information Processing Systems, 32, (2019).

[20] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger, ‘On cal-
ibration of modern neural networks’, in International conference on
machine learning, pp. 1321–1330. PMLR, (2017).

[21] Danijar Hafner, Dustin Tran, Timothy Lillicrap, Alex Irpan, and James
Davidson, ‘Noise contrastive priors for functional uncertainty’, in Un-
certainty in Artificial Intelligence, pp. 905–914. PMLR, (2020).

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, ‘Deep resid-
ual learning for image recognition’, in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 770–778, (2016).

[23] Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert,
and Jesse Davis, ‘Machine learning with a reject option: A survey’,
arXiv preprint arXiv:2107.11277, (2021).

[24] Hanzhang Hu, Debadeepta Dey, Martial Hebert, and J Andrew Bagnell,
‘Learning anytime predictions in neural networks via adaptive loss bal-
ancing’, in Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 3812–3821, (2019).

[25] Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and Zhangyang Wang,
‘Triple wins: Boosting accuracy, robustness and efficiency together by
enabling input-adaptive inference’, arXiv preprint arXiv:2002.10025,
(2020).

[26] Bo Huang, Yi Wang, and Wei Wang, ‘Model-agnostic adversarial de-
tection by random perturbations.’, in IJCAI, pp. 4689–4696, (2019).

[27] Ryo Kamoi and Kei Kobayashi, ‘Why is the mahalanobis distance
effective for anomaly detection?’, arXiv preprint arXiv:2003.00402,
(2020).

[28] Ziv Katzir and Yuval Elovici, ‘Detecting adversarial perturbations
through spatial behavior in activation spaces’, in 2019 International
Joint Conference on Neural Networks (IJCNN), pp. 1–9, (2019).

[29] Alex Krizhevsky et al., ‘Learning multiple layers of features from tiny
images’, (2009).

[30] Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo
Silva Filho, Hao Song, and Peter Flach, ‘Beyond temperature scal-
ing: Obtaining well-calibrated multi-class probabilities with dirichlet
calibration’, Advances in neural information processing systems, 32,
12316–12326, (2019).

[31] Ya Le and Xuan Yang, ‘Tiny imagenet visual recognition challenge’,
CS 231N, 7(7), 3, (2015).

[32] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin, ‘Training
confidence-calibrated classifiers for detecting out-of-distribution sam-
ples’, arXiv preprint arXiv:1711.09325, (2017).

[33] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin, ‘A simple uni-
fied framework for detecting out-of-distribution samples and adversar-
ial attacks’, Advances in neural information processing systems, 31,
(2018).

[34] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewick-
rema, Grant Schoenebeck, Dawn Song, Michael E Houle, and James
Bailey, ‘Characterizing adversarial subspaces using local intrinsic di-
mensionality’, in International Conference on Learning Representa-
tions.

[35] Lassi Meronen, Martin Trapp, Andrea Pilzer, Le Yang, and Arno Solin,
‘Fixing overconfidence in dynamic neural networks’, arXiv preprint
arXiv:2302.06359, (2023).

[36] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Y. Ng, ‘Reading digits in natural images with unsupervised
feature learning’, in NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning 2011, (2011).

[37] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den
Hengel, ‘Deep learning for anomaly detection: A review’, ACM com-
puting surveys (CSUR), 54(2), 1–38, (2021).

[38] Francesco Pinto, Harry Yang, Ser-Nam Lim, Philip Torr, and Puneet K.

Dokania, ‘Using mixup as a regularizer can surprisingly improve accu-
racy & out-of-distribution robustness’, in Advances in Neural Informa-
tion Processing Systems, eds., Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, (2022).

[39] Catarina Pires, Marília Barandas, Letícia Fernandes, Duarte Folgado,
and Hugo Gamboa, ‘Towards knowledge uncertainty estimation for
open set recognition’, Machine Learning and Knowledge Extraction,
2(4), 505–532, (2020).

[40] Murat Sensoy, Lance Kaplan, Federico Cerutti, and Maryam Saleki.
Uncertainty-aware deep classifiers using generative models, 2020.

