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Simulation of Thermally Fluctuating Magnetic Nanoparticles for Hyperthermia

by Oliver William Laslett

This thesis details the design, implementation, and application of numerical methods
for simulating the stochastic dynamics of magnetic nanoparticles. In particular, the
experiments in this thesis simulate the heat dissipated by magnetic nanoparticles when
subjected to alternating magnetic fields. The nonlinear dynamics of these systems are
relevant to hyperthermia, a clinical technique that uses localised particles to increase
the temperature of tumour tissue and trigger cell death.

The simulations are implemented in an open-source software package, which focuses on
reproducibility of results and rigorous testing of the underlying algorithms. In particular,
the numerical errors of popular numerical schemes for simulating the stochastic Landau-
Lifshitz-Gilbert equation are evaluated. These results suggest a trade-off between ac-
curacy and computational complexity in systems with strong thermal fluctuations. The
simulations are used to investigate the effects of novel applied waveform shapes and
arbitrary shaped clusters of interacting particles.

The simulation results show that careful consideration of the applied field characteristics
and clustering of particles can both enhance and diminish heat dissipation in magnetic
nanoparticles. Large chains of particles aligned with the applied field are capable of very
efficient heat dissipation but their strong dependence on the orientation of the applied
field could lead to spatial variations in heating. Small dense clusters are shown to
consistently perform worse than a single, isolated nanoparticle. Additionally, the use of
square-wave applied magnetic fields are shown to improve the robustness of hyperthermia
procedures and potentially increase heat dissipation when compared with traditional
sinusoidal fields.
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Chapter 1

Introduction

The first recorded procedure using heat to treat disease is found in the Edwin Smith
Papyrus, an ancient document dating back 5000 years. The papyrus documents Egyp-
tian physicians using cauterisation as a means to treat breast tumours. Thermal based
therapies, in a variety of forms, are still present in clinical oncology today and have
been transformed by the emergence of nanomedicine at the beginning of the millen-
nium. Nanomedicine, and in particular development of nanoparticles, has led to break-
through technologies in medical imaging, drug delivery, and novel therapeutic tech-
niques. Moreover, recent research shows that nanoparticles have multi-functional prop-
erties and may be able to do all this at once.

First demonstrated in 1957, magnetic hyperthermia is a method to induce localised
heating in tissue by the use of magnetic nanoparticles subjected to an alternating field.
Magnetic hyperthermia has experienced rapid development in the last 20 years, enabled
by nanotechnology, particle synthesis methods, and computational simulations. Today,
magnetic hyperthermia has clinical approval in Europe and researchers are finding new
avenues for improving existing therapies such as chemotherapy and radiotherapy. How-
ever, magnetic hyperthermia faces many medical, biological, and engineering challenges.
A fundamental design requirement for hyperthermia is to maximise the heat dissipated
by the nanoparticles while minimising patient exposure to high amplitude magnetic
fields. The optimisation of the material, environmental, and applied field properties to
maximise treatment efficacy have benefited from the theory and simulation of magnetic
dynamics.

The theory of fluctuating magnetic nanoparticles was pioneered by the work of Brown,
who proposed a stochastic differential equation to describe the magnetic dynamics of
nanoparticle at finite temperature. Additionally, the stochastic dynamics were shown to
reduce to a more simple stochastic jump process in certain cases. Since their initial pub-
lication, the stochastic Landau-Lifshitz-Gilbert equation and Néel-Brown models have
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contributed substantially to the optimisation of magnetic hyperthermia and other tech-
nologies such as magnetic disk storage. Computational simulations are a desirable altern-
ative to clinical experiments because they allow fine grained control and measurement at
lower cost and without risk. However, increasingly complex computational experiments
must also be held to the same standards of reproducibility as traditional experiments in
order to maximise their scientific impact. Chapter 2 collects the detailed mathematical
and scientific pre-requisites for the stochastic simulation of magnetic nanoparticles. The
nomenclature and equations introduced in this chapter are used throughout the thesis.

A large number of factors influence the heat dissipation of magnetic nanoparticles and
the optimum combination of parameters remains unsolved. Chapter 3, reviews the
state of magnetic hyperthermia and the search for the optimum parameters. A subset of
parameters are well understood; for example the anisotropy strength and size of isolated,
uniaxial nanoparticles. However, the effects of interactions in dense clusters of particles
are not well established and have only been studied relatively recently. Moreover, non-
sinusoidal applied magnetic fields have shown the potential to improve heat dissipation
but have received very little attention.

The focus of this thesis is to implement reliable simulations of magnetic nanoparticle dy-
namics. The simulations are used to experiment with the effects of interactions between
particles formed into dense clusters as well as the effects of non-sinusoidal applied fields.
Chapter 4, details the selection and implementation of a numerical method to solve the
Landau-Lifshitz-Gilbert equation, which is currently an open research question. The
mathematical properties of the equation complicate the implementation of reliable nu-
merical methods. The explicit Heun scheme and a fully implicit method are compared
using their path-wise error. The implicit method yields substantially lower error than
the Heun scheme but is computationally expensive. The numerical tests also show
that conservation of the magnetic moment does not necessarily reduce the total error
of the simulations. The numerical methods are implemented are implemented in an
open-source software package, detailed in Chapter 5. The software provides an imple-
mentation of complex numerical procedures not currently available under a open-source
license. The accompanying documentation and testing suite ensures future researchers
can reuse and contribute improvements to the simulation code.

Chapter 6 investigates the effects of the geometry of dense clusters of particles subjected
to inter-cluster interactions. Long chains of particles oriented with the applied magnetic
field are shown to dissipate heat very efficiently. However, their alignment must be
carefully controlled and the applied field must be strong in order to avoid potentially
dangerous spatial variations in temperature. Isotropic, sphere-like, clusters of particles
are shown to dissipate very little heat due to their paramagnetic-like response. The
simulations are compared to an existing experimental study and provides an alternative
explanation for the experimentally observed behaviour of clusters of nanocubes.
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Chapter 7, uses analytic and simple models of heat dissipation to investigate the effect
of non-sinusoidal fields. The linear response theory is revisited for arbitrary fields, which
predicts that square-wave fields lead to substantial improvements in heat dissipation.
Nonlinear models of thermal activation in single domain, isolated particles show that at
larger fields, the benefit of using a square wave diminishes. However, the results also
suggest that non-sinusoidal waveforms increase total heat dissipation in size-dispersed
ensembles of particles, which could increase the robustness of current magnetic hyper-
thermia procedures.





Chapter 2

Background

2.1 Classical magnetic moment

Magnetism is a fundamentally quantum phenomenon that arises from an intrinsic prop-
erty of electrons known as spin and the orbital motion of electrons around atoms within
a material. In a semi-classical description, the motion of a negatively charged particle
forms a current loop, which possesses a magnetic dipole moment due to orbital mo-
mentum. However, the total magnetic moment includes an additional contribution due
to electron spin, which may only be described with a quantum mechanical description
and obtained via experiments or detailed calculations. The resulting total magnetic
moment is a vector quantity µ ∈ R3 with fixed magnitude |µ| = µs and a direction that
points towards the positive (north) pole of the dipolar field. In addition to producing
a magnetic field, the magnetic moment may also be influenced by internal or external
magnetic fields, just as observed with bar magnets in the classroom. When a magnetic
dipole is subjected to an external magnetic field B ∈ R3, a torque is induced in the
magnetic moment resulting in a precession around B:

dµ
dt = −γ(µ× B) (2.1)

where ω = −γ|B| is the angular frequency and γ is termed the magnetogyric ratio [186].
Electrons, and consequently their associated magnetic moments, move freely through
the crystal lattice of magnetic materials. However, in this description, the electrons are
assumed to be localised to the atomic sites in the lattice and therefore each atom has
an associated magnetic moment (i.e. the atomic magnetic moment) [56].

Ferromagnetic materials (such as iron, cobalt, and nickel) experience strong coupling
between magnetic moments, which leads to entire domains that behave as single large
magnetic moments. These magnetic domains are described as uniformly magnetised and
their total magnetic moment a macrospin. The magnetisation M = µ/V defines the
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6 Chapter 2 Background

magnetic moment per unit volume of an electron/atom/domain and has a saturation
magnetisation Ms = |M|. The unit vector of the magnetisation is denoted m = M/Ms.

2.1.1 Energy contributions

In this thesis, we will adopt a semi-classical Heisenberg-like description of a system of N
localised magnetic moments. The total free energy of the system is the sum of magnetic
moment energy terms: E =

∑N
i=0E(mi). The respective energy of each magnetic

moment depends on both its state mi and the state of particles with which it interacts
mj , j ̸= i. We will consider four different energy contributions to the system.

2.1.1.1 Zeeman energy

The Zeeman energy describes the interaction between a spin µi and a (locally) spatially
uniform external magnetic field:

Ez(mi) = −µsmi · B (2.2)

The Zeeman energy is minimised when the magnetic moment mi aligns with the external
field direction B and therefore the magnetic moment tends to align in the direction B.

2.1.1.2 Exchange energy

The Heisenberg exchange energy describes a quantum mechanical interaction between
magnetic moments, which favours parallel alignment. Heisenberg’s classical approxima-
tion describes the exchange energy between neighbouring magnetic moments as:

Eex(mi) = −
∑
j∈Si

Jijmi · mj (2.3)

where Jij is the exchange constant and Si is the set of neighbouring magnetic moments to
the moment mi. The range (number of nearest neighbours) and strength of the exchange
term varies for each material. The definition of Si also depends on the dimensionality
of the system. For J > 0 neighbouring atomistic magnetic moments favour parallel
alignment and for J < 0 anti-parallel alignment.

2.1.1.3 Dipole-dipole interaction energy

Each magnetic moment produces a dipolar magnetic field, which influences other mag-
netic moments. The dipole-dipole (or demagnetisation) interaction describes the effect
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that a magnetic moment mi experiences from all other magnetic moments in the system:

Edd(mi) = −
∑
j ̸=i

µ0
µ0µ

2
s

4π|Rij |3
(3(mi · rij)(mj · rij)− mi · mj) (2.4)

Rij = |Rij |rij is the distance between magnetic moments i and j. The strength of the
dipole-dipole interaction reduces with the cube of the distance between the two particles.
The result of this long-range interaction term is that magnetic moments tend to align
end-to-end in the same direction.

2.1.1.4 Anisotropy energy

The anisotropy energy term describes the preferential direction of the magnetic moment
due to the magneto-crystalline orientation. The crystalline anisotropy term depends
upon the magnetic material. Commonly found in ferromagnetic materials is the uniaxial
anisotropy that acts in the unit direction e with an anisotropy constant ki:

Ea(mi) = −ki(mi · ei)
2 (2.5)

There are many additional possible anisotropy contributions such as shape, magneto-
elastic, and cubic magneto-crystalline, which will not be considered.

2.1.2 Effective magnetic field

The effective magnetic field experienced by a magnetic moment includes contributions
from externally applied magnetic fields, long and short range interactions between mag-
netic moments, and interactions between the magnetic moment and the atomic lattice
of the material. These individual contributions together form an effective field, which is
obtained from the gradient of the free energy potential of the magnetic moment:

Beff(mi) = − 1

µs

∂E(mi)

∂mi
(2.6)

The effective field varies for each magnetic moment in the system and although continu-
ously varying throughout the material will be assumed constant for each local atomic
site.

2.1.3 Landau-Lifshitz-Gilbert dynamics

The dynamics of a magnetic moment subjected to a constant magnetic field were de-
scribed previously by a precession about Beff (equation (2.6). However, the Zeeman
energy term (equation (2.2)) shows that throughout the precessional motion the energy
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is constant and not minimum. This is counter-intuitive to the general principle of that
systems should eventually reduce their total energy. Indeed, it is an experimental fact
that the magnetic moment does eventually align with the applied field due to dissipative
processes. Accounting for this evidence requires the addition of an additional term to
equation (2.1) with a torque towards the precessional axis.

A phenomenological damping term, describing an unspecified dissipative process, was
first proposed by Landau and Lifshitz [121] and later revised by Gilbert [73]. The
resulting dynamical equation for the damped magnetic moment is the Landau-Lifshitz-
Gilbert equation (LLG), which is written in terms of the unit vector mi = µi/µs:

dmi

dt =
−γ

1 + α2

(
mi × Beff,i

)
− αγ

1 + α2
mi ×

(
mi × Beff,i

)
(2.7)

where α is the dimensionless Gilbert damping constant and Beff,i is the effective field
experienced by particle i. The first term in equation 2.7 describes the precessional motion
and the second term describes the damping. Due to the conservation of momentum, the
damping process transfers energy to the spin-lattice. Note also that the magnitude of
the unit magnetic moment |mi| is still preserved.

2.2 Magnetic domains

2.2.1 Hysteresis in bulk materials

The magnetic moments in large samples of material interact with each other and can
form local regions of aligned moments termed magnetic domains. The emergence of
these uniformly magnetised domains is energetically favourable because of the strong
exchange interactions between neighbouring magnetic moments (equation (2.3)). Do-
mains of locally aligned moments are separated by domain walls. The number and
orientation of domains within a sample vary with the material, temperature, and extern-
ally applied field. Under the application of a strong enough external field, all magnetic
moments will be aligned such that the magnetisation (total moment per unit volume
M = (1/V )

∑
i µi) is at a maximum with |M| = Ms, termed the saturation magnetisa-

tion. When saturated, the material consists of a single domain. At the other extreme,
a material with many randomly oriented magnetic domains will have a magnetisation
close to zero.

Magnetic materials are categorised by their equilibrium magnetisation as a function
of an externally applied field M(H), which depends on the chemical compounds and
crystalline structure of the material as well as external effects such as temperature.
The magnetisation is described as a memory-dependent process that shows hysteresis.
Hysteresis loops are obtained experimentally by incrementing the field amplitude in
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Figure 2.1: Hysteresis loops of magnetic materials depict the variation of their equilib-
rium magnetisation with the amplitude of an applied magnetic field.

small intervals, allowing the system sufficient time to relax (such that transient effects
are diminished) and the magnetisation along the direction H is recorded.

In the absence of an external field a paramagnetic material has randomly oriented do-
mains and thus exhibits a zero magnetisation (point A in Figure 2.1b). The magnetic
moments in the material will align if subjected to an external field. As the field strength
increases, domains form and merge to create larger domains until eventually the mo-
ments are aligned at the saturation field Hs (point B in Figure 2.1b). When the field
is removed from a paramagnetic material, the magnetic moments relax into random
orientations and the magnetisation returns to zero (point C in Figure 2.1b).

In ferromagnetic materials, an externally applied field will also eventually saturate the
magnetisation of the material at Hs (point B in Figure 2.1a). However, on removal of
the field, the magnetic moments within a ferromagnetic material retain some ordering
and hence the material exhibits a remanent magnetisation (point C in Figure 2.1a). The
applied field must increase in opposition to the magnetisation until the critical field Hc

is reached in order to return the magnetisation to zero. The remanent magnetisation is
not permanent but a (potentially very long-lived) meta-stable state due to the effect of
thermal fluctuations, described in Section 2.4.

2.2.2 Single-domain nanoparticles

Sufficiently small, nano-sized particles of magnetic material consist of a single domain [32].
Unlike bulk materials in which domains are created and destroyed by magnetic fields,
nanoparticles consist of a single uniformly magnetised domain throughout the hyster-
esis cycle. In other words, the non-equilibrium behaviour of the individual magnetic
moments is a coherent rotation. The maximum dimensions of a single-domain particle
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depend on the geometry and material properties of the nanoparticle [97]. In addition
to size limits, the single domain may also be broken by the application of a very strong
external field that may induce nucleation, fanning, or curling [14].

A particle that is assumed to consist of perfectly coupled magnetic moments may be
represented by a single macrospin (Section 2.1). The theory of coherent rotation in
magnetic nanoparticles with uniaxial anisotropy was developed extensively by Stoner
and Wohlfarth [187]. Hence the model is often termed the Stoner-Wohlfarth model. The
free energy of a non-interacting Stoner-Wohlfarth particle consists of the total Zeeman
and anisotropy energy terms of the individual magnetic moments. The state of the
magnetic moment is described by two angles θ, ϕ representing the angle between m and
B and the angle between e and B respectively. The free energy of the particle E(θ, ϕ)

in state (θ, ϕ) is then given as:

E(θ, ϕ)

kBT
= σ sin2 (θ − ϕ)− 2σh cos θ (2.8)

where T is the temperature (K), kB is the Boltzmann constant, σ = KV /(kBT ) is the
stability ratio, and h = |B|/Bk is the reduced applied magnetic field, which is normalised
by the anisotropy field Bk = 2K/(Ms). The first term in equation (2.8) describes the
preferential orientation of the magnetic particle moment towards the anisotropy axis
and the second term describes preferential alignment with the field direction.

In the special case that the externally applied field B is applied along e the equation
reduces to a function of θ only:

E(θ)

kBT
= σ sin2 θ − 2σh cos θ(t) (2.9)

When h(t) < 1 the particle exhibits two energy minima θ1 = 0, θ2 = π separated
by a maximum at θ0 = cos−1 (−h). The normalised energy barrier (divided by kBT )
separating the two minima is σ

(
1± h2

)
.

2.2.2.1 Interparticle interactions

The magnetic behaviour of an ensemble of single domain magnetic nanoparticles is
influenced by inter-particle interactions. Interactions between individual magnetic nan-
oparticles lead to collective behaviour, formation into aggregate clusters, and a range
of other complex phenomena [14, 104, 135, 145, 162]. The interactions between nano-
particles can be approximated using a number of methods [49], which describe different
interactions [14]. However, all these interactions result from the individual magnetic
moments within the particles interacting.

If the exchange energy between the intra-particle magnetic moments dominates the
dipole-dipole interaction energy between the inter-particle magnetic moments then we
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may still assume coherent rotation of the particle macrospin. Consequently, the in-
teraction between two particles is well described by a dipolar interaction between the
respective macrospins at the centre of the particles. For perfectly spherical particles,
this mean-field assumption is equivalent to the sum of intra-particle magnetic moment
dipolar interactions. For other shapes it is only an approximation [48]. This assumption
is very common in modelling magnetic nanoparticle dynamics and has successfully de-
scribed experimental results [19, 98, 161]. However, it is also possible to mathematically
derive the particle interactions from the individual magnetic moments, such as for 2D
arrays of magnetic dots [163].

Modelling the dipolar interaction between macrospins significantly reduces the number
of interactions in the system by neglecting the internal degrees of freedom. However,
if the surface-to-surface distance between particles becomes small enough, the magnetic
moments in the shell of each particle may interact through the exchange interaction
term violating the homogeneity of the macrospin assumption [14, 145].

2.2.2.2 Macrospin dynamics

In a macrospin model in which the magnetic moments are perfectly coupled, the dynamic
behaviour of the macrospin is generally assumed to follow the phenomenological Landau-
Lifshitz-Gilbert equation. Recall that a fundamental assumption of the LLG equation
is that the magnetisation of the macrospin is unchanged. However, if the particle’s
constituent magnetic moments deviate marginally from the perfectly aligned case, then
the magnetisation will be reduced. However, this assumption has proved useful since the
earliest work of Brown [22]. The LLG equation and effective fields terms are written in
terms of magnetisation of the macrospin Mi by substituting µs for MsVi. The total free
energy of particle i in a system of N single-domain particles (ignoring exchange energy
between surfaces, see for example [84]):

E(mi) = −ViMsmi · B −KiV (mi · ei)
2

−
∑
j ̸=i

µ0M
2
s ViVj

4π|Rij |3
(3(mi · rij)(mj · rij)− mi · mj)

(2.10)

where Ki = ki/Vi is the anisotropy constant in Jm−3. Note that the model assumes
that the applied magnetic field B is uniform for all particles in the system. The effective
field experienced by particle i is obtained from equation (2.6):

Beff,i = − 1

MsV

∂E(mi)

∂mi
= B +

2Ki

Ms
(mi · ei)ei

+
∑
j ̸=i

µ0MsVj

4π|Rij |3
(3(mj · rij)rij − mj)

(2.11)
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2.3 Stochastic processes

An overview of the theory of stochastic processes is necessary before discussing the
effect of temperature on the dynamics of magnetic moments. Stochastic processes are a
mathematical description of randomly fluctuating phenomena, which must be specified
using probability theory. More formally, a stochastic process is a set variables {X(t)}t∈T
where X(t) is a collection of random variables and t usually denotes time where T =

[0,∞). Since X(t) is a collection of random variables the stochastic process has many
possible realisations. There are many examples of stochastic processes in physics such as
decay in radioactive materials, noise in electronic circuits and the thermal fluctuations
of magnetic moments. The prototypical stochastic process is a random walk called
Brownian motion after Robert Brown observed and described the random paths of
pollen in a fluid. These random fluctuations were later described by Einstein as being
the result of “exceedingly frequent forces” impacting on the system, which lead to such
complicated behaviour that their effect may only be described probabilistically [68].

2.3.1 Stochastic differential equations

Dynamical systems with deterministic dynamics and random fluctuations are described
by stochastic differential equations (SDEs). The Langevin equation is an SDE that
describes a diffusion process and will be used in Section 2.4.1 to describe the dynamics
of a magnetic moment subjected to thermal fluctuations:

dx
dt = a(x, t) +B(x, t)ξ, ξ ∼ N{0, 2DIm} (2.12)

x ∈ Rn is the system state, ξ ∈ Rm is a vector of independent normally distributed
random variables, Im is the identity matrix, and a : Rn×[0, T ] → Rn and B : Rn×[0, T ] →
Rn×m are called the drift and diffusion respectively. The drift and diffusion are nonlinear
functions that describe the deterministic and stochastic dynamics respectively. Equation
(2.12) may be found in its integral form:

dx = a(x, t)dt+B(x, t)dW(t) (2.13)

where W ∈ Rm is the m-dimensional Wiener process. The Wiener process can be
described intuitively as the continuous limit of a series of random steps. The Wiener
process begins with W(t0) = 0 at t0 = 0 and over a small time δt takes a random step
z = W(t+ δt)− W(t), which is a vector of independent normally distributed variables
with zero mean and variance δt (i.e. z ∼ N {0, δtIm}). The Wiener process is obtained
by taking the limit δt → 0, which describes a series of small and very frequent random
steps. Although the Wiener process is continuous, it is nowhere differentiable and thus
equation (2.12) is phenomenological in nature. The solution of the Langevin equation
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is:
x(T ) = x(t0) +

∫ T

t0

a(x, t)dt+
∫ T

t0

B(x, t)dW(t) (2.14)

The integral of the Wiener function, the third term of equation (2.14), is a stochastic
integral and requires the use of stochastic calculus.

The stochastic integral is the stochastic analogue of the deterministic Riemann integral.
However, unlike the Riemann integral, the stochastic integral may be defined in one of
two ways, leading to the Itô-Stratonovich dilemma. The mathematical definitions and
fundamental differences between the two interpretations is described in Appendix A. One
must be careful to choose the correct approach when modelling any diffusion process.
The accepted notation to signal the Stratonovich interpretation over the Itô interpreta-
tion is to augment the stochastic integral operator in equation (2.13) with ‘◦’ and alter
the drift term:

dx = a(x, t)dt+B(x, t) ◦ dW(t) (2.15)

An Itô stochastic differential equation may be converted into an equivalent Stratonovich
stochastic differential equation (and vice-versa) using the Itô correction:

ai(x, t) = ai(x, t)−
1

2

m∑
k=1

n∑
j=1

∂bik(x, t)
∂xj

bjk(x, t) (2.16)

An important property of stochastic differential equations is commutative noise. The
condition for commutative noise is [115]:

d∑
i=1

bi,j1
∂bk,j2
∂xi

=

d∑
i=1

bi,j2
∂bb,j1
∂xi

(2.17)

for all i, j where bi,j and xi are elements of the diffusion matrix and state vector respect-
ively. SDEs with a commutative noise are often easier to solve analytically and simulate
numerically.

2.3.2 Fokker-Planck equation

The state of a system x with dynamics described by a stochastic differential equation is a
random variable. Starting from the same initial condition, a stochastic system can take
many possible trajectories. It is rarely useful to obtain just one possible trajectory for a
system. In order to answer questions such as: “which trajectory is most likely?”, “which
trajectory should we expect?”, and “how much do the possible trajectories vary?” the
probability distribution of the state trajectories is required p(x, t).

Each Langevin equation corresponds to a Fokker-Planck equation, which describes the
time-evolution of the probability density function of the system state. Recalling the



14 Chapter 2 Background

0 2 4 6 8 10
Time

−4

−2

0

2

4

p
(W

(t
))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2.2: The time-evolution of the Wiener process. The black paths show possible
realisations (solutions) to the stochastic differential equation describing the Wiener pro-
cess. The Fokker-Planck equation describes the probability distribution over the possible
states at a time t and is shown as a heat map.

vector-valued drift function and matrix-valued diffusion function from equation (2.12),
the corresponding Itô Fokker-Planck equation is:

∂p(x, t)
∂t

= −
N∑
i=1

ai(x, t)
∂p(x, t)
∂xi

+
N∑
i=1

N∑
j=1

1

2
bij(x, t)

∂2p(x, t)
∂xi∂xj

(2.18)

where subscripts denote the vector/matrix indices. Figure 2.2 shows solutions to the
SDE and corresponding Fokker-Planck equation for a standard Wiener process. The
initial condition of the process is W (t0) = 0 with probability p(0) = 1 at time t0 = 0.
As time progresses from the initial condition, the probability distribution diffuses - i.e.
becomes more flat. Near t = 0 the probability that the Wiener process takes a value
near zero is quite high. This can be seen from the six different realisations of the Wiener
process SDE solution (black lines). The initial state of the system is W (0) = 0 and the
solutions remain close initially but diverge from one another as they evolve. Note that
the Fokker-Planck equation is a deterministic partial differential equation, although it
represents a stochastic process.

2.3.3 Jump processes

The Fokker-Planck equation represents a stochastic process that diffuses with time but
a process may also exhibit “randomness” in the form of discrete jumps. Jump processes
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are applicable to both systems with a continuous state x ∈ Rn and systems with a set
of N discrete states x ∈ X = {x1,x2 . . .xN}. The trajectory of a jump processes is
continuous in time but its value can take discrete jumps. The process is defined by
the transition rate from each possible state to all other states. Informally, generating a
trajectory from a jump process can be described as follows:

1. Begin with an initial state xnow at time t = t0

2. Draw a random variable ∆t (the waiting time) from a continuous probability dis-
tribution over time, parameterised by the transition rates.

3. Draw a second random variable xnext from a continuous probability distribution (or
discrete probability mass function) over the states, parameterised by the transition
rates.

4. At time t = t0 +∆t the system jumps from xnow to xnext

An exact algorithm to generate trajectories from a jump process over a discrete state
space was given by Gillespie [76] and such methods are more generally known as kinetic
Monte-Carlo methods [197]. Given an initial state and a set of transition rates between
states, kinetic Monte-Carlo methods simulate realisations from the jump process. Sim-
ulation of stochastic processes are discussed more generally in Section 2.3.6.

2.3.4 Master equation

Just as the Fokker-Planck equation describes the probability distribution of the traject-
ories for a diffusion process, the master equation describes the probability distribution
(or probability mass function for a discrete state-space) of the trajectories for a jump pro-
cess. The remainder of this thesis will only consider jump processes that take values on a
set of discrete possible states. Each possible state is labelled xi where i = 1, 2, . . . , N . In
this case, the master equation reduces to a set of N first order linear ordinary differential
equations:

dp(xi, t)
dt =

∑
j

[wj→ip(xj , t)− wi→jp(xi, t)] (2.19)

A jump process with N possible states will have 2N possible transition paths and there-
fore 2N transition rates. Since, the probability may be interpreted as the proportion
of members of a statistical ensemble occupying the state xi, the product wi→jp(xi, t)

represents the number of members that transition from state xi to state xj at time
t. Therefore the probability flow into state xi in equation (2.19) is the total number of
members that transition into state xi minus the total number of members that transition
out of state xi to another state xj .
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2.3.5 Canonical ensemble

An ensemble of identical isolated systems that are in thermal equilibrium with a heat
bath of temperature T is termed the canonical ensemble. In other words, the system has
reached a statistical equilibrium such that the probability distribution over the states is
time-invariant. The probability that the system will be found in state x with free energy
E(x) is in fact given by the Boltzmann distribution [72]:

p(x) = e−βE(x)

Z
(2.20)

where β = kBT , kB is the Boltzmann constant and Z is the scalar-valued partition
function:

Z =

∫
x1

∫
x2

· · ·
∫
xn

p(x1, x2, . . . xn, t)dxn · · · dx2dx1 (2.21)

For many systems, the Boltzmann distribution represents the stationary distribution
∂p(x,t)

∂t = 0 of the Fokker-Planck or master equation. The canonical ensemble is a result
of equilibrium thermodynamics, which is not applicable to dynamical systems.

2.3.6 Simulation of stochastic processes

2.3.6.1 Evolution of probability distributions

Many stochastic processes do not have known analytic solutions and require numerical
methods to simulate approximate solutions. The most descriptive numerical simulation
is to approximate the probability distribution of the system states at discrete points in
time. Numerical solutions to the Fokker-Planck may be obtained by the use of finite-
element [130] and finite-differences methods [128], similarly to any parabolic partial
differential equation. For a discrete-state system, the master equation may be solved
using techniques for an n-dimensional system of linear ordinary differential equations,
such as Euler and Runge-Kutta methods [164].

Obtaining approximate solutions to the Fokker-Planck equation for systems with high di-
mensionality may be prohibitively expensive. This is a consequence of the increased com-
putational difficulty of solving partial differential equations. However, the Feynmann-
Kac theory says that a deterministic partial differential equation problem can be trans-
formed into a stochastic differential equation problem [82]. For Fokker-Planck equations,
this amounts to simulating many possible trajectories of the corresponding Langevin
equation to obtain an approximate distribution of trajectories. In the limit of simulat-
ing infinite different possible trajectories of the stochastic process, the two results are
equivalent [82]. This approach to simulating stochastic processes is termed stochastic
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simulation and is a type of Monte-Carlo method. Similarly, high dimensionality mas-
ter equations may be solved more efficiently using the kinetic Monte-Carlo or Gillespie
methods [75–78], which generate trajectories for jump processes.

2.3.6.2 Trajectories of stochastic differential equation

Numerical methods for simulating stochastic differential equations are analogue to those
for deterministic differential equations. Given an initial state, the objective is to obtain
an estimate of the state of the system at discrete time intervals. The fundamental
difference is that solutions to SDEs are dependent on a specific realisation of a Wiener
process. Multiple solutions to the SDE are simulated by using different Wiener processes
in each case. In practice, this usually amounts to using a different seed for the random
number generator used by the computational method to generate the Wiener process.
An advantage of stochastic simulation is that it is inherently embarrassingly parallel -
i.e. each realisation is independent of the others and therefore they can be computed
simultaneously on multiple processors. Specific implementations of numerical methods
for obtaining solutions to SDEs are given in Chapter 4.

The aim of any numerical SDE solver is to approximate the true solution x(t) of the
Langevin equation (2.13) at discrete time intervals t0 < t1 < t2 < · · · < tN given
an initial condition x0 = x(t0). The resulting discrete time approximation is a set
of values {y0,y1, . . .yN}, which is conditional on a Wiener process Wt on the period
t0 ≤ t ≤ tN . The fundamental requirement of the solver is to minimise the error between
the approximation yi and the true solution x(ti) while also minimising computational
resources.

