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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Woo Lai Leng

Safety-critical embedded systems can be found in many application areas such as auto-
motive control systems, medical devices, and nuclear systems. Failure in these systems
can have catastrophic results and devastating effects on human lives and the surrounding
environment. Variations in temperature and voltage, single event effects and component
degradation are just some contributors that cause faults in these systems. Existing re-
search into techniques that deal with errors due to the presence of faults has mostly
focused on replication of hardware components, information redundancy or inclusion of
additional components to perform self-testing. However, these techniques either have
high overheads or are resource-intensive. This thesis presents a detection method that
can predict potential failure in real-time by detecting a change in system behaviour
using hardware performance counters that are readily available in a processor. The
early detection and prediction algorithm consists of two main stages — one-step ahead
prediction and anomaly classification. Evaluation on the early detection and prediction
algorithm were performed on benchmarks that are perturbed by single bit flip faults.
The analysis on the early detection algorithm shows that it achieves 99.7% accuracy and
earliest detection time was recorded at 325us, which is less than a typical time to failure
about 4,000us. The proof of concept results show that the detector manages to detect
when the system had started to behave anomalously and is able to stop execution before
the system encounters a critical failure. Analyses on the performance and size of the
detector show that the detector can be realised with minimal computational time and

resources.
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Chapter 1

Introduction

FIGURE 1.1: RazakSAT satellite, source from https://www.angkasa.gov.my

RazakSAT, as shown in Figure 1.1, is an earth observation satellite that was launched
on July 14, 2009. It was the first satellite in the world placed into a Near-Equatorial
Low Earth Orbit (NEqO), providing many imaging opportunities for countries around
equatorial region, such as Malaysia. It was targeted to have an operational lifespan of
three years, however, it ceased operation on August 30, 2010, just a year and sixteen
days from the launch date. The NEqO orbit exposes the satellite to the South Atlantic
Anomaly (SAA) phenomenon on every orbit it takes around the earth. SAA is a region
of reduced magnetic intensity where the inner radiation belt makes its closest approach

to the Earth’s surface. Satellites in low-Earth orbit pass through the SAA periodically,
1


https://www.angkasa.gov.my

2 Chapter 1 Introduction

exposing them to several minutes of strong radiation each time, creating problems for
scientific instruments, human safety, and single event upsets (SEU) [4]. The failure of
RazakSAT resulted in a loss of RM10.89 million in 2009, of which RM7.7 million went

towards insurance premiums for the faulty satellite [5].

The Therac-25 was a computer-controlled radiation therapy machine produced by Atomic
Energy of Canada Limited (AECL) in 1982. It suffered a concurrent programming error
which saw the system giving its patients radiation doses that were hundreds of times

greater than normal, thus resulting in death or serious injury [6].

On June 4, 1996, the maiden flight of Ariane 5 launcher, known as Flight 501, veered off
its flight path, broke up and exploded about 40 seconds after the initiation of the flight
sequence. The end result was that the entire mission was a failure and the cost which
includes the destroyed spacecrafts was approximately $370 Million. The report issued
by the Inquiry Board in charge of inspecting the Ariane 5 Flight 501 failure concluded
that the failure of the active and back-up Inertial Reference System caused the two solid
boosters to steer or swivel into extreme positions, and slightly later, the Vulcain engine

swivelled, causing the launcher to veer abruptly [7].

RazakSAT, Therac-25 and Ariane 5 Flight 501 are examples of failure in a critical

embedded system. A critical system can be divided into three categories:

1. Mission-Critical Systems: A system whose failure may result in the failure of some
goal-directed activity. Some examples of mission-critical systems are an on-board

computer or a navigational system in a spacecraft.

2. Business-Critical Systems: A system whose failure may result in very high costs
for the business using that system. Examples of business-critical systems are the

customer accounting system in a bank or the online shopping cart.

3. Safety-Critical Systems: A system whose failure may result in loss of life, injuries,

or significant damage to property or the environment.

The improvement on transistors size and integrated circuit performance, known as tech-
nology scaling, has allowed the growth of these computing systems across various mis-
sions [8]. As shown in Figure 1.2, the number of transistors on integrated circuits doubles
every two years, driven by Moore’s Law. Technology scaling has set the pace for semi-
conductor industries over the last decade whereby, with every technology generation,
it had resulted in lower cost, lower power consumption, higher performance and higher
transistor density per die but it also came with a cost: cheaper and better performance

transistors are becoming less and less reliable [8,9].



Chapter 1 Introduction

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) Sl

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles a appr oximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.
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FiGureg 1.2: Transistors count against date of introduction, source
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1.1 Reliability in Safety-Critical Embedded Systems

1.1.1 Embedded Systems

Embedded systems are becoming more common and widely used in various applications

and devices such as automotive industry, factory automation, medical and health, power

plants, telecommunication, smart homes, robotics and many others [10,11]. Driven by

advances in microelectronics and software, embedded systems are becoming more af-

fordable for daily usage, and had thus, enrich our lives and connect people together.

According to the new market research report on embedded systems market [12], this
market is expected to be valued at USD 110.46 Billion by 2023, driven mainly by the

increasing adoption of embedded systems in the automotive industry, use of multicore

processor technology in military applications, growing market for wearable devices, in-

crease in usage of embedded systems in smart appliances of smart homes, and rising

demand for embedded systems in healthcare equipment.

Unlike general-purpose computing system, embedded systems are computing systems

that are embedded within larger mechanical or electrical systems and are dedicated to
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perform specific functions. Embedded systems are widely associated with micropro-
cessors or microcontrollers, although some embedded systems can contain other tech-
nologies like digital signal processors (DSPs), complex programmable logical devices
(CPLDs), application-specific integrated circuits (ASICs), and field programmable gate
arrays (FPGAs). An embedded system can be defined as [10]:

Embedded systems are information processing systems embedded into en-

closing products.

1.1.2 Characteristics of Embedded Systems

Limited Performance
Resources and Efficiency

: : Characteristics
Application of Embedded

FIGURE 1.3: Characteristics of an embedded system

Despite various types of applications and implementation methods that are available,
embedded systems are bound by some common characteristics as shown in Figure 1.3,

which are briefly explained as follows:

e Application Specific: An embedded system is used to perform specific tasks related
to its specific application, in contrast to a general-purpose computing system that

executes a variety of applications [13].

e Limited Resources: Due to the many reasons such as the nature of application,
production costs, and available hardware technology, embedded systems have tight
constraints and limited resources concerning hardware resource, processor speed,
power consumption and memory size [14]. For example, a microprocessor used
in a general computing system operates at a clock speed above 2GHz, while the
clock speed for a microcontroller varies between 20MHz and 300MHz, a fraction

compared to the clock speed of a microprocessor.
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e Real-Time: Embedded systems have to perform tasks or interact with the external
environment within specific timing constraints, where the correctness of the system

depends on the output results as well as the time the results are produced [11].

e Performance and Efficiency: Embedded systems are expected to achieve high per-
formance, usually defined by the amount of tasks completed within certain execu-
tion time. Given the limited resources faced by these systems, embedded systems
also have to be efficient in utilising the power consumption, memory utilisation

and hardware resources [10].

e Dependability: Dependability is the ability to avoid service failures that are more
frequent and more severe than what is acceptable [15,16]. The common issues that
arise in creating a dependable system are reliability, safety, security, availability,
integrity and repairability [10,13,15,16].

— Safety means the system is able to function without catastrophic failure or
reducing the frequency of failures.

— Reliability means ensuring the system completes the task without experienc-
ing any failure.

— Security means the ability of the system to protect itself against deliberate
or accidental intrusions.

— Awailability means the system is able to deliver the service when it is required.

— Integrity means the system is protected against improper or unauthorised

system alterations.

— Repairability means the system can undergo modifications or repairs.

As the number of embedded systems being deployed increases, the designers have

a duty to ensure these systems are dependable.

In this thesis, the focus is given to addressing safety and reliability in a safety-critical
embedded system. The reliability of an embedded system will be further discussed in

Section 2.2. However, this does not diminish the importance of other attributes.

1.1.3 Safety-Critical Embedded Systems

According to [17], safety can be defined as a property of a system that it will not endanger
human life or the environment. Therefore, a safety-critical embedded system can be
defined as:

A system where a failure or a malfunction might result in loss of life or severe
injury to people, loss or severe damage to property or equipment, and severe

damage to the environment.
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Safety-critical embedded systems exist in the automotive industry and in various indus-
tries such as aviation, medical, nuclear engineering, power plants and many more [18].
The falling cost of hardware and the improvement in hardware quality will continue to

be a catalyst driving the growth of safety-critical embedded systems.

With technology scaling, increased complexity in a system, introduction of new mate-
rials and devices, as well as increasing constraints in terms of time and money, experts
have predicted that reliability will soon become a major concern [19]. Not only that,
various conditions such as faulty devices, bit errors due to Single Event Upsets (SEUs),
more pronounced ageing effects, process variations [9,20,21] or inadequate testing and
verification processes coupled with increased time-to-market pressure [22,23] may cause

a system to experience faults.

These faults can manifest themselves as errors and cause the system to experience
anomalous behaviour, which could lead to system failure, and thus contribute to a
system behaving unreliably. This is a major concern and challenge not only for users,
but also for technology vendors, system designers and system architects. One existing
technique for preventing system failure in the presence of faults is by having a fault-
tolerant system, which is usually achieved through the implementation of error detection
and recovery [15,16,23,24]. Existing fault tolerance techniques look at detecting errors
through the failure that results, and very often, users are only aware of the presence of

anomalies in the system after a failure has occurred.

1.2 Anomalous Behaviour

F1cURE 1.4: Tllustration of anomaly behaviour, source from http://www.dbta.com/
Editorial/

Anomalous behaviour, or in short, anomalies, is behaviour that does not conform to a

normal, expected pattern and can also be identified as outliers, exceptions, peculiarities,
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contaminants or other terms according to the domain being studied [25,26]. Figure 1.4
depicts an analogy of what an anomaly is all about and Grubbs [27] has defined an

outlier as:

An outlying observation, or outlier, is one that appears to deviate markedly

from other members of the sample in which it occurs.

In data mining, anomaly detection refers to scientific techniques applied to identify
behaviours, events or data points that do not belong to the rest of the data in a dataset.

Chandola [26] defined anomaly detection as:

The problem of finding patterns in data that do not conform to expected

behaviour.

The reliability of a system can be compromised by various sources such as (a) design
errors, (b) manufacturing problems, (c) external disturbances, (d) harsh environmental
conditions, and (e) system misuse. The impact from these reliability problems causes
anomalous behaviour in the system. Research on anomalous behaviour is usually as-
sociated with malicious activities, cyber intrusions or terrorist activities [26, 28], but
anomalous behaviour in the system could also be due to the breakdown of a system
caused by reliability issues [26,29]. Anomaly detection can be applied in various do-
mains and applications such as fraud detection in credit card applications, loan facilities
applications, state benefits, fraudulent usage of credit cards and mobile telecommunica-
tion [25], network intrusion detection [30], network performance detection [31], activity
monitoring [32, 33], system health management [34], sensor networks [35] and many

more. Chapter 2 provides further understanding and discussion of anomaly detection.

1.3 Research Motivation

The failure observed in incidents like RazakSAT, Therac-25, Ariane 5 Flight 501 or in
other similar examples, had a devastating impact not only to society in general, but also
to the economy and environment of a country. The presence of anomalies in the systems
had gone undetected, and users were only aware that something had gone wrong when

a failure occurred.

Research in fault prevention looks into ways of strengthening the circuit, architecture or
even system from these reliability issues. Fault prevention techniques are applied during
the design and manufacturing phases with the focus on designing a better circuit, a better
architecture, or a better system to prevent fault [23]. Techniques such as radiation

hardening, shielding and others modify existing circuits or architectures, which more
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often than not, struck a raw nerve with hardware designers because this means the
circuits that have been designed are deemed not reliable enough. However, modification
of existing circuits does not address the issue of reliability that still occurs after the

post-silicon validation stage.

Another way to attain reliability for systems that are already in operation is through fault
tolerance. Fault tolerance research is about preventing system failure in the presence
of errors, and it is usually achieved through the implementation of redundancy, error
detection and recovery [23,36]. Fault forecasting techniques aim to estimate the number
of faults in the system, possible occurrence of faults in the future and the consequences
of those faults and fault forecasting is done by evaluating the system’s behaviour when

a fault occur or is activated [16].

Current research on fault tolerance looks at detecting errors by examining the failure
that occurs, but to date, there had been no research on predicting potential failures in
real-time by detecting anomalous behaviour in the system before the user encounters
the failure. Research in fault forecasting mostly revolves around mechanical systems
or physical structures by using sensors to collect data [26] and there is no research
that attempts to predict potential failure in an embedded system by monitoring anoma-
lies in the system. Predicting the possible failure in a safety-critical embedded system
by monitoring and detecting anomalous behaviour can help to minimise or even avoid
failure-induced risk which could jeopardise the safety of the user or the surrounding

environment.

The aim of this thesis is to complement current fault tolerance techniques and contribute
to a better protection strategy by presenting the design of a detector that will be able
to predict potential failure in real time through the detection of anomalous behaviour in
a processor. In this thesis, we evaluate various strategies for achieving quick detection

and high accuracy with minimal computational time and resources.

1.4 Research Objectives

As discussed in Section 1.3, it is crucial to detect the error before a failure occur as this
could help to reduce or avert any risk which could threaten the safety of the user or the
surrounding environment. Therefore, the fundamental research question for this thesis

is:

Is it possible to predict a potential failure in an embedded system by monitoring and

detecting the anomalous behaviour in the system?

In order to assist the fundamental research question, several other research questions

had been formulated:
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1. What are the available hardware performance counters in a processor which can

represent a behaviour of a system and can be monitored online and in real-time?

2. What are the suitable techniques to model the behaviour of the system and perform

early detection of anomalies to predict potential failure?

3. How do different prediction algorithms impact the implementation of the detector?

The following objectives are presented as follows to address the above questions:

e Investigate how a manifested fault affects the behaviour of the system and identify
the various Performance Monitoring Events (PMEs) available that can be used
across different types of processors. Identify the number of hardware performance
counters available in processors used in embedded systems, in particular, the num-
ber of available counters in an Intel Atom processor used in this work. Select

different PMEs and compare them to determine which is better for detection.

e Develop an algorithm for early detection suitable to be implemented in embedded
systems taking into account the constraints and limitations of an embedded system.
Explore several methods for one-step ahead prediction and anomaly classification

rules and perform evaluation on methods used in the early detection algorithm.

e Implement the developed algorithm as a hardware-based detector. Validate the
implementation through experimental simulations and analyse the performance

and cost of the proposed detector.

1.5 Publications

Part of the research in this thesis have been published as:

1. E. W. L. Leng, M. Zwolinski and B. Halak, “Hardware performance counters for
system reliability monitoring,” 2nd International Verification and Security Work-
shop (IVSW), 2017

2. L. L. Woo, M. Zwolinski and B. Halak, “Early detection of system-level anomalous
behaviour using hardware performance counters” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2018. IEEE

3. L. L. Woo, M. Zwolinski and B. Halak,“Predicting Potential Failure from Anoma-
lous Behavior in Embedded Systems”, in IEEE Transactions on Reliability (sub-
mitted in July 2019)
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1.6 Thesis Organisation
This thesis is organised as follows:

e Chapter 2: This chapter provides an overview of reliability and discussed how
defects, faults, errors and failures can affect the reliability of an embedded system.
This chapter also covers existing online error detection techniques with particular
emphasis on anomaly detection techniques. Discussion on hardware performance
counters (HPCs) and how they can be used to detect anomalous behaviour are
also presented in this chapter. The chapter concludes by identifying the gap in
current online error detection and how utilising HPCs for anomaly detection and

prediction of potential failure can address the gap.

e Chapter 3: This first objective of the thesis is addressed in this chapter. Embed-
ded systems that performs a routine task exhibit a certain profile. When a fault
is manifested as an error, it first causes deviations in the profile, indicating some
anomalous behaviour has occurred in the system before the user encounters the
failure. This chapter presents how HPCs can be used to observe the anomalous
behaviour in the system by observing the deviations in the execution profile. Using
GemF1I, a fault injection tool developed based on Gemb) architectural simulator,
single bit-flips are injected in various stages of a pipeline, and the behaviour of the
system is observed. The first contribution of the thesis is also presented in this
chapter where the HPC is utilised for monitoring anomalous behaviour that occur
at a system level due to a reliability issue. A suitable Performance-Monitoring
Event (PME) and sampling interval are proposed based on the experiment con-
ducted.

e Chapter 4: This chapter addresses the second objective and provide the second
and third contributions of the thesis. In this chapter, the novel early detection
algorithm that detects anomalous behaviour in a processor core using HPCs and
predict potential failure in real-time is presented. The algorithm consists of three
stages: (i) a one-step ahead algorithm to predict the next value in the time-series,
(ii) measurement of deviation algorithm between predicted value and observed
value, and (iii) mechanism to classify if the observed value deviates too much from
the expected behaviour and is deemed anomalous. Through the experiments, the
optimal values of each parameter in the one-step ahead prediction methods and
anomaly classification methods are identified. The novel detection time measure-
ment attribute developed refers to the earliest time for the algorithm to predict
potential failure. This attribute provides an indicator of how well the early detec-

tion and prediction algorithm has performed.

e Chapter 5: The last contribution of the thesis is addressed in this chapter, where

a proof of concept for a detector that predicts potential failure in real-time by
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detecting anomalous behaviour that occurs is developed using the early detection
algorithm developed and optimised in Chapter 4. This chapter also presents the
analyses on the performance and size of the detector, where it shows that the
detector can be realised with minimal computational time and resources. It over-
comes the drawback in existing error detection techniques where an error is only

detected after a failure has occurred.

e Chapter 6: The findings and contributions of this thesis is concluded in this chap-

ter. Suggestions for future research direction are provided in this chapter as well.






Chapter 2

Background and Related Work

2.1 Introduction

In Chapter 1, an overview of reliability, especially in safety-critical embedded systems,
and how it leads to the failure of these systems was presented. In this chapter, a
more in-depth study on reliability and how anomalous behaviour affects reliability is
discussed, with particular focus on hardware performance counters, and how they can
be used to detect anomalies in embedded systems. This chapter is organised as follows.
Section 2.2 discusses what reliability is and the available means to attain a reliable
system. Section 2.3 will look at the threats to reliability, which are usually defined in
defects, faults, errors, and failures, and how a fault is propagated into an error which
causes a failure in the system. From the user’s perspective, the system fails when it is
unable to deliver its intended function although the reason for failure may be unknown
to the user. However, there could be some traces of anomalous behaviour in the system
prior to a failure which can be detected. One of the main techniques for online error
detection is via anomaly detection, which is presented in Section 2.4. This section also
discusses damage detection, the application domain for anomaly detection which is of
interest in this thesis, and the available techniques for anomaly detection in this domain.
In Section 2.5, other techniques for online error detection, such as Built-In-Self-Test,
Redundancy and Dynamic Verification are presented. Past research has shown that
Hardware Performance Counters (HPCs) can be used to detect anomalous behaviour in
a CPU [37,38]. In Section 2.6, an overview of HPCs is provided and some past research

that uses HPCs are mentioned in brief. Section 2.7 concludes the whole chapter.

2.2 Reliability

Reliability can be described as the probability that a system will produce the correct

or required outputs at time ¢ + 1, given that the system was performing correctly at

13
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time, ¢ [16,23,24,39]. Reliability is a crucial aspect in a computer system, even if it is
at the expense of the performance of the system. Safety-critical embedded systems are
systems that require high reliability whereby these systems are expected to be opera-
tional without interruptions or when maintenance is unavailable [16], and failure and
data loss is almost unacceptable. Nanometre technology scaling has allowed systems to
be built for a higher performance at a lower cost and power consumption, but, this is

also accompanied by reliability problems that cause different failures over time.
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FIGURE 2.1: The "bathtub curve’, after [39,40], is a combination of a decreasing hazard
of early failure (green line) and an increasing hazard of wear-out failure (pink line), and
a constant hazard of useful-life failure (blue line)

The bathtub-curve shown in Figure 2.1 is widely accepted and used to represent the
failure rate of equipment and systems over time. It consists of three parts — early
failures, constant failures, and wear-out failures. Early failures, which happen in the
first zone, have a decreasing pattern where the rate of failures decreases during the
early times of operation. In complementary metal-oxide-semiconductor (CMOS) tech-
nology, early failures are mainly caused by oxide defects, particulate masking defects
or contamination-related defects. In the middle zone, the failures remain at a constant
rate. The occurrence of these failures are mostly random, manifesting in the form of
soft errors over the major part of the system operation life. The failures that occur in
the middle zone will be the target of this thesis. In the third zone, wear-out occurs
in the final stage of the system lifetime where the failure rate increases. For example,
electromigration-related defects, oxide wear-out, or hot carrier injection which occur
in integrated circuits are some of the conditions which causes the failure rate in these

circuits to increase [39].

The issue of computer reliability has been a major concern with researchers looking
for methods and solutions for improving resilience and reliability particularly in dealing
with embedded systems as they have limited resources in terms of hardware, processor
speed, memory size and power consumption. There is also a rising demand for embedded

systems in life-critical or system-critical applications such as military, space, medical or
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even automotive industries where an error or a sudden breakdown of a system may cause
catastrophic results. Various means have been developed to attain reliability in a system

which can be grouped into four major categories [15, 16, 23]:

e Fault Prevention: Techniques that aim to prevent the introduction or occurrence

of faults in the system;

e Fault Tolerance: Techniques that aim to ensure the system continues to function

correctly in the presence of faults;

e Fault Removal: Techniques that aim to reduce the number of faults which are

present in the system; and

e Fault Forecasting: Techniques that aim to estimate how many faults are present

in the system, possible future occurrences of faults and the consequences of faults.

The techniques in each category can be applied on their own or used in combination
with techniques from other categories to attain reliability. The aim of this thesis is to
predict potential failure through detection of anomalous behaviour in the system. This
is to ensure that the reliability of a safety-critical embedded system is not compromised
in the presence of faults. Fault tolerance techniques are used to achieve the aim of this
thesis as fault tolerance is aimed at failure avoidance [15,39]. A fault tolerant system can
be achieved via fault avoidance, fault masking, detection of erroneous or compromised
system operation, containment of error propagation, and recovery to normal system
operations [39]. However, in this thesis, the focus is specifically towards online error

detection, which will be discussed further in Section 2.4 and Section 2.5.

2.3 Threats to Reliability

The relationship between the system’s function, behaviour, structure and service is im-
portant in order to understand how a reliability of a system can be threatened. As
described in [15], the function of such a system refers to what the system is tasked to
do and is described by the functional specification in terms of functionality and perfor-
mance. The behaviour of a system is what the system does to implement its function
and is defined as a sequence of states (e.g., computation, communication, stored infor-
mation, interconnection, and physical condition), and the structure of a system is what
enables the system to generate the said behaviours. From a structural viewpoint, a
system’s structure is composed of a set of components (e.g., hardware modules, software
modules or other systems) which are bound together to interact and to provide a service.
The service delivered by the system is the behaviour of the system as perceived by the

receiver.
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The reliability of a system can be threatened at any stage — function, behaviour, struc-
ture or even at the service stage. The following terms are crucial as it relates to how
anomalous behaviour in a system occurs, and thus, it is imperative that these terms be
clearly defined. The four types of threats to reliability are defects, faults, errors, and
failures. Although they give the message that something is not right, there exists a
difference between each type. The difference between a defect, a fault, an error and a

failure given below is extended from [41]:

The difference between a defect, a fault, an error, and a failure is that, in the case of
a defect, the problem occurred on the physical level; in the case of a fault, the problem
occurred on the functional level; in the case of an error, the problem occurred on the

computational level; and in the case of a failure, the problem occurred on a system level.

Section 2.3.1 provides a detailed definition of defect, fault, error and failure, adapted
from [15,42].

2.3.1 Defect, Fault, Error and Failure

A defect is defined as the unintended difference between implemented hardware and
its intended design [42]. Defects can be divided into process defects such as a bad
etching or soldering, parasitic transistors, oxide breakdown, etc; material defects such
as a broken pin, surface impurities, etc; and age defects such as dielectric breakdown,

electro-migration, etc.

A fault is the logic level abstraction of a physical defect. A fault is used to describe the
change in the logic function of a device caused by the defect [42]. Both defects and faults
are the imperfections in the hardware and function respectively. Physical defects are
modelled as logical faults to reduce the complexity of fault simulation. Logical faults may
be in the form of static (e.g. shorts, breaks), dynamic (components out of specification,
timing failures) or intermittent (environmental factors). Some examples of faults could
be a frozen memory bit, a stuck-at fault, an uninitialised variable in software, or a bit

flip due to an alpha particle hit or cosmic ray ionisation.

An error occurs at the behavioural stage of the system where a part of the total state
of the system deviates from its correct state, and hence, it may subsequently lead to
service failure [15]. An error happens when the result of a computation is inaccurate
due to a fault that was present in the system. One example of an error could be when
the system is trying to access a portion of the memory that may have been hit with
a fault, thus resulting in incorrect output due to a computational flaw. However, not

every fault causes an error. An error is created by a fault that is active.
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A failure is defined as “an event that occurs when the delivered service deviates from
correct service” [15]. In other words, a failure is said to have occurred when the system

has failed to implement its intended function.

De‘fe ct Cause of failure

Representation of

Fault defect ata

functional level

A state which may
lead to failure

E>

FI1GURE 2.2: Relationship between fault, error, failure

Service that
deviates from
specification

Figure 2.2 above shows the relationship between defect, fault, error and failure. Faults
are logical abstraction of physical defects. Faults will develop into errors, and multiple
errors may cause a system to fail. In other words, faults are the reason for errors, and
errors are the reason for failures. From the user point of view, the system has failed
but the reason for failure may be unknown to the user. However, there could be some

anomalous behaviour in the system prior to a failure which can be observed and detected.

2.3.2 Origin of Faults

As mentioned in Section 2.3.1, a failure is caused by the presence of one or more errors,
and an error is caused by the presence of a fault. A fault is a representation of a physical
defect and a defect could happen at any of these stages: during the design stage or
during the operational stage. In the design stage, a defect could be caused by problems
arising during specification, implementation or even the fabrication process [16]. During
the operational stage, a defect could happen due to both internal and external factors,
such as component degradation, external phenomena such as temperature and voltage
variation, electromagnetic disturbances that result in single event effects [23] or malicious

attacks by users [16].

