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From the generalized fluctuation-dissipation theorem, it is known that a body at rest made of
nonreciprocal material may experience a torque, even in vacuum, if it is not in thermal equilibrium
with its environment. However, it does not experience self-propulsion in such circumstances, except
in higher order. Nevertheless, such a body may experience both a normal torque and a lateral
force when adjacent to an ordinary surface with transverse translational symmetry. We explore how
these phenomena arise, discuss what terminal velocities might be achieved, and point out some of
the limitations of applying our results to observations, including the Lorenz-Lorentz correction, and
the cooling due to radiation. In spite of these limitations, the effects discussed would seem to be
observable.

I. INTRODUCTION

There is a long history of theoretical predictions of quantum or Casimir friction, where a particle or extended body
that moves parallel to a surface experiences a force opposing its motion. The subject seems to have originated with
Teodorovich [1] and Levitov [2]. For a selected bibliography on this subject before 2016, see Ref. [3]. The friction is
typically conceived to arise because of dissipation in the surface. For a subset of papers on this subject, the reader
is referred to Refs. [4–9]. For a readable overview, see Ref. [10]. Quantum friction can also result if the body itself
is made of dissipative material. However, much earlier, it was recognized that, even in vacuum, a moving body
or an atom without dissipation will experience friction due to the surrounding radiation field—this is the famous
Einstein-Hopf effect [11].
In previous papers, we have considered quantum vacuum friction due to field and dipole fluctuations [12, 13]. For

low velocities, the condition that the atom or particle not gain or lose energy, the Nonequilibrium Steady State (NESS)
condition [14], implies equal temperatures of the body and the environment, while relativistic velocities typically imply
that the body be substantially hotter than the environment. (For other earlier work on nonequilibrium friction, see
Refs. [15–17] for example.) The forces we considered there are true frictions, in that they always oppose the motion,
and they vanish at zero velocity and at zero temperature.
Here, we consider forces and torques that arise in the vacuum, or near other bodies, when the relative velocity is

zero. This requires not only that the system be out of thermal equilibrium, so that the temperature of the body is
different from that of its environment, but also that the electrical properties that characterize the material constituting
the bodies be exotic, “nonreciprocal,” at least in lowest order. Nonreciprocity seems not to be possible for an isolated
body; the typical way it can be achieved is through the introduction of an external magnetic field, or some other
appropriate external influence. Thus, it is something of an oxymoron to discuss nonreciprocal “vacuum” torque or
friction.
Of course, there is much earlier work on such nonequilibrium phenomena, involving heat transfer, torque, and

nonreciprocal surface forces [18–22]. (Further references will be provided as our discussion continues.) We also note
that similar behavior arises in quantum thermal rotators, where a quantum torque is generated when the system is
out of thermal equilibrium and exhibits broken spatial symmetry. See, for example, Ref. [23].
The outline of this paper is as follows. In Sec. II we discuss how the fluctuation-dissipation theorem is modified

for a nonreciprocal susceptibility. We then display, in Sec. III, a simple model of such a nonreciprocal material as a
simplification of that given in Ref. [24]. The corresponding quantum vacuum torque, first found in Refs. [25, 26], is
derived in Sec. IV. In Sec. V we rederive the modified torque if the body is slowly rotating, which was first worked
out in Ref. [24]. If the body is hotter or not too much colder than the environment, the ordinary quantum frictional
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torque acts as a drag, and the body acquires a terminal angular velocity which should be readily observable, provided
this temperature difference can be maintained. In Sec. VI, the effect on the torque of an underlying plate, be it a
dielectric slab or a perfect conductor, is investigated. Then we turn to the force, which can, of course, be inferred
from the torque. The quantum vacuum force is shown to vanish, in the weak-susceptibility approximation that we use
[Sec. VII], while, if an underlying surface is present, there is a component of the force parallel to the surface, as shown
in examples of an imperfectly and a perfectly conducting plate [Sec. VIII]. Again, if the nonequilibrium temperature
difference could be maintained, a substantial terminal velocity could be achieved. In Sec. IX we calculate the time it
would take for a body at rest to reach thermal equilibrium with the environment, unless some mechanism were supplied
to keep it hotter or colder than the background. Possible suppression effects due to the Lorenz-Lorentz (Clausius-
Mossotti) correction are discussed in Sec. X, although the resulting torques and forces should still be experimentally
measurable. Conclusions round out the paper.
In this paper we concentrate on first-order effects in the susceptibility. Second-order effects, particularly important

for quantum vacuum forces, will be the subject of a forthcoming paper.
Throughout, we use Heaviside-Lorentz (HL) electromagnetic units. We also set ~ = c = 1, except when numerical

values are given. It should be noted that many authors (including some of us) often use Gaussian (G) units, for which
the polarizability differs by a factor of 4π.

II. GENERALIZED FLUCTUATION-DISSIPATION THEOREM

Let x(t) be some dynamical variable (such as an electric dipole moment). In terms of its frequency Fourier transform,
the fluctuation-dissipation theorem (FDT) tells us the expectation value of the symmetrized quadratic product of the
frequency-transformed variables:

〈Sx(ω)x(ν)〉 = 2πδ(ω + ν)ℑχ(ω) coth βω
2
, (2.1)

where β = 1/T is the inverse temperature of the system, and χ is the generalized susceptibility. The latter is defined
as the linear response function relating the dynamical variable to a driving force f :

x(t) =

∫

dt′ χ(t− t′) · f(t′). (2.2a)

Thus, for the relevant example of the electric dipole moment driven by an electric field, through the polarizability:

d(t) =

∫

dt′α(t− t′) ·E(t′). (2.2b)

We assume causality, so χ(t− t′) is nonzero only for t− t′ > 0. Alternatively, the fluctuating quantity might be the
electric field, driven by the electric polarization, and the susceptibility would be the retarded electric Green’s function.
Typically, we regard the susceptibility tensor as diagonal, or at least symmetric. More generally, the “imaginary

part” that occurs in the FDT is the anti-Hermitian part,

ℑχ =
1

2i
(χ− χ†), (2.3)

that is,

(ℑχ)ij(ω) =
1

2i
[χij(ω)− χ∗

ji(ω)] =
1

2i
[χij(ω)− χji(−ω)], (2.4)

which uses the fact that χij(ω) is the Fourier transform of a real response function. Unusual properties emerge from
this if χ is not symmetric: This means that ℑχ has both real and imaginary parts in the conventional sense. The
real part is

Re(ℑχ)ij(ω) =
1

2
[Imχij(ω) + Imχji(ω)], (2.5a)

which is symmetric in the indices but odd in ω. These are the components that give rise to the quantum friction force
and torque. The imaginary part of ℑχ is

Im(ℑχ)ij(ω) = −1

2
[Reχij(ω)− Reχji(ω)], (2.5b)
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which is antisymmetric in the indices but even in ω. This property, as we shall see, leads to unusual phenomena
for nonreciprocal bodies, spontaneous quantum torque and quantum propulsion. The term “nonreciprocal” seems to
have a variety of meanings in the literature; in this paper we will take it to mean that Eq. (2.5b) is nonzero.