[41] Murat Sensoy, Lance Kaplan, and Melih Kandemir, ‘Evidential deep
learning to quantify classification uncertainty’, in Advances in Neu-
ral Information Processing Systems 31, eds., S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, 3179–
3189, Curran Associates, Inc., (2018).

[42] Tianxiang Sun, Yunhua Zhou, Xiangyang Liu, Xinyu Zhang, Hao Jiang,
Zhao Cao, Xuanjing Huang, and Xipeng Qiu, ‘Early exiting with en-
semble internal classifiers’, arXiv preprint arXiv:2105.13792, (2021).

[43] Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li, ‘Out-of-
distribution detection with deep nearest neighbors’, in International
Conference on Machine Learning, pp. 20827–20840. PMLR, (2022).

[44] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich, ‘Going deeper with convolutions’, in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1–9,
(2015).

[45] Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin, ‘Csi:
Novelty detection via contrastive learning on distributionally shifted in-
stances’, in Advances in Neural Information Processing Systems, eds.,
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, vol-
ume 33, pp. 11839–11852. Curran Associates, Inc., (2020).

[46] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet:
Fast inference via early exiting from deep neural networks, 2017.

[47] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung,
‘Branchynet: Fast inference via early exiting from deep neural net-
works’, in 2016 23rd International Conference on Pattern Recognition
(ICPR), pp. 2464–2469. IEEE, (2016).

[48] Tomas Vojir, Jan Sochman, Rahaf Aljundi, and Jiri Matas. Calibrated
out-of-distribution detection with a generic representation, 2023.

[49] Shuo Wang, Surya Nepal, Alsharif Abuadbba, Carsten Rudolph, and
Marthie Grobler, ‘Adversarial detection by latent style transforma-
tions’, IEEE Transactions on Information Forensics and Security, 17,
1099–1114, (2022).

[50] Y. Wang, J. Shen, T. K. Hu, P. Xu, T. Nguyen, R. Baraniuk, Z. Wang,
and Y. Lin, ‘Dual dynamic inference: Enabling more efficient, adaptive,
and controllable deep inference’, IEEE Journal of Selected Topics in
Signal Processing, 14(4), 623–633, (2020).

[51] Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yix-
uan Li, ‘Mitigating neural network overconfidence with logit normal-
ization’, in International Conference on Machine Learning, pp. 23631–
23644. PMLR, (2022).

[52] Maciej Wolczyk, Bartosz Wójcik, Klaudia Bałazy, Igor T. Podolak,
Jacek Tabor, Marek Śmieja, and Tomasz Trzcinski, ‘Zero time waste:
Recycling predictions in early exit neural networks’, in Advances
in Neural Information Processing Systems, eds., A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, (2021).

[53] Jingkang Yang, Haoqi Wang, Litong Feng, Xiaopeng Yan, Huabin
Zheng, Wayne Zhang, and Ziwei Liu, ‘Semantically coherent out-of-
distribution detection’, in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8301–8309, (2021).

[54] Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan
Ding, WENXUAN PENG, Haoqi Wang, Guangyao Chen, Bo Li, Yiyou
Sun, et al., ‘Openood: Benchmarking generalized out-of-distribution
detection’, in Thirty-sixth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track, (2022).

[55] Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, and
Michael Jordan, ‘Ml-loo: Detecting adversarial examples with feature
attribution’, in Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pp. 6639–6647, (2020).

[56] Shigeng Zhang, Shuxin Chen, Xuan Liu, Chengyao Hua, Weiping
Wang, Kai Chen, Jian Zhang, and Jianxin Wang, ‘Detecting adversarial
samples for deep learning models: A comparative study’, IEEE Trans-
actions on Network Science and Engineering, 9(1), 231–244, (2022).



A Additional Results

A.1 Sensitivity with k

We analyse the sensitivity of our algorithm as k is changed in the
KNN algorithm. We change it from 1 to 5, and then to 150 at incre-
ments of 5. We find that AUROC does not increase significantly as
we do this, we present results in figure 11.