2.3.3 Duration of Faults

The duration of a fault can be classified as permanent, transient or intermittent according
to [16,43].
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e A permanent fault is a fault that is persistent or remains active; that is, it continues
to exist until the faulty component is repaired or replaced. Typically, this type of
fault is caused by defective components such as broken wire, an incorrect bonding,
etc during the manufacturing process. It could also be caused by a component

that is starting to degrade.

o A transient fault is a fault that occurs temporarily and does not leave any perma-
nent damage on the chip. It is usually caused by environmental conditions such
as radiation or noise. It happens randomly and therefore, these faults are hard to
detect.

o Intermittent faults are faults that occur for few cycles, and apparently at random,
then vanish, and then reoccur again, then vanish again. Unstable or ageing hard-
ware that got activated by a change in environmental condition (e.g. temperature

change) are usually the cause of these faults.

2.3.4 Fault-Error-Failure Chain

activation propagation causation risk

Fault _,’ Error ‘_, s_,‘ Hazard s_,’ Accident‘

FIGURE 2.3: The fundamental chain of threat in a system, [44]

Figure 2.3 shows how the activated chain of threats of fault-error-failure may lead to an
accidental situation which in turn risks the human life. Barton, Christian, Siewiorek,
Koopman and Kaliorakis [45-49] have identified the various type of failures that can be
observed by users due to the activation of faults in the system which can be classified
in the following Table 2.1. These failures can be grouped into four categories, namely:
(a) System Failure, (b) Application Failure, (c) Output Failure and (d) Silent Failure.
A System Failure is where the Operating System (OS) has stop functioning properly
or crashed. An Application Failure happens when a system ceases to respond to input,
but the OS is still running and responding. Qutput Failure is where there is a mismatch
between the actual output and the expected output while Silent Failure is where the

failure is masked or was not noticeable by the user.



19

Chapter 2 Background and Related Work

uorydniio)) eye(] JUSIS JUaIg (P2319939p 10110 Ol) N to11 0N aanyreq
poyseIN MO () PouUINIaI SHNSAY JUI[TS
JOIIG] 9[(BIDA0IIU() ) (Tomsue 1001100U]) (o7e)s ‘onrea) ydin prpeau] aanjreq
Pa109te( aanre, osuodsay] 1991100U] . dinQ
Moot Surrepury] (Imoouury,) (oyer] ‘Alrer) T — aanyreq
118189y asuodsoy] oger] surwrJ, uorjesrddy
o (o8essowt J10q® IIM [SeId) doyg seL —

110qy orydorysejen) 1I0q Yy [ser)) :
yser)) [seIr)) dUIyIRy wa)SAg

yser))

(g102) (0002) (¢661) (166T1) (066T1) aanyreq

syeIoIE® Y] uewdooy] YOI0IMDIS uensLIyD uojregqg Jo sar1038are)

odAT, seanreq jo uostredwo)) :1°g ATAV],




20 Chapter 2 Background and Related Work

Error detection is the vital aspect in fault tolerance because a processor cannot tolerate
a problem that it is not aware of. Even if the processor cannot recover from a detected
fault, it can still alert the user that an error has occurred and halt. Thus, error detection
provides, at the minimum, a measure of safety [50]. Online error detection is the ability
to detect any form of violation of system specifications during run-time. However, due
to the increased complexity of processors, inadequate pre- and post-silicon testing and
verification as well as pressure to reduce time-to-market, major design bugs or faults can
still exist even after the chip is in operation [51-53]. Hardware defects due to variations
in temperature and voltage, components degradation and Single Event Upsets (SEU)
also contribute to the increased presence of faults in a chip. Thus, various online error
detection schemes are applied to ensure these less-than-perfect chips can still operate

effectively.

Online error detection is mainly applied to protect the CPU cores, memory hierarchy
control logic and interconnection logic, whereas memories such as caches and register files
are well protected using well-known error-correcting codes (ECC) [53]. Section 2.4 and
Section 2.5 will describe the techniques that have been applied for online error detection,
namely (a) Anomaly Detection, (b) Built-In-Self-Test (BIST), (¢) Redundancy, and (d)

Dynamic Verification.

2.4 Anomaly Detection

2.4.1 Definition of an Anomaly

The failures listed in Table 2.1 occur when a fault has manifested itself an error and
causes some high-level behaviour to be anomalous. Anomalous behaviour, or in short,
anomalies, are behaviours that do not conform to a normal, expected pattern which
can also be identified as outliers, exceptions, peculiarities, contaminants or other terms
according to the domain being studied [26]. Chandola [26] has also categorised anomalies
into three different structures, namely (a) point anomalies, (b) contextual anomalies, and

(c) collective anomalies.

e Point anomalies: An individual data instance is deemed to be anomalous with
respect to the rest of the data if it is “too far” from the rest of the data. Figure
2.4 shows an example of point anomalies where points O1 and O2 are deemed
anomalous with respect to S1 and S2 as these points are located “too far” from
the rest of the data.

o Contextual anomalies: An individual data instance is deemed to be anomalous in a
specific context, but not otherwise. This type of anomaly is common in time-series

data. Figure 2.5 shows an example of a contextual anomaly, T2. The graph shows
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FIGURE 2.4: Point O1 and Point O2 are point anomalies as they deviates far from the
rest of the data.

the average monthly temperature collected at Southampton from January 2017

L The value

until December 2018 obtained from Southampton Weather Station
of T2 bears similarity to the value of T'1, but the low temperature of T2 happened
during the summer period instead of the winter period, hence it is considered

anomalous.

e (Collective anomalies: Individual data instances may not be anomalies themselves,
but their occurrence together as a collection with respect to the rest of the data
is deemed anomalous. Figure 2.6 shows an example of a collective anomaly corre-
sponding to an Atrial Premature Contraction in a human electrocardiogram out-
put. The value -5.5 as shown in 2.6 is not a value that deviates far from the rest
of the data, but because it occurs consecutively for a period, hence it is considered

anomalous.

As we will show in Chapter 3, the anomalies in this study are of the collective type,
where individual data instances in a collective anomaly may not be anomalies themselves
but their occurrence together as a collection is considered anomalous. The presence of
collective anomalies in the system could potentially lead the system to failing to execute
correctly and these failures can be classified as masked errors, silent data corruption,

affected output, crash or hang as shown in Table 2.1.

"Mttp://www.southamptonweather. co.uk
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FIGURE 2.5: An example of contextual anomaly, T2 in a monthly temperature time
series. Note that the temperature at T2 is similar to T'1, but because it occurs in the
month of July instead of November, hence it is considered anomalous.
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FIGURE 2.6: An example of collective anomaly corresponding to an Atrial Premature
Contraction in a human electrocardiogram output

Anomaly detection is one of many approaches used for online error detection in a micro-
controller core. It is about detecting “likely errors” by detecting anomalous behaviours.
Some example of detectable anomalies in a microcontroller are unusual data values,

branch mispredictions, exceptions, page faults, crashes, etc.
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2.4.2 Anomaly Detection Techniques

Due to the nature of data and the type of anomalies that occur in different applica-
tion domains, applying an anomaly detection technique developed for one domain into
another domain is not a straightforward task [26]. Availability of labels in the dataset
also plays an important role in deciding the type of techniques to be used. There are
numerous techniques proposed for anomaly detection such as Replicator Neural Net-
works (also known as Autoencoders), One-Class Support Vector Machines, Bayesian
Networks, Hidden Markov Models (HMMs), K-based Nearest Neighbours, Fuzzy Logic-
based techniques and many more. Choosing an appropriate technique for anomaly detec-
tion depends very much on the available dataset as illustrated in Figure 2.7. In general,

anomaly detection techniques can be divided into three broad categories as below [54]:

- Fully Labelled Training Data
l Result
B o — 2 —

a) Supervised anomaly detection

- Normal Training Data
l Result
e —

b) Semi-supervised anomaly detection

- Unlabelled Training Data
l, Result
- Test Data =————> BRI EVIEGENCGGI I —> -

c) Unsupervised anomaly detection

FI1GURE 2.7: Different anomaly detection modes depending on the availability of labels

in the dataset. (a) Supervised anomaly detection uses a dataset that contains both

normal and anomalies for training. (b) Semi-supervised anomaly detection uses a “nor-

mal behaviour” training dataset. (c) Unsupervised anomaly detection algorithms use
unlabelled dataset for training.

o Supervised anomaly detection:
Techniques that fall under the category of supervised anomaly detection require the
available samples in each data set to be labelled as either “normal” or “abnormal”.

A common approach involves training a classifier and building a predictive model
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for both normal and abnormal class. New, unobserved data is then compared to
the model to determine which class it belongs to. Some widely used techniques for
supervised anomaly detection are Support Vector Machine (SVM) [37], decision
trees, logistic regression, multi-layer perceptron networks [55] and linear regres-
sion. However, there are some issues using this approach as discussed in [26,55].
Firstly, the available data are imbalanced as anomalous data is harder to obtain
and less frequent compared to normal data. Imbalanced data causes over-fitting
and the trained model lacks generalisation. Another issue is the challenges faced
in obtaining labelled data, especially for anomalous data. Labelling the data re-
quires a human expert, and it is a costly exercise, not to mention time-consuming,

to obtain a huge amount of all possible samples of anomalous data.

Semi-supervised anomaly detection:

For techniques that fall under this category, it involves building a model rep-
resenting normal behaviour from a given normal training dataset [56]. As it
does not require labels from anomalous class, this approach is more widely used
compared to supervised techniques. Unknown samples are classified as outliers
when their behaviour is far from that of the known normal samples. Common
techniques for semi-supervised anomaly detection include statistical-based tech-
niques [33,34,57,58], one-class classifiers [59], cluster-based techniques [60], prob-

ability density function and others.

Unsupervised anomaly detection:

Techniques for unsupervised anomaly detection do not require any training data.
The data samples in the training set could contain both normal and anomalous
data. However, it makes the assumption that there are more normal data instances
compared to anomalous data in the training set. If the assumption is incorrect,
then these techniques suffer from high false alarm rate [26]. Clustering-based
techniques [61], Hierarchical Temporal Memory (HTM) networks [35], Principal
Component Analysis (PCA) [62], one-class SVM and Self-Organising Map (SOM)

are some techniques used for unsupervised anomaly detection.

Supervised techniques require both normal and anomalous data in building a model.

Imbalanced data will give a low accuracy to the model. As the amount of anomalous

data available from the dataset is less than 10% while the majority of the data consist

of points that depict a normal behaviour, supervised techniques for anomaly detection

are not suitable and thus, will not be considered in this thesis. Unsupervised techniques

can be effective only if the assumption of having more “normal” data holds true. Else, a

high false detection will occur. Semi-supervised techniques which use a normal training

dataset to build a model is a more balanced approach compared to supervised and un-

supervised techniques. According to [63], using this approach, it is possible to achieve

high detection rate with good accuracy. Although there exist numerous techniques for
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semi-supervised anomaly detection, not all techniques are suitable for detecting anoma-
lies online and in real-time [35]. Most of the techniques used in real-time streaming time
series data are statistical techniques that are computationally lightweight, as one of the
main requirements are the ability of the algorithm to learn continuously without storing
the whole stream of data [64].

2.4.3 Anomaly Detection in Damage Detection Domain

Anomaly detection is applied in various domains such as fraud detection, intrusion
detection, medical and public health anomaly detection, industrial damage detection,
sensor networks, image processing and many more [26]. As the interest of this thesis is
the application of anomaly detection in the domain of industrial damage detection, the

background review will be limited to the damage detection domain.

Industrial damage detection refers to detection of different faults and failures in complex
industrial systems, structural damage, intrusions in electronic security systems, suspi-
cious events in video surveillance, abnormal energy consumption, etc that may result
from deterioration and breakage due to continuous usage and normal wear and tear.
Such damage needs to be detected early to prevent further escalation and losses, as well
as reduce risks to users. The fundamental question in a damage detection problem is
whether a fault is present [65]. The problem is simply to identify from measured data if a
machine or structure has deviated from normal condition, i.e., if the data is anomalous.
Damage detection is mostly applied either in detecting faults in mechanical components

or detecting defects in physical structures.

The observed data in this domain has a temporal aspect because it is observed and
recorded with respect to the passage of time [26,66]. Typically, an array of sensors is
used to collect measurements either continuously or at a regular time interval [67, 68].
The type of anomalies that are found in this domain are anomalies that occur mostly
because of an observation in a specific context (contextual anomalies) or as an anoma-
lous sequence of observations (collective anomalies) [26]. Semi-supervised techniques
are usually applied in damage detection as datasets describing the “normal behaviour”
are readily available. Of the many approaches to the problem, some are drawn from
condition monitoring, others from the field of pattern recognition and yet others from
univariate and multivariate statistics. The latter field has a very substantial body of
theory to support it and is proving to be a fruitful source of algorithms for damage
detection [69].

In [70], Autoassociative Kernel Regression (AAKR) is used to model the normal be-
haviour using a multi-sensor monitoring observation to produce the healthy baseline of
engine monitoring. On-line detection is then performed to detect any abnormal con-

ditions based on deviation from the baseline model. The results show some anomalies
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are observed in the cooling system and a pre-warning is generated. In [71], the Least
Squares Support Vector Machine (LS-SVM) algorithm is used in its on-line and non-
invasive anomaly detection system to continuously monitor the sensors and hardware
components via flight data in an Unmanned Aerial Vehicle (UAV) while in [72], the LS-
SVM is used to monitor for collective anomalies in satellite telemetry data. These are
just some examples of research in damage detection where the same concept is applied
— first a model of normal or expected behaviour is produced, then the model is used to
predict the next data in the series. Once the actual data is available, it is used to com-
pare with the predicted data. If the deviation is above a threshold, the data is deemed
anomalous. The key difference in this type of research lies in the type of techniques used
by the model to predict the next data in the series and the measurement of deviation

between predicted data and observed data.

The application of anomaly detection in industrial damage detection domain was basi-
cally meant for mechanical components or physical structures, and there is no research
so far on applying damage detection in electronic components, in particular, to a micro-
controller. Existing anomaly detection approach for error detection in a microcontroller
is developed based on the concept that every activated fault must manifest itself as some
form of anomalies, and by monitoring these anomalies, the error, and subsequently the
fault can be identified. A good example of this approach is SoftWare Anomaly Treat-
ment (SWAT) [73] and subsequently, mSWAT [74] that were both developed using zero
to low-cost hardware and software monitors to monitor and detect anomalous software
behaviour such as fatal traps, hangs, high-OS, and panic. Once an anomaly is detected,
the control is then transferred to the firmware to invoke a diagnosis process that will
distinguish between transient faults, permanent faults and bugs. Although error detec-
tion on mSWAT has minimal overhead, the diagnosis component itself can incur a high
overhead [74], which may not be very beneficial for an embedded system. Furthermore,
this method is only able to detect the anomalous behaviour as it happens but gives no
indication of forthcoming anomalies which may happen. In the case of detecting anoma-
lies in an embedded system, the detection has to be performed online and in real-time
as early detection of possible failure in the processor is important to minimise or reduce

potential risk and damage.

2.5 Other Online Error Detection Techniques

Other techniques that have been explored for online error detection in a processor include
Built-In-Self-Test (BIST), Redundancy, and Dynamic Verification.
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2.5.1 Built-In-Self-Test

Another category for error detection is based on the traditional Built-In-Self-Test (BIST)
mechanisms. BIST is a design-for-testability technique that includes additional hardware
or software features into integrated circuits to allow them to perform self-testing. It was
originally used for manufacturing testing as there is a huge saving concerning the amount
of time for testing as compared to testing using an external automated test equipment,
and it is less costly. In a generic BIST scheme in testing mode, the test pattern generator
applies a series of test patterns to the circuit under test and the test responses are
evaluated by the response monitor. The test responses are then compacted to form a
signature to be compared with the reference signature stored on-chip. If there is any
discrepancy between the two signatures, an error signal is sent. The basic architecture

of BIST is as shown in Figure 2.8.
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FIGURE 2.8: Basic architecture of BIST

BIST could come in the form of hardware or software and is performed either during
idle time or executed periodically. Hardware-based BIST requires extensive and manual
design changes as it uses dedicated hardware to generate the test patterns. However,
this causes an increase in the circuit area and degrades its performance [75]. There are
four primary concerns in BIST-based approaches — (a) fault coverage; (b) size of test
set; (c) hardware overhead; and (d) performance penalty [76]. To address the hardware
overhead and performance degradation in a hardware BIST, software BIST is proposed
as it is non-intrusive and has a low test overhead [77]. Software BIST does not require
any change in the design but utilises existing processor resources and instructions to
perform self-testing [51,75]. However, software BIST has a longer testing time compared
to hardware BIST [78].
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Unfortunately, BIST has the limitation that it is only able to detect permanent faults
[51,53]. Newer approaches of software-based self-testing from [79] utilise the multiple
cores in a multiprocessor to run parallel test programs in a scheduled manner. However,
the experiment revealed that running the test program on multiple cores causes serious
performance loss as it creates a congestion for shared hardware resources. [52] provided
a solution to run the test program in parallel, however, it is noted that the existing
workload has to be suspended in all the cores to allow the cores to be synchronised to
execute the test program in parallel. This limitation is also agreed by [80] where test
programs will not only have to share processor resources but are also faced with limited
memory resources and this could limit the effectiveness of the usual methodologies used

for writing test programs.

2.5.2 Redundancy

Another category of error detection uses redundancy. Redundancy is a common tech-
nique used to achieve fault tolerance, and can be achieved via hardware or software.
According to [16], redundancy is the provision of additional functional capabilities that
can either be a replicated hardware component, an additional check bit attached to a
string of digital data, or a few lines of program code verifying the correctness of a pro-
gram’s result. There are four types of redundancy used in fault tolerant systems, which
are (a) hardware redundancy; (b) time redundancy; (c) information redundancy; and

(d) software redundancy.

2.5.2.1 Hardware Redundancy

Hardware redundancy can be divided into passive or active redundancy [16]. Active
hardware redundancy such as dual modular redundancy (DMR) refers to two identical
hardware modules performing the exact same task, but only the output from one module
will be used, while the output from the other module is not used. The module which
the output is usually used is the main module, while the other module is termed as the
backup module. Both hardware modules are equally powerful to ensure that the system
will not suffer any performance degradation. Figure 2.9 illustrates the error detection
using active hardware redundancy called duplication with comparison. The voting logic
in the comparison module will compare the results between the main module and the
backup module. If the results are the same, no error has occurred. However, if the
results are different, a mechanism to switch the output from the main module to the
backup module is used. The most challenging aspect in DMR is to determined when to
switch the output from the main module to the backup module. A more reliable form of
voting logic involves an odd number of three devices or more, such as in triple modular
redundancy (TMR) and N-modular redundancy. All perform identical functions and the

outputs are compared by the voting logic. The voting logic establishes a majority when
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there is a disagreement, and the majority will act to deactivate the output from other

module(s) that disagree.
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Agree/
Not Agree

Module 2

FI1GURE 2.9: Active hardware redundancy

A passive hardware redundancy means the backup module is in idle mode until the main
module fails or break down. When the main module has failed, the backup module takes
over the task. In passive hardware redundancy, the switching mechanism is required to
switch both the input and output from the main module to the backup module. Both
active and passive hardware redundancy have high cost and introduce high overheads,
both of which are unacceptable in a microcontroller. Not only it comes with high
hardware overheads, but the additional voting step in active hardware redundancy may

increase the runtime [81].

2.5.2.2 Time Redundancy

Hardware redundancy has a huge impact on physical entities such as cost, weight, size,
power consumption, etc [16,82]. An alternative to hardware redundancy is time redun-
dancy, where certain operations, computations or data transmissions are repeated on the
same module and the results are compared with a stored copy of the previous results.
Time redundancy can be used to distinguish transient faults from permanent faults. If it
is a transient fault, the fault disappear after re-computation, else it is a permanent fault.
Therefore, time redundancy by means of task re-execution is a common technique to
mitigate soft errors at system level [83]. Although time redundancy reduces the amount
of hardware required, the total time and the active energy consumption are doubled
because twice as much work is performed [50]. Figure 2.10 shows how a fault can be

detected in the processor at the expense of time.
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FIGURE 2.10: Time redundancy
2.5.2.3 Information Redundancy

Information redundancy, according to [82], is the addition of extra information to data
to allow error detection and correction. The addition of extra information means adding
redundant bits to a datum to detect when it has been affected by an error. This is
also known as encoding, according to [16]. This includes error-detecting codes (EDC),
error-correcting codes (ECC), and self-checking circuits. The data will be encoded into
a code word during the encoding process. The data is recovered from the code word
during the decoding process. If there is a mismatch between the decoded data and the
expected data, an error has occurred. Error detection by means of information redun-
dancy requires additional hardware resources because the encoded data and programs
require a larger amount of memory for storage. Another downside of using encoding for

error detection is the increase of runtime, as shown in [81].

2.5.2.4 Software Redundancy

Software redundancy techniques largely leverage on the experience of hardware redun-
dancy. For example, in N-version programming, the program is written N times, and
all N programs are executed in parallel with majority votes taken, much like having
N-modular redundancy. However, just like N-modular redundancy being an expensive
effort, N-version programming is equally costly and difficult to maintain. For example,
Error Detection by Duplication (EDDI) [84] or SWIFT [85] duplicates all instructions
and has 100% overhead in performance. A recent approach in [86] uses a data-flow graph
where a redundant instance is inserted into the graph. The output from the execution
of both the redundant instance and the original instance is compared. Although it is
flexible and allows for parallelism, it is noted that benchmarks that stress the memory
bus show performance degradation while other benchmarks have recorded up to 23%

overheads.
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A combination of full code duplication with selective comparison, as presented in [87],
is aimed to improve the fault detection ratio and decrease the imposed overhead. While
it did improve the code size overhead and execution time overhead of the combination
methods by 43.5% and 22.2%, respectively, compared to a full instruction duplication
method, it was less sensitive in detecting the errors caused by an injected fault. In [88],
instructions-based TMR was implemented to mitigate against space-borne single event
effects on processor architectures. However, the overhead of instructions-based TMR
was 10.32%.

The emergence of simultaneous multi-threading (SMT') and multi-core processors (CMP)
also saw techniques such as Redundant Multithreading gaining wide interest. For ex-
ample, in [89,90], two copies of the same program are run on separate threads and the
outputs are compared. Although this is successful in detecting faults, it cannot be ap-
plied in embedded systems, as embedded systems have limited resources for redundant

multi-threading.

The REPAIR architecture, introduced in [91], is targeted at detecting hard errors in
a multicore processor. It first identifies instructions that will use or have used faulty
processor structures. These potentially incorrectly executed instructions are routed to
an Instruction Re-Execution unit (IRU) to be re-executed and the results are compared.
The results from the TRU will be applied if the results from the core and IRU do not
match. However, the comparison is done post execution, where the pipeline operations
are halted pending the re-execution. On the availability of the results, the necessary reg-
isters are updated and the regular operation of the processor pipeline continues. There
is also an issue of loss of performance from stalling the instructions while awaiting the
duplicated results, which may not be favourable in safety-critical systems. To overcome
this problem, PreFix was introduced in [92]. It is similar to REPAIR, but re-execution of
faulty instructions are reduced substantially because in PreFix, these faulty instructions
are predicted and verified beforehand. With this technique, a faulty core is allowed to
continue its operation on the assumption that the second core running duplicated in-
structions is healthy and free of error. The issue arises when the secondary core is faulty

and the results from running the duplicated instructions cannot be trusted.

2.5.3 Dynamic Verification

Dynamic verification is another form of online error detection that operates during run-
time execution of the software. It differs from software BIST and software redundancy as
the behaviour of the software is observed dynamically using dedicated hardware check-
ers to verify selected high-level invariants. Invariants are program properties that must
be preserved when the code is modified and can be classified into preconditions, post
conditions and loop invariants. Thus, the key to dynamic verification is identifying

the invariants to check. The selection of high-level invariants that define the correct
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behaviour such as control-flow checking, dynamic [93] or static data-flow checking, com-
putation results, software invariants [94] or any mixture of these [95] are pre-identified.
However, this method of using invariants for error detection incurs additional area mainly
due to history fields and signature computation logic used for data-flow and control-flow
checking. For example, in [95], there is a 16.6% increase in area of the core component

alone and the decrease in performance was measured to be around 3.2% average.

2.5.4 Summary of Existing Online Error Detection Techniques

Existing online error detection techniques such as redundancy-based techniques, BIST
or dynamic verification have high overheads or require more resources than an embedded
processor can offer. Anomaly detection techniques have proved to be a promising ap-
proach for online error detection as they incur low overheads [73,74], and this approach
will be used to detect anomalous behaviour in a system prior to a failure. Hardware
performance counters (HPCs) are a valuable tool for detecting anomalous behaviour in a
processor [96]. Section 2.6 provides an overview of HPCs as well as existing applications
that use HPCs.

2.6 Hardware Performance Counters (HPCs)

2.6.1 Overview of HPCs

Most modern processors have special, on-chip hardware that can monitor performance
known as Hardware Performance Counters or HPCs. HPCs are sets of special-purpose
counters built into processors such as Intel Pentium, ARM, Cray, PowerPC, Ultrasparc
and MIPS architectures [97] to track low-level Performance Monitoring Events (PMEs)
within the processors, such as the number of cache misses, the number of instructions

retired, the number of branch instructions retired in real-time.

HPCs are part of the wider Performance Monitoring Unit (PMU) built into most modern
processors. A PMU consists of two components: performance event select registers and
event counters. A counter is paired with an event select register to monitor a particular
PME. In an Intel x86 processor, the performance event select registers are known as
model specific registers (MSRs) [1], and for an ARM Cortex-A series processors, the
registers are controlled through the event bus, PMUEVENT [2]. The PMU is interrupt-
based, such that an interrupt is generated after a certain interval of time or the number
of occurrences of the desired event exceeds a predefined threshold. In other words, it
is possible for PMU to do either time-based sampling or event-based sampling. The

counters are incremented on an instruction-by-instruction basis, thus ensuring accurate
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results [98,99]. As these counters are built-in, there are no additional overheads to access

the enormous information available in the CPU.

