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Exploring buckling and post-buckling behavior of
incompressible hyperelastic beams through innovative
experimental and computational approaches

O. Azarniyaa, A. Forooghia , M. V. Bidhendia, A. Zangoeia, and S. Naskarb

aDepartment of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran; bFaculty of Engineering
and Physical Sciences, University of Southampton, Southampton, UK

ABSTRACT
The objective of this paper is to conduct a comprehensive investigation
into the buckling and post-buckling behavior of hyperelastic beams
through both computational and experimental means. Natural rubber is
used in the construction of a beam with a square cross-section. To deter-
mine the mechanical properties of natural rubber, a uniaxial tensile test is
performed in accordance with ASTM D412. In finite element modeling
(FEM), the nonlinear behavior of rubber is modeled using hyperelastic the-
ory and the Yeoh strain energy function. The Static-Riks method is also
implemented using Abaqus for the analysis of nonlinear buckling. To valid-
ate the present investigation results with FEM, an experimental test of
digital image correlation (DIC) is conducted. The critical buckling force
obtained via numerical methods exhibits an error of nearly 5% when com-
pared to the corresponding results obtained from experimental testing. In
order to ascertain the impact of various design parameters on the buckling
behavior of the system, a comprehensive parametric analysis has been
conducted. The parameters studied include the cross-sectional thickness,
length of the structure, eccentric loads, as well as the mechanical proper-
ties of the materials used in the system. Consistent with the FEM out-
comes, the critical buckling force exhibited by the hyperelastic beam
demonstrates a positive correlation with increasing levels of hardness,
cross-sectional thickness, and eccentric loads. The buckling behavior of the
system is adversely affected by increasing its length. To ultimately validate
the precision and reliability of the model, a supervised neural network (NN)
learning method is employed.
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1. Introduction

The stability of a structure under external and irregular loads is one of the most significant
parameters in design. Structural engineers analyze the structure’s strength, stiffness, and durabil-
ity, and determine appropriate materials and elements to use. To ensure stability, they use com-
puter simulations, physical testing, and mathematical modeling to predict how the structure will
behave under different conditions. Stability is crucial for providing safety and security to
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occupants (Chai and Yap 2008; Ebrahimi-Mamaghani et al. 2021; Vahidi Bidhendi et al. 2022;
Zangoei et al. 2023; Zolfagharian et al. 2022). To estimate a structure’s critical buckling load
(bifurcation), an Eigenvalue Buckling Analysis is generally used. This analysis can be performed
as the initial step in a global analysis of an unloaded structure or after preloading the structure.
By accurately predicting the critical buckling load, engineers can ensure that the structure is
designed to withstand expected loads and avoid failure. (Akg€oz and Civalek 2022; Cai, Gao, and
Qin 2014; Civalek, Dastjerdi, and Akg€oz 2022a; Forooghi and Alibeigloo 2022; Forooghi et al.
2022b). Novoselac, Ergi�c, and Bali�cevi�c (2012) perused numerical analysis of buckling and post-
buckling behaviors of a bar considering the effects of the imperfections. They performed nonlin-
ear buckling analysis with the Riks method. (Li et al. 2016) modeled the buckling and vibrational
frequency of sandwich conical shells which have reinforced cores. Their experimental outcomes
demonstrated that the semi-vertex angle of the cone has a significant impact on the vibrational
frequency. (Huang et al. 2022) perused a geometric mesh free collocation (IMC) for the static,
vibration, and buckling behaviors of composite plates. Based on Euler-Bernoulli beam theory,
(Hosseini, Arvin, and Kiani 2022) modeled the buckling and post-buckling behavior of a rotating
fully clamped functionally graded beam. They investigated the effect of different parameters such
as rotor radius, the beam length to the thickness ratio, and the rotation speed on the critical
buckling load. (Civalek, Uzun, and Yaylı 2022b) studied the buckling of a nanoscale restrained
beam based on nonlocal Euler–Bernoulli beam theory by considering functionally graded
materials.