0 20 40 60 80 100 120 1400.4

0.5

0.6

0.7

0.8

0.9

1.0 Branch: 1

0 20 40 60 80 100 120 1400.4

0.5

0.6

0.7

0.8

0.9

1.0 Branch: 2

0 20 40 60 80 100 120 1400.4

0.5

0.6

0.7

0.8

0.9

1.0 Branch: 3

0 20 40 60 80 100 120 1400.4

0.5

0.6

0.7

0.8

0.9

1.0 Branch: 4AU
RO

C

k

CIFAR100 SVHN DTD tiny-imagenet

Figure 11. AUROC results shown on the y axis as k is increased, shown
on the x axis. In all plots the shaded area denotes the standard deviation

across 3 runs of the experiment.

In the first branch it is evident that the performance of our al-
gorithm would benefit from sampling more nearest neighbour dis-
tances. However, as we get further along the branches of the network,
we find there are diminiishing returns as k is increased.

A.2 CIFAR10 as ID

We show AUROC results for the branched network on adversarial
data, comparing against various benchmarks. This is shown in table
11. We find our method is most competitive at higher perturbation
values.

A.3 CIFAR100 as ID

We also repeated our experiments with CIFAR100 as the ID dataset,
instead treating CIFAR10 as OOD. We present our results in this
section.

AUROC readings are shown for OOD data below in table 6, com-
pared with the benchmarks we could find in the literature. We again
find that we get competitive results when this dataset is used as ID.

Table 6. Table showing the AUROC for each branch given different OOD
datasets. The best performing branch for each dataset is highlighted. Recent
benchmarks are shown. The mean and standard deviation are taken over 5

runs, and CIFAR100 was used as the ID dataset.

AUROC

Branch/Benchmark Dataset
CIFAR10 SVHN DTD Tiny-Imagenet

1 0.59±0.00 0.74±0.05 0.48±0.02 0.55±0.02
2 0.59±0.01 0.81±0.03 0.80±0.03 0.76±0.03
3 0.62±0.02 0.91±0.02 0.90±0.01 0.81±0.01
4 0.75±0.01 0.81±0.02 0.85±0.01 0.83±0.01

UDG [53] 0.76 0.88 0.80 0.77
RegMixup [38] 0.81 0.89 - 0.83

We take the same readings for the adversarial data in table 12.
We find our algorithm gets competitive results at higher perturbation
values.

We also present the OOD detection accuracy in table 7. We find
more modest detection accuracies with this ID dataset, however,
there can still be high detection accuracy with a small drop in rel-
ative ID accuracy.

Table 7. OOD detection results for various OOD datasets, with CIFAR100
as ID. Relative ID accuracy is shown, and we enter results for a number of
different detection percentile thresholds. We take the mean and standard

deviation over 5 runs. That is, we record the results from 5 models trained
from different random initialisations.

OOD Detection (%)
Relative ID

Performance (%)
Threshold
percentile

Dataset
CIFAR10 SVHN DTD Tiny-Imagenet

ZeroLoss 1.0 0.09±0.08 0.08±0.04 3.19±1.60 0.39±0.29

99

0.999 0.39±0.12 0.97±0.46 9.95±1.58 1.75±0.40
0.995 1.53±0.12 5.43±2.90 20.36±1.81 5.24±0.67
0.99 2.19±0.31 7.35±3.43 24.14±2.37 7.09±1.11
0.95 2.41±0.30 8.30±3.86 21.55±1.46 7.31±0.94
0.90 2.42±0.21 7.47±2.70 16.46±1.35 6.59±0.63

95

0.999 0.58±0.15 1.91±1.18 12.53±1.69 2.44±0.56
0.995 2.59±0.24 9.09±4.25 26.66±1.12 8.26±0.71
0.99 4.63±0.41 15.54±6.61 34.68±1.11 13.37±1.10
0.95 11.87±0.74 34.38±7.97 51.79±1.72 27.54±1.54
0.90 11.67±0.66 34.06±8.39 55.39±1.13 27.28±1.54