The number of available counters in each processor is limited and the available PMEs
differ from one processor to another due to architectural differences. The number of
available counters limits the number of PMEs that can be monitored in real-time. For
example, an Intel Atom has only two programmable performance-monitoring counter
registers per processor core. This means that only two PMEs can be monitored simul-
taneously. Therefore, it is not practical to utilise more microarchitectural events than
the number of available counters to achieve high accuracy as it requires executing the
application multiple times, since the hardware can only count a small subset of events
concurrently [100]. It has been shown, however, that a single counter is sufficient to
describe the behaviour of a program [101,102]. Table 2.2 shows the number of avail-
able counters and the number of available PMEs for some common processors such as
Intel, ARM, POWERA4, and UltraSparc II. The total available counters in the processor

and number of available PMEs are taken from the technical reference manual of each

Processor.
TABLE 2.2: Number of available counters and events for some processors
Processor Number of Number of
Available HPCs Available PMEs
Intel Atom [1] 2 + 3 (fixed functions) 129
Intel Core i7 Nehalem [1] | 4 4+ 3 (fixed functions) 129
ARM Cortex-A9 [2] 6 57
POWERA4 [103] 8 >100
UltraSparc 1T [104] 2 >4 bil

Table 2.3 and Table 2.4 list some PMEs that can be observed from an Intel® and ARM

architecture.

TABLE 2.3: Pre-defined architectural performance monitoring events for Intel® archi-
tecture [1]

Bit Position Performance Monitoring
CPUID.AH.EBX Event (PME) Name
UnHalted Core Cycles
Instruction Retired
UnHalted Reference Cycles
LLC Reference
LLC Misses
Branch Instruction Retired
Branch Misses Retired

| =W N~ O
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TABLE 2.4: Examples of performance monitoring events for ARM architecture [2]

Name Event Number Description
PMUEVENT0] 0x00 Software increment
PMUEVENT1] 0x01 Instruction cache miss
PMUEVENT2] 0x02 Instruction micro TLB miss
PMUEVENT!3] 0x03 Data cache miss
PMUEVENT/4] 0x04 Data cache access
PMUEVENT5] 0x05 Data read
PMUEVENT6] 0x06 Data writes
PMUEVENT[56] 0xA4 PLE FIFO Overflow
PMUEVENT[57] 0xA5 PLE request programmed

2.6.2 Application of HPCs

HPCs were originally designed to be used as hardware verification or debugging tools for
performance analysis or tuning purposes [105], but have since been used for performance
evaluation [98,106], workload estimation [107], detection of malicious activities [96,100—
102,108-111], integrity checking [99] and anomaly detection [37,74].

For example, in [109], the authors proposed BRAIN, which stands for BehaviouR based
Adaptive Intrusion detection in Networks and that uses statistics gathered from hard-
ware, network and application to detect and mitigate Distributed Denial of Service
(DDoS) attacks on an application. The HPCs that form the hardware in BRAIN are
used to characterise the host behaviour during load and attack. The result shows that
by correlating the HPCs with network statistics and application statistics can success-
fully detect DDoS with high accuracy, low cost and performance overheads. In [112], the
authors present NumChecker, a Virtual Machine Monitor (VMM) based framework that
securely and efficiently monitors the execution of system calls to detect kernel rootkits
by leveraging on existing HPCs. In [110], ConFirm is a low-cost technique that uses
HPCs as a signature to verify the execution of the computational paths in order to

detect malicious modification of firmware in embedded control systems.

Wang et al. [106] use HPCs to monitor and quantify the interference between virtual
machines located in the same host and competing for shared physical resources. Using
Last Level Cache (LLC) miss-rates, one of the counters available, the data is fed into
the interference prediction model to predict performance degradation between virtual
machines and through the information gathered, it can determine which virtual ma-
chine is utilising most of the resources. Another example of how HPCs are used for
performance monitoring is shown in [107] where the authors proposed to monitor L1
cache activity counters in order to estimate the workload and set the Dynamic Voltage
and Frequency Scaling (DVFS) based on the estimated workload. This method resulted
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in energy saving of 23% compared to the on-demand frequency setting policy used in

Linux.

A common trait in all these works is that HPCs have been used to identify or detect
some form of deviation from normal or expected behaviour. As explained in detail in
Chapter 3, a single HPC is used to monitor the execution profile of a processor core
running a workload. A system that behaves normally exhibits a certain profile, and any

deviation from the profile indicates anomalous behaviour has occurred in the system.

2.7 Summary

This chapter presents the fundamental concepts and definitions in the scope of this thesis.
The existing online error detection techniques require either some external monitors to
be built-in or some means of redundancy. A dedicated hardware-based detector can
be intrusive as it meddles with the rest of the hardware and a pure software detector,
though unobtrusive, may be too slow to react. As well as the additional overhead, these
techniques are only able to detect an error in the processor after a failure had occurred.
This thesis addresses the gap where it is possible to use an HPC to detect anomalous
behaviour and predict potential failure before the failure happens. Predicting potential
failure in an embedded system is important to minimise or reduce potential risk. Since
these systems usually operate continuously, the detection of anomalous behaviour has
to be performed online and in real-time. By utilising the built-in HPC, the overhead
incurred will be lower than for software profilers [100,112]. However, prior to performing
online error detection, it is important to understand what constitutes normal behaviour
of a system, and what causes the system to behave anomalously. A system that behaves
normally exhibits a certain pattern, thus any behaviour that deviates from that normal
pattern should be identifiable. Chapter 3 discusses how anomalous behaviour can be
identified using HPCs and the results gathered from the experiment conducted also show

a correlation between errors that occur and failures caused by these errors.






Chapter 3

Identification of Anomalous

Behaviour using Hardware
Performance Counter (HPC)

3.1 Introduction

Embedded systems typically perform routine or repetitive tasks, and anything that
is repetitive has a pattern. Based on this understanding, a system that is behaving
normally (i.e. functioning without any error) has a pattern, and thus, any abnormal
behaviour that deviates from this normal pattern should be identifiable. The problem
is to determine what kind of features in a system or which system components provide
meaningful information about the system’s behaviour. Appiah et. al in [113] and Zhai
et. al in [114] have shown that it is possible to use Program Counters (PCs) as a feature

to characterise a Central Processing Unit (CPU).

Several experiments were performed where the PCs were extracted to characterise the
behaviour of the system running simple programs such as Queens, SQR Root and Angle
Conversion. The amount of data generated using PCs as the monitoring feature is huge,
amounting to 10 GB and over for each program. Not only that, the time involved to
generate data was long, around one to two hours for a simple program. This suggest
that using PCs to observe the behaviour of a system is not a feasible solution. An
alternative to PCs is using Hardware Performance Counters (HPCs) to characterise
normal behaviour. As presented in the previous chapter, these counters are built into a

processor and record specific events that occur in the processor precisely and accurately.

In this chapter, identification of anomalous behaviour using HPC is presented. The main

objectives of this chapter are as follows:

37
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1. Investigate the type of events available to be monitored using an HPC. In par-
ticular, two events which are (a) the number of instructions retired, and (b) the

number of cache misses will be investigated.

2. Investigate and determine a suitable sampling rate for HPCs. Several sampling

rates are proposed and selection of an appropriate sampling rate will be presented.

3. Investigate the behaviour of HPC data when a fault has manifested itself as an
error and subsequently, led the system into a failure. The behaviour of the HPC
data with a manifested fault that leads to a failure, in particular, (a) a hang; or

(b) a crash will be presented.

This chapter is organised as follows. The process of gathering anomalous and non-
anomalous data is presented in Section 3.2. In Section 3.3 and Section 3.4, the selection
of fault model and HPC event used in the experiment are presented. The selection of
benchmarks for the experiment is presented in Section 3.5, while Section 3.6 explains the
simulator used for the experiment. Analyses of the results are presented in Section 3.8,
while correlations between a manifested fault (also known as an error) and a failure are

presented in Section 3.9. Section 3.10 concludes the chapter.

3.2 Methodology

Similar to what has been done in [99,109], the hardware counters are used to create
execution profiles for several benchmarks based on the methodology shown in Figure 3.1.
Briefly, the first two steps involve identifying the fault model to be used and the type of
event to be monitored using an HPC. After identifying the benchmarks to be used in the
experiment, the next step involves creating, executing and obtaining initial pattern from
fault-free executable, which will form as the baseline patterns for the benchmarks. Fault
injection is performed and anomalous behaviour from the system is observed through
the counter data. The following Sections 3.3, 3.4, 3.5, 3.6 and 3.7 explained in detail
the steps that have been taken.

3.3 Selection of Fault Model

The first step is to identify which fault model will be used in the experiment. There are
several fault models that are typically used to investigate the effects of physical faults
on higher levels of abstraction. The fault models outlined by Wang and Chattopadhyay

[115] are as follows:
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Identify fault model

l

Identify hardware counters

|

Create a fault-free dynamically
compiled executables

|

Perform simulation and obtain
initial pattern from fault-free
executables

|

Inject fault

l

Observe the anomalies

FIGURE 3.1: The methodology set-out for this experiment

o Single Stuck-at Fault model (SSFM) is used to model the condition where a value
in a memory cell or a logic gate is permanently stuck at either logic value zero
or one. This fault model is the most common model used in digital test pattern

generator due to its simplicity. SSFM can be used to model many physical defects.

o Single Bit-flip Fault model is used to model transient faults due to soft errors that
can occur either in the register file, arithmetic logic units, or in different pipeline
registers of a processor. This fault model causes the flipping of a logic value from

one value to another when a defect occurs. The bit-flipping takes place within
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the duration of the defect, and the value flips back to its original value after the
duration of the defect.

o Multiple Bit-flip Fault model is used to represent simultaneous change of logic
values for multiple bits. Like single bit-flip fault model, multiple bit-flip fault
model involves flipping various bits located either in the register file, arithmetic
logic units, or in different pipeline registers of a processor at the same time, and
for the duration of the fault.

As discussed in Chapter 2, a transient fault is a fault that happens at a random time
and is hard to detect. However, for a safety-critical embedded system such as a control
system in a spacecraft, detection of errors caused by transient faults is very important
to ensure the errors are mitigated and thus, prevent the system from entering into a
failure that is caused by radiation. Therefore, in this work, the single bit-flip fault
model is chosen as a study case as this fault model closely represents the transient faults

experienced by the system.

3.4 Selection of Event

TABLE 3.1: Architectural events that can be monitored in an Intel Atom processor
Bit Position | Event Name Explanation
0 UnHalted Core Cycles Counts core clock cycles when the
clock signal on a specific core is run-
ning (not halted).
1 Instruction Retired Counts the number of instructions
that were completely executed, and it
only counts for instructions that are
on the correct execution path.
2 UnHalted Reference Cycles | Counts reference clock cycles at a
fixed frequency while the clock signal
on the core is running.
3 LLC Reference Counts requests originating from the
core that reference a cache line in the
last level on-die cache.

4 LLC Misses Counts each cache miss condition for
references to the last level on-die
cache.

5 Branch Instructions Retired | Counts branch instructions at retire-
ment.

6 Branch Misses Retired Counts mis-predicted branch instruc-

tions at retirement.

The second step is to identify which Performance-Monitoring Events (PMEs) the hard-

ware counter will monitor to create a profile of the system. As the number of available
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counters in a processor is limited, this imposes a limit on the number of PMEs that
can be monitored concurrently in real-time. For example, the Intel Atom used in this
work only has two programmable performance monitoring counter registers per pro-
cessor core, which means only two PMEs can be captured simultaneously. However,
researchers in [101] and [102] have shown that using a single counter to monitor a single

PME is sufficient to describe the behaviour of a program.

Due to the limitation of available counters for monitoring, selection of the PME is
important to ensure it is applicable across benchmarks that have different instruction
distributions and that run on different processors. Architectural PMEs are the common
events that can be monitored across different processors and architectures. Table 3.1
shows some examples of architectural PMEs available in an Intel Atom processor. In this
work, two different PMEs, namely the number of instructions retired and the number
of cache misses are chosen. These two PMEs were chosen as it was found that the same
PMEs are also available on other processors, namely the ARM Cortex processor [2] and
the POWERA processor [103]. The data from the two PMEs are collected and monitored
separately before being compared to determine which PME is better suited for detection

of anomalous behaviour.

3.5 Benchmarks

The benchmarks used in this experiment are from MiBench [116], which consists of a set
of 35 embedded applications divided into six suites, with each suite targeting a specific
area of the embedded market. These 35 embedded applications can also be grouped ac-
cording to different classes of instruction. There are three main classes of instructions,
namely (a) logical and program control instructions (such as unconditional and condi-
tional branch instructions), (b) arithmetic instructions, which includes both integer and
floating-point instructions, and (c) data transfer or memory operation instructions (load
and store). It was impossible to conduct experiments utilising all 35 benchmarks as each
benchmark is executed more than 100 times. Therefore, at least one benchmark from
each suite was chosen. The chosen benchmarks also have different computational charac-
teristics to ensure the results obtained will not be dependent on one type of benchmark.

The following benchmarks have been chosen for this experiment:

e Bitcount taken from Automotive and Industrial Control Suite, is an algorithm that
tests bit manipulation ability of a processor by counting the number of bits in an
array of integers. This is known as a computationally intensive benchmark as it

has a large percentage of arithmetic instructions.

e (QSort, which is also from Automotive and Industrial Control Suite, uses the pop-

ular quick-sort algorithm implemented in the GNU C standard library to sort a
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large array of strings into ascending order. QSort is also another computationally

intensive benchmark as it has more than 79% arithmetic instructions.

e Dijkstra is a benchmark taken from the Network suite that calculates the shortest
path between between two nodes using an adjacency matrix of size 100x100. 100
paths are calculated during each execution. This benchmark is categorised as a

memory intensive benchmark as it contains 40% memory operation instructions.

e FFT is a benchmark taken from Telecommunication suite that performs a Fast
Fourier Transform on an array of 32,768 floating point data. Fourier transforms are
used in digital signal processing to find the frequencies contained in a given input
signal. The input data is a polynomial function with pseudorandom amplitude
and frequency sinusoidal components. This benchmark can be categorised as both
computational and control intensive benchmark due to the high arithmetic as well

as logical and program control instructions.

e StringSearch is a benchmark taken from Office suite that searches for given words
in phrases using a case-insensitive comparison algorithm. This benchmark has a

high number of arithmetic and memory operation instructions.

3.6 Architectural Simulator

In the work described in this thesis, we studied the presence of transient faults in a
processor’s registers and their effect on the overall behaviour of the processor. Building
a real system to study the effects of transient faults in the processor’s registers involves a
huge cost [117]. A more cost-effective way is to rely on computer architecture simulators.
A simulator also provide the ease of evaluation, debugging and understanding of the
behaviour of the existing system, allowing one to see what is happening “in the system”
[118].

There are several simulators available such as Gemb [119], Multi2Sim [120], PTLSim
[121], MARSSx86 [122] and others. However, Gem5 was selected as the simulation tool
in this work because of its ease of configurability, support of various Instruction Set
Architecture (ISAs), support of a complete operating system (OS) and support from its
active community of developers. Another reason for selecting Gem5 was the availability

of GemFT [123], a fault injection tool that was developed based on the Gemb simulator.

All the experiments were performed using the Gem5 architectural simulator and GemF1
fault injection tool. The Gemb simulator is an instruction set simulator, widely used in
computer architecture research. Gemb5 provides a flexible, modular simulation system
that is capable of evaluating a broad range of systems, encompassing system-level archi-
tecture down to processor micro-architecture. It supports various ISAs such as Intel x86,
ARM, MIPS, Alpha, Sparc and Power, and can be used either in System-call Emulation
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(SE) or Full-System (FS). SE mode allows users to emulate most common system calls,
thus avoiding the need to model devices or even an OS. In FS mode, Gem5 models the
complete system including the OS and devices, executing both user-level and kernel-level

instructions.

In principle, GemFT is able to support any processor model and ISA available in Gemb,
but at the time of our experiments, GemFI only supported Alpha and Intel x86 ISAs. For
this work, Intel x86 ISA is used. Running in FS mode, GemFT injects fault onto registers
in the processor core while simulating both user-level and kernel-level instructions and
models a complete system including the central processing unit (CPU), memory and
peripheral devices. It evaluates the impact of faults from the architectural level up to the
application level. There are two intrinsic functions provided by the GemFI Application

Programming Interface (API):

e void FI_init() initialises the fault injection module;

e void FI_activate (int id, int command) is a pseudo-assembly instruction to
toggle a fault on a specific thread. The thread is given a numerical identification

number.

These two API functions are required to be added into the benchmark to be tested.
GemFT also generates a list of possible faults which can be injected into various loca-
tions such as: (a) the Fetch instruction, (b) the selection of read/write registers during
Decoding stage, (c) the result of an instruction in an Ezecution stage or (d) memory
transactions during Load and Store. Each fault in the list is characterised by four at-
tributes: Location, Thread ID, Time and Type.

e Location defines the targeted location for fault injection. Supported locations
include the fetched instruction, the selection of read/write registers during the
decoding stage, the result of an instruction at the execution stage, and finally

memory transactions (load/stores).

e Thread ID allows a fault to be injected into a specific thread by using the nu-
merical identification number given to the thread upon the execution of the API

function, void Fl_activate (int id, int command).

e Time defines when the fault will be injected, which means, the fault is injected
after a certain number of instructions have been executed from the point the fault

injection is initiated.

e Type defines how the value of a specified location can be corrupted: (a) by flipping
the running value at specific bit location (which mimics a single bit-flip), and (b)
by setting all bits of the location to either 0 or 1 (which mimics a single stuck-at-
fault).



Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
44 Counter (HPC)

Occurrence

GeneralFetchlnjectedFault Inst:39007 Flip:19allall1 0
\ J \ J
| |

Location Time Thread

Type
FIGURE 3.2: A sample of fault being injected into the Fetch instruction

Figure 3.2 shows an example of how a fault is injected. The fault is injected in bit 19 of
the fetched instruction in the CPU, when the application fetches the 39007th instruction
after the initiation of fault injection for this thread (FI.activate). The fault is activated
for all threads at the 39007th instruction, and stays active for a period of one instruction
and the type of fault being injected is a single bit-flip fault, identified with the keyword
Flip as shown in Figure 3.2.

The experiments have been conducted on a Linux virtual machine as both Gemb and
GemFI require the Linux operating system. The virtual machine was created using
Microsoft Azure virtual machine platform with 16 central processing units (CPUs), 32
gigabytes (GBs) of memory and 1 terabyte (TB) of data storage and running Ubuntu
version 16.04 LTS as the operating system. Microsoft Azure is a public cloud computing
platform providing a range of cloud services, including services needed for storage, net-
working, databases, artificial intelligence and machine learning, analytics and compute.
A major part of the work in this thesis has been supported by Microsoft Azure that
provided the computing resources required to perform the experiments. These resources
allowed the experiments to be executed at a much faster pace compared to using a
normal desktop computing system. It provided significant storage capacity to store all

simulation results.

3.7 Experimental Setup

To extract the HPC data that will be used to monitor system reliability, there are several

steps involved:

1. Set up the benchmarks required for testing.
Each benchmark is compiled dynamically in two different versions - one in the

original version and another with GemFT intrinsic functions added. Both versions
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are compiled for Intel x86 ISA. For Bitcount, the input to the benchmark is an
array of integers while for QSort, the input to the benchmark contains a list of
words. The input for Dijkstra benchmark is a large graph in the form of an
adjacency matrix, whereas for FFT, the input to the benchmark is an array of
32,768 floating point data. Lastly, the input for the StringSearch benchmark is a

list of phrases.

2. Perform the simulation.
Simulations of the benchmarks were performed in GemFI under FS mode. FS mode
simulates the execution of the benchmark in an OS-based simulation environment.
A script file is created to assist in the execution of the benchmarks. After fault
injection has been initialised and enabled, a set of faults is created using the fault
generator in GemFI. A fault configuration file describing the faults to be injected
is provided for GemF1. This file is parsed at startup and each fault is injected into
one of the four internal queues, each of which corresponds to a pipeline stage. The
simulation continues as normal until it is time for the fault to be injected. Once
the fault has been injected (i.e. a bit has been flipped), the simulation continues.
If an injected fault is activated or manifest as an error, it leads to the system
experiencing some form of failure, else, the experiment terminates successfully.
Figure 3.3 provides a general overview of how the simulation works using the
GemFI API. The blue lines indicate that the tasks belong to the user, the red
lines indicate the responsibility of GemFI, and the orange line denotes the HPC

values as outputs from the OS.

Each experiment is executed in six conditions:

(a) Initial Run refers to running the binary executables without any GemFI API
functions added to it. The Initial Run condition was executed to obtain
the original behaviour of the benchmarks without any GemFI API functions
added to it.

(b) With Fault Activated refers to running the binary executables that have been
added with GemFI API functions, but fault is not being injected. This con-

dition provides the baseline behaviour for all benchmarks

(¢) Fault injection in the Fetch Instruction refers to running the binary executa-
bles with GemFI API functions added, and a fault is injected in the Fetched

instruction.

(d) Fault injection in the read or write register during Decoding stage refers to
running the binary executables with GemFI API functions added, and a fault

is injected in either a read or a write register during Decoding stage.

(e) Fault injection in the result of an instruction during Execution stage refers
to running the binary executables with GemFI API functions added, and a
fault is injected in a register that contains the result of an instruction at the

Execution stage.
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FIGURE 3.3: Overview of the GemFI API, after [123]. The red components show
possible fault injection locations; Thread 1 is where the executables run.

(f) Fault injection during memory transactions in Load/Store stage refers to run-
ning the binary executables with GemFI API functions added, and a fault
is injected in the memory instruction that is either loading a value from a

register, or storing a value into a register.

For each experiment, the fault model applied is a single bit-flip fault model where a
single bit-flip fault is injected randomly at a stage in the pipeline. The benchmarks
were simulated at two clock speeds: (a) at clock speed of 2GHz, a speed that is
typically found in microprocessors, and (b) a clock speed of 250MHz, a typical
speed found in microcontrollers. Two different speeds were applied to identify the
number of clock cycles it takes for the system to suffer a failure, particularly, a fail-
ure that resulted in a crash. This information is used to evaluate the effectiveness

of the early detection and prediction algorithm presented in Chapter 4.

The runtime for each experiment ranges from a minimum of five minutes to two
hours depending on the benchmark, the clock speed and the sampling interval.
Lower clock speeds and smaller sampling intervals result in longer runtime and
generation of a huge amount of data. For example, for the FFT benchmark running
at clock speed 250MHz and sampling at 5000ns, the total runtime required was two
hours and the total data generated was 8GB. Compare with the same benchmark

but running at a clock speed of 2GHz and sampling at 100,000ns, the total runtime
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required was just around thirty minutes and the total data generated was 100MB.
For each experiment conducted, the HPCs are traced using the method outlined

below.

3. Trace and record the required HPC values.
Two different tracing methods were used to log the counter values obtained. The
first method was to obtain the counter value after the execution of the benchmark
has been completed. The total count for the benchmark with fault injection will be
compared against the total count for baseline benchmark (benchmark with fault
activated but without fault injection). However, this method was only able to
provide an indication that an error has occurred which causes the application to
either hang, crash or provide incorrect output, but was unable to determine when
the error occurred. The second method was to log the counter value at certain
intervals. Using this method, the execution profile for each benchmark is created,
and the execution profile is able to detect the instance an error has occurred which

causes a failure to the system.

Sampling interval plays an important factor in determining the accuracy of time
sampling methods [124]. It is important to ensure that the execution profiles cre-
ated contain sufficient amount of data that can be used to identify the anomalous
behaviour in the system. Several sampling intervals were chosen to determine
which interval duration is most suitable for this work. The sampling intervals
listed below were chosen from the order of magnitude 2 to the order of magnitude

5, increasing one order of magnitude each time.

e 100000mns;
e 50000mns;
e 10000ns;

5000ns;
e 1000ns; and
e 800ns

4. Obtain, compare and analyse the results.

The counter values obtained from Initial Run condition and With Fault Activated
condition are first plotted and compared. Besides trying to establish the base line
behaviour for each benchmark, the comparison is also done to ensure that the
insertion of GemFI API will not alter the behaviour of the benchmarks. The base
line behaviour is used to study and compare between two different PMEs, the
various sampling interval as well as using different input data, which are presented
in Section 3.8.1, Section 3.8.2 and Section 3.8.3.

Next, the counter values obtained from the remaining four conditions, (a) Fault

injection in the Fetch Instruction, (b) Fault injection in the read or write register
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during Decoding stage, (c) Fault injection in the result of an instruction during
Ezxecution stage, and (d) Fault injection during memory transactions in Load/Store
stage are obtained. The counter values from the four conditions are compared
against counter value obtained from With Fault Activated condition that forms the
baseline of the behaviour for each benchmark. The characteristics of the counter

values observed are further discussed in Section 3.8.4.

The outcome from each experiment are categorised either as (a) Crash, (b) Hang,
Fuail Silence Violation or Not Manifested. A Crash is said to have occurred when
the experiment terminated unexpectedly while a Hang occurred when the exper-
iment had stalled or do not response within specific time. Fail Silence Violation
occurred when the counter values has some slight deviation from the baseline
counter values but no apparent failure can be observed by the user as the experi-
ment terminated successfully. Not Manifested is where the experiment terminated
successfully, and the counter values do not deviate from the baseline counter val-
ues. The errors that causes these anomalous behaviours are further discussed in
detail in Section 3.9.

3.8 Results and Discussion

In this section, the results obtained from the experiment is discussed. Section 3.8.1
compares the results obtained using two different PMEs while Section 3.8.2 compares the
results obtained using various sampling intervals. In Section 3.8.3, the execution profiles
of two benchmarks using different input data are presented and discussed. All the results
in Section 3.8.1, Section 3.8.2 and Section 3.8.3 are obtained from experiments running

With Fault Activated condition, and it shows the normal behaviour of the benchmarks.

The characteristics of anomalous behaviour observed in the processor are presented in
Section 3.8.4, where in this section, the counter values from the remaining four con-
ditions, (a) Fault injection in the Fetch Instruction, (b) Fault injection in the read or
write register during Decoding stage, (c¢) Fault injection in the result of an instruction
during Ezecution stage, and (d) Fault injection during memory transactions in Load-
/Store stage conditions are compared against counter value obtained from With Fault
Activated condition. These anomalous behaviour are categorised as either (a) Crash, (b)
Hang, Fail Silence Violation or Not Manifested.