For an ordinary material, χij(ω) is symmetric in the indices, which means that the anti-Hermitian part coincides
with the usual imaginary part:

χij(ω) = χji(ω) ⇒ (ℑχ)ij(ω) = Imχij(ω). (2.6)

Where a susceptibility depends on continuous coordinates as well, such as the Green’s dyadic that describes the
electric field, reciprocity means invariance under interchange of discrete indices and continuous coordinates:

Γij(r, r
′;ω) = Γji(r

′, r;ω) ⇒ (ℑΓ)ij(r, r′;ω) = ImΓij(r, r
′;ω). (2.7)

It is easy to check that this is satisfied by the Green’s dyadic for a dielectric half-space, for example, which has
off-diagonal elements, symmetric in the tensor indices. When the latter is expressed as a two-dimensional Fourier
transform, as is convenient when the environment consists of a dielectric slab perpendicular to the z axis,

Γij(r, r
′;ω) =

∫

(dk⊥)

(2π)2
eik⊥·(r−r

′)
⊥gij(z, z

′;k⊥, ω), (2.8)

the FDT is expressed in terms of

(ℑg)ij(z, z′;k⊥, ω) =
1

2i
[gij(z, z

′;k⊥, ω)− gji(z
′, z;−k⊥,−ω)] . (2.9)

III. MODEL FOR NONRECIPROCAL MATERIAL

In order to create a nonreciprocal response, one needs an external influence. Such is supplied by a magnetic field.
Let us suppose a oscillator with damping η is driven by both an electric and a constant magnetic field:

m
d2r

dt2
+mη

dr

dt
+mω2

0r = e

(

E+
dr

dt
×B

)

, (3.1a)

or, equivalently in the frequency domain,

(−ω2 − iωη + ω2
0)r(ω) =

e

m
[E(ω)− iωr(ω)×B]. (3.1b)

We can solve this equation for the components of r in terms of the electric field, and recognize that B can be
incorporated into the cyclotron frequency ωc = e

mB. We express the result in terms of the electric susceptibility,
defined by P(ω) = ner(ω) = χ(ω) · E(ω), n being the number density of charges. If the magnetic field lies in the z
direction, this immediately yields an electric susceptibility that is nonsymmetric and nonreciprocal:

χ = ω2
p
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, (3.2)

in terms of the plasma frequency ω2
p = ne2/m. For a metal, we would set the restoring force to zero, so ω0 = 0,

and we exactly recover the form given by Guo and Fan [24]. In particular, this provides us with a model for the
anti-Hermitian part of the susceptibility,

χxy = −χyx = −i
ω2
pωc/ω

(ω + iη)2 − ω2
c

. (3.3)

Numerically, for the charge and mass of the electron,

ωc =
eB

m
= m

B

Bc
, Bc =

m2

e
= 4.41× 109 T, (3.4)

so for a magnetic field of strength 1T, ωc ∼ 10−4 eV, far smaller than the damping parameter for gold, for example,
η ≈ 3.5× 10−2 eV. Thus, to a good approximation, we can use for a metal,

χxy − χyx ≈ −2i
ωcω

2
p

ω

1

(ω + iη)2
. (3.5)
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IV. QUANTUM VACUUM TORQUE

The vacuum torque on a stationary body was discussed in general terms in Ref. [25], and subsequently in Ref. [26].
Somewhat earlier, Ref. [20] showed that a topologically insulating film in a magnetic field, out of thermal equilibrium,
experiences a torque, which seems to be an instance of this same phenomenon. A torque on a body at rest requires
that it be composed of nonreciprocal material, which is characterized by having a real part of the susceptibility which
is nonsymmetric, and that the temperature of the body, T ′, be different from that of the environment, T .

The torque on an arbitrary body, described by electric susceptibility, χ(r;ω), is, in terms of the polarization, P,

τ (t) =

∫

(dr) r× [ρeff(r, t)E(r, t) + jeff(r, t)×B(r, t)]

=

∫

(dr) r×
[

−∇ ·P(r, t)E(r, t) +
∂P(r, t)

∂t
×B(r, t)

]

. (4.1)

Writing this in terms of Fourier transforms, and eliminating B in favor of E, we have

τ =

∫

(dr) r×
∫

dω

2π

dν

2π
e−i(ω+ν)t

{

−∇ ·P(r;ω)E(r; ν)− ω

ν
P(r;ω)× [∇×E(r; ν)]

}

=

∫

(dr)
dω

2π

dν

2π
e−i(ω+ν)tr×

[

ω

ν
{∇ · [P(r;ω)E(r; ν)]−P(r;ω) · (∇) ·E(r; ν)} −

(

1 +
ω

ν

)

[∇ ·P(r;ω)]E(r; ν)

]

.

(4.2a)

In terms of components, the latter means

τi =

∫

(dr)
dω

2π

dν

2π
e−i(ω+ν)tǫijkxj

[ω

ν
{∇l[Pl(r;ω)Ek(r; ν)]− Pl(r;ω)∇kEl(r; ν)} −

(

1 +
ω

ν

)

Ek(r; ν)∇lPl(r;ω)
]

.

(4.2b)
Here, the source of the electric field is the electric polarization,

E(r; ν) =

∫

(dr′)Γ(r, r′; ν) ·P(r′; ν), (4.3a)

where Γ is the retarded electromagnetic Green’s dyadic, while the polarization is linearly related to the electric field,

P(r;ω) =

∫

(dr′) δ(r− r′)χ(r;ω) ·E(r′;ω) = χ(r;ω) ·E(r;ω), (4.3b)

where we assume that the electric susceptibility is local in space. This means that there are two origins for the
quantum torque: field fluctuations and dipole fluctuations. We evaluate the two contributions to the torque by use
of the FDT:

〈SEi(r;ω)Ej(r
′; ν)〉 = 2πδ(ω + ν)(ℑΓ)ij(r, r′;ω) coth

βω

2
, β =

1

T
, (4.4a)

〈SPi(r;ω)Pj(r
′; ν)〉 = 2πδ(ω + ν)δ(r− r′)(ℑχ)ij(r;ω) coth

β′ω

2
, β′ =

1

T ′
, (4.4b)

where S indicates that the symmetrized expectation values are used. Therefore, the last term in Eq. (4.2) vanishes,
because the sum of the two frequencies is zero, leaving us with1

τ =

∫

(dr)
dω

2π

dν

2π
e−i(ω+ν)t [P(r;ω)×E(r; ν) +P(r;ω) · (r×∇) ·E(r; ν)] . (4.5)

Here, the notation in the last term signifies that the free vector index is on the angular momentum operator; the P,E
are dotted together.
Using Eqs. (4.3b) and (4.4a), we find for the EE contribution to the torque

τEE
i =

∫

(dr)
dω

2π
coth

βω

2
ǫijk

[

χjl(r;ω)(ℑΓ)lk(r, r;ω) + χlm(r;ω)xj∇′
k(ℑΓ)ml(r, r

′;ω)

∣

∣

∣

∣

r−r′≡R→0

]

. (4.6)

1This is made up of the “internal” and “external” torques, as given in Ref. [27], Eqs. (4.47) and (4.46).
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Here, Γ is taken to be the usual vacuum retarded Green’s dyadic, Γ0, the divergenceless part of which can be written
as2

Γ0′(r, r′;ω) = (∇∇− 1∇2)
eiωR

4πR
=

[

R̂R̂(3− 3iωR− ω2R2)− 1(1− iωR− ω2R2)
] eiωR

4πR3
, (4.7)

where R = |r− r′| and R̂ = R/R. It is evident that the second term in Eq. (4.6) vanishes here because Im eiωR/R is
an even function of R. When (4.7) is rotationally averaged in the coincidence limit (R → 0), we obtain

Γ0′(r, r′;ω) → 1

(

ω2

6πR
+ i

ω3

6π
+O(R)

