

University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any

accompanying data are retained by the author and/or other copyright owners. A

copy can be downloaded for personal non-commercial research or study, without

prior permission or charge. This thesis and the accompanying data cannot be

reproduced or quoted extensively from without first obtaining permission in

writing from the copyright holder/s. The content of the thesis and accompanying

research data (where applicable) must not be changed in any way or sold

commercially in any format or medium without the formal permission of the

copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic

details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton,

name of the University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

Predicting Potential Failure in

Real-Time through Monitoring and

Detection of Anomalous Behaviour using

Hardware Performance Counters

by

Woo Lai Leng

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering and Physical Sciences

School of Electronics and Computer Science

November 2019

http://www.soton.ac.uk
mailto:llw1n14@ecs.soton.ac.uk
https://www.feps.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Woo Lai Leng

Safety-critical embedded systems can be found in many application areas such as auto-

motive control systems, medical devices, and nuclear systems. Failure in these systems

can have catastrophic results and devastating effects on human lives and the surrounding

environment. Variations in temperature and voltage, single event effects and component

degradation are just some contributors that cause faults in these systems. Existing re-

search into techniques that deal with errors due to the presence of faults has mostly

focused on replication of hardware components, information redundancy or inclusion of

additional components to perform self-testing. However, these techniques either have

high overheads or are resource-intensive. This thesis presents a detection method that

can predict potential failure in real-time by detecting a change in system behaviour

using hardware performance counters that are readily available in a processor. The

early detection and prediction algorithm consists of two main stages — one-step ahead

prediction and anomaly classification. Evaluation on the early detection and prediction

algorithm were performed on benchmarks that are perturbed by single bit flip faults.

The analysis on the early detection algorithm shows that it achieves 99.7% accuracy and

earliest detection time was recorded at 325µs, which is less than a typical time to failure

about 4,000µs. The proof of concept results show that the detector manages to detect

when the system had started to behave anomalously and is able to stop execution before

the system encounters a critical failure. Analyses on the performance and size of the

detector show that the detector can be realised with minimal computational time and

resources.

http://www.soton.ac.uk
http://www.feps.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:llw1n14@ecs.soton.ac.uk