The convergence and stability properties of a numerical SDE solver are crucial to ensure
robust performance in practice. Numerical methods that have proven convergence and
stability may be applied with confidence to problems that have no analytic solution.

2.3.6.3 Convergence

A natural requirement of any numerical method solving an initial value problem is that
the approximate solution should approach the true solution with a decreasing time step
∆t → 0. A numerical approximation y1,y2, . . . ,yn to an SDE may converge to the true
solution in a strong or a weak sense. A numerical scheme converges strongly with order
γ if the following criterion is satisfied:

E ⟨∥x (tn)− yn∥⟩ ≤ C∆tγ (2.22)

for some fixed constant C and γ. In other words, the numerical approximation for
the global solution yn at time tn approaches the true value x(tn) as the time step
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∆t reduces. Strong convergence is analogous to the deterministic case: as the time
step decreases, the true and approximate state trajectories converge. Strong solutions,
which rely on accurate simulation of the Wiener process, are necessary when path-wise
information (such as for hitting times, first-passage times, etc.) is needed. In order
to understand the full dynamics of magnetic nanoparticles, path-wise accuracy is an
important requirement.

A numerical scheme converges weakly with order β if:

∥E ⟨x(tn)⟩ − E ⟨yn⟩∥ ≤ C∆tβ (2.23)

Equation (2.23) requires that the expected value of the approximation converges to the
expected value of the true solution. Note that this is a much weaker requirement than for
strong convergence. In the context of weak stochastic simulation, the average value of a
large ensemble of trajectories will approach the true expected solution but the individual
solutions will not be an accurate representation of the true solutions. Weak numerical
solvers, designed only to achieve weak convergence, exploit this weaker constraint by
relying on approximate Brownian paths (e.g. a binomial branching processes). These
weak solutions are computationally efficient to generate and often converge faster than
strong solutions.

Mathematical proofs of the convergence of numerical schemes are challenging to de-
rive. A common approach is to determine the consistency of an approximation, which
is sufficient to determine convergence - see [115] for more details. A thorough test of a
numerical method’s implementation is to compute the empirical convergence in a com-
putational experiment and compare the results to the expected theoretical convergence.

2.3.6.4 Stability

The stability of a numerical scheme describes whether the errors of the scheme are
bounded or diverge. There are a number of definitions of stability (A-stability, M-
stability, T-stability, etc.) and the stability of a solution depends on the numerical
scheme, the time step, and the underlying SDE that is being simulated. The basic
stability properties of deterministic and stochastic numerical schemes are understood by
studying simple test functions.

In the following, we will use the MS-stability (mean-square stability). MS-stability says
informally that approximate solutions that begin close to the true solution remain within
some bounded error. The test equation is the following scalar, linear, time-invariant, Itō
SDE:

dy(t) = µy(t)dt+ σy(t)dWt, µ, σ ∈ R (2.24)
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The system in equation 2.24 is MS-stable if and only if:

lim
t→∞

E
〈
y2(t)

〉
= 0, y(0) = δ0 (2.25)

for any arbitrarily small δ0. The test equation can be shown to be MS-stable with initial
condition y(0) = 1 with probability 1 if µ− σ2/2 < 1.

A stable numerical scheme results in an approximate trajectory of the test equation
{y1, y2, . . . , yn} that is also MS-stable such that limn→∞ yn = 0 [23]. A numerical scheme
is said to be MS-stable for the test equation (2.24) if and only if:

R ≜
E
〈
y2n+1

〉
E ⟨y2n⟩

≤ 1 (2.26)

where R is defined and called the stability function. The region of stability is the
three dimensional space {(µ, σ,∆t) : R < 1} that is the set of parameters for which the
condition R < 1 holds true.

Region of stability: Euler The simplest Itō numerical scheme is the explicit (or
forward) Euler method: yn+1 = yn+a(yn, tn)∆t+ b(yn, tn)∆Wn where ∆Wn = Wtn+1 −
Wtn and a(.), b(.) are the drift and diffusion respectively. Substituting the test equation
(2.24) into the Euler method obtains the one-step predictor for the method:

yn+1 = yn + µyn∆t+ σyn∆Wn (2.27)

The one-step predictor corresponds to the following stability function:

R = (1 + p)2 + q2 < 1 (2.28)

where p = µ∆t and q = σ
√
∆t. Therefore, it is necessary that −2 < p < 0 for the

explicit Euler method to be MS-stable; the time step must be well matched to the time
scale of the deterministic dynamics such that ∆t ≈ −1/µ. However this condition is
not sufficient, the stochastic component must also be low relative to the deterministic
dynamics such that q2 < −2p− p2.

Region of stability: semi-implicit Euler The semi-implicit Euler method intro-
duces implicitness into the deterministic component only: yn+1 = yn+a(yn+1, tn+1)∆t+

b(yn, tn)∆Wn giving the stability function:

R =
1 + q2

(1− p)2
< 1 (2.29)

In contrast to the explicit Euler method, the semi-implicit Euler method requires p < 0

such that the time step may be significantly smaller or larger than the deterministic
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dynamics. The condition p < 0 is true as long as µ < 0 in the test equation. Systems
with relatively high noise will still cause instability since q2 < p2 − 2p. Smaller time
steps allow larger noise intensity σ.

Region of stability: fully implicit A naive generalisation of the implicit (backward)
Euler scheme for ODEs to SDEs is implicit in the drift and diffusion terms such that
yn+1 = yn + a(yn+1, tn+1)∆t+ b(yn+1, tn+1)∆Wn. The one step predictor now gives:

yn+1 =
1

1− µ∆t− σ∆Wn
yn (2.30)

This step could be undefined or very large for a small ∆Wn. In fact, it can be shown
from equation 2.30 that E ⟨yn+1⟩ → ∞ [142]. This presents a fundamental challenge
for designing fully implicit methods for SDEs. However, a number of solutions have
been proposed to handle this problem [24]. In Section 4.3.3 we describe a fully-implicit
method that uses a truncated Wiener process.

2.3.6.5 Systems in equilibrium state

When the dynamical approach to equilibrium is not relevant, Markov-chain Monte-
Carlo (MCMC) methods may be used to approximate the equilibrium distribution of
the stochastic process. MCMC methods approximate the distribution of the canon-
ical ensemble without requiring the partition function Z be computed (which becomes
prohibitively expensive for large systems). MCMC is a sampling method, which draws
samples from the equilibrium distribution, which are guaranteed to converge to the
true distribution. MCMC may be thought of as a more efficient integration method.
Commonly used algorithms for MCMC are the Metropolis method [168], Hamiltonian
Monte-Carlo [150], and the No U-Turn sampler [94].

2.4 Finite-temperature magnetism

The non-equilibrium behaviour of a magnetic moment were previously described as
a damped precession around an externally applied field, eventually aligning with the
field. In reality, a magnetic moment will fluctuate randomly due to thermal effects,
which are due to degrees of freedom that are not explicitly present in the physical
model. The origins of the thermal fluctuations are the same origin as the damping
effect (which is heuristically accounted for in the Landau-Lifshitz-Gilbert equation) and
are formally related through the fluctuation-dissipation theorem. The exact origin of
these fluctuations are beyond the scope of this thesis. Consequently, the dynamics of a
magnetic moment (or single domain magnetic nanoparticle) are described by a stochastic
process.
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2.4.1 Stochastic Landau-Lifshitz-Gilbert equation

The Landau-Lifshitz-Gilbert equation is augmented with a randomly fluctuating thermal
field Hth ∈ R3 to account for thermal fluctuations. The thermal field is a vector of
independent and normally distributed random variables such that:〈

Hi
th(t),H

j
th
(
t′
)〉

= 2Dδijδ
(
t− t′

)
(2.31)

where the strength of the fluctuations, a scalar D, has yet to be determined. Moreover,
the thermal field vector at each atomic site is independent. The stochastic Landau-
Lifshitz-Gilbert (sLLG) equation is obtained by adding the thermal field contribution
to the effective field (where we have used the H-field Heff = µ0Beff):

dm
dt = − γ

1 + α2
(m × (Heff + Hth))−

αγ

1 + α2
m × (m × (Heff + Hth)) (2.32)

The stochastic Landau-Lifshitz-Gilbert equation is taken under the Stratonovich inter-
pretation and rearranging into integral form gives:

m(t) =

∫
a(m, t)dt+

∫
B(m, t) ◦ dW(t) (2.33)

where the drift and diffusion coefficients are:

a(m, t) =
−γ

1 + α2
(m × Heff)−

αγ

1 + α2
m × (m × Heff) (2.34)

B(m, t) =
√
2D

−γ

1 + α2
(m×)−

√
2D

αγ

1 + α2
m × (m×) (2.35)

(2.36)

The stochastic Landau-Lifshitz-Gilbert equation belongs to a class of complex SDEs,
which are particularly difficult to simulate and are discussed in more detail in Chapter 4.
The corresponding Fokker-Planck equation for the stochastic Landau-Lifshitz-Gilbert
equation is [22]:

∂

∂t
p(m; t) =

∂

∂m

{[
− −γ

1 + α2
m × Heff −

αγ

Ms (1 + α2)

+ 2DγkBm ×
(

m × ∂

∂m

)]
p(m t)

} (2.37)

2.4.2 Thermal equilibrium

At zero-temperature, in the absence of any externally applied forces, a magnetic system
will reach a locally stable equilibrium due to the dissipative term in the LLG equation.
However, when temperature is introduced, the isolated system will randomly sample
states around the equilibrium due to coupling with the heat bath. There is a finite
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probability that the system will be found in any one of the possible states. By considering
an ensemble of identical systems, each randomly fluctuating, then at any point in time
we have a distribution of states. In the absence of any external forces, this distribution
becomes stationary: the states of each system are still fluctuating but the distribution
over the statistical ensemble is time-invariant.

In thermal equilibrium, a system of interacting magnetic moments satisfy the conditions
for a canonical ensemble. Therefore, it is known that the stationary distribution of the
system should follow the Boltzmann distribution:

∂

∂m

{[
− −γ

1 + α2
m × Heff −

αγ

1 + α2

+ 2DγKm ×
(

m × ∂

∂m

)]
Z−1e−E(m,t)/(kBT )

}
= 0

(2.38)

Rearranging this equation yields the value of the thermal strength D:

D =
2αkBT

V γMs
(2.39)

An alternative approach to obtaining the strength of the fluctuations D is to make use
of the fluctuation-dissipation theorem. A discussion of the two approaches can be found
in [57].

Although the expression for the distribution in equilibrium is known (the Boltzmann dis-
tribution), its value in large systems of interacting magnetic moments (or single domain
particles) cannot be computed because of the difficulty of computing Z. The partition
function Z requires evaluating the multidimensional integral (equation (2.21)), which
becomes prohibitively expensive to approximate with numerical methods. Therefore the
equilibrium state systems containing many magnetic moments (particles) must be ob-
tained using MCMC methods as in Section 2.3.6. Using MCMC methods to evaluate the
equilibrium distribution of a large system is significantly more efficient than stochastic
simulation of the Fokker-Planck equation to equilibrium.

2.4.3 Thermal activation

A magnetic moment in a local energy minima, subjected to thermal fluctuations with low
energy in comparison to the energy required to escape the minima, will have a very low
but finite chance of escaping the well. These states are meta-stable states because they
appear to be stable for very long periods of time. Occasionally the stochastic fluctuations
will be large enough that the moment will escape from the minima and transition to
another minima, a process referred to as thermal activation. There is a large separation
of time scales between the escape time (long) and local dynamics in the well (short).
Under these conditions, a rate description of the system is a valid approximation to the
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dynamics [86]. The full dynamics of the magnetic moment are reduced to a Markovian
jump process over a discrete set of meta-stable states.

2.4.3.1 Single magnetic nanoparticles

As seen previously, the time evolution of the probability mass function over the discrete
set of meta-stable states is given by the master equation (2.19). The transition rates
in the master equation are all that is required to simulate the jump process. However,
reducing the Landau-Lifshitz-Gilbert dynamics to a single transition rate is a non-trivial
problem and is an ongoing subject of study [21, 22, 37, 38, 45, 108, 109, 118, 151].

The simplest model of thermal activation was first proposed by Néel [151] and was based
on the work of Arrhenius on reaction rate theory in chemistry [8]: The free energy of
a magnetic nanoparticle with a field h(t) at time t applied along its anisotropy axis
is described by the Stoner-Wohlfarth model (Section 2.2.2) and is approximated with
two possible metastable states θ1(t), θ2(t) corresponding to the minima of equation (2.9)
with h(t) < 1. The particle dynamics are modelled as jumps from orientation θi(t) to
orientation θj(t) according to the transition rate Γi→j(t). The corresponding master
equation obtained from equation (2.19):

d
dt

[
p(θ1; t)

p(θ2; t)

]
=

[
−Γ1→2(t) Γ2→1(t)

Γ1→2(t) −Γ2→1(t)

][
p(θ1; t)

p(θ2; t)

]
(2.40)

where p(θ1; t) + p(θ2; t) = 1 for any t and the magnetisation is computed from the
orientation probabilities M(t) = Ms(p(θ1; t)− p(θ2; t)). The transition rates relate to the
relaxation time of the particle magnetisation in a time-independent externally applied
field:

τ ≈ Γ−1
1→2 + Γ−1

2→1 (2.41)

The Néel-Arrhenius law relates the transition rate between the two states to their energy
barrier (equation (2.9)):

Γi→j(t) = f0e
−σ(1±h(t))2 (2.42)

where f0 is called the attempt frequency. The attempt frequency is often assumed as a
constant value between 109−1011 as obtained by experiments [22]. However, Brown [21,
22] later derived an expression for the attempt frequency for a Stoner-Wohlfarth particle
using the Kramers theory [118], leading to the Néel-Brown model:

Γi→j(t) =
2γαkBTσ

1.5
(
1− h2(t)

)
VMs

√
π(1 + α2)

(1± h(t))e−σ(1±h(t))2 (2.43)

where γ = 1.76086 × 1011 is the magnetogyric ratio. The Néel-Brown model is only
valid when the energy barrier is sufficiently large, σ(1− h)2 ≫ 1, to maintain the two
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well structure and ensure a separation of time scales. Computing transition rates for
magnetic particles subjected to an oblique magnetic field requires additional complexity
and has been addressed in [37, 71].

Larger particles or particles at low temperature are stable and experience very few
thermal activations. The transition rates Γi→j are infrequent to negligible and the
relaxation time τ is large compared to the observation time of the magnetisation. In this
case, the particle magnetisation will appear frozen. However, particles with low stability
have many transitions and fast relaxation times compared to the observation time. In
this case, the particle magnetisation will fluctuate during the observation window. A
large ensemble of fluctuating particles will appear as having net zero magnetisation since
the particles are randomly fluctuating. However, the transition rates can be influenced
by an applied field h in equation (2.43) and the particles can be stabilised. In this case
the ensemble will experience a net magnetisation until the field is removed. Therefore,
the ensemble exhibits a similar behaviour to paramagnetic materials as described in
Section 2.2.1. The non-hysteretic response of an ensemble of single domain magnetic
nanoparticles is termed superparamagnetism. Superparamagnetic materials distinct from
bulk paramagnetic materials by exhibiting strongly aligned magnetic moments and very
large magnetisation values.

2.4.3.2 Weakly interacting magnetic nanoparticles

The thermal activation of a single particle may be extended to weakly interacting en-
sembles of particles. Two particles are weakly interacting if the dipole-dipole effective
field is weak enough such that the two-level approximation of the previous section ap-
plies to each particle. These models have been simulated using kinetic Monte-Carlo
techniques, which are described in [189].

2.4.3.3 Complex magnetic systems

Magnetic materials with more complex domain structures have also been treated with
thermal activation. The multidimensional energy landscape for these materials are so
complex that there are currently no expressions of the transition rates. Rather, numer-
ical techniques are first used to find local minima (meta-stable states) by using energy
minimisation methods such as gradient descent or micromagnetics [60]. The transition
rates between these meta-stable states are computed using the Arrhenius relationship
and the energy barriers are obtain using methods such as the nudged elastic band method
[88].
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2.4.4 Linear response theory

Linear response theory describes the response of systems in equilibrium to small perturb-
ations from an external driving force. For an overview of linear systems in general and
linear response calculations in Hamiltonian systems specifically see [205] and [166] re-
spectively. For a thorough review of linear response models for single magnetic particles
see [65].

The magnetisation in thermal equilibrium of an ensemble of Stoner-Wohlfarth particles
(Section 2.2.2) subjected to a small constant externally applied field approximately fol-
lows a linear function of the applied field magnitude:

M∞ = χ0H (2.44)

where χ0 is called the equilibrium (or static) susceptibility. This relation is approx-
imately true in the general case that H is small enough. In the particular case of an
ensemble of Stoner-Wohlfarth particles with their anisotropy axes aligned with the ex-
ternally applied field, the static susceptibility may be obtained in two cases. When the
reduced energy barrier σ = 0 then χ0 = µ0M

2
s V /(3kBT ). Alternatively, in the limit

where σ → ∞ then χ0 = µ0M
2
s V /(kBT ).

The non-equilibrium magnetisation response of an ensemble of particles to a time-varying
applied field is also predicted by linear response theory. A first-order linear system
subjected to a harmonic force H(t) = H0 cos (ωt) is also a harmonic of equal frequency
but with shifted amplitude and phase [183, 205]:

M(t) =
χ0

1 + jωτ
H0 cos (ωt) (2.45)

where the gain term χ0 is the static susceptibility and the time constant τ is the Néel
relaxation time in equations (2.42) (2.41) [27, 165]. Recall from Section 2.4.3.1 that
the Néel relaxation time additionally requires that σ(1− h)2 ≫ 1. These results have a
small domain of validity but have proved useful in models of heat dissipation (Section 3).
For higher-order approximations of nanoparticle dynamics see [65].

2.4.5 Heat and work

Work must be done in order to change the magnetisation of a material. A magnetic
material subjected to an external field source B0 = µ0H0, where µ0 = 1/(4π)× 10−7kg
s−2 A−2 is the permeability of a vacuum, will produce a magnetic field in response
B = µ0(M + H) where H = H0 is the magnetic field not due to the presence of the
material. Recall from Section 2.2.1 that the magnetisation is a potentially multi-valued
nonlinear function of the applied field. Changing the magnetic field produced by the
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material B requires doing work to the system through the applied field H. The first law
of thermodynamics states that for an isolated system:

∆U = δW + δQ (2.46)

in other words the change in internal energy U is the sum of the work done to the system
δW and the heat added to the system Q. As the external field changes the magnetic
field of the material, magnetic work must be performed by the underlying circuit driving
the magnetic field (i.e. the magnetic field generator), which is defined as [188]:

∆U =

∫
dv
∫

B · dH + δQ (2.47)

where
∫

dv represents the integral over the volume of the magnetic material. Thus the
work done to the system will lead to an increase in internal energy or heat dissipated
from the system.

In a cyclical process, the system returns to its initial state such that the internal energy,
which is a function only of the state of the system, is unchanged. Therefore, the work
done to the system is equal to the negative heat added δW = −δQ. Therefore, the heat
added to the system1:

Q = −
∮

B · H (2.48)

= −µ0

∮
M · H = −µ0

∮
H · M (2.49)

where
∮

represents an integral on a closed line in the B-H parametric plot and we have
used integration by parts. Note that this is exactly the area enclosed by a dynamic
hysteresis loop. Therefore, the heat dissipated by an arbitrary magnetic system may be
simply determined from the loop area. If a magnetic system is subjected to a continually
alternating magnetic field, equation (2.48) represents the heat dissipated during a single
cycle of the field. A common metric for hyperthermia is the specific power loss (SPL)
measured in Wg−1:

SPL =
fµ0

ρ

∮
H · M (2.50)

where f is the frequency of the applied alternating field and ρ is the density of the
material (in gm−3).

1Note that we will assume that a closed loop in the M -H plane represents a cyclical process. However
the macroscopic variable, magnetisation M , may have degenerate microscopic states (the individual
orientations of the magnetic moments in the system)
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Literature Review: Magnetic
particle hyperthermia

3.1 Therapeutic applications

Magnetic hyperthermia is a biomedical technique to induce localised heating in tissue
mediated by magnetic nanoparticles. Hyperthermia techniques use the application of
heat to destroy, palliate, or otherwise treat cancerous tumours of the internal organs and
may be applied locally (i.e. directly to the tumour) or systemically. Methods of heating
include thermal conduction by the direct application of heat as well as noninvasive
methods such as electromagnetic radiation and acoustic waves [43]. An alternative
noninvasive approach has been the use of localised magnetic nanoparticles within the
tumour, which dissipate heat when exposed to an external alternating magnetic field.
The use of magnetic nanoparticles as heat mediators in hyperthermia was proposed in
1957 [74] but has only recently gained significant interest [63, 160].

The fundamental objective of magnetic hyperthermia is to destroy cancerous tissue either
by inducing cell necrosis (immediate cell death) or cell apoptosis (an irreversible process
of controlled cell death) [33] as an alternative to ablative surgery. The temperature
range for apoptosis is around 41–46◦C while necrosis requires ≥ 46◦C [119]; the pre-
cise requirements for heating the tumour is an area of active research [51]. However,
magnetic hyperthermia may also enhance the effects of conventional therapies through
increased localised heating [80]. General hyperthermia techniques have already been
shown to improve the effectiveness of radiotherapy and chemotherapy [43, 91]. The
ability of increased temperatures to enhance immunotherapy is another active area of
research [191]. Furthermore, the magnetic nanoparticles administered for magnetic hy-
perthermia have properties that serve multiple biomedical functions [63, 110, 119, 203],
such as improved imaging and drug delivery [201]. Combining all of this functionality

27
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into a single magnetic nanoparticle will reduce the exposure of the patient to multiple
treatments.

Magnetic hyperthermia has already been studied in clinical trials for the treatment of
prostate cancer [101, 103, 190] and glioblastoma (a brain tumour with a particularly
dire prognosis) [133, 134] with positive results. Trials combining general hyperthermia
with conventional therapies have also been successful [42, 43, 85, 184], for example in
treating breast cancer [117].

3.2 Current challenges

Magnetic hyperthermia is a clinical technique still in its infancy and there are many
avenues of research for regulators, clinicians, and biomedical engineers. Problems re-
lated to the therapeutic procedure itself are the most difficult to overcome, since these
are difficult to replicate in-vitro. First of all, the magnetic particles must be admin-
istered to the tumour and evenly dispersed throughout the tissue in order to ensure
an even distribution of heating [51, 106]. Healthy tissue is at danger of being dam-
aged and cancerous tissue may not reach therapeutic temperatures if the heating is
heterogeneous [147]. Reliable monitoring of the temperature distribution is required to
assess the quality of the therapy and is still an open question [17]. Currently, one or
many temperature probes are used to determine the heating [102, 134] but they suffer
from limited spatial resolution. Real-time, non-invasive imaging techniques could offer
substantial improvement [169, 204]. Multi-physics simulations, modelling in-vivo tem-
perature elevation of tissue with magnetic models of particle heat dissipation, would
improve current knowledge of the biophysical interaction [149, 160]. Self-regulated hy-
perthermia [69, 119, 154] can also prevent overheating by restricting the heating output
of particles above the Curie temperature.

The most persistent challenges for magnetic hyperthermia are to minimise the dosage of
magnetic nanoparticles and the patient’s exposure to alternating magnetic fields. These
problems were identified in the earliest studies [74] and continue to be highlighted in
recent reviews as prosperous avenues for research [30, 132, 160]. The toxicity of magnetic
nanoparticles in the human body have not been fully established [107, 125]; therefore it
is preferable to minimise their use. Similarly, safe limits for clinical use of alternating
magnetic fields are not well defined [51]. Smaller magnetic fields reduce the chance of
undesirable physiological responses and interactions with other magnetic objects during
the procedure.

The efficiency of converting the magnetic field generation into a temperature rise in the
cancerous tissue is at the heart of these challenges. The heat dissipated by magnetic
nanoparticles increases monotonically with the size of the dosage and strength of the
applied field. Therefore, the challenge for material scientists is to maximise the heat
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dissipated per unit volume of nanoparticles subjected to a clinically acceptable altern-
ating magnetic field. The search for the optimum particle properties for hyperthermia
has been a leading area of recent study.

3.3 Heat dissipation in magnetic nanoparticles

A theory of heat dissipation in magnetic systems is required to interpret the relationship
between magnetic nanoparticle properties and their resulting heat dissipation. The res-
ult of Section 2.4.5 showed that the heat dissipated by an arbitrary magnetic system is
entirely defined by its magnetisation response. Consequently, any theoretical model for
heat dissipation must rely on the stochastic dynamics of magnetic systems, as described
in Section 2.4. The nonlinear nature of magnetic systems greatly complicates the elu-
cidation of the effect of system parameters on magnetic hyperthermia efficiency. The
following section summarises current knowledge of the effects of particle and applied
field properties on the heat dissipated.

3.3.1 Optimising particle and field properties

The optimum performance of magnetic particle hyperthermia is achieved by maximising
the heat dissipated per cycle of the alternating magnetic field (AMF) (or equivalently the
dynamic hysteresis area1) with respect to the properties of the system. This presents a
multidimensional, constrained optimisation problem, which has received attention from
numerous studies focusing upon the field amplitude and frequency [51]; particle aniso-
tropy, saturating magnetisation, size and shape [116]; as well as the concentration and
subsequent interaction and clustering of nanoparticles [46, 174, 180, 189]. The complex
interplay between these properties does not allow for each parameter to be optimised
in isolation [39]. Moreover, the magnetic material must be biologically compatible [167]
and the applied magnetic field must remain within empirically determined safe limits [9].

Early experiments that studied the effect of particle properties on SPL systematically
measured the heat dissipated by a range of known materials. In one of the earliest
studies [105], it was shown that multi-domain particles had lower SPL than single-domain
particles. Indeed, multi-domain particles tend to have a lower coercive field, i.e. are easier
to reverse [89], and a higher coercive field correlates with increased SPL [50]. This result

1Hysteresis loops and their characteristic parameters (coercive field, remanent magnetisation, square-
ness, saturation magnetisation) can describe either static loops (i.e. loops measured in small increments
of field once the system has equilibriated) or dynamic loops (i.e. loops measured from continuously
varying fields). In fact, a static loop can be characterised as a dynamic loop with a very slow varying
field. Since the dynamic hysteresis loop shape depends on the applied field frequency and field, it is non-
sensical to characterise particles without knowledge of the field frequency, shape, and amplitude. Not all
studies are clear (see e.g. [50, 80, 158]). Similarly, particles may be characterised as superparamagnetic
(Section 2.4.3.1) although a superparamagnetic response also depends on the applied field.



30 Chapter 3 Literature Review: Magnetic particle hyperthermia

has guided research towards the study of single domain particles [80]. Smaller particles
that are superparamagnetic at room temperature also ensure colloidal stability. In other
words, the particles will not aggregate in the patient [107].

The experiments in [105] showed that SPL ∝ H2 and SPL ∝ f where H and f are
the amplitude and frequency respectively of the applied magnetic field, which agreed
with early theoretical work. In his seminal work, Rosensweig [171] used equation (2.48)
to predict the heat dissipated by a particle in dynamic equilibrium while subjected to
a periodic (sinusoidal) external field. The response of the particle was obtained using
the linear response theory (Section 2.4.4), leading to the following formula for the heat
dissipated:

Q = 2πσµ0Msh
2 ωτ(σ)

1 + ω2τ2(σ)
(3.1)

where ω = 2πf , σ is the reduced energy barrier or stability ratio (Section 2.4.3.1):

σ = KV /(kBT ) (3.2)

h = H/Hk is the reduced applied field amplitude normalised by the anisotropy field Hk:

Hk = 2K/(µ0Ms) (3.3)

and τ(σ) is the relaxation time as a function of σ. Recall that SPL = fQ/ρ. The
linear response theory result in equation (3.1) agreed with previous experiments that
SPL scaled with the square of the applied field [92, 105]. The equation also shows that
the maximum energy dissipated per cycle is obtained when ω = 1/τ , independent of H
(assuming that the relaxation time is independent of H). Since the relaxation time of
the particle is determined by its geometry, size, and material properties, equation 3.1
was useful for designing optimum particles. Equation 3.1 also shows that the heat scales
linearly with the saturation magnetisation Ms of the particle. Therefore, the linear
response theory (LRT) equation has become a standard method to both design and
interpret in-vitro/vivo experimental studies [90, 116, 182, 198, 203].

The relaxation time of the particle τ is determined by the magnetic viscosity (Néel
relaxation) and Brownian (i.e. physical rotation of the particle) viscosity. The con-
tributions from Brownian relaxation were studied in early experiments [63] and the
relative contribution depended on the frequency of the applied field, particle size and
material. The effects of viscosity make it difficult to predict the effect of particles in-
vivo [92, 110]; though progress is being made [26]. However, several studies of particles
in the tumour show that they are mechanically frozen such that Brownian losses are
negligible [46, 69, 113], making modelling easier.

The validity of the linear response theory is determined by the linear region of the
Langevin function, which is obtained analytically from the equilibrium distribution of a
magnetic moment subjected to an external field [27]. The region of applicability is limited
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Figure 3.1: The validity of the linear response theory for calculating the SPL of an en-
semble of single-domain non-interacting magnetic nanoparticles. The LRT area repres-
ents the validity of the linear model for magnetisation response. The NB area represents
the validity of the Néel-Brown model for computing the relaxation time of the particle.

to µ0MsV H/(kBT ) ≪ 1 such that the field must be small and the particles cannot be too
large. Additionally the Néel model for relaxation requires KV /(kBT ) ≪ 1. Figure 3.1
shows the domain of validity of the LRT in terms of the reduced applied field h/HK

where HK = 2K/(µ0Ms) and reduced energy barrier KV /(kBT ). The results of LRT
should not be extrapolated beyond these limits because it can lead to misinterpreted
results, which can be found regularly in the literature [90]. Indeed, the LRT model
denies experimental facts: the hysteresis area eventually scales linearly with increasingly
large magnetic fields [50] (i.e. geometrically the oblong dynamic hysteresis loop becomes
wider) and the optimum particle size is dependent on the applied field. However, there
are some generic relationships that can be drawn from [171]: in the limit that the field
frequency is very low/high, the particle will exhibit superparamagnetic/frozen behaviour
and the hysteresis area will be negligible.

In [27], the thermal activation model for a Stoner-Wohlfarth particle (Section 2.4.3.1)
was used to simulate the non-linear magnetisation response. The model is able to simu-
late particles outside of the LRT limitations but still subject to reasonably large energy
barriers for the Néel-Brown approximation (Figure 3.1). The nonlinear model was com-
pared with experiments [139], validating that the coercive field Hc increased with particle
size in the single domain region and hysteresis area increases with Hc. In the nonlinear
regime, it becomes difficult to extract simple trends between the system parameters and
the SPL. For example, the functional form of the relationship between the field strength
H and SPL varies substantially with the particle size; in particular between the super-
paramagnetic and ferromagnetic regimes. A recent analytic work [28] has demonstrated
a nonlinear response model capable of extending the availability of analytic solutions.
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Unlike the linear response theory, the model replicates many features of nonlinear dy-
namical simulations.