90

0.999 0.65±0.14 2.43±1.59 13.60±1.56 2.76±0.56
0.995 3.06±0.33 10.63±4.84 28.59±1.39 9.51±0.94
0.99 5.50±0.50 18.16±7.30 37.47±1.19 15.43±1.30
0.95 19.13±1.01 49.24±8.68 62.67±1.41 39.30±1.68
0.90 22.90±1.50 55.76±8.28 66.93±1.48 44.47±2.29

We repeat the experiment for adversarial data, instead allowing the
algorithm to classify the correctness of the classification. These re-
sults are shown in table 8. We find the base model could have been
better optimised on the target dataset, however we find similar find-
ings to that in the main paper. Detection performance is maximised
when the adversarial perturbation is maximised.

Table 8. Adversarial detection results for selected thresholds. We show
results for a variety of relative ID accuracies. We take the mean and standard

deviation over 3 runs, the ID data the model is trained on is CIFAR100.

Adversarial Detection Performance (%)
Relative ID

Performance (%)
Threshold
percentile

ϵ
0.0 0.1 0.2 0.3

Zero Loss 1.0 72.87±0.24 14.19±0.62 6.63±0.60 7.15±2.06

99

0.999 72.98±0.23 14.87±0.60 12.42±2.43 20.66±6.96
0.995 73.26±0.22 17.18±0.71 26.17±6.13 43.53±9.88
0.99 73.45±0.23 18.43±0.96 31.35±7.32 51.04±11.35
0.95 73.49±0.27 18.77±0.76 29.59±4.96 44.34±7.79
0.90 73.49±0.25 18.54±0.72 23.56±3.14 31.65±4.63

95

0.999 73.03±0.24 15.27±0.67 15.38±2.89 26.69±8.09
0.995 73.56±0.25 19.25±0.90 34.59±6.41 55.52±10.26
0.99 74.08±0.26 23.06±1.12 46.66±7.15 68.79±9.62
0.95 75.90±0.40 34.21±1.94 66.83±7.91 85.62±6.96
0.90 75.85±0.41 34.02±1.86 66.57±7.60 85.36±6.71

90

0.999 73.05±0.23 15.45±0.73 16.67±2.89 28.61±8.22
0.995 73.67±0.27 20.18±1.06 37.70±6.76 59.35±10.52
0.99 74.34±0.23 24.70±1.27 50.44±7.52 72.58±9.07
0.95 77.58±0.39 43.63±2.34 77.03±6.65 91.72±4.52
0.90 78.52±0.41 47.71±2.72 80.25±6.40 93.30±3.96

We record additional peak improvements, with CIFAR100 as the
ID dataset, we show this in table 9. The improvements are lower
when CIFAR100 is the ID dataset, however, we still find ∼20%
power can be saved, or ∼15% accuracy improvements can be made.
We generally found the more liberal exit policies performed slightly
better in this experiment.

We take the same readings for the adversarial tests using the CI-
FAR100 dataset, these are shown in table 10. We again find that the
more liberal exit policies perform better on this dataset. We find that a
∼24% accuracy improvement can be made over conventional exiting
algorithms, or a ∼29% power improvement.



B Reproducibility
B.1 Source Code

For reproducibility, our source code along with trained weights
for CIFAR10 is made publicly available. It is available at:
github.com/J-Dymond/distribution-aware-exiting

B.2 Datasets

The experiments have used a number of Datasets: CIFAR10/100,
DTD, SVHN, and tiny-imagenet. We use these datasets because they
are benchmark datasets in the field, including the field of OOD detec-
tion [54], and are often a good representation of what can be achieved
with larger datasets when given more resources. Furthermore, they
are all open-source, easy to work with using torchvision, and
referenced properly in the main body of the paper.

When generating our training sets we use the standard normalisa-
tion factors for CIFAR10:
transforms.Normalize(mean = [0.4914,

0.4822, 0.4465], std=[0.2023, 0.1994,
0.2010]).

For tiny-imagenet we use the ImageNet normalisation terms:
transforms.Normalize(mean = [0.485, 0.456,

0.406] , std = [0.229, 0.224, 0.225])
For the other datasets we could not find the standard normalisation

factors and hence used our CIFAR10 values.
We also apply random aumentations to encourage better generali-

saion:
transforms.RandomCrop(32, padding=4),

transforms.RandomHorizontalFlip().
Default values are used for these augmentations.

