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Abstract— Understanding which traffic light controls which
lane is crucial to navigate intersections safely. Autonomous
vehicles commonly rely on High Definition (HD) maps that
contain information about the assignment of traffic lights to
lanes. The manual provisioning of this information is tedious,
expensive, and not scalable. To remedy these issues, our novel
approach derives the assignments from traffic light states and
the corresponding motion patterns of vehicle traffic. This works
in an automated way and independently of the geometric
arrangement. We show the effectiveness of basic statistical
approaches for this task by implementing and evaluating a
pattern-based contribution method. In addition, our novel
rejection method includes accompanying safety considerations
by leveraging statistical hypothesis testing. Finally, we propose
a dataset transformation to re-purpose available motion predic-
tion datasets for semantic map learning. Our publicly available
API for the Lyft Level 5 dataset enables researchers to develop
and evaluate their own approaches5.

I. INTRODUCTION

Autonomous vehicles require a semantic understanding of
the given traffic scene to navigate complex environments
safely. At intersections, understanding the assignment of
traffic lights to lanes is a prerequisite to determining whether
to stop. This assignment information is used in safety-critical
applications and currently cannot be derived by an online
system with the required reliability.

The traffic light to lane assignment (TL2LA) is defined
by the geometric arrangement of traffic lights relative to the
lanes in an intersection and optionally by indication inlays
inside the traffic light bulbs, such as arrows. Using this
information to automate the map annotation in a scalable
way does not reach the required level of correctness. The vast
variety of geometric configurations of traffic lights and lanes
and the unreliable detection of traffic light inlays make it
very challenging to precisely assign individual traffic lights to
their respective lanes. Hence, the assignment is traditionally
provided a priori from an HD map, which involves laborious
manual annotation efforts. Modeling the broad varieties of
intersection branches, topology, arrangement of traffic lights,
etc., constitutes its own modeling and knowledge acquisition
problem [1]. Fully capturing the geometric layout and seman-
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Fig. 1. Overview of our approach to derive traffic light to lane assignments
from detected traffic light states and motion patterns of vehicle traffic.

tic relationships between traffic elements of an urban traffic
scene may be difficult even for humans.

Current research has rarely considered the learning of
semantic map information. One reason is that systems with
high level of autonomy (e.g., robotaxis) use an HD map as a
strong prior to meet the essential requirement for high safety.
On a limited scale, HD maps can be precisely annotated
by humans, dropping the need for automated solutions.
Secondly, the limited prior work has focused on deriving
TL2LA from the geometric arrangement of traffic lights and
lanes at intersections. These approaches require labeled data
for a multitude of intersection layouts to generalize well.

In this paper, we propose a novel paradigm of learning
semantic map features from motion patterns of vehicle traffic.
Our main observation is that humans resolve the TL2LA
problem while driving, leading to motion patterns that im-
plicitly contain the required data. We implement two methods
for statistical and rule-based discovery of the TL2LA from
detected traffic light states and the respective motion patterns
as shown in Figure 1. This approach is independent of
the geometric arrangement and therefore generalizes to any
country and intersection layout. Finally, we present a dataset
transformation to re-purpose available datasets for this task
and evaluate the two proposed methods.

In summary, our main contributions are:
• We propose a novel learning task, deriving the TL2LA

from motion patterns of traffic, and provide two meth-
ods to solve this task including safety considerations.

• We present a dataset transformation that changes the



representation of motion prediction datasets to make
them suitable for learning map semantics.

• We evaluate our methods on the transformed Lyft Level
5 dataset and provide an API for future research in the
field of motion-based semantic map learning.

This work is structured as follows: Section II discusses
related work. Section III presents problem domain, problem
statement and our approach. Implementation and experiments
are described in sections IV and V. Finally, section VI covers
remaining limitations and section VII gives a conclusion.

II. RELATED WORK

This section reviews related work concerning semantic
map learning, deriving information from motion data and
available datasets.