Hyperelastic materials, also known as rubber-like materials, are materials that exhibit a large deform-
ation when subjected to an external load and can return to their original shape when the load is
removed. These materials are commonly used in a wide range of applications, including biomedical
engineering, automotive industry, aerospace engineering, and more (Emam 2009; Emam and Nayfeh
2009; Hamzehei et al. 2018; Sharma et al., 2022; Hamzehei et al. 2020; Selvan T et al., 2022; Wang and
Zhu 2021a, 2021b, 2022). The use of hyperelastic materials in these industries has gained significant
attention in the field of nonlinear-elasticity and engineering due to their unique mechanical properties.
Hyperelastic materials exhibit nonlinear stress-strain behavior, which means that their deformation is
not proportional to the applied stress (Amabili et al. 2016; Attard 2003a; b; Attard and Hunt 2008a;
Azarniya, Rahimi, and Forooghi 2023; Dastjerdi et al. 2022; Khaniki et al. 2022a; Liu and Dai 2014;
Mehta, Raju, and Saxena 2022b). This behavior is in contrast to linear elastic materials, such as metals,
which exhibit a linear stress-strain relationship. These hyperelastic materials are widely used in various
industries due to their unique mechanical properties. These materials exhibit nonlinear stress-strain
behavior and can withstand large deformations without permanent damage or failure. The use of
hyperelastic materials has gained significant attention in the field of nonlinear-elasticity and engineering
due to their wide-ranging practical applications. There are several pieces of research regarding the buck-
ling and post-buckling of hyperelastic structures. In this regard, (Dai and Wang 2012) studied the buck-
ling and post-buckling of a hyperelastic rectangular layer with boundary condition sliding. They used
the combined series-asymptotic expansions to derive nonlinear ordinary differential equations of hypere-
lastic layer. (Liu 2018) scrutinized the buckling of a hyperelastic tube under limited compression and
consider both axial and circumferential modes. (Chen and Jin 2020) performed the post-buckling ana-
lysis for hyperelastic columns under axial compression. Their results showed that with the increasing
width-to-length ratio for hyperelastic columns, they change from continuous state to snapping-through
and snapping-back. (Flores et al. 2011) investigated hyperelastic finite element-based lattice for buckling
behaviors in single wall carbon nanotubes. they adopted the Ogden’s strain energy function to deter-
mine the equivalent mechanical response of C–C bonds in SWCNTs. (Cai, Gao, and Qin 2014) scruti-
nized the post-buckling of a large deformed beam by utilizing the canonical dual finite element method
(CD-FEM). (Chen and Jin 2021) investigated experimental and numerical snapping-back buckling of
wide hyperelastic columns using reusable energy absorbing. (Attard and Hunt 2008b) developed the
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macro-buckling equations for a sandwich column. They used Timoshenko beam displacement theory
and hyperelastic neo-Hookean formulation for constitutive relationships and equilibrium equations.

The Digital Image Correlation (DIC) method is an effective tool for solving a wide range of
complex engineering problems. This is because the method has the ability to calculate the full-
field displacement, which is essential in analyzing deformations in a material or structure. The
DIC method is also a nondestructive testing method, which means that it does not cause any per-
manent damage to the material being analyzed. Additionally, the method has a high measurement
sensitivity, which allows for accurate and precise measurements of deformations in the material
or structure. Due to these unique properties, the DIC method is a valuable tool in many fields of
engineering, including materials science, mechanical engineering, civil engineering, and aerospace
engineering (Azarniya and Rahimi 2022; Peres and Bono 2011; Shojaeifard, Wang, and Baghani
2022; Tabatabaei and Fattahi 2022; Zangoei et al. 2023). In this approach, spots of the staining
pattern are tracked before and after loading on the sample surface. (Cabello et al. 2016) intro-
duced a novel approach for simulating sandwich beams including flexible core materials. By uti-
lizing the elasticity theory and developing it for hyperelastic materials, they presented an
analytical model and compared its outcomes with the DIC. In 2021, (Giordano, Mao, and Chiang
2021) performed the practical process of DIC to peruse the three-point bending of sandwich
beams which are constructed by foam core and composite skins. In their work, the displacement
and strain outcomes were compared with the analytical results.