3.8.1 Comparisons between two PMEs

Figure 3.4 compares the execution profiles obtained from Dijkstra benchmark running
at two clock speeds (a) 250MHz, and (b) 2GHz. The profiles were generated from With

Fault Activated condition (i.e. fault was not injected), which forms as the baseline
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F1GURE 3.4: Execution profiles using Number of Instructions Retired and Number of
Cache Misses for Dijkstra benchmark running at 250MHz and 2GHz clock speed

behaviour for this benchmark. Figure 3.4(a) and Figure 3.4(b) show the behaviour
of Dijkstra benchmark monitored using the number of retired instructions against the
simulation time in picoseconds while Figure 3.4(c) and Figure 3.4(d) show another set
of results where the behaviour of the benchmarks were monitored using the number
of cache misses plotted against simulation time in picoseconds. The counter values for
each experiment begin after the OS has boot-up. For example, in Figure 3.4(a) and
Figure 3.4(c), it takes about 6.44s for the OS to boot-up, while in Figure 3.4(b) and
Figure 3.4(d), it takes about 5.134s for the OS to boot-up. The difference in the boot-up

time is caused by running Ubuntu on different virtual machines.

As can be seen in Figure 3.4, the profile for each benchmark is similar even though it is
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running at a different clock speed. From the results, it shows that a program exhibits
the same behaviour regardless of any clock speed it runs on. This suggests that the PME
monitored using HPC can be used to create the execution profile of an application, and

thus, identifying the normal behaviour of the system.
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F1GURE 3.5: Execution profiles using Number of Instructions Retired and Number of
Cache Misses for Bitcount benchmark running at 250MHz and 2GHz clock speed

Figure 3.5 shows the execution profiles obtained from Bitcount benchmark where Fig-
ure 3.5(a) and Figure 3.5(b) show the behaviour of Bitcount benchmark monitored using
the number of retired instructions (axis Y) against the simulation time in picoseconds
(axis X) while Figure 3.5(c) and Figure 3.5(d) show another set of results where the
behaviour of the benchmarks were monitored using the number of cache misses plot-
ted on axis Y. It is clear that the execution profiles for Dijkstra benchmark shown in

Figure 3.4 completely differs from the execution profiles for Bitcount benchmark shown
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in Figure 3.5 whether it is using instructions retired PME or cache misses PME. Like
Dijkstra benchmark, it takes about 6.43s for the OS to boot-up for the Bitcount bench-
mark running at 250MHz as shown in Figure 3.5(a) and Figure 3.5(c), and 5.128s for
the Bitcount benchmark running at 2GHz as shown in Figure 3.5(b) and Figure 3.5(d).
Additional results on the execution profiles for FFT, StringSearch and QSort bench-
marks can be referred to in Appendix A. From the results obtained, it is clear that each
application has its own signature profile, which can be monitored using HPC.
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FIGURE 3.6: Correlation between Number of Instructions Retired and Number of Cache
Misses for Dijkstra benchmark running at 250MHz and 2GHz clock speed
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Figure 3.6 shows the correlation between instructions retired PME and cache misses
PME for Dijkstra benchmark. As can be observed, there is a positive correlation between
the two PMEs, which is more prominent in the execution profile obtained when running
at lower clock speed (Figure 3.6(a)), where both the counter values increase and decreases
in parallel. This is expected as higher cache misses means higher latency, where more

clock-ticks are required for an instruction to retire.
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FiGURE 3.7: Comparison between Number of Instructions Retired and Number of
Cache Misses for Dijkstra benchmark running at 2GHz clock speed

Figure 3.7 and Figure 3.8 show the comparison between cache misses PME and instruc-
tions retired PME for Dijkstra benchmark running at 2GHz and 250MHz. As can be
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FiGURE 3.8: Comparison between Number of Instructions Retired and Number of
Cache Misses for Dijkstra benchmark running at 250MHz clock speed

observed from Figure 3.7 and Figure 3.8, the value of both the counters record a sudden
and huge increase at Data Point 47,000 in Figure 3.7 and at Data Point 4,491,100 in
Figure 3.8. This indicates that an error is present in the system, thus causing the system

to behave anomalously.

By comparing the values recorded using cache misses PME and instructions retired PME,
it is found that values recorded using cache misses are lower compared to instructions

retired. For example, in Figure 3.7, the values recorded for instructions retired PME
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are in the range of 67,000 and 100,000, while for cache misses PME, the values recorded
are between 0 and 4,500. Similarly, for Figure 3.8, the values recorded for cache misses
are between 0 and 110, while values recorded for instructions retired PME are between
450 and 950. In general, the values recorded for cache misses are between three and
seven bits while value recorded for instructions retired PME are around seventeen bits,
more than twice the values recorded for cache miss PME. Therefore, the computational
size and speed can be greatly reduced by monitoring the behaviour using cache misses

compared to using instructions retired.

Another observation is that the cache misses PME is also more susceptible to detection
where the counter data recorded bigger deviation (more than 10% as seen in Figure 3.7(b)
and Figure 3.8(b)) when the pattern begins to deviate from the normal behaviour com-
pared to number of instructions retired PME, where the deviation recorded is around
5%. A bigger deviation in the counter values is easier for detection, and thus, provides
better detection accuracy. Based on all these findings, the cache misses PME is found

to be more suitable for monitoring anomalous behaviour in the system.

3.8.2 Comparison on various Sampling Interval

Figure 3.9 shows the results for Dijkstra benchmark running at 250MHz clock speed
with various sampling interval. The results display various execution profiles which
were plotted with number of cache miss plotted against simulation time. The difference
between each figure is the amount of data collected from the counter. For example, in
Figure 3.9(d) where experiment with the sampling interval set at 5000ns, there were more
data collected compared to the experiment with 100000ns sampling interval as shown
Figure 3.9(a). A total of 120,000 data points are collected from the experiments running
at 5000ns while only 6000 data points are collected from the experiments running at
100000ns.

The shorter the duration of the interval, the higher the amount of data is generated.
Shorter intervals allows the anomalous behaviour to be detected earlier as the amount of
data from the point the fault manifested as an error to the point where a failure occurs
increases. Another observation is the value of the counter gets smaller as the sampling
interval gets smaller. This finding is consistent with the behaviour of HPC itself, where
in time-based sampling, the counter is incremented on an instruction-by-instruction
basis until an interrupt is generated. Smaller sampling interval means the interrupt
is generated quicker. However, it is found that sampling interval below 5000ns is not
suitable as it is difficult to distinguish between an anomalous point from a normal point.
Another problem of having an interval that is too short is that the same activity can
be recorded several times, thus inflating the sample size. Therefore, the most suitable

sampling interval chosen is 5000ns.
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Dijkstra benchmarks with multiple inputs.

3.8.3 Comparison on using Different Input Data

The experiment was also conducted for QSort and Dijkstra benchmarks with different

sets of input data and the execution profile for each benchmark was compared. An

input data is defined as a file that contains data that serve as an input to a program.

Executing the benchmarks with different sets of input data simulate the condition where

applications do not always run on the same input data. There are three different sets

of input data used for the QSort benchmark and four different sets of input data used

for Dijkstra benchmark. For QSort benchmark, the first set of input data consisting of

words and integers, the second set of input data consists of a mixture of words, integers

and floating points and the third set of input data contains only integers and floating
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points. Since the Dijkstra benchmark is a benchmark that calculates the shortest path
between every pair of nodes in a graph, different sets of input data means having different

nodes in each input data.

Figure 3.10 shows the execution profile generated for QSort and Dijkstra benchmarks
with different sets of input data and from the results shown, the execution profile for
each benchmark still bears a strong similarity. This finding suggests that regardless of
any input used, the execution profile remains similar, and thus, it is possible to observe

anomalies that may occur based on the profiles generated by the counter.

3.8.4 Characteristics of Anomalous Behaviour in a Processor

In the experiment conducted, as a single bit-flip fault is injected randomly in each stage of
the pipeline, the manifested fault leads to different kind of errors such as segmentation
fault, invalid opcodes, kernel panic, bad paging and others. These errors causes the
program to experience anomalous behaviour, which can be divided into either (a) masked
error (or fault free), (b) fail silence violation, (c) hang, or (d) crash. The correlation
between these errors and failure observed in the system will be further discussed in
detail in Section 3.9. However, every injected fault that manifests itself as an error can
be shown using a single counter. The anomalous behaviour is captured in the execution

profile for each benchmark as shown in Figure 3.11.

In the work described in this thesis, the characteristics observed from Hang and Crash
are used to develop the early detection and prediction algorithm. For a Hang, there is a
huge deviation in the beginning of the error before the counter value becomes constant
at a point. The amount of time for the system to stay unresponsive or hang varies as
it depends on when the user sends an interrupt to the system. For Crash, the counter
will also spot a huge deviation before it stops. As for Masked Error and Fail Silence
Violation, there is either no deviation from the counter values observed (for the case of
Masked Error) or an extremely small deviation in the counter values (for Fail Silence
Violation). In other words, the pattern profile remains the same as a fault-free system

for both situations, and hence, it is not considered in this thesis.

The different failures caused by manifested faults can be illustrated using Figure 3.12
which shows the temporal relationship between a fault, error and failure. Assume that
a single bit-flip fault occurs at time t;. When the fault propagates or manifests into
an error, the counter begins to deviate, and a string of anomalies occur from time .
onwards until the system encounters failure at time t74;. In other words, a bit-flip fault
may occur at anytime, but it does not causes an error in the system immediately. The
counter values begin to deviate only when the fault is activated. Hence, it is crucial
to detect when the fault has been activated or manifest as an error. The important

time interval is dtg4, which is the time interval between error to failure. For a prediction
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FiGURE 3.11: Execution profiles that shows how different failures can be detected for
the following benchmarks - (a) BitCount, (b) FFT, (c) Dijkstra (d) QSort and (e)
StringSearch

method to become useful, the detection of anomalous behaviour has to be as early as

possible within the time interval.

Figure 3.13 and a close-up of it in Figure 3.14 show how the fault manifested as an error
after being injected into the system until the system fails. It shows how from the time
the fault is manifested as an error until the time when the failure is observed on the
system, there is a delay of approximately 5,000us, equivalent to 1,250,000 (or 1.25M)
clock cycles. Experiments were further conducted to determine the minimum number
of clock cycles it takes for a system to crash after a fault has manifested as an error.
A comparison was made between two benchmarks running at two different clock speed

that suffered a crash failure after a fault has been manifested as an error. There were
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FIGURE 3.13: From injected fault to manifested fault and finally system failure

14 data sets and 11 data sets from Dijkstra and Bitcount benchmarks running at clock
speed of 2GHz, and another 20 data sets and 5 data sets from Dijkstra and Bitcount
benchmarks running at 250MHz. From the experiment, the minimum amount of clock
cycles it takes for a system to crash is found to be approximately 1M clock cycles as
shown in Figure 3.15, which is equivalent to 4,000us for a system running at 250MHz
clock speed. In other words, dty is 1M clock cycles or 4,000us for a system running at
250MHz clock speed.

1M clock cycles seems to be a “big” number, but it only takes 4ms for a system to
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crash from the time the fault manifests itself as an error. In the most basic system,
each instruction may occur in exactly one cycle. This involves fetching an instruction to
execute from a program memory, decoding the instruction in the hardware, executing the
instruction and finally storing the result of the instruction. However, systems nowadays
are far more complex, even for a safety-critical embedded system, and not all CPU
operations have equal operation of cost in terms of CPU cycles. [125] has provided a list
of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD
and VIA CPUs, where it shows that the number of clock cycles for each operation differs

from one another.
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To illustrate how it is possible to take 1M clock cycles to cause a crash, assume a
single bit-flip fault is present in one of the registers of a certain fetch instruction. The
fault gets activated when the faulty instruction is fetched from the program memory
into instruction register. Fetching the instruction from a program memory may take a
few clock cycles. The instruction register is split into two parts — opcode and address.
This opcode is then decoded at the control unit, which takes another clock cycle. The
number of clock cycles involved in the execute stage depends on the type of instruction
decoded by the control unit. Arithmetic operations usually takes a few clock cycles
while integer multiplication, integer division and floating point division take between 10
and 40 clock cycles [125]. If the bit-flip happened at the opcode part of the instruction,
it causes a wrong instruction to be executed. If the bit-flip happened at the address
part of the instruction, it causes the program to access a wrong location in the memory.
The benchmarks were also executed under an operating system, where there are system
APIs. These system APIs causes kernel calls, and switching between kernel and user
mode, between address spaces and between threads is inherently expensive [126,127]. A
single kernel call require at least 1000-1500 CPU clock cycles. All of this contributes to
the 1M clock cycles.

Therefore, it is imperative to detect deviation as early as possible and below 1M clock
cycles (or below 4,000us). However, there could be instances where the system crashes
in less than 1M clock cycles after a fault had occurred. This happens when the fault
causes the system to perform an illegal operation such as erroneously try to access a non
available address, memory or instruction. When an illegal operation is performed, the

system terminates the process.

3.9 Correlation Between Errors and Failures

3.9.1 Analyses of the Distribution of Failure

As mentioned in Section 2.3, a failure is said to have occurred when the system transi-
tioned from correct service to incorrect service. A failure is caused by the presence of an
error in the system where an error is the terminology used for an active or manifested
fault. A fault in the system is caused by a defect in the hardware, which in this case
happens to be a single bit-flip at the instruction in the pipeline. To observe the corre-
lation between errors and failures, the failures and errors are first classified and defined
according to [128]. Table 3.2 described four categories of failures and Table 3.3 defines

the various type of errors which may occur.

The experiment was performed on the QSort benchmark, where a total of 1200 single
bit-flip faults were injected (300 faults at each stage of the pipeline). This amount

of fault injections is sufficient to provide 95% confidence in the test results according
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TABLE 3.2: Failure categories
H Failure Category ‘ Description H
Crash The system stops working.
Hang System resources are exhausted, resulted in a nonoperational
system.

Fail silence violation | Either the system or the application erroneously detects the
violation presence of an error or allows an incorrect
data/response to propagate out.

Not manifested The corrupted instruction is used, but it does not have a
visible abnormal impact to the system.

TABLE 3.3: Error categories

H Error Category

Description H

Segmentation fault

Access violation, raised by hardware with memory
protection, notifying an OS the software has attempted to
access a restricted area of memory.

Invalid opcode

An illegal instruction that is not defined in the instruction
set is executed.

Kernel panic

The operating system detects an error.

NULL pointer

Unable to handle kernel NULL pointer de-reference.

Bad paging

A page fault. The kernel tries to access some other bad
page except NULL pointer.

Assertion error

Assertion evaluates to false at run-time.

Bad trap

Unknown exception.

General protection fault

Exceeding segment limit, writing to a read-only code
or data segment, loading a selector with a system
descriptor, reading an execution-only code segment.

TABLE 3.4: Statistics on failure distribution on QSort benchmark

Pipeline Num of Not Si];‘:l:llce Hang | Crash
Stage Injected Fault | Manifested . .

Violation
Fetch 300 232 13 35 20
Decode 300 300 0 0 0
Execute 300 199 18 42 41
Load/Store 300 207 22 44 27
Total 1200 939 52 121 88

to [129]. Faults are injected into fetch instructions, selection of read/write registers

during decode stage, result of an instruction during execution stage and finally during

memory transactions in load/store stage. Table 3.4 and Figure 3.16 show the total

failures observed and the number of failures observed in each pipeline. The findings

from this experiment can be summarised as follows:
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FI1GURE 3.16: Percentage of failures distribution observed in the experiment conducted

for QSort benchmark

Out of 1200 faults injected in various stages of the pipeline, only a total of 261

faults manifested as errors and caused the system to behave anomalously.

From the 261 failures observed, 121 of the failures are of type hang, 88 failures are

of type crash and 52 failures are of type fail silence violation.

The Execute stage in the pipeline is more susceptible to the presence of faults
where out of 300 faults injected, 33.67% of faults were manifested as failures. This
is followed by the LoadStore pipeline where there are 31.00% of faults manifested as
failures and finally, in the Fetch pipeline, a total of 22.67% of faults were manifested

as failures.

An interesting observation from this experiment was none of the faults injected
in the Decode stage of the pipeline were manifested as an error or caused some
anomalous behaviour to the system. In fact, all 300 of the faults injected in this
stage returns as Not Manifested. This could mean the corrupted register where
a fault is injected was either not used during the execution or it was overwritten

before the erroneous value was used, thus it did not affect the system.

As for Dijkstra, FFT, Bitcount and StringSearch benchmarks, a total of 120 single bit-
flip faults were injected randomly at different bit location of each stage in the pipeline
and Table 3.5, Table 3.6, Table 3.7 and Table 3.8 show the number of failures observed in
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TABLE 3.5: Statistics on failure distribution on Dijkstra benchmark

Pipeline Num of Not Si]l?(?rlllce Hang | Crash
Stage Injected Fault | Manifested . .

Violation
Fetch 40 24 3 2 11
Decode 30 30 0 0 0
Execute 30 24 1 0 )
Load /Store 30 18 9 0 3
Total 130 96 13 2 19

TABLE 3.6: Statistics on failure distribution on FFT benchmark

Pipeline Num of Not Si]l-:‘:lrlllce Hang | Crash
Stage Injected Fault | Manifested . .

Violation
Fetch 30 24 1 3 2
Decode 30 30 0 0 0
Execute 30 17 4 6 3
Load/Store 30 21 2 3 4
Total 120 92 7 12 9

TABLE 3.7: Statistics on failure distribution on Bitcount benchmark

Pipeline Num of Not Si]l?;lllce Hang | Crash
Stage Injected Fault | Manifested . .

Violation
Fetch 30 23 2 0 5
Decode 30 30 0 0 0
Execute 30 26 2 0 2
Load/Store 30 20 2 3 5
Total 120 99 6 3 12

the pipeline stages for each benchmark. From these four benchmarks, it is also observed
that both Execute stage and LoadStore stage are more susceptible to the presence of
faults, with the exception of Bitcount benchmark. However, this could be due to the

faults being injected randomly, as well as the reduced number of experiments performed.

3.9.2 Analyses of Error Distribution and Its Effect to the System Be-
haviour

It is also interesting to find out what are the typical errors that cause crash and hang in
the system. Table 3.9 provides the statistics on error distribution for QSort benchmark
and Figure 3.17 and Figure 3.18 both show the distribution of errors that cause the
system to either crash or hang. Additional results on the error distribution for Dijkstra,
FFT, Bitcount and StringSearch benchmarks can be referred to in Appendix B. Based

on this analysis, it can be concluded that:
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TABLE 3.8: Statistics on failure distribution on StringSearch benchmark

Pipeline Num of Not Si]l?jrlllce Hang | Crash
Stage Injected Fault | Manifested . .
Violation

Fetch 30 23 3 4 0
Decode 30 30 0 0 0
Execute 30 21 1 ) 3
Load /Store 30 21 1 6 2
Total 120 95 5 15 5
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FIGURE 3.17: Analysis of different types of errors that causes crash in the system.

e The main cause of systems crashing is due to a segmentation fault, where 69% of
the crashes observed were caused by this error. This is followed by kernel panic
errors which account for 10% of the total. A segmentation fault is a common error
that causes a system to crash. This happens when the system is trying to read
from or write to an illegal memory location such as trying to access a variable
which has been freed, writing to a read-only part of the memory, attempting to

access memory that it does not have any right to. When a fault is injected in the
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F1cURE 3.18: Analysis of different types of errors that causes hang in the system.

Execute pipeline, it alters the memory access instruction which usually leads to a

segmentation fault due to the fault altering the resulting address.

e The main cause of a system resulting in a non-operational mode or hang is due to
bad paging (51%), followed by a NULL pointer (26%). Bad paging is an exception
raised by the system when the running program is trying to access a memory page
that is not currently mapped by the memory management unit (MMU) into the
virtual address space of the program. This is observed in the LoadStore pipeline
where the injected fault alters the value of the address to an address located in an

unmapped page.
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3.10 Summary

Every system that behaves normally (i.e without fault) exhibits a pattern, and any
deviation from that pattern indicates an anomalous behaviour has occurred. In this
chapter, monitoring of these anomalous behaviours using HPCs is presented. Firstly,
the profile of a system behaving normally is captured and plotted against time. The
execution profile was captured using two different PMEs — (i) the number of instructions
retired PME, and (ii) the number of cache misses PME. The results show that the
execution profile for system running with different benchmarks differ from one another,
but for system that runs the same benchmark but at different clock speed, the execution
profiles bear striking similarities. This shows that by tracing the HPC data in a time
interval and plotting the execution profile based on the data gathered, it can assist in

monitoring the system for any anomalous behaviour.

Between the two PMEs, it was found that the cache miss PME is more suitable for
detection where the counter data records bigger deviation (more than 10%) when the
pattern begins to deviate from the normal behaviour compared to the instructions retired
PME, where the deviation recorded is around 5%. Values recorded using the cache miss
PME are also much lower compared to the instructions retired PME, where the values
are between three and seven bits, while values recorded for instructions retired PME are
around seventeen bits. Therefore, the early detection and prediction algorithm presented
in Chapter 4 will use cache misses PME as the univariate time-series data. The suitable
sampling interval for sampling HPC data in an embedded system was found to be at
5000ns where the amount of data generated was large enough to ensure quick detection
can be performed. Sampling interval below 5000ns is not suitable as it is difficult to

distinguish an anomalous point from a normal point.

Next, a single bit-flip fault is injected into a location on the processor pipeline and the
behaviour of the system is captured. The failure triggered by manifested fault in the
processor can be divided into a) masked error, b) fail silence violation, c¢) crash and
d) hang. These four behaviours can be observed by using a single HPC. The work in
this thesis focuses on two failures namely crash and hang. In the case of hang, a huge
deviation is observed in the HPC when the fault is manifested into an error before the
counter value becomes constant at a point. When the system experiences a crash, the
counter also spots a huge deviation before the counter value stops. The number of clock
cycles it takes for the system to fail from the time the fault is manifested as an error is

about 1M clock cycles (equivalent to 4000us).

The results in this chapter clearly show that the HPC can be used to identify two main
types of failure: crash and hang. As for fail silence violation, it is a little harder as
the execution profile does not deviate much from the fault free model. Each of these
failures clearly exhibits different characteristics, which will be useful for developing a

detector. The correlation between the type of errors that occur and the various failures
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observed was also presented in this chapter. The following chapter will present the early
detection algorithm which uses HPC data to detect anomalous behaviour in the system

and predict potential failure in real time.



Chapter 4

Early Detection and Prediction
Algorithm

4.1 Introduction

A dedicated hardware-based detector can be expensive and intrusive while a pure software-
based detector, though unobtrusive, may be too slow to react. Existing online error
detection techniques look at detecting errors through the failures they encounter, and
very often, users are only aware of the anomalous behaviour after a failure has occurred.
Chapter 3 showed how Hardware Performance Counters (HPCs) can be used to profile
the behaviour of a system, and any deviation from the normal behaviour profile indicates
anomalous behaviour. This chapter presents the novel algorithm that predicts potential
failure in real-time by detecting anomalous behaviour in a processor using a single HPC.

The main objectives of the work in this chapter are as follows:

1. Identify available forecasting techniques suitable for time-series forecasting. Based
on design considerations, pattern and characteristics of the cache misses PME,
three different techniques, (a) Single Exponential Smoothing (SES), (b) Autore-
gressive Moving Average (ARMA), and (c) Single Layer Linear Network (LN), will

be investigated.

2. Devise a measurement test which distinguishes anomalous data instances from nor-
mal data instances. In particular, two methods that measure the deviation between
predicted data and observed data, namely Residual Distribution and Prediction
Interval will be presented. The rule to classify each observed data as normal or

anomalous according to the deviation will be discussed.

3. Determine the rule in predicting potential failure. Failure in the system is not

caused by point anomalies, but collective anomalies that begin when the fault has

71
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been manifested into an error. The rule in deciding the number of consecutive

anomalies to be detected before predicting potential failure will be presented.

This chapter is organised as follows. Section 4.2 describes the data sets used to develop
the early detection and prediction algorithm while in Section 4.3, the characteristics and
features of the HPC data sets collected are investigated. Section 4.4 presents the algo-
rithm for prediction of potential failure through the detection of anomalous behaviour.
Section 4.5 discuss about the number of consecutive anomalies to be detected in the
algorithm in order to be able to predict potential failure. In Section 4.6, three different
forecasting methods are presented and discussed in detail. Section 4.7 will explain the
two different methods used to measure the deviation between predicted data and ob-
served data and the rule to classify each observed data whether it is normal or anomalous.
Discussion on results and analysis is presented in Section 4.8 while Section 4.9 concludes

the chapter.

4.2 Generating Data Set

The Dijkstra benchmark is used as a case study in this chapter. Based on the findings
presented in Chapter 3, it is found that the cache miss PME is more suitable compared
to instructions retired PME for monitoring deviation in the profile. The values recorded
using the cache miss PME are much lower, between three and seven bits. Besides that,
the deviations recorded using the cache miss PME are also higher, making it easier
to detect anomalous behaviour in the system. Hence, the cache miss PME is used to
build the data sets, which are then used in the development of the early detection and

prediction algorithm.

The sampling interval of 5000ns is selected to generate the required data sets as it is
found that this interval duration generates sufficient amount of data for the algorithm
to distinguish an anomalous point from a normal point. A total of nine data sets were
obtained with the input data for each data set differ from one data set to another. All
data sets contain approximately 120,000 data points and all the data sets exhibit fault-
free behaviour, which means there is no anomalous behaviour detected in the execution
profile. As each data set is different, all nine data sets will be used as training data sets.
As for testing data set, a different data set is used. This data set contains 118,860 data
points, compared to a normal data set that contains approximately 120,000 data points.
This data set also contains collective anomalies. All experiments were performed using
Matlab R2017b.
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4.3 Understanding the Data Set

The hardware counter data obtained from the Dijkstra benchmark is a univariate type of
time-series data. Time-series data is defined as a sequence of observations continuously
streaming at time ¢ and are gathered at an equally spaced time intervals [130-133]. It
can be represented as Y {t} = Y1, Y5, Y3, ..., Y;. A univariate time-series is a sequence of
measurements of the same variable collected over time, where in this case, the variable

being the number of cache misses collected at every 5000ns.

To determine a suitable algorithm that can be utilised for monitoring and detecting a
change in the data, the first step is to determine the data pattern in the data set. There
are four different types of time-series data patterns: horizontal, seasonal, cyclical and

trend. Spyros et al [134] provided a brief summary of these four types of data series:

A horizontal (H) pattern exists when the data values fluctuates around a constant

mean. Such data is called stationary in its mean.

e A seasonal (S) pattern exists when a series is influenced by seasonal factors. In
other words, there is a clear pattern that repeats itself over fixed interval of time

(e.g., the quarter of the year, monthly, or day of the week).

e A cyclical (C) pattern exists when the data exhibit rises and falls that are not
of a fixed period. The main difference between a seasonal pattern and a cyclical
pattern is that the former is of a constant length and recurs on a regular periodic

basis, while the latter varies in length.

e A trend (T) pattern exists when there is a long-term increase or decrease in the
data.

