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We develop a framework to simultaneously compute the unobservable parameters underlying the
structural-parametric models for bankruptcy prediction. More specifically, we compute the unob-
servable parameters such as, asset value and asset volatility, through learning by embedding in the
structural models a neural network that maps the neural network’s input space (e.g. companies’
observable financial and market data) to the unobservable parameter space. Within such a ‘neuro-
structural’ framework, the neural network and the structural model work together as a one unit during
the learning phase by providing to each other forward and backward information, respectively, until
the weights of the neural network are optimized according to a merit function. Empirical results show
that structural models, like the Black-Scholes-Merton and the Down-and-Out option models, with
parameters computed with our approach, perform better than alternative specifications of the struc-
tural models, out of sample, in terms of discriminatory power, information content and economic
impact. Importantly, they also perform better than a standard neural network, suggesting that the co-
joint dynamics between the neural network and the structural model are useful during the learning
phase and can improve the prediction performance (and the training efficiency) of neural networks.
Finally, our approach provides methodological (and empirical) enhancements over logit specifica-
tions such as, Campbell et al. [In search of distress risk. J Finance, 2008, 63, 2899–2939]. There,
financial and market data are the inputs, and the output is the probability of bankruptcy whereas our
approach includes an intermediary step to obtain the unobservable parameters and subsequently the
probability of bankruptcy.

Keywords: Parameters estimation; Bankruptcy prediction; Neuro-structural approach; Economic
impact; Discriminatory power

JEL Classifications: G33, C45, C53, C61, D87

1. Introduction

1.1. Background and motivation

In this paper, we develop a framework where an enhancement
of the unobservable parameters underlying the structural-
parametric models is obtained and used in the structural
models for bankruptcy prediction. More specifically, we
simultaneously compute the unobservable parameters of
structural bankruptcy prediction models such as, asset value
and asset volatility, through learning, by embedding in the

∗Corresponding author. Email: z.taoushianis@soton.ac.uk

structural models a neural network. In the innovative frame-
work we propose, the neural network learns the unknown
relationships between the observable inputs to the neural net-
work and the unobservable parameters which are the outputs
from the neural network (and subsequently the inputs to the
structural model), while working co-jointly with the structural
model during the learning phase in a forward and backward
way, respectively, until the weights of the neural network are
optimized. The resulting ‘neuro-structural’ model refers to
the enhanced structural-parametric model, such as the Black-
Scholes-Merton (BSM) and the Down-and-Out option mod-
els, supplied by the parameters computed within the proposed
approach. Such models outperform alternative specifications
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of the structural models (i.e. of the structural models which
include parameters computed with alternative approaches),
out of sample, in terms of discriminatory power, informa-
tion content and economic impact. Importantly, the neuro-
structural models outperform the standard neural network,
suggesting that the co-joint dynamics between the neural net-
work and the structural model add value during the learning
phase as the neural network embeds knowledge from the
structural model (and vice-versa).

While several studies have attempted, in the prior years, to
compute the unobservable parameters of the structural mod-
els in the context of bankruptcy prediction, especially of the
BSM, these are subject to certain well-known limitations.
Hillegeist et al. (2004), Vassalou and Xing (2004), Camp-
bell et al. (2008) and Charalambous et al. (2020) compute
the unobservable parameters (asset value and/or asset volatil-
ity) by solving the BSM deterministic equations imposed
by the options pricing framework. However, as argued by
Crosbie and Bohn (2003), the BSM equations may hold
instantaneously thus may be violated when market conditions
change too fast, consequently yielding inaccurate parame-
ter computations. In addition, as argued by Charitou et al.
(2013) more recently, procedures typically used to compute
the BSM equations may be subject to convergence errors, thus
adding ‘noise’ during the estimations. Bharath and Shumway
(2008) propose a naïve approach to compute the unobserv-
able parameters, arguing that it is the functional form of the
BSM equation that matters. However, the approach they use
to compute the unobservable parameters is based on ad hoc
deterministic relationships which may not hold when differ-
ent samples are employed (Charitou et al. 2013). In the more
recent years, Charitou et al. (2013) and Afik et al. (2016)
have computed the unobservable parameters directly from
historical equity data. However, by ‘exogenously’ computing
the unobservable parameters using historical data, the struc-
tural model, which is the model under scrutiny, is barely
involved in the estimation which may affect the quality of
the estimations while the probability of bankruptcy may lack
calibration.

The main contribution of this paper is the development of a
more sophisticated, flexible, yet robust methodology to com-
pute the unobservable parameters of structural bankruptcy
prediction models which overcomes the limitations discussed
above. To the extent that the parameter-estimation method-
ologies discussed above have specific functional forms, our
approach estimates the unobservable parameters without the
need to specify a-priori any functional form, thus offering
flexibility to optimally estimate the unobservable parame-
ters within our neuro-structural framework. We assume that
the value of the unobservable parameters depends on several
exogenous but observable variables that are elements of the
vector x (i.e. accounting and market variables), through some
unknown relationships. We estimate these unknown rela-
tionships through learning, by embedding in the structural-
parametric model a neural network that maps the exogenous
input space (i.e. the exogenous observable variables of the
vector x) to the unobservable parameter space, thus yielding
a neuro-structural model for the estimation of the probabil-
ity of bankruptcy. In Figure 1 we provide a sequence of our
methodological framework. The inputs to the neural network

are the exogenous variables in the vector x, and the outputs
from the neural network are the unobservable parameter esti-
mates which together with the observable parameters to the
structural model are the inputs to the structural-parametric
model.† For each set of weights of the neural network the
estimated probability of bankruptcy for each company and
the associated target value (which is equal to 1 (0) in the
case the company goes bankrupt (survives)), enter the merit
function (i.e. the log-likelihood). In this setting, in each itera-
tion, the weights of the neural network are adjusted to provide
improved unobservable parameter estimates, until the log-
likelihood function is optimized. Moreover, since the neural
network and the structural model are part of the same opti-
mization structure (see Figure 1), they work in conjunction
in each iteration to provide the optimal results. Figure 2
shows how the neural network and the structural model work
together during the learning phase. In each iteration, the neu-
ral network provides forward information to the structural
model (the unobservable parameter estimates, updated) while
the structural model provides backward information to the
neural network which is used to adjust the weights of the neu-
ral network. In this context, the learning process is enhanced
because the neural network embeds knowledge from the struc-
tural model (and vice versa), highlighting the uniqueness of
the proposed methodology.

The approach we propose in this paper, overcomes the lim-
itations discussed above in the following ways. First, our
methodology is flexible enough to optimally estimate the
unknown relationships between the exogenous inputs, x, and
the unobservable parameters. In this context, one does not
need to make assumptions about the data structure or the
dynamics of the unobservable parameters, for example, to
impose any deterministic relationships or to specify functional
forms, a priori, to compute them. Instead, by letting the unob-
servable parameters to depend on some exogenous inputs, x,
through some unknown relationships, the neural network is
optimized accordingly to freely learn the unknown relation-
ships, providing in that way improved parameter values, while
preserving the theoretical properties of the parametric model
as they are part of the same structure (as Figure 1 shows).
To this end, the neural network is, effectively, used as a non-
parametric estimation tool for the unobservable parameters as
it is used directly to estimate the underlying dynamics of the
observable inputs and unobservable parameters, without spec-
ifying any functional forms. Such nonparametric estimation
tools have been used extensively in options pricing (Ruf and
Wang, 2020, Ruf and Wang 2021). In our paper, for the first
time, we use neural networks as a nonparametric estimation
tool for the unobservable parameters of structural bankruptcy
prediction models.

Second, our approach enables both the neural network and
the structural model to work together as a one unit during
the learning phase thus the structural model is involved dur-
ing the estimation. We show that such joint dynamics during
the learning phase are important because the weights of the

† The set of unobservable parameters and the set of observable
parameters are subsets of the full parameter set of the structural
model. The former is estimated from the neural network while the
latter passes directly to the structural model.
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Figure 1. This figure shows the sequence of the proposed methodological framework. The exogenous (observable) variables in the vector x
enter the neural network of which its outputs are the unobservable parameter estimates which together with the observable parameters enter
the structural model, yielding a neuro-structural model for the estimation of the probability of bankruptcy. The probability of bankruptcy
(PB) enters a merit function along with the target value of each company. In every iteration, the weights of the neural network are adjusted
to provide improved unobservable parameter estimates, until the merit function is optimized.

Figure 2. This figure shows how the neural network and the struc-
tural model work together as a one unit in each iteration to provide
optimal results. Because they are part of the same optimization struc-
ture (see Figure 1), in each iteration, the neural network and the
structural model pass forward and backward information to each
other, respectively. Specifically, the neural network passes forward
information to the structural model (the unobservable parameter
estimates updated) while the structural model passes backward infor-
mation to the neural network (partial derivatives of the structural
model to adjust the weights of the neural network)

neural network are optimized by embedding knowledge from
the structural model. Once the optimization of the weights
is finished, (the outputs from) the neural network gives the
estimated parameters (asset value and volatility) which enter
the structural model, yielding a neuro-structural model for
the estimation of the probability of bankruptcy which is an
enhanced version of the traditional structural model.

The concept of using more sophisticated computational
methods to estimate the parameters of parametric models is
also explained by Aït-Sahalia and Lo (1998) and Aït-Sahalia
and Duarte (2003) in the context of options pricing, arguing
that economic theory imposes restrictions on the relationships
between economic variables. This view is perfectly exhib-
ited in the case of structural-parametric bankruptcy prediction
models, such as the BSM which is a product of the restrictive
assumptions underlying the options pricing theory where also
key-structural parameters, for instance, the value of assets,
depend on certain parametric assumptions which in reality are
violated. Our proposed methodological framework, which is

used for the first time in the context of bankruptcy predic-
tion, overcomes these limitations as it is flexible enough to
estimate the optimal relationships between the set of inputs
to the neural network and the unobservable parameters of the
structural-parametric bankruptcy prediction model, by adjust-
ing the weights of the neural network until a merit function
is optimized (see also Bandler et al. 1999, Andreou et al.
2010, Escanciano et al. 2016, Escanciano et al. 2017, Cher-
nozhukov et al. 2020, Li et al. 2022 for further motivation on
using semi-parametric models). Our methodological frame-
work using neural networks is also justified by Gu et al.
(2020). The authors aim to estimate the expected return as
unknown function of some predictors and show that neural
network is the best methodology to estimate the unknown
function. Hence, our paper is not just an application of neu-
ral networks, but we use them as a mechanism to estimate
the unobservable parameters of structural models, in the con-
text of bankruptcy prediction, as unknown function of some
observable variables.