)

. (4.8)

Therefore, we are left with only a single term for the torque:

τEE
i =

∫

dω

2π
coth

βω

2
ǫijk Reαjk(ω)

ω3

6π
, (4.9)

where the mean polarizability3 of the body4 is given by

αjk(ω) =

∫

(dr)χjk(r;ω), (4.10)

the real part of which is picked out by the necessity of the integrand being even in ω. Thus, nonreciprocity is necessary
for a vacuum torque in first order.
For the PP fluctuation part, Eq. (4.5) is written as

τPP =

∫

(dr)(dr′)
dω

2π

dν

2π
e−i(ω+ν)t

[

P(r;ω)× Γ(r, r′; ν) ·P(r
′
; ν) +P(r;ω) · (r×∇) · Γ(r, r′; ν) ·P(r′; ν)

]

, (4.11)

to which the FDT (4.4b) is to be applied. Again, for vacuum, the coincidence limit of the second term is zero, and
because of the diagonal form of the limit of the Green’s dyadic, only the antisymmetric part of the susceptibility
survives upon use of Eq. (4.4b). That is, the ith component of the quantity in square brackets in Eq. (4.11) becomes

δ(r− r′)2πδ(ω + ν)ǫijk(ℑχ)jk(r;ω)
(

−iω
3

6π

)

coth
β′ω

2
. (4.12)

Here we have recognized that the antisymmetric part of ℑχ is even in ω, according to Eq. (2.5b), and therefore only
the odd part of the vacuum Green’s dyadic survives. The resulting torque is thus of the same form as for the EE
contribution, except for the sign, and the replacement β → β′.

The combination of the two contributions thus yields the torque on a nonreciprocal body in vacuum, when the
temperature of the body, T ′, differs from that of the blackbody radiation, T , due to PP and EE fluctuations:

τi =

∫ ∞

−∞

dω

2π

ω3

6π
ǫijk Reαjk(ω)

[

coth
βω

2
− coth

β′ω

2

]

. (4.13)

This result exactly agrees with that of Guo and Fan [25], for zero rotational velocity, and with that of Strekha et
al. [26]. However, there is no quantum vacuum force in this static situation, at least in first order, which we will
demonstrate in Sec. VII. (Actually, this is already evident from the vanishing of the external torque contribution.)

Let us use the model in Eq. (3.5) to give an estimate of the size of the torque. Inserting this into Eq. (4.13) and
letting ω = ηx gives

τz =
ηωcω

2
pV

3π2

∫ ∞

−∞

dx
x3

(x2 + 1)2

(

coth
β′ηx

2
− coth

βηx

2

)

=
4ηωcω

2
pV

3π2
[I2(β

′η)− I2(βη)], (4.14)

where V is the volume of the body, and the integrals are defined by Eq. (A5) of Appendix A. As expected, this is
positive if T ′ > T . These integrals are readily evaluated in Eq. (A6):

τz =
ηωcω

2
pV

3π2

[

π

η
(T − T ′) + 2 ln

T

T ′
+ 2ψ

( η

2πT

)

− 2ψ
( η

2πT ′

)

+
η

2πT
ψ′

( η

2πT

)

− η

2πT ′
ψ′

( η

2πT ′

)

]

. (4.15)

In Fig. 1, we show the torque, together with the low- and high-temperature approximations that result from the
corresponding approximations for I2(β

′η), presented in Appendix A. For a gold (ωp = 9 eV, η = 0.035 eV) nanosphere
of radius 100 nm, with ωc = 10−4 eV, the prefactor in Eq. (4.15) is 8× 10−25 Nm.

2The omitted term is proportional to δ(r− r
′), which does not contribute in the point-split limit.

3The nonlinear effects occurring in the Lorenz-Lorentz law relate the polarizability to the permittivity; the polarizability is implied thereby
to be linear—see Ref. [28], and Sec. X.

4Note that there is no requirement that the body be spherical, so any rotation would be observable.
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FIG. 1. Apart from the prefactor, ηωcω
2
pV/(3π

2), the quantum vacuum torque in Eqs. (4.14) or (4.15) is shown as a function
of T ′/η by the solid line for T/η = 0.714, appropriate for an environment at room temperature, 300 K, and a gold body. The
dashed red line is the high-temperature approximation, which utilizes (A8b), while the dotted blue line is the low-temperature
approximation, which utilizes (A10b). In both approximations, the dependence on the environmental temperature, T , is treated
exactly.

V. TORQUE ON A ROTATING BODY

Of course, a torque on a body will cause it to rotate. So, what is the torque on a rotating body? Naturally, there
should be a vacuum torque on a rotating body made of ordinary (reciprocal) material, just as there is quantum vacuum
friction on a linearly moving body [12, 13]. The nonreciprocal aspect of this torque was first treated in Ref. [25].

We consider a body rotating about the z axis passing through its center of mass with angular velocity Ω. The formula
(4.5) should still apply, with the external torque (the second term there) still not contributing if the background is
vacuum. However, the polarization and electric fields should now refer to the body (rotating) frame, denoted by a
prime subsequently. For low velocities, these are related to those in the blackbody (unprimed) frame by a rotation:

E′
x(r

′, t) = Ex(r, t) cosΩt+ Ey(r, t) sinΩt, (5.1a)

E′
y(r

′, t) = Ey(r, t) cosΩt− Ex(r, t) sinΩt, (5.1b)

which means for the frequency transforms,

E′
x(r

′;ω) =
1

2
[Ex(r;ω+) + Ex(r;ω−)] +

1

2i
[Ey(r;ω+)− Ey(r;ω−)] , (5.2a)

E′
y(r

′;ω) =
1

2
[Ey(r;ω+) + Ey(r;ω−)]−

1

2i
[Ex(r;ω+)− Ex(r;ω−)] , (5.2b)

where ω± = ω ± Ω. P transforms in the same way.
The strategy followed to calculate the quantum rotational friction is the same as that used for quantum rectilinear

friction [13]. There are two contributions: field fluctuations and dipole fluctuations. For the former we use Eq. (4.3b)
to replace the polarization by the electric field, but now understood in the body frame. Then we have to transform
both electric fields to the blackbody frame. For vacuum friction we can use Eq. (4.8) for the Green’s dyadic that
appears when the FDT is employed for the fields. We also only keep half the terms: only those proportional to
δ(ω± + ν∓) do not average to zero in time. The result of a straightforward calculation is

τEE
z =

∫

dω

2π

ω3

6π
[Im(αxx + αyy)(ω−) + Re(αxy − αyx)(ω−)] coth

βω

2
, (5.3)

where we have also noticed that under ω → −ω, ω+ → −ω−.
The procedure for the PP fluctuations is similar, except now we replace E by P according to Eq. (4.3a). This holds

in the blackbody frame, so P must be transformed back to the body (rotating) frame. Simplifications occur as before
for the vacuum case, and we find after a bit of algebra

τPP
z = −

∫

dω

2π

ω3

6π
[Im(αxx + αyy)(ω−) + Re(αxy − αyx)(ω−)] coth

β′ω−

2
. (5.4)
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Thus, when the two contributions are added, we find for the torque on a (slowly) rotating body:

τz =
1

12π2

∫ ∞

−∞

dω ω3
+ [Im(αxx + αyy)(ω) + Re(αxy − αyx)(ω)]

(

coth
βω+

2
− coth

β′ω

2

)

. (5.5)

This is precisely the torque found in Ref. [25] (recall 4παG = αHL). This result for an isotropic (reciprocal) particle was
given in Ref. [29], which further considered the effect of a magnetic field.5 Note that if Ω = 0 the first term involving
the diagonal polarizabilities vanishes because the integrand is odd, and the second term reproduces Eq. (4.13).