For time-series data, a time plot where data are plotted over time can reveal any seasonal
behaviour, trend over time or any other features of the data. Figure 4.1 shows the time
plot of Dijkstra benchmark with three different sets of input data. From Figure 4.1,
there is no obvious trend, cyclical or seasonal patterns that is present in all three time
plots. However, all three time plots show there exists a horizontal pattern (data is
roughly horizontal along the time axis), which means this data could be a stationary
time-series data. The time plot is also compared against Pegels’ (1969) classification of
trend and seasonality patterns as shown in Figure 4.2. Based on Pegels’ classification,

the time plot exhibits no trend and no seasonal effect.

A stationary time series is where its statistical properties like the mean, variance and
autocorrelation structure do not change over time. Other than comparing time plots
with Pegels’ (1969) classification, one can also perform a Unit Root Test to determine if

the time-series is stationary. Unit root tests are tests for stationarity in a time series. The
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FIGURE 4.1: Time plot of Dijkstra benchmark with 3 different sets of input data
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FIGURE 4.2: Patterns based on Pegels’ (1969) classification
presence of unit roots are one cause for non-stationarity where it can cause unpredictable

results in the analysis. The most widely used test for unit root testing is the Augmented
Dickey-Fuller (ADF) test. The hypotheses used for the ADF test in this work are:

e The null hypothesis is that a unit root is present in the data; and
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e The alternate hypothesis is that the time-series data is stationary.
The general equation used to carry out ADF test on the time-series is Equation 4.1.
Since the mean of the series is non-zero, the value of o will not be restricted to 0.
However, as there is no trend in the series, the value of § will be restricted to zero, thus

the revised equation is Equation 4.2 using the basic regression model that has a constant

and no trend:

AY; =a+ [t +7Yi1 + 01AY1 + .. + LAY i1 + €& (4.1)

A =a+7Yi1 + 60 AY 1+ ..+ 6AY 1+ & (4.2)

TABLE 4.1: Critical values for Dickey-Fuller t-distribution, source from [3]

Critical Values for Dickey-Fuller t-Distribution
Sample size, T No Trend With Trend
’ 1% 5% 1% 5%
T =25 -3.75 | -3.00 | -4.38 -3.60
T =50 -3.58 | -2.93 | -4.15 -3.50
T =100 -3.51 | -2.89 | -4.04 -3.45
T = 250 -3.46 | -2.88 | -3.99 -3.43
T = 500 -3.44 | -2.87 | -3.98 -3.42
T = -3.43 | -2.86 | -3.96 -3.41

The test is then carried out under the null hypothesis v = 0 against the alternative
hypothesis of v < 0. Once the value is computed, it is compared to the relevant critical
value for ADF test. If the test statistic is less than the critical value, then the null
hypothesis v = 0 is rejected and the series is a stationary series. In general, if the p-
value is less than 5%, the null hypothesis can be rejected. Comparison can also be made
between the calculated DF; statistic and the tabulated critical value in Table 4.1. If the
calculated DF.- is more negative than the table value, the null hypothesis is rejected.

The equation for DF: is:

DF: = 5o (4.3)

As the number of samples in each data set is more than 500, the critical value for T = oo
is chosen. As observed in Figure 4.1 also, the benchmark data set also exhibits no trend.
Hence, the 5% critical value from Table 4.1, which is —2.86, is chosen. The ADF test
is performed on all nine data sets of the Dijkstra benchmark and the value of DF: for

each sample of data is shown in Table 4.2.

From the test results shown in Table 4.2, the value of DF’. for each data set in Dijkstra
benchmark is found to be more negative compared to -2.86, therefore the null hypothesis

~v = 0 is rejected and the time-series is found to be stationary.



76

Chapter 4 Early Detection and Prediction Algorithm

TABLE 4.2: ADF Test Results for Dijkstra benchmark

ADF Test Results
Sample Sample Size | DF;
Data Set 1 122934 | -91.09
Data Set 2 117091 | -90.60
Data Set 3 117091 | -90.60
Data Set 4 122697 | -99.56
Data Set 5 116855 | -96.52
Data Set 6 119122 | -101.99
Data Set 7 114191 | -99.54
Data Set 8 120289 | -99.21
Data Set 9 120471 | -100.08

4.4 Algorithm Overview

In designing the algorithm to predict potential failure in real-time through detection

of anomalous behaviour, the following design considerations, which were adapted from

[26, 58], were applied:

e Timeliness:

The purpose of this algorithm is to be able to predict potential failure in the
processor before the actual failure occurs. Therefore, it is imperative that the

detection of anomalous behaviour has to be performed in real-time.

Nature of Data:
The data recorded using HPC is a continuous, univariate time-series data as it is

recorded from one monitored PME, which is the number of cache misses.

Data Label:
The available data set consists of normal points, which is used to develop the model

for a normal behaviour. Subsequently, the model is then tested on anomalous data.

Rate of Change:
The values of the PME are relatively static, whereby the changes between each
data instances are rather small. Values that have sudden, huge changes indicate

some anomalous behaviour.

To meet all the design requirements as outlined above, the algorithm to detect anomalous

behaviour and predict potential failure using HPC data consists of three stages, with

each stage building from its predecessor:

1. An algorithm to predict the next value in the time-series using a one-step ahead

prediction method;
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> Predict the next ¥;,, using One-Step Ahead
Prediction

l

Measure the deviation between predicted value,
Y;+1 and observed value, Y, ;

l

Compare deviation with pre-determined
threshold

Y; ;1 out of range?

Mark Y;,;as anomalous

{

Consecutive anomalies
>C

No

Predict potential failure

FI1GURE 4.3: Early detection algorithm using hardware performance counter

2. Measurement of deviation between the predicted value and the observed value at

current time;

3. A mechanism to classify if the observed value deviates “too much” and is deemed

anomalous.

Figure 4.3 shows the algorithm for early detection of anomalous behaviour using a uni-
variate type of time-series data gathered from HPC. Briefly, one-step ahead prediction
is used to predict the next sequential data }AQH. The predicted value will be measured

against the observed value and the observed value will be classified as anomalous if
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it falls outside the defined threshold. An alarm for a potential failure is raised if the
number of anomalous points detected consecutively exceeds a predefined value, else, the
actual observed value Y;;; is added to the front of the series and the next sequential

data is predicted.

4.5 Predicting Potential Failure

The main objective of this algorithm is to predict a potential failure in the system before
the system experiences a failure. As mentioned in Chapter 2, the type of anomalies in
this study is collective anomalies, which means, the failure of the system is not caused
by one anomalous point, but rather, it is caused by a group of points. These points that
have been identified as anomalous indicate the beginning of the system experiencing
a failure. In Chapter 3, one of the behaviours exhibited by the counter when a fault
has manifested into an error is that the counter begins to deviate from the normal
behaviour. This leads to the crux of the algorithm, that is, to determine how many
consecutive anomalies are required to be detected before raising an alarm on potential

failure.

The optimal value of consecutive anomalies, denoted by C, is one that is able to predict
potential failure in the shortest time possible but at the same time, avoid being overly
sensitive. As shown in Chapter 3, the minimum amount of clock cycles it takes for a
system to crash is about 1M or 4,000us. Essentially, this means the algorithm needs to
detect and predict potential failure below 1M clock cycles or 4,000us. In this thesis, the

following assumption is made:

The minimum value for C is 4. This means the algorithm has to detect at least four
consecutive anomalies before raising an alarm. If C < 4, this creates an overly sensitive
algorithm where an inappropriate alarm is raised on normal points wrongly identified as

anomalies.

The optimal value for parameter C is presented in Section 4.8.2.

4.6 One-Step Ahead Prediction

As presented in Chapter 2, anomaly detection has been applied in various domains,
and one of the domain is Damage Detection where anomaly detection is used for de-
tecting damage in advance to minimise losses, prevents further escalation and reduces
risk. However, instead of performing damage detection on mechanical components or
structural components, the damage detection in this work is performed on an electrical
component, in this case, being a processor. To detect manifested error as early as possi-

ble and predict possible failure, it requires time-series forecasting, i.e. making prediction
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of the next data instance based on a model fitted to present and past data instances.
Applying a threshold rule on the HPC data will not work because the anomalies that
occur in HPC data are not point anomalies, but collective anomalies. Using an overall
thresholding rule on the data set will not only result in high false alarms, but it will not
be able to predict a potential failure in a timely manner. Schmueli et al. [135] gave a
very clear distinction between time-series forecasting and time-series analysis as quoted

below:

In descriptive modelling, or time-series analysis, a time-series is modelled to
determine its components concerning seasonal patterns, trends, relation to
external factors, and the like. In contrast, time-series forecasting uses the
information in a time-series (perhaps with additional information) to forecast

future values of that series.

There is a variety of forecasting methods, and the choice depends on many factors,
such as, type of data, background knowledge, the objectives to be achieved and others.
In order to detect anomalies on-chip and in real time, the selection of one-step ahead

prediction methods must satisfy the following requirements:

1. Minimal computational complexity; and

2. Does not require any pre-processing on the data;

As shown in 4.3, the nature of the data set is a univariate time-series data that is found
to be stationary with no trend or seasonality. Other design considerations such as the
unavailability of data label, the timeliness and the rate of change in the data also play a
role in determining the suitable forecasting methods. The selection of a proper model is
extremely important as it reflects the underlying structure of the series and this fitted
model will in turn, be used for future forecasting [132]. Simple Moving Average and
Exponential Weighted Moving Average were used to model the structure of the series
and forecast the next data, but these methods not only gives a low accuracy and high
detection time, but also produces high false alarms. Other methods like Replicator
Neural Network (also known as Autoencoder) and Principal Component Analysis were
not suitable as well because these methods require the entire fitted model to be stored in
memory, which means, it requires huge amount of storage. Replicator Neural Network
is also not suitable to be used for forecasting the next data point. It is a good method
to replicate the whole data set from time ¢ = 1 until time ¢t = n, but it is unable to

forecast the next data point, t = n + 1 and beyond.

Three other forecasting methods are considered namely, (a) Single Exponential Smooth-
ing (SES), (b) Autoregressive Moving Average (ARMA), and (c) Single Layer Linear

Network (LN). Initial results have been promising, where the detection time is lower and
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accuracy rate is higher compared to Simple Moving Average and Exponential Weighted
Moving Average. The amount of data to be stored in the memory for processing is also
much lower compared to Replicator Neural Network and Principal Component Analysis.
Based on these requirements, three forecasting methods have been selected namely, (a)
Single Exponential Smoothing (SES), (b) Autoregressive Moving Average (ARMA), and
(c) Single Layer Linear Network (LN).

A report by Makridakis et al. [136] provides an interesting finding on how statistical
forecasting methods such as SES and ARMA outperform other machine learning al-
gorithms such as K-Nearest Neighbour Regression (KNN), Bayesian Neural Network
(BNN), Support Vector Regression (SVR) and many more in terms of accuracy and
forecasting performance while at the same time ensuring low computation time and
complexity. The findings from this report further strengthen the choice in choosing
SES, ARMA and LN methods for one-step ahead prediction.

Another factor that plays an important role in time-series forecasting is the forecast
horizon. Forecast horizon, denoted by h, is the length of time into the future for which
the forecast data is prepared and could take the value of h = 1,2,3,.... However,
researchers in [137] had shown that for regular or fast-moving data, forecasting in a
short term horizon is more accurate compared to longer forecasting horizon. In this
thesis, the forecast horizon, h is set at 1 (hence, the name one-step ahead). Forecasting
one-step ahead allows the deviation between predicted value and observed value to be
observed as soon as possible. If there is a huge deviation between predicted value and
observed value, an anomaly may have occurred. If the forecast horizon is set at several
time steps away, there will be a delay in detecting the anomalous behaviour as the
comparison between predicted value and observed value has to be made at the same

time stamp.

4.6.1 Single Exponential Smoothing

Single Exponential Smoothing (SES) [33, 133, 138] method is a type of exponential
smoothing prediction method that uses historical data and assigns weights to forecast
future values. The one-step-ahead forecast for time ¢+ 1 is a weighted average of all the
observations in the series Y7, - -- ,Y;. The rate at which the weights decrease is controlled
by the parameter «, also known as the smoothing parameter. Weights are decreased
exponentially as data is further in the past. In other words, the older the data, the

smaller the weight is associated with as shown in Equation 4.4 with o between 0 and 1.

Vgpi=aYi+a(l—a)Yi+a(l—a)* Yo+, (4.4)
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However, according to [138], SES can also be represented in a component form. As the
time-series does not exhibit any trend or seasonal pattern, the only component included
is the level, I;. Component form representations of SES comprises a forecast equation
and a smoothing equation for each of the components included in the method and is

given by Equation 4.5.

Smoothing Equation: [y = aY; 4+ (1 — )l (45)
Forecast Equation: f/t+1 =1 .

Yt—i—l consists of the weighted average of the most recent observation Y; and the smoothed
value of the series, l;_1. The smoothing parameter, «, is used to smooth or dampen older
observations and it takes a value between 0 and 1. If « is small, i.e. close to 0, past
observations are given more weight. Vice-versa, if the value of « is big, i.e. close to 1,

more weight is given to the more recent observations.

In order to start the SES prediction process, the initial smoothed value, denoted as
lop needs to be estimated. [y is needed in the recursive calculations that start with
l1 = aY1 + (1 —a)lp. There are two commonly used methods to estimate the initial
lo [33,131,138,139]:

1. Set ZOZYO

2. Take the average of the available data or a subset of the available data, Y, and set
=Y

For large data sets, the estimation of [y has little relevance [131]. However, it is important
to note that smaller the value of «, the more sensitive the forecast will be on the initial
forecast value, [1. In this work, the initial forecast value, [y is set to the initial value of

the time series as given in Equation 4.6:

lo =Yy (4.6)

Once the initial smoothed value, Iy has been set, it is substituted into Equation 4.5,
where 1 = aY; + (1 — «) lp. The first predicted value at time 2, }72 takes the value of [;.
Thus, the current smoothed value, [; is an interpolation between the previous smoothed
value, l;_1 and the current observation, Y;. The forecast value for the next period, Ytﬂ

is simply the current smoothed value.

A typical practice in determining the optimal value for parameter « is by optimising
the selected forecast-error metric. The forecast-error metric chosen for SES is Mean

Absolute Error (MAE). The difference, or the residual between the actual observation



82 Chapter 4 Early Detection and Prediction Algorithm

Y; for the time period ¢ and the forecast value Y; of the same period is given by Equation
4.7:

e =Y, -Y, (4.7)

MAE is defined as a measure of the average absolute deviation between forecast values
and observed (or original) values |e;| = ’Yt - )A/t‘ and it shows the magnitude of the
overall error occurred due to forecasting [3,131,132,134]. In MAE, the effects of positive
and negative errors do not cancel out. To get a good forecast, the value of MAE should

be as small as possible. MAE can be defined using Equation 4.8:

1 n
MAE = — > el (4.8)
t=1

The SES model with o value that produces the smallest MAE is selected. In devel-
oping the model, the principle of parsimony is followed where the simplest model with
the smallest possible number of parameters is to be selected to provide an adequate

representation of the underlying time-series data [132].

The first step of this experiment involves obtaining the optimal value of a. The training
data used involves all nine data sets. The « value is varied between 0 and 1 in increments
of 0.1. The MAE is obtained for each « value for each data set during training, and
the MAE values from all nine data sets are then averaged with the results as shown in
Table 4.3. As can be seen from Table 4.3, the lowest mean MAE achieved is 0.49 when
a=0.7.

The next step is to validate how well the model performs on the data that were not used
when fitting the model. For this experiment, Data Set 8 was used as the training data,
and Data Set 1, Data Set 3, Data Set 5 and Data Set 9 were used as the validation data.
As had been mentioned in Section 4.1, each data set uses different input data for the
benchmark. By using different sets of data, this helps to provide a reliable indication of
how well the model is likely to forecast on new data. The validation of the SES model

generated using a = 0.7 identified in the previous step is presented in Section 4.6.4.
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4.6.2 Autoregressive Moving Average

The second forecasting method is the Autoregressive Moving Average (ARMA) method,
also known as the Box-Jenkins method [140]. ARMA has been widely used for forecasting
as it is suitable for univariate time-series modelling [130-132,134]. An ARMA(p,q)
model is a combination of an autoregressive (AR) part and a moving average (MA)
part. An AR(p) involves coefficients ¢; with ¢ = 1,...,p that reflects the relationship
between Y;41 and the past values of the time-series. As mentioned in [132], AR(p) can

be expressed mathematically as shown in Equation 4.9:

Yi=ctprtYia+pYio+-+ oY pt+e

p (4.9)
=c+ Z%’Yt—i + €t
i=1

Here, Y; and ¢ refers to the actual value and white noise at time ¢, ¢ is the constant and
vi(i =1,2,...,p) are the AR model parameters, and p is the order of the model. The
MA part involves coefficients 0; with t = 1, ..., ¢ which reflects the relationship between

Y;&—f—l and the residues. This can be expressed mathematically as shown in Equation 4.10:

Yi=p+01e1+ 0o+ +060_g+ ¢

L (4.10)
=u+ Zejetfj + €
j=1
i is the mean of the series and 6;(i = 1,2,...,q) are the MA model parameters, and ¢

is the order of the model. The data does not require any differencing as it is found to
be stationary, as shown in Section 4.3. Autoregressive (AR) and Moving Average (MA)
models can be effectively combined to form a general and useful class of time-series
models, known as the ARMA models. Following [131,132], an ARMA (p, ¢) model can

be defined mathematically as shown in Equation 4.11:

}A/;H-l =ct+p1Yp1+--+ SOp}/t—p +e —bhe1—— qut—q

P a (4.11)
=c+ e+ Z 0iYei+ Z Ojer—j
i=1 j=1

where ﬁ+1 is the variable to be predicted using previous samples of the time-series, €

denotes white noise, and ¢ is a constant offset.
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Once the model has been described, the next concern is to select the appropriate model
that can produce accurate forecast based on the historical data and determine the opti-
mal model orders. Statisticians George Box and Gwilym Jenkins developed a practical
approach called the Box-Jenkins methodology to build ARMA model, which best fit to a
given time-series and also satisfy the parsimony principle. The Box-Jenkins methodology
uses a three-steps iterative approach namely model identification, parameter estimation,
and model verification to determine the best model from a general class of ARMA mod-
els [131,132,140]. This three-step process is repeated several times until a satisfactory

model is finally selected and can be used for forecasting future values of the time-series.

A crucial step in deciding an appropriate model is to determine the model’s optimal
parameters including the coefficients denoted by p and ¢. To assist in identifying the
suitable ARMA model, one of the popular method is by using the Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF) plots. However, ACF
and PACF only give an estimation of what parameters p and ¢ can be and cannot
be used to measure the suitability of an ARMA model. Another widely used measure
for model identification and parameter estimation is the Akaike Information Criterion
(AIC) developed by Akaike in 1974 [141]. AIC is used to estimate the quality of each
model, where the less amount of information the model loses, the better the quality of
that model. The higher the quality of the model, the lower the value of AIC.

AIC avoids both the risk of overfitting and the risk of underfitting, and finding a balance
between the goodness of fit of the model and the simplicity of the model. One way of
selecting the optimal ARMA model order is by choosing the number of model parameters

has the lowest AIC. AIC value for each corresponding model was obtained using Equation
4.12:

AIC = 2(k) — 2log(L) (4.12)

where L is the maximum value of the likelihood function for the model, and k is the
number of estimated parameters in the model. The model’s parameters are estimated
according [131]. By varying the coefficients (p,q) between 0 and 6 in increments of 1,
a total of forty-eight ARMA models with different orders of model parameters were
built, with the exception of (0,0). An ARMA (0,0) model is used on a time-series that
contains basically a constant and white noise. Since the time-series obtained from the
Dijkstra benchmark does not consists of a constant and white noise, ARMA (0, 0) is not

considered.
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Up to six autoregressive parameters and six moving average parameters are used to
determine the best ARMA model for this problem. Increasing the number of parameters
increases the complexity of the model by nearly 5% in terms of execution time [142].
Each data set is trained with all forty-eight ARMA models and the AIC value for each
model on all nine data sets are calculated. Table 4.4 shows the average AIC values
for all forty-eight ARMA models with different orders of model parameters. As can
be observed from Table 4.4, the lowest AIC value obtained is 5.793 x 10°> when p = 6
and ¢ = 6. However, based on the initial experiments conducted, it is found that the
detection accuracy reduces significantly while the detection time increases significantly
for models having coefficients greater than 4. Due to that, a trade-off is made where the

coefficients for p and ¢ which is 4 is chosen.

Based on this result, the most suitable ARMA model to be used for one-step ahead
prediction was found to be ARMA (4, 4). After deciding the model parameters, the
final step is to perform model verification where the developed model is verified against
validation data set. Data Set 8 was used as training data to develop ARMA (4,4) model
while Data Set 1, Data Set 3, Data Set 5 and Data Set 9 were used as validation data
sets. The MAE scores calculated between the model and the validation data sets are

presented in Section 4.6.4.

4.6.3 Single Layer Linear Network

The third forecasting method chosen is the Single Layer Linear Network (LN) (also
known as a single layer perceptron network) [57,143]. LN is derived from Artificial
Neural Networks (ANNs) approach, an alternative and popular technique to time-series
forecasting. Inspired by the way biological neural networks in a human brain process
information, ANNSs’ objective is to try to recognise regularities and patterns in the input
data, learn from experience and then provide generalised results based on their known
previous knowledge [132]. ANNs have been applied on a variety of tasks, such as speech
recognition, machine translation, computer vision, social network filtering, playing board

and video games and medical diagnosis.

There are several types of ANN architectures used in forecasting problems such as Single
Layer Perceptrons (SLPs), Multi-Layer Perceptrons (MLPs) and Time-Lagged Neural
Networks (TLNNs). SLPs, MLPs and TLNNs are derived from feed-forward neural
network type and Sanger [144] has given a clear definition of the feed-forward neural

network quoted below:

It is a network which has a distinct set of input units onto which values are
clamped. These values are then passed through a set of weights to produce
the inputs to the next layer of “hidden” or internal units. These units modify

the input using a non-linear function (usually in the shape of a sigmoid) to
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produce the outputs. As many layers as desired of this form can be stacked,

and the units of the final layer become the outputs of the network.

TLNN is not applicable for this study as TLNN is used for seasonal time-series data
where the input nodes are the time-series values at some particular lags. In this work,
SLPs is favoured over MLPs as the computational complexity for MLPs is much higher
due to the presence of additional hidden layers. The hidden neurons and output neurons
in the additional layers causes the computational time to increase. Overall, simulation
time (or the time cost/complexity) increases linearly with the increase in pattern count
(or neuron count in both hidden and output layers) [145]. Figure 4.4 illustrates how the
input layers are connected to an output layer in a SLP and the information flows only

in one direction.

Output Layer

Input Layer > < v )

FIGURE 4.4: Single Layer Perceptron

LN is a type of SLP without any hidden layer, and the connections between the nodes
do not form a cycle. Without the hidden layer, LN is a function of a linear combination
of the input variable [146] and is the simplest form of neural network. It consists of
a single layer of output nodes where the inputs are fed directly to the output which
takes a weighted sum of all its inputs. It can be represented mathematically as shown

in Equation 4.13:

Y =f (Z ’UY) (4.13)

In the LN method, the next data Yt+1 is predicted as a linear combination using previous

data multiplied by a set of weights represented by wvg,v1,...,v—1. The amount of



Chapter 4 Early Detection and Prediction Algorithm 89

previous data used in the one-step ahead prediction is determined by the size of the
sliding window, denoted by W. This can be mathematically expressed using Equation
4.14:

(4.14)

It defines the relationship between the sliding window Y;_yw, ..., Y; and the predicted
value of }/}t+1. The LN model has the same mathematical form as the traditional au-
toregressive (AR) model of Box and Jenkins, and thus has similar capabilities [57].
Following [143], the weight vectors are assigned as 1,2, ...,v with the weight vector to
be inversely proportional to the distance between each point in the sliding window, that
is, the further point Y; from }A/Hl, the smaller the weight vector will be. Thus, the
size of the sliding window, W, plays an important role in determining the optimal LN
model for predicting one-step ahead. Unlike other popular methods such as the Delta
Learning Rule or Yule-Walker equation to determine the parameters of this model (i.e.
Vo, V1, ..., U —1), the weight vector is assigned to be inversely proportional to the distance
between each point in the sliding window. This is done to ensure that the forecasting
model created is robust and applicable to any type of process. Selection of the optimal
value for parameter W in LN model is based on the Mean Absolute Error (MAE) as the

chosen forecast-error metric given in Equation 4.8.

Following the steps taken in determining the optimal values for parameters in SES and
ARMA, finding the optimal window size, W involves using all nine data sets. For each
data set, the value W is varied between 1 and 10 in increments of 1. The MAE value
obtained for each W size from all nine data sets are then averaged and the results is as
shown in Table 4.5. From the result in Table 4.5, the lowest average MAE obtained was
0.50 when W = 3.

Once the optimal window size has been determined, the developed LN model is verified
against validation data set. For this purpose, Data Set 8 was used as training data to
develop LN model and Data Set 1, Data Set 3, Data Set 5 and Data Set 9 were used as
validation data sets. The MAE scores calculated between the LN model and validation

data sets are presented in Section 4.6.4.
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4.6.4 Comparison between Forecasting Methods

This section presents the comparison between three different forecasting methods, namely
SES, ARMA and LN. The optimal model for each method was obtained using Data Set
8 as training data. Besides using Data Set 1 as a validation data set, the optimal mod-
els were also verified against Data Set 3, Data Set 5 and Data Set 9, which were used
as validation data sets. Table 4.6 shows the performance of each data set forecasting

method against four different validation data sets.