We use accounting and market data between 1989 and 2014
for non-financial U.S. public firms to estimate the probabil-
ity of bankruptcy using the various BSM specifications, over
a one-year prediction horizon (for bankrupt firms between
1990 and 2015). For the estimation of the neuro-structural
model, we divide the whole sample into two sub-samples; the
first period includes bankruptcies in the period 1990 - 2006
and is used to train (and cross-validate) our proposed net-
work structure. Once the model is optimized, we implement
it to the out of sample dataset which includes bankruptcies in
the period 2007–2015 and its performance is tested accord-
ing to several criteria (see section 5 for model performance
criteria).

1.2. Main findings

First, we compare the out of sample performance of our
neuro-structural model with alternative specifications of the
BSM parametric model; when asset value and volatility are
estimated based on solving the BSM equations (i.e. Hil-
legeist et al. 2004, Vassalou and Xing 2004, Charalambous
et al. 2020) and when estimated without solving the BSM
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equations (Bharath and Shumway 2008, Charitou et al. 2013).
Specifically, we use three distinct types of tests, as suggested
by Bauer and Agarwal (2014). In the first test, we com-
pare the discriminatory power of the models based on the
widely used Area Under Receiver Operating Characteristic
curve (AUROC). Results indicate that the discriminating abil-
ity of the neuro-structural model is substantially better than
the competing approaches. In the second test, we compare
the information content of the neuro-structural model to alter-
native specifications of the BSM parametric model. Results
show that bankruptcy probabilities produced by the neuro-
structural model contain significantly more information than
bankruptcy probabilities produced by the alternative BSM
specifications. In the final test, we compare the economic
impact arising when banks use the BSM with different spec-
ifications (one of which uses our approach) in the decision-
making process of granting loans to individual firms. We find
that the bank which uses the neuro-structural model earns
superior risk-adjusted returns relative to the banks which use
the alternative methodologies. Overall, results from our tests
suggest that our approach yields more accurate asset values
and volatilities which are reflected in the performance of the
BSM model.

Second, several additional tests are conducted for robust-
ness, including comparing the neuro-structural model against
other widely used prediction methodologies such as logis-
tic regression and standard neural networks. Our approach
compares favorably to these methodologies. This find-
ing is important because it suggests that the co-joint
dynamics between the neural network and the structural
model are useful during the learning phase and help to
improve the prediction performance of the standard neural
network.

Next, we apply our neuro-structural methodology on the
Down-and-Out call option parametric model, which is an
extension of the BSM model, as it allows bankruptcy
to occur prior to the maturity of debt and used by
other studies in the context of bankruptcy prediction,
such as Brockman and Turtle (2003), Afik et al. (2016),
among others. We find that the Down-and-Out neuro-
structural model performs very well, which strongly sup-
ports the implementation of our methodology for default
prediction.

We conclude by comparing the performance of our pro-
posed neuro-structural model with the hybrid model used
in Charalambous et al. (2020) and find that, our approach
outperforms the hybrid model.

Our work has implications in the empirical application of
bankruptcy prediction as it provides a more sophisticated†,
yet more accurate and flexible method to compute the unob-
servable parameters of the structural-parametric models that
improves their out of sample performance. Moreover, our
findings have implications in the efficiency of the training
of neural networks as their (bankruptcy) prediction perfor-
mance can be improved when involving a theoretical model

† To the extent that the model is cross-validated and evaluated on the
testing dataset, minimizes the risk of overfitting while ensuring its
generalizability.

(i.e. the structural model) during the estimation of the neu-
ral network. As neural networks are frequently characterized
as ‘black boxes’, our neuro-structural framework involves
both the neural network and the structural (theoretical options
pricing model) during the training phase thus adjusting the
weights of the neural network by embedding knowledge from
the structural model. Our work can also be viewed as a (neuro)
extension of the powerful Campbell et al. (2008) model. In
Campbell et al. (2008), the financial inputs enter the model
to directly obtain the probability of bankruptcy. Our frame-
work includes an intermediary step to obtain the unobservable
structural parameters and then we supply the estimated param-
eters to the structural model to compute the probability of
bankruptcy.

The remainder of the paper is organized as follows: Section
2 describes the alternative BSM specifications, which are used
as benchmark; Section 3 describes our methodology to obtain
improved parameter values for the parametric models; Section
4 discusses the data; Section 5 describes the three distinct type
of tests we employ in order to test the performance of the mod-
els; Section 6 discusses the results, including robustness and
finally, Section 7 concludes.

2. BSM model and estimation of asset value and volatility

2.1. Black-Scholes-Merton model

Because the equity of the firm can be viewed as a Euro-
pean call option, the standard options pricing formula can be
applied to value the equity of the firm as follows (see for
example the seminal papers of Black and Scholes 1973 and
Merton 1974):

E = VN (d1)− Fe−rT N (d2), (1)

where

d1 = ln(V/F)+ (r + 0.5σ 2
V )T

σV

√
T

, (2)

d2 = d1 − σV

√
T. (3)

Here, V is the value of assets, F the liabilities of the firm, σV

the volatility of assets value returns, r is the riskless rate of
return, N(d) is the standard normal distribution function and T
is the liabilities time to maturity. In equation (1), N(d2) repre-
sents the probability of solvency (i.e. the probability that the
firm will not default on its liabilities). Therefore, the prob-
ability of bankruptcy is 1-N(d2) or N(-d2). In the context
of Black-Scholes-Merton, however, N(-d2) is the risk-neutral
probability of bankruptcy, since d2 is estimated using the
riskless rate of return, r. We estimate the real-world proba-
bility of bankruptcy, by substituting r with the real growth
of assets, µ. Hence, it is straightforward to show that the
probability of bankruptcy, PB, is given by the following
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formula.†

PB = N(−d2) = N

(
− ln(V/F)+ (μ− 0.5σ 2

V )T

σV

√
T

)
. (4)

The ratio inside of equation (4), gives the number of stan-
dard deviations the value of assets must drop in order the
firm to default on its liabilities (i.e. how far the firm is away
from default). For this reason, d2 is commonly referred to as
distance-to-default (DD).

However, the two most critical inputs in equation (4), V and
σV , are not observed in the market which makes the estima-
tion of the probability of bankruptcy a challenging issue. Due
to this, there was a burgeoning academic literature since the
early 2000s regarding the estimation of V and σV . We iden-
tify three main approaches for the estimation of these inputs,
which we discuss in the following section.

2.2. Alternative approaches to estimate assets value and
volatility

In this section, we present the various approaches used in the
literature to estimate asset value and volatility, which we use
as benchmark for our proposed approach.

2.2.1. Two equations approach (2-Eqs. Approach). One
of the earliest and probably the most common estimation
approach for V and σV was given by Jones et al. (1984) in the
context of corporate debt valuation and by Ronn and Verma
(1986) in the context of the empirical estimation of deposit
insurance premiums. In the context of estimating the proba-
bility of bankruptcy, this approach has been used, for instance,
by Hillegeist et al. (2004), Campbell et al. (2008) and Char-
alambous et al. (2020). In the framework of options pricing,
there are two equations that can be solved iteratively to obtain
the value of assets and the volatility. For the first equation,
the standard options pricing formula given by equation (1) is
solved with respect to V, yielding the following equation‡:

V = E + Fe−rT N(d2)

N(d1)
. (5)

The second equation relates the (annualized) volatility of
equity returns, σE, which is obtained from historical equity
data, with the volatility of asset value returns, σV , through
the equation σE = (

V
E

)
∂E
∂V σV . Given that ∂E

∂V = N(d1) and

† In the context of bankruptcy prediction, Equations (1) and (4) come
with variations. For instance, Hillegeist et al. (2004) include a divi-
dend yield and use liabilities for F, while Vassalou and Xing (2004)
do not include a dividend yield but use short-term debt plus half of
long-term debt for F. For the purposes of our study, it is important to
keep a common specification, like the standard formulas in Eqs. (1)
and (4) and change only the methodology for asset value and volatil-
ity estimation in order to ensure that the source of improvement in
model performance, comes from the methodology itself and not from
the formula specification.
‡ We re-run by considering a dividend component as in Hillegeist
et al. (2004), but we haven’t found any differences in the perfor-
mance.

re-arranging the terms, σV is calculated as follows:

σV = EσE

VN(d1)
. (6)

Starting from some initial values, for instance setting
V = E + F and σV = σE on the RHS in equations (5) and (6),
we obtain a new set of V and σV which are used in the next
iteration in order to update the values of the two variables. The
process is repeated until the changes of V and σV between two
consecutive iterations are very small. When we obtain the two
values, we can easily estimate µ as the return on asset values
between two consecutive years i.e. ln(Vt /Vt−1).

There are various studies acknowledging that simultane-
ously estimating the unobservable parameters, although theo-
retically sound, it is noisy practically (see for instance Crosbie
and Bohn 2003, Charitou et al. 2013, etc.). Our approach
estimates the unobservable parameters simultaneously but
has two major differences. First, our approach estimates the
unobservable parameters by maximizing the log-likelihood
of the data. In other words, the values we obtain best fit the
data, hence providing more accurate estimations. In such set-
ting, the estimation of the unobservable parameters is optimal
which is not the case for the 2-Eqs. Approach (thus they may
add noise to the estimation procedure). Second, and proba-
bly the most important, our approach is more flexible because
it does not impose specific functional forms on the unob-
servable parameters, so the neural network freely learns the
unknown relationships between the inputs to the neural net-
work and the unobservable parameters. Contrary, the 2-Eqs.
Approach imposes specific functional forms on the unob-
servable parameters, according to equations (5) and (6), but
such relationships may not hold in reality. We argue that the
differences discussed above, between our approach and the
standard approach, justify the (statistically significant) supe-
rior performance of our approach that we will document in the
subsequent sections.

2.2.2. Single equation approach (1-Eq. Approach). A
related approach with the 2-Eqs. Approach, is the 1-Eq.
Approach used by Vassalou and Xing (2004) in their study
on how firm default risk affects equity returns. In this case,
given the observable daily time-series of equity for the entire
year, we use equation (5) to obtain daily time-series for the
value of assets.§ Once we obtain the time-series of asset val-
ues, we estimate the annualized volatility, σV , from the daily
asset value returns. Using the new estimate of σV , in the next
iteration we obtain a new series of asset values and returns,
and we estimate a new value for σV . This process is repeated
until the change in volatility is very small, i.e. 0.0001. This
approach also requires setting initial values for V and σV . We
set V = E + F and σV = σE.