B.3 Random seeds

When generating our test, train, and validation sets we
do use a random seed, due to the random nature of the
train-validation split. We generate our random splits using:
torch.utils.data.random_split and define our random
seed using torch.manual_seed(43), where 43 is the seed we
use for this process. This is kept consistent for every dataset used in
the paper.

For our experiments some factors use random values, for example:
initial weights. We have tracked the seeds, and will release them with
our codebase on successful publication.

B.4 Implementation Details

B.4.1 Hardware

Models were trained on a single GPU: Nvidia Quadro RTX 8000 or
Nvidia V100, depending on computing cluster resource availability.
However, the same experiments can be ran on more limited compu-
tational hardware.

The same hardware was used to generate the reference embed-
ding file on the train set, used for nearest neighbour calculations.
Memory issues may arise when generating these files as embeddings
are highly dimensional. Thus, we calculated and saved the refer-
ence embedding file in batches, saving each batch individually. We
then stacked them into a single file at the end of the script. Without
large memory GPUs, this process may be more time consuming as a
smaller batch size can be afforded (we use a batch size of 512 for

this process). However, we believe this will not be prohibitively time
consuming.

B.4.2 Hyperparameters

For CIFAR10/100 experiments we train our four branch model for
300 epochs, taking ∼3 hours the hardware used for this work. We
perform a search for the best learning rate over the range lr ∈
{0.5,0.1,0.05,0.01,0.005,0.001}, finding 0.01 to be
the most successful.

Models are optimised using stochastic gradient descent, using the
aforementioned learning rate, a momentum of 0.9 and a weight de-
cay of 5e-4. We also implement a learning rate scheduler, designed
to drop the learning rate on plateau. That is, it lowers the learning rate
when convergence stops. We use a patience value of 50, that is
it allows 50 epochs of no improvement before dropping the learning
rate by a multi[plicative factor we chose: 0.1.

We follow the findings in [13], and in equation 1 we use weight-
ings of [0.2,0.2,0.2,0.4].

Table 9. Peak improvements made by the early exiting algorithm on D, for
a number of different OOD datasets, when compared to conventional early
exiting algorithm. We compare a number of different detection thresholds,
peak accuracy and power improvements are shown. We highlight the best

performing values for each dataset. We take the mean and standard deviation
over 5 runs of the experiment, CIFAR100 is used as the ID dataset.

Peak Improvement (%)
Detection
Threshold Improvement Dataset

CIFAR10 SVHN DTD Tiny-Imagenet

1.0 Acc 0.01±0.01 0.00±0.00 0.31±0.15 0.02±0.03
Power 0.02±0.01 0.01±0.01 0.40±0.18 0.02±0.02

0.999 Acc 0.23±0.08 0.57±0.53 2.51±0.22 0.77±0.22
Power 0.17±0.01 0.41±0.26 1.66±0.17 0.41±0.05

0.995 Acc 0.97±0.03 3.49±1.60 6.26±0.22 3.35±0.70
Power 0.91±0.05 1.84±0.71 4.10±0.37 1.89±0.29

0.99 Acc 1.99±0.32 5.34±2.45 8.31±0.55 5.92±0.99
Power 1.74±0.06 3.31±1.01 5.99±0.32 3.42±0.37

0.95 Acc 14.74±1.94 9.06±1.59 12.54±0.88 13.84±0.72
Power 7.86±0.23 12.63±1.23 14.14±0.63 12.04±0.79

0.90 Acc 9.92±0.33 16.76±2.16 11.81±0.46 14.81±0.49
Power 22.55±1.88 25.30±0.63 20.64±0.69 19.73±0.91

.

Table 10. Peak improvements made by the early exiting algorithm on D,
for a number of different ϵ values, when compared to conventional early

exiting algorithms. We compare a number of different detection thresholds,
peak accuracy and power improvements are shown. We take the mean and

standard deviation over 5 runs, trained on CIFAR100 dataset.