A. Semantic Map Learning

Maps comprise geometric objects and semantic features,
which are both needed to perform the driving task. Geometric
objects, such as signs and crosswalks, are directly perceivable
by sensors. Semantic map features are virtual and relate to
geometric objects in the real world. Those include derived
entities such as lanes, which model the lane corridor and
are constrained by the geometric lane dividers. Another type
of semantic map features are relationships between map
entities, i.e., the TL2LA.

One way of deriving the TL2LA is by applying heuristics
to the geometric arrangement. Early work from Fairfield and
Urmson [6] uses a simple heuristic to add the TL2LA to a
geometric map of the traffic lights. They acknowledge the
challenge of this task and integrate a human verification
step in their process because the heuristic alone did not
provide the desired quality. Poggenhans [7] defines a more
methodical approach by developing a rule set from the offi-
cial traffic regulations as a heuristic. Similarly, that approach
derives a geometric arrangement of the road infrastructure
first. In a second step, the proposed rule set is used to solve
semantic relations such as right of way and TL2LA. Again,
the concluding statement indicates that heuristic approaches
are insufficient because they rely on correct and unambiguous
infrastructure, which is not always given.

Alternative ways of deriving TL2LA include learning-
based approaches on the geometric arrangement. Li et al. [8]
formulate the problem of semantic map learning and predict
semantic map geometries in bird’s-eye view from sensor

data. Similar to other works [9], [10], [11], they fall short of
deriving semantic relations like the TL2LA. Langenberg et
al. [12] target the TL2LA in image space. They transform the
lower part of the camera image using an inverse perspective
mapping to get a top-down view of the road surface and use
a learning-based model to predict the TL2LA directly from
that image.

All approaches listed above tackle the problem of semantic
map learning by deriving semantics from the geometric
representation. This requires a diverse dataset to cover all
variations of the real world. In contrast, our approach does
not use geometry information of traffic lights, i.e., their
position and heading are not input to the approach.

B. Deriving Information from Motion Data

Prior work has used motion data in the form of vehicle
trajectories to derive information.

There is substantial literature on general clustering and
pattern recognition on motion data. Yuan et al. [13] review
moving object trajectory clustering algorithms. While they do
not target semantic map learning, the methods described are
a precondition of deriving information from massive motion
data. Jiao et al. [14] show an approach for characterizing
motion data based on summarizing and classifying patterns.
These works do not attempt TL2LA but provide general ideas
for working with motion data.

Scientific work in the context of mapping from motion
data mostly targets geometric map features. Early work
from Chen and Krumm [15] and from Uduwaragoda et
al. [16] use statistical models to predict traffic lanes from
GPS traces. More recent work aims to close the gap to HD
maps by deriving additional geometric map features such as
boundaries and signs [17] by using higher-level features such
as lane marking types provided by the vehicle fleet [18] or
by directly extracting lane-level information from raw motion
patterns [19].

Only a few publications describe how to derive semantic
map attributes from motion data. Derrow-Pinion et al. [20]
predict the estimated time of arrival for a queried map
route using motion data transmitted from mobile devices.
Wirthmüller et al. [21] model a semantic lane attribute, the
probability of lane change events, based on data from the
vehicle fleet. Our novel approach aims to derive the TL2LA
purely from motion data, a topic that has not yet been
explored in the literature.

TABLE I
COMPARISON OF THE DATASET META INFORMATION PROVIDED BY DIFFERENT MOTION PREDICTION DATASETS.

Meta Information Argoverse 2.0 [2] nuScenes [3] Waymo Motion [4] Lyft Level 5 [5] Requirements Map Learning

Number of scenes N 250 000 41 000 103 000 162 000 As high as possible
Scene duration τ 11 s 20 s 20 s 25 s At least multiple seconds
Unique roadways R 2110 km 4300 km 1750 km 10km High as long as density high
Spatial recording density ρ 1303 s

km
190 s

km
529 s

km
405 000 s

km
As high as possible

Total time 763h 228h 570h 1125h As high as possible
Size 58GB 48GB 1.4TB 78GB
Coordinate System global global local global Global to localize scenes
License CC BY-NC-SA 4.0 CC BY-NC-SA 4.0 CC BY-NC-SA 4.0 CC BY-NC-SA 4.0



C. Available Datasets
High-quality, large-scale datasets are crucial to train mod-

els for autonomous driving, especially in the mapping do-
main with extremely diverse real-world scenarios and highly
manual labeling efforts. Unfortunately, there are no publicly
available datasets that specifically address the problem of
semantic map learning. However, there are several public
motion prediction datasets that address the primary goal of
motion forecasting in urban environments [2], [3], [22], [4],
[5]. They contain time sequences of motion data, and some
additionally include HD maps with semantic annotations for
improved motion prediction.