It is illuminating to expand this expression to leading order in the rotational velocity Ω (this is the adiabatic
approximation):

τz =
1

12π2

∫ ∞

−∞

dω ω3

{

Re (αxy − αyx) (ω)

[

coth
βω

2
− coth

β′ω

2

]

− Ω
3

ω
Im (αxx + αyy) (ω)

[

coth
β′ω

2
− coth

βω

2

]

− Ω
β

2
Im (αxx + αyy) (ω) csch

2 βω

2

}

. (5.6)

The first term here is the (nonreciprocal) quantum vacuum torque (4.13), the second is the nonequilibrium contribution
to the ordinary (reciprocal) quantum vacuum frictional torque, and the third term is the analog of the Einstein-Hopf
quantum vacuum friction. The sum of the two frictional terms is a drag if T ′ > T . If T ′ < T , the angular velocity
changes sign, so initially the friction remains a drag, but for sufficiently low temperatures, T ′, the second term
in Eq. (5.6) will dominate, and exponential growth of the angular velocity will ensue, insofar as the low-velocity
approximation remains valid.
Note, that if the last two terms constitute a drag, the nonreciprocal torque found here will lead to the body rotating

with a constant terminal angular velocity. Writing Eq. (5.6) in the abbreviated form,6

τz = IΩ̇ = τ0 − Ωτ ′1, (5.7)

where I is the moment of inertia of the body, we immediately obtain

Ω(t) =
τ0
τ ′1

(

1− e−τ ′

1
t/I

)

, (5.8)

if the body is not rotating at time t = 0. The terminal velocity is ΩT = Ω(t→ ∞) = τ0/τ
′
1, which might be expected

to be small. (This, of course, assumes that the particle and environmental temperatures do not change. We will
address the tendency toward thermal equilibrium in Sec. IX.)
To proceed, let us again use the model (3.2), with ω0 = 0 and ωc ≪ η. Then we have

Im(αxx + αyy)(ω) =
2ω2

pη

ω(ω2 + η2)
V. (5.9)

The result is [see Eq. (A2)] (x = ω/η)

τ ′1 =
2ω2

pηV

3π2

(

3 + β
∂

∂β

)∫ ∞

0

dx
x

(x2 + 1)

[

1

eβ′ηx − 1
− 1

eβηx − 1

]

=
ω2
pηV

3π2

{

π

η
(2T − 3T ′) + 3 ln

T

T ′
− 1 + 3ψ

( η

2πT

)

− 3ψ
( η

2πT ′

)

+
η

2πT
ψ′

( η

2πT

)

}

. (5.10)

Let us write, from Eqs. (4.15) and (5.10),

τ0 =
ηωcω

2
pV

π2
f(T, T ′), τ ′1 =

ηω2
pV

π2
g(T, T ′). (5.11)

Then, the terminal angular velocity is

ΩT =
τ0
τ ′1

= ωc
f(T, T ′)

g(T, T ′)
∼ ωc ∼ 10−4eV ∼ 1011 s−1, (5.12)

5Earlier related works on forces and torques on bodies with various kinds of asymmetries include Refs. [19–21, 30].
6That is, τ0 = τz(Ω = 0) and τ ′

1
= −

dτz
dΩ

(Ω = 0).
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FIG. 2. The terminal angular velocity of the nonreciprocal body when it is hotter or colder, than its environment, which
is taken to be at room temperature. The limit of ΩT for high particle temperature is universally ωc/3, independent of the
background temperature. When the temperature is lower than that of the background, the frictional torque initially acts as a
drag, but for sufficiently low temperature, the “frictional” terms change sign, and the angular velocity increases exponentially
without bound.

perhaps surprisingly high, but very small compared to atomic frequencies. (The terminal circumferential speed in
this case is ΩTR ∼ 104 m/s, for a gold nanosphere of radius R = 100 nm.) The relaxation time required to reach this
velocity is

t0 =
I

τ ′1
∼ MR2

ω2
pηV

∼ 106 s, (5.13)

for the same parameters. The temperature dependence of the terminal angular velocity, ΩT , is shown in Fig. 2. Note
that if the temperature of the body is lower than that of the environment, the terminal angular velocity is negative.
Whether the body is hotter or not too much colder than the environment, it will reach a terminal velocity if the
temperature difference is maintained. If the temperature of the body is much colder than that of the environment (for
the example shown, about half room temperature), the frictional torques reverse sign, and no bound to the angular
velocity can be reached. A negative τ ′1 means exponential growth. Of course, before the angular velocity gets too
large, the nonrelativistic approximation used here breaks down, even if the temperature difference can be maintained
by some external or internal agent.
However, it is not necessary to wait a long time to reach the terminal velocity, because the initial angular acceler-

ation,

Ω̇(0) =
ΩT

t0
∼ 105 s−2, (5.14)

should be easily discernible.

VI. TORQUE IN PRESENCE OF A DIELECTRIC PLATE

What happens if the background is less trivial, say consisting of an isotropic dielectric plate filling the halfspace
z < 0, while the body lies a distance a above it? Then, of course, there will be a torque on a nonspherical body as
well as a force, due to ordinary Casimir forces, even when the body is made of ordinary reciprocal material. What
would be unusual is if there were a torque around the z axis, since the environment possesses rotational symmetry
about that direction. For simplicity, we will assume that the entire background, vacuum plus dielectric plate, is in
equilibrium at temperature T , while the nanoparticle has temperature T ′. In that case, the z-component of the torque
coming from field fluctuations is given by Eq. (4.6). Now both terms can contribute, but only for a nonreciprocal
body, which might be irregularly shaped. For such an body, where

χ̂ij(r;ω) = Re(χij − χji)(r;ω) (6.1)

is nonzero, the normal torque component can be computed from the explicit construction of the Green’s dyadic (for
example, as given in Ref. [12]). Using the Fourier representation (2.8), the integration over kx and ky will vanish
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except for the gxx and gyy terms, for the first term in Eq. (4.6), while gxz,zx and gyz,zy contribute for the second term,
yielding the scattering part of the torque:

τsz =

∫

(dr)
dω

2π

[

coth
βω

2
− coth

β′ω

2

]

1

4

∫

(dk⊥)

(2π)2

{

χ̂xy(r;ω) Im

[(

κrH +
ω2

κ
rE

)

e−2κz

]

+ [χ̂yz(r;ω)x− χ̂xz(r;ω)y]k
2 Im

[

rHe−2κz
]

}

, (6.2)

where κ =
√
k2 − ω2, and the transverse magnetic and electric reflection coefficients are

rH =
κ− κ′/ε(ω)

κ+ κ′/ε(ω)
, rE =

κ− κ′

κ+ κ′
, κ′ =

√

k2 − ω2ε(ω). (6.3)

Now the torque depends on the distribution of the anisotropic material across the body, so is not describable by
simply an effective nonreciprocal polarizability.
Note further that the last two terms in Eq. (6.2), proportional to x and y, respectively, depend on the position of

the body as well as the distribution of material within the body. If we write r = R+ r′, where R locates the center
of mass of the body, we can read off the force on the center of mass of the body from τz = XFy − Y Fx, so that

Fx =

∫

(dr)

∫ ∞

0

dω

2π

[

1

eβω − 1
− 1

eβ′ω − 1

]

χ̂xz(r;ω)

∫

(dk⊥)

(2π)2
k2 Im

[

rHe−2κz
]

. (6.4)

We will derive this result directly in Sec. VIII.