The objective of this study is to analyze the buckling and post-buckling behavior of hyperelas-
tic beams that have a square cross-sectional shape. The study aims to investigate how the mech-
anical properties of the hyperelastic material affect the deformation behavior of the beams when
subjected to external loads that induce buckling. The analysis will provide insight into the nonlin-
ear behavior of the beams and how they buckle. The findings of this study will contribute to a
better understanding of the mechanics of hyperelastic materials and their applications in struc-
tural engineering. The main practical applications of such structures are in different mechanical
systems that involve hyperelastic axially moving beams, such as treadmills, belt operating power
transmission systems, conveyors, roll-to-roll systems, technical textile manufacturing processes,
flexible electronics and nanotechnology and continuously variable transmissions. Modeling the
nonlinear material and post-buckling analysis is carried out using Yeoh strain energy functions
and the Static-Riks method. As part of the assessment of the mechanical properties of natural
rubber, a uniaxial tensile test is conducted in accordance with ASTM D412. To validate the
accuracy of the Finite Element Method (FEM) used in this study, the results obtained from the
FEM analysis are compared to those obtained from a Digital Image Correlation (DIC) experimen-
tal test. By comparing the results of the two methods, the accuracy of the FEM can be evaluated
and any discrepancies can be identified and analyzed. This validation process ensures that the
FEM model used in the study is reliable and can be used to accurately predict the behavior of the
material or structure being analyzed. The use of multiple methods for validation is a common
practice in engineering research to ensure the accuracy and reliability of the results obtained. In
addition to the Finite Element Method (FEM) analysis and experimental testing, a supervised
neural network is developed to predict the critical buckling load of the system being studied.
The neural network is trained using a set of input data and corresponding output data, which
includes information about the material properties, geometry, and loading conditions of the sys-
tem. Once trained, the neural network can be used to predict the critical buckling load of the sys-
tem with a high degree of accuracy. The predictions made by the neural network are compared
to the results obtained from the FEM and experimental testing to verify the accuracy of the
model. This approach ensures that the results obtained from the study are reliable and can be
used to make informed decisions about the design and performance of the material or structure
being analyzed. In conclusion, the current research provides a thorough and comprehensive
evaluation of various parameters and conditions related to the behavior of the material or
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structure being studied. The findings of the study can be used as a basis for further research in
the field of structural engineering, providing valuable insight and understanding of the system
being analyzed. The comprehensive assessment of the parameters and conditions provides a foun-
dation for future studies to build upon and can inform the development of new structural models
and approaches to engineering design. Overall, the current research contributes to the advance-
ment of knowledge in the field and has the potential to impact future engineering practices.

2. Fabrication of specimens and experimental procedure

This section provides a detailed discussion of the manufacturing process for hyperelastic beams, deter-
mination of mechanical properties, and the procedure for conducting buckling tests. Natural rubber
beams are manufactured as described in Section 2.1. The design of metal molds and the testing of rhe-
ometers for the fabrication of systems are also discussed. Section 2.2 refers to the determination of the
mechanical properties of rubber. The two final parts of this section provide a detailed description of the
experimental buckling test, which was performed using the Digital Image Correlation (DIC) experimen-
tal method, as well as the Finite Element Simulation. DIC method is advantageous as it provides accur-
ate and detailed information about the deformation behavior of the system during buckling. Therefore,
the description of the experimental procedure is essential in providing a complete understanding of the
test and the data obtained, ensuring the reliability of the results obtained in the study.

2.1. Rubber compound and structure

Natural rubber, Carbon Black, butadiene rubber, sulfur, and other additives presented in Table 1
are the ingredients of rubber compound raw materials. Initially, butadiene rubber is softened in a
two-roller mill at 400 rpm at 25 �C for 10min, which improves rubber mixing. A Banbury mixer
is then used to mix natural rubber with butadiene rubber for five minutes. For the next 5-7min,
the other ingredients mentioned in Table 1 are added to the mixture. As a result of the cross-
linking between polymer chains, adding sulfur to rubber improves its mechanical properties. The
process takes place at a temperature of 70-80 degrees Celsius. The raw rubber sample leaves the
Banbury mixer and is then turned into rubber bands with identical thicknesses by a two-roller
mixer. An illustration of the rubber compound after it has been mixed with two rollers is shown
in Fig. 1. Rubber compounds are manufactured and utilized due to their distinctive nonlinear
elastic behavior. This behavior is characterized by a highly nonlinear stress-strain relationship,
with stress being highly sensitive to small changes in strain. As a result, rubber compounds
exhibit unique mechanical properties, such as large deformation capability, high energy absorp-
tion, and excellent damping capacity. These properties make rubber compounds highly desirable
for various industrial applications, such as in the automotive and aerospace industries, where
they are used in vibration isolation systems and as shock absorbers.

