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ABSTRACT: In order for a PV system to offer ancillary services to the grid, it should be capable of maintaining active 

power reserves and controlling its output power. In this paper, such a power regulation technique is proposed, which is 

based on an improved algorithm to estimate the maximum available power when operating suboptimally. The method 

introduced employs the fundamental equation of the single-diode PV model and applies linear least squares curve fitting 

to provide the model parameters in an analytical and computationally efficient way. The effectiveness of the control 

strategy is validated through simulations in MATLAB/Simulink, recording the system’s response in 

irradiance/temperature variations and reserve command step changes, in both noiseless and noisy environment. Results 

show excellent dynamic response and increased accuracy and reliability compared to previous approaches. 

Keywords: Active power control, Curve fitting, Linear least squares, Maximum power, Photovoltaic system, Power 

reserves, Single diode model. 

 

 

1 INTRODUCTION 

 

To allow large-scale penetration of photovoltaic (PV) 

and other intermittent renewable energy sources (RES), 

network codes demand that the plants provide ancillary 

services to the grid. These services usually include 

contribution to frequency regulation, low voltage ride 

through (LVRT) capability, or even power curtailments 

e.g. in small isolated electric networks due to penetration 

limitations. In order for a PV system to offer such services, 

it should be capable of controlling its output power and 

maintaining active power reserves in response to 

commands issued by the grid operator. 

In order for a PV plant to offer power regulation 

capability, either energy storage has to be installed or a 

control technique has to be employed, enabling operation 

at a suboptimal operating point, rather than at the 

maximum power point (MPP). The former approach 

entails increased cost and system complexity [1], thus 

several studies propose output power curtailment to 

maintain power reserves and provide frequency regulation 

[2]–[5], albeit they do not address PV power control at a 

given setpoint, in order to maintain specific power 

reserves.   

For this purpose, the maximum available power of the 

PV system needs to be continuously known, even when the 

PV system operates far from the MPP. Some model-based 

MPP tracking methods found in the literature estimate the 

MPP using past measurements of a few operating points 

[6]–[8], while others employ a curve fitting procedure to 

cope with noise in measurements [9]–[11]. However, the 

above studies rely on iterative determination of the MPP, 

which is not practical for implementation in a 

microcontroller, except for [6] that uses a quadratic model, 

however based on only three measurements, and [10] 

which needs a priori adaptation of the model parameters 

to the study-case system. 

 Previous work presented in [12] uses only 2 operating 

points to estimate the MPP in a hybrid linear-quadratic 

way, leading to noise susceptibility and estimation errors. 

This problem is circumvented in [13], by employing a 

curve fitting technique based on a quadratic model, 

however accuracy of the maximum power estimation still 

remains moderate.  

This is resolved in this paper, employing the 

fundamental equation of the single-diode model in the 

curve fitting procedure for increased accuracy, while the 

linear least squares (LSQ) optimization is still applied. 

Therefore, the simplicity and explicit form of the equations 

involved are retained, leading to a robust and 

computationally efficient method, suitable for 

implementation in a microcontroller. This paper is 

practically an improvement of the work presented in  [13], 

while the effectiveness of the proposed method is tested 

through simulations in MATLAB/Simulink assuming 

noise in measurements and simultaneous irradiance and 

temperature variation. 

In Section 2 of this paper, the topology of the proposed 

control scheme is presented, while the MPP estimation 

algorithm employed is described in detail in Section 3. 

Simulation results are discussed in Section 4, followed by 

conclusions in Section 5. 

 

2 POWER CONTROL SCHEME 

 

The proposed topology and control scheme is 

illustrated in Figure 1. The photovoltaic energy is 

transferred through a boost converter to the inverter, which 

in turn feeds in the electric grid, implementing a P-Q 

control and ancillary services policy. This way, the DC 

link voltage is kept constant and the converter receives a 

reserve command r that corresponds to the desired power 

reserves, expressed as a fraction of the maximum available 

PV power. Regulation of the PV output is made by 

adjusting the duty cycle D of the PWM regulator of the 

DC/DC converter. 

The duty cycle is adjusted by a PI controller that 

regulates the output power Ppv to its reference value Pref, 

determined according to the power reserve command and 

the maximum available power Pmp. It is worth noting that 

the monotonicity of the power with respect to the duty 

cycle differs on the two sides of the P-V curve (right and 

left of the MPP), hence the sign of the voltage error is used 

in Figure 1, to enable operation of the controller over the 

entire voltage range. 