In reality, particles have heterogeneous properties. The effect of particle size disper-
sion has received particular attention and has led to conflicting results. On the one
hand, increasing dispersity decreases SPL [113, 116] but can also increase SPL [89].
The relationship between dispersion and SPL is further complicated if the distribution
incorporates multi-domain particles, which must be accounted for with Rayleigh type
losses [89]. Particle synthesis methods have focused on obtaining very narrow size distri-
butions [110] to eliminate the uncertainty. These opposing conclusions were reconciled
in [146], which demonstrated that increasing size dispersion will increase the number
of larger particles, which will always increase SPL given that the hysteresis loops are
saturated (i.e. major loops). The experiments that showed decreasing SPL with in-
creasing dispersity can be explained by their lower field values, leading to minor-loops.
The result is that disperse ensembles have a larger proportion of particles with larger
coercive fields. Heterogeneity in particle properties also leads to heterogeneity in power
loss, which can lead to ineffective hyperthermia. The objective of minimising variation
in heating output has only recently been articulated in the works of [146–148]. It was
shown in [146] that more dispersed particles contributed to a wider variation in heating.

It is, in general, easier to interpret results when major loops are activated such that
SPL ∝ MsHc approximately [63], which in non-interacting single particles is similar to
SPL ∝ K [136]. Note that the maximum possible hysteresis area for a given H max is a
square shape with saturating magnetisation A = 4µ0MsHc. If the field is not saturating
the particle, then minor loops may come into play and increasing the coercive field has
a nonlinear non-monotonic effect on heating.

Conventionally, previous studies have considered the alternating magnetic field as fol-
lowing a sinusoidal shape. Few studies have shown the effect of alternating magnetic
field shape on hyperthermia performance. The linear response model [171] was extended
to arbitrary waveforms [123] and showed that non-sinusoidal shapes may significantly
improve heat dissipation. Similar results were obtained by numerical simulation of
the Landau-Lifshitz-Gilbert equation [143, 144], which showed that both square and
trapezoidal AMFs may enhance heat dissipation. In common with all of these studies
is that the applied field amplitude was sufficiently small such that the magnetisation
response could be assumed linear, making their conclusions difficult to generalise to the
nonlinear region.

In summary, the effects of particle and field properties on SPL in single particles are
highly complex. However, they have been well explored. A typical design would be to
increase the coercive field to increase losses, which requires larger applied fields (to ensure
reversal) until a clinically acceptable limit is reached. The volume of the particle can
then be increased (assuming that it doesn’t correlate with the coercive field) to reduce
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the effect of thermal fluctuations on reversal. However, increasing volume size increases
the contribution of inter-particle interactions [39], which complicates the picture further.

3.3.2 Effect of interactions

Most commonly, existing studies investigating optimum particle and field conditions use
the theory of non-interacting particles or experiments without accounting for interaction
effects (either they appear in effective parameters or are considered negligible). In reality,
particles interact with one another [25], which adjusts the relaxation behaviour and
therefore the heating output. In vivo hyperthermia experiments are particularly prone
to interaction effects because particles are taken up into lysosomes [189]. However,
interactions are hard to control experimentally and complicate theoretical models. Until
very recently, the effects of interactions on heat dissipation were controversial [39].

Interacting systems of magnetic nanoparticles may be split into two broad categories:

1. Single particles uniformly distributed through a medium, which interact weakly
through long-range dipolar interactions that are approximately seen as a mean-
field. The long-range interaction strength depends on the concentration of the
particles in the medium.

2. Aggregated clusters of particles, which interact strongly with short-range dipolar
interactions, leading to a complex system of interacting particles with non-trivial
emergent behaviour.

In the first case, particle concentration is defined as the weight of magnetic particu-
late matter per weight of suspension medium (e.g. water). The effect of increasing
concentration is to increase the contribution of the dipole-dipole interactions (Section
2.1.1.3) in the effective field acting on each particle, since the strength of this interac-
tion is proportional to the cubed distance between particles. By analysing the energy
landscape of a large interacting system, it was shown in [34] that in general increasing
concentration leads to more disperse energy barriers, however the precise effect on the
system depends substantially on the externally applied field and geometry of the sys-
tem. Two of the earliest studies of interacting particle systems for predicting the effect
on heat dissipation, using Metropolis Markov-chain Monte-Carlo (MCMC) [180] and
stochastic simulation of the sLLG [84] respectively, concluded that increasing concen-
tration leads to reduced heating output. The negative effect of concentration on SPL
was also shown experimentally [175]. A theoretical model, using the mean-field theory,
showed that the effect of concentration can be modelled effectively as an additional
anisotropy term on each particle [122]. This increase in effective anisotropy matched
earlier studies of interactions in nanoparticle solutions not focusing on hyperthermia
[29, 81]. The model in [122] showed that magnetically soft particles (i.e. those with low
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stability KV /(kBT )) gained from increasing concentration, since the larger energy bar-
riers increased SPL. However, magnetically hard particles (with large stability) could
become frozen with energy barriers too large to reverse, decreasing SPL. This effect
was confirmed in [146] using kinetic Monte-Carlo (kMC) simulations. Further extensive
studies using MCMC [39] and kMC simulations [173, 189] using a wider range of system
parameters resolved the conflicting simulated and experimental results. It was shown
that increasing the concentration increased the coercivity Hc of the particles and thus
the heating output conditional that the external field amplitude H0 was larger than the
coercive field in order to activate major loops. Otherwise if H0 < Hc the heating output
was diminished. Heat dissipation may also be influenced by interactions through varying
hysteresis loop shape and [189] and the saturating magnetisation [159].

The dipole-dipole interaction strength between particles dispersed in a solution is relat-
ively weak compared to the interaction effects between particles aggregated into clusters,
which leads to a rich landscape of relaxation behaviour for varying cluster shape, size,
and interaction strength [95]. In [54], it was shown that increasing the size of particle
aggregates in a low concentration solution impacted SPL more than increasing concen-
tration of disaggregated particles. Therefore, an understanding of the heating effects of
different nanoparticle aggregations (both size and shape) is needed. The most commonly
found aggregates are densely packed clusters and chain-like clusters, which range from
just 2 particles to over 200.

Suspended nanoparticles have a tendency to cluster together in an uncontrolled pro-
cess due to dipolar interactions [20]. Recent breakthroughs in nanoparticle synthesis
also allow control over the clustering of particles, which results in stable clusters of
a desired size and shape [6, 137]. These synthesis methods could open new avenues
for optimising hyperthermia by building structures from smaller building blocks [152].
Early experiments showed that increasingly large clusters can both increase [10] and
reduce heat dissipation [20]. MCMC simulations [181] showed a demagnetising effect in
clusters of magnetic particles, which form closed magnetic flux loops and reduce their
magnetisation. However, it was shown that SPL may actually improve at lower field
values. Serantes et.al [181] also compared various aggregation structures and showed
similar behaviour for ring, cube, and hexagonal lattice structures but very different be-
haviour for chains (see below). The demagnetising effects resulting from clustering and
the resulting reduced SPL has also been observed experimentally [40, 159]. Interestingly
in [40], it was shown that individual particles improve their heat output when influenced
by nearby clusters, while the clusters themselves show reduced heat output. A recent
combined experimental and computational study using kMC [152] similarly showed that
larger clusters of particles (more than four) have lower SPL whereas dimers and trimers
(clusters of two and three particles respectively) can show increased heat compared to
single particles. In contrast to dispersed particles in a solution, which experience a
slight increase in effective anisotropy from nearby particles, interactions in aggregate
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structures lead to qualitatively different behaviour and can substantially affect heating
rates.

Magnetic nanoparticles are also commonly found in aggregations with chain-like struc-
ture. The application of an external magnetic field, leading to alignment of indi-
vidual particles can cause aggregation into chains but an external field is not required;
nanocubes have been observed forming chains without any applied field [136]. Ex-
perimental [138] and computational [181] have shown that chains can also enhance or
diminish heat output. Chains of nanoparticles have a much larger effective anisotropy
than their individual particles [181] and therefore a higher coercivity [136]; heating out-
put is always increased if the alternating field amplitude is large enough to overcome
the energy barrier (i.e. major loops). However, in reality there is a danger that chains
may become bent and eventually form ring or chain formations [181].

In summary, theoretical and experimental studies have shown that interacting systems
of magnetic nanoparticles can have enhanced or diminished heat dissipation compared
to non-interacting systems. The enhanced heating rates are achieved by synthesising
nanoparticle aggregates with optimum shape and size, which depend on material and
field properties. However, the most extensive theoretical studies investigating the effects
of shape and size use kMC and MCMC methods to simulate magnetic responses. These
Monte-Carlo methods do not yield the correct dynamics, in particular for systems with
low damping and small energy barriers [31]. An alternative is to use stochastic sim-
ulation of the sLLG equation in order to more accurately simulate the dynamics of
interacting aggregates of magnetic nanoparticles. Simulations of the sLLG have already
had previous success recovering theoretical [28] and experimental results [196] in mag-
netic hyperthermia studies.

3.4 Scope of present study

The literature revealed that the heat dissipated by magnetic nanoparticles is influenced
by a large number of factors. The open research challenge is to determine the optimum
system properties, which maximise the heat dissipated under an alternating magnetic
field. The number of possible properties to investigate is too large for a single study and
a coherent answer to this challenge will require many years of further research.

In the present study we have chosen to investigate the following two phenomenon:

1. the effect of interactions in dense clusters of single domain magnetic nanoparticles.

2. the effect of non-sinusoidal waveforms on non-interacting single domain magnetic
nanoparticles.
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We have designed, built and executed computational experiments in place of in-vitro/vivo
experiments in order gain control over the system properties and investigate their com-
plex effects. The existing literature provided many examples of computational models
for heat dissipation: stochastic simulation at the atomistic and macrospin level, kinetic
Monte-Carlo, linear systems theory, master equations and phenomenological models.
All have been used in an attempt to determine the optimum conditions for effective
hyperthermia treatment.

We have used the stochastic Landau-Lifshitz-Gilbert (sLLG) equation to simulate the
nonlinear dynamics of systems of interacting single particle macrospins. Although the
approach is computationally difficult, it avoids the problems of linear analytic models
and of kinetic Monte-Carlo assumptions. In Chapter 4, we discuss methods of simu-
lating the sLLG, which are implemented in an open-source software package described
in Chapter 5. We then use the software to simulate interacting ensembles of magnetic
nanoparticles in Chapter 6. Finally, we use the master equation to investigate the effects
of non-sinusoidal fields in Chapter 7.



Chapter 4

Simulating the
Landau-Lifshitz-Gilbert equation

The sLLG equation is a stochastic, multidimensional, nonlinear differential equation,
which is hard to solve analytically, except in simplified cases (Section 4.4.3.1). In sys-
tems of many particles, the interaction between the magnetic moments complicates the
equations further leading to a set of coupled sLLG equations. Therefore, a numerical
solver is required to simulate the stochastic Landau-Lifshitz-Gilbert (sLLG). However,
the sLLG is a particularly difficult equation to solve, even numerically, due to its math-
ematical properties (Section 4.1). Numerical methods dedicated to solving the sLLG are
an active area of research (see for example [2, 126]). The most sophisticated methods
aim to satisfy desirable mathematical properties such as conserving the length of the
magnetisation or the total energy of the system but these properties come at the expense
of increasing algorithmic complexity. Practical considerations such as: implementing,
tuning, and measuring the performance of numerical methods for the sLLG has received
less interest. Perhaps due to the popularity and success of zero-temperature micromag-
netics [60, 61], there are reviews of numerical methods for the deterministic LLG [13, 36].
In contrast, there are few examples to help choose the appropriate technique for simu-
lating the stochastic LLG.

One recent study [3] compared multiple methods to solve the stochastic Landau-Lifshitz-
Gilbert-Slonczewski equation. The paper provides guidance to researchers by simulating
relevant test problems and demonstrating the advantages and disadvantages of each
approach. Metrics such as the equilibrium distribution accuracy and conservation of the
norm of the magnetisation vector m (Section 2.1.3) are used to measure performance.
However, the paper does not quantify the time-dependent errors or strong convergence of
the methods, such as in [56]. A detailed study of the performance of numerical methods
is required to select the most appropriate algorithm for simulating the sLLG equation;
in particular the effects of tuning parameters, noise intensity, and projection methods

37
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on solution accuracy. These results would improve understanding of software packages
that already implement these methods as well as to the present work.

In this chapter we first review methods for solving the sLLG1. We implement and meas-
ure the relative performance of the most commonly used methods: the Euler-Maruyama,
Heun, and fully implicit scheme, due to their simplicity. We show that conserving the
norm of the magnetisation does not necessarily improve the path-wise accuracy of the
solution and that the temperature of the system greatly affects the accuracy of the Heun
scheme. Finally, we conclude that for moderately-sized interacting systems the implicit
midpoint scheme is prohibitively expensive.

Note that we do not consider the case where the magnetisation varies spatially, leading
to a stochastic partial differential equation representing the spatio-temporal evolution of
the magnetisation. Rather, we consider the temporal evolution of distinct magnetisation
vectors interacting through the effective field term. For examples of solving the sLLG for
a continuous magnetisation domain (in other words continuous micromagnetics [60, 61]
with thermal fluctuations) see [11, 12, 35, 100].

4.1 Equation properties

The sLLG equation is an example of a stiff stochastic differential equation. Stiff systems
are loosely defined as possessing dynamics with a large difference between their slowest
and fastest timescales [24]. The difficulty with stiff systems is that a numerical method
will require very small time steps in order to resolve the fast dynamics but consequently
will have to take a very large number of small steps to resolve the slower dynamics. Any
numerical method that requires a very large number of steps will accumulate error and
in some cases become unstable. In stochastic differential equations, stiffness may appear
in the drift and/or diffusion terms. The sLLG possesses a number of timescales relating
to the random thermal noise, precessional motion, and relaxational motion, which may
have dispersed timescales. Implicit rather than explicit numerical methods are required
to handle stiff differential equations effectively (see Section 2.3.6.4).

The structure of the diffusion term B (x, t) also influences the best choice of numerical
method. Systems with commutative noise structures (Section 2.3.1) may be solved more
efficiently and the numerical solvers may be implemented more simply. Substituting
the sLLG diffusion matrix (equation (2.34)) into equation (2.17) shows that the sLLG
does not satisfy the commutative condition and therefore the numerical solvers must
be implemented in their more general form, which poses a severe restriction on the
performance of many methods (e.g. the Milstein scheme).

1During the preparation of this chapter, a complementary work was published in [55]. This excellent
review covers many of the solvers listed below and reinforces our conclusions.
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The sLLG equation has the mathematical property that the magnetic moment mag-
nitude is constant ∥m∥2 = 1, as discussed previously. However, numerical approxim-
ations of solutions to the sLLG may exhibit varying magnetic moment length due to
numerical errors. Methods to ensure the magnetic moment magnitude is conserved are
discussed in Section 4.2.

Finally, the parameters of the sLLG (equation (2.32)) have values on vastly different
orders of magnitude. For example the particle radius is ∼ 10−9m while the magnetisa-
tion is ∼ 106Am−1. Performing floating point arithmetic on orders of this magnitude
can introduce truncation errors, which accumulate over time. Therefore, the sLLG is
normalised by introducing reduced time ℓ, which simplifies the equations and scales the
parameters to around an order of unity.

4.1.1 Reduced equations

The reduced form of the sLLG, effective and thermal field equations are presented here.
The details of the normalisation can be found in Appendix B. The reduced sLLG, written
in integral form, for a particle i in an interacting system of N particles is:

dmi = ai(m, t)dℓ+Bi(mi, t) ◦ dWi(ℓ) (4.1)

where mi ∈ R3 is the magnetic moment of the ith particle, m =
[
m1;m2; . . . ;mN

]
∈

R3N is the vector of all magnetic moments, and ◦dWi(ℓ) ∈ R3 is the Wiener process
acting on particle i to be interpreted in the Stratonovich sense. The drift and diffusion
components for particle i:

ai = −mi × heff,i(m)− αmi × mi × heff,i(m) (4.2)

Bi = −
(√

2Dimi×
)
−
(
α
√
2Dimi × mi×

)
(4.3)

Note that the drift ai for a single particle i depends on the magnetisation of the entire
system m because of the dipole-dipole interaction term (equation (2.4)) in the effective
field heff,i. The diffusion matrix Bi for particle i is only a function of the particle
magnetisation mi. The reduced time is defined:

ℓ ≜ t
γHk

1 + α2
= t

2γK̄

Ms (1 + α2)
(4.4)

and the anisotropy field is introduced:

Hk ≜ 2K̄

µ0Ms
(4.5)

which normalises the effective field heff,i = Heff,i/Hk. K̄ ≜ 1/N
∑

iKi is the average
anisotropy constant in the system. The reduced effective field term is obtained from
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multiplying equation (2.11) by µ0/Hk:

heff,i = ki (mi · ki) + h +
µ0M

2
s

8πK̄

∑
j ̸=i

vj

∥rij∥3
(3 (mj · rij) rij − mj) (4.6)

where V̄ = 1/N
∑

i Vi is the average particle volume. The reduced thermal field strength
is:

Di =
αkBT

2ViK̄ (1 + α2)
(4.7)

The Itō drift correction for the sLLG is obtained from substituting the components of
equation (4.1) into equation (2.16) [18, 87]:

ai(m, t) = ai(m, t)− 2Dimi (4.8)

The first term describes preferential alignment of m with the particle’s anisotropy axis,
which acts in the unit direction ki ∈ R3 with magnitude ki (units Jm−3). The second
term describes the effect of an externally applied field happ ∈ R3. The final term
describes the field experienced by particle i through a long-range dipolar-dipolar inter-
action with a nearby particle j, where Vj is the volume (units m3) of particle j and
vj = Vj/V̄ is the reduced volume; V̄ = 1/N

∑N
n=0 Vn is the mean volume of all particles

in the system; K̄ = 1/N
∑N

n=0 kn is the mean anisotropy magnitude; µ0 = 4π × 10−7

is a constant (units mkgs−2A−2); Ms is the magnitude of the macrospin (the saturation
magnetisation, units Am−1) and rij ∈ R3 and rij are the unit vector and magnitude
respectively of the reduced distance between particles i and j. The reduced distance is
the true distance (units m) divided by 3

√
V̄ and appears in equation (2.11) because the

numerator and denominator of the interaction term are divided by V̄ , which has the
effect of scaling both values close to unity. The prefactor µ0M

2
s /
(
2K̄
)

can be computed
in advance and will also evaluate close to unity.

4.2 Review of numerical methods

The most popular numerical method for simulating the sLLG is the Heun scheme, which
is a generalisation of the deterministic Heun scheme. The scheme appears in a large
proportion of influential studies and software packages [56, 57, 84, 112, 129, 153, 178,
195]. The success of the Heun scheme may be attributed to its relative simplicity, ease
of implementation, and consistency with the Stratonovich solution. A rigorous study
of the sLLG [66] emphasises the importance of choosing a solver consistent with the
Stratonovich and not the Itō solution. The scheme has a strong convergence of order 0.5
in general but increases to 1.0 for SDEs with commutative noise [172]. This detail can
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cause confusion because the stochastic LLG at zero-temperature or with a scalar noise
term (see Section 4.4.3.1 for results of this simplified sLLG) are commutative2.

The Heun scheme does not conserve the length of the magnetisation and as an explicit
scheme, it is less robust to stiffness. A number of approaches have also been taken to
ensure the conservation of the magnetisation vector magnitude. The first, transforms the
sLLG into a 2-dimensional system in spherical coordinates [170]. The resulting equation
requires many evaluations of trigonometric functions at each step and also has numerical
instabilities around angles of 0, π rads [4, 18]. Many implementations of the Heun scheme
include a renormalisation (or projection) step [56, 127]. The renormalisation simply
rescales the length of the magnetisation mscaled = m/∥m∥ after every update to the
state. Finally, some authors introduce an additional term in the sLLG that prevents the
magnetisation vector from drifting [41]. Conserving the length of the magnetisation is
necessary for an accurate numerical solution but not sufficient. It does not necessarily
follow that these methods will lead to lower path-wise error. The renormalisation step
has been criticised in [53] as a “nonlinear modification of the numerical scheme” and thus
invalidating any theoretical guarantees on convergence and stability of the algorithm.

The simplest scheme for solving SDEs is the Euler scheme, which is consistent with the
Itō solution [115]. Few studies implement the Itō scheme over the Heun scheme, citing
worse stability or the fact that it does not converge to the Stratonovich solution [66].
However, it has been shown in [18] that the Itō induced drift (equation (2.16)) acts
parallel to the magnetic moment, thus only affecting the length of m. An important
consequence of this is that if a renormalisation step is used, forcing the length of the
magnetisation to be constant, the Itō induced drift cannot take effect. Consequently,
when using a renormalisation scheme, the Itō and Stratonovich interpretations give the
same solution. The ongoing debate between authors insisting on Stratonovich solvers
and those claiming the two approaches are the same is resolved simply by including
the Itō induced drift (equation (4.8)) in the sLLG equation when using Itō solvers or
discarding it when using Stratonovich solvers.

An implicit midpoint scheme (IMP) was proposed in [52, 142], which is consistent with
the Stratonovich solution and conserves the magnetisation length (to within a desired
tolerance). Moreover, the method conserves the energy of the system such that an un-
damped magnetic moment (α = 0 in the LLG) will continue to precess [140]. The IMP
scheme requires many more evaluations of the sLLG and for a system of N interacting
particles requires many evaluations of the effective field (with complexity O

(
N2
)

equa-
tion (2.4)). However, it was shown that in the deterministic case the computational cost
of the IMP scheme may be reasonable given that it maintains accuracy and stability
at larger time steps [53]. Initial results have been published for the stochastic case [52]
and more lately the IMP was shown to outperform the Heun scheme [4]. However, it
has been noted qualitatively [140] that solving a 3N set of nonlinear equations is very

2See e.g. [87], where the Heun convergence rate is empirically shown as 1.0 in the simplified sLLG
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computationally expensive. Moreover, the IMP scheme contains additional tuning para-
meters (the tolerance of the simultaneous equation solver) and there is no published
guidance on their selection or a clear guide on implementation.

The Euler, Heun, and IMP schemes (without renormalisation) have proven convergence
and stability properties [115, 142] for an arbitrary SDE. Solvers have also been designed
specifically for the sLLG, which have not been treated with the same mathematical
rigour but perform well in numerical tests. In [140] two schemes, named Semi-Implicit
Scheme A (SIA) and Semi-Implicit Scheme B (SIB), were designed using implicitness in
a subset of the sLLG terms in order to ensure conservation of the magnetisation length.
These methods avoid implicitness in the effective field calculation, which reduces the
implicit problem to a set of N independent 3-dimensional linear systems rather than a
single 3N -dimensional nonlinear system. Therefore the SIA and SIB methods require
far fewer evaluations of the expensive effective field calculation.

More recent work has investigated the use of adaptive time steps [126], which for de-
terministic ODEs are more efficient and guarantee the error remains with a specified
tolerance. Adaptive time steps are difficult to implement for SDEs due to the complexity
of ensuring that the Wiener process is statistically correct [99]. The use of higher order
(e.g. the Milstein scheme) may also be interesting but solving non-commutative equa-
tions with order higher than 0.5 requires the simulation of multiple stochastic integrals,
which are very expensive to compute [115, 172, 176]. They also often require many more
evaluations of the SDE, which for the sLLG leads to more evaluations of the effective
field terms.

Comparing the relative performance of the different numerical schemes is difficult for
the same reason that such schemes are required: there is no existing solution to the full
sLLG. In place, the equilibrium conditions [44], conservation of energy and magnetic
moment length [140], and comparison with experimental results [195] are often used
to validate the methods. The most simple performance metric is to measure the error
between the true trajectories and the simulated trajectories, which if true is sufficient.

In the subsequent sections, the Euler, Heun, and IMP schemes are implemented and
tested. The solutions are compared with analytic solutions to the deterministic LLG
and a simplified form of the stochastic LLG. In the case of the full sLLG, we use the
local relative error to prove the global convergence order. The equilibrium distribution
of an interacting system is compared with the results of an MCMC simulation. Finally,
the time taken for each scheme is measured to determine which method offers the best
accuracy for the same computational effort. The numerical schemes are summarised in
table 4.1.
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Table 4.1: Global mean squared error convergence for popular stochastic numerical
schemes.

Method Implicit Stratonovich Strong order Derivatives
Euler-Maruyama No No 0.5 None

Heun No Yes 0.5* None
Milstein No Yes 1.0 first-order

Implicit midpoint Yes Yes 0.5* first-order#

* 1.0 in the commutative.
# approximate or higher order derivatives may be required depending on
implementation.

4.3 Technical definition and implementation

For a system of N interacting magnetic moments, the estimated state of the system at
time tn is mn ∈ Rn where n = 3N for the x, y, z component of magnetisation for each
of the N moments. The drift vector is therefore:

a(mn, tn) =


a0(mn, tn)

a1(mn, tn)
...

aN (mn, tn)

 (4.9)

where ai is the drift vector for the ith moment. The diffusion matrix for the system is:

B(mn, tn) =


B1
(
m1

n, tn
)

0 . . . 0

0 B2
(
m2

n, tn
) ...

... . . . 0
0 . . . 0 BN

(
mN

n , tn
)

 (4.10)

where mi
n is the magnetic moment of the ith particle at time tn. The diffusion matrix

is block diagonal consisting of 3 × 3 blocks of Bi each of which is the diffusion matrix
for particle i (equation (4.2)).

4.3.1 Euler-Maruyama scheme

Taking an Itō-Taylor expansion around the solution to an SDE and discarding all terms
except the first, leads to the Euler-Maruyama scheme [115]:

mn+1 = mn + a(mn, tn)∆t+B(m, tn)∆Wn (4.11)

The Euler-Maruyama scheme is an explicit method, consistent with the Itō solution,
strongly convergent with order 0.5, and weakly convergent with order 1.0. As seen
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in Section 2.3.6.4 the scheme is not reliable for solving stiff SDEs. However, the Euler-
Maruyama scheme is by far the least computationally expensive and therefore very small
time steps may be achieved with fewer resources.

4.3.2 Stochastic Heun Scheme

The Heun scheme is a Runge-Kutta like predictor-corrector method and phenomenolo-
gical generalisation of the deterministic Heun scheme:

mn+1 = mn +
1

2
{a(mn, tn) + a(m̂n, tn)}∆t

+
1

2
{B(mn, tn) +B(m̂n, tn)}∆Wn

(4.12)

where
m̂n = mn + a(mn, tn)∆ +B(mn, tn)∆Wn (4.13)

This scheme is not consistent with Itō calculus unless B(.) = const. (see [114] p.326)
but converges to the Stratonovich solution, which can be shown by example, see [67].
The convergence of the Heun and a family of Runge-Kutta solvers have been discussed
in detail in [172]. The Heun scheme has a convergence of 0.5 unless the SDE satisfies
the commutativity condition, in which case it achieves an improved order of 1.0[115].
The algorithm cannot be simplified for commutative equations. The Heun scheme is an
explicit method.

4.3.3 Fully implicit midpoint

A fully implicit midpoint method was proposed in [142], which uses a truncated Wiener
process to handle the unboundedness of the one-step predictor (Section 2.3.6.4). Let
the scalar Wiener process increments be denoted: ∆Wn = Wn+1 −Wn = ξn

√
∆t where

ξn ∼ N {0, 1}. The truncated scalar Wiener process has increments ∆W̃n = W̃n+1 −
W̃n = ζn

√
∆t where:

ζn =


A∆t ξn > A∆t

−A∆t ξn < −A∆t

ξn otherwise

(4.14)

and A∆t =
√
2k|ln∆t| for any integer k > 0. The case is analogous for a vector of

independent Wiener processes Wn to obtain the truncated processes W̃n. The fully
implicit midpoint method is then written [142]:

mn+1 = mn + a
(

mn + mn+1

2
, tn +

∆t

2

)
∆t+B

(
mn + mn+1

2
, tn

)
∆W̃n (4.15)
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Milstein proved that this scheme is strongly convergent with order 0.5 and 1.0 for com-
mutative equations. If the diffusion term is zero, the scheme reduces to the deterministic
midpoint method, which has an order of convergence of 2.0. The next state of the system
mn+1 appears on both sides of the equation (4.15). Therefore, a nonlinear n dimensional
system of equations must be solved at every time step.

In order to solve the system of equations, introduce the following variable m̂ = (mn + mn+1)/2

such that:
2m̂ − mn = mn + a

(
m̂, tn +

∆t

2

)
∆t+B(m̂, tn)∆W̃n (4.16)

Rearranging we define the function f(m̂):

f(m̂) = m̂ − mn − 1

2
a
(

m̂, tn +
∆t

2

)
∆t− 1

2
B(m̂, tn)∆W̃n = 0 (4.17)

where we must solve f(m̂) = 0 in order to obtain m̂. Expanding the drift and diffusion
terms with the effective field terms leads to a very complex f and therefore it must be
solved numerically. The Newton-Raphson method [164] is an iterative method to find
the roots of f:

m̂next = m̂ − J−1(m̂)f(m̂) (4.18)

where J = ∂f
∂m̂ is the Jacobian of the function f. The iteration is repeatedly applied to the

approximate solution of m̂ until the relative error converges such that ∥m̂next − m̂∥ <

ϵ∥m̂∥ for some tolerance ϵ.

The Newton-Raphson iteration in equation (4.18) requires the inverse of the Jacobian,
which as the systems grows becomes very computationally expensive. Rather, the prob-
lem is reformulated into the form Ax = b, which represents an n dimensional linear
system of algebraic equations. Efficient solutions to this problem are very well stud-
ied [164]. The Newton-Raphson iterator was reformulated as the following set of simul-
taneous equations:

J(m̂)[m̂next − m̂] = −f(m̂) (4.19)

which was solved using the LAPACK routine GAS’S [5].

In the case of the sLLG The Jacobian for f(m̂) (equation (4.17)) is:

J(m̂) =
∂f(m̂)

∂m̂ = In,n − 1

2

∂a(m̂, tn +∆t/2)

∂m̂ ∆t− 1

2

∂B(m̂, tn)

∂m̂ ∆Wn (4.20)

where In,n is the n × n identity matrix. The diffusion matrix for a particle i depends
only on the magnetic moment of particle i and not on any other particle in the system.
Therefore the partial derivative of the diffusion matrix for a particle i with respect to
the state of the system (i.e. all magnetic moment components) will be zero everywhere
except for the corresponding three components for the particle magnetisation ∂Bi

∂m̂ = ∂Bi

∂m̂i .
Consequently the third term in equation (4.20) is a block diagonal matrix. A graphic
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03,3,3 03,3,3 03,3,3

03,3,3 03,3,3 03,3,3

03,3,3 03,3,3 ∂B3(m̂3,t)
∂m̂3

03,3,3 03,3,3 03,3,3

03,3,3 ∂B3(m̂2,t)
∂m̂2

03,3,3
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∂B3(m̂1,t)
∂m̂1

03,3,3 03,3,3

03,3,3 03,3,3 03,3,3

03,3,3 03,3,3 03,3,3

Figure 4.1: Structure of the diffusion Jacobian for a system of 3 magnetic moments.
03,3,3 represents the 3-dimensional cube of zeroes of size 3 × 3 × 3. Bn(m̂n, t) denotes
the diffusion of the nth magnetic moment in the system.

representation of the system block diagonal diffusion Jacobian is shown in Figure 4.1 for
a system of three particles.

The drift coefficient for each particle in the ensemble contains the effective field term.
If the magnetic moments are interacting with one another, then the effective field on
a single particle i is a function of the magnetic moments of all particles in the system.
Therefore, the Jacobian of the system drift vector is a dense n× n matrix:

∂a(m̂, t)

∂m̂ =


∂a1(m̂,t)

∂m̂1
∂a1(m̂,t)

∂m̂2 . . . ∂a1(m̂,t)
∂m̂N

∂a2(m̂,t)
∂m̂1

∂a2(m̂,t)
∂m̂2

...
... . . .