Rheometers are used to measure the curing time of rubber. The device is composed of two
holes and a central disk. Between the two cavities, a rubber compound weighing 200 grams is

Table 1. Natural rubber ingredients.

Material No. Material Value (PHR)

1 Butadiene rubber (PBR-1220) 45
2 Natural rubber (SMR-20) 55
3 Carbon Black (N660) 50
4 Aromatic oil 7
5 Sulfur 19
6 Accelerator (TBBS) 8
7 Antioxidants 15
8 Zinc oxide 15
9 Stearic acid 15
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placed. At a temperature of 140 �C, the middle disk rotates with an oscillating motion of ±1
degree and a rotational torque of 20 lbf.in. As the sample’s curing time rises, cross-links among
the polymer chains are formed by the curing agent (sulfur), and the needed torque rises to a con-
stant amount. As part of the production process of rubber products, this is the appropriate time
for the sample to be cured. As can be observed in Fig. 2, the compound sample is made at 63
Ibf.in torque and reaches a constant amount at 10.2min.

For the manufacture of a hyperelastic beam with a square cross-section, a metal mold is
designed by means of SolidWorks software (Fig. 3a) and machined with an automatic lathe. Molds
are made from MO40 steel, which is strong enough to withstand compressive forces and thermal
stresses. Small pieces of rubber compound are embedded in the mold, making melting faster and
preventing bubbles from forming. In the end, the rubber is pressed for 10min with a hot press
under 0.5MPa, based on the results of the rheometer test. After curing the rubber compound, the
hyperelastic beams are fabricated as Fig. 3b. Figure 4 illustrates the steps of making a rubber beam.
The constructed beams have a length of 250mm and a square cross-sectional area of 400mm2.

Eventually, due to the effective variables in the mechanical properties of the rubber, including
curing time, molding method in hot press, percentage of ingredients, the temperature of Banbury
mixer, etc., manufacturing several specimens is an important thing in reducing the possible
experimental errors.

Figure 1. Raw rubber compound.

Figure 2. Rubber rheometer test diagram.
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2.2. Mechanical properties of rubber

The ASTM D412 standard provides a reliable and standardized method for testing the tensile proper-
ties of rubbers, which can be useful in determining the suitability of materials for various applications.
So, in order to find the appropriate hyperelastic criterion, the stress-strain curve of the uniaxial tensile
test is obtained based on the ASTM D412 standard (Fig. 5) and is imported to Abaqus software as
input data (Fig. 6). Since the results of the uniaxial tensile test according to ASTM D412 can be

Figure 3. (a) Metal mold design and (b) steel mold and compound rubber.

Figure 4. Steps of making a hyperelastic beam.
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influenced by many factors, including material composition, testing environment temperature and
humidity, and stretching speed, multiple samples must be tested. Therefore, in this study, the pre-
sented outcomes represent the average of four tested samples. The coefficients of hyperelastic materi-
als can be determined by comparing different strain energy functions such as Yeo, Neo-Hookean,
OGDEN_N2, and ARRUDA_BOYCE to the uniaxial tensile test. Due to its small difference compared
to the experimental test, Yeo is considered to be the strain energy function. Also, the Yeoh criterion
is chosen as the congruence of the stress-strain curve of the uniaxial test (Table 2).

2.3. Experimental test

For the purpose of numerical simulation validation, DIC is used in the present study. DIC experi-
ments include sample preparation, test setup, imaging of the sample surface using a digital cam-
era before and after uploading and processing the image using GOM Correlate software (Fig. 7).

Figure 5. The uniaxial tensile test based on the ASTM D412 standard.