Table I lists publicly available motion prediction datasets
and gives an overview of their metadata. The rightmost
column addresses requirements for semantic map learning,
which are discussed in our approach.

III. MOTION-BASED APPROACH TO DERIVE TL2LA
This section formalizes the problem domain and problem

statement of deriving the TL2LA based on motion patterns.
We propose two methods to solve the problem and explain
safety considerations.

A. Formalizing the Problem Domain
Let V be the set of all vehicles and pos : V × T → R2

be a partial function that maps each vehicle to its position at
time t ∈ T . Kinematics are given by the functions vel(v, t) =
∂pos(v, t)/∂t for velocity and acc(v, t) = ∂vel(v, t)/∂t for
acceleration of vehicle v at time t. Let S be the set of all
traffic lights and state : S × T → {red, green} be a partial
function that maps each traffic light to its state (red or green)
at time t ∈ T . Let L be the set of all lanes on the road and
boundary(l) = (bl, br) with b ∈ R2k × R2k be a function
that maps each lane to its left and right boundary b as a
sequence of k points in R2. The TL2LAs are represented by
a function assign : S×L → {0, 1}, which maps each pair of
traffic light and lane to its binary value (0 for no assignment,
1 for assignment).

B. Problem Statement
The required input data for deriving TL2LA from motion

data comprises the lane geometry (boundary), the position
of vehicles over time (pos), and the traffic light state over
time (state). Lane topology and the mapping of vehicles to
lanes are optional, because these can be derived geometri-
cally.

We assume to have a dataset:

D = (V, S, L,pos, state,boundary) (1)

Predicting the TL2LA is a binary classification problem.
Let target output Y be the TL2LA for each pair of traffic
light and lane, as represented by the definition of the function
assign:

Y = assign(s, l) (2)

Then the goal is to find a function:

g (V, s, l, pos, state,boundary) = Y = assign(s, l) (3)

1

2
3

Fig. 2. Steps to derive TL2LA (3) based on the traffic light to vehicle (1)
and vehicle to lane assignment (2).

C. Methods to derive TL2LA

To get from temporal correspondences between motion
patterns of vehicles and traffic light states to TL2LAs, the
following procedure is needed as shown in Figure 2:

1) Based on motion pattern pos(v, t) for t ∈ T of ve-
hicle v and the state over time state(s, t) for t ∈ T
of traffic light s: Derive evidence for or against an
assignment between v and s.

2) Based on geometric position pos(v, t) and lane geome-
tries boundary(l) for l ∈ L: Use geometric matching
loc : V ×T → L to assign vehicle v to its driving lane
l at time t.

3) Determine the TL2LA assign(s, l) between traffic
light s and lane l by aggregating individual evidences
predicting the relation between l and s.

We propose two statistical methods and compare with a
naive baseline.

1) Naive Baseline Method: Predict the class with the
highest prior probability, which can be formalized as:

assignprior(s, l) = argmax
ci∈C

ni (4)

where C = {0, 1} is the set of TL2LA classes (0 for
no assignment, 1 for assignment) and ni is the number of
occurrences of class ci in the dataset.