∂aN (m̂,t)
∂m̂1

∂aN (m̂,t)
∂m̂2 . . . ∂aN (m̂,t)

∂m̂N

 (4.21)

where each element of the matrix is a dense 3× 3 matrix. However, if the dipole-dipole
interaction field is ignored and the effective field term consists only of the anisotropy
and Zeeman terms then the effective field vector for particle i is a function of m̂i only
and the Jacobian reduces:

∂ã(m̂, t)

∂m̂ =



∂ã1(m̂1,t)
∂m̂1 0 . . . 0

0 ∂ã2(m̂2,t)
∂m̂2

...
... . . . 0
0 . . . 0 ∂ãN(m̂N ,t)

∂m̂N

 (4.22)

where ã is the approximate drift term ignoring interactions, which results in a greatly
simplified expression.
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We define an approximation of the Jacobian J̃(m), which is identical to the sLLG
Jacobian in equation (4.20) but ignores the dipole-dipole interaction term. From the
previous discussion, the approximate Jacobian is much easier to compute than the full
Jacobian since all of the individual magnetic moments are decoupled. J̃(m̂) is an n× n

block diagonal matrix with 3× 3:

J̃(m̂) =


J̃1(m̂) 0 . . . 0

0 J̃2(m̂)
...

... . . . 0
0 . . . 0 J̃N (m̂)

 (4.23)

where
J̃ i(m̂) = I3,3 −

1

2

∂ãi
(
m̂i, tn +∆t/2

)
∂m̂i

∆t− 1

2

∂Bi
(
m̂i, tn

)
∂m̂i

∆Wi
n (4.24)

The approximate Jacobian was used in the Newton-Raphson method to solve the implicit
formula at each time step. Using an approximate Jacobian to solve the Newton-Raphson
problem is referred to as a Quasi-Newton method and is often sufficient to find the correct
solution.

The Newton-Raphson method is quite robust to approximate Jacobian terms but is
very sensitive to the initial guess. The initial guess was taken to be a single Euler step.
Therefore to determine the next state yn+1 the fully implicit midpoint method followed
the procedure:

1. Begin with the full state of the system at tn: mn

2. Compute an initial guess for mn+1 using the explicit Euler scheme: minitial

3. Transform the initial guess into an initial guess for the variable m̂ by: m̂initial =

(mn + minitial)/2

4. Formulate the function F (m̂) = 0 and the Jacobian J(m̂) = ∂F/∂m̂

5. Set m̂prev = m̂initial

6. Iterate the Newton-Raphson method until convergence:

(a) Solve the set of linear equations J(m̂prev)[m̂next − m̂prev] = −F (m̂prev) for
m̂next

(b) Check the convergence condition ∥m̂next − m̂prev∥ < ϵ

(c) If the solution has not converged, set m̂prev = m̂next and compute another
m̂next (6a). If it has converged, set m̂n+1 = m̂next

7. Transform the result into the final estimate for the state m⃗n+1 at time tn+1 by:
mn+1 = 2m̂n+1 − mn
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Note that the Newton-Raphson iteration (equation (4.19)) is a 3N -dimensional system
but since the quasi-Jacobian is block diagonal, the problem can be reduced to solving N

3-dimensional systems, which would reduce memory and computational requirements.
Also note that although the quasi-Jacobian ignores the interaction term, the right hand
side of the Newton-Raphson iterator f(m̂) (equation (4.17)) still requires the effective
field to be updated at every iteration (i.e. multiple times per step of the integrator
mn → mn+1) an order O

(
N2
)

problem (equation (4.6)), which is very expensive for
large systems. The origin of the complexity can be traced back to equation (4.15), the
update step for the implicit integrator, which has implicitness (i.e. mn+1 on the right
hand side) in the drift term and therefore in the effective field term.

4.4 Results and validation

4.4.1 Linear test equation

The Euler-Maruyama, Heun and fully implicit schemes were implemented in C++ (see
Chapter 5) and applied to the linear test equation (2.24) to compare their stability.
The analysis of MS-stability in Section 2.3.6.4 showed that the explicit Euler method
is unstable outside of a small region of values for p = µ∆t and q = σ

√
∆t while the

implicit method is stable for all values given the equation is also MS-stable. The Heun
and implicit methods simulated the Stratonovich test equation:

dx(t) =
(
µ− 1

2
σ2

)
x(t)dt+ σx(t) ◦ dWt (4.25)

Following the method in Section 2.3.6.4, the one-step predictor for the Heun scheme
was derived for the test equation. The results showed that the Heun scheme has very
similar stability properties to the explicit Euler scheme: p should be around -1 and the
noise q must be low. The stability of the schemes was visualised by comparing their
approximate solutions to the true solution of the test SDE. The analytic solution to the
test equation is:

x(t) = x0e
(µ− 1

2
σ2)t+σWt , x0 = x(0) (4.26)

Figure 4.2 shows the true trajectory of the test equation with a given Wiener process,
Wt and µ = −1, σ = 1,∆t = 0.01. The Wiener process Wt was generated by drawing
independent and identically distributed increments ∆Wt from a Normal distribution
∆Wt ∼ N {0, δt} such that WT =

∑
t<T ∆Wt. The Random values were generated using

the Mersenne Twister pseudo-random number generator [70]. Each scheme simulated
the test equation from the same initial condition with a reasonably large time step.
The Heun and implicit scheme trajectories track the underlying solution closely but the
Euler shows slightly worse performance. Stiffness was introduced into equation (2.24) by
increasing the noise with coefficients µ = −1, σ = 4, the resulting trajectories are shown
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Figure 4.2: Comparison of Heun and fully implicit methods for approximating the linear
test equation with different coefficients µ, σ. Setting σ higher introduces stiffness in the
diffusion term.

in Figure 4.2. The results show that the explicit schemes quickly diverge from the path.
The implicit solution tracks the trajectory closely and even though it diverges slightly
the paths recover in equilibrium. A disadvantage of explicit schemes is that their error
is not corrected over time.

4.4.2 Deterministic Landau-Lifshitz-Gilbert equation

The deterministic LLG equation is obtained by setting the temperature T = 0K. For a
constant applied field in the z-direction and the magnetic moment initially applied along
its x-component, the analytic solution to the reduced LLG equation is obtained [87]:

m(t)

mx(t)

my(t)

mz(t)

 =

sech(αht) cos(ht)
sech(αht) sin(ht)

tan(αht)

 (4.27)

An example trajectory of the LLG equation is shown in Figure 4.3 with parameters
h = 0.01, α = 0.1. The solution shows a precession of the magnetic moment about
the field in the z-direction. The oscillations damp over time such that the moment is
stationary and aligned with the external field.

The Heun and fully implicit numerical schemes were applied to the LLG equation and
compared with the analytic solution. Figure 4.4 shows the path-wise error for each
component of the magnetic moment. Overall, both schemes show larger errors during
the precessional regime with the errors reducing in the steady state regime. For all time
steps, the implicit scheme shows a lower total error than the Heun scheme. At a time
step of ∆t = 10 the implicit scheme can be seen to correct itself back to zero error in
equilibrium, whereas the explicit Heun scheme remains with a constant error in steady
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Figure 4.3: Example solution of the deterministic Landau Lifshitz Gilbert equation for
a single spin.
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Figure 4.4: Path-wise error of numerical approximations to the deterministic LLG equa-
tion using the Heun and fully implicit schemes. The error is shown for three different
time steps ∆t = 1, 10, 100.

state. At even larger time steps ∆t = 100 the Heun scheme becomes unstable while the
Implicit scheme still achieves very low error in steady state.

For deterministic equations, the Heun and implicit scheme reduce to the determin-
istic Heun and implicit midpoint respectively. These have a proven strong order of
2.0 [115, 142]. In order to test the implementations of the methods, the convergence was
obtained empirically. Each method was applied to the LLG to approximate the global
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Figure 4.5: Empirical strong convergence of the Euler, Heun, and implicit (ϵ = 10−9)
methods on the deterministic LLG.

solution m̂n to the true solution m(tn) with a time step ∆t. The error was defined as
e = ∥m̂n − m(tn)∥2 and from the convergence equation (2.22) we estimate the strong
convergence rate γ by fitting a straight line in log-log space of the global error with the
time step:

C2, γ = arg min
C2,γ

∑
∆t

(C2 + γ log(∆t)− log(e))2 (4.28)

Figure 4.5 shows a log-log plot of the global error e for each scheme for a range of time
steps. The convergence plot shows a linear relationship for all schemes but with some
divergence at the tails. At large ∆t the Heun and Euler schemes become unstable,
as was seen for the Heun scheme in the error plots in Figure 4.4. At small ∆t the
implicit scheme error also diverges and begins to increase. This is due to the tolerance
of the internal Quasi-Newton solver (QNS) (see ϵ in Section 4.3.3), which has been set
to ϵ = 10−9 in this case. The empirical convergence for the Heun and implicit schemes,
obtained by fitting all points except the outliers (hollow circles), was approximately 2.0
as expected (shown in the legend).

The effect of the QNS tolerance on the performance of the fully implicit method was
investigated by varying the tolerance and repeating the convergence experiment. Fig-
ure 4.6 shows that the implicit scheme behaves identically and converge as expected
when the global error is larger than the tolerance of the internal QNS method. How-
ever, as the time step reduces, the error from the discrete time approximation becomes
close to the tolerance and cannot be reduced further by decreasing the time step. The
implicit solver benefits from using the smallest value of ϵ possible. The price to be paid
for reducing ϵ is more iterations of the QNS method and therefore more computations
of the effective field (Section 4.3.3).
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LLG with varying QNS tolerance ϵ.
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Figure 4.7: Global error in the magnetic moment magnitude as a function of the time
step for Euler, Heun, and implicit (with varying tolerance ϵ) methods. The implicit
scheme shows an unexpected results at ∆t = 1.

The magnetic moment magnitude |m|2 should also be conserved throughout the sim-
ulation. The global error in the magnitude 1 − |m|2n with decreasing time step ∆t is
shown in Figure 4.7. The Heun scheme shows a very rapid linear convergence in log-log
space and can achieve lower error than the implicit scheme with a small time step. The
implicit scheme error is around the tolerance level ϵ. The implicit error also showed an
unexpectedly low error at ∆t = 1. This phenomenon has no obvious cause and requires
investigating further.

At zero temperature, the Heun and implicit methods both showed the same convergence
rate and similar error on a simulation of the LLG equation with h = 0.01, α = 0.1 for
a single magnetic moment. Although the implicit scheme showed approximately 50%
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lower error for most cases, the significant increase in complexity would not justify its
use over the simpler Heun scheme. In [53] it was suggested that the computational cost
of IMP may be reasonable for larger systems of magnetic moments on a spatial array.
If guaranteed stability and highly accurate conservation of the magnetisation length at
larger time steps are required then the implicit scheme is the recommended choice for
single magnetic moments and larger systems. The Euler scheme showed much lower
accuracy than the Heun and implicit methods.

4.4.3 Stochastic Landau-Lifshitz-Gilbert equation

The convergence rates and time-varying error of the schemes were analysed easily in
the case of the deterministic LLG because an analytic solution was available. In the
case of the stochastic LLG, no such solution exists and it is therefore more difficult to
quantify the relative performance of each scheme during the dynamic phase of the sLLG.
In the following section we first investigate a simplified form of the sLLG with a scalar
noise process, which allows an analytic solution, before estimating the convergence of
the methods on the full sLLG.

4.4.3.1 Simplified analytic case

If the thermal field in the sLLG is limited to the z-direction only, it is possible to obtain
an analytic solution to this simplified sLLG for a constant applied field in the z-direction
and the magnetic moment initially aligned along the x-direction. The solution is [87]:

m(t)

mx(t)

my(t)

mz(t)

 =

sech(α(ht+ σWt)) cos(ht+ σWt)

sech(α(ht+ σWt)) sin(ht+ σWt)

tan(α(ht+ σWt))

 (4.29)

This solution allows the convergence rate to be empirically determined for a simplified
case of the stochastic LLG. Care must be taken however, that the results of these ex-
periments cannot be generalised in entirety to the case of the full sLLG equation. Since
the noise only occurs in the z direction, noise process is effectively scalar such that:

∆Wn =

 0

0

∆W 2
n

 (4.30)

From the theoretical discussion of the Heun (Section 4.3.2) and implicit (Section 4.3.3)
schemes, the convergence rate is expected to be 1.0 in the commutative case but 0.5
in the commutative case. Recalling the definition for a commutative noise structure in
equation (2.17), the sLLG with scalar noise is commutative whereas the full sLLG is
not.
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Figure 4.8: A single continuous Wiener process sampled at three different intervals. The
Wiener processes used to compute the convergence rates must be identical when using
different time steps.

In the stochastic case, each trajectory simulated depends upon a Wiener path where
W i

t for 0 ≤ t ≤ tn is the ith multidimensional Wiener path. In order to compute the
empirical strong convergence rate, the expected error is computed from an ensemble of
trajectories. The strong global error

e = E ⟨∥m̂n − m(tn)∥2⟩ =
1

Nruns

Nruns∑
i=1

∥∥m̂i
n − m(tn)

∥∥
2

(4.31)

where m̂i
n is the approximation of the magnetic moment at time tn simulated with the

ith Wiener path. Each of the Nruns Wiener trajectories was generated using a random
number generator with a different initial seed. Moreover, for each different time step,
the equations must be simulated with the same Wiener processes but with less frequent
sampling. An example of a single continuous Wiener process W (t) sampled at different
intervals is shown in Figure 4.8. The Wiener increments are first generated for the
smallest possible time step simulated. The Wiener increments for subsequent, larger
time steps are obtained by summing consecutive time steps along the path.

The Heun and implicit schemes were used to generate 1000 solutions starting from the
same initial condition, for a range of time steps. The global error for each time step was
computed and the strong convergence γ was obtained using the same fitting principle
as previously (equation (4.28)). The results of the convergence experiment are shown
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Figure 4.9: Comparison of the Heun and implicit schemes for the simplified stochastic
LLG equation. The two schemes were used to estimate the trajectory of the equation
with H = 0.01, α = 0.1, σ = 0.05 (true solution shown in left panel). The empirical
strong convergence of the schemes was estimated (middle panel). The global magnetic
moment error was computed for each time step ∆t (right panel).
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Figure 4.10: Comparison of the Heun and implicit schemes for the simplified stochastic
LLG equation. The experiment from Figure 4.9 was repeated with the parameters
H = 0.01, α = 0.1, σ = 0.25.

in Figure 4.9. As predicted, both methods converge with strong order 1.0. In contrast
to the deterministic LLG the implicit scheme leads to a larger decrease in error. The
convergence of the magnitude of the magnetic moment at time tN is also shown as a
function of the time step. The results are analogous to the deterministic case: the error
for the Heun scheme monotonically decreases while the error of the implicit scheme
increases. This is assumed to be a result of the tolerance of the QNS method, which
introduces an error of around ϵ at each time step. A smaller time step requires more
steps to reach tN and therefore more errors accumulate. These results suggest that the
tolerance of the implicit solver should be reduced as the time step is reduced.

Introducing a stochastic element into the LLG increased the relative improvement in
the implicit scheme over the Heun scheme. Figure 4.10 shows the results of the same
convergence test but with a stronger thermal field value σ = 0.25. The results show
that the error of both methods is larger but that the implicit method has increased
proportionally less, leading to an even greater increase in performance. As suggested in
the initial stability analysis, the implicit scheme appears much more robust to systems
with a strongly varying stochastic component.

The Heun scheme is often implemented with a renormalisation step, as discussed earlier
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Figure 4.11: Comparison of the implicit scheme and the Heun scheme with an added
renormalisation step using the same parameters from Figure 4.9. The missing data
points (right panel) correspond to 1− ∥m∥2 = 1 to machine precision.

(Section 4.2). This renormalisation has been shown to help stabilise the Heun scheme
at large time steps [140] as well as ensure that the magnetisation length is conserved.
The convergence test in Figure 4.9 was repeated but the Heun scheme renormalised
the magnetic moment amplitude at each step. The results are shown in Figure 4.11.
Interestingly, the results show that even though the renormalisation ensures that the
magnetisation length is correct, it actually has very little effect on the path-wise error.
From this it may be concluded that a) the renormalisation step does not necessarily
improve the performance of a scheme (measured by path-wise global error) and b) that
the error in the magnetic moment length does not give information on the true accuracy
of the scheme.

4.4.3.2 Non-analytic case

Although there is no analytic solution to the full sLLG equation, it is possible to obtain
the strong convergence using the relative error between different time steps [177]:

E
〈∥∥∥m̂∆t

n − m̂∆t/2
∥∥∥
2

〉
≤ C∆tγ (4.32)

Equation (4.32) can be used to estimate the convergence rate but the absolute value of
the global error remains unknown, which makes their performance difficult to compare.
Computing the relevant convergence was achieved by simulating the sLLG with the Heun
and implicit schemes with time steps increasing in powers of two ∆t = h0, 2h0, 4h0, 8h0

where h0 is the smallest time step. An ensemble of Wiener processes was simulated
as before, ensuring that the same processes were used for both schemes and all time
steps. The results, Figure 4.12, agree with theoretical results that both schemes have
a convergence of 0.5 on the full sLLG. Note that the convergence results are different
from the simplified (commutative sLLG) in Figure 4.9.
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Figure 4.12: Empirical strong convergence of the Heun and implicit methods of the full
sLLG equation, estimated using the convergence of the relative global error between
subsequent time steps (equation (4.32)).

Table 4.2: Performance results for the fully implicit and Heun scheme solving the sLLG
equation for a single magnetic moment. The results are in units of CPU time per unit of
simulation time (larger is worse). The speed-up is the relative increase in performance
from using the Heun scheme.

∆t ×10−3 1 2 4 8 16 32 64 128
Implicit 3555 1751 853 411 201 100 50 25

Heun 190 95 47 23 11 5 3 1
Speed-up 18.6x 18.4x 17.9x 17.3x 17.0x 16.9x 15.9x 17.1x

4.4.4 Performance

The time taken to perform the simulations during the convergence experiment was meas-
ured to compare the efficiency of the Heun and implicit schemes. Table 4.2 shows the
average time taken to simulate the trajectories for each time step over the 1000 runs
with different Wiener process paths. The units are a ratio of CPU time to simulation
time. A score of 100 indicates that the method takes on average 100ms of CPU time
to simulate the system for 1ms (or equivalently 100s for 1s of simulation time and so
on). The results show that the Heun scheme is between 15–20x faster than the implicit
scheme for integrating a single magnetic moment. The results of the convergence test
of the simplified sLLG with high noise (Figure 4.10) showed that the implicit scheme
can achieve the same error with a time step 50x larger than the Heun scheme. In both
the linear test equation and sLLG experiments, the implicit scheme performed better
at high noise. Therefore, we posit that the for the full sLLG — for which we have no
absolute error values — it is likely that the implicit midpoint scheme is more efficient
than the Heun scheme. However, as the system size increases, the effective field cal-
culation becomes very expensive. This is a particular problem for the implicit scheme,
which must evaluate the sLLG many times per step of the simulation. Table 4.3 shows
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Table 4.3: Speed-up of the Heun scheme relative to the IMP method for interacting
particle chains of increasing length.

Particle chain length Speed-up
1 11.7x
5 26.5x
10 66.6x
25 180.0x

the relative speed up of the Heun scheme over the implicit method for increasingly large
systems of particles. The system simulated was a particle chain, with N particles aligned
along their anisotropy axes. The results show that as the system size grows, the implicit
method is substantially slower than the Heun method. Therefore, for large systems it is
unlikely that the implicit scheme is a viable method for simulating sLLG dynamics.

4.4.5 Equilibrium

The implementation of the implicit scheme was validated by checking the equilibrium
conditions of the function. While this has already been shown for the Heun scheme
(e.g. [56]), the implicit scheme uses a truncated Wiener process and the subsequent
effect on the thermal equilibrium was unknown. In Section 2.3.5, it was shown that the
distribution of states in a canonical ensembles follows a Boltzmann distribution. Let
θi = arccos

(
mi

z

)
be the angle between the z-axis and the magnetic moment of the ith

magnetic moment in the ensemble. The Boltzmann distribution for the state of the
magnetic moment is defined over the solid angles of the magnetisation. Therefore the
corresponding distribution for θ is:

p(θ) =
sin(θ)eE(θ)/(kBT )

Z
(4.33)

where Z =
∫
x sin (x) exp [E(x)/(kBT )]dx is the partition function. The energy of a

magnetic moment with no applied field and an anisotropy axis aligned with the z-axis
is:

E(θ)

kBT
= −σ cos2 (θ), σ =

KV

kBT
(4.34)

where σ is the called the stability ratio. A non-interacting ensemble of 10,000 magnetic
moments was simulated using the implicit midpoint scheme and compared to the ana-
lytic solution. The partition function Z was computed using the trapezoidal numerical
integration scheme [164]. The simulation began with all moments initially aligned along
the z-direction and dynamically evolved until the empirical distribution of the angles
p(θ) was constant. Figure 4.13 shows the resulting histogram of each value of θ in the
ensemble, compared with the analytic solution. The results show a very close match.
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Figure 4.13: Equilibrium distribution of 10,000 non-interacting magnetic moments sim-
ulated with the fully implicit method and σ ≈ 35. The normalised histogram resulting
from the simulation closely matches the empirical distribution.

The Boltzmann distribution is not only valid for a single spin but for any arbitrary sys-
tem. Although the single particle equilibrium is regularly tested in previous works, the
distribution of larger systems (such as two interacting particles) are not covered. The
energy for two particles includes the dipole-dipole interaction term and the energy be-
comes a function of the elevation and azimuth angle of both particles E(θ1, ϕ1, θ2, ϕ2). In
equation (4.33) the partition function was computed numerically. However, this becomes
very computationally expensive with increasing dimensionality of the energy function.
Therefore, the true equilibrium distribution was estimated using MCMC methods (Sec-
tion 2.3.6), which for a sufficient number of samples are guaranteed to approach the true
distribution.

Using MCMC methods, allows the thermal equilibrium resulting from simulations of
ensembles of more complex systems to be tested. This additional test ensures that the
interaction field has been implemented correctly. An interacting two particle system
was simulated with both their anisotropy axes aligned in the z-direction. In this case
the energy is constant for any ϕ1, ϕ2 and only varies with θ1, θ2. Figure 4.14 shows the
resulting equilibrium distribution of an ensemble of 50,000 systems compared with the
results of the Metropolis MCMC sampler. The results match closely and are seen more
clearly in Figure 4.15 that shows the marginal probability distribution of the elevation
angle of the first particle p(θ1)

∫
θ2
p(θ1, θ2)dθ2. The marginal distribution for the first

magnetic moment was also computed without the interaction term to ensure that the
interaction strength was strong enough to shift the equilibrium distribution.
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Figure 4.14: Equilibrium distribution for a system of two interacting magnetic moments
computed using stochastic simulation of an ensemble of 50,000 systems and the Metro-
polis MCMC method.
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Figure 4.15: The marginal equilibrium distribution for a single spin in a system of two
magnetic moments. The results compare the results of stochastic simulation using an
ensemble of 50,000 systems with and without the interaction term, against the results
of MCMC sampling.
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4.5 Conclusions

A range of testing procedures exist for determining the accuracy of numerical meth-
ods for the stochastic simulation of the sLLG. The literature revealed a broad range of
possible tests such as: energy conservation, thermal equilibrium, hysteresis loops, exper-
imental data, and the conservation of the magnetic moment. However, the fundamental
performance metric for numerical solvers is whether the simulated solutions are close
to true trajectories of the sLLG equation. The simplified sLLG equation, which has
not been utilised often in the literature, allows numerical solutions to be compared with
the analytic solution to obtain absolute error values. However, the full suite of possible
tests, including measuring the computational cost, should be employed to select the
most suitable method.

The implicit midpoint method was implemented and compared against the Heun scheme
in a series of tests. The implicit midpoint method consistently achieved lower error,
especially on systems with a large noise component. The practical implementation of
the implicit midpoint method was discussed in detail, revealing that solving the implicit
step required substantially more evaluations of the effective field term. In the end, the
implicit midpoint scheme proved computationally unfeasible for large systems.

Additionally, using the analytic solution of the deterministic and simplified sLLG equa-
tion, it was shown that the numerical methods were most prone to error in the dynamical
region. Studies of the equilibrium properties are not sufficient to determine the perform-
ance of numerical schemes if the dynamics are to be simulated accurately. Moreover,
it was shown that the error in the magnetic moment length does not necessarily in-
dicate path-wise closeness of the numerical scheme to the true solution. Consequently,
introducing a renormalisation step does not significantly improve the error.

There are a number of open questions remaining for the development of efficient numer-
ical methods for the sLLG:

• In other research fields, particularly finance, weak solvers are often employed to
obtain the expected solution in a more efficient way; yet their use for solving the
sLLG has not been explored until very recently [2]. Many stochastic simulations
of the sLLG do not require path-specific information and could be simulated sig-
nificantly faster.

• Existing studies have presented high order Runge-Kutta solvers for the sLLG [126],
which avoid simulating multiple stochastic integrals. Empirical results suggest
that these methods generate correct solutions. The mathematical basis for these
approaches deserves further investigation.
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• Adaptive time step methods are a natural next step for sLLG solvers and are
being explored [126]. Interesting examples of adaptive methods in other domains
(e.g. [99]) could be attempted in magnetism.

• The SIA and SIB semi-implicit schemes are highly promising solutions to the com-
putational difficulties of the fully implicit method. Further empirical evidence or
mathematical proofs of the validity of these heuristic algorithms would be wel-
comed by the community.

• Advanced computational methods utilising general purpose graphical processing
units would be particularly powerful for parallelising the computation of multiple
integrals (e.g. for the Milstein scheme) or speeding up methods such as SIA and
SIB for very large systems.



Chapter 5

Design of Magpy

The Magpy software package, as described in this chapter, was developed solely by
the author during the present research project. The final package is open-source and
available online.

5.1 Introduction

Magpy is an open-source C++ and Python package that models nanoparticles and sim-
ulates their magnetic state over time as described by the Landau-Lifshitz-Gilbert (LLG)
equation [120]. Since the best choice of numerical method to solve the LLG dynam-
ics is an open research question, the numerical solvers in Magpy are implemented in a
generic form, independent from the equations of magnetism, which allows the methods
to be tuned or replaced easily. The current implementation includes the widely used
Heun scheme [66] and the first open-source implementation of the derivative-free fully
implicit scheme [142] (Chapter 4). Magpy also includes the thermal activation model for
single non-interacting particles (Section 2.4.3), which avoids solving the LLG equation
and consequently simulates nanoparticles with significantly less computational effort.
Although Magpy was designed for simulating dynamic hysteresis loops for hyperthermia
experiments, the software may be used to explain or predict the outcome of magnetic
nanoparticle experiments in general.

5.2 A model for magnetic nanoparticle dynamics

Figure 5.1 shows a diagram of a magnetic nanoparticle, which comprises a large number
of individual atoms arranged in a regular crystal lattice, each of which possesses a
magnetic moment represented by a 3-dimensional vector. The net magnetisation of
a material is simply the sum of the individual magnetic moments. For example, if

63
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Figure 5.1: A two-dimensional sketch of a nanoparticle. The atoms of a magnetic mater-
ial are packed into a regular crystal lattice and each is modelled by a three-dimensional
magnetic moment that varies with time. Due to strong interactions between these
magnetic moments in small particles, Magpy assumes they rotate coherently and are
represented by a single macrospin vector.

the atoms are randomly oriented, the material has zero magnetisation; if they are all
aligned, the material has a large magnetisation component. From Section 2.2.2, atomic
magnetic moments prefer to align with one another due to the exchange interaction
force. This force is strong enough that, in nanoparticles that are particularly small
(< 25nm in diameter), the individual moments are approximately aligned and rotate
coherently. Magpy uses this approximation to model the state of a particles atoms by
a single 3-dimensional macrospin, rather than simulate the atoms individually. Magpy
is able to simulate much longer timescales for the same computational effort compared
to simulating the individual atoms due the greatly reduced degrees of freedom. This is
particularly relevant for medical experiments that may take seconds or hours but posses
magnetic dynamics that must be resolved on a picosecond time scale.

The LLG is implemented in Magpy in the reduced form presented in Section 4.1.1 by
introducing the reduced time variable ℓ. The equation of motion for a single particle
i in an ensemble of N particles was given by equations (4.1) and (4.2). The effective
field was computed using equation (4.6) and the thermal field acting on each particles
using the strength equation (4.7). The three forces acting on each particle are depicted in
Figure 5.2 and include the externally applied field, anisotropy field, and the dipole-dipole
interaction field. The equations are solved numerically at discrete time steps, resulting
in a simulated trajectory of the system’s magnetic state. The simulation outputs, at
each discrete time, the value of the applied magnetic field and the x, y, z components of
the magnetic state of every particle in the system. These results may be used to obtain
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1 2 3

Figure 5.2: The three effective field contributions acting upon macrospin i. (1) The mac-
rospin experiences a force towards alignment with the particle anisotropy axis (dashed
line) ki in either direction. (2) The macrospin is also forced towards aligning with the
externally applied field direction (solid arrows) happ. (3) Finally, each macrospin is re-
pelled and attracted by nearby macrospins. The force of the dipolar-dipolar interaction
diminishes with distance (dash-dotted line) between two particles Rij .

the total magnetisation of the system M(t) = Ms
∑

imi(t), the average magnetisation of
an ensemble of systems, static and dynamic hysteresis loops, and the energy dissipated
by the system.

Multiple simulations with different random seeds but with identical initial conditions will
result in different solutions due to the stochastic nature of the thermal field. For example
Figure 5.3, shows the results of five simulations of a 3-particle chain from the same
initial condition. The Magpy script used to generate the results is shown in Listing 1.
In addition to individual trajectories, the expected system trajectory and higher order
statistical moments may be obtained by running a large number of simulations and
averaging their results (i.e. stochastic simulation). The number of simulations required
to obtain reasonable estimates of these statistical variables is large and depends on the
system of interest.