Once we obtain the final daily series of V’s, we calculate the
annualized growth of assets, µ , from the logarithmic changes
of V’s. The advantage of this approach is that it requires
the solution of just one equation, possibly reducing conver-
gence errors relative to using the two equations approach,

§ We re-run by setting F as short-term debt plus half of long-term
debt as in Vassalou and Xing (2004). Again, we haven’t found any
differences in the performance.
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but it is computationally intensive. Nevertheless, it still relies
on convergence criteria that may affect the final outputs and
consequently the accuracy of the probability of bankruptcy.
Furthermore, it heavily depends on using the deterministic
equation (5).

2.2.3. Other estimation approaches. Under this category,
the estimation of V and σV is not based on iterative procedures
but rather, the estimation relies on ad hoc approximations
using observable data. Prominent among the studies that use
such approximations is Bharath and Shumway (2008), which
we denote as BS (2008). In their study, V is approximated by
the sum of market value of equity (E) plus the debt (F). Next,
they calculate σV as a weighted average of the volatility of
equity and the volatility of debt:

σV = E

E + F
σE + F

E + F
σF , (7)

where σF = 0.05 + 0.25σE. Finally, for the growth rate of
V, they use the stock market return over the previous year
(µ = rE,t−1). The authors show empirically that the BSM
model performs better when V and σV are estimated with
the simplified approximations, as opposed to solving the
two BSM equations. They conclude that the accuracy stem-
ming from BSM is due to its functional form and iterative
procedures used to obtain V and σV are not useful.

In a similar notion, Charitou et al. (2013), which we denote
as CDLT (2013), suggest the estimation of V and σV directly
from equity data. In their study, they use the sum of equity
and liabilities as an approximation of V. Using monthly equity
data over the previous 60 months, they calculate a time-series
of V’s from which the annualized return (µ) and volatility (σV )
are obtained. We slightly modify CDLT (2013) by estimating
the variables using daily equity data over the prior year, in
order to be consistent with the standards of our study, since we
use equity data over a one-year period. CDLT (2013) demon-
strate that such specifications improve the performance of the
BSM model compared with the ad-hoc specifications of BS
(2008).

Although the estimation approaches discussed in this
section avoid the problems associated with solving the BSM
equations, they are subject to some important drawbacks.
First, they are still based on deterministic relationships (i.e.
Bharath and Shumway 2008) which may not hold when dif-
ferent samples are employed and second, they barely involve
the model under scrutiny into the estimation process (Charitou
et al. 2013).

In the following section we introduce a neural network-
based methodology to obtain improved parameter values,
avoiding in that way the limitations underlying the alternative
estimation techniques described above.

3. Methodology: a neuro-structural framework

3.1. The general case

In this section we demonstrate how our methodology works
to any parametric-structural model and later, we implement

our method to the widely used BSM parametric model, but we
also consider an extension and specifically, the Down-and-Out
option model.

Consider that we have a parametric model, fPM , which
requires the parameters p to estimate the probability of
bankruptcy, PB:

PB = fPM (p), (8)

where p = [p1, p2, . . . , pL] is the L dimensional vector with
the L parameters of the model and fPM refers to the functional
form of the parametric model. Suppose that some parameters
of fPM , say M, where M ≤ L, are not observable and thus:

PB = fPM (p
−, p+). (9)

In equation (9), p− = [p−
1 , p−

2 , . . . , p−
M ] is the vector which

corresponds to the unobservable parameters, and p+ = [p+
M+1,

p+
M+2, . . . , p+

L ] is the vector which corresponds to the observ-
able parameters. Note that the vector p consists of the two
subsets p− and p+.

Suppose now that the unobservable parameters, p−, depend
on some exogenous variables that are elements of the vector
x, through some unknown relationships:

p−
1 = f1(x),

... (10)

p−
M = fM (x),

where fi(x) is some unknown function of p−
i with respect to

the exogenous vector of variables, x, which we aim to estimate
through learning, using neural networks, for i = 1,2, . . . ,M.
In this context, the probability of bankruptcy is estimated as:

PB = fPM (z, p+), (11)

where z = [f1(x), f2(x), . . . , fM (x)] refers to the vector with the
variables that are determined through the estimation of the
unknown functions, using neural networks. In fact, the vec-
tor z provides improved parameter values to the model in
equation (11), which we refer to as neuro-structural model.
Figure 3 provides a schematic representation of the proposed
approach.

As can be seen from the figure the probability of bankruptcy
is estimated using the functional form of the parametric model
but using two sets of inputs: (1) the inputs that are observ-
able and enter directly to the parametric model, p+, and (2)
the variables z, which depend on the exogenous variables
x through some unknown relationships that we aim to esti-
mate using neural networks (i.e. x are the inputs to the neural
network that produce the outputs z). In this context, z and
consequently PB, depend on the weights of the neural net-
work, w, imposed by the neural network. The next step is to
estimate the weights by training the model. Consider that we
have N input samples (i.e. observations). Each input sample,
xn = [x1n,x2n, . . . , xkn], is associated with a known target, tn,
where n = 1,2, . . . , N and k is the number of variables. In the
context of bankruptcy prediction, the input sample xn can be
information characterizing the n-th firm, such as financial or
market information, whereas tn is an indicator variable which
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Figure 3. Schematic representation of our approach. Improved parameter values, z, are obtained in each iteration from the neural network
and enter as inputs to the parametric model along with other parameters, p+, that enter directly, yielding a neuro-structural model. Here, x,
represents the vector of some exogenous inputs to the neural network. The proposed structure is optimized according to a merit function, to
give the weights, w, of the neural network and subsequently the unobservable parameter estimates, z, and finally the probability of bankruptcy,
PB. Note that in the merit function, the targets, t, are supplemented directly. In our case, t = 1 if the firm goes bankrupt and t = 0 otherwise
and the merit function is the log-likelihood function.

is equal to 1 if the corresponding firm-observation is bankrupt
and 0 otherwise. The output of the parametric model, PB(w),
with the associated targets, t, are used in the merit function
which is optimized in order to obtain the weights, w, of the
neural network and consequently the final output, which is
the probability of bankruptcy, PB. The neural network here
serves as an auxiliary mechanism which adjusts the parame-
ters of the parametric model during the training phase, until
the weights of the neural network are optimized according to
a merit function. As can be seen from the figure, both the
neural network and parametric models belong to the same
structure and work in conjunction. This is important because
in this setting, the neural network embeds knowledge from the
structural-parametric model which is useful during the train-
ing phase. This implicit knowledge from the parametric model
reduces the complexity of the neural network and improves its
generalization performance.

In this study, we exploit the strong learning capabilities
of feedforward neural networks, which is the most com-
monly used neural network architecture and it has been widely
used to approximate any unknown function. Cybenko (1989)
proved that a feedforward neural network with a single hid-
den layer with enough neurons in the hidden layer, with
monotonic increasing activation functions and linear outputs,
can approximate any continuous function to any degree of
accuracy. Similarly, Hornik et al. (1989) concludes that such
network architectures are universal function approximators.
In addition, from an empirical point of view, neural networks
have been used extensively as nonparametric estimation tools
in the context of options pricing (refer to Ruf and Wang 2020
for a comprehensive review). Therefore, neural networks are
an appropriate methodology for our framework.†

A typical feedforward neural network is a system with
interconnected units (neurons) organized into layers where
information flow from the previous layers to the next lay-
ers, aiming to learn the unknown relationships between the
inputs and outputs. The first layer in our network, presented
in Figure 4, consists of H units, with the i-th unit connected

† In a subsequent section, we compare the neuro-structural model
with the standard neural network approach.

with the input features, x, through the K-dimensional weight
vector w(1)i = [w(1)i1 . . .w

(1)
iK ] and the biases w(1)i0 . The i-th unit

produces a weighted sum, ψ(1)
i , which enters an activation

function, f (1)i , to produce an output, y(1)i , where i = 1,2, . . . ,H.
The outputs from the first layer are forwarded to the sec-
ond layer which is consisted with M units, corresponding
to the outputs of the network. The j-th unit in this layer is
connected with the outputs from the previous layer through
the H-dimensional weight vector w(2)j = [w(2)j1 . . .w

(2)
jH ] and the

biases w(2)j0 . The j-th unit produces a weighted sum, ψ(2)
j ,

which enters an activation function, f (2)j , to produce the final

output, y(2)j , with j = 1,2, . . . ,M.
The set of equations below shows the explicit derivation of

the outputs from the neural network, y(2)1 . . . y(2)M :

y(2)1 = f (2)1

⎡
⎣w(2)10 +

H∑
i=1

w(2)1i f (1)i

⎛
⎝w(1)i0 +

K∑
j=1

w(1)ij xj

⎞
⎠
⎤
⎦ ,

... (12)

y(2)M = f (2)M

⎡
⎣w(2)M 0 +

H∑
i=1

w(2)Mi f
(1)

i

⎛
⎝w(1)i0 +

K∑
j=1

w(1)ij xj

⎞
⎠
⎤
⎦ .

The RHS of the set of equations above, are the gen-
eralized (unknown) functions that we seek to estimate by
optimizing the weights of the network, according to a merit
function. The LHS of the set of equations, correspond to the
improved parameters that enter the parametric model, yielding
the neuro-structural model.

Overall, there are several advantages by using our proposed
approach. First, we do not need to impose any ad-hoc or deter-
ministic relationships for the parameters of the parametric
model. Instead, by treating (some of) the parameters as gener-
alized unknown functions, the network structure optimizes the
weights accordingly, to determine the relationships between
the observable input features to the neural network and the
parameters under consideration, yielding improved parame-
ters that enter the parametric model. Second, we utilize the
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Figure 4. General structure of a two-layer feedforward neural network, with H neurons in the hidden layer and M neurons in the output
layer.

strong learning capabilities of neural networks while preserv-
ing the theoretical properties of the parametric model. That is,
the probability of bankruptcy is estimated using the underly-
ing theory of the parametric model, while the neural network
embeds knowledge from the parametric model which is useful
during the training phase.

Once the network structure is optimized in the training
phase and we obtain the weights, the out of sample proba-
bility of bankruptcy, which allows testing the performance of
our method, is simply calculated as follows:

Step 1: Use the out of sample vector x as input to the neu-
ral network. The outputs from the neural network correspond
to the parameters of the parametric model (for instance asset
value and volatility).

Step 2: Use the outputs of the neural network as inputs to
the parametric model (i.e, the neuro-structural model) along
with other inputs which enter directly, to obtain the out of
sample probability of bankruptcy.

3.2. The case of BSM Model

In this section, we show how our method works to the case
of BSM and in a later section, we consider the Down-and-
Out option model but generally, the method applies to any
parametric model.