TABLE 4.6: Comparison between different forecasting methods in One-Step Ahead

Prediction

Training Data MAE MAE MAE MAE
(Dataset 8) (Dataset 1) | (Dataset 3) | (Dataset 5) | (Dataset 9)
SES (a= 0.6)
MAE — 0.596 | 191 (+3.63%) | 2.12 (+4.03%) | 1.36 (+2.59%) | 1.42 (+2.70%)
ARMA (4,4)
MAE — 0.592 1.86 (+3.14%) | 2.06 (+3.48%) | 1.32 (+2.23%) | 1.38 (4+2.33%)
LN (W = 3)

MAE — 0534 | 1:87 (+3.50%) | 2.08 (+3.90%) | 1.34 (+2.51%) | 1.39 (+2.60%)

The MAE obtained from Data Set 8 for all three forecasting methods are used as the
baseline. For example, in Table 4.6, the baseline MAE for SES method is 0.526. When
the forecast model is used to validate Data Set 1, the MAE obtained is 1.91, an increase
of 3.63%. This indicates that the forecast model is not overfitting or underfitting. A
model that is underfit will have high training and high validation error while an overfit
model will have extremely low training error but a high validation error. The results in

Table 4.6 shows a low validation error, less than 5% in all data sets.

From the results shown in Table 4.6, all three forecasting methods are comparable with
one another. However, the forecast model developed using the ARMA provides the
lowest MAE score on all validation data sets compared to the SES and LN methods.
This indicates that ARMA (4,4) creates a better forecast model for one-step ahead

prediction.

4.7 Measurement of Deviation and Anomaly Classification

Once the next data has been predicted using either the SES, ARMA or LN forecasting
methods, the next step is to define a measure to determine how much the observed
behaviour of the time-series deviates from the expected pattern. If the observed value
falls outside the defined threshold, it is classified as anomalous. Two different methods
have been selected to measure the deviation between the observed data from the expected
data, namely: (a) Residual Distribution; and (b) Prediction Interval, which will be
explained further in Section 4.7.1 and Section 4.7.2.
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To test how well the predicted model can be used to classify anomalies, a different
Dijkstra data set is used — a testing data set that has not been trained or validated,
and which contains anomalies. The anomalous dataset contains 118,860 data points,
compared to a normal dataset that contains approximately 120,000 data points. The
starting point for the occurrence of anomalies were detected at point 118,072, and ends
at point 118,860 since these are collective anomalies type. Figure 4.5 shows the region of
collective anomalies that occurred in the anomalous dataset as compared to a fault-free
dataset.

Occurrence of Collective Anomalies

Region where

w B ||| 1111170 | I N a collection of
anomalies

70 ' T [ occurred

Anomalous Data
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FIGURE 4.5: Collective anomalies which occurred in the Dijkstra anomalous dataset

4.7.1 Residual Distribution

This method is adapted from [33] where the residual at specific time ¢ is used to define
the deviation between predicted value and observed (or actual) value. The deviation
between observed data and predicted data at time ¢ is known as the forecast residual
and is given in Equation 4.7. Analysis of residuals is done by looking at the distribution
of the residuals for each method. Graphical methods are used to examine residuals and
one of the common methods is to use a histogram to display the distribution of a group

of residuals.

The residuals were obtained by calculating the absolute difference between actual value

observed in the validation Data Set 1 against the predicted value from the models
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developed using SES, ARMA or LN method at time t. The residuals series for each

method is then plotted using a histogram and the result is shown in Figure 4.6.

As can be seen from Figure 4.6, the histograms show an approximately normal distribu-
tion curve. However, while they resemble the normal distribution family of curves, all
three histograms have a much taller peak and the tails decay much slower compared to a
normal distribution. This type of distribution is known as Cauchy Distribution [139,147],
where the residuals are not normally distributed due to too many extreme positive and
negative residuals. In other words, the distribution is heavy tailed. This can be observed
in Figure 4.7 where the probability plot shows the residuals are not distributed normally.
In contrast, a normal probability plot of the residuals is approximately linear supporting

the condition that the error terms are normally distributed.

Unlike Normal distribution that is centred around zero-mean, u, with a standard de-
viation, o, a Cauchy Distribution has its mean undefined and the variance is infinite.
However, it is possible to calculate the residual average of a sample, denoted by n, in
a Cauchy distribution [148], where n is the total number of observations up until time
t, and determine the current residual is lying how many standard deviations away from
the average of the forecast residual. The equation for Residual Distribution as shown
in Equation 4.17 consists of two main components — residual average, € and residual

variance, o2 shown in Equation 4.15 and 4.16:

> i leil (4.15)

n

Residual average, e =

2 _ > iy leil? _ g

L (4.16)

Residual variance, o

€t—é

Vo?

Residual Distribution, z = (4.17)

In order to determine if the observed value should be marked normal or anomalous, the
threshold rule, ziresh, is defined as the distance of the forecast error from the residual
average in terms of standard deviations. The value zipesn is varied between 1 and 10 in
increments of 1. After measuring the deviation between predicted and observed values,

if z > Zinresh, the observed value is marked as anomalous.

4.7.2 Prediction Interval

The second method is the prediction interval [149] which is commonly used in regression
analysis. It is an estimate of a range where the observed values will fall with a certain

probability. Prediction interval describes the uncertainty for a single specific value where
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Residual Distribution for SES Model
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FIGURE 4.6: Distribution of forecast residuals from validation data set 1 and forecast
models developed using SES, ARMA and LN method
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Residual Probability Plot
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FIGURE 4.7: Probability plot of residuals for all three one-step ahead prediction meth-
ods

uncertainty comes from the errors in the model itself and noise in the input data and
provides probabilistic upper and lower bounds based on the estimate of a predicted
variable. If the observed data falls within the upper and lower bounds, it is considered
to be normal and if it falls outside the upper and lower bounds, it will be marked
anomalous. The formula to calculate Prediction Interval is given in Equation 4.18.
Zupper a0d Zjoyer Tepresent the upper and lower thresholds for acceptance or rejection of
the observed data. The current observed data point is considered normal if it satisfies

the condition zjpper < Y < Zupper, €lse it is marked as anomalous.

N 2
. 1 (Ytﬂ—ﬂ)
Zuzzper:Y;t-&-l"i'PI* MSE % 1+g+m

(4.18)

~ 2
5 1 <Yt+1—§>
Zlower = Y41 — P1I * MSEx |14+ —4+ —~~— 2

B
\ n > i ledl

Three important parameters are required to calculate the prediction interval for new

predicted data. The first parameter is f/tH, which is the predicted data point at time
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(Y1 —7)°
Z?:1|ei|2
standard error of the predicted model [150]. It depends on the mean squared error (MSE),

t + 1. The second parameter given by \/ MSE x (1 + % + ) is known as the

the sample size n which is the total number of observations until time ¢, the distance in
squared units the predicted value ?t+1 is from the average of Y values in the window W,
and the sum of the squared absolute deviation, \ei|2. The equations to calculate MSE
and the average of Y values are given in Equation 4.19 and Equation 4.20 respectively,

while calculation of e; follows Equation 4.7.

n 2
MSE = | Zi=t 4l (4.19)
n
1 t—1
g=—e Y Y, (4.20)
4 i=t—W

Finally, the third parameter is PI, which represents the 100%(1 — a; df) of the Students
T-distribution with df degrees of freedom. It reflects the confidence associated with
the calculation of the upper and lower bounds of Ytﬂ. Table 4.7 lists a few selected
values for T-distributions with df degrees of freedom for a range of one-sided critical
regions. The first column is df, the percentages along the top are confidence levels,
and the numbers in the body of the table represent the 100%(1 — a;df). The values in
the body of the main table refers to the critical values for the one-sided critical regions
ranges from 75% to 99.5% with df degrees of freedom, and is substituted in parameter
PI. In this work, the confidence level is varied from 80% to 97.5% while the value of
df is varied between 1 and 3 and the size of the sliding window, W is varied between
3 and 10. The value df is chosen between 1 and 3 because the higher the value of df,
the narrower the width between the upper bounds and lower bounds. A higher value of
df will affect the anomaly classification process as normal data points will be marked
erroneously as anomalous because the observed data points do not satisfy the threshold

rule.

4.8 Analysis and Evaluation

4.8.1 Evaluation Metric

In order to evaluate the effectiveness of early detection algorithm, we look at how well
the anomaly classification methods have performed in classifying the anomalies. The
early detection algorithm consists of three stages. The first stage is to predict the next
data point using either SES, ARMA or LN one-step ahead prediction as discussed in

Section 4.6. The second stage is to measure how much the observed data has deviated
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TABLE 4.7: Critical values of Student’s T-distribution with df degrees of freedom,

[139,151]

Prob., 100%(1-2) | ,vor | 5005 | 85% | 90% | 95% | 97.5% | 99% | 99.5%
DOF, df

1 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 31.82 | 63.66
2 0.816 | 1.080 | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925
3 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841
4 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604
5 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032
6 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707
7 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499
8 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355
9 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250
10 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169
11 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106
12 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055
13 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012
14 0.692 | 0.868 | 1.079 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977
15 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947

from the defined threshold, which has been discussed in Section 4.7. And finally, in
the third stage, if the measurement of deviation does not satisfy the threshold rule, the

observed data point is marked as anomalous.

Two evaluation metrics are used to measure how well the detection algorithm has per-
formed. The first metric is the accuracy statistical attribute. As the name implies,
the accuracy metric defines how accurate the detection algorithm is in detecting both
anomalies and non-anomalies. Another attribute that is important in evaluating the
early detection and prediction algorithm is the detection time. This is a novel perfor-
mance measurement attribute developed with the objective of determining which method
is quickest in identifying the anomalous behaviour in the system. Existing performance
attributes such as AUC (Area Under The Curve) and ROC (Receiver Operating Char-
acteristics) curves are not suitable to be applied in the damage detection domain as the
usage of AUC and ROC attributes require the algorithm to detect almost all anoma-
lous points. As discussed in Section 2.4.3, in a damage detection domain, the type of
anomalies can be either contextual anomalies or collective anomalies. As discussed in
Section 4.7, the type of anomalies observed in this work are collective anomalies. There-
fore, the main goal is to detect several anomalies consecutively and from there, predict

potential failure as early as possible.

Calculation of both accuracy and detection time is done using True Positives (TP), True
Negatives (TN), False Positives (FP) and False Negatives (FN) as described in Table 4.8.

TP refers to an anomalous observation while TN refers to a normal observation. TP

and TN are the ideal situations where data points are detected and identified correctly,
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TABLE 4.8: Confusion matrix for early detection of anomalous behaviour

Outcome Detection
Anomalous Non-Anomalous
True Positives (TP) | False Negatives (FN)
(data points that are | (data points that are
Anomalous

anomalous and anomalous but
identify as anomalous) | identify as normal)
False Positives (FP) | True Negatives (TN)
(data points that are | (data points that are
normal but normal and
identify as anomalous) | identify as normal)

Non-Anomalous

while FP and FN are undesirable cases which are impossible to eliminate but need to be
kept to a minimum. The formulae to calculate detection time and accuracy are shown

in Equation 4.21 and Equation 4.22.

Detection time = (T'P + F'N) % Logging Interval (4.21)
TP+TN

A = 4.22

Y = TP+ FN 1 TN + FP) (422)

While it is true that a good anomaly detection model should maximise the number of
correct detections and keep the false detection as low as possible [31,33,57], the main
objective of the detection model is to be able to predict failure at the earliest time.
Therefore, the key attribute is the lowest detection time that can be attained from the
proposed methods. The detection time has to be below 4, 000us, which is equivalent to
1M clock cycles.

4.8.2 Minimum Consecutive Anomalies to be detected, '

As discussed in Section 4.5, the minimum number of consecutive anomalies to be de-
tected, C, is 4. Table 4.9 shows the results of the lowest detection time achieved when
C =4,C =5and C = 6. As can be seen, the lowest detection time of 325us is achieved
with C = 5. This means, the anomalous behaviour was detected at 325us after the
fault manifested itself as an error. Increasing the value of C increases the detection time
as more consecutive anomalies are required to be detected. When C' = 4, no detection
time was recorded as the algorithm was overly sensitive and not able to detect anomalies
correctly. The algorithm managed to detect the anomalies only when the parameters
for anomaly classification methods are enlarged. Another observation was all three fore-
casting methods gave the same detection time whether they use Residual Distribution
or Prediction Interval for anomaly classification. All three forecasting methods have

comparable performance in predicting the data point one-step ahead.
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4.8.3 Detection Accuracy using Residual Distribution

Anomaly classification using the Residual Distribution method analyses how many stan-
dard deviations the current residual is lying away from the average of the forecast resid-
ual. The value z is calculated using Equation 4.17 and is compared against the threshold,
Zihresh- Figure 4.8 shows the results of how anomalies are classified using the Residual
Distribution method. The value zpesn in Figure 4.8 has been set to 6, and values that
exceed the threshold are marked as anomalous. The complete detection result using this

method where the value zp,csp is varied between 1 and 10 is shown in Table 4.10.

As can be observed in Table 4.10, when parameter zi,esn iS set between 1 and 4,
the detection was too sensitive with a lot of normal points being wrongly classified as
anomalous points. However, for zipresh = 8, Zithresh = 9 and zipresn, = 10, the anomaly
classification method was found to be unresponsive as it was unable to detect both
normal and anomalous points. The optimum value for z,.sp, Was found to be 6, where
the number of TP is the lowest across all three prediction methods. The top three results
from Table 4.10 were further analysed to obtain the detection time and accuracy using
Equation 4.21 and Equation 4.22.

Table 4.11 shows the top three results obtained for this method where the lowest de-
tection time was 325us (or &~ 82000 clock cycles) after a fault is injected. The number
of anomalous points, TP, that are correctly detected is between 15 and 19, while the
non-anomalous points, TN, that are correctly identified lie between 118050 and 118067.
The number of missed anomalies and false alarms (FN and FP) is between 135 and 182,
giving an accuracy between 99.85% to 99.89%. While all three prediction methods are
able to achieve the lowest detection time of 325us, the ARMA method has managed to
detect fewer false alarms (FP) compared to SES and LN.
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FIGURE 4.8: Anomaly classification using Residual Distribution
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4.8.4 Detection Accuracy using Prediction Interval

The second anomaly classification method is the Prediction Interval where the predicted
data point is used to estimate, with a certain probability, the range where the observed
values will fall. Prediction Interval provides upper and lower bounds where if the ob-
served data point falls outside the upper and lower bounds, it is marked as anomalous.
The upper bound zypper, and lower bound 2, values are calculated using Equation
4.18. Figure 4.9 shows the results of how anomalies are classified using this method. The
upper and lower bounds in Figure 4.9 were calculated using 90% one-tailed probability
with 1 Degree of Freedom. From these figures, it is shown that the upper and lower
bounds calculated generate good envelopes for the actual data where the majority of
the data points lies between the upper and lower bounds. However, it requires at least
20us for the calculation to stabilise. This means, if anomalies happen at the start of
the program, this method would not be able to detect those anomalies and subsequently

predict a failure.

For anomaly classification using the Prediction Interval method as discussed earlier in
Section 4.7.2, the parameter PI plays an important role in setting the threshold rule.
Table 4.12, Table 4.13 and Table 4.14 show the complete detection results using SES,
ARMA and LN prediction method respectively where the probability is varied between
80% and 97.5% with the degree of freedom, df between 1 and 3 and the size of W
between 3 and 10. As can be observed from all three tables, when the parameter Pl
uses the probability of 80% with any corresponding value for degree of freedom, the
detection was too sensitive and resulted in a higher number of normal data points being
wrongly classified as anomalous points. The critical values from the probability of 80%
with df =1, df = 2 and df = 3 were 1.376, 1.080 and 0.978 respectively. These values
created a narrow width between the upper bound and lower bound, thus more false

alarms occurred where normal data points were wrongly classified as anomalous points.

In Table 4.15, the top three results for each prediction method using Prediction Interval
is presented. The detection time achieved for all top three results was 325us, but the best
results were achieved with Probability = 90%, df = 1 and W = 3. This is due to the
number of false alarms (FP) which are slightly lower, thus resulting in a higher accuracy
compared to the results obtained using PI = 2.920 and PI = 2.353. The number of
anomalous points, TP, that are correctly detected is between 15 and 19, while the non-
anomalous points, TN, that are correctly identified lie between 118058 and 118072. The
number of missed anomalies (FN) is between 46 and 50 while the number of false alarms
(FP) is between 84 and 98, giving the accuracy of 99.88%, 99.89% and 99.88% for the
SES, ARMA and LN method respectively.



Chapter 4 Early Detection and Prediction Algorithm

105

Number of Cache Misses

Number of Cache Misses

Number of Cache Misses

Anomaly Classification using Prediction Interval for SES with Prob = 90%, DF = 1 and Sample Size =3

. ! ‘ ‘ ‘ Lower Bound SES
Upper Bound SES
‘Anomalous Data
200 H
150
o)
50 - O Classified anomalous point =
0O 5 consecutive anomalous points
~100
1ol | L L I I
o 2 4 s s 10 12
Simulation Time e
(a)
Anomaly Classification using Prediction Interval for ARMA with Prob = 90%, DF = 1 and Sample Size =3
- \» ‘ ‘ ‘ Lower Bound ARMA
——— Upper Bound ARMA
200 Anomalous Data
150 —
ol TREAN & i
50 N ian 71 1Y ) 1 ) ) )
T 0 0 e e
oM mhl;J“ 1 TRPRPL PO TN P PRV THIVOY O PIR TNV [TVORR. 10 0 ) RN P MO RO 0 ) L Lu[.ihm; O
50— | ‘; TICER L, | B L | I |
|
O Classified anomalous point N
o 0O 5 consecutive anomalous points
. 1 I I I
o 2 3 ° s 10 »
Simulation Time <10t
(b)
Anomaly Classification using Prediction Interval for LN with Prob = 90%, DF = 1 and Sample Size = 3
‘ ‘ ‘ ‘ ‘ Lower Bound LN
Upper Bound LN
‘Anomalous Data
200 4
150
100
50 M ‘hh‘ ; %D L L E ui LLD
i HJ‘\U”‘N,‘ It u.M,@IJ\H‘.ADLLLJ@Lu AJMM.M.)&L&LM u,l&)“.i.@hkh L D0 bl mADM.dMi.w...\@.mﬂim |
™ O Classified anomalous point .

O 5 consecutive anomalous points

,‘T —
_150 | I | I I
0

2 4 6 s 10 12
. . . x10*
Simulation Time

(©)

FIGURE 4.9: Anomaly classification using Prediction Interval



Chapter 4 Early Detection and Prediction Algorithm

106

0 0 0 0 | CIISIT | ¥% | G6C | ¥L | G8¥68 | 09 | 0O 0 | e6I8L | 121 | O 0 | 69926 | FLT | 0 0 o1
0 0 0 0 | LOTSIT | 6F | G6G | LL | L.¥68 | 89 | O 0 | 0LI8L | €VI | O 0 | €9926100C | O 0 6
LTISTT | 62 | 91€ | €5 | L608TIT | 65 | 96 | 02 | 09¥68 | S8 | 0 0 | €I8L | ¥L1 | O 0 | 9¢861 | TIT | 0 0 8
TGISTIT | S€ | IT€ | 8S | 6S08TT | 29 | 96 | 0 | O¥¥P68 | SOT | 0O 0 | 6608L | L0g| O 0 | 78861 | ¥¢1 | 0 0 L
OTTISTT | OF | 10 | 89 | €L08IT | €8 | @6 | ¥¢ | 80Z8L | SOT | O 0 | 92926 [ 291 ] 0O 0 | 20861 | OFT | O 0 9
GIISTT | ¥% | S6C | %L | ¥SOSTT | GOT | 0S | ST | 0SI8L | €E1| O 0 | 68925 | 702 | O 0 | €861 | 61| O 0 g
S60STT | 8S | 88¢ | I8 | 62¥68 | 99 0 0 SII8L [ 88T | 0 0 | 8Z86T | 61T | 0 0 | #2461 | ¥8T | 0 0 id
LLOSTT | 6L | ¥6 | ©o | 97¥68 | 66 0 0 20925 | 991 | 0 0 | €646T |6VI | 0O 0 | 9046 | 69T | 0 0 ¢
NL |dd | NJd|dL N.L dd | Nd | dL N.L dA | NA|dL| NL |[dd|Nd|dL| NL | dd | Nd | dL | M ‘0ZIg mopurpy
%G L6 %36 %06 %G8 %08 Lyiqeqoag
€ = 40d
0 0 0 0 | 6CISTT | L& | 61€ | 0S | GLOSTT | 18 | 6 | ¥¢ | S€¥68 | LOT | O 0 |S608L |11z | O 0 (1]
0 0 0 0 | €ISIT | €€ | CIE€ | LG | €908IT | €6 | 09 | GT | €1g8L | 00T | O 0 | 1908L | S¥C | O 0 6
0 0 0 0 | OCISTT | 9¢ | S0 | #9 | ¢SOSTT | %01 | S¥ | ¥#1 | ¥618L | 61T | O 0 | 28926 | 98T | O 0 8
0 0 0 0 | 9TISIT | OF | 00 | 69 | €8¥68 | ¢9 | O 0 | 8918L | SPI | O 0 | SGPS6T | 60T | O 0 L
0 0 0 0 | TTISTT | SF | G6C | ¥. | S9¥68 | LL | O 0 | STI8L | 88T | O 0 | 66861 | 8TT | 0 0 9
0 0 0 0 | O0TSTT | 9% | 88¢ | I8 | 6E¥68 | 90T | O 0 | 2L08L | 682 | O 0 | 70861 | 8T | 0 0 g
QGISIT | 8¢ | 6T€ | 0S | G80STT | 1. | S6 | Tc | 00g8L | €IT| 0 0 | 8P9LS | S6T| O 0 | 08L6T | 29T | O 0 i4
STISTT | 8¢ | €0¢ | 99 | 9G08TT | 00T | 0S | ST | GEI8L | TL1| O 0 | 62861 | 81T | 0 0 | 9226 | 6¥1 | 0O 0 €
NL |dd | NJ | dL NL dd | Nd | dL N.L dAI | NJd|dL| NL |dd|NJd|dL| NL | dd | Nd | dL | M ‘0ZIg mopurpy
%9°L6 %96 %06 %38 %08 Lyqeqorg
Z = 40
0 0 0 0 0 0 0 0 0 0 0 0 | G80STT | TL | S6 | 1 | ¥€¥68 | IIT | O 0 01
0 0 0 0 0 0 0 0 0 0 0 0 | 0L0STT | 98 | @6 | ¥¢ | 0Te8L | €0T | O 0 6
0 0 0 0 0 0 0 0 | €2ISIT | €€ | ¢I€ | LS | 8GOSTT | 86 | 0S | ST | I618L |aal | 0 0 8
0 0 0 0 0 0 0 0 | STISTT | 8¢ | C0¢ | ¥9 | SPOSIT | TTIT | SV | ¥T | 6SI8L | L¥PT | 0O 0 L
0 0 0 0 0 0 0 0 | GIISIT | I¥ | 86C | T. | LL¥68 | 89 | O 0 | PT18L | 861 | O 0 9
0 0 0 0 0 0 0 0 | L0I8TT | 6V | c6c | L. | ¥S¥68 | 16 | O 0 | 0L08L|9¢c | O 0 g
0 0 0 0 0 0 0 0 | ¥60STIT | ©9 | 96 | 0¢ | S1E8L | 86 | O 0 | €9926 1002 | O 0 id
0 0 0 0 0 0 0 0 | 8908TT | 88 | 0% | ST | 89I8L | SFT | O 0 | #6861 | €T | 0 0 ¢
NL | dd|Nd | dL N.L di | Nd | dL N.L di | NA|dL| NL |dd [ NJd | dL| NL | dd | Nd | dL | M ‘9ZIg Mmopurpy
%S°L6 %S6 %06 %58 %08 Lyiqeqoag
1 =40

poewt uorjorpaid GG SUISn %G L6 PUR 9,8 Weamyaq A1fiqeqord [jm S)MSal U010 g1 F A14V],




107

Chapter 4 Early Detection and Prediction Algorithm

0 0 0 0 | €ZISIT | €¢ | 108 | 89 | 06¥68 | ¢ | 0O 0 | 1ge8L | 26 | 0 0 | 906|281 | O 0 o1
0 0 0 0 | 6ITSIT | A& | 865 | T. | 9.¥68 | 69 | 0O 0 | €0g8L |OIT | O 0 | 16926 | gSI | O 0 6
9CTISTT | 0z | ST€ | 1S | 60ISIT | L¥ | €6 | €¢ | S9¥68 | 08 | O 0 | 08182 | 921 | O 0 |G8861 | 29 | 0 0 8
CCI8TT | €6 | €1€ | 9S | S608TT | 85 | 06 | 95 | ©S¥68 | €6 | 0 0 | TGI8L [ SST| O 0 | GL861 | TL | O 0 L
6CISTT | 2T | L0 | ©9 | LLOSTT | 6L | L8 | 6 | 9%e8L | L8 | O 0 | P1L.S | 621 | O 0 | 09861 | 28 | 0 0 9
CCISIT | €¢ | T0€ | 89 | CPOSIT | PIT | €F | €T | 9028L | 20T | O 0 | 98946 |81 | 0O 0 | GE86T | L0I | O 0 g
TTISTT | SF | 16C | 8L | ¥8¥68 19 0 0 0L18L |9¢T | 0O 0 | 9286T | 12 | 0 0 | €0861 | ST | O 0 id
9808TT | 0L | 18 | 6C | SS¥68 | 06 0 0 01226 | €81 | 0O 0 | 0986T | 6 | 0 0 | 9846 | 681 | O 0 g
NL |dd | NJ|dL N.L dd | Nd | dL N.L dA|NJA|dL| NL |[dd|Nd|dL| NL | dd | Nd | dL | M ‘0ZIg mopurpy
%G L6 %36 %06 %G8 %08 Lyiqeqoag
€ = 40
0 0 0 0 | 9CISTT | 0% | 61¢ | OS | QLO0STT | 8L | 28 | 6C | 1S¥68 | ¥6 | 0O 0 | 0SI8L | 9ST | 0 0 (1]
0 0 0 0 | GEISIT | Tg | GIE€ | ¥S | SGOSIT | 10T | GF | Oz | S¢e8L | S8 | 0O 0 | 2EI8L | FLI | O 0 6
0 0 0 0 | €CISTT | €% | T1¢ | 8S | ¥EOSTT | Gel | ¥ | LT | 1¢e8L | 6 | 0 0 |00LLS | €PT | O 0 8
0 0 0 0 | 62ISTT | 2 | ¥0€ | S9 | 88¥68 | L& | 0O 0 | 66184 | ¥IT | O 0 | 06861 | 25 | 0 0 L
0 0 0 0 | €CISTT | €€ | 66 | 0L | 89¥68 | LL | O 0 | 0L18L | 9€T| O 0 | 9861 | 1. | O 0 9
0 0 0 0 | GTISTIT | ¥% | ¥6¢ | GL | TS¥68 | €6 | O 0 | OVPI8L | 99T | O 0 | 29861 | 08 | 0 0 g
9CTRIT | 02 | 8T€ | TS | T608TT | S9 | 68 | 2¢ | Sce8L | 88 | 0 0 | €698 | 0ST| O 0 | 08861 |2IT| O 0 i4
6GISTT | 2g | 11€ | 8S | S8POSTT | 80T | €F | 22 | SSI8L |13l | O 0 | 92861 | 12| 0 0 | 6846 | 91T | O 0 €
NL |dd | NJ | dL NL dd | Nd | dL N.L dAd | NJd|dL| NL |dd|NJd|dL| NL | dd | Nd | dL | M ‘0ZIg mopurpy
%9°L6 %26 %06 %38 %08 Lyqeqorg
Z = 40
0 0 0 0 0 0 0 0 0 0 0 0 | 060STT | 99 | 88 | 8 | L¥¥68 | 86 | 0 0 01
0 0 0 0 0 0 0 0 0 0 0 0 | GLOSTT | I8 | L8 | 6C | Lge8L | 98 | 0 0 6
0 0 0 0 0 0 0 0 | GEISII | 1g | GIE€ | #S | €S0STT | 86 | ¥F | 1¢ | 61e8L | ¥6 | 0 0 8
0 0 0 0 0 0 0 0 | TEISTT | S | T1€ | 8S | LZOSIT | 6T | &V | LT | 96I8L | OTT | 0O 0 L
0 0 0 0 0 0 0 0 | LgISIT | 65 | ¢0€ | L9 | 6768 | 99 | 0 0 | 8918L | 8ET | 0 0 9
0 0 0 0 0 0 0 0 | OCISTIT | 9¢ | 66C | 0L | 1968 | ¥8 | 0 0 | 98182 | 0LT | O 0 g
0 0 0 0 0 0 0 0 | POISIT | @S | @6 | ¥ | 65e8L | ¥8 | 0 0 | 06926 | €ST| 0 0 id
0 0 0 0 0 0 0 0 | TLOSTT | ¥8 | 9% | 6T | 10g8L | ¢IT| O 0 |€L86T | ¥, | O 0 ¢
NL | dd|Nd | dL N.L di | Nd | dL N.L di | NA|dL| NI |dd [ NJ | dL| NL | dd | Nd | dL | M ‘9ZIg Mopurpy
%S°L6 %S6 %06 %S8 %08 Lyiqeqoag
I =4d0d

poet uorjorpaid YINYY Suisn 94626 Pue %08 Usamiaq Aqiqeqold [iim sjnsal uorosle g1 f a19v.,