A. Torque for a nanoparticle above a perfectly conducting plate

A very simple example is provided by a perfectly conducting surface lying in the z = 0 plane. This means rH,E = ±1.
Consider only the case with χ̂xy 6= 0, that is, for our model, the magnetic field lying in the z direction. The imaginary
part comes only from the region where ω2 > k2, where

Imκ = − sgn(ω)
√

ω2 − k2, (6.5)

and then the integral in Eq. (6.2) over transverse wavenumbers is (provided the body is of negligible extent, a
nanoparticle, so z = a)

1

(2π)2

∫ |ω|

0

dk k

∫ 2π

0

dθ

[

−
√

ω2 − k2 − ω2

√
ω2 − k2

]

cos
[

2a
√

ω2 − k2
]

= −ω
3

2π

∫ 1

0

dy(y2 + 1) cos 2ωay

= − 1

π(2a)2
[u cosu+ (u2 − 1) sinu]. (6.6)

Here we have defined u = 2ωa. Then, we write the scattering part of the torque in the direction perpendicular to the
plate as

τsz =
2

π2
V ωcω

2
pη

∫ ∞

0

du
u cosu+ (u2 − 1) sinu

(u2 + (2ηa)2)2

[

1

eβu/(2a) − 1
− 1

eβ′u/(2a) − 1

]

. (6.7)

Close to the plate, 2ηa≪ 1, β/(2a) ≫ 1, β′/(2a) ≫ 1, where the integral is dominated by small values of u, for which
the numerator in the integrand approaches

u cosu+ (u2 − 1) sinu ∼ 2

3
u3, (6.8)

we obtain precisely the negative of the torque coming from the vacuum contribution (4.14). That the total normal
torque vanishes as the perfectly conducting plate is approached is expected, because the tangential electric field must
vanish there.
The total torque is then

τvacz + τ sz =
4

3π2
V ωcω

2
pη

∫ ∞

0

du
u3

(u2 + (2aη)2)2

[

1− 3

2

u cosu+ (u2 − 1) sinu

u3

] [

1

eβ′u/(2a) − 1
− 1

eβu/(2a) − 1

]

. (6.9)

This is plotted in Fig. 3.
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FIG. 3. The torque (apart from the prefactor in Eq. (6.9)) as a function of separation of the nanoparticle a from the perfectly
conducting plate in µm, for a damping parameter of η = 0.035 eV. The temperatures are taken to be T = 300 K and T ′ = 600
K. The torque vanishes, as expected, close to the plate, and approaches the vacuum value far from the plate. Most interesting
is the appearance of a very weak maximum at about 14.4 µm, just before the decrease to the vacuum torque value, as displayed
in the inset.

VII. QUANTUM VACUUM FORCE

Let us start by writing the force on a dielectric body on which an electric field is impressed, writing the fields in
terms of their frequency transforms:

F =

∫

(dr)

∫

dω

2π

dν

2π
e−i(ω+ν)t

{

− [∇ ·P(r;ω)]E(r; ν)− iωP(r;ω)×
[

1

iν
∇×E(r; ν)

]}

=

∫

(dr)

∫

dω

2π

dν

2π
e−i(ω+ν)t

{

− [∇ ·P(r;ω)]E(r; ν)
(

1 +
ω

ν

)

− ω

ν
P(r;ω) · (∇) ·E(r; ν)

}

, (7.1)

where in the second line we integrated spatially by parts. Unlike for the torque, the total divergence does not
contribute. Now we either expand P in terms of E, using Eq. (4.3b), or E in terms of P, using Eq. (4.3a), and then
use the fluctuation-dissipation theorem on the two parts. This yields rather immediately for the force on the body7

FEE
i + FPP

i =

∫

dω

2π
(dr)

[

χjl(r;ω)∇′
i(ℑΓ)lj(r, r′;ω)

∣

∣

r′=r
coth

βω

2
+ (ℑχ)jl(r;ω)∇iΓlj(r, r

′;−ω)
∣

∣

r′=r
coth

β′ω

2

]

.

(7.2)
However, for vacuum, Eq. (4.8) describes the vacuum Green’s dyadic, So, again in the coincidence limit, it is then
clear that the gradient of the Green’s dyadic vanishes, and thus there is no vacuum force. The conclusion appears to
be opposite to that of Refs. [30, 31], but evidently the self-propulsion found there arises as a second-order effect, with
which we will deal in a later paper. There, nonreciprocity is not required. The only necessary conditions are that the
system be out of thermal equilibrium, and that the body be extended and inhomogeneous.

VIII. TRANSVERSE FORCE ON A NONRECIPROCAL NANOPARTICLE INDUCED BY A

DIELECTRIC SURFACE

In contrast to the result found in the previous section, a nonreciprocal body does experience, in first order, a force
transverse to another ordinary body, even when both bodies are at rest, provided they are not in thermal equilibrium
with each other. This was observed in Ref. [31] and more recently in Refs. [21, 32].

This is still described by the formula (7.2), but requires the scattering part of the Green’s function. We will consider
the second, ordinary body to be a planar dielectric, with permittivity ε(ω), lying in the halfspace z < 0, while the

7This general formula can be derived immediately from the torque on the center of mass inferred from Eq. (4.6).
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nonreciprocal body lies at a distance z = a above the plane. It is convenient then to introduce a two-dimensional
Fourier transform in the transverse coordinates, x and y. Then the force in the x direction, say, is

Fx = −
∫

(dr)
dω

2π

(dk⊥)

(2π)2
ikx

[

χjk(r;ω)(ℑgs)kj(z, z;ω,k⊥) coth
βω

2
− (ℑχ)jk(r;ω)gskj(z, z;−ω,k⊥) coth

β′ω

2

]

. (8.1)

Here, the s superscripts on the reduced Green’s functions represent the scattering parts, since it is evident that the
bulk (vacuum) part does not contribute, as already demonstrated in the previous section. Now the integration over
kx and ky will vanish except for gxz and gzx.

8 Hence, unlike for the torque, only the TM Green’s function contributes.
Using the properties of ℑχ given in Sec. II, we immediately obtain

Fx = 2

∫ ∞

0

dω

2π

∫

(dk⊥)

(2π)2
(dr)χ̂xz(r;ω)k

2
x Im

(

rHe−2κz
)

[

1

eβω − 1
− 1

eβ′ω − 1

]

. (8.2)

This force is precisely that inferred from the torque in Eq. (6.4).
As with Casimir friction, this force will vanish unless dissipation occurs somewhere. This could be due to dissipation

in the dielectric slab, or to radiation. We will consider these in the following subsections.