First, it would be useful to rewrite equation (4) as follows:

PB = N(−DD) = N

⎛
⎝−

ln
(

VeμT

F

)
− 0.5σ 2

V T

σV

√
T

⎞
⎠ . (13)

Note that the numerator inside the logarithm in equation (13),
VeμT, is the expected value of assets which when scaled by the
liabilities of the firm, F, gives the expected leverage, denoted
by EL. Thus, the probability of bankruptcy is given by the
following formula:

PB = N(−DD) = N

(
− ln(EL)− 0.5σ 2

V T

σV

√
T

)
. (14)

Consider now that there are two outputs from the neural net-
work; the expected value of assets (divided by liabilities, for

scaling considerations), y(2)1 = EL(w), and the volatility of
asset value, y(2)2 = σV (w):

EL(w) = fL(x, w), (15)

σV (w) = fσ (x, w). (16)

The RHS of equations (15) and (16) are the generalized
(unknown) functions between the neural network input fea-
tures, x, and EL and σV , that the neural network seeks to learn
by optimizing the weights of the network structure. These two
outputs enter as inputs to the BSM model and thus obtaining
the probability of bankruptcy:

PB(w) = N[−DD(w)] = N

(
− ln[EL(w)] − 0.5σ 2

V (w)T

σV (w)
√

T

)
.

(17)
Notice that the difference between equations (14) and (17) is
that the latter depends on the weights imposed to EL and σV

through the neural network and consequently, the probabil-
ity of bankruptcy, PB, is a function of the weights, yielding
a neuro-structural model. For a sample of N observations, the
weights of the neural network are obtained by maximizing the
log-likelihood function, LL, defined as follows:

LL(w) =
N∑

n=1

ln(w), (18)

where

ln(w) = tn ln[PBn(w)] + (1 − tn) ln[1 − PBn(w)]. (19)

To solve the problem, we formulate a nonlinear uncon-
strained optimization process using MATLAB. Specifically,
we use the fminunc command and the trust-region optimiza-
tion algorithm to obtain the weights of the neural network. In
each iteration, the optimization algorithm updates the weights
according to the partial derivatives that we provide. The gra-
dient vector of ln(w) with respect to the weights is given by†

† See Charalambous (1992) for the efficient training of neural net-
works.
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(for simplicity we drop the subscript n):

∂l(w)

∂w
= c(w)

∂PB(w)

∂w
, (20)

where c(w) = t−PB(w)
PB(w)[1−PB(w)] and

∂PB(w)

∂w
=

M∑
j=1

∂PB(Y (2))

∂y(2)j

∂y(2)j

∂w
. (21)

The quantity ∂PB(Y (2))
∂y(2)j

≡ ∂fPM

∂pj
represents the partial derivative

of the parametric model with respect to the j-th output of the
neural network (i.e. the input to the parametric model) and
∂y(2)j

∂w represents the partial derivative of the j-th output with
respect to the weights.

When w ≡ w(2)j ,

∂PB(w)

∂w(2)j

= δ
(2)
j Y (1), j = 1, 2, . . . , M , (22)

where δ(2)j = ∂PB(Y (2))
∂y(2)j

f (2)
′

j (ψ
(2)
j ). Here, the term f (2)

′
j (ψ

(2)
j ) is

the partial derivative of the activation function of the j-th
output, valued at ψ(2)

j .

When w ≡ w(1)i ,

∂PB(w)

∂w(1)i

= δ
(1)
i x, i = 1, 2, . . . , H , (23)

where δ(1)i = pd(1)i f (1)
′

i (ψ
(1)
i ) and pd(1)i = ∑M

j=1 w(2)ji δ
(2)
j . Here,

f (1)
′

i (ψ
(1)
i ) is the partial derivative of the activation function of

the i-th output from the first layer, valued at ψ(1)
i .

Once the weights of the neural network are optimized in the
training sample, the out of sample probability of bankruptcy
can be computed; 1) Use the out of sample vector x as input
to the neural network. The outputs of the neural network are
the EL and σV and 2) use the outputs of the neural network,
EL and σV , as inputs to the BSM to obtain the out of sample
probability of bankruptcy.

We also provide a representation of how the neural network
is modified according to the partial derivatives:
δ
(l)
j , l = 1, 2, can be considered as the propagation of the

partial derivatives of PB w.r.t. the unobservable parameters
back to the input of the j-th neuron of the l-th layer. equations
(22) and (23) can be put in words as follows:

⎡
⎣ Partial derivatives of PB

w.r.t the input weight vector
to a given neuron

⎤
⎦

=

⎡
⎢⎢⎣

Propagation of the
partial derivatives of PB w.r.t.

unobservable parameters
back to the input to that unit

⎤
⎥⎥⎦ ∗

[
Input vector
to that unit

]
.

The given neural network can be used to compute the val-
ues of the backpropagated partial derivatives but with the

following modifications. Figure 5 shows the modified neural
network (MNN).

(a) The output of a given neuron will become the input of
the corresponding neuron in the MNN.

(b) (i) Each activation function is changed to multiplier
with value equal to the partial derivative of the
activation function w.r.t. the input,

(ii) The position of the multiplier is interchanged with
that of the adder.

During the learning phase, the neural network passes the
input information to the structural model in a forward way to
obtain the PB, while the structural model passes the output
information (the partial derivatives of PB w.r.t. the unobserv-
able parameters) to the neural network in a backwards way to
obtain the partial derivatives of PB w.r.t. the weights that will
be used to change the weights.

3.3. Specifications of the neural network

Several features of the neural network need to be specified
such as the input variables, the number of neurons used in the
hidden layer, as well as the activation functions in the input
and output layers.

First, note that the bankruptcy process in the BSM model
is based on the future distribution of assets value i.e. the
expected value of assets and the volatility of asset value
returns. We aim to forecast the future distribution by using
data that captures the current performance of the firm. With
respect to that, prior studies have identified firm-specific char-
acteristics related to the bankruptcy process of the firm (see
for instance Altman 1968, Ohlson 1980, Almamy et al. 2016,
etc.). We use data from a more comprehensive model. In
particular, Campbell et al. (2008) find that several accounting-
based and market-based variables are significant predictors
of bankruptcy. We use the variables of their study as inputs
to the neural network that might affect the outputs. It should
be noted that, the inputs include information about the lever-
age of the firm (liabilities divided by assets) and equity return
data which might have an association with the expected value
of assets divided by liabilities (i.e. market leverage), EL, but
also, it includes the volatility of equity, which might have
an association with the volatility of assets, σV . Thus, using
the variables from Campbell et al. (2008) as inputs to the
neural network is a reasonable choice. In this setting, our
work becomes a neuro-extension of Campbell et al. (2008);
there, the authors use the variables to directly obtain the
probability of bankruptcy. In our work, we use their vari-
ables to obtain improved option parameters (asset value and
volatility) in an intermediary step which are the outputs
from the neural networks, and then are used as inputs to
the structural-parametric model to obtain the probability of
bankruptcy.

The selection of the optimal number of neurons is done
empirically, based on a validation process-a straightforward
and easy to implement approach, which makes use only the
in-sample data to determine the optimal number of neurons
to minimize the risk of overfitting while we leave the testing
sample intact to assess the generalizability of the model (see
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Figure 5. Schematic representation of the modified neural network which shows how the partial derivatives are transmitted from the
structural model to the neural network in a backwards way during the learning face to change the weights of the neural network.

Andreou et al. 2010). Initially, we divide the whole sample
into two sets: the training set (70%) and the testing set (30%).
We further divide the training sample into training and vali-
dation while we leave the testing set intact to be used once
the model is optimized. Using this training set, we estimate
the network structure using one to five neurons. The optimal
number of neurons is the one which performs the best on the
validation set, according to AUROC. This process is repeated
20 times for each number of neurons in order to account for
different initialization points (i.e. we train the model 100 times
and select the one which performs the best in the validation
set). Then we use the whole training set to estimate the net-
work, using the optimal number of neurons and as starting
point, we use the weights of the model that performed the best
on the validation set. We find that three neurons perform the
best in this setting (H = 3).

As for the activation functions, the hyperbolic tangent
sigmoid function is used in the hidden layer, fH(.) =
1−exp(−2ψ(1)i )

1+exp(−2ψ(1)i )
, which bounds the outputs from the hidden layer

between [ − 1, 1]. A challenging task is the format of the trans-
fer functions to be used in the output layer. This is because,
EL and σ V must be non-negative and within reasonable val-
ues. In this case, we use a modification of the log-sigmoid
function as follows; fM (.) =a + b−a

(1+exp[−ψ(2)j ])
, which bounds

the outputs in the range [a, b]. In our case, j = 1,2, represent
the two outputs; the expected value of assets (scaled by liabil-
ities) and the volatility of assets. When EL is to be estimated,
a = min [(E + F)/F] and b = max [(E + F)/F]. When σV is
to be estimated, a = min (σ E) and b = max (σ E). Notice that
when ψ(2)

j →∞, then EL and σ V →b. When ψ(2)
j →-∞, then

EL and σ V →a.

3.4. Summarizing our approach

In this section, we summarize our approach and explain how it
improves the BSM. As it is shown in Figure 3, there is a con-
nection between the neural network and the structural model
and works iteratively in the following way:

3.4.1. Forward information. For a set of weights (w) of the
neural network, and using financial inputs to the neural net-
work, we obtain the output of the neural network, z, which
are the estimated asset value and volatilities. These enter the
BSM model (parametric model in the Figure 3) along with
p + which are the inputs observable to the BSM (i.e. firm
liabilities). The parametric model gives the probability of
bankruptcy, PB, which along with the target values (1 or 0,
depending on the status of the firm), enter the merit function
(the log-likelihood function) which we seek to maximize.

3.4.2. Backward information. The coefficients of the neu-
ral network are updated according to the partial derivatives we
provide, as shown through equations (20)–(23) and Figure 5.
For example, equation (22) includes the quantity ∂fPM

∂pj
, which

is the partial derivative of the parametric model with respect
to the j-th unobservable parameter (i.e. asset value or volatil-
ity). This quantity is very important for updating the weights
of the neural network because it incorporates the theoretical
properties of the parametric model.

The above forward and backward process works iteratively
until the log-likelihood function is maximized. In every itera-
tion, the weights of the neural networks are updated in order
to provide more accurate asset values and volatilities.

As one can clearly see in the above estimation process that
we propose for the estimation of asset values and volatilities,
there is no restriction on their functional form as it happens
with the BSM. Instead, the neural network is updated in every
iteration to freely learn the relationships between the financial
inputs to the neural network and the outputs (i.e. asset values
and volatilities). In addition, the estimation of the asset values
and volatilities, in our setting, is optimal as the log-likelihood
of the data is optimized as opposed to the case of BSM where
their estimation is sub-optimal (no function is optimized to
get the asset value and volatility). Due to such improvements,
we will later report a significant improvement in the empiri-
cal performance of the BSM when we estimate asset values
and volatilities within our neuro-structural approach but also
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from the standard neural networks as the latter includes no
knowledge from the theoretical (structural) model.