Figure 6. Overlap of experimental tensile test outcomes with strain energy functions.

Table 2. Fixed coefficients of Yeoh and Neo-Hookean model (Khaniki et al. 2021; Khaniki et al. 2022b; Khaniki et al. 2022c).

Fixed coefficient C10 (pa) C20 (pa) C30 (pa)

Yeo: U ¼ C10 I1 � 3ð Þ þ C20 I1 � 3ð Þ2 þ C30 I1 � 3ð Þ3 708663 19707 �149

Neo-Hookean: U ¼ C10 I1 � 3ð Þ 207843 – –
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The quality of the stain pattern is also a significant parameter in this method, with its clarity
playing an important role in ensuring accurate image analysis and the determination of stress
and deformation. A digital camera, a test setup, a tensile device, and a Dynamometer Sensor
(Load Cell) are used as part of the experimental test equipment. In order to record force and dis-
placement, a dynamometer sensor is installed on the hydraulic jack of the tensile device. At the
top of the structure (point 1 in Fig. 7), a hydraulic jack with a speed of 10 millimeters per minute
is applied.

Given the importance of photo recording speed, it is essential to use the maximum video
recording speed to ensure high accuracy in image analysis and deformation measurement.
Accurate calibration of the camera and image analysis system should also be considered when
taking measurements.

Finally, proper lighting is another crucial aspect of this approach. The accuracy of image ana-
lysis is affected by the laboratory’s lighting conditions. Figure 8 shows the boundary conditions
and loading of the experimental test before and after deformation. The considered structure lies
between the stand and the sheet metal, which is realized as a clamped boundary condition.

Figure 7. Experimental test steps of DIC.

Figure 8. Experimental test of hyperelastic beams before and after loading.
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2.4. Finite element method

Abaqus software is used to simulate the FEM. Here, meshing with a significant edge size of 1mm
is performed after examining the convergence of the mesh for static bending. 3D beam compo-
nents are constructed with 110691 and 100000 nodes and elements with C3D8RH types for
hyperelastic beams with square cross-sections. Geometric nonlinear terms are taken into account
in FE analysis due to large deformations during concentrated forces.

Uniaxial tensile test data is used to calibrate hyperelastic constitutive models of material behav-
ior, which can also be evaluated using Abaqus software. Abaqus includes several constitutive
hyperelastic models, such as Mooney-Rivlin, Polynomial, Neo-Hookean, Yeoh, and Ogden, that
can fit experimental results of the uniaxial tensile test, check stability, and calculate material coef-
ficients. The Yeo strain energy function is used to describe the material nonlinearity.

In addition, the boundary and loading conditions used in the numerical simulation are identi-
cal to those specified in the experimental study. The hyperelastic beam test setup (shown as the
first drawing from the left in Fig. 7) is modeled in Abaqus, with consideration given to the
hydraulic jack operating at a speed of 10mm/min. Clamped boundary conditions are defined,
restricting the bottom edge of the beam (see Figs. 7 and 9). The first analysis is an eigenvalue
problem to determine the critical buckling load.

Nonlinear static problems can sometimes result in buckling or collapse behavior, where the load-
displacement response exhibits negative stiffness, and the structure must release strain energy to
maintain equilibrium. The modified Static Riks method enables the identification of static equilib-
rium states during the unstable phase of the response. Therefore, for the analysis of hyperelastic
beams post-buckling, the Static-Riks solver is implemented in Abaqus. The Static-Riks method solves
displacements and loads simultaneously by using the magnitude of the load as an additional
unknown. Arc length is the basis of the mentioned approach. Eventually, the displacement and strain
contours are calculated numerically, and the results are validated through DIC experimental testing.

3. Results and discussion

The term buckling refers to the collapse of a structural member under high axial compression.
During this collapse, the structural member suddenly deflects to the side. It is stated that the

Figure 9. Boundary and loading conditions in the finite element model.
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buckling load has been reached when the structure exhibits sudden lateral deflection under axial
compression. Given the fact that buckling forces are lower than the maximum loads the structure
can hold under axial compression, consideration of buckling during structural design is crucial.
Under increasing loads, an axisymmetric structure (e.g., a column) reaches a critical load value
(Pcr) at which its response can only take the form of two states in equilibrium. A purely com-
pressed state without any lateral deflection or a purely deformed state (collapse).