2) Pattern-based Contribution Method: This method ex-
tracts motion patterns individually from each point in time
and weighs the contributions w.r.t. the TL2LAs. A heuristic
function h : V ×S×T×Cond → R calculates a contribution
value given a vehicle, a traffic light state, a point in time
and Cond, a set of condition functions defined below. The
heuristic function h is defined such that positive values
contribute to an assignment and negative values have the
opposite effect. The decision about an assignment is made
by summing up all individual contribution values that were
generated by the heuristic function:

assignpattern(s, l) =
∑
t∈T

∑
(v,s)∈V×S

h (v, s, t, cond) (5)

Table II shows the definition of h with the set of condition
functions cond = {vel, acc, distance, is lead, turn type,
state duration}. Those are a) the distance of a vehicle
to the intersection distance : V × T → R with two
thresholds stop zone = 8m and slow zone = 20m,



TABLE II
HEURISTIC FUNCTION h BASED ON THE VELOCITY (vel) AND ACCELERATION (acc) OF VEHICLE AND TRAFFIC LIGHT (TL) STATE.

Pattern Kinematics TL State Additional Conditions Heuristic h

Stationary |vel| < 1 ∧
|acc| < 1

red (distance < stop zone) +2

green is lead −1

is lead ∧ (state duration > reaction time green) −3

Continuously
moving

|vel| ≥ 1 ∧
|acc| < 1

red (distance < slow zone) −1

(distance < stop zone) ∧ (state duration > reaction time red) −3

green (distance < slow zone) +3

(distance < stop zone) +5

Acceleration
from stationary

|vel| < 1 ∧
|acc| ≥ 1 ∧
acc > 0

red (distance < stop zone) ∧ (turn type ̸= right turn) −2

green (distance < slow zone) ∧
(state duration > reaction time red) +3

Acceleration
while moving

|vel| ≥ 1 ∧
|acc| ≥ 1 ∧
acc > 0

red (distance < slow zone) −1

(distance < stop zone) ∧ (state duration > reaction time red) −3

green (distance < slow zone) +1

Deceleration
|vel| ≥ 1 ∧
|acc| ≥ 1 ∧
acc < 0

red (distance < slow zone) +2

green (distance < stop zone) ∧ is lead ∧ (turn type = left turn) −1

(distance < stop zone) ∧ is lead ∧ (turn type = straight) −2

Other else red/green 0

b) whether the vehicle is the first vehicle before the in-
tersection entry is lead : V × T → {true, false}, c) the
turn information of the current lane turn type : L →
{left turn, right turn, straight}, d) the duration of the cur-
rent traffic light state state duration : S × T → R
relative to the time delay of a vehicle reacting to a
traffic light state change (reaction time red = 1 s and
reaction time green = 3 s). By applying this set of rules,
contribution values for a pair of traffic light and lane are
calculated for each point in time. When the aggregated value
of all contributions for a pair of traffic light and lane is
positive, the method predicts assign(s, l) = 1, otherwise it
predicts assign(s, l) = 0. Predictions are aggregated over all
points in time based on the majority class.

3) Rejection Method: The rejection method formulates
the problem as a hypothesis test. Conservatively assume an
assignment for all pairs of traffic lights and lanes (H0):
∀(s, l) ∈ S × L : assign(s, l) = 1. Set assign(s, l) = 0
only if a significant number of vehicles have been recorded
passing the intersection on lane l while state(s, t) = red.

H0 : assign(s, l) = 1 (assignment)
H1 : assign(s, l) = 0 (no assignment)

The detection of a vehicle passing the intersection is
defined relative to the intersection entry. If the veloc-
ity of a vehicle directly in front of the intersection en-
try (distance < 1m) is greater than a specific threshold
(vel > 15 km

h ), a pass is assumed.
A binomial hypothesis test is used to reject the null hy-

pothesis based on a significance level. By initially assuming
a true assignment, this method minimizes false negatives
and optimizes for recall. A further advantage is that this
method provides an output for all pairs of traffic lights and

lanes. We assume that a TL2LA exists if less than 5 % of
recorded vehicles pass on a red light (binomial distribution
with p = 0.05). To minimize the likelihood of false rejections
of H0, we choose a significance level α = 0.001. For a pair
of traffic light s and lane l, let n be the overall number of
passes in the dataset where loc(v, t) = l for v ∈ V, t ∈ T
while the traffic light s is detected with state(s, t) and let
k be the number of the subset of passes with state = red.
Then the TL2LA is derived as:

assignrejection(s, l) = [Binomialtest(k, n, p) < α] (6)