4. Data

4.1. Sample

In the literature there are several different definitions for nega-
tive events of firms. For example, Pindado et al. (2008) define
a firm to be in financial distress when certain financial criteria
are met (i.e. profitability is lower than financial expenses for
two consecutive years, the market value falls for two consecu-
tive years, etc.). However, we argue that this definition is quite
subjective. Other studies, for instance Bharath and Shumway
(2008), use corporate defaults. Default is a state where the
firm misses an interest (or principal) payment for more than 90
days. Such information can be found from publicly available
sources, such as from Moody’s reports. However, a stan-
dard database is non-existent in general for default events
and such events are relatively small (Galil and Gilat 2019).
In this paper, we consider firms that file for bankruptcy under
Chapter 7 (liquidation) or Chapter 11 (re-organization) in the
U.S. The bankruptcy state usually succeeds financial distress
and default events and is considered to be more serious than
the other two. Our sample of bankrupt firms consists of 420
non-financial U.S. public firms that filed for bankruptcy over
the 26-year period 1990–2015 and have all data available in
Compustat and CRSP one year prior to bankruptcy. Bankrupt
firms are sourced from the database BankruptcyData. The
final sample contains about 94,000 bankrupt and healthy firm-
year observations. The distribution of observations across the
years is shown in Table 1.

4.2. Variables construction

To construct asset value, V, and the volatility, σ V , for the alter-
native approaches described in section 2, we obtain data from
three sources. From Compustat, we get total liabilities and
from CRSP we get daily equity prices and shares outstand-
ing to calculate; the equity value of the firm, E, as the closing
stock price ∗ shares outstanding and the annualized volatility
of daily equity returns, σE, over a one-year period. Using daily
equity prices, we also calculate the annualized equity return,
rE,t−1, which is used in BS (2008) as proxy for assets growth,
µ . Finally, for the risk-free rate we use the 1-year Treasury bill
rate, obtained from Federal Reserve Board Statistics.

Regarding the variables from Campbell et al. (2008) which
we use as inputs to the neural network, we further get finan-
cial information from Compustat such as net income, cash
and short-term investments and shareholders’ equity value,
to construct the following ratios; total liabilities divided by
equity market value + total liabilities (TLMTA), net income
divided by equity market value + total liabilities (NIMTA),
cash and short-term investments divided by equity market
value + total liabilities (CASHMTA) and shareholders’ equity
value divided by equity market value i.e. book-to-market
ratio (BM ). Other variables used are the following; annual-
ized volatility of stock returns (SIGMA) using daily returns

Table 1. Distribution of observations.

Year Bankrupt firms Healthy firms Bankruptcy rate (%)

1990 22 3292 0.66
1991 25 3241 0.77
1992 17 3258 0.52
1993 20 3318 0.60
1994 10 3543 0.28
1995 14 3861 0.36
1996 14 4138 0.34
1997 13 4379 0.30
1998 19 4698 0.40
1999 26 4664 0.55
2000 20 4435 0.45
2001 21 4286 0.49
2002 14 4182 0.33
2003 15 3913 0.38
2004 13 3601 0.36
2005 14 3510 0.40
2006 10 3503 0.28
2007 14 3439 0.41
2008 20 3320 0.60
2009 31 3244 0.95
2010 6 3153 0.19
2011 9 3037 0.30
2012 12 2963 0.40
2013 12 2920 0.41
2014 12 2884 0.41
2015 17 2897 0.58
Total 420 93679

Note: This table shows the distribution of bankrupt and healthy-firm
observations across the sample period 1990–2015 and the annual
bankruptcy rate, defined as the annual number of bankruptcies
divided by the annual number of observations.

in the previous three months, excess returns (EXRET), which
is the difference between firm’s annualized equity return
and the annualized value-weighted return of a portfolio with
NYSE, AMEX, NASDAQ stocks, the relative size of the firm
(RSIZE), defined as the (log of) equity market value divided
by the total market capitalization of NYSE, AMEX, NAS-
DAQ stocks and finally, the natural logarithm of stock price†
(LOGPRICE). The variables are lagged by one year such that
at the beginning of every year in the bankruptcy period 1990–
2015 the data are available in the market for predictions within
the year.

Table 2 provides descriptive statistics for bankrupt and
healthy firm observations.

As can be seen from Table 2, there are several differences
in the financial performance between bankrupt and healthy
firms. Specifically, bankrupt firms are less profitable (NIMTA
is lower), have less liquidity (CASHMTA is lower) and have
higher levels of leverage (TLMTA is higher). Furthermore,
book-to-market ratios of bankrupt firms are smaller (BM is
lower) and tend to be smaller in size (RSIZE is lower), have
lower stock prices (LOGPRICE is lower) and perform worse
than the market (EXRET is negative for bankrupt firms and
positive for healthy firms). Finally, equity returns for bankrupt
firms are more volatile relative to healthy firms (SIGMA is
higher). In the last column of the table, t-statistics for mean

† We follow Bauer and Agarwal (2014) and use the logarithm of
unadjusted stock price.
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Table 2. Descriptive statistics for the entire sample.

Bankrupt firms Healthy firms

Variables Mean Median St.Dev Mean Median St.Dev. t-statistics

NIMTA − 0.249 − 0.1722 0.254 − 0.021 0.023 0.148 − 18.38
CASHMTA 0.068 0.032 0.098 0.119 0.062 0.160 − 10.60
TLMTA 0.697 0.784 0.264 0.378 0.332 0.258 24.71
BM 1.036 0.481 2.551 1.461 0.537 4.807 − 3.39
RSIZE − 12.774 − 12.765 1.490 − 10.919 − 10.983 2.075 − 25.40
LOGPRICE 0.523 0.560 1.145 2.291 2.473 1.274 − 31.56
EXRET − 0.213 − 0.340 0.864 0.207 0.106 0.670 − 9.95
SIGMA 1.070 0.959 0.486 0.657 0.551 0.418 17.39

Note: This table reports descriptive statistics for the entire sample period 1990–2015 of the inputs, x, which enter the neural network model,
as used in Campbell et al. (2008). The construction of the variables is described in section 4.2. The last column reports t-statistics for mean
differences between bankrupt and healthy firms.

differences are reported. Overall, all mean differences are
statistically significant.

5. Model performance

The aim is to examine whether our proposed methodology for
the estimation of asset value and volatility outperforms the
commonly used approaches which we discussed in section 2.
With respect to that, we employ three distinct tests to compare
the performance of the models, following Bauer and Agarwal
(2014); (1) A discriminatory power test based on AUROC,
(2) Information content test and (3) Economic benefits arising
from using the different bankruptcy models.

5.1. Discriminatory power

We evaluate the ability of the models to discriminate the
bankrupt firms from the healthy firms. For a given cut-off
probability, firms whose bankruptcy probability is higher than
the cut-off, are classified as bankrupt and healthy otherwise.
A way to measure discriminatory power is by counting the
true predictions (percentage of bankrupt firms correctly clas-
sified as bankrupt) and the false predictions (percentage of
healthy firms incorrectly classified as bankrupt). Doing this
classification process for multiple cut-offs, we obtain a set of
true and false predictions and when we plot them (true pre-
dictions on the y-axis and false predictions on the x-axis),
we get the Receiver Operating Characteristics (ROC) curve.
The higher the ROC curve towards the top-left corner, the
more powerful the model is (since it will hit more true pre-
dictions and less false predictions). A quantitative assessment
of the discriminatory power is given by the Area Under ROC
(AUROC) curve which is widely used to measure the perfor-
mance of binary response models and suitable in our case.
We compute the AUROC following common practice (see
for instance Hanley and McNeil 1982, Sobehart and Keenan
2001, Fitzpatrick and Mues 2016, Gupta et al. 2018, etc.).

5.2. Information content tests

We evaluate the information content of the various BSM spec-
ifications by including the out of sample scores they produce

in discrete hazard models. The score is: ln [PB / (1-PB)],
where PB is the bankruptcy probability produced by the vari-
ous structural models. In particular, we follow related studies
such as, Hillegeist et al. (2004) and Agarwal and Taffler
(2008), to estimate the following discrete logit model:

p(Yi,t+1 = 1|Scorei,t) = pi,t = ea∗Ratet+β∗Scorei,t

1 + ea∗Ratet+β∗Scorei,t
, (24)

where pi,t is the probability of bankruptcy at time t, that the
i-th firm will go bankrupt the next year and Yi,t + 1 is the sta-
tus of the i-th firm the next year (1 if it goes bankrupt and
0 if it is solvent). The variable of interest is Scorei,t, which
is the out of sample score of the i-th firm at time t. Finally,
β is the coefficient estimate and, like prior studies, we proxy
the baseline hazard rate using the actual bankruptcy rate at
time t, which is equal to the number of bankruptcies in year
t divided by the number of observations in the year in our
sample (denoted as Rate). We are interested in the statisti-
cal significance of the ‘β’ coefficients which indicate whether
the out of sample scores contain significant information about
future bankruptcies. Finally, to test whether the out of sample
scores of a model contains significantly more information than
the other models (i.e. of our neuro-structural model versus the
alternative BSM structural specifications), we compare the
log-likelihoods of the corresponding logit regressions using
the Vuong (1989)† test as well as their AUROCs using the
DeLong et al. (1988) test. It should be noted here that, both the
DeLong et al. (1988) and Vuong (1989) tests are fully appli-
cable for our proposed methodology. When we back out the
asset values and volatilities, these are used in the BSM model
(referred to as NS approach, since these are obtained through
our neuro-structural approach) to compute the probability
of bankruptcy, as happens with the competing BSM models
(that estimate asset values and volatilities differently). These
bankruptcy probabilities are then used to derive the DeLong
et al. (1988) and Vuong (1989) test statistics as shown later in
Tables 4 and 5.

† As Vuong (1989) explains, the tests are derived for the cases of
non-nested models (like our models 1–5 in table 5), nested models
or overlapping models, thus the use of Vuong’s test is appropriate
for the standards of our study. In addition, the methodology has been
employed in related studies such as, Charalambous et al. (2020).
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Shumway (2001) argues that a panel logit model like the
one in equation (24) should be estimated based on stan-
dard log-likelihood maximization programs, but with a minor
adjustment. The number of independent observations is the
number of firms in the estimation sample and not the num-
ber of firm-year observations. Failing to address this issue
could yield understated standard errors, leading to wrong
inference about the coefficient estimates. Similar with Fil-
ipe et al. (2016), we use clustered-robust standard errors to
adjust for the number of firms in the sample but also for
heteroskedasticity (Huber 1967, White 1980).