An analysis of the stability of a hyperelastic beam is presented in this section. Section 3.1 dis-
cusses the Eigenvalue buckling analysis that determines the critical buckling load and mode shape.
Moreover, in section 3.2, the Static-Riks solver is used to investigate the post-buckling analysis of
the hyperelastic beam. Finally, DIC experimental results are compared to numerical results.

3.1. Eigenvalue buckling analysis

The first three critical buckling modes are illustrated in Fig. 10. The first linear eigenvalue is
28.2N. As expected, it can be observed that the higher the modes, the higher the critical buckling
loads.

3.2. Post-buckling with the Static-Riks

In Abaqus, the Static-Riks solver is used to perform the post-buckling analysis. This analysis
assumes that a displacement of 16mm is acting on top of the beam (i.e., in an ideal state) and
that boundary conditions are clamped. Figures 11 and 12 depict the X-axis and Y-axis displace-
ment of the rubber beam in the FEM and the DIC. According to the numerical method, the max-
imum displacement of a beam is 16.66mm and 35.68mm, while the experimental test of DIC
predicts 17.2mm and 32.93mm. It is assumed that the boundary conditions and the loading con-
ditions are ideal in numerical simulations. In other words, The FEM ignores the influences of
environmental conditions, friction effects in boundary conditions, etc., while they are present in
experiments. So, there are differences between the results obtained by these two approaches.

It is common to use load-displacement plots to determine how a structure may behave under
load. This applies also to studying structural behavior in the post-buckling region (after the bifurca-
tion point). Based on the load applied by the Riks algorithm, the load proportionality factor (LPF)

Figure 10. First three buckling modes.
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can be schemed to identify pre-buckling and post-buckling regions. According to Fig. 13, the force-
displacement diagram is depicted for the experimental test and the FEM. Static-Riks numerical
results clearly show that the structure behaves in two regions of positive and negative stiffness. A
buckling in the structure is indicated by a slope that changes from positive to negative on the
force-displacement diagram. in other words, the structure instantly loses its load bearing capacity
and exhibits a significant lateral displacement. As can be seen in the diagram, buckling is occurred
at the displacement of 5mm of the hyperelastic beam, where negative stiffness and load drop are
occurred. According to the hyperelastic material FE model (i.e., Static-Riks) the critical buckling
load is acquired similar to eigenvalue buckling analysis (i.e., Fcr � 28.2N). Moreover, the results
obtained by Static-Riks have less variance than the experimental test, which indicates the validity of
the numerical results.

The strain in the x-axis direction of the hyperelastic beam in Abaqus software and the DIC
experimental test is plotted in Fig. 14. According to the numerical simulation, the strain contour
is compressive/tensile at the top/bottom of the neutral axis, which is similar to what was observed

Figure 11. The X-axis displacement contour of the (a) experimental test (b) finite element of the beam.

Figure 12. The Y-axis displacement contour of the (a) experimental test (b) finite element of the beam.
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in the experimental test of digital image correlation. It can be seen that the structure is at the
post-buckling region.

4. Parametric study

There are several design parameters that can influence the critical buckling load of a hyperelastic
beam, including the thickness of the cross-section, the length, eccentric loads, and the mechanical
properties of the beam. Below are subsections that discuss the effect of variations in the geometry
and material of a system on its critical buckling force.

4.1. Effect of material

The hardness parameter is of significant importance in designing and manufacturing rubber com-
pounds. The purpose of this subsection is to examine the effects of three rubber samples with

Figure 13. The force-displacement diagram of the experimental test and the FEM.

Figure 14. Strain contour of the (a) experimental test (b) finite element of the structure.
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Rockwell hardness coefficients of 40, 50, and 70. Figure 15 exhibits the change in the critical
buckling load of the first four buckling modes given the hardness parameter difference. The
length and width of the structure are 250mm and 20mm, respectively. The FEM results reveal
that enhancing the hardness coefficient of the hyperelastic beam ascends the critical buckling
force owing to its increasing effect on the stiffness of the structure.