A. Dissipation in a metallic slab

We will describe the metallic substrate by a Drude model,

ε(ω) = 1−
ω2
p

ω2 + iων
, (8.3)

where ωp is the plasma frequency, and ν the damping parameter. For simplicity, we will consider the regime

ν ≪ ω ≪ ωp, ω ≪ k, (8.4)

so that

Im ε(ω) ≈
ω2
pν

ω3
, (8.5)

and then, for low frequencies,

Im rH = Im
κ− κ′/ε

κ+ κ′/ε
≈ Im

ε− 1

ε+ 1
≈ 2ων

ω2
p

. (8.6)

Thus, in this approximation, where we crudely replace κ and κ′ by k, the force on a nanoparticle of negligible extent
is

Fx = −2
ν

ω2
p

∫

dω

2π

(dk⊥)

(2π)2
α̂xz(ω)ωk

2
xe

−2κa

(

1

eβω − 1
− 1

eβ′ω − 1

)

≈ − 12

(2π)2
1

(2a)4
ν

ω2
p

∫ ∞

0

dω α̂xz(ω)ω

(

1

eβω − 1
− 1

eβ′ω − 1

)

. (8.7)

Now for the nonreciprocal polarizability, let us use the model (3.5), where we now assume that the magnetic field
(confined to the particle) lies in the y direction. This leads directly to the following formula for the force, (x = ω/η)

Fx =
3V

4π2a4
ν

η
ωcf(βη, β

′η), f(βη, β′η) = −
∫ ∞

0

dx
x

(x2 + 1)2

[

1

eβηx − 1
− 1

eβ′ηx − 1

]

, (8.8)

where the integral follows from Appendix A,
∫ ∞

0

dx
x

(x2 + 1)2
1

eβηx − 1
=

1

4

[

1 +
π

βη
− βη

2π
ψ′

(

βη

2π

)]

. (8.9)

The dimensionless force f is plotted in Fig. 4, and compared to the high-temperature approximation. The prefactor,
for ν = η, a = 1µm, and the radius of the nanosphere being 100 nm, is 5× 10−21 N.

8For the bulk (vacuum) contribution, the force would involve the symmetric limit limz→z′ sgn(z − z′) = 0.
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FIG. 4. The force, defined in Eq. (8.8), between a nonreciprocal nanoparticle and a metal plate with finite conductivity
out of thermal equilibrium. The temperature of both the plate and the background electromagnetic field is fixed at room
temperature, which corresponds to T/η = 0.714 for gold. The polarizability of the nanoparticle is described by the model (3.5).
The temperature of the nanoparticle, T ′, is given in units of the damping parameter for gold, η. For comparison, the dashed
straight line shows the force when both temperatures are large, demonstrating that the high-temperature approximation is
quite good across the temperature range displayed.

B. Transverse force in presence of a perfectly conducting plate

If the slab is a perfect conductor, with rH = 1, the formula for the transverse force simplifies considerably. The
imaginary part of the Green’s function then requires that ω2 > k2, and so the integral over the wavenumber is

∫

(dk⊥)

(2π)2
k2x Im e−2κa = − 1

4π

1

(2a)4
[6u cosu+ 2(u2 − 3) sinu], (8.10)

where u = 2ωa. Then, the transverse force is

Fx =
ωcηω

2
pV

2π2a
f0(ǫ, b, b

′), f0(ǫ, b, b
′) =

∫ ∞

0

du
6u cosu+ 2(u2 − 3) sinu

(u2 + ǫ2)2

[

1

eub − 1
− 1

eub′ − 1

]

, (8.11)

where ǫ = 2ηa, b = 1/(2aT ), and b′ = 1/(2aT ′). The integral f0 is plotted in Fig. 5 as a function of the nanoparticle
temperature T ′ for the environment at room temperature, for a separation of a = 100 nm, with a damping parameter
appropriate for gold, η = 0.035 eV. Note, that the high-temperature limit for the force is given by f0 ∼ π

8b′ , for
b′ ≪ 1/ǫ, b, but this limit requires very high temperatures which are not accessible in practice. It is noteworthy that
Figs. 4 and 5 are qualitatively (but not quantitatively) similar, given that the physical mechanisms invoked are rather
different.
It is easily seen that the lateral force rapidly vanishes as a→ ∞, consistent with the absence of a quantum vacuum

force.
We expect, as we saw for the torque, that this force will be resisted by the quantum vacuum friction in the presence

of the plate, which for low velocities will lead to a terminal velocity, according to

m
dv

dt
= F0 − vF ′

1 ⇒ v(t) =
F0

F ′
1

(

1− e−F ′

1
t/m

)

. (8.12)

We require, then, the nonequilibrium frictional force in the presence of a conducting plate, which we derive in
Appendix B. Using the same model for the permittivity of the nanoparticle, the linear term in the friction is

F ′
1 =

ω2
pηV

π2(2a)2
f1(ǫ, b, b

′), (8.13)

where

f1(ǫ, b, b
′) =

∫ ∞

0

du
u3

u2 + ǫ2

{[

1− 2 cosu+ (u2 − 2) sinu

u3

] [

1

eb′u − 1
− 1

ebu − 1

]

+
1

12

bu

sinh2(bu/2)

[

1− 3
−u(u2 − 12) cosu+ (5u2 − 12) sinu

u5

]}

. (8.14)
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FIG. 5. The transverse force given in Eq. (8.11) as a function of the ratio of the temperature of the nonreciprocal nanoparticle
relative to that of the environment and the perfectly conducting plate, 300 K. Here we take the separation a of the nanoparticle
and the plate to be 100 nm, and the damping to be that appropriate for gold, 0.035 eV. In this case, the prefactor in the force
in Eq. (8.11), for a gold nanosphere of 10 nm radius is 1.2× 10−20 N, so this would be challenging to observe.

0.00 0.02 0.04 0.06 0.08 0.10

-1.5

-1.0

-0.5

0.0

2 a T
′

f 0
f
1

FIG. 6. The terminal velocity of a nonreciprocal nanoparticle near a perfectly conducting plate in units of 2ωca. Here it is
assumed that the plate and the background are at temperature T = 300 K, that the particle is made of gold, and it is a distance
a = 100 nm above the surface of the plate. The temperature of the nanoparticle is T ′ = 1/(2ab′). Thus, the highest particle
temperature displayed on the graph is 1200 K.

Indeed, f1 is always positive, corresponding to a frictional drag, and the corresponding terminal velocity is

vT =
F0

F ′
1

= 2ωca
f0
f1
. (8.15)

The scale factor here is small compared to the speed of light: for a particle 100 nm above the plate, 2ωca = 10−4.
The ratio of f0/f1 is shown in Fig. 6. The apparent saturation of the terminal velocity near 0.2 is illusory; for still
larger temperatures, the terminal velocity tends to zero, since the frictional force rapidly increases with temperature.
However, for these nominal values, the damping time is long:

t0 =
m

F ′
1

∼ 2× 103 s
1

f1
∼ 106 s, (8.16)

if the particle is at twice room temperature.

IX. RELAXATION TO THERMAL EQUILIBRIUM

All of the above considerations assume that the temperatures of the body and of the background are constant. Of
course, this will not be so unless some mechanism keeps the system out of thermal equilibrium. Here, we will calculate



14

the time it would take for such a body at rest to come to thermal equilibrium with its environment. We cannot regard
the body to be a black body, but we can calculate the rate at which it loses heat from the power (for an isotropic
body)9 [13]

P (T, T ′) =
1

π2

∫ ∞

0

dω ω4 Imα(ω)

[

1

eβω − 1
− 1

eβ′ω − 1

]

=
dQ

dt
. (9.1)

This is related to the rate of change of temperature of the body by its heat capacity:

dQ

dt
= CV (T

′)
dT ′

dt
. (9.2)

Thus, the time it takes for the body to cool from temperature T ′
0 to temperature T ′

1, where T
′
0 > T ′

1 > T , is

t =

∫ T ′

1

T ′

0

dT ′ CV (T
′)

P (T, T ′)
. (9.3)

To proceed, we need a model for the heat capacity of the body. Such is provided by the Debye model,10 which is
satisfactory for simple crystals (see Ref. [33]):

CV (T ) = 9N

(

T

Θ

)3∫ Θ/T

0

dx
x4ex

(ex − 1)2
. (9.4)

where N is the number of atoms constituting the body, and Θ is the Debye temperature. This interpolates between
the low- and high-temperature limits:

CV (T ) ∼ 3N

{

1, T ≫ Θ,
4π4

5

(

T
Θ

)3
, T ≪ Θ.

