The University of Southampton
University of Southampton Institutional Repository

Connectivity between Eurasian snow cover extent and Canadian snow water equivalent and river discharge

Connectivity between Eurasian snow cover extent and Canadian snow water equivalent and river discharge
Connectivity between Eurasian snow cover extent and Canadian snow water equivalent and river discharge

We explore pan-Arctic climate connectivity by examining historical time series of satellite-based measurements of Eurasian snow cover extent and of observed Canadian snow water equivalent (SWE) and freshwater discharge, with a focus on the Churchill River Basin of Labrador and the Chesterfield Inlet Basin of Nunavut. Analysis of the data reveals statistically significant positive (negative) correlations between spring and summer Eurasian standardized snow cover extent anomalies and annual maximum monthly SWE as well as freshwater discharge in the Churchill River (Chesterfield Inlet) Basin the following year. A spatially coherent response to the forcing is observed since 19 rivers draining more than 0.6 × 106 km2 of northern Quebec and Labrador and with a mean annual total discharge of 320 km3 yr-1 show statistically significant positive correlations to the annual Eurasian standardized snow cover extent anomalies. The origin of this pan-Arctic climate connectivity is related to the persistent nature of the Eurasian snow cover extent anomalies and the associated accumulated gains or deficits in the surface radiation and water budgets that impose a memory in the climate system. The Eurasian snow cover extent anomalies provide some degree of predictability (up to 1 year in advance) of the surface water budget in the Churchill River and Chesterfield Inlet Basins. They further suggest that a declining trend in Eurasian snow cover extent will yield decreasing (increasing) SWE and river discharge in the Churchill River (Chesterfield Inlet) Basin in the 21st century.

0148-0227
Déry, Stephen J.
3282e381-8c56-4df0-b335-eb7b055dbb92
Sheffield, Justin
dd66575b-a4dc-4190-ad95-df2d6aaaaa6b
Wood, Eric F.
8352c1b4-4fd3-42fe-bd23-46619024f1cf
Déry, Stephen J.
3282e381-8c56-4df0-b335-eb7b055dbb92
Sheffield, Justin
dd66575b-a4dc-4190-ad95-df2d6aaaaa6b
Wood, Eric F.
8352c1b4-4fd3-42fe-bd23-46619024f1cf

Déry, Stephen J., Sheffield, Justin and Wood, Eric F. (2005) Connectivity between Eurasian snow cover extent and Canadian snow water equivalent and river discharge. Journal of Geophysical Research Atmospheres, 110 (23), [D23106]. (doi:10.1029/2005JD006173).

Record type: Article

Abstract

We explore pan-Arctic climate connectivity by examining historical time series of satellite-based measurements of Eurasian snow cover extent and of observed Canadian snow water equivalent (SWE) and freshwater discharge, with a focus on the Churchill River Basin of Labrador and the Chesterfield Inlet Basin of Nunavut. Analysis of the data reveals statistically significant positive (negative) correlations between spring and summer Eurasian standardized snow cover extent anomalies and annual maximum monthly SWE as well as freshwater discharge in the Churchill River (Chesterfield Inlet) Basin the following year. A spatially coherent response to the forcing is observed since 19 rivers draining more than 0.6 × 106 km2 of northern Quebec and Labrador and with a mean annual total discharge of 320 km3 yr-1 show statistically significant positive correlations to the annual Eurasian standardized snow cover extent anomalies. The origin of this pan-Arctic climate connectivity is related to the persistent nature of the Eurasian snow cover extent anomalies and the associated accumulated gains or deficits in the surface radiation and water budgets that impose a memory in the climate system. The Eurasian snow cover extent anomalies provide some degree of predictability (up to 1 year in advance) of the surface water budget in the Churchill River and Chesterfield Inlet Basins. They further suggest that a declining trend in Eurasian snow cover extent will yield decreasing (increasing) SWE and river discharge in the Churchill River (Chesterfield Inlet) Basin in the 21st century.

This record has no associated files available for download.

More information

Published date: 16 December 2005

Identifiers

Local EPrints ID: 480729
URI: http://eprints.soton.ac.uk/id/eprint/480729
ISSN: 0148-0227
PURE UUID: 01f832f2-e087-4f66-99e8-4dd776aaddfc
ORCID for Justin Sheffield: ORCID iD orcid.org/0000-0003-2400-0630

Catalogue record

Date deposited: 09 Aug 2023 16:48
Last modified: 17 Mar 2024 03:40

Export record

Altmetrics

Contributors

Author: Stephen J. Déry
Author: Eric F. Wood

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×