5.3 Thermal activation for single particles

Magpy provides an alternative thermal activation model for simulating non-interacting,
anisotropy-dominated particles. A particle is considered anisotropy-dominated if the ef-
fective field resulting from anisotropy k is much greater than the thermal fluctuations and
the externally applied field such that σ(1− h)2 ≫ 1 (where σ = KV /(kBT ) is termed
the reduced energy barrier height). Magpy approximates the full dynamics as a jump
process between two discrete states (up and down), which is described mathematically
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Figure 5.3: Simulating a chain of three particles (created in Magpy using Listing 1).
(left) A chain structure of three identical particles are initialised with an external field
applied along their anisotropy axis and their magnetisation initially against the applied
field. (right) The coloured lines show the total magnetisation in the direction of the
applied field for 5 simulations from the same initial condition (see left). The black line is
the result of averaging 500 simulations from the same initial condition (i.e. the expected
or mean trajectory).
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Figure 5.4: In the thermal activation model, a single nanoparticle may occupy one of
only two states: up or down, which each correspond to local energy minima around the
anisotropy axis (left). The dynamics of the system are described by a master equation
with transition rates wu→d/d→u between the two states. The solution of the master
equation depends on the initial condition, particle properties and applied field. In this
example (right) the particle is initialised up with probability 1 and allowed to relax into
equilibrium (see Listing 2 for Magpy script). The equilibrium magnetisation depends
upon the strength of the constant applied magnetic field.
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1 import magpy as mp
2

3 chain3_model = mp.Model(
4 radius=[8e-9, 8e-9, 8e-9],
5 anisotropy=[4e3, 4e3, 4e3],
6 anisotropy_axis=[
7 [0., 0., 1.], [0., 0., 1.], [0., 0., 1.]],
8 magnetisation_direction=[
9 [0., 0., -1], [0., 0., -1], [0., 0., -1]],

10 location=[
11 [0., 0., -20e-9], [0., 0., 0.], [0., 0., 20e-9]],
12 magnetisation=400e3,
13 damping=0.1,
14 temperature=300.,
15 field_shape='constant',
16 field_amplitude=30e3)
17

18 chain3_ensemble = mp.EnsembleModel(base_model=chain3_model, N=500)
19 results = ensemble.simulate(
20 time_step=1e-13, end_time=1e-8, max_samples=500, n_jobs=4)
21

22 time = results.time
23 first_run_magnetisation = results.results[0].magnetisation()
24 ensemble_magnetisation = results.ensemble_magnetisation()

Listing 1: Simulating an ensemble of five hundred three-particle chains in Magpy (results
shown in Figure 5.3). The three-particle chain model is instantiated (lines 3-16) using
the Model object, which is defined by the properties and locations of each particle in the
chain and the applied field. An ensemble of models is created using the EnsembleModel
object (line 18), which simply represents a collection of individual models and is provided
for convenience. The five hundred models are individually simulated (lines 19-20) and
the computational work is distributed across four processes by setting n_jobs=4. The
resulting magnetisation is computed for an individual model (line 23) and the entire
ensemble of models (line 24).

by the master equation:

d
dt

[
pu(t)

pd(t)

]
=

[
−Γu→d(t) Γd→u(t)

Γu→d(t) −Γd→u(t)

][
pu(t)

pd(t)

]
(5.1)

where the elements of p(t) =
[
pu(t), pd(t)

]T
are the probability that the system is

in the up and down state respectively and Γu→d(t),Γd→u(t) are the transition rates
(units s−1) between the two states. Note that the solution of the master equation is the
time-evolution of the probability mass function over the discrete state space, whereas the
solution of the Landau-Lifshitz-Gilbert equation is the time-evolution of a single random
trajectory through the state-space R3. The transition rates are computed using the Néel-
Brown formula (equation (2.43)), which assumes that the field is applied parallel to the
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1 import magpy as mp
2

3 Hs = [100e2, 0.0, -100e2]
4 models = [
5 mp.DOModel(
6 radius=5e-9, anisotropy=5e4, damping=0.01,
7 magnetisation=400e3, temperature=300,
8 initial_probabilities=[1.0, 0.0], field_amplitude=H)
9 for H in Hs

10 ]
11 results = [
12 model.simulate(end_time=2e-6, time_step=1e-10, max_samples=1000)
13 for model in models
14 ]
15 expected_magnetisations = [res.magnetisation() for res in results]

Listing 2: Simulating three thermal activation models with different applied field prop-
erties with Magpy (results plotted in Figure 5.4). The DOModel object, representing the
thermal activation model, is defined (lines 3-6) by the particle and applied field proper-
ties. Three identical particles are modelled each with a different value of the constant
applied field amplitude (line 1). Each of the models is simulated (lines 9-12) and the
expected magnetisation of each model is computed (line 13).

anisotropy axis direction. The master equation (5.1) is solved numerically from an initial
condition p(t0) =

[
pu(t0), pd(t0)

]T
at time t0 using an adaptive step Runge-Kutta solver

(RK45) with Cash-Karp parameters [164]. The total magnetisation at time t for a large
ensemble of particles is computed as M(t) = Ms[pu(t)− pd(t)].

Figure 5.4 shows an example of a single particle simulated using the Magpy script in
Listing 2, with a constant field applied along its anisotropy axis. The initial condition
of the system is p(t0) =

[
1, 0
]T

and the master equation is solved numerically. As time
evolves, the probability that the particle flips into the down state pd(t) increases and
the expected magnetisation reduces. Eventually, the system reaches an equilibrium: in
zero field the two states are equally likely and the system has zero magnetisation; for
finite applied fields the system favours one state over the other.

5.4 Alternative software

Vinamax[127], implemented in Golang1 and also motivated by the medical applications
of nanoparticles, provides similar functionality to Magpy. A distinguishing feature of
Vinamax is its use of a multipole-expansion algorithm, which greatly improves the speed
of computing the dipolar-dipolar interaction forces for large systems. Magpy computes

1https://golang.org/doc for more information on the Go programming language.
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the interaction field between every pair of particles (equation (2.11)), an operation with
complexity O

(
n2
)
; the multipole expansion method uses an approximation, which results

in complexity O(n logn). Vinamax does not implement an implicit numerical solver.

Magpy is unable to simulate magnetic systems for which the macrospin assumption is
not justified, such as for larger particles that exhibit more than a single domain or sys-
tems for which surface-to-surface atomistic interactions are significant. In these cases,
the magnetic moments of the individual atoms must be modelled. Vampire [56] is an
open-source C++ alternative to Magpy for atomistic simulation. Vampire reduces the
significant additional computational effort required for simulating individual atoms by
leveraging general purpose graphical processing units (GPGPUs). Alternatively, if the
effects of temperature can be ignored and the atomistic magnetic moments are closely
aligned, the magnetisation of material can be represented as a continuous function res-
ulting in a spatial-temporal partial differential equation. This technique, termed micro-
magnetics, is implemented in a range of popular open-source packages: MuMax3 [195],
OOMMF [47], fidimag [41], nmag [62].

As discussed, Magpy includes implementations for several numerical methods to compute
approximate solutions to stochastic differential equations. Currently, the authors are not
aware of a reliable alternative in C++ or Python for the fully implicit method [142].
Though there are mature packages for the solution of ordinary differential equations
(e.g. sundials [93]) there are few options for stochastic differential equations. The
most mature, SDElab [79] implemented in Matlab, is no longer under development and
requires proprietary software. A re-implementation of SDElab using the open-source
julia language is currently under development2.

5.5 Implementation and architecture

Magpy consists of two components. Firstly, a C++ library implements the core simu-
lation code, which comprises the nanoparticle model and numerical solvers. The second
component is a Python interface to the C++ library functionality with additional fea-
tures for setting up simulations and analysing their results.

The dynamics (Landau-Lifshitz-Gilbert equation), thermal activation model, numerical
methods, and the effective field calculations are implemented in a C++ library. C++
was the preferred programming language for implementing the computationally-intensive
simulation because of its relatively fast performance and opportunities for optimisation.
The Magpy C++ library is optimised for serial execution; uses the BLAS and LAPACK
libraries; manages memory manually to minimise allocations and deallocations; and may
be compiled with proprietary Intel compilers for enhanced performance on Intel archi-
tectures. Furthermore, the C++-11 standard contains features that support a functional

2https://github.com/tonyshardlow/SDELAB2 for development updates on SDELab2.
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programming paradigm (such as closures and partial application), which were used ex-
tensively in Magpy to improve testability and modularity of code. The entry point to
the Magpy library is through two top-level functions: simulation::full_dynamics for
the full model and simulation::dom_ensemble_dynamics for the thermal activation
model. Magpy does not provide a graphical user interface, simulations must be invoked
by the user in a C++ program or using the alternative Python interface.

It was the authors’ opinion that scripting in C++ was not sufficiently usable because of
the low-level syntax, poor availability of plotting tools, and the requirement for compiling
scripts, which adds complexity for users. Python, on the other hand, is high-level,
interpreted, and has been gaining popularity in the computational science community
for the design of user interfaces [15, 59, 131] and as an easy-to-learn tool [58]. Therefore,
Python was chosen as the preferred language for scripting and implementing the auxiliary
components of Magpy. The interface between Python and C++ was written using
Cython [16], which allowed the C++ library functions to be wrapped as Python functions
and exposed as a Python package, while retaining the performance benefits of C++.
The Python package includes additional features for building models and plotting the
simulation results.

The typical workflow for a Magpy experiment consists of running multiple simulations
of the same model in order to generate a distribution of possible trajectories, as in
Figure 5.3. This motivates an embarrassingly parallel strategy in which each simulation
executes concurrently on a single process, since no communication is required between
the independent runs. Parallelism is implemented in Python using joblib3. A minimum
example of how joblib is used to execute tasks in parallel is shown in Listing 3. In
Magpy, the user creates an ensemble of models (the EnsembleModel object in Listing 1
lines 3-18) and begins the simulation (EnsembleModel.simulate lines 19-20) utilising
the requested number of cores (n_jobs). For each model in the ensemble, Magpy creates
a new independent python process containing a copy of the model object. Each process
then simulates its respective model by calling functions in the C++ library with the
model parameters. As many as n_jobs simulations may execute concurrently. Once
each simulation finishes, the results are returned from the C++ library to the individual
python process. Once all processes have completed, the results are gathered back into
the python process with which the user was originally interacting. This architecture is
displayed graphically in Figure 5.5.

5.6 Quality control

Magpy has been tested to increase confidence in the correctness of the implementation,
mathematics, and physics. The lowest level of tests, unit tests, assert that individual

3https://pythonhosted.org/joblib/ for the joblib documentation.
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1 from joblib import Parallel, delayed
2 import time
3

4 def slow_double(x):
5 time.sleep(1) # 1 second sleep
6 y = 2*x
7 return y
8

9 xs = [2, 6, 12, 24, 40, 72, 126, 240]
10

11 # Serial computation takes approximately 8s
12 ys_serial = [slow_double(x) for x in xs]
13 print(ys_serial)
14 #> [4, 12, 24, 48, 80, 144, 252, 480]
15

16 # Embarrassingly parallel computation takes approximately 2s
17 ys_parallel = Parallel(n_jobs=4)(delayed(slow_double)(x) for x in xs)
18 print(ys_parallel)
19 #> [4, 12, 24, 48, 80, 144, 252, 480]

Listing 3: A minimal example of an embarrassingly parallel computation with joblib.
The function slow_double (line 4) doubles a single number and takes approximately
one second. The objective is to evaluate the function with eight different arguments
(line 9). This is achieved in serial with a for loop (line 12) by evaluating the function
for each argument in the list singly, taking approximately eight seconds. However, this
problem is embarrassingly parallel because all evaluations of slow_double may occur
concurrently since each function call only depends on its initial argument. Using joblib,
the eight function calls are evaluated on four processes as shown (line 17) by setting
n_jobs=4. Two evaluations are distributed to each of the four processes, which execute
concurrently, taking approximately two seconds.

Main python 
process

Child python 
process

Child python 
process

Child python 
process

C++ library

C++ library

C++ library

Child python 
process

Child python 
process

Child python 
process

Main python 
process

Parameters

Parameters

Parameters

Parameters

Results

Results

Results

Results

1 2 3 4 5

EnsembleModel.simulate return EnsembleResults

Figure 5.5: The flow of data through an ensemble simulation in Magpy. (1) The user
instantiates an EnsembleModel object and calls the EnsembleModel.simulate function,
specifying the number of CPU cores to utilise. (2) The main Python process spawns a
new individual process for each model in the ensemble. (3) The individual processes each
call the Magpy C++ library using their respective model parameters. (4) The results
from the C++ simulation are returned to the individual python process. (5) When all
the processes have finished, the results are collected on the main process to be analysed
and plotted.
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functions return the correct answer given a set of fixed arguments. The unit tests are
designed to catch bugs during development and test the installation of the software.
Continuous integration, using CircleCI4, ensures that tests are automatically executed
before changes are committed to the existing code repository on Github. The unit tests
are implemented using GoogleTest5 for C++ functions and pytest6 for Python functions.

Numerical tests are necessary to confirm the stability and robustness of the numerical
methods. Magpy includes scripts to evaluate the empirical convergence rates of the SDE
solvers and compares them with analytic solutions [115, 142]. The numerical tests should
be used during the development of new or existing solvers. Finally, Magpy includes a
series of Jupyter notebooks7 that present tutorials and examples, including comparisons
of simulation results with theoretical solutions from alternative models in physics. These
comparisons assert that the simulations, under the appropriate assumptions, correctly
approximate the magnetic nanoparticle dynamics.

Magpy was primarily designed for simulating the magnetic dynamics of nanosized particles.
The simulation results may be used to compute heat dissipation, relaxation rates, and
equilibrium states allowing the software to help predict, explain, or otherwise augment
traditional experiments in the laboratory or clinical settings. However, using numerical
simulation also allows the exploration of a range of material geometries and properties
without expensive equipment or physical limits. Magpy was designed to be accessible to
experts and non-experts through the extensive documentation and included examples.

In addition to its uses in physics, the implementation of the numerical solvers for
stochastic differential equations may be useful beyond the original purpose of Magpy.
The Landau-Lifshitz-Gilbert equation belongs to a class of equations (multi-dimensional,
nonlinear, stochastic, non-commutative, stiff) that are challenging to solve numerically.
Magpy could also be used for teaching concepts in magnetism as the Python interface
will likely be familiar to new students in physics.

A number of additional features remain that have yet to be implemented in Magpy.
In particular, the use of a multipole expansion method (inspired by Vinamax) would
reduce the time required to compute the interaction fields. It would also be possible
to extend Magpy to simulate atomistic-level dynamics by decomposing each macrospin
into a lattice of atomistic moments and including the exchange interaction term to the
effective field. The thermal activation model currently supports a single particle with
the field applied along its anisotropy axis. Allowing arbitrary applied field directions
as well as dipolar-dipolar interactions between multiple particles would greatly increase
the potential applications of the model.

4https://circleci.com/ for more information.
5https://github.com/google/googletest for the GoogleTest repository.
6https://docs.pytest.org/en/latest/ for the pytest documentation.
7Magpy documentation and examples are hosted at http://magpy.readthedocs.io.
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5.7 Example: the first passage time distribution

The validity of the thermal activation model has been confirmed by comparing exper-
imental data [200], simulated solutions [179], and analytic solutions [37] to the results
of the model. In all three references the relaxation time obtained from the Néel-Brown
model (equation (2.43)) was compared to the results to the experimental/simulated/ana-
lytic relaxation rate in order to quantify validity. However, the relaxation rate is an
ensemble statistic, which has limited descriptive power. The relaxation rate is equival-
ent to the mean first passage time (MFPT), which describes the average time taken for
the particle to switch from its initial state. The first passage time distribution (FPTD)
is commonly used to quantify the behaviour of a stochastic process. A more rigorous
validation of the approximate dynamics of the thermal activation model would be to
compare the FPTD with stochastic simulation of the Landau-Lifshitz-Gilbert equation.
In the following section, Magpy is used to simulate the FPTD of a single magnetic nan-
oparticle to quantify the validity of the thermal activation model for a range of damping
regimes and energy barrier sizes.

The first passage time distribution for a 2-state master equation can be obtained ana-
lytically [68]:

FPT(t) = Γe−tΓ, Γ = Γ12 + Γ21 (5.2)

The FPTD for the thermal activation model is an exponential distribution parameterised
by the Néel-Brown transition rates. The mean first passage time is easily obtained from
the exponential distribution and is equivalent to the relaxation rate τ = 1/Γ: MFPT =

E ⟨FPT (t)⟩ = τ . For the Magpy simulations, the first passage time was defined as the
time taken for the magnetisation to reach a specific domain D ∈ R3. In order to compare
the solution to the thermal activation model, the two discrete states had to be mapped
into R3. A natural choice was that the up state was defined as

{
m ∈ R3 : mz > 0

}
and

the down state as
{
m ∈ R3 : mz ≤ 0

}
. However, the magnetisation trajectory may cross

the switching condition mz = 0 and return without switching to the other minima [66].
Therefore, after initialising the system in the up state, the domain for which the particle
was considered to have switched was defined as

{
m ∈ R3 : mz < 0.5

}
. It should be noted

that the FPTD obtained from simulation is conditional on this choice and will vary with
different definitions of the switching conditions.

As noted by Kalmykov et.al. [109], it is important to initialise a system in thermal
equilibrium distribution in order to obtain the correct first passage time. Initialising
a particle in the up state thus referred to an initial condition that was Boltzmann
distributed in the elevation angle (Section 2.3.5):

P (θ) =
sin(θ) exp

{
−E(θ)

kBT

}
∫ π/2
0 sin(θ) exp

{
−E(θ)

kBT

} (5.3)
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In order to quantify the validity of the transition rate model for different parameters, a
performance metric was required. The dynamics of the transition rate are expected to di-
verge from the results obtained from Langevin dynamics as the energy barrier is reduced.
The qualitative change in the distribution was quantified using the Kolmogorov-Smirnov
statistic, which calculates the divergence between an analytic and an empirical distribu-
tion. The KS-statistic provided a measure of confidence that the FPTD obtained from
numerical simulations was drawn from the analytic distribution from the master equa-
tion. The statistic is sensitive to both shape and location mismatch and thus provided
a suitable performance indicator of the applicability of the thermal activation model.

The cumulative distribution of first passage times is:

F (t) =

∫ t

−∞
FPT

(
t̂
)
dt̂ (5.4)

The empirical cumulative distribution function is the set of n ordered observations of
first passage times from simulations t̂1 < t̂2 < · · · < t̂n:

Fn(t) =
1

n

n∑
i=1

I[−∞,t]

(
t̂i
)

(5.5)

The resulting KS statistic is:

KS = sup
t

|Fn(t)− F (t)| (5.6)

The statistic represents the confidence that the empirical distribution differs significantly
from the analytic distribution. Therefore the lower the score, the higher the performance.

5.7.1 Results

An ensemble of 500 particles with σ ≈ 9 were simulated using Magpy. The particles
were initially distributed in a Boltzmann distribution around the up state. The traject-
ories were simulated and the first passage time was computed. Figure 5.6 shows the
MFPT computed using Magpy compared to the Néel-Brown model. The results show,
as expected, that the Néel-Brown model is valid in the intermediate-to-high damping
regime (see [38] for a discussion on the damping dependence of the relaxation time).

In addition to the mean first passage time, the distribution of first passage times was com-
puted by taking a histogram over the results of the stochastic simulation. Figure 5.7(a)
shows the first passage time obtained by the analytic equation (equation (5.2)) and em-
pirically. In the case of high energy barriers σ ≈ 8 it can be seen that the results of the
LLG simulation are also exponentially distributed with the same rate τ = x. Therefore
the thermal activation model not only accurately represents the mean relaxation rate of
a single magnetic nanoparticle but the jump process is also an accurate representation
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Figure 5.6: Mean first passage time for a Stoner-Wohlfarth particle. Comparison of
Langevin stochastic simulation and the analytic Néel-Brown formula shows good agree-
ment in the intermediate regime. σ = 8.8, h⃗ = 0, û =
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of the true dynamics for high energy barriers. The simulation was repeated with a lower
energy barrier, and the results reveal that the empirical distribution diverges from the
true solution. Eventually, the distributions become qualitatively different. For very low
σ, Figure 5.7 shows that an inverse Gaussian distribution fits the FPTD closely. The
inverse Gaussian distribution is associated with the first passage time distribution for a
Wiener process with drift (i.e. a random Brownian walk) [185]. This result supports an
intuitive description for the condition of high energy barriers: at low noise the dynamics
are dominated by the jump process due to the relatively strong anisotropy leading to a
bi-stable energy potential; the thermal effects may be neglected. But at high noise, the
thermal forces are so strong that the structure of the energy landscape is hidden by the
random noise, leading to a purely random walk of the magnetic moment. In between the
limits of a jump process σ >> 1 and random noise σ < 1, it was difficult to determine
whether the master equation provided a reasonable approximation.

The FPTD was computed for a range of σ and α using Magpy and compared to the
analytic FPTD using the KS-statistic. Figure 5.8 the value of the KS for the simulations.
The results show that as the energy barrier decreases, the two distributions diverge. The
results show a non-trivial dependence on the two parameters. The figure also shows a
decision boundary, which corresponds to 90% confidence. The phase plot can be used
to determine whether a given magnetic nanoparticle can be accurately simulated using
the thermal activation model. If the material parameters give a σ, α that is below the
line then the thermal activation model may be used.

The results of the FPTD experiments showed that, under the correct conditions, the
thermal activation model provides a good approximation of the full sLLG dynamics.
Moreover, the KS-statistic provided a meaningful method to determine the validity of
the model for varying sets of material properties.
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Figure 5.7: The empirical distribution of first passage times from Langevin simulations
with decreasing stability ratio σ. Parameters as in Figure 5.6 with α = 0.1. The
empirical histograms are fitted with parameterised distribution functions by maximising
the likelihood.
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Chapter 6

Nanoparticle cluster geometries
and heating effects

Interactions between magnetic nanoparticles alter their behaviour and have the poten-
tial to increase or decrease heating output in magnetic hyperthermia experiments. In
particular, dense clusters of aggregated particles show qualitatively different behaviour
to non-interacting, dispersed nanoparticles. In this chapter, we simulate small clusters
of magnetic nanoparticles subjected to alternating fields. The clusters are represented
by a system of macrospins coupled by dipole-dipole interactions. We first investigate the
dynamic, major hysteresis loops of particle chains and dense clusters. The results show
that dense clusters dissipate substantially lower heat due to being magnetically soft.
Our results corroborate previous conclusions from kinetic Monte-Carlo experiments in
Section 3.3. However, we further show that chains show much greater variation in SPL
with orientation to the magnetic field and the strength of the applied field. The results
suggest that although chains can reach greater values of SPL they could lead to greater
variation of heating in magnetic hyperthermia experiments.

6.1 System definition

Interacting clusters of magnetic nanoparticles were modelled by coupled stochastic Landau-
Lifshitz-Gilbert equations and simulated using Magpy. The nanoparticles forming each
cluster were identical spheres to isolate the effects of the cluster shape. Unless spe-
cified, the parameters used were: anisotropy strength K = 5000Jm−3, particle ra-
dius r = 10nm, saturating magnetisation Ms = 480kAm−1, damping α = 0.1, density
ρFe = 5.2 × 106gm−3, particle spacing (measured from particle midpoints) R = 25nm,
temperature T = 300K, alternating field frequency f = 500kHz. The dynamic hysteresis
loops of ensembles of clusters were simulated to determine the average heat dissipated.
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The simulated system was an ensemble of 50 clusters of N identical magnetic nano-
particles. Inter-cluster interactions were neglected. Unless specified, each member of
the ensemble contained three randomly generated properties

1. The constituent particles of each member of the ensemble had a randomly oriented
uniaxial anisotropy axis.

2. The geometry (relative positions) of the particles within each member cluster was
often identical for all members in the ensemble. However, some geometries have a
number of small variations with very similar energies (see Section 6.1.1). In this
case, the geometries of each member were randomly chosen.

3. Each member cluster was randomly oriented.

The benefit of randomly generating these properties is that it effectively marginalises
over the three properties, which allows us to evaluate the effects of size and shape
without considering the impact of particle and cluster orientation. We explore the effect
of cluster orientation in Section 6.5.2.

6.1.1 Cluster geometries

The simulated clusters had two distinct geometry types:

Particle chains were defined by a chain axis, number of particles N , and the particle-to-
particle spacing R (as measured by from the midpoints of the adjacent particles). The
particles were placed in a perfect line along the chain axis.

Dense clusters of nanoparticles were defined using the geometries provided in [7], which
we will refer to as Arkus clusters. Arkus clusters describe minimally rigid packings of
hard spheres subjected to attractive forces, which were obtained analytically by graph
theory and provide a useful reference for realistic nanoparticle packings. The Arkus
clusters are defined by the number of particles N , particle spacing R, and a unique id
since clusters with 5 or more particles have more than one minimal energy packing (see
Appendix C for Arkus cluster definitions).

Each ensemble was composed of members of identical shape and number of particles N .
However, randomness was introduced into each ensemble by varying the orientation and
anisotropy axes of each member in the ensemble. In the case of Arkus clusters larger than
5 particles, each member of the ensemble was drawn from each of possible N -particle
packings (the packing id was chosen from a uniform multinomial distribution).
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6.1.2 Random anisotropy axes

The anisotropy axes of the particles in each cluster in the ensemble were generated with
random orientations using the sphere point picking method, which generates a uniform
distribution of points over the surface of a sphere [199]. First, two independent and
identically distributed random numbers u1, u2 are drawn from a uniform distribution
between 0 and 1 U [0, 1]. These numbers generate the azimuth and elevation angle of a
point on the sphere:

ϕ = 2πu1

θ = arccos(1− 2u2)
(6.1)

where ϕ, θ are the azimuth and elevation angle respectively such that x = sin θ cosϕ, y =

sin θ sinϕ, z = cos θ. A new random point on the sphere can be generated by redrawing
u1 and u2.

6.1.3 Random cluster orientation

In addition, the orientation of each cluster in the ensemble was randomly generated.
Any rotation in three dimensional space can be represented by a single rotation angle
about a rotation axis [111]. The angle and rotation axis are represented as a quarternion.
Random quarternions were generated to obtain a uniform distribution of rotations in
three dimensional space. A random quarternion was generated as follows:

1. Randomly set the quarternion axis using the uniform sphere point picking al-
gorithm (equation (6.1))

2. Choose a random rotation angle uniformly on [0, 2π]

6.2 Heat dissipation in the major-loop regime

The literature review in Section 3.3 showed that the effects of interactions depend on
whether the particle clusters are in a major- or minor-loop regime. Comparing two
systems in different regimes leads to ambiguous and conflicting results. The amplitude
of the applied magnetic field was set to H = 3Hk where the anisotropy field Hk =

2K/(µ0Ms) is equivalent to the coercive field for single non-interacting particles. The
large field was sufficient to fully reverse clusters in the major-loop regime and therefore
simplify interpretation of the results. The heat dissipated in the major-loop regime
corresponds to the maximum achievable SPL for a given magnetic system and applied
field frequency.
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Figure 6.1: Dynamic major hysteresis loops for chain and Arkus cluster geometries with
1-8 particles. Results were obtained by stochastic simulation of coupled sLLG equations
using Magpy. The vertical and horizontal axes are shared between all figures. Results are
shown for randomly oriented clusters with random anisotropy axes and clusters aligned
with the applied field with aligned anisotropy axes.

Chain and Arkus clusters of increasing size were simulated to compare their dynamic
hysteresis major-loops and hence heat dissipation. The magnetisation of each particle
in the ensemble was randomly initialised with equation (6.1) and simulated for five
field cycles (i.e. 5/f where f = 1/T is the applied field frequency in Hz and T is
the period in seconds) to allow for the system to reach periodic equilibrium such that
M(t+ T ) = M(t) forming a closed loop in the M −H plane.

6.2.1 Randomly oriented clusters

Figure 6.1 shows the dynamic hysteresis loops for the final cycle of the simulation for
each ensemble. We can identify the hysteresis loops as major loops by recognising that
the applied field value is greater than the field at which the hysteretic behaviour vanishes.
Comparing the chain and Arkus clusters in the random case, we find that their hysteresis
loops posses qualitatively different shapes (excluding one and two particle clusters, which



Chapter 6 Nanoparticle cluster geometries and heating effects 83

1000

2000
SP

L 
(W

/g
)

200

400

M
ag

 (k
A

/m
)

Mmax Mr

1 2 3 5 8
N

5

10

H
c 

(k
A

/m
)

1 2 3 5 8
N

0.5

0.6

Sq
ua

re
ne

ss

Figure 6.2: Dynamic hysteresis loop quantities and SPL of randomly-oriented ensembles
of chain of increasing length N . The SPL is computed by numerical integration of the
hysteresis loops in figure 6.1(a).
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Figure 6.3: Dynamic hysteresis loop quantities and SPL of randomly-oriented ensembles
of Arkus clusters of increasing size N . The SPL is computed by numerical integration
of the hysteresis loops in Figure 6.1(b).

have identical geometries). Since all material, environmental, and field conditions are
equal in both experiments, these differences must be attributed to the geometry of the
clusters alone.

The specific power loss (SPL) values of the simulated loops in Figure 6.1 were obtained
by numerical integration (see equation (2.50)) using a trapezoidal scheme implemen-
ted in the python package numpy [155]. Four additional quantities were extracted nu-
merically from the hysteresis loops: the zero-magnetisation dynamic coercive field Hc,
zero-field remanent magnetisation Mr, maximum magnetisation M(Hmax), and square-
ness Mr/Mmax. The hysteresis loop quantities for randomly-oriented chains and Arkus
clusters of increasing size are shown in Figures 6.2 and 6.3 respectively.

The randomly oriented chains in Figure 6.1(a) show a larger dynamic coercive field
Hc, remanent magnetisation Mr, and squareness (Mr/Mmax) compared to the randomly
oriented Arkus clusters, which leads to a substantially larger hysteresis area hence SPL.
The increasing coercive field suggests that as the chain length increases, larger field
amplitudes are required to reverse the chains. The increasing Mr shows that as the
chain length grows, the particles are more likely to remain aligned as the field reverses.
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Figure 6.2 shows that the SPL monotonically increases with increasing chain length.
Increasing the chain length above N = 3 leads to diminishing returns; the dipolar
interaction field decreases with the cube of the distance between particles (see equation
(2.4)).

The Arkus clusters in Figure 6.1(b) show close to superparamagnetic behaviour: leaning
loops with low squareness and narrow hysteresis area. In other words, the Arkus clusters
are magnetically soft. This agrees with physical intuition that the dipolar interactions
cause the magnetic moments to favour end-to-end alignment, which consequently leads
to closed flux paths with very low total energy. In contrast to the chains, the Arkus
clusters show a non-monotonic dependence of the SPL on the size of the cluster. After
N = 1 and N = 2, which are equivalent to the chain, the symmetry of the cluster shape
is broken and the SPL rapidly reduces. The plot of Hc reveals that the Arkus clusters
are substantially easier to reverse.

Both the randomly-oriented chains and Arkus clusters have a similar dependence of the
maximum magnetisation Mmax, which is a consequence of thermal fluctuations causing
particles to oppose the applied field even for very strong field amplitudes. The results
suggest that in the randomly-oriented ensembles there are relatively low energy barriers
that correspond with relaxation times on the same order of the period of the applied
field T = 1/f .

The gradual decrease of the system magnetisation with the field at the ends of the
hysteresis loops suggests a broad range of switching times (time taken for individual
particles to reverse direction against the field), which arises from both:

1. The system energy barrier distribution: different configurations of particles within
the clusters that are separated by lower energy barriers (either by individual or
collective rotation of the magnetic moments) require a smaller applied field to
transition. The distribution of energy barriers is broadened by the different ori-
entations of the clusters and their constituent particle anisotropies.

2. Thermal fluctuations: higher temperature leads to larger thermal fluctuations,
increasing the probability of particles spontaneously activating over the energy
barriers.

The low squareness of the Arkus clusters therefore suggests that the system has lower
and/or more dispersed energy barriers. On the other hand, the hysteresis loops for
chains of length N = 5, 8 show inflection points at which a large proportion of particles
switch simultaneously, suggesting a narrow distribution of energy barriers much greater
than kBT , which dominate the reversal process. In appendix D we show results from
repeating the experiment at lower temperature T = 30K. The resulting hysteresis loops
have a similar shape, which suggests that the distribution of switching times is dominated
by the random orientations of clusters and particles rather than by thermal activation.
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Figure 6.4: Arkus clusters of anisotropy-aligned particles. All anisotropy directions (red
arrows) are aligned in the same direction as the alternating magnetic field. The figure
shows rendered clusters of size 1-6. In the aligned simulation, the relative positions of
the particles are also fixed in the arrangements shown. The longitudinal axis of cluster
(2) and the plane spanned by the particles in (3) are parallel with the applied field.