4.2. Effect of cross-section thickness

This subsection examines how changes in cross-section thickness impact the linear buckling
behavior of hyperelastic beams. The hyperelastic beam has a length and width of 250mm and
25mm, respectively. The thicknesses of the cross-sections are 25, 20, and 15mm, and the

Figure 15. Variations of critical buckling load versus the material hardness coefficient.

Figure 16. Variations of critical buckling load versus cross-section thickness.
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mechanical properties are set at C10 ¼ 0.8MPa. The variations of critical loads against the
changes in cross-section thickness are illustrated in Fig. 16. It should be noted that increasing the
w parameter leads to an increase in the critical load since there is a direct relationship between
the critical load and the second moment of area. Also, as can be perceived, this increasing effect
is more in the higher buckling modes.

4.3. Effect of structure’s length

The purpose of this part is to examine the effect of beam length on the critical buckling force of
the considered system. The structure has a width of 25mm, a length of 200, 250, and 300mm,
and a mechanical property of C10 ¼ 0.8MPa. Figure 17 illustrates the critical buckling load versus
the different lengths for the first four buckling modes. The results indicate that the H parameter
has a considerable effect on the eigenvalue. So that enlargement of the length lessens the critical
force. Since length significantly affects the stiffness of a structure, engineers and designers must
pay close attention to the H parameter.

4.4. Effect of the eccentrical load

The influence of three eccentric loads on the system’s response is examined in order to determine
the imperfection sensitivity of the hyperelastic beam. The analysis is performed for the first four
buckling modes of the system under consideration. It is assumed that the rubber beams have a
length and width of 250mm and 20mm, respectively. As is observed, increasing the eccentric
loads causes an increment in the eigenvalue buckling (Figure 18).

Table 3 investigates the influences of design parameters, including structure geometry, material
properties, and eccentric loads on the studied system. Numerically derived results showed that
enlarging the cross-section thickness, eccentric loads, and hardness coefficient result in the incre-
ment of eigenvalue buckling of the studied system. As a result, incrementing such parameters sta-
bilizes the beam and delays the occurrence of buckling. In contrast, an increase in length has an
inverse effect on the critical buckling load. In simple words, enhancing the length accelerate the
occurrence of static instability in the system.

Figure 17. Variations of critical buckling load versus different lengths.
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5. Neural network

Validation and reliability of the quality of the results are the main concerns in any engineering
problem. There are several options to consider, such as reducing risk, reducing errors, and find-
ing an appropriate model to interpret the results of the analysis. This can be accomplished by
using a Neural Network (NN) model as a tool to evaluate the accuracy of results generated by
engineering problems. In NN models, neurons are represented in a series in a way that allows for
the estimation and prediction of the model without prior knowledge of the inputs and outputs
(Dey et al. 2016; Sharma et al., 2022; Forooghi et al. 2022a; Dey et al., 2019; Guo, Zhuang, and
Rabczuk 2019; Mukhopadhyay et al. 2021a; Mukhopadhyay et al. 2023; Mukhopadhyay et al.
2021b).

The NN with one hidden layer provides accurate answers to the current problem since the
data is small and does not follow nonlinear behavior. Therefore, for the purpose of avoiding extra
costs in simulation, a NN model that is simple, efficient, fast, and cost-effective is used.

Figure 18. Variations of critical buckling force versus the eccentric loads.

Table 3. Variations of linear eigenvalue versus geometry, material properties and eccentric loads.

Eigenvalue Number Eigenvalue 1 Eigenvalue 2 Eigenvalue 3 Eigenvalue 4

The length of the beam
H¼ 300mm 20.586 177.16 469.92 859
H¼ 250mm 28.174 259.02 670.11 1138.3
H¼ 200mm 48.62 411.28 1004.3 1278
The material properties
Rockwell 50 33.229 291.34 753.67 1280.7
Rockwell 40 28.174 259.02 670.11 1138.3
Rockwell 70 38.611 325.13 837.82 1423.01
The cross-section thickness
w¼ 15mm 9.6 84.53 225.94 419.4
w¼ 20mm 28.174 259.02 670.11 1138.3
w¼ 25mm 71.779 608.37 1392.6 1540.7
The eccentric loads
e¼ 0mm 28.174 259.02 670.11 1138.3
e¼ 1mm 30.63 267.13 697.66 1280.7
e¼ 2mm 38.611 325.13 837.82 1423
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Figure 19. The training, validation, test, and whole model performance evolution versus the Epoch number.