The controller described above requires knowledge of 

the MPP power and voltage, obtained through the MPP 

estimator block, which employs linear LSQ curve fitting 

on a set of recent past measurements (Vm, Im) to determine 

model parameters and then the MPP attributes. Details of 

this algorithm are discussed in Section 3. 

The control scheme will inevitably experience noise in 
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measurements, due to electromagnetic interference (EMI) 

from the power circuit, modeled as additive white 

Gaussian noise (AWGN) superposed on voltage and 

current measurements in Figure 1. The PV voltage Vpv and 

power Ppv utilized in the controller are obtained by 

averaging over the control period, effectively eliminating 

noise and switching ripple. It is worth noting that the curve 

fitting algorithm involved in the MPP estimator is 

inherently robust in presence of such fluctuations with a 

zero mean value. 

 

3 MPP ESTIMATOR 

 

The control strategy presented requires knowledge of 

the MPP voltage and power, even when operating at a 

suboptimal point, possibly far from the MPP. For this 

purpose, the fundamental equation of the single-diode PV 

model is used and a curve fitting algorithm is applied to 

previous measurements to approximate the model 

parameters, and therefore the MPP.  

If the shunt resistance is ignored, the equivalent circuit 

of the single-diode model shown in Figure 2 is obtained, 

where the I-V relation is given by (1): 

 

                       ( )sV IR a
ph sI I I e


   (1) 

 

This equation is fitted to a certain number of past 

measurements, included in a measurement window, in 

order to determine the four model parameters Iph, Is, a and 

Rs. Thereafter, the MPP voltage, current and power are 

calculated by the simple explicit expressions proposed in 

[14]: 

 

 

 
 

Figure 2: Electrical equivalent circuit of the single-diode 

model neglecting the shunt resistance. There are four 

model parameters: Iph, Is, a and Rs. 
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where w=W{Iphe/Is} and W{x} corresponds to the Lambert 

W function. The latter is supported in MATLAB, but in 

this paper the series expansion proposed in [15] is adopted 

for more efficient computation. 

It is worth noting that neglecting the shunt resistance 

Rsh does not considerably affect the accuracy of the model, 

due to operation at the right-hand side of the P-V curve, 

where the effect of Rsh is quite limited. 

To facilitate understanding, an indicative scenario is 

illustrated in Figure 3. Given a measurement window of n 

past measurements (Vi, Pi) (green dots) around the current 

operating point, the least squares method minimizes the 

sum of squared ordinal deviations between estimated and 

measured values, by zeroing the partial derivatives with 

respect to each parameter [16]. This way the model 

parameters are determined, the P-V curve may be 

extrapolated (red line) and the MPP is calculated using (2)

-(4) (red circle marker). 

In order to apply linear LSQ curve fitting and derive 

simple analytical expressions for the model parameters, as 

in [13], the four parameters must be linearly independent. 

However, this is not the case for the fundamental equation 

of the model, due to its exponential term. To overcome this 

 

 
 

Figure 3: Indicative scenario of MPP estimation 

maintaining a power reserve of 30%. Given a set of past 

measurements (green dots), the model parameters are 

calculated through linear LSQ curve fitting and the MPP 

is then estimated (red circle). 

 
Figure 1: Simplified power circuit and control scheme of the proposed technique. 
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issue, the four parameters are calculated in two stages: first 

a and Rs are extrapolated to actual temperature using 

extrapolation equations, and then Iph and Is are determined 

using linear LSQ minimization. 

 

3.1 Extrapolation of a and Rs to actual temperature 

 

Most studies in literature that adopt the single-diode 

PV model, consider proportional dependency of the 

modified diode ideality factor a on the temperature and no 

irradiance effect [17]. Furthermore, usually the series 

resistance is assumed almost constant and independent on 

the operating conditions. Thus, the actual values of a and 

Rs are calculated by: 

 

                   0 0
0

c
s s

T
a a R R

T
    (5) 

 

where a0 and Rs0 refer to the STC values of the two 

parameters, while Tc and T0 to the actual and nominal 

temperatures (in Kelvin degrees). 

Although a0 and Rs0 may be derived offline and 

provided as inputs to the algorithm, this probably leads to 

inaccuracies, since the actual characteristics of the PV 

array may differ from the modules datasheet values, while 

they are modified over the years due to ageing. To cope 

with this, a parameter identification procedure is assumed 

to take place periodically on an infrequent basis (e.g. once 

per month or year), to correctly determine all parameters 

of the model. This process involves scanning of the entire 

P-V characteristic, followed by application of 

conventional iterative non-linear LSQ curve fitting. The 

values of a and Rs thus calculated are extrapolated back to 

nominal temperature T0 and the updated reference 

parameters a0 and Rs0 are acquired. A temperature sensor 

required in this procedure is always included in the 

monitoring equipment of the PV system. 