(9.5)

Since the Debye temperature for gold is about Θ = 170 K, the high-temperature approximation would seem appro-
priate for an estimate at room temperature and above.
We finally need a model for the imaginary part of the polarizability of the body. The Lorenz-Lorentz model would

give

Imα(ω) =
V ω2

pωη

(ω2
1 − ω2)2 + ω2η2

≈
V ω2

pωη

ω4
1

, (9.6)

where, for a metal (Drude model), ω1 = ωp/
√
3. The approximation here is appropriate if, as expected, ω1 ≫ ω, η.

Inserting this approximation into the formula (9.1) we obtain

P (T, T ′) ≈ 8π4

7

V η

ω2
p

(T 6 − T ′6). (9.7)

Now we compute the cooling time from Eq. (9.3):

t = t0

∫ T ′

1
/T

T ′

0
/T

du
1

1− u6
, T ′

0 > T ′
1 > T, where t0 =

21

8π4
n
ω2
p

η

1

T 5
(9.8)

Here, n is the number density of atoms in the body. The relaxation scale, t0, is independent of the volume of the
particle, and is about 104 seconds for gold, for an environmental temperature of 300 K. The cooling time diverges
as T ′

1 → T , but cooling to a temperature slightly above the environmental temperature takes a finite time. The
integral here is elementary, but the resulting expression is not very illuminating. We content ourselves by showing
some representative values in left panel of Fig. 7. It will be seen that if T ′

0 is appreciably larger than T the cooling
time rapidly saturates to an asymptotic value. If we then take T ′

0 to be large, Fig. 8 shows how long it will take to
reach a multiple of the environmental temperature. Thus, we see that the terminal angular velocity seen in Eq. (5.12)

9For the purpose of the rough calculation presented here, we will ignore the small nonreciprocal effects.
10We consider bulk effects only, and ignore surface effects, for the purpose of a rough estimate. Since we are considering vacuum, we also
disregard possible near-field enhancements that would occur if the body were near another object.



15

2 3 4 5

0.00

0.05

0.10

0.15

T
0

′
/T

t/
t 0

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
0

′
/T

t
/
t 0

FIG. 7. Time required for a body to cool from temperature T ′

0 to temperature T ′

1 for different environmental temperatures T .
Here T ′

0 > T ′

1 > T . The left panel is for the environmental temperature T = 300 K, and the right is for T = 1 K. On the left,
the upper set of curves is for T ′

1/T = 1.1, and the lower curves are for T ′

1/T = 1.5. On the right, the three curves from top
to bottom are for T ′

1/T = 1.05, 1.1, and 1.5. The times are scaled by the prefactor, t0, in Eq. (9.8), which for a gold body
evaluates to about 104 s, for the environment at room temperature, and by t̃0 (Eq. (9.10)), which is about 1011 s, for T = 1 K.
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FIG. 8. The cooling time, in terms of the scale t0, for the nanoparticle to cool from a high temperature to T ′

1, in the regime
where Eq. (9.8) is valid. It takes an increasingly long time to get very close to the environmental temperature.

and the terminal linear velocity obtained in Eq. (8.15) will not be achievable unless some mechanism maintains the
thermal imbalance, because the time scales for achieving those velocities, Eqs. (5.13) and (8.16), are much longer than
the cooling time found here.
If the environmental temperature is very low, T ≪ Θ, the cooling time is very much longer. The analysis proceeds

as above, using the low temperature limit in Eq. (9.5), with the result for the cooling time being

t = t̃0

∫ (T ′

1
/T )2

(T ′

0
/T )2

dy
y

1− y3
, t̃0 =

21

20
n
ω2
p

η

(

T

Θ

)3
1

T 5
. (9.9)

The integral, which has a relatively simple analytic form, is shown in the right panel of Fig. 7. The ratio of the time
scales in the two cases is

t̃0
t0

=
2π4

5

(

Tlow
Θ

)3 (
Thigh
Tlow

)5

∼ 107, (9.10)

for Tlow = 1 K, Thigh = 300 K, and Θ = 170 K for gold, so terminal velocities might be achievable.

X. LORENZ-LORENTZ CORRECTION

Hithertofore, we have ignored the Lorenz-Lorentz correction familiar in passing from the permittivity of a body to
its polarizability. This was because the forces and torques were derived directly from the macroscopic susceptibilities
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appropriate for a dissipative metal body. In the case of small bodies, we could always pass from the susceptibility to
the mean polarizability by integrating over the volume of the body. However, as is evident from the discussion in the
preceding section [see Eq. (9.6)], the effect of the medium on the local electric field can result in a large correction in
the case of metal bodies.
The difficulty is that the simple Lorenz-Lorentz model is ordinarily derived using spherical symmetry. The relation

between the electric polarizability and the permittivity is, in the isotropic case, in HL units,

α =
ε− 1

ε+ 2
4πa3. (10.1)

This is not valid for a nonsymmetric permittivity; for example, see Ref. [35]. However, for ωc small, the nonsymmetric
nature is small, so, for the purpose of an estimate, we use, as in Refs. [25, 26], the matrix generalization of the above:

α = (ε− 1)(ε+ 2)−14πa3. (10.2)

It is quite straightforward to compute the components of this matrix: the term we need for the torque in Eq. (4.13)
is, for ωp ≫ ω ∼ T ,

Reαxy ≈ 54V
ω2ωcη

ω4
p

. (10.3)

When this is inserted into Eq. (4.13), we obtain

τz =
32

7
π4V

ωcη

ω4
p

T 6

[

1−
(

T ′

T

)6
]

. (10.4)

Putting in the numbers for a 100 nm gold nanosphere, the coefficient of (1 − T ′6/T 6) is about 5 × 10−36 Nm, some
11 orders of magnitude smaller than that found at the end of Sec. IV.
We can also repeat the calculation of the terminal angular velocity in Sec. V in this Lorenz-Lorentz model. Then,

τ ′1 = − 1

6π2

(

3 + β
∂

∂β

)∫ ∞

0

dω ω2 Im(αxx + αyy)(ω)

(

1

eβ′ω − 1
− 1

eβω − 1

)

, (10.5)

where in our model

Im(αxx + αyy) ≈ 18V
ωη

ω2
p

, (10.6)

which implies

τ ′1 =
2π2

5

V η

ω2
p

T 4

[

1 + 3

(

T ′

T

)4
]

. (10.7)

Note that τ ′1 is always positive, indicating that it always opposes the rotation. The corresponding terminal angular
velocity is

ΩT =
τ0
τ ′1

=
80

7
π2 ωc

ω2
p

T 2 1− T ′6

T 6

1 + 3T ′4

T 4

, (10.8)

where the prefactor, independent of T ′, implies a substantial angular velocity for gold at room temperature: ∼ 108 s−1.
Although the time required to reach such a velocity is very long, t0 = I/τ ′1 ∼ 1013 s, the initial angular acceleration
is not so small,

Ω̇(0) =
ΩT

t0
∼ 10−5 s−2. (10.9)

While this angular acceleration is 10 orders of magnitude smaller than that found without the Lorenz-Lorentz correc-
tion in Eq. (5.14), the body will acquire a measurable angular velocity after a relatively small period of observation.