Figure 20. The regression schemes for four subsets: (a) training, (b) validation, (c) test, and (d) full evaluation.
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In order to validate the accuracy of the outcomes acquired from the finite element method
using Abaqus software, an ANN is used for the present model. A shallow NN is applied accord-
ing to the input numbers in this study, which is a supervised neural network composed of one
layer. There are only one or two hidden layers in shallow neural networks (Bai et al. 2023; Shuai
Wang et al. 2021). In the present work, the model takes into account the length of the beam, the
material properties (Rockwell hardness coefficients), the thickness of the cross-section, and the
eccentric loads as inputs to the neural network. Finally, the linear eigenvalue of the studied struc-
ture is considered the target. The algorithm and training algorithm are opted randomly and
Levenberg–Marquardt, respectively.

Using Finite Element simulations is a common approach for generating training data for
neural networks when experimental data is scarce or expensive (Naskar, Mukhopadhya, and
Sriramula 2020). This method is especially effective when the difference between the results
obtained from FEM and experimental tests is small. In this paper, the training dataset is obtained
by extracting results from FEM simulations.

The target amounts of the database and the outcomes generated by the NN model must be
compared in order to assess the performance of the network model and optimize the error
between them. In order to assess and validate a model’s reliability, two statistical measures are
commonly used - mean square error (MSE) and coefficient of determination (R2). As demon-
strated in Fig. 19, the performance of the current problem is based on mean square error (MSE).
The lowest MSE at Epoch 7 is the minimum value.

For four subsets, training, validation, testing, and all models, regression plots are presented on
the basis of the correlation between outputs and targets. R2 values that are closer to 1 indicate a
better fit and a better model as shown in Fig. 20. Regression plots evaluate output values com-
puted by a network of four subsets and correlated with target values. In the graph below, the dot-
ted lines represent the best fit between the two values (R2¼ 1), while the solid lines represent the
correlation between the calculated output and the initial target value. As indicated by the regres-
sion results, the generated outputs and targets show a good correlation.

6. Conclusion and summary

The present work perused the experimental and numerical analysis of bucking and post-buckling
of hyperelastic beams made of natural rubber. Besides using the Static-Riks theory for the post-
buckling analysis, hyperelastic theory and Yeoh strain energy function were utilized to simulate
rubber materials. The ASTM D412 standard was utilized in order to determine rubber’s mechan-
ical properties. Furthermore, an experimental test of DIC was conducted in order to validate the
results obtained from the FEM. As demonstrated, the simulation of FEM has a critical buckling
force error of 5% compared with the experimental test. Furthermore, the obtained strain
contour from the numerical approach was validated with DIC indicating the accuracy of the
Yeoh energy function and the Static-Riks method. An analysis of changes in material properties,
thickness and length of the beam, and eccentric loads showed that an increase in the linear eigen-
value was associated with an increase in cross-section thickness, and eccentric loads. Due to the
increasing influence of the hardness coefficient on the stiffness of the structure, it has been
observed that as the coefficient ascends, the stability region also expands. A longer beam, on the
other hand, decreases the critical load and makes the system more vulnerable to the static
instability occurrence. The results showed that higher buckling modes are more affected by
changes in thickness. Specifically, the increasing effect of the thickness parameter is more pro-
nounced in higher buckling modes. Given the important practical applications of this structure
in fields such as medical implants, aerospace engineering, and robotics, engineers can increase
the stability region (delaying the occurrence of static instability) or avoid accelerating the occur-
rence of buckling (shrinking the instability area) by fine-tuning these critical parameters.
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Additionally, a shallow NN model provided good results and was accurate in the validation pro-
cess. A supervised neural network was found to be effective in improving the accuracy of the
model. Further research can improve the model’s performance by optimizing it, and a model for
these results may be developed in the future.
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