 

3.2 Calculation of Iph and Is via linear LSQ curve fitting 

 

Given the known values of a and Rs from the previous 

stage, the linear LSQ theorem states that Iph and Is are 

given by [9]:  
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Multiplication of the matrices leads to the linear two 

equation system (7): 
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where the notation 
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 is used. If 

this linear system is symbolically solved, the following 

analytical expressions are derived for Iph and Is: 
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Consequently, the final two parameters are estimated 

through the simple equations (8) in a straightforward 

manner, without any need for iterative procedures. 

The calculation of sums Sxy needed in (8) is made 

recursively for reduced computational burden.  

Specifically, at each step k the value of the sum is updated 

with the latest measurement, while the oldest measurement 

is removed from the window, leading to minimum 

computational cost: 
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4 SIMULATION RESULTS 

 

A series of simulations are performed in 

MATLAB/Simulink to validate the effectiveness and 

robustness of the control strategy introduced in this paper. 

The block diagram shown in Figure 1 is built in Simulink, 

having a boost converter connected to a 2.8 kW PV string 

(input) and an ideal voltage source at the output, modeling 

the constant DC link voltage. The characteristics of the PV 

system are given in Table I. 

The system is simulated in simultaneous 

irradiance/temperature variations and reserve command 

changes, while two different scenarios are considered: the 

noiseless case and a low measurement noise case (80 

SNR). All simulations are performed using three different 

window lengths: 10, 100 and 2000 samples. 

 

4.1 Noiseless scenario 

 

The results from the noiseless case are depicted in 

Figure 4. Trapezoidal irradiance and temperature 

variations are considered in Figure 4(a), with a high rate of 

change (40 W/(m2s) and 0.1 °C/s respectively). The 

reserve command changes are shown in Figure 4(b), 

varying in the range of 0% to 40%. It is worth noting that 

the simulation scenario of reserve command and 

environmental condition changes is a fictitious scenario, 

only selected as a most severe test of the proposed control 

algorithm.  

 

Table I: Characteristics of the simulated PV system  

Parameter Value 

Nominal PV power 2.8 kW 

Input capacitance Cpv 470 μF 

Inductance Ldc 2 mH 

DC link voltage 700 V 

Switching frequency 10 kHz 

Control frequency 83.333 Hz 

Sampling frequency 25 kHz 

Window length 10, 100, 2000 samples 

Noise power ∞ or 80 SNR 
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 (a) (b) 

 
 (c) (d) 

 
 (e) (f) 

Figure 4: Simulation results of system response in noiseless environment, using three different window lengths. (a) 

Simultaneous irradiance and temperature variations, (b) reserve command step changes, (c) estimated and actual values of 

model parameters Iph and Is, (d) estimated and actual maximum available power, (e) actual and requested output power, and 

(f) duty cycle. 

 

 
 (a) (b) 

 
 (c) (d) 

 
 (e) (f) 

Figure 5: Simulation results of system response in noisy environment (SNR 80), using three different window lengths. (a) 

Simultaneous irradiance and temperature variations, (b) reserve command step changes, (c) estimated and actual values of 

model parameters Iph and Is, (d) estimated and actual maximum available power, (e) actual and requested output power, and 

(f) duty cycle. 
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The estimated values of model parameters Iph and Is 

are depicted in Figure 4(c) for window lengths of 10 (blue 

line), 100 (green line) and 2000 (orange line) samples and 

contrasted with their actual values (red dashed lines). 

Estimates derived with the small (10 samples) and medium 

(100 samples) window lengths coincide and deviate only 

slightly from the actual values. The small offset observed 

is attributed to the model employed (four parameter, rather 

than the more accurate five parameter one), which 

necessitates a minor adjustment of the parameters to 

achieve best fit to the measurements. Nevertheless, the 

estimated maximum available power proves perfectly 

accurate over the entire range of the simulation (Figure 

4(d)). This is an important observation, which verifies the 

appropriateness of the model adopted, as well as its 

independence on the power reserves levels, in contrast to 

previous works [12]-[13] where the reserve command 

value affected the accuracy of the estimations.  