Finally, although some studies have employed Cox propor-
tional hazard models (Bharath and Shumway 2008, Charitou
et al. 2013), the choice of logit hazard models is appropriate
for our study. We are interested in the likelihood of an event to
occur, in our case bankruptcy, but Cox hazard models address
the time to event, which is not a primary concern of our study.
In addition, logit hazard models have been widely used in
related studies recently (see for instance Tian et al. 2015,
Alzugaiby et al. 2021, Charalambous et al. 2022, etc.). More-
over, Gupta et al. (2018) empirically showed that logit hazard
models are superior to Cox proportional hazard models.

5.3. Economic impact

Earlier research suggested that the accurate prediction of cor-
porate bankruptcies is important for bank profitability (Atiya
2001). In this section, we examine whether the accuracy of the
models is economically beneficial for banks. Following Agar-
wal and Taffler (2008), we assume a competitive loan market
worth $100 billion, and each bank uses a different bankruptcy
model to evaluate the creditworthiness of prospective clients.

5.3.1. Calculating credit spreads. We use the period 1990–
2006 (70% of the sample) to calculate credit spreads. We
sort the customers (i.e. firm-year observations) in 10 groups
of equal size. The first and tenth group include the observa-
tions with the lowest and highest bankruptcy risk respectively,
and a credit spread is calculated according to the following
rule; Observations classified in the first group receive a credit
spread k and observations in the remaining groups receive

a credit spread CSi, which is obtained from Blochlinger and
Leippold (2006) and it is defined as follows:

CSi = p(Y = 1|S = i)

p(Y = 0|S = i)
LGD + k, (25)

where p(Y = 1|S = i) and p(Y = 0|S = i) is the average
probability of bankruptcy and non-bankruptcy, respectively,
for the i-th group, with i = 2, 3, . . . , 10 and LGD is the loan
loss upon default. Following Agarwal and Taffler (2008), the
average probability of bankruptcy for the i-th group is the
actual bankruptcy rate for that group, defined as the number
bankrupt observations divided by the number of observations
in the group. Furthermore, k = 0.3% and LGD = 45%.

5.3.2. Measuring economic performance. Banks compete
to grant loans to prospective customers (i.e. firm-year
observations) in the period 2007–2015. Using the different
bankruptcy models, each bank sorts the customers accord-
ing to their riskiness and denies credit to the bottom 5% with
the highest risk. The remaining customers are divided in 10
groups and a credit spread is charged to each group, that was
obtained from the period 1990–2006. Finally, the bank that
charges the lowest credit spread for the customer is granting
the loan. Two measures of profitability are used. The first one,
Return on Assets (ROA), is defined as Profits/Assets lent and
the second one, Return on Risk-Weighted Assets (RRWA),
takes into consideration the riskiness of the assets, defined
as Profits/Risk-Weighted Assets. Risk-Weighted Assets are
obtained from formulas provided by the Basel Committee on
Banking Supervision (2006, pp. 64).

6. Results

This section discusses the results of the paper. It is important
to mention here that the network structure, which we dis-
cussed in the methodology section, is optimized using data
from the period 1990–2006 and it is implemented in the out
of sample period 2007–2015 to test its performance. We begin
by reporting the out of sample estimation of asset values and

Table 3. Mean asset values and volatilities in the out of sample period 2007–2015.

Mean-bankrupt firms Mean-healthy firms t-statistics

Estimation approaches V/F σV V/F σV V/F σV

2-Eqs. Approach 1.958 0.565 6.380 0.383 − 2.69 4.53
1-Eq. Approach 1.887 0.400 6.378 0.353 − 2.74 2.09
Direct Estimation
1) BS (2008) 2.004 0.489 6.406 0.417 − 2.68 2.81
2) CDLT (2013) 2.004 0.328 6.406 0.335 − 2.68 − 0.32
NS Approach 3.676 0.72 6.398 0.572 − 24.12 25.73

Note: This table reports mean asset and volatility values obtained with respect to the various estimation approaches, in the out of sample
period 2007–2015. The 2-Eqs. Approach refers to estimating asset values and volatilities by simultaneously solving equations (5) and (6).
The 1-Eq. Approach refers to estimating the time-series of asset values over the previous year by solving equation (5) and estimating the
volatility of asset values until convergence (see sections 2.2.1 and 2.2.2, respectively). BS (2008) and CDLT (2013) refer to the direct
estimation approach as done in Bharath and Shumway (2008) and Charitou et al. (2013) respectively (see section 2.2.3). Finally, the NS
approach refers to estimating expected asset value and the volatility based on the neuro-structural approach (see sections 3.1 and 3.2). The
last column reports t-statistics for mean differences between bankrupt and healthy firms.
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volatility with respect to the different estimation approaches
and then, we report the performance of the various models
in the out of sample period, based on AUROC, informa-
tion content and economic impact. Several robustness tests
are also conducted in this section, including a) comparing
our neuro-structural model to logistic regression and stan-
dard neural networks and b) implementing our methodology
to an extension of BSM model and specifically to a Down-
and-Out option model which relaxes the assumption of default
happening only at debt maturity.

In Table 3, we report asset values (expected leverage in the
case of the neuro-structural approach, EL) and volatility val-
ues with respect to the different estimation approaches, in the
out of sample period 2007–2015. As expected, the ratio V/F is
lower for bankrupt firms in all cases. Differences in the mean
values between bankrupt and healthy firms are statistically
significant. Similarly, σV is higher for bankrupt firms, except
in the case of CDLT (2013). Differences in the mean val-
ues of the remaining approaches are statistically significant.
Overall, results are indicative of the impaired financial condi-
tion of bankrupt firms relative to healthy firms one year prior
to bankruptcy. We conclude that our neuro-structural (NS)
approach produces reasonable expected asset and volatility
values.

6.1. AUROC results

Table 4 presents the out of sample discriminatory power of
the various BSM specifications based on the AUROC.†

Table 4. AUROC results in the out of sample period 2007–2015.

AUROC Delong et al. (1988) test

2-Eqs. Approach 0.8964 5.64
1-Eq. Approach 0.9026 5.40

Direct estimation
(1) BS (2008) 0.8791 6.45
(2) CDLT (2013) 0.9044 5.08
NS approach 0.9387 –

Note: This table reports AUROC results for the various BSM speci-
fications in the out of sample period spanning the years 2007–2015.
The 2-Eqs. Approach refers to estimating asset values and volatil-
ities by simultaneously solving equations (5) and (6). The 1-Eq.
Approach refers to estimating the time-series of asset values over
the previous year by solving equation (5) and estimating the volatil-
ity of asset values until convergence (see sections 2.2.1 and 2.2.2
respectively). BS (2008) and CDLT (2013) refer to the direct esti-
mation approach as done in Bharath and Shumway (2008) and
Charitou et al. (2013) respectively (see section 2.2.3). Finally, the
NS approach refers to estimating expected asset value and volatility
based on our neuro-structural approach (see sections 3.1 and 3.2).
The last column reports the Delong et al. (1988) test statistic, to test
for statistically significant differences in the AUROCs between the
neuro-structural model with the alternative BSM specifications.

† The AUROCs in the table were estimated by using the BSM struc-
tural Equation (4) for the competing approaches and by using the
structural Equation (14) for our approach. In a subsequent analysis,
for information content test, we use the outputs of these structural
models in logit regressions and run again AUROC and information
content tests.

The key finding is that the neuro-structural model substan-
tially outperforms the competing approaches, suggesting that
it is more powerful in discriminating the bankrupt firms from
the healthy firms. Specifically, the AUROC of the model is
0.9387 whereas for the two and single equations approach,
AUROCs are 0.8964 and 0.9026, respectively. In the last
column, we report test statistics to examine for statistically
significant differences in AUROCs when we compare our
neuro-structural model against the competing approaches (the
corresponding test statistic next to the NS approach is miss-
ing as the model cannot be compared by itself). According
to Delong et al. (1988) test, differences in AUROCs between
the neuro-structural model and the two and single equations
approaches are statistically significant at the 1% level (test
statistics are 5.64 and 5.40, respectively). The neuro-structural
model is also superior from the direct estimation approaches,
since the AUROCs of BS (2008)‡ and CDLT (2013) are
0.8791 and 0.9044 respectively. According to the Delong
et al. (1988) test, differences in AUROCs between the neuro-
structural model and the two direct estimation approaches are
statistically significant at the 1% level (test statistics are 6.45
and 5.08, respectively).

Results from this test clearly shows the superiority of the
neuro-structural approach in discriminating bankrupt from
healthy firms relative to the alternative parametric BSM
specifications.

6.2. Information content results

Table 5 reports the results from information content tests.
Models 1–5 are logit models that include, as predictors, the
out of sample scores from the various BSM specifications as
shown in Table 4. Models 1–2 include the scores by estimating
the asset values and volatilities of the BSM model according
to the 2-Eqs. and 1-Eq. Approaches respectively (denoted as
Score 1 and Score 2, respectively). Next, Models 3–4 include
the scores by estimating asset values and volatilities of the
BSM based on BS (2008) and CDLT (2013), respectively,
and are denoted as Score 3 and Score 4, respectively. Finally,
Model 5 includes the score from our neuro-structural model
(Score 5).

According to the results, out of sample scores produced by
the various BSM specifications are highly statistically signif-
icant at the 1% level, indicating that they carry significant
information in predicting bankruptcies one year ahead. More
importantly, out of sample scores produced by the neuro-
structural model contains significantly more information com-
pared to the alternative approaches. In the last two rows, we
report test statistics to examine for statistically significant dif-
ferences in log-likelihoods and AUROCs when we compare
Model 5 (which is the model of interest) against Models 1–4
(test statistics for Model 5 are missing as the model cannot
be compared by itself). Using the Vuong (1989) test to com-
pare the log-likelihoods, we find that the log-likelihood of
Model 5 is significantly different from Models 1-4. Differ-
ences are statistically significant at the 1% level. This result
also holds when we compare the AUROCs of the various

‡ BS (2008), however, use corporate defaults to tailor their model,
hence their model may not be as accurate in predicting bankruptcies.
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Table 5. Information content results in the out of sample period 2007–2015.