Chapter 4 Early Detection and Prediction Algorithm

108

0 0 0 0 | OTISIT | 9% | 20E | L9 | TL¥68 | €. | 0O 0 | OSI8L €81 | 0O 0 | 8F9.6 | S61 | O 0 o1
0 0 0 0 | POTSIT | &S | 00 | 69 | 09¥68 | S8 | 0O 0 | ¥918L | 6VI | O 0 | 81926 |63G| 0 0 6
TEISIT | ¥¢ | 61€ | 0S | S608TT | 19 | 66 | 12 | 6¥¥68 | 96 | 0 0 | ¥¢18L | 281 | 0 0 | SF86T | 66 | 0 0 8
GGISTT | 1€ | ¥IE€ | GG | ¥SOSTT | ©L | €6 | € | ¥ev68 | T11| O 0 | S808L | 18c | O 0 | G€861 | GIT | O 0 L
QTISTT | 8¢ | 60€ | 09 | TI08IT | #8 | @6 | ¥¢ | L6I8L | 9IT | O 0 | 68925 [ ¥81 | 0 0 | 91861 | 92T | 0 0 9
OTTI8TT | 9% | @0€ | L9 | TEGOSTT | SET | A% | 8T | 69I8L | FPI | O 0 | 11946 |2ggc | O 0 | 76461 | 8%1 | 0 0 g
9608TT | 09 | €6T | 9L | 99¥68 | 6. 0 0 OTI8L | 96T | 0 0 | 28861 |OIT| O 0 | 09461 | 8LT | O 0 id
0L08TT | 98 | @6 | ¥& | OFF68 | SOT | O 0 28925 | 98T | 0 0 | 8086T |¥EI | O 0 | 6696 | 92T | O 0 ¢
NL |dd | NJd|dL N.L dd | Nd | dL N.L dA | NA|dL| NL |[dd|Nd|dL| NL | dd | Nd | dL | M ‘0ZIg mopurpy
%G L6 %36 %06 %G8 %08 Lyiqeqoag
€ = 40d
0 0 0 0 | €CISTT | €¢ | 61S | 0% | €908TT | €6 | ¢6 | ¥¢ | 6¢¥68 | 91T | O 0 | 8L08L|8cc | 0 0 (1]
0 0 0 0 | SZISIT | 8¢ | 91€ | €8 | SLOSIT | SIT | LF | ST | #028L | 60T | 0O 0 | 2F08L | ¥9Z2 | 0 0 6
0 0 0 0 | €CISTT | €8 | 01¢ | 6S | CIOSTT | ¥¥1 | ¥F | ST | 1818 | €T | O 0 |98926 |20z | O 0 8
0 0 0 0 | LTISIT | 6€ | 60 | 09 | 69¥68 | 9L | 0O 0 | 8GI8L [SST | O 0 | 99861 | 16 | 0 0 L
0 0 0 0 | L018TT | 6% | c0g | L9 | TS¥68 | ¥6 | O 0 | TTI8L | S6T| O 0 | 28861 | OTT | O 0 9
0 0 0 0 | 9608TT | 09 | €62 | 9. | SE€¥68 | OIT | O 0 | €908L |€sc| 0O 0 | 02861 | g2l | 0 0 g
CCTISIT | €¢ | 6TE | 0S | OS0STT | 9L | €6 | €¢ | GRI8L | 8¢I | 0 0 | ¥29.8 | 61| O 0 | I6L6T | IST| O 0 i4
0ZISTT | 9¢ | 01€ | 6S | 6COSTT | 22T | A% | 8T | 1€I8L | SL1| O 0 | 98861 | TIT| O 0 | #6846 | T¥F1 | O 0 €
NL |dd | NJ | dL NL dd | Nd | dL N.L dAI | NJd|dL| NL |dd|NJd|dL| NL | dd | Nd | dL | M ‘0ZIg mopurpy
%9°L6 %96 %06 %38 %08 Lyqeqorg
Z = 40
0 0 0 0 0 0 0 0 0 0 0 0 | 080STT | 9L | €6 | €¢ | 9¢¥68 | 61T | O 0 01
0 0 0 0 0 0 0 0 0 0 0 0 | T90STT | G6 | ¢6 | ¥¢ | 1088 | ¢IT | O 0 6
0 0 0 0 0 0 0 0 | SZISIT | 8¢ | 91€ | €S | €C0STT | €o1 | LF | 8T | LL18L | 9¢T | 0 0 8
0 0 0 0 0 0 0 0 | GgISTIT | ¥¢ | 01€ | 6S | S66LIT | 8ST | €F | 9T | LVISL | 68T | 0O 0 L
0 0 0 0 0 0 0 0 | 9TISIT | OF | 208 | @9 | €9¥68 | @8 | O 0 | 1018L]S0Z | O 0 9
0 0 0 0 0 0 0 0 | L0T8TT | 67 | 00€ | 69 | SFPF68 | 00T | O 0 | 9%08L | 09 | O 0 g
0 0 0 0 0 0 0 0 | @608TT | ¥9 | ¥6 | @& | 90G8L | L01 | O 0 | 91926 |23¢| 0 0 id
0 0 0 0 0 0 0 0 | S8SOSTT | 86 | 8F | AT | T19I8L | ¢ST| O 0 | Ge86T |2IT| O 0 ¢
NL | dd|Nd | dL N.L di | Nd | dL N.L di | NA|dL| NL |dd [ NJd | dL| NL | dd | Nd | dL | M ‘9ZIg Mmopurpy
%S°L6 %S6 %06 %58 %08 Lyiqeqoag
I =4d0d

poewu uorjorpaid N Sulsn 9,G')6 Pue %08 Usamiaq Aiqeqold Yim synsel Uolpeld( F1°F A1dv],




109

Chapter 4 Early Detection and Prediction Algorithm

‘0466 = qoad) | ‘g6 = qouad) | ‘ype = qoad) | ‘yge = qoad) | ‘o4ee = qoad) | ‘06 = qoad) | ‘yge = qoad) | ‘9e6 = qoad) | ‘06 = qouxd)

1d 19jowrereq

qzg qzg s qzg qzg qzg qzg s S [ sosuwmﬁ
| % G8°66 | %8866 | % 8866 | % L8'66 | % 18766 | % 6866 | % 18°66 | % 1866 | %8866 | Adenooy |
| TZOSTT | 6208TT | 8GOSTT | THOSTT | SFOSTT | TLOSTT | PGOSTT | 9G08TT | 890STT | NI |
| ger | 221 | 86 | s 801 | 8 | 2ot | 001 | 88 | a4 |
| A v | sy | e | e | 97 | 05 | 0% | 0 | N4 |
| 8T | St | L1 | et | et | 61 | qr | ar | qr | dL |
(€= m (e=m (€= m (€= m (€= m (€ = m (5= m (€= m (e=m

‘e =Jp ‘c=Jp ‘T=Jp ‘e =Jp ‘c =3P ‘T=Jp ‘e =Jp ‘c =3P ‘T=13p (3p ‘qouad)

€9€'¢ = 1Id 026°c = Id 8L0°¢ = Id €9€°C = 1Id 026°c = Id 8L0°¢ = Id €9€'C = 1Id 026'c = Id 8L10°¢ = Id

(e=m) Fp) (2'0 =0)
N1 VINUV sds

SpoyIeIN

[RAID)U] UOIIIIPAL SUISN G = O ‘SOI[RUIOUY OAISSEIONG JO Idquiny I0j porloul NT pue YNV ‘SHS Sulsn sisAfeuy :GT'H d1dv.],



110 Chapter 4 Early Detection and Prediction Algorithm

The results from Table 4.12, Table 4.13 and Table 4.14 also suggest that the value of PI
can be selected among 2.920, 3,078, 3.182 and 4.303. From the results shown in Table
4.11 and Table 4.15, one-step ahead prediction using ARMA method provides higher
accuracy compared to SES and LN. This can be attributed to lower number of false
alarms (FP) identified when using ARMA for prediction. The optimised parameters
obtained from this analysis will be used in the following chapter where the proof of
concept for a lightweight detector that predicts potential failure through the detection

of anomalous behaviour is presented.

4.9 Summary

In this chapter, a novel algorithm that detects anomalous behaviour in a processor using
HPC data and predict potential failure in real-time is presented. The algorithm consists
of three main stages, (a) one-step ahead prediction to predict the next data in the
time-series, (b) measurement of deviation between predicted value and observed value,
and (c) mechanism to classify if the observed value deviates “too much” and is deemed
anomalous. Three forecasting methods have been identified for one-step ahead prediction
namely, (a) Single Exponential Smoothing, (b) Autoregressive Moving Average, and (c)
Single Layer Linear Network. Two methods are used for measurement of deviation and
anomaly classification, namely: (a) Residual Distribution, and (b) Prediction Interval.
The algorithm predicts a potential failure if the number of consecutive anomalies, C'

equals 5.

Two attributes are used to measure the performance of the algorithm. The first at-
tribute is the accuracy, which measures how accurately the detector has predicted both
anomalies and normal data points correctly. The second attribute is the detection time
attribute, a novel performance measurement attribute developed specifically for this
problem. It refers to the earliest time for the algorithm to raise an alarm at a potential

failure.

Based on analysis conducted, the lowest detection time achieved was 325us for Resid-
ual Distribution with threshold value, zipesn €qual to 6. Meanwhile, using Prediction
Interval, the best detection time achieved was also 325us with optimum parameters
PI =90%, df =1 and W = 3. One-step ahead prediction using ARMA(4,4) proves to
be a better forecasting method as the number of detected false alarms (FPs) are lower
compared to SES and LN. Although the best detection time using Residual Distribu-
tion and Prediction Interval is same, using Prediction Interval has a slight drawback —
it requires time for the calculation to stabilise, thus it may be at a little disadvantage

compared to Residual Distribution method.
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The following chapter will present the proof of concept for a lightweight detector that
predicts potential failure through the detection of anomalous behaviour based on the

early detection and prediction algorithm developed in this chapter.






Chapter 5

Detector for Predicting Potential
Failure from Anomalous

Behaviour

5.1 Introduction

In previous research that uses HPC to detect anomalous behaviour, the data collected is
usually sent for offline processing to be analysed and anomalies are only detected after
a failure has happened [37,74,152]. In contrast to that work, the detector proposed
and designed here aims to predict potential failure in real-time through the detection of
anomalous behaviour. The key difference lies in the ability of the detector to detect and
predict within a certain number of clock cycles and prevent the system from entering
into a failure state. In Chapter 3, the minimum number of clock cycles before the system

crashes was found to be approximately 1,000,000.

In Chapter 4, the algorithm for early detection and prediction of potential failure is
presented where the best detection time was found to be 325us or approximately 82,000
clock cycles. This chapter presents the proof of concept for a lightweight detector that
predicts potential failure through detection of anomalous behaviour based on the algo-
rithm presented in Chapter 4. The design of this detector is realised using the optimal
parameters that have been determined earlier in the previous chapter. The main objec-

tives of the work in this chapter are as follows:

1. To design and simulate the detector through experimental validation by imple-
menting one-step ahead prediction and anomaly classification presented in the

previous chapter.
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2. To test the detector on several embedded benchmarks and evaluate the effective-
ness of the detection and prediction in terms of “Time to Detect” against “Time

to Failure”.

3. To measure the performance of the detector based on its total instructions, Cycles

Per Instruction (CPI), total execution time and size.

This chapter is organised as follows. Section 5.2 will present the proposed design of
detector and Section 5.3 outlined the experimental setup to validate the design. Sec-
tion 5.4 will present the results of testing the detector on several benchmarks while
Section 5.5 and Section 5.6 present the performance analysis and source-byte analysis of
the detector based on total instructions, Cycles Per Instruction (CPI), total execution
time and size while Section 5.7 provides the summary of the performance analysis. The

chapter is concluded in Section 5.8.

5.2 Proposed Design of the Detector

The computer industry, be it from a high-end, customised, special-purpose comput-
ing in avionics, telecommunications and networking to low-power embedded computing
in video games and portable computing, the expectations from consumers remain the
same — faster, more efficient and more powerful. However, single core products are
showing a decline in the ability to boost performance to keep pace with consumer de-
sire. Multicore-processors have now been recognised as one of the key components in

improving computing performance.

Multicore technologies aim to either exploit concurrency, increase compute density, han-
dle partitioned workloads, or achieve some combination of these objectives. Integrating
multicore technologies for embedded systems requires developing multicore processors
which can be integrated into a small area such as a classic microcontroller. Fortunately,
this has been made possible with the recent developments. For example, most Intel
Atom processors have between two and four cores while the NXP LPC4300 contains
an ARM Cortex-M4 and a Cortex-MO processor, and the Freescale Vybrid contains a
Cortex-M4 and a Cortex-Ab5 processor. This illustrates that the need for multi-processor

designs in certain microcontroller application areas is expanding.

The idea of using a dedicated hardware processor to detect anomalous behaviour in the
main processor is aimed at achieving a quick response for detection and prediction with
minimal performance overhead. Rather than placing the detector on the main core in
a multicore microcontroller, it is designed to be placed on secondary core to ensure no
overhead is imposed on the main core running the application. However, there are some

challenges for using a multicore processor in a microcontroller, and the most notable
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challenge is deciding which part of the system will be shared, and which part of the

system will not be shared.

Following the design guidelines as proposed in [153], the main core and secondary core
have been designed to have private caches and private memories. This is to ensure that
the HPC data from the main core that uses the number of cache misses as its PME will
not be compromised due to the presence of a secondary core. Figure 5.1 illustrates how
the proposed detector is designed in such a way that the secondary processor can receive
the PME counts from the main processor with minimal overhead to the main processor

via the communication pipeline.

1 HPC data at every x clock
cycles

CORE A COREB
(MAIN CORE) |, (DETECTOR)

Alertuser whenC=15

v

**C is the number of consecutive anomalies to be detected

FIGURE 5.1: Proposed hardware-based detector utilising multi-cores architecture

The important consideration in this design is the inter-core communication pipeline
where HPC data from the main core can be sent via a dedicated pipeline to the detector
core as shown in Figure 5.1. The inter-core communication pipeline between the main
core and the detector core is established when the main core sends a command to turn
on the detector core. It is important to have a dedicated pipeline to ensure that the
HPC data sent from the main core to the detector core will not be compromised that
can affect the detection and prediction. Figure 5.2 shows the overall execution between

the main core, called Core A, and the secondary core, called Core B.

Core A which functions as the main core, starts up the whole microcontroller, initialises
the memory, peripherals and stack pointers. Core A will then turn on Core B and
initialised the inter-core communication pipeline to Core B. After Core B has been
turned on and the communication pipeline to Core A has been established, Core B
loads the detector program. Core A will run the application and send one HPC data at
every 1250 clock cycles to Core B. Core B, prior to receiving the HPC data, will perform
one-step ahead prediction and predict the next data. Once the actual data (or observed
data) is available, Core B will measure the deviation between predicted data and actual
data. If it exceeds the threshold, the actual data will be marked as anomalous. If there

are five anomalous data points detected consecutively, Core B sends an interrupt to
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Core A Core B
Execution Flow Execution Flow

| Start up pcontroller and Core A | = wmap| Start up Core B and establish
i I- "™ inter-core communication
v 11 pipeline to Core A
Turn on Core B and initiate inter- I I
core communication pipeline to [== = == i
Core B o = - - A
1 | Load detector |
| Run application | v
L 3 | Predict one-step ahead |

v v
Sample 1 HPC data to CORE B at '— = == wm we{ g Receive 1 HPC from COREA |
1250 clock cycle

\ 4
Compare between predicted and

actual

v

v
b [ow wm ww w; ww|  Count # of anomalies. Send an

interrupt ifc=5

Receive interrupt from CORE B,
close communication pipeline

¥

v Close communication pipeline,

Halt application, raise alarm of Turn off CORE B
potential failure

L} __J * Communication from Core A to Core B

- - - - -’ Communication from Core B to Core A

F1GURE 5.2: Overall execution flow between main core, Core A and secondary core,
Core B

Core A. Core A, upon receiving the interrupt, will close the inter-core communication

pipeline with Core B, halt the application, and raise an alarm for potential failure.

In this work, it is assumed that Core B, being the detector core, is protected against

transient faults.
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5.3 Experimental Validation of the Detector

The experiments were performed on a workstation running Ubuntu 16.04 LTS as the
operating system with an Intel Core i5-5257U operating at 2.70GHz and 11.1 GB of
memory. An environment is simulated in such a way that a main processor core (or
Core A) will be running the benchmark, and a secondary core (also known as Core
B) runs the early detection algorithm to predict and classify the stream of HPC data
coming from Core A through a protected inter-core communication pipeline. In the
experimental setup, to simulate Core A running a benchmark, a stream of HPC data
from a benchmark is used as an input to Core A, which will then read and send a data
to Core B. The time granularity has been fixed where the HPC data is being transferred
from Core A to Core B at every 5us.

The implementation of inter-core communication pipeline is realised using a named pipe
(also known as a FIFO), as it is one of the methods for inter-process communication.
Unnamed pipes allow any process to use the pipes to send commands while named pipes
only allow processes that have establish connections with the pipes to send or receive
commands. Using named pipe, Core A established an inter-core connection with Core
B, and vice-versa. When five anomalies have been detected consecutively, Core B sends
an interrupt to Core A and closes the connection to Core A. Core A, upon receiving the

interrupt, stops the execution and prompt an error message on the screen.

Function 5.1 and 5.2 shows how a FIFO is created and used.

int fileil;
filel = mkfifo("fifo_counter" ,0666);

LisTiNG 5.1: Creating a FIFO

int fifo_in;
fifo_in = open("fifo_counter", O_WRONLY);

LisTiNG 5.2: Using a FIFO

Three different benchmarks have been chosen to validate the detector. The benchmarks
chosen are Dijkstra, FFT and Bitcount benchmarks, each from a different suite as ex-
plained in Section 3.5. These benchmark applications have been injected with a single
bit-flip randomly at any of the location in the various stages of the pipeline. As the
main processor core is running a benchmark application, it sends one piece of HPC data
at every 1250 clock cycles through the communication pipeline to the detector core.
Six different detectors were implemented with each detector running a combination of

one-step ahead prediction with anomaly classification techniques.

The first stage is to predict the value for next data point using one-step ahead prediction.

Three different methods were used for one-step ahead prediction, namely SES, ARMA
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and LN. For one-step ahead prediction using the SES method, the optimum value for
parameter «, which has been determined in Section 4.6.1, is 0.7. As for one-step ahead
prediction using the ARMA method, the optimal value for parameter (p,q) is (4,4) as
shown in Section 4.6.2. And for one-step ahead prediction using the LN method, the

optimum window size, W, is 3 as shown in Section 4.6.3.

For the second stage, two different methods were applied. The first method is Residual
Distribution where, the threshold rule, zip esh, 1S defined as the number of standard
deviations away from the average of the residual. If the residual distribution, z exceeds
the threshold rule, zi,resh, the observed data is marked as anomalous. The optimum
value for zipresh 1S 6, as shown in Section 4.8.3. The second method is Prediction Interval,
used to estimate the range where the observed data will fall. zypper and zjpwer are the
upper and lower boundary thresholds defined in Equation 4.18. The ideal confidence
level, determined in Section 4.8.4, was 90% with window size, W = 3 and df = 1. The
algorithms for the Residual Distribution method and the Prediction Interval method are

shown in Figure 5.3 and Figure 5.4, respectively.

In the secondary core, the detector will classify if the current point is anomalous and raise
the alarm of the impending failure of the main core if five anomalous points are detected
consecutively. The interrupt is transmitted to the main core via another dedicated
communication pipeline. This is to ensure that the pipeline that is being used to send
an HPC data from the main core to the detector core do not need to wait and check for

any alarm from the detector core, which could impede the detection process.

Figure 5.5 shows the simulation of the detector core performing one-step ahead pre-
diction, measurement of deviation between predicted values and observed values and
classification of the observed values. The detector core in Figure 5.5 has used the
ARMA method for one-step ahead prediction and the Residual Distribution method
for measurement of deviation and anomaly classification. Upon five anomalies detected
consecutively, an interrupt is sent to the main core. Figure 5.6 shows the main core

upon receiving an interrupt for a potential failure, terminates the current process.

5.4 Experimental Results

The six different detectors were tested on three benchmarks namely Dijkstra, FFT and
Bitcount benchmarks. These benchmarks are tasked to run at the same clock speed and
provide HPC data at the same sampling interval of 5us. As mentioned in Chapter 3
and Chapter 4, it takes about 1M clock cycles for the system to fail and crash, therefore
any potential failure has to be predicted before 1M clock cycles, which is equivalent to
4,000us.
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Algorithm 1 Detection using Residual Distribution
for i +— 1 to 3 do
arrayli] < y;
end for
Yiy1 + Predict(array[2],1)
while [Main program runs] do
Y1 < new HPC {From pipeline}
{Shift array by 1}
array[2] < yi+1
error < |yg1 — Yer1
SUIN eITor 4— sum error + error
sum squared error — sum squared error + error
num observations ¢— num ohservations + 1
'u. — SuIm error

num observations
sum squared error (’ug)

02 %(611}?1:13; obiervations
A
if (z > 6) then
count < count + 1
else
count + 0
end if
if (count > 4) then
Pipeline - 0 {Anomalous hehaviour detected}
else
Pipeline «- 1 {No anomaly}
end if
Ut+1 < Predict(array[2], i)
end while

2

FIGURE 5.3: Algorithm for early detection and prediction using Residual Distribution

5.4.1 Experimental Results for the Dijkstra Benchmark

For the Dijkstra benchmark, twenty experiments were performed where in each experi-
ment, a single bit-flip fault is injected. Out of the twenty experiments conducted, three
experiments were found to experience crash failure due to the injected fault manifested
itself as an error. Table 5.1, Table 5.2 and Table 5.3 show the detection results for three
different anomalous data sets. As can be seen from these results, potential failure in
the main core can be predicted by at least three detectors out of a total of six detectors

with the detection time are all under 4,000us.