The concept of right turn on red contradicts the traffic
light to lane assignment, since vehicles are allowed to
pass the red light after stopping for crossing traffic. As a
special heuristic, our rejection method only invalidates the
assignment of a traffic light to a right-turning lane for passes
with a significantly higher velocity (v > 25 km

h ). Unprotected
turns are handled implicitly by the rejection method, since it
does not extract evidence from stopping vehicles, but purely
invalidates TL2LAs given passes on red light.

D. Safety Considerations

To ensure maximum safety, an autonomous vehicle should
not pass an intersection entry when any of the assigned traffic
lights is red. Therefore, false negative TL2LAs are critical,
since those might result in ignoring the relevant traffic light.
A false positive TL2LA results in regarding an additional
traffic light. This might result in stopping at an actual green
light, which is less critical from a safety perspective. We
design our proposed methods to account for the adjusted
Bayes risk. In our pattern-based contribution method, we
design h in favor of a higher recall. In our rejection method,



we assume assign(s, l) = 1 as the null hypothesis. It is
important to highlight that our proposed methods do not
cover all edge cases and are not suitable for deployment
(see Section VI for limitations).

In addition to predicting the assignment, it is essential to
assess the confidence of the output. From an information-
theoretical perspective, confidence is based on how many
different combinations of traffic light states have been ob-
served, and the consistency between traffic light states and
motion patterns given the derived TL2LAs. By the law of
large numbers, the likelihood of seeing all state combinations
rises with an increasing amount of samples and the accuracy
runs into saturation. Our rejection method uses a hypothesis
test that provides a p-value as a function of the number of
samples and the consistency. Therefore, it can be used as a
direct measure of confidence.

IV. IMPLEMENTATION ON DATASET

This section proposes the use of widely available motion
prediction datasets for semantic map learning. Motion pre-
diction datasets are compared regarding their use for deriving
the TL2LA. We perform a dataset transformation on the Lyft
Level 5 dataset [5] and explain data preparation steps.

A. Motion Prediction Datasets for Semantic Map Learning
The problem of motion prediction is defined by a function:

pred (V, S, L,pos0:t, state,boundary, assign) = post+1:T

(7)
It predicts future trajectories post+1:T from past trajectories
pos0:t. Additional inputs often include lanes (L) with bound-
aries (boundary), traffic lights S with their states (state),
and the TL2LAs (assign). We show that specific datasets
for motion prediction can be transformed into datasets for
semantic map learning. A comparison with function g for
the TL2LA problem (c.f., Equation 3) shows the required
steps to transform the dataset (also visualized in Figure 3):

1) Future trajectories are appended to past trajectories to
form complete vehicle trajectories as input:
pos = pos0:T =

[
pos0:t,post+1:T

]
2) Semantic relations, specifically TL2LAs, are used as

output instead of input: Y = assign

Datasets for motion prediction are usually annotated from
recordings of a measurement vehicle (referred to as ego). The
partial functions state and pos are only defined for traffic
lights and vehicles in the field of view of the measurement
vehicle. We can use this locality to formulate a condition for
a pair of traffic light s and lane l:

∃t ∈ T : state(s, t) ∧ pos(v, t) ∧ (loc(v, t) = l) (8)

It requires that there exists a point in time in the dataset
where a state for s and position for a vehicle v are detected
while v is on l. This condition is not met for most pairs in
motion prediction datasets, since most pairs of traffic lights
and lanes are not part of the same intersection. Predicting
a TL2LA is not useful in those cases where there is no
evidence of motion patterns on that lane relative to the traffic
light state.
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Fig. 3. Visualization of the dataset transformation that converts motion
prediction datasets into a representation suitable for learning map semantics
from motion data. Semantic relations are used as outputs instead of inputs.