Model 1 Model 2 Model 3 Model 4 Model 5

Score 1 0.022∗∗∗
(13.14)

Score 2 0.387∗∗∗
(6.80)

Score 3 0.281∗∗∗
(9.78)

Score 4 0.420∗∗∗
(5.23)

Score 5 1.248∗∗∗
(20.01)

Rate − 0.602∗∗∗ − 0.965∗∗∗ − 0.645∗∗∗ − 0.894∗∗∗ − 0.872∗∗∗
( − 3.65) ( − 5.03) ( − 3.41) ( − 4.18) ( − 4.53)

Constant − 7.599∗∗∗ − 9.332∗∗∗ − 7.864∗∗∗ − 8.537∗∗∗ − 2.844∗∗∗
( − 8.35) ( − 8.76) ( − 7.50) ( − 7.50) ( − 2.87)

Log-Likelihood − 693.60 − 657.50 − 690.23 − 659.65 − 573.61
Pseudo-R2 (%) 17.83 22.11 16.43 21.85 32.05
AUROC 0.9040 0.9101 0.8837 0.9114 0.9388
Vuong (1989) 6.41 4.36 6.11 4.25 –
DeLong et al. (1988) 4.50 4.06 5.80 3.80 –

Note: This table reports information content results. We estimate five logit models as follows: First, we estimate the out of sample bankruptcy
probabilities (in the period 2007–2015) using the various BSM specifications as shown in table 4. The probabilities are transformed to a
score = ln [PB / (1-PB)], where PB is the probability of bankruptcy. Models 1 and 2 include scores from the 2-Eqs. and 1-Eq. Approaches
(denoted with Score 1 and Score 2, respectively). Models 3 and 4 include scores produced by the direct estimation approach (Score 3 and
Score 4 are scores from BS 2008 and CDLT 2013, respectively). Finally, Model 5 includes the score from our neuro-structural approach.
In all logit models, we include Rate, defined as the annual number of bankruptcies in our sample divided by the number of observations in
the year (in our sample), as a proxy for the baseline hazard rate (for consistency, it is transformed to a score as explained above). The last
two rows of the table report the Vuong (1989) and DeLong et al. (1988) test statistics, to test for statistically significant differences in the
log-likelihoods and AUROCs, respectively, between Model 5 and Models 1-4.
∗∗∗ denote statistical significance at the 1% level. t-tests are reported in parentheses.

logit regressions. Surprisingly, the Rate control is negative
and statistically significant. However, when we run the regres-
sions by including only the Rate as independent variable, the
coefficient is positive but insignificant. We believe that the
interaction of Rate with Score causes this unexpected result.

From the tests we conclude that the scores obtained from
the neuro-structural model contain significantly more infor-
mation about future bankruptcies relative to the scores from
other BSM specifications. This finding confirms that our
approach yields more accurate asset value and volatilities that
improve the performance of the parametric model.

6.3. Economic impact results

So far, we have assessed the performance of various BSM
specifications based on discriminatory power and informa-
tion content. However, banks are interested in the eco-
nomic benefits arising by using the bankruptcy models in
the decision-making process of giving loans to firms. Thus,
does the improved performance using the neuro-structural
model yields superior returns? We test this conjecture using
the framework of Agarwal and Taffler (2008), by assuming
a competitive loan market worth $100 billion and five banks
use the different bankruptcy models in their credit decisions.

Table 6 reports economic results for five banks. Banks 1
and 2 use the 2-Eqs. and 1-Eq. Approaches respectively for
the estimation of asset values and volatilities. Banks 3 and 4
use the direct estimation approaches based on BS (2008) and
CDLT (2013) respectively. Finally, Bank 5 uses our neuro-
structural model.

As can be inferred from the table, Bank 5 manages a
credit portfolio with the lowest concentration of bankruptcies
(0.08%) whereas for the competitor banks, concentration of
bankruptcies is higher, ranging from 0.10% to 0.90%. More
importantly, Bank 5 earns higher risk-adjusted returns (i.e.
accounting for the riskiness of the portfolio rather than the
total profit earned). In particular, Bank 5, on a risk-adjusted
basis, earns 2.06% per dollar invested while risk-adjusted
returns for the competing banks range from 0.30% to 1.81%.†

Results from this test, overall, suggest that banks can have
a competitive advantage using the neuro-structural approach
relative to any of the alternative BSM specifications.

6.4. Robustness analysis

In this section, we perform several robustness tests. We begin
the analysis by measuring the out of sample performance of
the models using several other performance statistics. As a
next test, we re-run and compare the models based on a five-
fold validation approach. As an additional test, we compare
the neuro-structural model with other widely used prediction
methodologies such as, logistic regression and standard neu-
ral networks. Moreover, we implement our neuro-structural
methodology to an advancement of BSM and specifically, to
a Down-and-Out option model which sets a more realistic
approach to bankruptcy, by allowing debt default to happen
any time prior to debt maturity.

† Results are robust with respect to different parameter specifications
(k = 0.002–0.004 and LGD = 0.4–0.7).
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Table 6. Economic results in the out of sample period 2007–2015.

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5

Credits 5115 3546 2652 3254 12977
Market Share (%) 18.27 12.67 9.47 11.63 46.36
Bankruptcies 43 5 24 4 10
Bankruptcies/Credits (%) 0.84 0.14 0.90 0.10 0.08
Average Spread (%) 0.54 0.35 0.46 0.36 0.35
Revenues ($M) 98.90 44.57 43.17 41.33 162.92
Loss($M) 63.16 7.34 35.25 5.88 14.69
Profit($M) 35.74 37.23 7.92 35.45 148.23
Return on Assets (%) 0.20 0.29 0.08 0.30 0.32
Return on RWA (%) 0.54 1.81 0.30 1.73 2.06

Note: This table reports economic results for five banks in a competitive loan market worth $100 billion. Banks 1 and 2 use the BSM
specification where asset values and volatilities are obtained using the 2-Eqs. and 1-Eq. Approaches respectively. Banks 3 and 4 use the direct
estimation approach to obtain asset values and volatilities, based on BS (2008) and CDLT (2013) respectively. Finally, Bank 5 uses the neuro-
structural approach. Banks sort prospective customers (firm-year observations between 2007 and 2015) and reject the 5% of observations
with the highest risk. The remaining observations are classified in 10 groups of equal size and for each group, a credit spread is calculated as
described in the main text (section 5.3). The bank that classifies the observation in the group with the lowest spread is finally granting the loan.
Market share is the number of loans given divided by the number of firm-years, Revenues = (market size)∗(market share)∗(average spread),
Loss = (market size)∗(prior probability of bankruptcy)∗(share of bankruptcies)∗(loss given default). Profit = Revenues-Loss. Return on
Assets is profits divided by market size∗market share and Return on Risk-Weighted-Assets is profits divided by Risk-Weighted Assets,
obtained from formulas provided by the Basel Accord (2006). The prior probability of bankruptcy is the bankruptcy rate for firms between
1990 and 2006 and equals 0.43%. Loss given default is 45%.

6.4.1. Other performance statistics. Several other tests
exist in the literature to evaluate the performance of
bankruptcy prediction models. In this section, we use the
Kolmogorov–Smirnov (KS) statistic, the Conditional Infor-
mation Entropy Ratio (CIER) statistic and the H-measure.
Our results (not tabulated for bervity) demonstrate that the
neuro-structural model outperforms the alternative BSM spec-
ifications. Specifically, the KS statistic is 0.75 for the neuro-
structural model whereas for the 2-Eqs. approach is 0.68,
for the 1-Eq. approach is 0.67, for BS (2008) is 0.61 and
for CDLT (2013) is 0.68. The CIER statistic for the neuro-
structural model is 0.22 whereas for the other approaches
CIER statistic is 0.19, 0.17, 0.15, 0.18 (we keep the same
order of the models as with the KS). Finally, the H-measure
for the neuro-structural model is 0.65 whereas for the compet-
ing models the H-measure is 0.51, 0.51, 0.45, 0.52.

6.4.2. Five-fold validation. For this test, we divide the
full sample (1990–2015) into five approximately equal sub-
samples in chronological order. We use any four of them
to train the neuro-structural model and use the left-out sam-
ple to measure its performance. Then, we compare its per-
formance with the alternative specifications in each of the
left-out subsample, using AUROC as a summary statistic.
In each sub-sample, the neuro-structural model outperforms
the alternative BSM specifications (not tabulated for brevity).
Its average performance is 0.9102 where for the other mod-
els, performance is as follows: Using the 2-Eqs. and 1-Eq.
approaches, average AUROC is 0.8431 and 0.8727 respec-
tively. For BS (2008) and CDLT (2013), average AUROCs
are 0.8507 and 0.8747, respectively. The performance though
is lower than the performance reported in the earlier sec-
tions, because the five-fold validation approach breaks the
chronological order of the data (i.e. we use subsequent peri-
ods to train the model and measuring performance on earlier
periods). However, the key finding remains: Estimating asset

value and volatility using our approach, outperforms the
alterative BSM specifications.

6.4.3. Comparison with alternative methodologies. The
excellent performance of the neuro-structural model moti-
vates us to compare its performance to alternative bankruptcy
prediction methodologies. Specifically, we compare the per-
formance of the neuro-structural model with two widely used
approaches; the logistic regression (LR) approach and the
neural networks approach (NN). As explanatory variables for
both approaches, we use the variables of Campbell et al.
(2008), which are also used as inputs when estimating our
neuro-structural model. Furthermore, in the case of the tradi-
tional neural network, we use the same specifications as was
done for the neuro-structural model for consistency; In the
hidden layer, we use three neurons (H = 3) as well as we
use the tan-sigmoid activation function. In the output layer,
we use one neuron (M = 1) using the log-sigmoid activation
function to obtain a probability. Finally, the log-likelihood
function is used to train the neural network to obtain its coef-
ficients. Out of sample performance results are reported in
Table 7.

As expected, the results now are more comparable since all
approaches generally perform well in predicting bankruptcy.
However, the neuro-structural model provides, overall, better
predictive accuracy relative to the competing methodologies.
This is evident by the higher out of sample AUROC it exhibits
relative to the LR and NN approaches (which equal to 0.9283
and 0.9271, respectively) with the differences being statisti-
cally significant according to the DeLong et al. (1988) test.
Next, the neuro-structural model is better in terms of infor-
mation content from the standard neural network (difference
in log-likelihoods is statistically significant according to the
Vuong’s test) but insignificant compared to the logistic regres-
sion model. Finally, a bank which uses the neuro-structural
model is more profitable relative to banks that use either the
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Table 7. Performance comparisons between the neuro-structural approach and alternative approaches in the out of sample period
2007–2015.