6.2.2 Anisotropy-aligned clusters

Figure 6.1 shows the hysteresis loops obtained from aligned ensembles, which consist
of 50 shapes oriented in the same direction with their anisotropy axes aligned with the
external field. Examples of aligned Arkus clusters of size N = 1 − 6 are shown in
Figure 6.4.

The aligned chains in Figure 6.1(c) loops show a larger coercivity and squareness for all
chain lengths compared with the randomly-oriented ensembles. The square loop shape
is similar to the response of a single Stoner-Wohlfarth particle, suggesting a single large
energy barrier substantially greater than the thermal energy. Overcoming this large
energy barrier requires a large reversal field, which leads to a substantial dissipation in
heat.

In Figure 6.1(d), the simulated Arkus cluster loops present a complex shape. The N = 3

loop is narrow but has high squareness resulting from a large energy barrier to reverse
the first particle. The closed N = 5 and N = 8 loops show distinct inflection points that
suggest multiple meta-stable states separated by energy barriers. Determining the con-
figuration of the particles within these meta-stable states requires further investigation
of the dynamics of the individual magnetic moments. However, one possible interpret-
ation is that the particles in the clusters tend to switch individually and consecutively.
This contrasts with the chains in which all particles rotate simultaneously as evidenced
by the near-instantaneous switch in the magnetisation. The aligned N = 5 and N = 8

loops also show a small hysteresis area as in the randomly-oriented ensembles. This
corroborates with the structure of the Arkus clusters in Figure 6.4, which shows that
clusters with N > 3 particles posses approximate rotational symmetry and therefore
will respond consistently to alternating external fields in different orientations.
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Comparing the tails of the chain and N < 5 Arkus loops to the randomly oriented case
reveals that the aligned clusters have flat tails and the randomly-oriented clusters have
sloping tails. The flat tails indicate no switching in the initial reversal of the alternating
field. In the randomly-oriented case, the broader distribution of switching must be
attributed to either the distribution particle anisotropies or cluster geometry rotations.
For example: the decreased coercivity in randomly-oriented chains agrees with physical
intuition that chains that are perpendicular to the applied field are easier to reverse
than those aligned with the field. That the orientation of the clusters substantially
affect the hysteresis loop corroborates with the T = 30K simulations in Appendix D,
which demonstrated that even with small thermal fluctuations the tails are not flat as
in the aligned case.

6.2.3 Discussion

The simulated results of subjecting clusters to large enough fields to activate major-
loop dynamic hysteresis agree with previous experimental and computational results
comparing chains and dense clusters of particles. The current literature (see Chapter 3
or the recent review [1]) shows that many factors affect the relationship between cluster’s
geometry/size and resulting SPL [159]. However, chains of particles generally show
increased SPL while clusters of particles show reduced SPL. In addition to dense clusters
and chains, Serantes et. al. [181] simulated ring, cube, and hexagonal structures that all
showed reduce SPL with increasing size compared with chains. The results showed that
the SPL correlated with the symmetry of the nanoparticle structures: aligned linear
aggregates (one-dimensional) and 3 particle clusters (two-dimensional) showed higher
SPL compared to all three-dimensional shapes. Our results also agree exactly with [64],
which describes these clusters as having a larger effective anisotropy leading to larger
SPL (assuming clusters are exhibiting major-loop hysteresis).

In existing studies with minor-loop activated clusters, the detrimental effect of dense
clustering on SPL is also seen [159, 192]. In [159] it is shown that larger clusters of
particles have lower SPL due to demagnetising effects but in contrast to our major-loop
simulations they also show increased dynamic Hc with increasing cluster size.

Our results for small N < 9 perfectly aligned chains also match the behaviour of large
approximate chain aggregates simulated at low temperature [181]. In particular, the
coercive field, remanent magnetisation and squareness increase with increasing chain
size, which leads to an increasing SPL with diminishing returns as the hysteresis loop
approaches a square shape. Moreover we found this trend to be true for both perfectly
aligned chains and completely randomly-oriented ensembles. It is shown in [181] that
N = 3 chains perform worse than N = 2 chains when oriented perpendicular to the
applied field. Thus the gain from increasing the lengths of parallel chains dominates
the losses from increasing the lengths of perpendicular chains in a random ensemble.
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However, aligned chains always dissipate higher SPL than randomly-oriented chains in
the major-loop regime.

6.3 Heat dissipation in the minor-loop regime

In the following simulations we investigate the heat dissipated under smaller applied
field amplitudes, while keeping the field frequency constant. As the alternating field
amplitude is reduced, the hysteretic behaviour enters the minor-loop regime. In this
regime, the applied field amplitude is not sufficient to fully activate the particle cluster
and the height of hysteresis loop becomes a function of the applied field amplitude,
frequency, and the relaxation time of the system (see Section 3.3).

6.3.1 Effect of increasing field amplitude

Figure 6.5 shows SPL (obtained as in Section 6.2) as a function of the reduced applied
field amplitude H/Hk for the chain and Arkus geometries in both random and aligned
orientations. The SPL increases monotonically with the applied field amplitude for all
cluster geometries. Increasing the amplitude deterministically broadens the hysteresis
loop (i.e. along the horizontal H axis). If the larger field does not lead to a response
with reduced remanent magnetisation (i.e. along the vertical M axis) then the hysteresis
area hence SPL will increase. Thus we find that the remanent magnetisation does not
decrease substantially in any of the clusters.

As the field amplitude is increased we expect SPL to saturate as the hysteresis area
approaches its theoretical limit H = 4µ0MsHc. This can bee seen in previous kinetic
Monte-Carlo simulations at very low temperature [181] and in Appendix D where we
repeat the experiments at T = 30K. However, at T = 300K the simulations show that
SPL can still be increased with diminishing returns at field amplitudes much larger than
Hk. Figure 6.6 shows the dynamic hysteresis response of an ensemble of anisotropy-
aligned single particles (equivalent to Arkus and chain clusters with N = 1). Although
the ensemble displays major-loops for H ≥ 0.5 the SPL is increased by further increasing
the applied field amplitude, which broadens the hysteresis area. We expect that as large
fields increase above H = 3Hk that the SPL will eventually saturate. The field required
to reach the maximum SPL for a given shape is therefore a function of the temperature
of the system.

6.3.2 Effect of increasing cluster size

Figure 6.2 showed SPL increasing monotonically with the length of the particle chains
in the ensemble. However, Figure 6.5(a)(b) shows that for H < 1.5Hk longer particle
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Figure 6.5: SPL obtained from numerical integration of hysteresis loops. The hysteresis
loops were simulated for Chain and Arkus geometries of various sizes both randomly-
oriented and aligned with the externally applied field. The results are shown as a function
of the alternating magnetic field reduced amplitude (normalised by the anisotropy field
Hk for a single particle).
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chains have lower SPL than shorter chains. This is also true for large Arkus clusters;
N = 8 and N = 5 clusters have very low heating output in Figures 6.5(c)(d). The
heat dissipated under a H = 0.5Hk field is plotted again in Figure 6.7a as a function
of cluster size for randomly-oriented Arkus clusters and chains, which shows a similar
trend for both cluster shapes. The relationship between H and SPL for chains no longer
monotonically increases (as in Figure 6.2) whereas Arkus clusters behave similarly (as
in Figure 6.3).

We investigated the origins of this non-monotonic relationship by inspecting the hys-
teresis loops of the two shapes at a weaker field in Figure 6.7b. The figure shows the
evolution of the hysteresis area from N = 2 in subfigure (i) (identical for both chain and
Arkus clusters) to N = 5 in subfigures (ii) and (iii) for chains and Arkus clusters respect-
ively. The loops are qualitatively different and suggests different physical origins of the
reduced SPL. For Arkus clusters (ii), as in the case of H = 3Hk in Figure 6.1, the loop
is fully activated but close to superparamagnetic. This is due to the low energy barriers,
which are easy to overcome and lead to very fast relaxation times. On the other hand,
the N = 5 chains (iii) are no longer fully activated and have reduced magnetisation.
The field is not sufficient to reverse the large chains leading to minor hysteresis loops,
as seen in low field kMC simulations in [181]. It has been shown previously that longer
chains have longer switching times [124]. The blocked state of the particle chains can
be seen in Figure 6.5(a) which shows almost no heat output followed by a large change
around H = Hk, which is sufficient to fully reverse the particle chains. In contrast, the
Arkus clusters show an SPL as a smooth function of H.

These results revealed that, at low fields, clusters of various shapes can show decreased
SPL with increasing size of the cluster. However, the origins of the decreased heating
output varies for chains and densely-packed clusters. Particle chains exhibit increased
energy barriers that must be overcome; SPL can be increased by increasing the thermal
fluctuations, reducing the coercivity of the chains or increasing the applied field amp-
litude. Particle clusters exhibit decreased energy barriers leading to a paramagnetic-like
response; SPL can be increased by reducing thermal fluctuations, increasing the relaxa-
tion time of the system or increasing the applied field frequency.

6.3.3 Discussion

The relationship between cluster shape and SPL is related closely to the dimension-
ality and symmetry of the clusters. In [181] many shapes were simulated and the
results suggested that 1-dimensional clusters dissipated more than 2-dimensional and
3-dimensional. Two other recent works [96, 192] used the fractal dimension to describe
the geometry of clusters and showed a trend of decreasing SPL with increasing fractal
dimension Df . Our simulations corroborate with this trend and can be seen in Figure
6.5(c)(d) where N = 1 is 1D, N = 3 is 2D and N = 5, 8 are 3D. Furthermore, we have
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(b) Hysteresis loops for three different ensembles of cluster types subjected to a low amplitude
H = 0.5HK field. (i) an ensemble of two particle clusters (identical for chains and Arkus
clusters) showing major-loop activation (ii) an ensemble of 5 particle chains showing minor-loop
activation (iii) an ensemble of 8 particle Arkus clusters showing major-loop activation close to
superparamagnetic behaviour.

Figure 6.7: Heat dissipation (SPL) resulting from subjecting Arkus clusters and chains
of increasing size to an alternating magnetic field of low amplitude H = 0.5Hk where
Hk is the anisotropy field of the constituent particles. In all figures, the particles and
clusters are randomly oriented.
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observed that this rule-of-thumb remains true for both aligned and randomly-oriented
geometries in the major- and minor-loop regimes. The distribution of SPL with cluster
orientation is explored further in Section 6.5.

Long chains of anisotropy-aligned particles achieve the maximum possible SPL, if there
are no restrictions on the applied magnetic field amplitude. Specifically, the field amp-
litude H must be larger than Hk. This corroborates with numerous previous numerical
and experimental (see e.g. [181]) studies. However, below the anisotropy field, large
chains show SPL substantially lower than a single particle whereas clusters show a
smoother function of SPL with the applied field. These discontinuities may cause prob-
lems: if the applied field is around Hk then some of the chains may never activate
while others may be dissipating substantially. In Section 6.5 we explore the impact of
variation of heating between particle clusters in detail.

In all simulations the N > 3 Arkus clusters showed a reduced SPL compared with a
single, isolated particle. This was true for randomly-oriented and anisotropy-aligned
particles across a range of field values. Hysteresis loops revealed that this reduced SPL
was due to paramagnetic behaviour leading to small hysteresis areas. This has been
observed in experiments [64, 159] as well as in simulated systems [181, 192]. However,
there exists examples [159, 181] of clusters improving SPL versus a single particle in
cases where the applied field is very low (thus not activating clusters) or the material
parameters are different. Furthermore, a study of large, dense clusters (3000 particles
placed randomly in a sphere with particle-to-particle spacing of 25nm) showed a low
resultant SPL due to increased coercivity leading to minor-loop behaviour (i.e. as in Fig-
ure 6.7b(ii)) rather than because of paramagnetic behaviour (i.e. as in Figure 6.7b(iii)).
The results in [189] show that particles in the middle of the clusters behave differently
to particles at the edge, which could account for this unexplained difference in beha-
viour. Overall, the comparison with existing results suggests that SPL in dense clusters
is strongly dependent on a large number of system properties. In Section 6.4 we replicate
the results of a previous experiment [152] to investigate a specific example of N = 3

Arkus clusters improving the SPL of single particles.

6.4 Comparison with experimental data

The previous section showed that, for the specified material properties, Arkus clusters
showed lower SPL values than single, isolated particles. This result contrasts with a pre-
vious combined experimental and kinetic Monte-Carlo (kMC) investigation [152]. The
kMC simulations showed that randomly-oriented N = 3 clusters (or trimers) dissipated
more heat than a single particle. We attempted to reproduce the simulations in [152] by
using the same material properties: Ms = 450kA/m, radius r = 10nm, K = 50kJ/m3,
particle spacing R = 23nm, T = 300K, field amplitude H = 23.8kA/m, field frequency
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Figure 6.8: SPL of a single magnetic nanoparticle simulated with Magpy using varying
values of the damping ratio α. High values of α lead to high longitudinal damping of the
magnetic moment. The various values are compared to the SPL simulated using kinetic
Monte-Carlo simulations (kMC) in [152]

f = 300kHz. The method to randomly generate the clusters and anisotropy orientations
wasn’t controlled but the differences were assumed to be negligible.

6.4.1 Tuning the damping ratio

Figure 6.8, shows the SPL predicted by Magpy simulations by numerical integration
of the simulated hysteresis loops for a single magnetic nanoparticle. The value of the
damping ratio α was varied and compared with the kMC result, which doesn’t account
for the phenomenological damping of the magnetic moment. The results show that the
SPL, hence hysteresis area, is highly sensitive to the damping ratio. The results of the
two simulations match very closely for values of α ≈ 0.1, which is expected for the
two-level approximation with Néel-Brown transition rates (as used in the kMC model)
as shown in Section 5.7 and [22, 38].

6.4.2 Heat dissipation in dense clusters

We simulated N = 1, 2, 3, 6 Arkus clusters and compared them with the results in [152].
The definition for the clusters can be found in Appendix C. The value of K for all
particles in the clusters was varied for all particles, which aims to fit the experimental
results. Figure 6.9 compares the predicted SPL using Magpy to the result obtained from
kMC simulations, where the dimensionless stability ratio KV /(kBT ) was deliberately
varied by adjusting the anisotropy constant K.

For the N = 1 clusters (single particles), we see that the predicted SPL matches
very closely. However, as interactions are introduced, the predicted SPLs vary greatly
between the two approaches. Excluding σ = 20.2, the resulting SPL from Magpy simula-
tions was smaller than that predicted by kMC simulations. In particular, N = 2 clusters
(dimer chains) are predicted to have a large increase in SPL compared to the N = 1
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Figure 6.9: SPL values obtained from kinetic Monte Carlo and Magpy simulations of
dense clusters of particles. The anisotropy value of the particles was changed in each
simulation, which is represented by the dimensionless stability ratio σ = KV /(kBT )

cluster. However, although there is a noticeable increase in the SPL for the magpy
simulated data, the incremental increase is lower. Furthermore, magpy simulations do
not produce SPL values for N = 3, 6 clusters that are greater than N = 1.

We investigated these differences by inspecting the simulated dynamic hysteresis loops
from Magpy and kMC data. The latter obtained from Niculaes et.al. [152]. The N = 1

loop looks very similar for both and is a typical shape for a randomly oriented nano-
particle. However N = 2 shows a drastically different loop shape to the kMC simulations.
In the kMC, the chains are exhibiting minor hysteresis loop due to not being fully activ-
ated. This suggests that the clusters show increased coercivity (as expected for chains,
see previous section). Moreover, the increased remanent magnetisation suggests a large
effective anisotropy and therefore increased thermal stability. Additionally, N = 3 and
N = 6 exhibit minor hysteresis loops in the kMC simulations. Thus the dipolar inter-
actions in the Arkus increase the coercivity compared with single particles. This result
agrees with [189] but contradicts with our simulations, which consistently show a re-
duced coercivity with increasing cluster size. Both the kMC and magpy simulations use
the same material properties, therefore the different behaviour must be explained by the
method to generate geometries or the simulated dynamics of the system.

Section 6.1 described the generation of uniform distributions of the anisotropy directions
and cluster orientations. The clusters used in the kMC simulations were created using a
fractal generating algorithm as described in [96] and the anisotropy directions were also
uniformly distributed over a sphere. Therefore, it is possible that the cluster shapes have
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Figure 6.10: Dynamic hysteresis loops simulated using magpy for α = 0.1 and σ =
5.1 (K = 50kJ/m) compared with simulated loops obtained by kinetic Monte Carlo
simulation.

impacted the results. In particular, if the fractal generating algorithm is biased towards
shapes that align with the external field, the SPL measurements would be larger. The
behaviour of these two algorithms should be investigated further. Alternatively, cluster
orientations and shapes could be determined from observing particle clustering behaviour
in experiments.

A fundamental difference between the Magpy and kMC simulations is the underlying
model of the magnetic moment. Magpy simulates the full stochastic Landau-Lifshitz-
Gilbert equation whereas the kMC simulations use the Stoner-Wohlfarth model of a
two-state magnetic moment such that a system of N particles has 2N possible config-
urations. As discussed in Section 2.4.3.1, the energy barriers between these states must
be sufficiently large for the approximation to be valid. Given that the anisotropies are
randomly varied, it is possible for clusters to be oriented in energy efficient orientations
with very low energy barriers between states. These configurations could lead to un-
realistic transition rates in the kMC simulations. Indeed, previous studies using kMC
simulations have required unphysical anisotropy constants and saturation magnetisation
values in order to match experimentally observed results [159].

6.4.3 Heat dissipation in mixed solutions

In the original experiment, a K-value of K = 50kJ/m was selected from the results
of Figure 6.9 in order to explain experimentally observed SPL values in synthesised
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Figure 6.11: SPL prefactors for each cluster size for three different solutions synthesised
in [152] using different amounts of polymer in order to control the degree of clustering
in each solution.

solutions of magnetic nanoparticles. Niculaes et.al. were able to control the degree of
clustering in order to synthesise three different solutions. The clustering was controlled
by varying the amount of polymer (polystyrene-co-maleic anhydride) used during the
particle cluster synthesis process. The three solutions were categorised by the molecules
of polymer per nanometer area of magnetic particle surface. The clusters are termed
16.5PScMA (16.5 molecules of polymer per nm2), 33PScMA, and 66PScMA. The size
distribution of the clusters was recorded (e.g. 49% dimers, 20% trimers, etc.) using
transmission electron microscopy (TEM). Let nk be the proportion of clusters in the
solution that consist of k-particles. Assuming all particles are the same size and density,
we can compute the proportion of particles in the solution that are attached to each of
the cluster types (sizes) k:

αk =
knk∑
k knk

(6.2)

αk should be interpreted as the proportion of particles that belong to a cluster of size
k. The αk values for three solutions obtained in [152], are shown in Figure 6.11. The
total SPL dissipated in a given solution may be computed as a weighted sum of the SPL
obtained by simulation of the individual clusters. Thus the SPL for solution X is:

SPLX =
∑
k

αkSPLk (6.3)

The total heat dissipated in the three solutions was obtained by applying the data from
Figure 6.9 to equation (6.3). Figure 6.12 shows the total SPL dissipated in each of the
clusters as predicted by the two simulations. Each bar is decomposed into the SPL
dissipated by each of the cluster sizes. For example, in Figure 6.11 the 66 solution
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Figure 6.12: Cumulative SPL dissipated by solutions of mixed clusters as described in
Figure 6.11. The clusters were simulated with α = 0.1 and σ = 5.1. The simulated
SPL from the kMC method were a close match to experimental values but the magpy
simulations show substantially lower SPL.

contains mostly N = 6 clusters and therefore the total SPL in Figure 6.12 consists
almost entirely of contributions from N = 6 clusters

Figure 6.12 shows that the magpy simulations lead to a significantly lower SPL than
obtained in experiments. Figure 6.9 showed that N = 2 clusters showed the largest
difference in SPL between the two simulations and the 16 and 33 clusters are dominated
by SPL contributions from the N = 2 cluster. One possible solution to match the data
is to use an larger anisotropy value in the magpy simulations, which would increase SPL
as shown in Figure 6.9. However, the N = 3 and N = 6 clusters would still dissipate less
heat than a single particles, which we expect to alter the distribution of the SPL across
the three mixed solutions in Figure 6.12. Alternatively, many of the material (Ms, α, V )
and field (H, f) could be adjusted to find an alternative interpretation of the results.

6.4.4 Anisotropy-aligned clusters

In the simulations of the experiments in [152], it was assumed that the anisotropy ori-
entations and the cluster orientations were randomly distributed. TEM images in [152]
confirm that there is no ordering to the rotation of clusters but the anisotropy direc-
tions are more difficult to align. In [181], it was suggested that chains of particles tend
to be aligned along their anisotropy axes. The anisotropy axes of individual particles
in a cluster are difficult to measure. Therefore, we repeated the magpy simulations in
Figure 6.9 but the clusters N = 1, 2, 3, 6 clusters were aligned as shown in Figure 6.4.
Although the axes of the particles in each cluster were aligned, the orientation of the
each cluster was still randomly rotated as described in Section 6.1.3.
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Figure 6.13: Cumulative SPL dissipated by solutions of mixed clusters as described in
Figure 6.11. The kMC simulations used randomly oriented clusters and anisotropy dir-
ections. The magpy simulations held the anisotropy axes aligned and randomly oriented
the entire clusters. α = 0.1 and σ = 5.1.

Figure 6.13 shows the results of the repeated experiment with aligned clusters. The
N = 2 chains show much higher SPL as predicted, however the N = 3 clusters also
show substantially larger SPL. This corroborates with the exploratory simulations of
Arkus clusters in Section 6.2. Moreover, the N = 6 cluster still shows reduced SPL and
inspection of the hysteresis loops show that the clusters are paramagnetic-like major-
loops whereas the kMC predicts minor-loops. However, the results are closer to the
experimental values and with some further tuning to the material parameters it is pos-
sible that the aligned anisotropy can explain the difference between the stochastic LLG
simulations and experimental evidence.

6.5 Local heating distribution

In practice, magnetic nanoparticles are heterogeneous in their size, shape, clustering,
magnetic properties etc. This heterogeneity not only affects the total heat dissipated by
the system, as we have investigated in previous simulations, but also the distribution
of heat dissipated in nanoparticles dispersed spatially. The local variation in heat is
not discernible from the total SPL and temperature increase, which spatially average
the effect. However the heating distribution is of crucial importance: if particles do not
contribute to heat then the patient has been exposed to an unnecessary concentration
of particles; if the heating is too high then damage could be done to healthy tissue.

The objective of minimising variation in heating output has only recently been articu-
lated in the works of [146–148]. The relationship between polydispersity, particle sta-
bility, and particle interactions was explored in [146], which showed that increasing
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interactions and polydispersity contributed to a wider variation in heating. In general,
the effect of increasing interactions is to increase the distribution of energy barriers in the
system [34]. However, the effect may be reduced by decreasing the stability of particles.
It was shown again in [148] that choosing particles with lower anisotropy, ensuring all
particles are in the major-loop regime, reduces the variation in heat dissipation in an
anisotropy dispersed system. [147] presents an example of optimising particle properties,
specifically the distribution of particle sizes, to obtain an SPL within a desired range
specified by a minimum and maximum.

In this section, we investigate the variation the distribution of heating in the Arkus and
Chain nanoparticle systems that were simulated in the previous sections. In particular,
we analyse two forms of variation: the variation in heating between different cluster
sizes in a mixed solution and the variation in heating from rotating the Arkus and chain
shapes.

6.5.1 Variation of SPL between clusters

Consider two fictitious solutions each containing an equal weight of N = 1, 2, 3, 5, 8

randomly-oriented Arkus or chain clusters respectively. Figure 6.14 shows SPL as a
function of the reduced field amplitude H/Hk for these solutions, which is a simple
mean of the data in Figure 6.5. As expected, the SPL increases monotonically with the
field and is considerably higher for chains. In comparison to Figure 6.5, the solution
of chain ensembles shows a smoother function of the SPL compared to the individual
shapes. This would be expected since we effectively introduce a range of coercive fields.

Figure 6.14 also shows the coefficient of variation (defined as the standard deviation
divided by the mean) of each of these solutions. Note that the variation is only computed
between the ensemble SPL of each of the cluster shapes, thus it does not account for
the variation within each of the ensembles in Figure 6.5. The coefficient of variation
shows that at low fields, the coefficient of variation tends to be larger. This is because
a mixture of shapes have activated whereas a proportion of shapes output no SPL. The
result is similar to the effect of disperse anisotropy values in an ensemble [148]. It is
better to activate major-loops to decrease local heating variation.

6.5.2 SPL variation with shape orientation

The dynamic hysteresis loops of nanoparticle clusters in the major-loop regime showed a
distribution of switching times, which can be attributed to various sources (Section 6.2).
One of the sources of randomness comes from the fact that each cluster in the ensemble
was randomly oriented. By comparing the variation between the different ensemble SPL
values in Figure 6.13, we fail to account for this variation within each of the ensembles,
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Figure 6.14: Total SPL and coefficient of variation for mixed solutions of Arkus and
chain clusters of different sizes as a function of the applied field reduced amplitude
H/Hk.

effectively integrating out those differences. This is useful for comparing the total heat
dissipated in a large heterogeneous ensemble but not for understanding the internal
distribution of SPL.

In order to understand the effects of the shape orientation on SPL, we generated en-
sembles of aligned N = 4 Arkus or N = 3 chain clusters with random anisotropy axes
drawn for each particle. For each shape, multiple ensembles were created, with each
ensemble aligned in a different direction. Using the sphere point picking algorithm, a
uniform distribution of directions on the surface of a sphere was generated and used to
orient the ensembles. By simulating multiple experiments of ensembles of aligned shapes
in different orientations, we constructed a picture of the SPL for the N = 4 Arkus and
N = 3 chain shapes as a function of their orientation with respect to the applied field
direction.

Figure 6.15 shows the SPL dissipated by ensembles of aligned N = 4 Arkus or N = 3

chain clusters as a function of the orientation of the aligned ensemble. The three particle
chain, due to rotational symmetry along its axis shows a rotational symmetry in the
rotational SPL profile in Figure 6.15. The chain may by rotated about the applied field
axis without any change in the heat dissipation. However, the angle between the chain
axis and the applied field axis (the elevation angle θ) shows a very strong influence
on the SPL. This result agrees with experiments of the relaxation of chains in different
orientations [124]. Chains oriented with the field dissipate the maximum energy, whereas
chains perpendicular to he field dissipate no SPL. In contrast the N = 4 Arkus cluster



100 Chapter 6 Nanoparticle cluster geometries and heating effects

0 2 4
Azimuth 

1

2

3

El
ev

at
io

n 

3 particle chain

0 2 4
Azimuth 

4 particle arkus

0.0

0.5

1.0

(a) Distribution of SPL (normalised by the max SPL achievable) over a range of azimuth ϕ and
elevation θ angles for the ensemble orientation vector.

3 particle chain 4 particle arkus

(b) Three-dimensional surface plot with grid points corresponding to a uniform distribution of
rotations. The angle of each point on the surface represents the orientation of the cluster. The
distance of each point on the surface to the origin represents the normalised SPL of the cluster
oriented along that axis. For example, a point far (near) from (to) the origin represents an
orientation that dissipates high (low) heat.

Figure 6.15: Distribution of SPL as a function of the cluster orientation in three-
dimensional space. Both plots convey the same distribution of SPL in two and three
dimensions.
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shows a relatively flat rotational SPL profile, with a few small bumps. In other words,
the Arkus cluster will possesses similar SPL values in all possible orientations.

Comparing the variation of SPL in Figure 6.15 to the variation in SPL between clusters
of different size in Figure 6.5, shows that the variation between chains at large field values
is smaller than the variation in SPL between different orientations of the same shape.
These results suggest that the local heating variation in a solution of randomly oriented
chains of various lengths will be dominated by the distribution of cluster orientations.
On the other hand, the heating distribution for a solution of Arkus clusters of varying
size and orientations will be dominated by the distribution of different cluster sizes.
This suggests different design criteria for the two shapes in order to create even spatial
heating.

Figure 6.15 also shows that the variance in the SPL as function of cluster orientation
is deeply related to the geometric symmetry of the cluster. As discussed previously,
the geometric symmetry (or more generally the fractal dimension) also accounts for the
increase in shape anisotropy, coercive field, and SPL (subject to major-loop activation).
We suggest that the requirements for large SPL values and flat distributions of heating
are in direct competition with each other. One-dimensional shapes have the potential
to dissipate very large SPL values when aligned with the field but misaligned particles
may produce no SPL at all.

6.6 Conclusions

In this chapter we used stochastic simulations of coupled Landau-Lifshitz-Gilbert equa-
tions (LLG) to simulate the dynamic hysteresis loops of clusters of magnetic nano-
particles subjected to alternating magnetic fields. We compared the SPL of the clusters
as a function of the applied field amplitude, size and orientations of the clusters. We
showed that, depending on the strength of the field, all cluster shapes can show a non-
monotonic relationship between SPL and the size of the cluster due to entering into
minor-loop or paramagnetic-like regimes as the coercivity and relaxation timescales of
the systems vary with subtle changes to the cluster configuration.

For large applied fields (i.e. major-loops) we predicted that chains dissipate substantially
more heat than a single particle, which dissipates more than Arkus clusters. Although
chains of particles aligned along the magnetic field direction are undoubtedly capable of
the maximum SPL, whether Arkus clusters can stabilise single particles was not reliably
determined. On the one hand, our simulations showed that dense clusters of particles
lead to reduced SPL due to paramagnetic-like behaviour. On the other hand, existing
experiments and kinetic Monte-Carlo results show an increase in coercivity leading to
increased SPL. One possible explanation is that clusters tend to be formed of particles
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with approximately aligned (rather than randomly distributed) anisotropy axes. De-
termining whether stochastic simulation of the LLG or kinetic Monte-Carlo methods
are most suitable for simulating the dynamics of real clusters is difficult, since experi-
mental observations of the magnetic state of the clusters and individual particles during
a hyperthermia experiment are practically difficult to obtain. Therefore, when the meth-
ods disagree, both approaches can offer different possible explanations of experimental
evidence.

Finally we investigated the distribution of SPL around the three-dimensional orienta-
tions of Arkus and chain clusters. The orientations of the particles within the clusters
as well as the orientation of the clusters themselves have a substantial impact on the
dissipated heat. Therefore, mixed solutions of multiple cluster types and sizes could lead
to large spatial variations in heating, which is undesirable in hyperthermia procedures.
The results suggested a direct conflict in optimising cluster shape to maximise SPL while
also ensuring an even distribution of SPL over different orientations.

Multiple explanations exist for the substantial difference in SPL predicted by the kinetic
Monte-Carlo and LLG simulations for almost identical systems. Investigating these
discrepancies in more detail requires require additional observations of the system state
(for example, the evolution of the total energy during the simulation) in both simulations.
Future work in this area would lead to an improved understanding of the limitations of
the two approaches to accurately predict SPL in hyperthermia experiments.



Chapter 7

Non-sinusoidal alternating
magnetic fields in hyperthermia

The work in this chapter was developed with collaborators: Dr. Robert Woodward,
Prof. Tim St. Pierre, Michael McPhail during secondment to the University of Western
Australia. I would like to acknowledge Dr. Woodward for his excellent intuition regard-
ing the link between hysteresis area and transition rates in the master equation. I’d also
like to acknowledge Michael McPhail for his derivation of a closed-form solution for a
single particle subjected to a square-wave.