Peak Improvement (%)
Detection
Threshold Improvement ϵ

0.0 0.1 0.2 0.3

1.0 Acc 0.00±0.00 0.02±0.03 0.17±0.21 0.61±0.43
Power 0.00±0.00 0.02±0.02 0.14±0.12 0.48±0.36

0.999 Acc 0.08±0.02 0.46±0.16 4.29±1.22 8.35±2.43
Power 0.14±0.00 0.32±0.07 1.97±0.48 3.98±1.09

0.995 Acc 0.47±0.03 2.66±0.60 12.73±3.62 19.02±3.70
Power 0.68±0.01 1.60±0.28 6.81±1.76 10.86±2.40

0.99 Acc 1.14±0.29 4.89±1.22 17.49±3.08 22.84±3.01
Power 1.33±0.01 3.04±0.37 10.14±2.04 14.66±2.62

0.95 Acc 4.66±0.62 13.00±1.22 21.73±1.73 23.67±0.81
Power 6.23±0.05 11.57±1.06 20.21±2.71 23.40±2.87

0.90 Acc 6.47±0.04 14.47±0.49 17.47±0.88 17.53±1.52
Power 11.88±0.09 19.31±1.18 25.91±2.31 27.95±2.29



Table 11. Table showing the AUROC for each branch given different perturbation values for adversarial data. The best performing branch for each dataset is
highlighted for each value of ϵ. We omit the results for ϵ=0, since the data is unperturbed in this range. We use the benchmark results reported in [56].

AUROC
ϵBranch 0.03 0.07 0.1 0.13 0.17 0.2 0.23 0.27 0.3

1 0.57±0.00 0.66±0.01 0.74±0.02 0.82±0.03 0.87±0.03 0.90±0.03 0.93±0.02 0.95±0.02 0.96±0.01
2 0.58±0.00 0.64±0.01 0.71±0.01 0.77±0.02 0.83±0.02 0.87±0.02 0.90±0.02 0.92±0.02 0.93±0.03
3 0.63±0.01 0.70±0.01 0.76±0.01 0.80±0.01 0.85±0.01 0.88±0.01 0.90±0.02 0.91±0.03 0.91±0.05
4 0.63±0.01 0.71±0.01 0.76±0.01 0.80±0.01 0.83±0.01 0.85±0.01 0.87±0.02 0.88±0.03 0.88±0.04

SPBAS [28] - - - - - - - - 0.79
ML + LOO [55] - - - - - - - - 1.00
KD + BU [14] - - - - - - - - 0.90

LID [34] - - - - - - - - 0.95
MAHA [33] - - - - - - - - 1.00

Table 12. Table showing the AUROC for each branch given different perturbation values for adversarial data, with a model trained on CIFAR100. The best
performing branch for each dataset is highlighted for each value of ϵ. We omit the results for ϵ=0, since the data is unperturbed in this range. We use the

benchmark results reported in [56].

AUROC
ϵBranch 0.03 0.07 0.1 0.13 0.17 0.2 0.23 0.27 0.3

1 0.54±0.01 0.57±0.01 0.58±0.01 0.56±0.03 0.54±0.01 0.53±0.02 0.53±0.02 0.52±0.03 0.53±0.04
2 0.58±0.00 0.69±0.01 0.77±0.02 0.84±0.03 0.88±0.03 0.91±0.04 0.93±0.04 0.94±0.04 0.95±0.04
3 0.58±0.01 0.67±0.01 0.75±0.01 0.82±0.01 0.88±0.01 0.92±0.01 0.95±0.00 0.96±0.00 0.97±0.00
4 0.59±0.01 0.68±0.01 0.75±0.01 0.81±0.01 0.85±0.01 0.88±0.01 0.91±0.02 0.92±0.02 0.93±0.02

SPBAS [28] - - - - - - - - 0.51
ML + LOO [55] - - - - - - - - 1.00
KD + BU [14] - - - - - - - - 0.98

LID [34] - - - - - - - - 1.00
MAHA [33] - - - - - - - - 1.00