AUROC LL-Info. Content RRWA (%) DeLong et al. (1988) Test Vuong (1989) Test

LR Approach 0.9283 − 571.94 1.42 2.08 − 1.29
NN Approach 0.9271 − 585.13 1.26 2.45 3.04
NS Approach 0.9387 − 573.61 2.45 – –

Note: This table reports performance results of the alternative approaches for predicting bankruptcy such as the logistic regression (LR)
approach, the neural network (NN) approach and finally, the neuro-structural (NS) approach. Performance is measured in the out of sample
period spanning the years 2007–2015. The first column reports AUROC results (equivalent to Table 4), the second column reports log-
likelihoods from information content tests (equivalent to Table 5) and the third column reports the return on risk weighted assets (RRWA)
when banks compete to grant loans in a competitive economy (equivalent to the last row of Table 6). The last two columns report DeLong
et al. (1988) and Vuong (1989) test statistics, to test for statistically significant differences in the AUROCs and log-likelihoods, between the
neuro-structural approach and the alternative methodologies.

logistic model or the neural network. In particular, the bank
which uses the neuro-structural model achieves a return of
2.45% on risk weighted assets, whereas banks which use
the LR or NN approach achieve 1.42% and 1.26%, respec-
tively. Note that the economic benefits (RRWA) for our model
reported in Table 7 differ from those reported in Table 6
simply because in Table 6 the customers-observations are
allocated to five banks (as the number of structural models
compared) whereas in Table 7 the customers-observations are
allocated to three banks (as the number of models compared).

Consequently, the profits are shared among three banks,
which explains the slightly higher RRWA of our model
reported in Table 7 relative to Table 6.

A note is worth mentioning here. The superiority of our
neuro-structural model over standard neural networks is rea-
sonable because our model retains the strong capabilities of
neural networks, but their training is improved because of
the ‘co-operation’ with the structural model. As we explained
earlier in section 3.4, during the training of neural networks,
the weights are updated according to the theoretical proper-
ties of the parametric model as opposed to the standard neural
network which includes no knowledge from any theoretical
(structural) model of bankruptcy.

Overall, the results in this section suggest that the neuro-
structural model is a promising methodology since it out-
performs other well-known prediction methodologies in the
majority of tests we employ. In other words, the co-joint
dynamics between the neural network and the structural
model add value to the standard neural network and the
standard structural model.

6.4.4. Extensions of BSM: the case of down-and-out call
option. The BSM model which we previously analyzed and
improved by estimating its unobservable parameters with our
neuro-structural approach, is based on several assumptions as
it was the first parametric model that was proposed in the
context of bankruptcy prediction. In the options pricing lit-
erature, however, there are other models which relax some
of the restrictive assumptions of BSM. One of such mod-
els is the one which views the firm as a Down-and-Out call
option. In the Down-and-Out option (DaO), a barrier exists
such that whenever it is breached up to the maturity time of
the option, it causes the termination of the option contract

(i.e. whenever the underlying asset value breaches the bar-
rier, the option becomes worthless). This point of view can be
applied in the case of a firm. Whenever the value of the firm
falls below a barrier, for example the value of liabilities, up to
the maturity time of liabilities, the firm goes bankrupt. Thus,
according to the DaO framework, the firm can go bankrupt
at any time prior to the maturity of liabilities whenever the
value of the firm falls below liabilities. Unlike the case of the
standard BSM that assumes bankruptcy can only happen at
the maturity of liabilities, the DaO framework recognizes that
bankruptcy can occur at any point prior to maturity (see for
instance Brockman and Turtle 2003, Afik et al. 2016 for more
details). In addition, as we will show subsequently, the prob-
ability of bankruptcy in the DaO framework is always higher
than the BSM model because it accounts for the possibility of
bankruptcy to occur prior to maturity (in BSM this probability
is zero).

In this section, we use the DaO model and using our neuro-
structural approach, we estimate its unobservable parameters.
Following the DaO option studies, we measure the probability
of bankruptcy as follows†:

PB = N(A)+ exp(−2P1P2)N(B), (26)

where

A = −(P1 + P2), B = −(P1 − P2),

and

P1 = ln(V/F)

σV

√
T

, P2 = (μ− 0.5σ 2
V )T

σV

√
T

.

Unlike in the case of BSM where we can merge asset return
(µ) and asset value (V) to produce the expected value of
assets, in equation (26) this is not possible. Thus, we have
three unobservable parameters: V, σV and µ, which we esti-
mate within our neuro-structural framework. More specifi-
cally, the three parameters can be viewed as functions of some
exogenous variables in the vector x:

L(w) = fL(x, w), (27)

σV (w) = fσ (x, w), (28)

† Note that N(A) in Equation (27) gives the probability of bankruptcy
based on the BSM. Since the equation contains another non-negative
term, the probability of bankruptcy in the DaO framework is always
equal to, or higher than BSM
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Table 8. Performance comparisons between the neuro-structural approach (Down-and-Out model) and alternative approaches in the out of
sample period 2007–2015.

AUROC LL-Info. Content RRWA (%) DeLong et al. (1988) Test Vuong (1989) Test

LR Approach 0.9283 − 571.94 1.43 2.12 − 1.50
NN Approach 0.9271 − 585.13 1.30 2.47 3.10
NS Approach (DaO) 0.9399 − 574.84 2.11 – –

Note: This table reports performance results of the alternative approaches for predicting bankruptcy such as the logistic regression (LR)
approach, the neural network (NN) approach and finally, the neuro-structural (NS) approach when the DaO option framework is used.
Performance is measured in the out of sample period spanning the years 2007–2015. The first column reports AUROC results (equivalent
to Table 4), the second column reports log-likelihoods from information content tests (equivalent to Table 5) and the third column reports
the return on risk weighted assets (RRWA) when banks compete to grant loans in a competitive economy (equivalent to the last row of
Table 6). The last two columns report DeLong et al. (1988) and Vuong (1989) test statistics, to test for statistically significant differences in
the AUROCs and log-likelihoods, between the neuro-structural approach and the alternative methodologies.

μ(w) = fμ(x, w). (29)

Equations (27)–(29) are estimated using the same method-
ology that we introduced for the case of BSM but adapted
to the case of DaO model. Results, reported in Table 8 show
that the neuro-structural model is again the best performing
one compared to logistic regression and neural networks in
terms of discriminatory power, information content and eco-
nomic benefits. Specifically, the AUROC differences of the
neuro-structural model against the standard neural network
and logistic regression are statistically significant according
to the DeLong et al. (1988) test. As for the information con-
tent, we find statistically significant differences between the
log-likelihoods of the neuro-structural model and the standard
neural network.

Finally, the neuro-structural DaO model (in Table 8) does
not necessarily outperform the neuro-structural BSM model
(in Table 7). It has a higher AUROC but not as good a log-
likelihood and RRWA, suggesting that there is very little to
differentiate between the two.

6.4.5. A note on other hybrid models. Some other studies
obtain the distance to default or the probability of bankruptcy
from the structural-parametric model and then use it as input,
along with other predictors, in the bankruptcy prediction
model thus creating a ‘hybrid’ model. For instance, Camp-
bell et al. (2008) include the distance to default as additional
predictor in their model, but they find no significant improve-
ment. Charalambous et al. (2020) use the probability of
bankruptcy obtained from the structural-parametric model of
Leland-Toft (1996) as additional input to the Campbell et al.
(2008) model and they find that the hybrid model outperforms
the Campbell et al. (2008) model.

In all, these papers use a set of variables as inputs in
the bankruptcy prediction model and the output is directly
the probability of bankruptcy (in this context, the structural
model equation is not directly used during the estimation).
Our work, on the other hand, includes an intermediary step
to obtain structural parameters (asset value and volatility) and
then obtaining the probability of bankruptcy using the struc-
tural model. By adding this intermediary step, we exploit the
joint dynamics of the neural network and the structural-option
model, which are useful during the training phase because the
neural network and the structural model work in conjunction
by providing information forward and backward, respectively,

during the learning phase (as shown in Figures 2–5). This is
not possible with the hybrid methods used in Campbell et al.
(2008) and Charalambous et al. (2020).

We compare† the discriminatory power of our neuro-
structural model and the hybrid model in Charalambous et al.
(2020) and find that the AUROC of the neuro-structural
model, as shown previously in Table 4, is 0.9387 whereas
for the hybrid model is 0.9291, indicating that our approach
yields higher discriminatory power than the hybrid approach
used by other studies.

7. Summary and conclusions

In this paper, we introduce an estimation method to obtain
parameter values such as the asset value and volatility, which
are used in the structural-parametric models for the estima-
tion of the probability of bankruptcy. Specifically, we view the
unobservable parameters of parametric models as unknown
functions of some exogenous variables in the vector x, which
we estimate through learning, by embedding in the parametric
models a neural network, yielding a neuro-structural model
for bankruptcy prediction. Our method provides significant
advantages over traditional estimation methods which are
well-supported by our empirical results. Specifically, embed-
ding neural networks in the parametric models, allows both to
work in conjunction which is useful during the training phase
of the neural network.

Our empirical results suggest that our estimation method
provides more accurate parameters estimation relative to other
estimation approaches, as shown by the superior performance
of the neuro-structural model in terms of discriminatory
power, information content and economic impact. Of course,
we should acknowledge the fact that some of the models we
compare, such as BS (2008), tailor their model for defaults
rather than bankruptcies and may be responsible for some
of the observed superiorities of our approach. Moreover,
the neuro-structural model outperforms the standalone neural
network, suggesting that the co-joint dynamics of the neu-
ral network and the structural model are useful during the
learning phase.

† Extensive results are not tabulated but can be provided upon
request.
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Our work has implications in the empirical application
of bankruptcy prediction as it provides a more sophisti-
cated†, yet more accurate method to compute the unob-
servable parameters of the structural-parametric models that
improves their out of sample performance. Moreover, our
findings have implications in the training of neural networks
as their (bankruptcy) prediction performance improves when
involving a theoretical model (i.e. the structural model) dur-
ing the estimation of the weights of the neural network. As
neural networks are frequently characterized as ‘black boxes’,
our neuro-structural framework involves both the neural net-
work and the structural (theoretical options pricing model)
during the training phase thus adjusting the weights of the
neural network by embedding knowledge from the structural
model. In addition, our work can be considered as a neuro-
extension of the methodology in Campbell et al. (2008).
There, the input vector x is used to directly obtain the prob-
ability of bankruptcy. Our work uses the same input vector x
but includes an intermediary step to obtain option parameters,
such as asset value and volatility, through the neural network
model. Once the parameters are obtained, they are used as
inputs to the parametric model to estimate the probability of
bankruptcy.

Future extensions could focus on extended parametric mod-
els for bankruptcy prediction such as, Leland (1994) or Leland
and Toft (1996).
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