7.1 Introduction

The response of a magnetic nanoparticle to an alternating magnetic field (AMF) is
modified by the amplitude, frequency, and shape of the AMF. The best combination of
amplitude and frequency for sinusoidal AMFs that maximise heat dissipation in magnetic
hyperthermia experiments are well understood. In contrast, the review in Section 3.3
showed that the effect of the AMF shape on heat dissipation has received relatively
limited attention. The assumption that the applied AMF is purely sinusoidal overlooks,
for example, the effect of higher order harmonic components in the form of thermal
noise or novel shapes such as square or trapezoidal waveforms. Whether these additional
components enhance or diminish heat dissipation in ensembles of magnetic nanoparticles
is an important factor in determining the optimum conditions for hyperthermia.

Existing studies have shown that non-sinusoidal waves could significantly improve heat
dissipation [123, 143, 144]. However, these studies use relatively small fields such that the
particle response is within the region of linear response theory (LRT), Equation (3.1).
The results of the LRT should not be extrapolated beyond their domain of validity,
which limits their applicability to clinically relevant field strengths [90].

103
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In this chapter, we investigate the advantage of subjecting non-interacting ensembles of
magnetite Fe3O4 particles to square alternating magnetic fields rather than sinusoidal
fields. Magnetite particles were selected for their biocompatibility [83] and previous use
in a wide variety of medical applications, including hyperthermia [167]. We extend pre-
vious work by modelling the thermal activation of a Stoner Wohlfarth particle (Section
2.4.3) in the nonlinear region to predict the amplitude dependence of the energy dissip-
ated under the square AMF. We use an analytic formula, derived from the nonlinear
model, to quantify the limitations of the linear response theory. Finally, we investigate
the effects of size-dispersed ensembles and filtered AMF signals on the heat dissipated.

7.2 Heat dissipation models for arbitrary fields

We considered a non-interacting ensemble of particles subjected to an alternating mag-
netic field H(t) at time t. The magnetisation of the system M(t) is probed in the same
direction as the applied field. The applied field may be any periodic, even, real-valued
function with period T and fundamental frequency ω0 = 2π/T , which can be expressed
by the Fourier cosine series:

H(t) = H0

∞∑
n=1

an cos (nω0t) (7.1)

where an is the amplitude of the the n-th harmonic with angular frequency nω0. After
many cycles of the applied magnetic field, the resulting magnetisation response is con-
sidered to be in periodic equilibrium with the field such that M(t) = M(t+ T ) for all
t. The corresponding trajectory through the M(t)−H(t) plane results in a closed-path
termed the dynamic hysteresis loop. According to equation (2.48), the area of the hys-
teresis loop represents the energy dissipated per unit volume during a period T . An
important detail is that different H(t) functions have a different intrinsic power Ps as
defined by the Fourier components Ps = 1

2

∑∞
n=1 a

−2
n . Therefore, a fair comparison of

the energy dissipated by two different waveform shapes requires the normalised energy
∆U/Ps.

Each nanoparticle in the ensemble was modelled as a Stoner-Wohlfarth particle (Sec-
tion 2.2.2), which describes a single-domain particle with a fixed saturation magnet-
isation Ms (A/m), a uniaxial anisotropy of strength K(J/m3), and volume V (m3).
The anisotropy axis, applied magnetic field, and magnetisation probing direction are all
aligned. The state of the particle is described by θ(t) the angle between the anisotropy
axis and the macrospin moment of the particle at time t. The energy of the particle is
described in equation (2.9). The time-varying magnetisation M(t) = Ms cos−1(θ(t)) of
the particle is then determined by modelling the dynamics θ(t).
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7.2.1 Thermal activation model

We modelled the nonlinear magnetic moment dynamics using the model of thermal
activation as described in Section 2.4.3 using the Néel-Arrhenius law (equation (2.42))
for computing the transition rates Γi→j for i, j ∈ {1, 2} between the two orientations
θ1, θ2. The model of thermal activation is only valid for sufficiently large energy barriers
between the two orientations. More specifically we require that σ(1− h)2 ≫ 1. Note that
the transition rates in equation (2.42) ignore Brownian rotation (i.e. physical rotation) of
the particles. Following the work of [46, 63] we consider the contribution from Brownian
rotation to the heat dissipated to be negligible in-vivo. The model is entirely defined
by the master equation (2.40) and the corresponding transition rates (2.42). Since the
master equation is not solvable in the general case of time-dependent transition rates,
we used Magpy to simulate approximate trajectories of the Stoner-Wohlfarth particle.
See Chapter 5 for details on the design of Magpy.

7.2.2 Linear response theory

The linear response theory is described in Section 2.4.4. The limitation of the linear
model is that it requires that both 2σh ≪ 1 and σ(1− h)2 ≫ 1, as was shown in Fig-
ure 3.1. By substituting the magnetisation response M(t) of the linear model (equation
(2.45)) into energy dissipation integral (2.48), the formula for heat dissipation under a
harmonic AMF is obtained [171]:

∆Ucos(H,ω) = 4πKh2σ
ωτ

1 + ω2τ2
(7.2)

The magnetisation response to an arbitrary AMF may also be computed from the linear
model by the application of the superposition principle of linear systems [183] to the
Fourier series in equation (7.1). Recall from Section 2.4.4 that a property of linear
systems is that the response to a harmonic input is a harmonic output of the same
frequency but different amplitude and phase such that if H(t) = H0e

jωt then:

M(t) = χ(jω)H0e
jωt (7.3)

where χ(jω) is the transfer function, which is termed the generalised susceptibility. If
the applied magnetic field is represented by a complex Fourier series:

H(t) = H0

∞∑
n=−∞

cne
jnωt (7.4)
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Then, by the superposition principle of linear systems [183]:

M(t) = H0

∞∑
n=−∞

cnχ(jnω)e
jnωt (7.5)

y(t) =
dM(t)

dt = H0

∞∑
n=−∞

jnωχ(jnω)ejnω (7.6)

The Riemann-Stieltjes integral to compute the area of the hysteresis in equation (2.48),
may be redefined if M(t) is continuous and differentiable such that:

∆U = µ0

∫ T

0
H(t)y(t)dt (7.7)

= µ0H
2
0T

∞∑
n=−∞

cn[cnjnωχ(jnω)]
∗ (7.8)

where z∗ represents the complex conjugate of z and we have used the Plancherel-Parseval
theorem [141]. Substituting T = 2π/ω and |cn|2 = cnc

∗
n:

∆U = 2πµ0H
2
0

∞∑
n=−∞

n|cn|2 Im[χ(jnω)]

−j2πµ0H
2
0

∞∑
n=−∞

n|cn|2 Re[χ(jnω)]
(7.9)

The linear model for a single magnetic nanoparticle is a first-order system with time
constant τ and gain χ0:

χ(jω) = χ0
1

1 + jωτ
(7.10)

which after substitution into equation (7.9) gives:

∆U = 2πµ0H
2
0χ0

∞∑
n=−∞

|cn|2
n2ωτ

1 + n2ω2τ2

−j2πµ0H
2
0χ0

������������:0∞∑
n=−∞

|cn|2
n

1 + n2ω2τ2

(7.11)

If the original signal is expressed as a Fourier cosine series with no dc term such that
cn = 1

2an = 1
2a−n and a0 = 0 then we have:

∆U = πµ0H
2
0χ0

∞∑
n=1

a2n
n2ωτ

1 + n2ω2τ2
(7.12)
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which after comparing to the solution for a single harmonic (equation (7.2)), can be
expressed as the sum of energy dissipated by each harmonic (equation (7.13)):

∆Uarb =
∞∑
n=1

n∆Ucos(anH0, nω0) (7.13)

From equation (7.13), the total energy dissipated can be interpreted as a linear combin-
ation of the energy dissipated at each harmonic of the AMF, weighted by its respective
amplitude and proportional to its harmonic number n. The preceding n appears because
the nth harmonic completes n full cycles in the time that the fundamental period com-
pletes one cycle. Consequently, high order harmonics contribute proportionally more
energy to the total dissipated.

7.3 Comparison of low-amplitude square and sinusoidal
AMFs

Using the linear response theory, we modelled the energy dissipated in ensembles of
Stoner-Wohlfarth particles subjected to low-amplitude sinusoidal and square AMFs. The
definition of the field function for a square wave over one period T is:

H(t) =

H0 0 ≤ t < T/2

−H0 T/2 ≤ t < T
(7.14)

The square wave has an intrinsic power Ps = 1 and Fourier components |an| = 4
nπ sin

(
nπ
2

)
.

The heat dissipated by a single particle subjected to a square AMF was obtained by sub-
stituting the Fourier coefficients into equation (7.13):

∆Usquare(H0, ω) = 16Kh2σ tanh
( π

2ωτ

)
(7.15)

Figure 7.1 shows the normalised energy dissipated as a function of ωτ for square (equa-
tion (7.15)) and sinusoidal (equation (7.2)) waveforms. The normalised energy ∆U/

(
4Kh2σ

)
accounts for the common factors between the two equations, resulting in a function of
ωτ alone. In other words, the difference in heat dissipated by the two AMF shapes
depends only on the product of the particle relaxation time and the AMF frequency and
not on the amplitude.

The results of linear response theory show that the square wave dissipates significantly
more energy at low values of ωτ . The energy dissipated by a single harmonic experiences
a peak at ωτ , when the relaxation time of the particle matches the AMF frequency,
and tends towards zero for extreme positive and negative values of ωτ . The energy
dissipated by the square AMF also tends towards zero with extreme positive values of
ωτ but at low values the energy dissipated reaches a maximum plateau. The maximum
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Figure 7.1: Normalised energy dissipated in a single magnetic nanoparticle subjected to a
0.05mT square and sinusoidal alternating magnetic field. The energy has been computed
using both the linear response theory (LRT) and numerical simulations (DOM) with
Ms = 106Am−1, K = 104Jm−3, α = 0.1, T = 300K, µ0H = 0.05mT, f = 100kHz, and
r in the range of 8-12nm such that 2σh ≪ 1 for all r. The curves for the two methods
match exactly, validating the simulation approach. The results for the sine wave are
multiplied by two to be of equivalent power to the square wave. The insets show the
two hysteresis loops from the sine (blue) and square (orange) applied magnetic fields
resulting from numerical simulations at the indicated value of ωτ .

∆Usquare is also larger than the maximum peak for a single harmonic. This apparent
benefit of square waves may be interpreted from equation (7.13), which equates the total
energy dissipated from an arbitrary wave to the sum of energy dissipated from each of
its harmonics. Consider the square wave with harmonics at ω0, 3ω0, 5ω0, . . . that are
multiples of the base frequency ω0. When the base frequency of the square wave is too
high ω0τ ≫ 1, the energy dissipated from the fundamental harmonic is very low and
lower still for any nω0τ , since the energy dissipated decreases monotonically with ωτ

for ωτ > 1. However, when the fundamental frequency is too low ωτ0 ≪ 1 a number
of its higher order components will lie near the optimum frequency nω ≈ ωopt. The
sum total of the contributions from these higher order components are greater than the
application of a single harmonic at the optimum frequency. Consequently, the square
AMF results in a large ∆Usquare for any fundamental frequency such that ω0τ ≪ 1.

The results from the linear response theory demonstrate that applying a square AMF
dissipates more energy than a sinusoidal wave of equivalent power for any set of material
parameters such that 2ωh ≪ 1. The relative gain in energy dissipation from a square
AMF qualitatively matches results previously obtained by numerical simulations of the
Landau-Lifshitz-Gilbert equation [144], where the parameters used give a value 2σh ≈
0.0009 ≪ 1.

At low field values, solutions to the discrete orientation model should match the predic-
tions of the linear response theory. We computed the energy dissipated in an ensemble
of identical nanoparticles of magnetite Fe3O4 subjected to a sinusoidal and square AMF
with numerical simulations of the discrete orientation model. Given an initial condition
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[
p0(θ0) p0(θ1)

]T
, the master equation (2.40) was solved using an adaptive time step

RK45 algorithm [164]. The system dynamics were simulated until reaching the periodic
equilibrium M(t) = M(t + T ) and the area of the hysteresis loop was integrated nu-
merically to determine the heat dissipation (see equation (2.48)). We used the Magpy
software package (Chapter 5) to simulate the discrete orientation model using Néel-
Brown transition rates. The parameters used for the simulation were Ms = 106Am−1,
K = 104Jm−3, α = 0.1, T = 300K, µ0H = 0.05mT, f = 100kHz, and r in the range
of 8-12nm, resulting in 2hσ < 0.087 and σ(1− h)2 > 5.15 for all values of the radius.
The resulting energy dissipation was normalised and plotted against the linear response
results in Figure 7.1. The inserts in the plot correspond to the simulated dynamic hys-
teresis loops in the M -H plane after 5 cycles of the external magnetic fields at various
values of ωτ .

Figure 7.1 shows that the discrete orientation model matches the results predicted by
the linear response theory, improving confidence in the implementation of the discrete
orientation model. The dynamic hysteresis loops also offered an alternative perspective
on the relative energy dissipation of the square and sine AMFs. At very high ωτ ,
the particle is unable to react fast enough to either of the AMF waveforms and appears
frozen with zero magnetisation, which results in the hysteresis loop closing in the vertical
direction. As ωτ decreases, the harmonic AMF induces an harmonic response in the
magnetisation leading to the characteristic elliptical hysteresis [165]. For a square AMF
H(t) only takes two values ±H0 and thus the resulting dynamic hysteresis loop is always
oblong. At very low ωτ the response of the magnetisation to the sinusoidal wave becomes
superparamagnetic, the magnetisation tracks the shape of H(t) without any lag. The
magnetisation response of the particle must always be smooth due to magnetic viscosity
and therefore cannot follow the discontinuity in the square AMF. This results in a fully
open dynamic hysteresis area that cannot close even as ω → 0.

It has been previously shown by means of experimental measurements [46] and computa-
tional simulations [27] that the results of the linear response theory cannot be generalised
to larger fields. The expressions for heat dissipation under the linear response model
provide analytic solutions for arbitrary waveforms but are only valid for 2σh ≪ 1.

7.4 Comparison of high-amplitude square and sinusoidal
AMFs

A nonlinear model must be used if the heat dissipation resulting from high-amplitude
square and sine AMFs are to be compared. For a sinusoidal AMF, we used numerical
simulations of the Stoner-Wohlfarth thermal activation to compute ∆Ucos for 2σh > 1.
However, for square waves, we obtained an analytic solution to the master equation,
which led to a new formula for ∆Usquare valid outside of the linear region. The analytic
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Figure 7.2: The magnetisation response of a magnetic nanoparticle to a square altern-
ating magnetic field of period T (left). In dynamic equilibrium the magnetisation is
assumed to oscillate between ±Mp. The corresponding hysteresis loop in the M -H
plane (right) is always an oblong and is defined by the amplitude of the applied field
and the peak value of magnetisation Mp.

formula is valid for any σ and h such that σ(1− h)2 ≫ 1. Comparing the resulting
expression to the LRT quantified the error in generalising the results of linear models to
larger field amplitudes.

7.4.1 Analytic master-equation dynamics

Figure 7.2 depicts a sketch of the magnetisation response of a single particle subjected to
a square wave of period T along its anisotropy axis. The system has reached a periodic
equilibrium such that M(t) = M(t+ T ) and we state without proof that due to the
symmetry of the problem Mp = M(T ) = −M(T/2). Therefore, the dynamic hysteresis
area integral, equation (2.48), is expanded, recalling equation (7.14):

∆U =− µ0

∮ T/2

0
H0 × dM(t) (7.16)

− µ0

∮ T

T/2
−H0 × dM(t) (7.17)

=4µ0H0Mp = 8Kh0mp (7.18)

where mp = Mp/Ms. Equation (7.16) and Figure 7.2 show that the dynamic hysteresis
loop shape for a square AMF is always oblong, as seen during the low-amplitude sim-
ulations of the DOM in Figure 7.1. Computing ∆U thus only requires an estimate for
the peak magnetisation Mp in periodic equilibrium.

The master equation (2.40) has analytic solutions if the transition rates in the equation
are time-invariant [194]. Over the period 0 < t ≤ T/2 the field is constant and therefore
the Néel transition rates are constant during the period. Given an initial condition[
p(θ1; 0) p(θ2; 0)

]
, the solution of the master equation gives the probability of the
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system occupying orientation θ1 at time t:

p(θ1; t) =
(
p(θ1; 0)− Γ′

12

)
e−Γt + Γ′

12 (7.19)

where Γ = Γ12+Γ21 and Γ′
12 = Γ12/Γ. The time-evolution of the probability of occupying

state θ2 is computed from p(θ1; t) + p(θ2; t) = 1. In order to compute Mp, we applied
the boundary condition Mp = M(T/2) = −M(0) or equivalently p1(0) = 1 − p1(T/2).
Assuming that the magnetic nanoparticle is in periodic equilibrium such that M(t) =

M(t+ T ) = −M(t+ T/2) we have that p(θ1; 0) = 1 − p(θ1;T/2) by using M(t) =

2p(θ1; t)− 1. Therefore, the solution for p(θ1;T/2) given the initial condition p(θ1; 0) at
time t = 0 can be written:

p(θ1;T/2) =
[
1− p(θ1;T/2)− Γ′

12

]
e−ΓT/2 + Γ′

12 (7.20)

Rearranging equation (7.20) we obtain:

p(θ1;T/2) =
Γ12e

−ΓT/2 + Γ21

Γ
(
1 + e−ΓT/2

) (7.21)

From which the magnetisation may be computed:

M(T/2)

Ms
= 2p(θ1;T/2)− 1 (7.22)

= 2
Γ12e

−ΓT/2 + Γ21

Γ
(
1 + e−ΓT/2

) − 1 (7.23)

=
(Γ21 − Γ12)

(
1− e−ΓT/2

)
Γ
(
1 + e−ΓT/2

) (7.24)

=
Γ21 − Γ12

Γ
tanh

( π

2ωτ

)
(7.25)

where we have used τ = Γ−1, ω = 2πT−1. If the transition rates are Néel rates with a
constant prefactor f0:

Γ21 − Γ12

Γ
=

f0e
−σ(1−h)2 − f0e

−σ(1+h)2

f0e−σ(1−h)2 − f0e−σ(1+h)2
= tanh(2σh) (7.26)

Note that this is not valid for transition rates using the Néel-Brown prefactor as it is
not a constant. Using a constant prefactor, the magnetisation may be written:

mp =
M(T/2)

Ms
= tanh(2σh) tanh(π/(2ωτ)) (7.27)

and substituted into equation (7.16) to obtain the energy dissipated, resulting in:

∆Usquare = 8Kh tanh (2hσ) tanh
( π

2ωτ

)
(7.28)

We interpret equation (7.28) as a product of three terms: 8Kh0 is proportional to the
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Figure 7.3: The equilibrium magnetisation as predicted by the linear (dashed) and
nonlinear (solid) models, which is proportional to the normalised energy dissipated
∆U/(2σh tanh(π/(2ωτ))). The linear response model over-predicts ∆U for large field
amplitudes 2σh > 1. Markers (circles) mark 2σh = 1

3 .

amplitude of the square AMF and determines the width of the hysteresis loop. From
equation (7.16), the remaining two terms in equation (7.28) describe the peak mag-
netisation mp and thus the height of the hysteresis loop. The peak magnetisation is
therefore proportional to tanh(2σh), which can be shown to be the equilibrium magnet-
isation of the particle subjected to a constant external field of amplitude h (see [27] for
details on the equilibrium magnetisation under the discrete orientation model). Finally,
the peak magnetisation is proportional to tanh (π/(2ωτ)), which describes the effect of
relaxation. Equation (7.28) allows ∆Usquare to be evaluated for much stronger AMF
amplitudes than the LRT solution, without numerical simulation.

From comparing the linear response solution for ∆Usquare (equation (7.15)) to equation
(7.16), we see that the peak magnetisation in the linear model is mp = 2σh tanh(π/(2ωτ)).
The peak magnetisation of the linear and nonlinear model depend identically on ωτ ,
which is expected as both models depend on an exponential relaxation process via the
Néel transition rates, but have different values for the equilibrium magnetisation, which
results from the assumption that the equilibrium magnetisation in the linear model is
described by the constant static susceptibility χ0 = 2σh. In Section 7.2.2, we stated
that the linear model is only valid for small fields such that 2σh ≪ 1. Indeed, we
see that the linear and nonlinear expressions for ∆Usquare are equivalent by the small
angle approximation when 2σh ≪ 1. Figure 7.3, shows the equilibrium magnetisation
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Figure 7.4: Energy dissipated per cycle in a single magnetic nanoparticle subjected
to a 5mT alternating magnetic field of sinusoidal and square shape as a function of
the particle radius. The results were obtained using numerical simulations with the
same material properties as in Figure 7.1. The insets show the dynamic hysteresis loop
obtained from the simulations at the indicated radius.

of the linear and nonlinear models or equivalently the normalised energy dissipated
∆Usquare/(8Kh0 tanh(π/(2ωτ))). Comparing the two solutions allows us to quantify the
error in extending the LRT solution beyond its domain of validity to predict energy
dissipation. The results show that the LRT solution always over-predicts the energy dis-
sipated by the square wave, substantially so for 2σh > 1/3. This comparison highlights
the danger of generalising the results of the linear response theory and prompts us to
investigate again the relative benefit of a square AMF with higher amplitude.

7.4.2 Numerical simulations with high-amplitude fields

We simulated the energy dissipated in magnetite particles subjected to square and si-
nusoidal AMFs with an amplitude of 5mT using the discrete orientation model. The
material parameters used for the simulation were the same as in Section 7.3. Figure 7.4
shows the energy dissipated as a function of the particle radius. The shape of the energy
dissipation curve as a function of the relaxation time of the particle is a similar shape to
the results with a weak field amplitude in Figure 7.1. In disagreement with the results
of the linear model, Figure 7.4 shows that the maximum ∆Usquare of the plateau is much
lower than the maximum value of ∆Ucos. For larger particles, with longer relaxation
times, the energy dissipation tends towards zero again for both of the field shapes. For
smaller particles, the response to a sinusoidal field becomes superparamagnetic. Around
the optimum radius for the particle (Ropt ≈ .8nm for magnetite and f = 100kHz) the
sinusoidal AMF achieves a higher ∆U . The dynamic hysteresis loops (shown in the
inset plots of Figure 7.4) reveal that near Ropt, the loop area of the sinusoidal wave is
approaching that of the square wave. In the limit that the two hysteresis areas are the
same, the sinusoidal wave will achieve twice the effective energy dissipation because it
has half the intrinsic power of the square AMF. In other words, the square AMF would
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Figure 7.5: The gain in energy dissipated resulting from applying a square alternating
magnetic field. Gain is defined as log10 (∆square) − log10 (∆sine). A particle of mag-
netite of varying radius was subjected to each of the alternating magnetic field shapes
with increasing field amplitude. Material properties as in figure 7.1. The contour
line (0.0) represents the h, r combinations for which the energy dissipated is equal un-
der both field shapes. The sinusoidal optimum radius (dash-dotted line) represents
ropt = argmaxr ∆Usine(r) for each value of the applied field h.

require twice as much power to achieve the same energy dissipation in the ensemble. This
is expected because a maximum energy dissipation exists that occurs when the particles
are fully saturated by the applied field, yielding a maximum value ∆Umax = 4µ0H0Ms

for a given H0. If both the square and sinusoidal AMFs result in the same maximum
dissipated energy then it is twice as efficient to use the sinusoidal AMF. We repeated
the experiment for a range of AMF amplitudes h in order to investigate the boundary
at which the single harmonic AMF dissipates more energy than the square AMF.

Figure 7.5 shows the relative gain from applying a square AMF over a sinusoidal AMF
defined as G = log10 (∆Usquare)− log10 (∆Usine) for various values of the particle radius
(relaxation time) and the applied field amplitude. The figure also shows the correspond-
ing optimum radius Ropt at each value of the applied field amplitude. The figure shows
that the boundary at which ∆Usquare = 2∆Ucos is a complex function of the relaxation
time of the system (or the AMF frequency), AMF amplitude, and the material prop-
erties. For particles with a very fast relaxation time relative to the AMF frequency,
the square wave is always the optimum choice because the sinusoidal AMF induces a
superparamagnetic behaviour, which dissipates negligible energy. Particles with a long
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relaxation time relative to the AMF period are unable to effectively dissipate energy un-
der either of the waves. Around the optimum frequency, the sinusoidal AMF dissipates
its maximum energy and approaches the energy dissipation limit ∆Umax as h increases.
At this limit, the sinusoidal AMF is twice as efficient as the square AMF. The range of
particle radii (relaxation times) for which the single harmonic outperforms the square
AMF grows with increasing AMF amplitude h.

The results of the experiments show that the relative gain from the square AMF is a
function of the AMF amplitude, frequency, and the relaxation time of the particle. A
consistent benefit of the square AMF is that it dissipates significant energy in particles
across a broader range of relaxation times. The fact that the harmonic AMF dissip-
ates large ∆U in such a narrow peak has directed research efforts towards synthesising
particles with as close to homogeneous properties as possible. An alternative approach
would be to explore more robust hyperthermia practices, such as using novel AMF
waveforms, that are able to perform effectively under a broad distribution of timescales.

7.5 Polydispersion and filtered AMFs

Magnetic nanoparticles synthesised for biomedical applications exhibit a distribution
of sizes, shapes, and material properties leading to a distribution of relaxation times-
cales [202]. Additionally, experimental equipment does not produce pure square wave-
forms (i.e. with infinite harmonics) but are subjected to filtering effects resulting in
attenuated higher harmonics, which we have shown are crucial to dissipate energy in
particles with very short relaxation timescales (Section 7.3). These experimental realit-
ies violate the assumptions of the previous experiments used to compare the effectiveness
of the square AMF. We investigated the effect of these imperfections by simulating the
response of polydisperse ensembles of nanoparticles to filtered AMFs.

A practically relevant model for the distribution of particle sizes is the lognormal dis-
tribution [146]. The lognormal distribution is characterised by its mean r0 and variance
s:

p(r) =
1

rs
√
2π

exp
[

ln r − r0√
2s

]
(7.29)

We modelled ensembles of 1000 particles, aligned along their anisotropy axes, with poly-
disperse radii distributed lognormally with 50 values of r0 between 5nm and 9.5nm and
s = 0.03, 0.12, 0.20, totalling 150 different particle ensembles. We used the following
parameters for the discrete orientation model: Ms = 106Am−1, K = 2 × 104Jm−3,
α = 0.1, T = 300K, µ0H = 5mT, f = 100kHz. The ensembles were subjected to four
different AMF shapes: sinusoidal, square, approximate square with 10 Fourier compon-
ents, approximate square with 100 Fourier components. Where we have used a truncated
Fourier series as an approximation of the filtering effects of experimental equipment.
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Figure 7.6: Energy dissipated in polydisperse ensembles of magnetic nanoparticles sub-
jected to different applied magnetic field waveforms. The distribution of radii in each
ensemble is lognormal with a mean parameter R̄ and scale parameter S. Simulations
used the following parameters: Ms = 106Am−1, K = 2× 104Jm−3, α = 0.1, T = 300K,
µ0H = 5mT, f = 100kHz. The figures (a-d) correspond to simulations using a sinus-
oidal, square (10 harmonics), square (100 harmonics), and square waveform respectively.
The inset plots show a sketch of one period of each applied waveform shape.

Figure 7.6 shows the normalised energy dissipated by each of the 150 ensembles subjected
to different AMF waveforms. For the approximately monodisperse ensembles (s = 0.03),
the heat dissipation ∆U in ensembles with low r0 was significantly improved by the
presence of higher order harmonics. As the Fourier series was truncated, the smaller
particles were no longer excited and ∆U dropped away quickly. On the other hand, for
ensembles with large r0, the energy dissipation was reduced for all AMF shapes. For
r0 close to the optimum value, the width of the maximum delta peak depended on the
quality of the signal. As expected, the effect of filtering the square AMF was to decrease
∆U contributions from smaller particles. The increased robustness of the square AMF
diminishes with increasingly aggressive filtering.

Figure 7.6 shows that increasing the particle size dispersion also caused a broadening
of the maximum energy peak for all signals. The effect of increasing dispersion was to
smooth the dependence of ∆U on the mean ensemble radius r0. Crucially, ensembles with
increased dispersion showed a reduced peak ∆U , which has also been shown in previous
studies [171]. However, the energy dissipated by a square AMF showed less sensitivity
(more robustness) to increasing size dispersion, the peak ∆U reduced relatively less. This
result is due to the higher order harmonics, present in the square AMF, that dissipate
heat in small particles. These small particles in the ensemble would not be excited by
the standard harmonic wave. In other words, under a square AMF, a larger proportion
of the ensemble is dissipating substantial energy. As the square AMF is increasingly
filtered, and the higher order harmonics are reduced, fewer particles in the ensemble
dissipate energy and the effect of size dispersity becomes more substantial.

We conclude from Figure 7.6 that the square AMF is more robust to broadening dis-
tributions of the particle properties than the sinusoidal AMF. However, as shown in
Section 7.4, subjecting nanoparticles to a square AMF does not necessarily result in
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Figure 7.7: Increase in maximum energy dissipation for square waves compared to sine
waves at various field values for polydisperse ensembles. The LRT region marks the
values of h for which the linear response theory is applicable.

an overall increase in the maximum attainable ∆U . We simulated three polydisperse
ensembles with s = 0.03, 0.1, 0.2 subjected to both AMF shapes with increasing field
amplitude h0. For each value of h0, we tuned the field frequency to dissipate the max-
imum energy possible (recalling from figure 7.5 that the optimum applied frequency
varies with h0). Figure 7.7 shows the relative gain in energy dissipated ∆Usquare/∆Ucos

for the three ensembles. The largest gain is realised for very low field amplitudes, which
correspond to the linear regime. Within this region the gain is independent of h0. As the
field increases, the maximum energy dissipation attainable using a square AMF begins
to diminish relative to the sinusoidal AMF. Eventually, the hysteresis area of the two
waves approach the 8Kh0Ms limit as the particles fully saturate. We expect that as
the field amplitude increases further1 the gain for all three ensembles will approach 0.5,
resulting from both AMF shapes saturating the entire ensemble. The dependence of the
gain on h0 is similar for all three ensembles but the total realised gain increases with
increasing dispersity. For the most disperse ensemble (s = 0.2) the square AMF still
outperforms the sinusoidal AMF for relatively large h.

1Numerical simulations of the Stoner-Wohlfarth particles were limited by the condition σ(1− h)2 ≪ 1
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7.6 Conclusions

We investigated the increase in energy dissipated in ensembles of magnetic nanoparticles
subjected to a square rather than a sinusoidal alternating magnetic field. Using ana-
lytic and numerical simulations, we showed that square fields result in large dynamic
hysteresis areas due to their fast switching and dissipate energy in particles with low re-
laxation times, which would otherwise exhibit superparamagnetic behaviour in response
to a sinusoidal field. Consequently, total energy dissipation is less sensitive to poly-
disperse ensembles of particles with a broad distributions of relaxation times. Using
square alternating magnetic fields for hyperthermia experiments may lead to improved
robustness to variations in the material properties of synthesised nanoparticles.