In Table 5.1, the detectors running SES with Residual Distribution, LN with Resid-
ual Distribution, SES with Prediction Interval and LN with Prediction Interval have
managed to predict a potential failure in 1820us, 285us, 245us and 1790us, respectively.
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Algorithm 2 Detection using Prediction Interval
for i «— 1 to W do
list[i] + i
end for
i1 — Predict(list[W], )
while [Main program runs] do
yi+1  new HPC {From pipeline}
{Shift error array by 1}
error[5] < |Gir1 — Vg1
sum squared error < sum squared error -+ error
for i +— 1 to W do
sum samples <— sum samples + arrayli]
end for
o w
for?<—1toﬂ do
sum diff <= sum diff + (array(i] — p)?
end for
{Shift list array by 1}
list[5] +— num
num observations <— num observations + 1
diff < (num — p)?
AISE <_ sum Squa,red error

num observations
temp < 1+ num observations sum diff
lower < model — (PI x VM SE % \/temp)
upper <— model + (Pl x v/ MSFE % \/temp)
if (num < lower || num > upper) then
count <— count + 1
else
count < 0
end if
if (count > 4) then
Pipeline < 0 {Anomalous behaviour detected}
else
Pipeline «+ 1 {No anomaly}
end if
i1 < Predict(array[W], i)
end while

2

diff

FIGURE 5.4: Algorithm for early detection and prediction using Prediction Interval

TABLE 5.1: Detection time for Dijkstra benchmark Anomalous Dataset 1

‘ Anomaly Classification ‘ Residual Distribution ‘ Prediction Interval ‘
‘ One-Step Ahead Prediction SES ‘ ARMA ‘ LN ‘ SES ‘ ARMA ‘ LN ‘
7.0134 \ 7.0134 \
| |

|

|
‘ Fault injection (s): ‘
| System crash (s): \ 7.0183 7.0183
‘ Start of anomalous behaviour (s): ‘ 7.0149 ‘ 7.0149
| Anomalies detected at (s): | 7.0168 | 7.0148 | 7.0152 | 7.0151 | 7.015 | 7.017 |
| Detection time (us) | 1820 | -120 | 285 | 245 | -145 | 1790 |
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FIGURE 5.5: Simulation of the Detector Core

O€ elena@elena-VirtualBox: ~/RTS/benchmarks/monitor
elena@elena-VirtualBox:~/RTS/benchmarks/monitor$ gcc hpc_counter.c -o hpc_counte
-

elena@elena-VirtualBox:~/RTS/benchma /monitor$ . /hpc_counter

Interrupt received. Terminating the process.elena@elena-VirtualBox:~/RTS/benchma
rks/monitors [

FIGURE 5.6: Simulation of the Main Core

TABLE 5.2: Detection time for Dijkstra benchmark Anomalous Dataset 2

Anomaly Classification ‘ Residual Distribution ‘ Prediction Interval ‘

One-Step Ahead Prediction SES | ARMA | LN | SES | ARMA

LN

Fault injection (s): 6.9702 6.9702

System crash (s): 6.9756 6.9756

Start of anomalous behaviour (s): 6.9717 6.9717

Anomalies detected at (s):

6.9741 | 6.9721 | 6.8700 | 6.9725 | 6.7887 | 6.9717

Detection time (ys) 2420 | 350 | -101685 | 770 | -183009 |

25
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TABLE 5.3: Detection time for Dijkstra benchmark Anomalous Dataset 3

| Anomaly Classification | Residual Distribution | Prediction Interval |
| One-Step Ahead Prediction | SES | ARMA | LN | SES | ARMA | LN |
| Fault injection (s): \ 6.6587 \ 6.6587 |
| System crash (s): \ 6.6636 \ 6.6636 \
‘ Start of anomalous behaviour (s): ‘ 6.6597 ‘ 6.6597 ‘
| Anomalies detected at (s): | 6.6623 | 6.6600 | 6.6620 | 6.6622 | 6.6601 | 6.6608 |
| Detection time (ys) | 2595 | 350 | 2595 | 2425 | 405 | 1075 |

However, for detectors running with ARMA method, the detection time were -120us and
-145us. This indicates that the detector was too sensitive and had detected false alarms
instead of actual anomalies. In Table 5.2, the detectors running SES with Residual Dis-
tribution, ARMA with Residual Distribution, SES with Prediction Interval and LN with
Prediction Interval have managed to predict a potential failure in 2420us, 350us, 770us
and 25us, respectively, while in Table 5.3, all six detectors have managed to predict
a potential failure in the system in 2595us, 350us, 2595us, 2425us, 405us and 1075us
respectively. This means, the detector core had successfully predicted a potential failure

of the main core before actual failure occurs.

Figure 5.7 shows the result of “Time to Detect” versus “Time to Failure” for each
detector. “Time to Failure” is calculated from the time the fault is injected into the
system until the time when the system crashes. “Time to Detect” is calculated from the
start of the anomalous behaviour in the system until the time the detector had detected
5 anomalous data points consecutively and send an interrupt to the main core notifying
a potential failure. The minimum value on the Y-axis in Figure 5.7 is 0 as it shows the
time to predict potential failure by detecting and identifying actual anomalies. Negative
values indicate that the detector has detected false alarms and wrongly identified the
normal data points as anomalies. Based on these figures, the time to detect is well-below
4,000us. This means, there is a possibility for some preventive or corrective actions to

be taken to avert the impending failure.

5.4.2 Experimental Results for the Bitcount Benchmark

The detectors were built based on trained and optimised models, where training and
optimisation were performed using the Dijkstra benchmark. These same detectors were
also tested against the Bitcount benchmark. Out of twenty experiments conducted, one
experiment was found to experience failure after a fault had been injected. Table 5.4
shows the result of the detector detecting anomalies and predicting a potential failure.
All detectors managed to detect the anomalies and predict potential failure with the

detection time ranging from 525us to 2450us.
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FIGURE 5.7: Time to Detect vs Time to Failure for Dijkstra benchmark
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TABLE 5.4: Detection time for Bitcount benchmark Anomalous Dataset 1

6.6791 | 6.6771 | 6.6790 | 6.6791 | 6.6772 | 6.6790
2465 | 525 | 2420 | 2450 | 545 | 2375

‘ Anomalies detected at (s):

‘ Anomaly Classification ‘ Residual Distribution ‘ Prediction Interval ‘
‘ One-Step Ahead Prediction ‘ SES ‘ ARMA ‘ LN ‘ SES ‘ ARMA | LN ‘
| Fault injection (s): 6.6756 \ 6.6756 \
| System crash (s): 6.6806 \ 6.6806 \
|
|
|

|
|
‘ Start of anomalous behaviour (s): ‘ 6.6766 ‘ 6.6766
|
|

‘ Detection time (us)

In Figure 5.8, the detector that utilised the ARMA method for one-step ahead prediction
has the quickest detection time compared to using SES or LN method. The time to
detect using the ARMA method with either Residual Distribution or Prediction Interval
is around 500us, with at least 3000us to spare for any preventive or corrective actions
to be taken.
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FIGURE 5.8: Time to Detect vs Time to Failure for Bitcount benchmark

5.4.3 Experimental Results for the FFT Benchmark

All six detectors were also used in the FFT benchmark. In the FFT benchmark, a total
of 20 experiments were performed, and one experiment was found to experience failure
after the injected fault had manifested itself as an error. Table 5.5 shows the results for

each detector in detecting the anomalous behaviour and predicting a potential failure.
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From the results, all detectors were able to predict a failure in the main core, with the

detection time ranges from 930us to 4025us.

TABLE 5.5: Detection time for FFT benchmark Anomalous Dataset 1

71157 | 71130 | 7.1141 | 7.1144 | 7.1137 | 7.1137
4025 | 930 | 1960 | 2270 | 1610 | 1635

‘ Anomalies detected at (s):

‘ Anomaly Classification ‘ Residual Distribution ‘ Prediction Interval ‘
| One-Step Ahead Prediction | SES | ARMA | LN | SES | ARMA | LN |
‘ Fault injection (s): ‘ 7.1101 ‘ 7.1101 ‘
| System crash (s): \ 7.1161 \ 7.1161 \
‘ Start of anomalous behaviour (s): ‘ 7.1121 ‘ 7.1121 ‘

| |

| |

‘ Detection time (us)

Figure 5.9 shows the time to detect versus time to failure for all six detectors detecting
the anomalies in the FFT benchmark. From the figure, it is seen that the detector that
utilises ARMA for prediction has the quickest detection time compared to SES and LN.
The detector took 930us to predict a potential failure with 3070us to spare.
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FIGURE 5.9: Time to Detect vs Time to Failure for FFT benchmark

All three benchmarks, as illustrated in Figure 5.7, Figure 5.8 and Figure 5.9, show that
the ARMA method is the most suitable method for predicting the next data point. Both
FFT and Bitcount benchmarks had not been used in the training, validation and testing
of the algorithm in Chapter 4, but still the detector managed to detect the anomalous
behaviour and predict potential failure well before the time of failure. For measuring the

deviation between the predicted point and the actual point, both Residual Distribution
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and Prediction Interval are comparable. The only downside of using Prediction Interval
for anomaly classification is that it requires at least 20us for the calculation to stabilise,
which means, if the fault is manifested into an error during that initial period, it will
not be detectable. This is due to the parameter in Prediction Interval algorithm which
is the standard error of the predicted model. One of the component in the parameter is
the Mean Squared Error (MSE), shown in Equation 4.19. In the beginning of the time
series data, the calculated value of MSE is large when the total sum of squared error
is divided by a small number of sample, n. As n increases, the MSE decreases until it

stabilises at a point of time, which in this experiment, is after 20us.

5.5 Performance Analyses of the Detector

Analysis on the performance of the detector is done by calculating the total execution

time, T" using the given formula in Equation 5.1.

T =1 CPI « CPU Clock Cycle (5.1)

The detector is designed to run on secondary processor core. Both the main core and the
secondary core were simulated using the same Intel processor, and the main processor
is tasked to run the benchmarks as a form of single-tasking system. The assembly codes
for all six different detectors which were developed are obtained, and the reciprocal
throughput and latencies for each instruction are calculated based on Intel processor
metrics obtained from [125]. The CPU clock cycle is calculated as 1/Clock Rate where
the clock rate is set at 250MHz. Table 5.6 displays the results of total instructions, I,

Cycles per Instruction, CPI, and the total execution time, T, for each detector.

TABLE 5.6: Performance in execution time of each method measured on an Intel ar-

chitecture
Total Cycles Tota!
Method Instructions per ) Exe?utlon
(1) Instruction Time
(CPI) | (T)- ps

SES with Residual Distribution 250 1.8780 1.878
ARMA with Residual Distribution 311 1.7186 2.138
LN with Residual Distribution 243 1.8992 1.846
SES with Prediction Interval 334 1.7006 2.272
ARMA with Prediction Interval 384 1.6810 2.582
LN with Prediction Interval 330 1.8273 2.412

As shown in Table 5.6, the total execution time for evaluating a single data point ranges
from 1.8us to 2.6us, well below the sampling time of 5us (or 5000ns), which is equivalent
to sampling at every 1250 clock cycles for a processor with a clock rate of 250MHz. In
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other words, as the current data point being sampled, the detector is able to determine
if the current data point is normal or anomalous. The total number of instructions using
Prediction Interval is higher compared to using Residual Distribution as the computation
for lower and upper bounds require more values as can be seen in Algorithm 5.4. The
CPI for methods using Residual Distribution are just slightly higher as there are more

dependencies in the detection and prediction algorithm, hence there are more latencies.

5.6 Source Byte Analysis of the Detector
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SES with Residual ARMA (44) with LN with Residual ~ SESwith ~ ARMA(44)with LN with
Dist, Residual Dist. Dist, Prediction Prediction Prediction
Interval Interval Interval

FIGURE 5.10: Size of detector in bytes

The size of the detector is measured by the size of the executable code and data. As can
be seen from Figure 5.10, the combined size of executable code and data did not exceed
2000 bytes or 2 kB. As ARMA has the most instructions compared to SES and LN,
naturally the size of the detector using ARMA will be bigger. The size of the detector
that applies Prediction Interval method is also bigger by almost 500 bytes compared
to using Residual Distribution. Figure 5.11 compares the size of the detector that uses
ARMA with Residual Distribution with the size of the embedded benchmarks used
for testing. As can be observed, the size of the detector is as light as the embedded
benchmarks used. However, the size and complexity of the detector developed in this

work are independent of the benchmarks.
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2000
B Data

1600 ¥ Executable Code

(.text)
1200
800
400
0

Dijkstra Bitcount  Detector

Byte Size

FIGURE 5.11: Size of detector in comparison with size of benchmarks

5.7 Summary on the Results Analyses

The one-step ahead prediction using the ARMA method has provided the quickest detec-
tion time in most of the datasets for Dijkstra, Bitcount and FFT benchmarks compared
to using SES or LN prediction methods. From these analyses, it is observed that all the
techniques detected anomalous behaviour well before the system failed, but the com-
bination of using ARMA method with Residual Distribution method is the fastest, as
shown in Figure 5.7, Figure 5.8 and Figure 5.9. The Residual Distribution methods
are faster compared to Prediction Interval method for evaluating a single data point as
shown in Table 5.6 and have slightly smaller code sizes as shown in Figure 5.10. Thus,
by a small margin, the combination of ARMA with Residual Distribution is the best

choice for prediction and detection of anomalies.

Placing the detector on a secondary core means there will be no additional hardware
imposed on the main core. The main core utilises the existing hardware performance
counter in its own core and send the data to the secondary core for detection of anomalous
behaviour. Based on source byte analysis, the proposed detector can be deemed as
a lightweight detector since the size is below 2 kB. It is also worth noting that the
size of the detector is independent of the size of the benchmarks, which means, the
size of the detector remains at 2 kB even if the size of the benchmark exceeds 2 kB.
Although the experiments were performed in the form of simulations, other work has

demonstrated that using a secondary processor core to monitor main processor core’s
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HPC is possible [37]. However, compared to this work which uses real-time streaming
HPC data to detect for anomalies and predict potential failure, they capture the total
count of HPC data after the application has completed and performed the analysis offline

to determine if the application running is benign or anomalous.

5.8 Summary

In this chapter, a proof of concept for a lightweight detector to predict potential failure
through the detection of anomalous behaviour in a microcontroller is presented. The
detector has been designed to run from a secondary processor, where the main core
sends one HPC data sampled at every 1250 clock cycles via an inter-core communication
pipeline. The secondary core, dubbed as Core B, will first load the detector program
after start-up, and begin predicting the next data. Once it receives the actual data from
the main core, it will measure how much the actual data deviate from the threshold and if
the deviation exceeds the threshold, the actual data will be classified as anomalous. Five
anomalies detected consecutively will result in the secondary core sending an interrupt to
the main core via another inter-core communication pipeline to alert for potential failure.
The main core, after receiving the interrupt, will close the communication pipeline, halt

the application and raise an alarm for potential failure.

The lightweight detector was designed based on the early detection and prediction al-
gorithm developed in Chapter 4. It is worth noting that while the early detection and
prediction algorithm was developed solely based on Dijkstra benchmark, it has been
proven that it is a general model where it can be applied to other benchmarks, such as
FFT and Bitcount. Based on the results presented, it is possible to predict potential
failure in the real-time by detecting the anomalous behaviour that appeared in the pro-
cessor when a fault has manifested into an error. The detector has managed to detect
anomalous behaviour and predict potential failure in all three benchmarks below the
“Time to Failure” of 4000us, with ARMA prediction method and Residual Distribution
for anomaly classification providing the best performance compared to other methods.
There was no cost involved in the main core, as the HPC is built-into the processor,
while for the detector, the total size of the detector does not exceed 2 kB. As mentioned
earlier, each HPC data is sampled at 1250 clock cycles, which is equivalent to every
5us for a 250MHz clock speed. The total execution time of a single data point using
ARMA (4,4) with Residual Distribution was 2.138us, well within the sampling time.

While both the main core and the detector core were simulated using the same Intel
processor, it is possible for the detector core to operate on an Intel processor which is
smaller and with reduced power compared to the main core as it is shown that the total

size of the detector core is less than 2 kB.






Chapter 6

Conclusions and Future Work

Reliability in safety-critical embedded systems is a major concern because a failure in a
safety-critical embedded system can result in death, injury, severe damage to equipment,
property or environment. While existing research in fault tolerant systems focused
on providing a complete error tolerant system, the techniques often come with high
overhead, are resource-intensive and some techniques have only managed to detect the
fault after a failure has occurred. The contributions from the work described in this
thesis provide a mechanism to predict potential failure in real-time by monitoring and
detecting anomalous behaviour in the system using a Hardware Performance Counter
(HPC). The work in this thesis addresses the gap found in current research on fault
tolerant systems and is targeted to complement current fault tolerance techniques and
contribute to a better protection strategy for embedded systems. The proposed detector
that can predict potential failure in the processor in real-time is the first of its kind, and
not only it does not require any additional hardware resources, it is also very light (less
than 2 kB of code).

6.1 Summary and Contributions

In this thesis, the work presented can be evaluated against the research questions and
research objectives detailed in Chapter 1, Section 1.4, which are reiterated here for

clarity.
Research questions:
1. Is it possible to predict a potential failure in an embedded system by monitoring
and detecting the anomalous behaviour in the system?

2. What are the available hardware performance counters in a processor which can

represent a behaviour of a system and can be monitored online and in real-time?
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3. What are the suitable techniques to model the behaviour of the system and perform

early detection of anomalies to predict potential failure?

4. How do different prediction algorithms impact the implementation of the detector?

Research objectives:

1. Investigate how a manifested fault affects the behaviour of the system and identify
the various Performance Monitoring Events (PMEs) available that can be used
across different types of processors. Identify the number of hardware performance
counters available in processors used in embedded systems, in particular, the num-
ber of available counters in an Intel Atom processor used in this work. Select

different PMEs and compare them to determine which is better for detection.

2. Develop an algorithm for early detection suitable to be implemented in embedded
systems taking into account the constraints and limitations of an embedded system.
Ezxplore several methods for one-step ahead prediction and anomaly classification

rules and perform evaluation on methods used in the early detection algorithm.

3. Implement the developed algorithm as a hardware-based detector. Validate the
implementation through experimental simulations and analyse the performance and

cost of the proposed detector.

The first objective is achieved in Chapter 3 where a HPC is used to monitor the anoma-
lous behaviour caused by manifested faults. As presented in Chapter 2, the use of HPCs
has been applied in various research such as performance evaluation, workload estima-
tion and detection for malicious activities. A common trait in all these works is how
HPCs have been used to identify or detect some form of deviation from normal or ex-
pected behaviour. But none have actually used HPC to predict potential failure in the
processor, caused by a single bit flip, by monitoring and detecting anomalous behaviour
at a system-level. A system that behaves normally exhibits a pattern, and any devi-
ation from that pattern indicates an anomaly had occurred. The experiments which
were performed using GemFI, show how the behaviour pattern of the system leading
either to a crash or a hang can be clearly observed by using a single HPC. From the
experiments conducted, it takes about 1,000,000 (or 1M) clock cycles for a system to
crash from the time the fault manifested as an error. This information is then used to
guide the detection algorithm where error detection and prediction of potential failure
has to be done below 1M clock cycles (or 4,000us) for a system running at a clock speed
of 250MHz.

Two different architectural-level PMEs that were common across different types of pro-
cessor were selected for comparison, namely (i) number of instructions retired PME,

and (ii) number of cache misses PME. While both PMEs can be used for anomalous
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behaviour monitoring, the latter is better suited for detection where the counter data
records a bigger deviation (more than 10%) when the pattern begins to deviate from the
normal behaviour compared to the former where the deviation recorded is around 5%.
The cache miss values are much lower than the instructions retired values, and hence,
where cache miss values have between three and seven bits, the instructions retired
values have around seventeen bits. This means the computational effort and speed to
perform early detection using cache misses will be smaller. Therefore, the first objective
has been fulfilled.

The second objective is achieved in Chapter 4 where a novel algorithm to predict poten-
tial failure in real-time by monitoring and detecting anomalous behaviour in a processor
is presented. Embedded systems have limitations and constraints concerning hardware
resources, speed, power and memory size. Therefore, the algorithm for error detec-
tion and prediction of potential failure must be lightweight with minimal computational
complexity and do not require any pre-processing on the data. Statistical methods are
preferred over machine learning algorithms as these methods not only satisfy the above
criteria, but statistical methods have also been found to outperformed machine learning

algorithms in terms of forecasting accuracy.

The novel algorithm consists of three stages, with each stage building from its predeces-
sor: (i) predicting the next data using one-step ahead prediction method, (ii) measuring
the deviation between predicted data and actual data, and (iii) classifying if the actual
data deviates “too much” and is deemed anomalous. Based on the analyses conducted
in Chapter 3, when a fault manifested as an error, the counter value begins to deviate
and the system starts behaving anomalously before it finally experiences failure. Based
on this characteristic, prediction of potential failure relies on how many consecutive
anomalies are required to be detected. From the experiments conducted, the algorithm
is able to predict potential failure with low detection time and high accuracy if there
are five anomalies detected consecutively. The detection time attribute in this thesis
is a novel performance measurement attribute that specifically measures how well the
early detection and prediction algorithm perform. It refers to the earliest time for the

algorithm to predict potential failure.

Three different methods have been applied for one-step ahead prediction, namely, (i)
Single Exponential Smoothing (SES), (ii) Autoregressive Moving Average (ARMA) and
(iii) Single-Layer Linear Network (LN) while two anomaly classification methods namely,
(i) Residual Distribution and (ii) Prediction Interval for measuring the deviation and
classification are explored. Based on the results of the experiment, the earliest detection
time achieved was 325us from the time the fault has manifested itself into an error, and
this was achieved with the optimum parameters zyresp, = 6 for Residual Distribution
and PI = 90%,df = 1, W = 3 for Prediction Interval. ARMA (4,4) has proven to be a
better prediction method as the number of false alarms and missed anomalies (FPs and

FNs) are lower compared to SES and LN methods. Between Residual Distribution and
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Prediction Interval, the latter is at a certain disadvantage for it requires a time of at
least 20us for the calculation to stabilise. Hence, if an error occur at the initial start-up
of the program, the Prediction Interval method for anomaly classification will not be
able to detect those anomalous behaviours, and would not be able to predict a potential

failure. Therefore, based on these results, the second objective has been fulfilled.

In Chapter 5, the third objective of the thesis is achieved where a proof of concept for
a lightweight detector that predicts potential failure from the detection of anomalous
behaviour is presented. A total of six different detectors were designed and simulated,
with each detector built using either SES, ARMA or LN methods for one-step ahead
prediction and Residual Distribution or Prediction Interval methods for anomaly classi-
fication. The detector is designed to run on a secondary core, where it receives one HPC
data from the main core at every 1250 clock cycles via a dedicated, inter-core communi-
cation pipeline. It measures the deviation between the HPC data received from the main
core and the data it predicted earlier and marked the observed data as anomalous if it
exceeds the threshold set either in Residual Distribution or Prediction Interval method.
If the detector detected five anomalies consecutively, it sends an interrupt to the main
core to alert for potential failure. Upon receiving the interrupt from the detector, the

main core will halt the application and raise an alarm for potential failure.

In Chapter 4, the detectors were developed based on Dijkstra benchmark. However, the
detectors were also tested on two additional benchmarks that have not been trained or
tested. Based on the results obtained, it is proven that the detector has managed to
detect the anomalous behaviour that had occurred and was able to predict potential
failure in real-time before the system experience failure. For Dijkstra benchmark, the
detector raised the alarm for potential failure at 350us, where else, for FFT and Bitcount
benchmarks, the alarm is raised at 930us and 525us respectively, well below the 4,000us
limit. These results were recorded using the detector which implements ARMA (4,4) for
one-step ahead prediction and Residual Distribution for measurement of deviation. The
total execution time required for a single data point was 2.138us, which is well-within
the sampling time of 5us. This means that within the time of 2.138us, the detector is
able to predict the next data, measure the deviation between predicted data and actual
data, and classify the actual data as normal or anomalous before sending an interrupt to
the main core if the number of consecutive anomalies exceeds 5. The size of the detector
is also very small, less than 2 kB. No modification was required on the main core as
all the prediction and classification of the HPC data was performed on the secondary
core, and the main core is only tasked to send the existing, built-in HPC data from the
processor core itself to the secondary core via the inter-core communication pipeline.

Therefore, the third objective has been achieved.

All the four contributions in this thesis are aimed at providing a new strategy for online
error detection in a processor. Based on the findings in this work, it can be concluded

that it is possible to predict a potential failure in the embedded system by monitoring
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the system for any anomalous behaviour. The lightweight detector proposed is suitable
to be used in multicore microcontrollers and there is no additional cost imposed on
the main core running the application. This novel algorithm for early detection and
prediction of potential failure in a processor has proven to work even on benchmarks
that were not used for training and testing. This algorithm can complement existing
fault forecasting and fault tolerance techniques and will contribute to a better protection

strategy for microprocessors, especially those that are used in embedded computing.

6.2 Future Work

The combination of fault forecasting, fault tolerance, fault removal and fault prevention
techniques helps in developing a dependable system for embedded computing. The
research in this thesis is focused on predicting potential failure through the detection of
anomalous behaviour in a processor. Some possible areas for future research which have

been identified are presented as follows.

6.2.1 Diagnostics

This research could be further extended to include diagnostic information. At the
present, the detector is able to predict potential failure in the processor but provides
no diagnostic information as to the location of the fault that causes the anomalous be-
haviour or the type of fault that causes the anomalous behaviour. Additional diagnostic

data will assist in ensuring proper corrective action is taken.

6.2.2 Recovery

Another important area that has been identified is to design corrective action that
will be applicable and suitable to be taken to address the anomalies detected in the
system. While the detector is able to detect in advance the signs of a system behaving
anomalously, the detector does not address the corrective action that needs to be taken.
In other words, there is no fault correction attempt by the detector besides halting the
application. This extreme corrective action of halting the system may be practical or
applicable for some non-critical embedded systems, but for some safety-critical systems,
this action may be deemed to extreme and impractical to be applied as it would cause
catastrophic results. Therefore, the technique of applying suitable correction is still
very much dependent on the nature of the application itself. However, as the prediction,
detection and classification process for a single point performed by the detector only

takes up about 2.138us, there is at least 2.5us available for corrective action to be taken.
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6.2.3 Implementation of the Inter-Core Communication Pipeline

Current technology allows core-to-core communication via shared memory space between
cores. However, shared memory communication involves coherence invalidation and
cache misses, which means this could affect how the HPC data is collected by the main
core. The goal of this research is to be able to predict potential failure in real-time using
HPC where data recorded truly depicts the behaviour of the system. Implementation of
a dedicated, inter-core communication pipeline as suggested will ensure the reliability
of the data collected and analysed by the detector. This dedicated pipeline will ensure
the HPC data sent from main core to detector core is not compromised or changed and
the HPC data will provides a real picture of the behaviour of the main core running the

specific application.



Appendix A

Execution Profiles for FFT,
Stringsearch and QSort

Benchmarks

Figure A.1, Figure A.2 and Figure A.3 shows the execution profiles obtained from FFT,
StringSearch and QSort benchmark where the execution profiles are plotted using two
different PMEs, namely instructions retired PME and cache misses PME.
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Appendix C

Matlab Code

C.1 One-Step Ahead Prediction

C.1.1 Single Exponential Smoothing

function y = singleSmoothed(data, model, alpha)
y = (alpha * data) + ((1-alpha) * model);
end

C.1.2 Autoregressive Moving Average

© 00 O Ut W N

NN NN NN = = = e e e
G W NN ~H O © 0O Ui Wi+~ O

function y = arma(data, diff, const, ar, ma, p, q,
delta = 0;
theta = 0;
if p "= 0
for a = 1:p
if (i - a) <=0
e = 1;
else
e = i - a;
end

delta = delta + (ar{a} * data(e));

end
end
if 9 "= 0
for a = 1:
if (i - a) <=0
e = 1;
else
e = 1i - a;
end
theta = theta + (ma{a} * diff(e));
end
end

y = const + delta + theta;

end
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Appendix C Matlab Code

C.1.3 Single-Layer Linear Network

window)

function model = linearNetwork (data,
03

position,

sum_weight
result = 0;
for i = 1:window
weight = window - i + 1;
sum_weight = sum_weight + weight;
point = position - i;
if (point <= 0)
result = result + O0;
else
result = result + (data(point) * weight);
end
end
model = result / sum_weight;

end
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