TABLE III
COMPARISON OF RELEVANT DATASET FEATURES

Feature Argoverse 2 nuScene Waymo Lyft

Lane geometry ✓ ✓ ✓ ✓
Lane topology ✓ ✓ ✓ ✓
Vehicle trajectory ✓ ✓ ✓ ✓
Vehicle to lane mapping ✗ ✗ ✗ ✗
Traffic light state ✗ ✓ ✓ ✓
Traffic light geometry ✗ ✗ ✗ ✓
TL2LA ✗ ✗ ✓ ✓

B. Comparison of available Datasets

Table III shows which available motion prediction datasets
exhibit which features. Only the datasets from Waymo and
Lyft allow us to derive TL2LA from motion data.

To perform statistics on the motion patterns relative to
a traffic light state, a suitable dataset needs to have many
recordings of the same intersection. The datasets in Table I
do not provide information at the intersection level. Instead,
we provide a different metric by defining a spatial recording
density ρ as follows:

ρ =
N · τ
R

(9)

where N is the number of scenes, τ is the duration of
a scene, and R is the length of unique roadways. Table I
shows the resulting values. The Lyft dataset has many scenes
on a small set of unique roadways. Hence, the resulting
spatial recording density is high at 405 000 s

km . Its annotated
map contains 12 intersections with 22 annotated intersection
branches and 279 TL2LAs in total.

Figure 4 visualizes the semantic map of the Lyft dataset
in Palo Alto, California. The color represents the number of
scenes recorded by a fleet of 20 vehicles. The heatmap for the
zoomed-in intersection y4Ss shows that the ego vehicle does
not travel all lanes. Therefore, using only the motion patterns
of the ego vehicle will not give information for all TL2LAs in
the semantic map. In addition, the TL2LAs in the Lyft dataset
are only partially annotated to cover intersection branches
traveled by the ego vehicle. Another geospatial requirement
is that a suitable dataset should provide the map in a global



Fig. 4. Visualization of the semantic map of the Lyft dataset, including
lane segments, traffic light geometries and TL2LAs. The heatmap indicates
how often the ego vehicle traveled a specific lane segment.

coordinate system to avoid the need to localize the scenes to
each other. This is also one evaluation criterion listed in Table
I and fulfilled by Argoverse 2, nuScenes and Lyft datasets.
In summary, the Lyft dataset best meets all criteria and is
used in the further course of this work.

C. Dataset Preparation
Making use of the Lyft dataset for map learning requires

some additional preprocessing steps. Also, the vast amount
of available scenes allows removing data points that provide
no clear evidence, e.g., due to noise. The following steps are
performed:

• Lanes are represented in the Lyft dataset as segments.
We manually label lanes by forming sequences of lane
segments from the intersection entry 20m backward.
This also filters out overlapping lane segments and
asserts unique geometric assignments from vehicle to
lane by loc).

• Only vehicles on the same intersection branch and at
a certain distance to the intersection are considered.
Those are close to the intersection entry, so their motion
pattern is highly related to the traffic light state.

• The TL2LA label is only kept for those pairs of traffic
lights and lanes that meet the condition stated in Equa-
tion 8. This way, pairs not part of the same intersection
are filtered out and 279 pairs remain in the Lyft dataset.

V. EXPERIMENTS

We evaluate our methods on two subsets of the Lyft
dataset, considering 1.) only trajectories of the recording
vehicle, referred to as ego vehicle and 2.) all vehicle trajecto-
ries. Considering only ego trajectories yields reliable motion
patterns and avoids tracking and occlusion issues. However,
this limits the predictable set of TL2LAs, since not all lanes
of each intersection were traveled by the ego vehicle in the
Lyft dataset.

A. Metrics

Accuracy (Acc), precision (Prec), recall and F-Score (F1)
are evaluated. Recall is most important, because false nega-
tive TL2LAs are most critical for safety (see Section III-D).
Precision is still essential, since false positive TL2LAs might
yield unnecessary stops at actual green light.

B. Quantitative Results

Table IV reports the quantitative results of the three
methods on the Lyft dataset. The rejection method can only
classify 271 out of the 279 pairs of traffic lights and lanes due
to a limitation of the Lyft dataset. All methods were evaluated
on that set of 271 pairs to have a direct comparison.