However, is this correction valid or even necessary for a metal nanoparticle? The discussion in Secs. IV–VIII is based
on describing the susceptibility of a metal by the phenomenological Drude model, which should include, approximately,
all internal effects. There is a large literature on the subject of ordinary polarizabilities of metal nanoparticles—see
Refs. [36, 37], for example—where it is seen that both classical and approximate quantum mechanical treatments
are inadequate. We are unaware of comparable work in the nonreciprocal case. So, to some extent, the issue of
applying the Lorenz-Lorentz correction remains open. In this paper we are interested in the interaction between the
electromagnetic field and the body, the electromagnetic properties of which are specified by a given susceptibility, so
that the crude models for the latter should only be taken as illustrative.
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XI. CONCLUSIONS

In this paper we have concentrated on analysis to first order in the susceptibility, to better understand the effects
of nonreciprocal materials on torque and on forces for bodies out of thermal equilibrium with their environment.
Time-reversal symmetry is broken by these materials, so spontaneous forces and torques are possible. Of course, time
reversal symmetry is not broken by electrodynamics, whether classical or quantum; rather the nonreciprocity is a
consequence of an external agent, such as a magnetic field, that is encoded in the dielectric response of the materials.

Interestingly, potentially observable phenomena are, nevertheless, predicted. A nonreciprocal body out of thermal
equilibrium will spontaneously start to rotate, and reach a substantial terminal angular velocity. Such a body will
not feel a net force to first order in the susceptibility. However, if the body is placed near a translationally invariant
surface, even a perfect conductor, then a force parallel to the surface would arise. The presence of such a surface
would tend to suppress the vacuum torque. A potentially observable terminal linear velocity arises here as well,
although the time scales are such that it would be difficult to keep the system out of thermal equilibrium. A possible
drastic reduction in the strength of these nonreciprocal effects, due to the Lorenz-Lorentz correction for dielectric
susceptibilities, is discussed in the penultimate section, although it seems the angular and linear accelerations might
still be amenable to observation.
Elsewhere, we will examine higher-order effects, to see how phenomena such as vacuum self-propulsion can arise,

even for a reciprocal body [30, 31].
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Appendix A: Evaluation and expansion of integrals

Here, we express the integrals encountered in the text in terms of the digamma and trigamma functions, ψ(z) and
ψ′(z), and provide corresponding low- and high-temperature expansions.
Differentiation of Binet’s second integral representation of the log gamma function immediately yields the integral

representation

ψ(z) = ln z − 1

2z
− 2

∫ ∞

0

dx
x

x2 + 1

1

e2πzx − 1
. (A1)

Thus,

I1(βη) ≡
∫ ∞

0

dx
x

x2 + 1

1

eβηx − 1
=

1

2

[

− π

βη
+ ln

(

βη

2π

)

− ψ

(

βη

2π

)]

. (A2)

Since

β
∂

∂β

1

eβηx − 1
= η

∂

∂η

1

eβηx − 1
= x

∂

∂x

1

eβηx − 1
, (A3)

it follows that

β
∂

∂β
I1(βη) = η

∂

∂η
I1(βη) =

∫ ∞

0

dx
x2

x2 + 1

∂

∂x

1

eβηx − 1
= 2

∫ ∞

0

dx

[

x3

(x2 + 1)2
− x

x2 + 1

]

1

eβηx − 1
. (A4)

Thus,

I2(βη) ≡
∫ ∞

0

dx
x3

(x2 + 1)2
1

eβηx − 1
=

[

1 +
β

2

∂

∂β

]

I1(βη) =

[

1 +
η

2

∂

∂η

]

I1(βη). (A5)
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Hence, from Eq. (A2),

I2(βη) =
1

4

[

− π

βη
+ 2 ln

(

βη

2π

)

+ 1− 2ψ

(

βη

2π

)

− βη

2π
ψ′

(

βη

2π

)]

. (A6)

Using the series representation

ψ(z) = −1

z
− γE + z

∞
∑

k=1

1

k(z + k)
, (A7)

where γE is the Euler-Mascheroni constant, we readily obtain from Eqs. (A2) and (A6) the small βη (or high-
temperature) expansions

I1(βη) ∼
1

2

[

π

βη
+ ln

(

βη

2π

)

+ γE

]

(βη → 0) (A8a)

and

I2(βη) ∼
1

4

[

π

βη
+ 2 ln

(

βη

2π

)

+ 1 + 2γE

]

(βη → 0). (A8b)

Likewise, using the asymptotic representation

ψ(z) ∼ ln z − 1

2z
−

∞
∑

k=1

B2k

2kz2k
(z → ∞), (A9)

there follow from Eqs. (A2) and (A6) the large βη (or low-temperature) expansions

I1(βη) ∼
π2

6β2η2
− π4

15β4η4
(βη → ∞) (A10a)

and

I2(βη) ∼
π4

15β4η4
(βη → ∞). (A10b)

Appendix B: Out-of-equilibrium frictional force near perfectly conducting plate

Following the discussion in Ref. [13], it is easy to derive the expression for the frictional force used in Sec. VIII B.
The general expression for the force is

F =

∫

dω

2π

dk⊥

(2π)2
(kx + ωv) trℑα(ω)ℑg′(ω,k⊥)

[

coth
βγ(ω + kxv)

2
− coth

β′ω

2

]

. (B1)

Here g′ is the reduced Green’s function in the rest frame of the particle. For a perfectly conducting plate, as with
the vacuum, g′ = g, the Green’s function in the frame of the plate and vacuum. From this we can calculate both
the frictional force and the propulsive force. The latter is present at v = 0, and arises from the antisymmetric parts
of the polarizability and the Green’s dyadic, and is given in Sec. VIII. The diagonal parts of both these tensors
correspond to friction. According to the model (3.2) with ωc neglected, the diagonal terms of the imaginary part of
the polarizability are all equal to

Imαd =
V ω2

pωη

(ω2
0 − ω2)2 + ω2η2

. (B2)

That leaves us with the imaginary part of the trace of g:

Im trg = sgn(ω)

[

ω2

√
ω2 − k2

−
√

ω2 − k2 cos
(

2a
√

ω2 − k2
)

]

θ(ω2 − k2). (B3)
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Now when we expand Eq. (B1) to first order in v we obtain two terms:

F = F (1) + F (2). (B4)

Here the first term comes from expanding the hyperbolic cotangent:

F (1) = − βv

8π2

∫ ∞

0

dω Imαd(ω)
ω5

sinh2(βω/2)

{

2

3
− 2

x5
[

−x(x2 − 12) cosx+ (5x2 − 12) sinx
]

}

, (B5)

where we’ve carried out the elementary integration over k⊥. Note that the first term here corresponds to the usual
Einstein-Hopf effect. The F (2) contribution to the force corresponds to the ωv prefactor in Eq. (B1), and is a
non-equilibrium friction contribution:

F (2) =
v

2π2

∫ ∞

0

dω Imαd(ω)ω
4

(

coth
βω

2
− coth

β′ω

2

)[

1− 1

x3
(

2x cosx+ (x2 − 2) sinx
)

]

, (B6)

again after carrying out the wavenumber integration. The sum of these two terms is Eq. (8.14) if we set ω0 = 0,
appropriate for a metal nanoparticle.
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