We have further shown that the relative gain in performance from the square field
diminishes with increasing field amplitude. Performance is worsened further from the
effects of filtering, which attenuate higher order harmonics that are crucial for activating
smaller particles. For applications with approximately monodisperse particles and large
fields, the sinusoidal waveform provides the most efficient energy dissipation.

The conclusions of our work point towards new possibilities for using novel alternat-
ing magnetic fields to improve the robustness and efficacy of hyperthermia treatments.
Future work should validate the results of our calculations with experiments of square
alternating magnetic fields applied to magnetic nanoparticles. However, the current safe
limits on the applied magnetic field are defined only for sinusoidal waveforms, which pre-
vents clinical testing currently. While there is some limited guidance available [156, 157],
more research into the safe limits of the field are needed.



Chapter 8

Conclusions and outlook

Effective magnetic hyperthermia treatments require magnetic nanoparticles with op-
timum properties to maximise the heat dissipated per weight of administered nano-
particle fluid. Maximising heat dissipation allows for smaller doses of nanoparticles
and the use of weaker alternating magnetic fields during the procedure. This thesis
detailed the construction, design choices, and testing of numerical methods to simulate
the stochastic dynamics of interacting magnetic nanoparticles using coupled Landau-
Lifshitz-Gilbert equations. The simulations were used to predict the dynamic hysteresis
loops generated by subjecting nanoparticle ensembles to alternating magnetic fields.
The simulated hysteresis loops allowed the heat dissipation to be computed and invest-
igated as a function of material, field, and environmental parameters as well as arbitrary
configurations of particles in three-dimensional space.

Simulating the stochastic Landau-Lifshitz-Gilbert equation first required a numerical
procedure to solve coupled stochastic differential equations. In Chapter 4, the popu-
lar Heun scheme was compared with a fully implicit solver. The tests focused on the
path-wise error between analytical solutions and the estimated trajectories. The tests
showed that conservation of the magnetisation vector does not necessarily reduce the
path-wise error and therefore projection methods may not improve the performance of
the Heun scheme. The implicit method was shown to be significantly more accurate than
the explicit Heun scheme for systems with strong thermal fluctuations (i.e. stochastic
component), while conserving the length of the magnetisation vector. However, the com-
plexity of the algorithm implementation and the consequent performance demonstrated
that the implicit scheme is computationally unfeasible for large systems.

The numerical methods discussed in Chapter 4 were implemented in an open-source soft-
ware package Magpy. Magpy was implemented in the python programming language
to encourage reuse and accelerated with a C++ library in order to maximise the simu-
lation time per CPU time. The software package was tested with unit tests, numerical
tests and physics tests to assure the quality of the implementation of the code, design
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of the numerical methods, and the correct behaviour of the simulated physical systems
respectively.

Magpy was used to simulate the dynamic hysteresis loops of dense clusters and chain-like
clusters of particles in Chapter 6. Intra-cluster interactions were shown to substantially
alter the heat dissipated by magnetic nanoparticles, which was highly sensitive to small
variations in the cluster configurations. In general, chain-like structures were shown
dissipate the most heat per weight of material. However chain structures require large
fields in order to activate. In a solution of chains of multiple lengths, it is possible that
many structures dissipate large heat while others remain with no heat dissipation due to
the applied field being below the coercive field. In experiments this could lead to large
spatial variations in heat. Additionally, chain-like structures show a large variation in
heat dissipation with the orientation of the structure to the applied field; increasing the
spatial heating distribution further. The results suggested a conflict between maximising
heat dissipation by configuring particles along the applied field direction and ensuring
a uniform distribution by configuring particles in a three-dimensional isotropic shape
(such as dense clusters).

Dense clusters of particles were shown, in general, to reduce the SPL due to cycling
through low-energy states favouring end-to-end alignment of the magnetic moments.
The simulations were used to reproduce an experimental result showing that larger
clusters were able to dissipate more effectively than single particles through an increase
in coercivity. However, our simulations did not match this result and showed dense
clusters in a paramagnetic-like state. The simulations offered an alternative explana-
tion of the experiment that the anisotropy axes of particles within the same cluster are
roughly aligned. Magpy was used to replicate a kinetic Monte-Carlo experiment, which
failed to reproduce the same results. Comparing the Magpy results to existing simu-
lations was difficult without experimental evidence of the correct dynamic hysteresis
loop. The SPL values obtained in experiments can map to many different dynamical
behaviours. A detailed comparison of Landau-Lifshitz-Gilbert dynamics (with different
numerical methods) and kinetic Monte-Carlo dynamics would be very useful for de-
termining the limitations of both methods. For example, whether thermal activation
based models (such as kinetic Monte-Carlo) should be used for systems with substantial
dipolar interaction fields.

The effect of applying square-wave shaped alternating magnetic fields to ensembles of
non-interacting particles was investigated in Chapter 7. An analytic approach, using the
linear response theory, revealed that the square-wave could substantially outperform the
sinusoidal-wave since the fast switching times were able to effectively dissipate heat in
small particles that would have been paramagnetic otherwise. However, numerical sim-
ulations at larger field amplitudes, showed that the benefit of a square-wave diminishes
with increasing fields. An ensemble of monodisperse, non-interacting particles are most
efficiently activated using a sinusoidal-wave tuned to the correct frequency. Whereas
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polydisperse ensembles could dissipate substantial heat with a square-wave. The res-
ults suggest that square-waves could be used to increase heat dissipation at low fields
and improve the robustness of current procedures. However, practical guidelines for the
use of square-wave alternating magnetic fields in clinical applications have not yet been
published.

The simulations in this thesis showed that the alternating magnetic field shape and the
configuration of particle clusters play an important role in the dynamic hysteresis loops
of magnetic nanoparticles. Sections 6.6 and 7.6 describe future routes of investigation
for these experiments. These investigations were enabled by developing efficient and
easy-to-use computational tools for simulating hyperthermia experiments. However, a
better understanding of the appropriate numerical methods and their ability to accur-
ately represent the true dynamics of physical magnetic nanoparticle systems is needed.
Future numerical methods (discussed in Section 4.5) will not provide utility to the re-
search community without reliable, well tested and documented implementations, as
described in Chapter 5. Reliable, open-source simulation software can reduce the total
resource used by the community developing individual solvers to these complex prob-
lems. Moreover, modular and documented code can increase the rate at which new
developments transition from research into practical use by computational scientists. In
turn, this can reduce the time to discovering favourable conditions to maximising heat
dissipation in magnetic particles and improving the outcomes of clinical trials.





Appendix A

Stochastic integrals

The stochastic integral defines the integration of a function randomly varying function
b(t) with respect to the Wiener process W(t); it is a generalisation of a Riemann-Stieltjes
integral. For a deterministic function a(t), the Riemann-Stieltjes integral can be defined
as the summation of a series of N intervals of width ∆t = T/N such that:

∫ T

0
a(t)dt = lim

N→∞

N−1∑
k=0

a
(
t̂k
)
(tk+1 − tk) (A.1)

where a(t̂k) is a constant value within each interval and t̂k ∈ [tk, tk+1] may be freely
chosen. In other words, the constant value of the function a

(
t̂k
)

may be chosen at any
point along the interval. As the number of intervals tends to infinity and the interval
width becomes infinitesimally small the summation converges to the true value of the
integral. This result holds true for any choice of t̂k.

The stochastic analogue of equation (A.1) to integrate b(t) could be written:

lim
N→∞

N−1∑
k=0

b
(
t̂k
)
(W (tk+1)−W (tk)) (A.2)

where W (tk) is the Wiener process at tk. Once again, the value of t̂k ∈ [tk, tk+1] must
be chosen. However, unlike the deterministic Riemann-Stieltjes integral, the choice of t̂k
changes the result of the series and therefore the result of equation (A.2) is ambiguous.
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For example, this can be seen by substituting b(t) for the Wiener process W (t) and
computing the expected value of the series:

E

〈
N−1∑
k=0

b
(
t̂k
)
(W (tk+1)−W (tk))

〉
= E

〈
N−1∑
k=0

W
(
t̂k
)
(W (tk+1)−W (tk))

〉
(A.3)

=

N−1∑
k=0

E
〈
W
(
t̂k
)
W (tk+1)

〉
− E

〈
W
(
t̂k
)
W (tk)

〉
(A.4)

=
N−1∑
k=0

t̂k − tk (A.5)

where E ⟨W (t1)W (t2)⟩ = min(t1, t2) is a property of the Wiener process. The final result
depends on the choice of t̂k. This choice will influence the form of b(·) when modelling
a stochastic process and as long as the mathematics are consistent, there is no single
correct choice.

The most common choices of the interval evaluation point are the Itō stochastic integral
t̂k = tk and the Stratonovich stochastic integral t̂k = 1

2(tk+1 + tk). These interpretations
confer certain mathematical conveniences. For example, the Stratonovich integral is
consistent with the chain rule and therefore behaves similarly to deterministic calculus.

In summary, each stochastic differential equation (SDE) may be derived under any in-
terpretation of the stochastic integral (usually the Itō or Stratonovich interpretations).
However, the SDE must be interpreted consistently using the same stochastic integral.
Different interpretations may be used by transforming the SDE: for example the Itō cor-
rection formula for transforming a Stratonovich SDE to an Itō SDE (see Section 2.3.1).
See [193] for a more detailed discussion of the Itō-Stratonovich dilemma.
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Normalisation

The following calculations are in SI units A particle i has a magnetic moment µ⃗, the
magnetisation is defined as the magnetic moment per unit volume M⃗ = µ⃗/Vi. The
saturating magnetisation Ms is used to normalise the magnetisation to the unit vector
m̂ = M⃗/Ms.

The total energy including contributions from the anisotropy (constant Ki and axis
direction k̂i), applied field (H⃗), and dipolar interactions (between two particles i, j sep-
arated by the vector R⃗ij =

∣∣∣R⃗ij

∣∣∣ r̂ij) is:

Ei = KiVi

∣∣∣m̂i × k̂i

∣∣∣2 −µ0ViM⃗i · H⃗ −
∑
j ̸=i

µ0
ViVj

4π
∣∣∣R⃗ij

∣∣∣3
(
3
(
M⃗i · r̂ij

)(
M⃗j · r̂ij

)
− M⃗i · M⃗j

)
(B.1)

where µ0 is the permeability of free space.

Defining the average particle volume and anisotropy constants as V̄ = 1/N
∑

i Vi and
K̄ = 1/N

∑
iKi respectively, introduce the dimensionless volume and anisotropy con-

stants vi = Vi/V̄ and ki = Ki/K̄. The normalised energy is defined as:

e =
e

2V̄ K̄

=
1

2
kivi

∣∣∣m̂i × k̂i

∣∣∣2 − µ0
vi
2K̄

M⃗ · H⃗ −
∑
j ̸=i

µ0

2K̄

viVj

4π
∣∣∣R⃗ij

∣∣∣
(
3
(
M⃗i · r̂ij

)(
M⃗j · r̂ij

)
− M⃗i · M⃗j

)

=
1

2
kivi

∣∣∣m̂i × k̂i

∣∣∣2 − µ0
viMs

2K̄
m̂ · H⃗ −

∑
j ̸=i

µ0M
2
s

2K̄

viVj

4π
∣∣∣R⃗ij

∣∣∣ (3 (m̂i · r̂ij) (m̂j · r̂ij)− m̂i · m̂j)

(B.2)

The anisotropic field is defined as:

Hk =
2K̄

Msµ0
(B.3)
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so that the dimensionless field can be introduced H⃗ = Hkh⃗:

e =
1

2
kivi

∣∣∣m̂i × k̂i

∣∣∣2−vim̂·h⃗−
∑
j ̸=i

µ0M
2
s

2K̄

viVj

4π
∣∣∣R⃗ij

∣∣∣ (3 (m̂i · r̂ij) (m̂j · r̂ij)− m̂i · m̂j) (B.4)

The distance between two particles in normalised by a constant term a so that R⃗ij = ar⃗ij .
Introducing this normalisation and recalling that Vi = V̄ vi:

e =
1

2
kivi

∣∣∣m̂i × k̂i

∣∣∣2−vim̂ · h⃗−
∑
j ̸=i

µ0M
2
s

2K̄

vivj

4π
(
a3/V̄

)
|r⃗ij |

(3 (m̂i · r̂ij) (m̂j · r̂ij)− m̂i · m̂j)

(B.5)
note that the term a3/V̄ is dimensionless. The effective field for a particle i is defined
as:

H⃗eff = − 1

µ0Vi

∂E

∂M⃗i

= − 2V̄ K̄

µ0MsVi

∂e

∂m̂i
= −Hk

1

vi

∂e

∂m̂i
(B.6)

The dimensionless effective field h⃗eff then follows:

∴ h⃗eff = − 1

vi

∂e

∂m̂i
= − 1

vi

−kivi

(
m̂i · k̂i

)
k̂i − vih⃗−

∑
j ̸=i

µ0M
2
s

2K̄

vivj

4π
(
a3/V̄

)
|r⃗ij |3

(3 (m̂j · r̂ij) r̂ij − m̂j)


(B.7)

Leading to the final form of the dimensionless effective field for a particle i. All terms are
dimensionless and thus well conditioned for numerical computation (far from machine
precision):

h⃗eff = ki

(
m̂i · k̂i

)
k̂i + h⃗+

µ0M
2
s

8πK̄

∑
j ̸=i

vj(
a3/V̄

)
|r⃗ij |3

(3 (m̂j · r̂ij) r̂ij − m̂j) (B.8)

The Landau-Lifshitz-Gilbert equation that governs the dynamical behaviour of the mag-
netisation M⃗ of a single domain nanoparticle is:

dM⃗
dt = − γ

1 + α2
M⃗ ×

(
B⃗ + B⃗th

)
− γα

(1 + α2)Ms
M⃗ ×

(
M⃗ ×

(
B⃗ + B⃗th

))
(B.9)

where Ms is the magnitude of the vector M⃗ , γ is the magnetogyric ratio, α is the
dimensionless damping parameter, and B⃗ is the effective field in Tesla:

B⃗ = − 1

V

∂E

∂M⃗
(B.10)

B⃗th is the thermal field, which is a fluctuating field such that:

⟨Bth (t)Bth (t+ δt)⟩ = δ (t− t− δt)σ2δt (B.11)
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The dimensionless magnetisation is a unit vector defined m̂ = M⃗/Ms such that:

dm̂
dt = − γ

1 + α2
m̂×

(
B⃗ + B⃗th

)
− γα

1 + α2
m̂×

(
m̂×

(
B⃗ + B⃗th

))
(B.12)

The H⃗ field has units ampere per meter and is related to the B⃗ field through B⃗ = µ0H⃗:

dm̂
dt = − γµ0

1 + α2
m̂×

(
H⃗ +

1

µ0
B⃗th

)
− γµ0α

1 + α2
m̂×

(
m̂×

(
H⃗ +

1

µ0
B⃗th

))
(B.13)

The anisotropy field Hk has units of ampere per meter and is used to obtain the dimen-
sionless effective field h⃗ = H⃗/Hk:

dm̂
dt = −γµ0Hk

1 + α2
m̂×

(
h⃗+ h⃗th

)
− γµ0Hkα

1 + α2
m̂×

(
m̂×

(
h⃗+ h⃗th

))
(B.14)

where:
Hk =

2K

µ0Ms
(B.15)

and
⟨hth (t)hth (t+ δt)⟩ = δ (t− t− δt)

σ2

µ2
0H

2
k

δt (B.16)

Bringing these terms to the other side, we obtain a dimensionless right-hand-side, the
thermal field has also been written to show its explicit time dependence:

1 + α2

γµ0Hk

dm̂
dt = −m̂×

(
h⃗+ h⃗th (t)

)
− αm̂×

(
m̂×

(
h⃗+ h⃗th (t)

))
(B.17)

Now introduce the reduced time ℓ, using equation (B.15):

ℓ = t
γµ0Hk

1 + α2
= t

2Kγ

Ms (1 + α2)
(B.18)

Substituting ℓ into equation (B.17) yields the dimensionless form of the LLG:

dm̂
dℓ = −m̂×

(
h⃗+

√
γµ0Hk

1 + α2
h⃗th

(
1 + α2

γµ0Hk
ℓ

))
−αm̂×

(
m̂×

(
h⃗+

√
γµ0Hk

1 + α2
h⃗th

(
1 + α2

γµ0Hk
ℓ

)))
(B.19)

where the fluctuating field has been scaled such that the equation is equivalent to:

dm̂
dℓ = −m̂×

(
h⃗+ h⃗th (ℓ)

)
− αm̂×

(
m̂×

(
h⃗+ h⃗th (ℓ)

))
(B.20)

⟨hth (ℓ)hth (ℓ+ δℓ)⟩ = δ (ℓ− ℓ− δℓ)
σ2
s

µ2
0H

2
k

δℓ (B.21)
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Arkus cluster definitions

The following code block contains the coordinates of particles that make up the Arkus
particle cluster geometries as defined in [7]. The code is written in python and can be
imported as a standalone module.

1 """
2 Coordinates for Arkus cluster geometries.
3

4 This module contains the coordinates of particles arranged
5 into Arkus cluster geometries of varying size. Arkus clusters are
6 *minimum energy* clusters that represent tightly packed clusters of
7 spherical particles. Their definition (and name) are derived from:
8

9 N. Arkus, V. N. Manoharan, and M. P. Brenner, *Phys. Rev. Lett.* **103**, 118303 (2009).
10 `http://dx.doi.org/10.1103/PhysRevLett.103.118303`
11

12 Clusters of 1-5 particles have only one possible arrangement.
13 Clusters of 6 or more particles have a variety of different
14 configurations, which are accessed using a configuration id. The
15 available configuration ranges are:
16 - 1-5 particles: [0]
17 - 6 particles: [0-1]
18 - 7 particles: [0-5]
19 - 8 particles; [0-12]
20

21 The coordinates of the particles within the cluster are normalised
22 to a unit distance between each pair (where possible). The distance
23 between the particles can be controlled by multiplying by a scaling
24 factor.
25

26 Attributes:
27 ARKUS (dict): a dictionary containing the geometries of Arkus clusters
28 of 1-8 particles. The dictionary is accessed
29 `ARKUS[n_particles][configuration_id]` and returns an `np.ndarray`
30 of shape `(n_particles,3)` containing the coordinates of particles

129



130 Appendix C Arkus cluster definitions

31 in the cluster.
32

33 Examples:
34 .. code-block:: python
35

36 >>> ARKUS[1][0]
37 array([[0,0,0]])
38 >>> ARKUS[2][0]
39 array([[0,0,0],
40 [0,0,1]])
41 >>> ARKUS[2][0] * 1e-9 # apply a scaling factor
42 array([[0,0,0],
43 [0,0,1e-9]])
44 """
45

46 import numpy as np
47

48 ARKUS = {
49

50 # 1 PARTICLE
51 1: {
52 0: np.array([
53 [0,0,0]
54 ])
55 },
56

57 # 2 PARTICLE
58 2: {
59 0: np.array([
60 [0,0,0],
61 [0,0,1]
62 ])
63 },
64

65 # 3 PARTICLE
66 3: {
67 0: np.array([
68 [0,0,0],
69 [0,0,1],
70 [0,0.866025403837047,0.5]
71 ])
72 },
73

74 # 4 PARTICLE
75 4: {
76 0: np.array([
77 [0,0,0],
78 [0,-1,0],
79 [0.866025403784439, -0.5, 0],
80 [0.288675134594813, -0.5, 0.816496580934550]
81 ])



Appendix C Arkus cluster definitions 131

82 },
83

84 # 5 PARTICLE
85 5: {
86 0: np.array([
87 [0.0, 0.0, 0.0],
88 [0.0, 1.632993161855915, 0.0],
89 [-0.577350269189415, 0.816496580927958, 0.0],
90 [0.288675134595175, 0.816496580927958, -0.499999999999947],
91 [0.288675134595175, 0.816496580927958, 0.50000000000006]
92 ])
93 },
94

95 # 6 PARTICLE
96 6: {
97 0: np.array([
98 [0.0, 0.0, 0.0],
99 [0.0, 1.632993162089509, 0.0],

100 [0.962250448720120, 0.272165527131513, 0.0],
101 [-0.577350269227751, 0.816496581044756, -0.000000000001533],
102 [0.288675134563603, 0.816496581044756, -0.500000000000726],
103 [0.288675134563603, 0.816496581044755, 0.499999999999382]
104 ]),
105 1: np.array([
106 [0.0, 0.0, 0.0],
107 [0.0, -1.414213562373241, 0.0],
108 [-0.707106781186482, -0.707106781186621, 0.0],
109 [0.707106781187920, -0.707106781186621, -0.000000000000000],
110 [0.000000000000126, -0.707106781186621, -0.707106781186493],
111 [0.000000000000126, -0.707106781186621, 0.707106781186493]
112 ])
113 },
114

115 # 7 PARTICLE
116 7: {
117 0: np.array([
118 [0.0, 0.0, 0.0],
119 [0.0, 1.632993164582268, 0.0],
120 [1.026400523384526, 1.270105797971256, 0.0],
121 [-0.577350267595472, 0.816496582291134, 0.000000000023495],
122 [0.962250473328791, 0.272165526445590, 0.000000000034229],
123 [0.288675141480240, 0.816496582291133, 0.499999999969453],
124 [0.288675141493603, 0.816496582291136, -0.500000000035519]
125 ]),
126 1: np.array([
127 [0.0, 0.0, 0.0],
128 [0.0, 1.666666666672721, 0.0],
129 [1.443375673009152, 0.833333333386875, 0.0],
130 [-0.096225044838686, 0.833333333336361, -0.544331053982005],
131 [0.769800358948834, 0.333333333331258, -0.544331053982335],
132 [0.769800358945444, 1.333333333372645, -0.544331053954963],
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133 [0.481125224339845, 0.833333333336361, 0.272165526958015]
134 ]),
135 2: np.array([
136 [0.0, 0.0, 0.0],
137 [0.0, 1.632993161864094, 0.0],
138 [-0.962250448673535, 0.272165526969049, 0.0],
139 [0.481125224326110, 1.360827634888840, 0.833333333333549],
140 [-0.288675134603241, 0.816496580932047, -0.500000000000039],
141 [0.577350269184733, 0.816496580932047, -0.000000000000013],
142 [-0.288675134603224, 0.816496580932047, 0.499999999999964]
143 ]),
144 3: np.array([
145 [0.0, 0.0, 0.0],
146 [0.0, 1.618033988749913, 0.0],
147 [0.951056516295152, 0.309016994374951, 0.0],
148 [-0.587785252292505, 0.809016994374957, -0.000000000000003],
149 [0.951056516295155, 1.309016994374955, -0.000000000000003],
150 [0.262865556059561, 0.809016994374957, -0.525731112119131],
151 [0.262865556059561, 0.809016994374957, 0.525731112119127]
152 ]),
153 4: np.array([
154 [0.0, 0.0, 0.0],
155 [0.0, 1.414213562375728, 0.0],
156 [1.000000000039960, -0.000000000007774, 0.0],
157 [-0.500000000011403, 0.707106781187864, 0.499999999996897],
158 [0.500000000002506, 0.707106781187864, -0.499999999999995],
159 [-0.500000000056301, 0.707106781187864, -0.500000000018837],
160 [0.500000000002484, 0.707106781187864, 0.500000000000006]
161 ])
162 },
163

164 # 8 PARTICLE
165 8: {
166 0: np.array([
167 [0.0,0.0,0.0],
168 [0.0,-1.666666685130705,0.0],
169 [-1.443375683706607,-0.833333339154295,0.0],
170 [-0.481125182280860,-0.833333352769395,-1.360827663935889],
171 [-0.481125236072751,-0.833333342565355,0.272165540947502],
172 [0.096225067033021,-0.833333342565357,-0.544331041769898],
173 [-0.769800347378054,-0.333333348343040,-0.544331066284295],
174 [-0.769800346694231,-1.333333354811085,-0.544331083525413]
175 ]),
176 1: np.array([
177 [0.0,0.0,0.0],
178 [0.0,1.632993161855456,0.0],
179 [1.026400478559912,0.362887369300815,0.0],
180 [-0.481125226052722,0.272165525754372,0.833333336324662],
181 [0.962250448649416,1.360827634879555,-0.000000000000007],
182 [-0.577350269189626,0.816496580927727,0.000000000000006],
183 [0.288675134594807,0.816496580927728,-0.500000000000003],
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184 [0.288675134594818,0.816496580927728,0.499999999999997]
185 ]),
186 2: np.array([
187 [0.0,0.0,0.0],
188 [0.0,1.666666666667998,0.0],
189 [1.443375673043679,0.833333333351740,0.0],
190 [0.930175433779948,-0.055555555629319,-0.362887369385129],
191 [0.769800358897570,1.333333333333403,0.544331053988240],
192 [-0.096225044892638,0.833333333333999,0.544331053947160],
193 [0.769800358899221,0.333333333331773,0.544331053992464],
194 [0.481125224341178,0.833333333333999,-0.272165526957415]
195 ]),
196 3: np.array([
197 [0.0,0.0,0.0],
198 [0.0,1.666666667005101,0.0],
199 [-1.443375672934393,0.833333333414405,0.0],
200 [0.032075015577703,-0.055555555417941,-0.997940266790499],
201 [-0.769800358911742,1.333333333455365,-0.544331054028353],
202 [-0.481125224242490,0.833333333502287,0.272165526932724],
203 [0.096225044986524,0.833333333502894,-0.544331053995201],
204 [-0.769800358872755,0.333333333438965,-0.544331053983922],
205 ]),
206 4: np.array([
207 [0.0,0.0,0.0],
208 [0.0,-1.732050817167331,0.0],
209 [1.290994466278070,-1.154700576756221,0.0],
210 [0.129099444946515,-0.288675138370196,0.948683301241860],
211 [-0.387298330204278,-0.866025408583675,0.316227759165464],
212 [0.903696135855355,-0.288675142331924,0.316227744588897],
213 [0.387298347149651,-0.866025408583689,-0.316227783307896],
214 [0.516397782962325,-1.154700544543956,0.632455526960460]
215 ]),
216 5: np.array([
217 [0.0,0.0,0.0],
218 [0.0,1.632993161855452,0.0],
219 [-1.026400478559335,1.270105792554240,0.0],
220 [0.577350269189626,0.816496580927726,0.000000000000000],
221 [-0.962250448649376,0.272165526975909,0.000000000000000],
222 [-0.607737126005969,1.718940171910572,-0.789473686405863],
223 [-0.288675134594813,0.816496580927726,0.500000000000000],
224 [-0.288675134594813,0.816496580927726,-0.500000000000000]
225 ]),
226 6: np.array([
227 [0.0,0.0,0.0],
228 [0.0,-1.677941309409369,0.0],
229 [-1.417542541531493,-0.780132765613074,0.0],
230 [0.108997432281229,-0.838970654704685,-0.533148947579020],
231 [-0.943453589462634,0.036363815680489,0.329504171048663],
232 [-0.767092038848638,-1.321119219647785,-0.533148947570053],
233 [-0.745915762131459,-0.322572875164488,-0.582714695238914],
234 [-0.461720532609713,-0.838970654704685,0.287997205406323]



134 Appendix C Arkus cluster definitions

235 ]),
236 7: np.array([
237 [0.0,0.0,0.0],
238 [0.0,-1.732050808690269,0.0],
239 [-1.632993162893537,-0.577350266978568,0.0],
240 [-0.000000000618892,-0.866025404345123,-0.500000000029555],
241 [-0.816496581442531,-0.288675133672735,0.500000000071310],
242 [-0.000000000014527,-0.866025404345117,0.500000000127100],
243 [-0.816496581096403,-0.288675133863199,-0.500000000169129],
244 [-0.816496582770094,-1.154700537873727,0.000000000104982]
245 ]),
246 8: np.array([
247 [0.0,0.0,0.0],
248 [0.0,1.732050807568878,0.0],
249 [-0.957427107756341,0.288675134594811,0.0],
250 [-0.029012942640569,1.635825762763941,0.994936676436827],
251 [-0.435194139889244,0.288675134594813,0.852802865422442],
252 [-0.261116483933549,0.866025403784439,-0.426401432711222],
253 [0.261116483933547,0.866025403784439,0.426401432711221],
254 [-0.696310623822793,1.154700538379251,0.426401432711220]
255 ]),
256 9: np.array([
257 [0.0,0.0,0.0],
258 [0.0,1.632993161855453,0.0],
259 [-0.962250448649376,0.272165526975909,0.0],
260 [0.481125224324696,1.360827634879546,0.833333333333344],
261 [-0.545275254236216,-0.090721842330956,0.833333333341596],
262 [0.577350269189626,0.816496580927726,-0.000000000000000],
263 [-0.288675134594813,0.816496580927726,-0.500000000000000],
264 [-0.288675134594813,0.816496580927726,0.500000000000000]
265 ]),
266 10: np.array([
267 [0.0,0.0,0.0],
268 [0.0,1.632993163699450,0.0],
269 [-0.962250449360077,0.272165525396529,0.0],
270 [0.481125224750552,1.360827638529060,-0.833333334082967],
271 [-0.545275266042522,-0.090721868947916,0.833333356462651],
272 [0.577350269193707,0.816496581849730,0.000000000005621],
273 [-0.288675134590899,0.816496581849730,-0.499999999995033],
274 [-0.288675134590901,0.816496581849730,0.500000000005347]
275 ]),
276 11: np.array([
277 [0.0,0.0,0.0],
278 [0.0,-1.414213562373095,0.0],
279 [1.000000000000631,0.000000000000422,0.0],
280 [-1.000000000000002,-1.414213562373096,-0.000000000000001],
281 [0.499999999999999,-0.707106781186547,0.500000000000001],
282 [-0.499999999999999,-0.707106781186547,-0.500000000000002],
283 [0.500000000000001,-0.707106781186547,-0.499999999999999],
284 [-0.500000000000001,-0.707106781186547,0.499999999999999]
285 ]),
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286 12: np.array([
287 [0.0,0.0,0.0],
288 [0.0,1.719939178003135,0.0],
289 [0.956811833812873,0.290707954304311,0.0],
290 [0.088325741592312,1.429231223651817,-0.952726324390386],
291 [0.261284393834782,0.859969589001574,0.438386554924369],
292 [0.375151161705916,0.485198037994381,-0.789838255574746],
293 [-0.412394850520668,0.859969589001576,-0.300637311912409],
294 [0.821096870451597,1.234741139895464,-0.300637311926518]
295 ]),
296 },
297 }





Appendix D

Low temperature simulations
from Chapter 6

The experiments in Section 6.2 and 6.3 were repeated with T = 30K to understand
the effects of the thermal energy on the hysteresis loop shapes. Figure D.1 shows the
dynamic hysteresis loops for different clusters and the SPL is plotted in Figure D.2 as a
function of the applied field amplitude.
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Figure D.1: Dynamic major hysteresis loops for chain and Arkus cluster geometries with
1-8 particles at temperature T = 30K. Results were obtained by stochastic simulation
of coupled sLLG equations using Magpy. The vertical and horizontal axes are shared
between all figures. Results are shown for randomly oriented clusters with random
anisotropy axes and clusters aligned with the applied field with aligned anisotropy axes.
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Figure D.2: SPL obtained from numerical integration of hysteresis loops at temperature
T = 30K. The hysteresis loops were simulated for Chain and Arkus geometries of various
sizes both randomly-oriented and aligned with the externally applied field. The results
are shown as a function of the alternating magnetic field reduced amplitude (normalised
by the anisotropy field Hk for a single particle).
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