1) Naive Baseline Method: The Lyft dataset consists
of 109k scenes at traffic light-controlled intersections that
include detections of traffic light states. The naive baseline
method can use all 109k scenes and returns the most probable
TL2LA class in the Lyft dataset, which is assign(s, l) = 1
for every pair of traffic light and lane. Therefore, it reaches
100 % recall, as well as 90.0 % F1 score on ego trajectories
only and 79.8 % F1 score on all vehicles.

2) Pattern-based Contribution Method: The pattern-based
contribution method only uses scenes within a certain dis-
tance to the intersection. From the 109k scenes, 90k are
available when considering all vehicles and 64k are available
when considering only the ego vehicle.

The pattern-based contribution method roughly matches
the performance of the naive baseline method on ego trajec-
tories only, but outperforms it on all vehicles with an 81.8 %
vs. 79.8 % F1 score. This indicates that the pattern-based
contribution can exploit evidence from the motion patterns
of vehicles to verify or falsify a TL2LA. The comparison
with our rejection method shows a lower performance of
the pattern-based contribution method considering their accu-
racy, recall, and F1 scores. Only its precision is considerably
higher with 83.2 % vs. the precision of the rejection method
with 78.3 %. We believe that a more sophisticated approach
is needed than aggregating predictions of single scenes by
the predicted class majority.

Furthermore, we investigate the effect of the number of an-
alyzed scenes that was theoretically described in Section III-
D. Figure 5 visualizes model performance as a function of the
number of analyzed scenes of the pattern-based contribution
considering all vehicles. For the initial 1000 scenes, only a
subset of the pairs of traffic lights and lanes can be predicted.
Thus, the metrics cannot directly be compared but indicate
a trend. Accuracy, precision and recall reach saturation with
an increasing number of scenes.

3) Rejection Method: The rejection method extracts in-
formation from scenes where vehicles cross an intersection
while ego detects a traffic light state. 13k scenes can be
used for the rejection method when considering only ego
trajectories. The reason is that only data points with a
distance < 1 meter to the intersection entry are used, where
not all traffic lights are in the field of view of the Lyft
vehicles. This is primarily not a limitation of our method
but of the Lyft sensor set. Hence, the rejection method on



Fig. 5. Visualization of the performance over the number of analyzed
scenes of the pattern-based contribution method.

ego trajectories reaches a perfect recall of 100 %, but can
only classify 55 traffic light and lane pairs.

When using all vehicle trajectories, ego can record other
vehicles driving through an intersection from a distance
while detecting the traffic light states. This yields 42k usable
scenes, and 271 out of 279 traffic light and lane pairs can
be classified. The rejection method outperforms the pattern-
based contribution method with an F1 score of 87.2 %
and a close to perfect recall of 98.3 %. The precision is
78.3 % because the null hypothesis of a true TL2LA is
only rejected with a significant amount of red-light passes.
Although precision is lower compared to the pattern-based
contribution method, the rejection method is preferable given
the importance of a high recall.

C. Qualitative Results

Our approach revealed 20 incorrect TL2LA labels in the
Lyft dataset. Assignments are missed in few instances and in
scene 474 a dedicated left turn lane is incorrectly assigned
to the traffic light controlling the straight direction. The ego
vehicle is located on the northwest branch and can detect the
state of the traffic light icM8, which belongs to the southwest
branch. While the semantic map assigns the traffic light
icM8 to the oncoming lanes southwest of the intersection,
there must be an assignment to the left-turn lane H+dt of
the northwest intersection branch. Accordingly, our approach
predicts assign(icM8,H+dt) = 1, whereas the label defines
assign(icM8,H+dt) = 0 This is a false negative error in
the label. False negative errors are critical because a relevant
traffic light is not obeyed. In this example, the vehicle would
perform a left turn even if traffic light icM8 was red. Since

Fig. 6. Lyft dataset error in scene 474 with the true positive (purple), false
negative (yellow) and false positive (red) TL2LA labels [23].