Using a large window (2000 sample – orange line), on 

the other hand, leads to erroneous estimates in certain time 

periods. In particular, at intervals 4-5 s, 6-7 s, and 10-13 s, 

the estimation presents ripple. A marked fluctuation 

becomes evident between 7-9 s (Figure 4(c)), when the 

environmental conditions (mainly the irradiance) change 

rapidly and the system operates at a suboptimal point 

maintaining power reserves. This ripple is transferred to 

the maximum power estimation, as well (Figure 4(d)). 

When the window length is too large, measurements 

recorded may correspond to several instances of a 

changing P-V curve, thus leading to erroneously mixed 

samples and inaccurate curve fits. It is worth noting that 

the undesired fluctuation appears from 4 s to 13 s, when 

operation far from the MPP takes place (Figure 4(b)), but 

not in the time intervals 5-6 s and 9-10 s, when the 

irradiance and temperature remain constant (Figure 4(a)). 

Further, the intensity of the fluctuation is significantly 

affected by the level of power reserves maintained. This is 

why the ripple is imperceptible at the time interval 10-13 

s, when the reserve command in only 10%, slightly higher 

at 4-5 s and 6-7 s, when 20% power reserves are required, 

and even higher during the 7-9 s interval, when the reserve 

command is the highest. Hence, the curve fitting 

performance deteriorates when the window length is very 

large, the operating conditions change rapidly and the 

operating point is far from the MPP. Similar results 

regarding the effect of the window length are derived in 

[13]. 

The above observations apply to Figure 4(e) as well, 

where the output power of the PV generator for the three 

window lengths is compared to the ideal performance. All 

waveforms are smooth and stable, verifying the 

effectiveness of the proposed control scheme, with the 

exception of the large window length in the 7-9 s interval, 

for the reasons already discussed. Similar conclusions are 

drawn from Figure 4(f), which shows the PWM duty cycle 

for the three window alternatives. 

 

4.2 Noisy scenario 

 

The effect of the noise is shown in Figure 5, for the 

same simulation scenario, assuming AWGN noise in all 

measurements. In Figure 5(c), where the model parameter 

estimation is depicted, the small window length now 

proves unacceptable, as the very few noisy measurements 

(only 10 samples) are insufficient to accurately model the 

P-V curve. The fluctuation in the parameter estimates 

becomes very high at 4 s and thereafter, leading to control 

instability. 

On the other hand, the medium window length proves 

quite satisfactory, presenting accurate model parameter 

(Figure 5(c)) and maximum power (Figure 5(d)) 

estimations. A small ripple is evident at the most 

challenging time intervals, but the system response 

remains acceptable throughout the entire simulation 

period. 

This is further confirmed with the large window, 

which presents estimations with even lower high-

frequency ripple due to noise (Figure 5(c)-(d)). However, 

this case suffers during rapid environmental condition 

variations that cause low-frequency fluctuations as already 

discussed. It is worth noting that the waveforms of both 

the model parameters and the maximum power estimates 

almost coincide between the noiseless and noisy cases, 

which signifies that, using this window length (2000 

samples), the noise has effectively been removed from the 

measurements. Therefore, the length of the window is an 

important parameter that should be properly optimized to 

sufficiently limit the effect of noise and simultaneously 

permit adaptation to rapid irradiance changes. The same 

conclusion is reached in [13]. 

Similar results are extracted from Figure 5(e) and 

Figure 5(f). The small window leads to control instability 

shortly before the 8th s, while the medium and large 

windows lead to quite sufficient performance (except for 

the 7-9 s interval for the 2000 samples case). 

 

5 CONCLUSION 

 

In this paper, an improved power regulation technique 

is introduced for a PV system in order to maintain active 

power reserves. A key point of such a control strategy is 

the estimation of the maximum available power, when 

operating far from the MPP. In this study, this is made by 

employing the fundamental equation of the single-diode 

PV model and applying linear LSQ curve fitting in 

measurements. The estimation algorithm presents good 

accuracy and the equations involved are simple and 

analytical, unlike other implementations which adopt 

simplified models at the cost of reduced accuracy or 

employ iterative and computationally inefficient 

algorithms.  

The proposed control strategy is validated through 

simulations in MATLAB/Simulink assuming reserve 

command changes, under rapid irradiance and temperature 

variations. The investigation has shown that the control 

scheme presents inherent robustness against noise, due to 

the curve fitting involved, as well as satisfactory tracking 

performance during rapidly changing environmental 

conditions. A critical parameter for proper functioning of 

the controller is the measurement window length, which 

should be optimized between noise immunity and 

adaptation to irradiance variations. 
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