Fig. 7. Graph of vehicle velocities and traffic light states over the time
for scene 474. Based on motion patterns and detected traffic light states,
the pattern-based contribution method assumes TL2LAs between the lanes
m+dt, H+dt and their traffic lights VUk/, axuZ, mBh/, icM8.

the geometry of the traffic light UJ52 cannot be differentiated
in the two-dimensional space from the geometry of icM8,
it seems obvious that the wrong traffic light was selected
during the manual labeling process of the semantic map.
This shows that human annotations are error-prone even for
small coverages. We manually corrected the false labels and
performed all experiments on the corrected dataset.

Figure 6 shows the real-world perspective (northwest
branch) of the ego vehicle in scene 474. Additionally, the
TL2LAs are visualized. Yellow shows the assignment of
traffic light icM8 to lane H+dt, which is not labeled in the
semantic map (false negatives), and red indicates erroneously
labeled TL2LAs (false positives).

Figure 7 shows the velocity-time and the traffic light state-
time diagrams of scene 474. The colors in the velocity-time

TABLE IV
QUANTITATIVE RESULTS

Method Scope Scenes Vehicles TL-Lane Pairs Acc[%] Prec[%] Recall[%] F1[%]

Naive Baseline ego only 109k 109k 55 81.8 81.8 100 90.0
all vehicles 109k 109k 271 66.4 66.4 100 79.8

Pattern-based
Contribution

ego only 64k 64k 55 83.6 84.6 97.8 90.7
all vehicles 90k 10M 271 76.4 83.2 80.4 81.8

Rejection ego only 13k 13k 55 85.5 84.9 100 91.8
all vehicles 42k 124k 271 80.8 78.3 98.3 87.2



diagram represent the assignment of the detected vehicles
to the two lane sequences in front of the intersection. Grey
indicates that the position of a vehicle could not be mapped to
a lane sequence. The state-time diagram visualizes the state
of the detected traffic lights. Due to occlusion, the traffic
light states are noisy and cannot be detected consistently.

VI. LIMITATIONS

Our approach to deriving the TL2LA from motion data
has certain limitations described in the following.

1) Availability of Traffic Light States and Motion Patterns:
A TL2LA is only derived between lanes that vehicles have
been recorded on and traffic lights whose state has been
detected. We assume that a sensor set is chosen that can
detect all relevant traffic lights. Eventually, pairs of traffic
lights and lanes that are not covered in the dataset can be
conservatively assumed to have a TL2LA. This way, all
detected traffic lights are considered, and the safety-critical
case of disregarding a true TL2LA is avoided.

2) Disambiguation of synchronized Traffic Lights: No dis-
ambiguation is possible if two traffic lights are only recorded
in the same state, even if their lane assignments differ.
This can be resolved by combining the motion data-based
approach with a geometry-based and inlay-based approach.

3) Traffic Light-independent Rules: There are other corner
cases such as flashing red lights, which are treated as an all-
way stop, vehicles running a red light, or police controlling
traffic. Examples are scenes 495, 597, and 1719 in the Lyft
dataset, where all traffic lights for the straight lanes are
detected as red, but vehicles on all lanes pass the intersection.
The applied methods need to be robust to handle such
outliers.

VII. CONCLUSION

In this paper, we presented a novel solution to the problem
of learning traffic light to lane assignments by using mo-
tion data. Both a pattern-based contribution and a rejection
method were implemented and validated to show the trade-
off between precision and recall. We found that the rejection
method is very effective regarding safety considerations. For
future work, a more sophisticated approach could use a
generic graph encoding [24] and formulate the TL2LA task
as link prediction in graphs.

Using motion patterns and traffic light states, our proposed
approach derives the TL2LA independent of the geometric
constellation. In deployment, combining this motion-based
approach with a geometric approach can yield the best results
by either using both sources of information in an integrated
model or by having redundancy. Additionally, we proposed a
dataset transformation to enable the use of available motion
prediction datasets for this task. By providing an API for the
Lyft Level 5 dataset, we encourage the research community
to invent robust approaches that meet the desired safety
requirements.
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