Contents

Research Thesis: Declaration of Authorship xv

Acknowledgements xvii

Abbreviations xxi

Nomenclature xxii

1 Introduction 1

1.1 Reliability in Safety-Critical Embedded Systems 3

1.1.1 Embedded Systems . 3

1.1.2 Characteristics of Embedded Systems 4

1.1.3 Safety-Critical Embedded Systems 5

1.2 Anomalous Behaviour . 6

1.3 Research Motivation . 7

1.4 Research Objectives . 8

1.5 Publications . 9

1.6 Thesis Organisation . 10

2 Background and Related Work 13

2.1 Introduction . 13

2.2 Reliability . 13

2.3 Threats to Reliability . 15

2.3.1 Defect, Fault, Error and Failure . 16

2.3.2 Origin of Faults . 17

2.3.3 Duration of Faults . 17

2.3.4 Fault-Error-Failure Chain . 18

2.4 Anomaly Detection . 20

2.4.1 Definition of an Anomaly . 20

2.4.2 Anomaly Detection Techniques . 23

2.4.3 Anomaly Detection in Damage Detection Domain 25

2.5 Other Online Error Detection Techniques 26

2.5.1 Built-In-Self-Test . 27

2.5.2 Redundancy . 28

2.5.2.1 Hardware Redundancy 28

2.5.2.2 Time Redundancy . 29

2.5.2.3 Information Redundancy 30

2.5.2.4 Software Redundancy . 30

v

vi CONTENTS

2.5.3 Dynamic Verification . 31

2.5.4 Summary of Existing Online Error Detection Techniques 32

2.6 Hardware Performance Counters (HPCs) 32

2.6.1 Overview of HPCs . 32

2.6.2 Application of HPCs . 34

2.7 Summary . 35

3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 37

3.1 Introduction . 37

3.2 Methodology . 38

3.3 Selection of Fault Model . 38

3.4 Selection of Event . 40

3.5 Benchmarks . 41

3.6 Architectural Simulator . 42

3.7 Experimental Setup . 44

3.8 Results and Discussion . 48

3.8.1 Comparisons between two PMEs 48

3.8.2 Comparison on various Sampling Interval 54

3.8.3 Comparison on using Different Input Data 56

3.8.4 Characteristics of Anomalous Behaviour in a Processor 57

3.9 Correlation Between Errors and Failures 62

3.9.1 Analyses of the Distribution of Failure 62

3.9.2 Analyses of Error Distribution and Its Effect to the System Be-
haviour . 65

3.10 Summary . 69

4 Early Detection and Prediction Algorithm 71

4.1 Introduction . 71

4.2 Generating Data Set . 72

4.3 Understanding the Data Set . 73

4.4 Algorithm Overview . 76

4.5 Predicting Potential Failure . 78

4.6 One-Step Ahead Prediction . 78

4.6.1 Single Exponential Smoothing . 80

4.6.2 Autoregressive Moving Average . 84

4.6.3 Single Layer Linear Network . 87

4.6.4 Comparison between Forecasting Methods 91

4.7 Measurement of Deviation and Anomaly Classification 91

4.7.1 Residual Distribution . 92

4.7.2 Prediction Interval . 93

4.8 Analysis and Evaluation . 96

4.8.1 Evaluation Metric . 96

4.8.2 Minimum Consecutive Anomalies to be detected, C 98

4.8.3 Detection Accuracy using Residual Distribution 100

4.8.4 Detection Accuracy using Prediction Interval 104

4.9 Summary . 110

CONTENTS vii

5 Detector for Predicting Potential Failure from Anomalous Behaviour113

5.1 Introduction . 113

5.2 Proposed Design of the Detector . 114

5.3 Experimental Validation of the Detector 117

5.4 Experimental Results . 118

5.4.1 Experimental Results for the Dijkstra Benchmark 119

5.4.2 Experimental Results for the Bitcount Benchmark 122

5.4.3 Experimental Results for the FFT Benchmark 124

5.5 Performance Analyses of the Detector . 126

5.6 Source Byte Analysis of the Detector . 127

5.7 Summary on the Results Analyses . 128

5.8 Summary . 129

6 Conclusions and Future Work 131

6.1 Summary and Contributions . 131

6.2 Future Work . 135

6.2.1 Diagnostics . 135

6.2.2 Recovery . 135

6.2.3 Implementation of the Inter-Core Communication Pipeline 136

A Execution Profiles for FFT, Stringsearch and QSort Benchmarks 137

B Error Distribution for Dijkstra, FFT, Bitcount and StringSearch Bench-
marks 141

C Matlab Code 147

C.1 One-Step Ahead Prediction . 147

C.1.1 Single Exponential Smoothing . 147

C.1.2 Autoregressive Moving Average . 147

C.1.3 Single-Layer Linear Network . 148

References 149

List of Figures

1.1 RazakSAT satellite . 1

1.2 Transistors count against date of introduction 3

1.3 Characteristics of an embedded system . 4

1.4 Illustration of anomaly behaviour . 6

2.1 Bathtub cuve . 14

2.2 Relationship between fault, error, failure 17

2.3 Threat chain . 18

2.4 Point anomalies . 21

2.5 Contextual anomalies . 22

2.6 Collective anomalies . 22

2.7 Category of anomaly detection techniques 23

2.8 Basic architecture of BIST . 27

2.9 Active hardware redundancy . 29

2.10 Time redundancy . 30

3.1 The methodology set-out for this experiment 39

3.2 A sample of fault being injected into the Fetch instruction 44

3.3 Overview of the GemFI API . 46

3.4 Plotting normal behaviour of Dijkstra benchmark using Instructions Re-
tired and Cache Misses PME . 49

3.5 Plotting normal behaviour of Bitcount benchmark using Instructions Re-
tired and Cache Misses PME . 50

3.6 Correlation between Instructions Retired PME and Cache Misses PME . 51

3.7 Comparison between Instructions Retired PME and Cache Misses PME
with clock speed at 2GHz . 52

3.8 Comparison between Instructions Retired PME and Cache Misses PME
with clock speed at 250MHz . 53

3.9 Applying different sampling interval . 55

3.10 Benchmarks with different input data . 56

3.11 Execution profiles for different types of failures 59

3.12 Temporal relationship between fault, error and failure 60

3.13 From injected fault to manifested fault and finally system failure 60

3.14 Close-up of Fault Injection to Fault Manifestation and System Failure . . 61

3.15 Number of clock cycles to crash . 61

3.16 Percentage of failures distribution observed in the experiment conducted
for QSort benchmark . 64

3.17 Analysis of different types of errors that causes crash in the system. . . . 66

ix

x LIST OF FIGURES

3.18 Analysis of different types of errors that causes hang in the system. 67

4.1 Time plot of Dijkstra benchmark with 3 different sets of input data 74

4.2 Patterns based on Pegels’ (1969) classification 74

4.3 Early detection algorithm using hardware performance counter 77

4.4 Single Layer Perceptron . 88

4.5 Collective anomalies which occurred in the Dijkstra anomalous dataset . . 92

4.6 Distribution of residuals . 94

4.7 Probability plot of residuals for all three one-step ahead prediction methods 95

4.8 Anomaly classification using Residual Distribution 101

4.9 Anomaly classification using Prediction Interval 105

5.1 Proposed hardware-based detector utilising multi-cores architecture 115

5.2 Overall execution flow between main core, Core A and secondary core,
Core B . 116

5.3 Algorithm for early detection and prediction using Residual Distribution . 119

5.4 Algorithm for early detection and prediction using Prediction Interval . . 120

5.5 Simulation of the Detector Core . 121

5.6 Simulation of the Main Core . 121

5.7 Time to Detect vs Time to Failure for Dijkstra benchmark 123

5.8 Time to Detect vs Time to Failure for Bitcount benchmark 124

5.9 Time to Detect vs Time to Failure for FFT benchmark 125

5.10 Size of detector in bytes . 127

5.11 Size of detector in comparison with size of benchmarks 128

A.1 Plotting normal behaviour of FFT benchmark using Instructions Retired
and Cache Misses PME . 138

A.2 Plotting normal behaviour of StringSearch benchmark using Instructions
Retired and Cache Misses PME . 139

A.3 Plotting normal behaviour of QSort benchmark using Instructions Retired
and Cache Misses PME . 140

List of Tables

2.1 Comparison of Failures Type . 19

2.2 Number of available counters and events for some processors 33

2.3 Pre-defined architectural performance monitoring events for Intel R© archi-
tecture [1] . 33

2.4 Examples of performance monitoring events for ARM architecture [2] . . . 34

3.1 Architectural events that can be monitored in an Intel Atom processor . . 40

3.2 Failure categories . 63

3.3 Error categories . 63

3.4 Statistics on failure distribution on QSort benchmark 63

3.5 Statistics on failure distribution on Dijkstra benchmark 65

3.6 Statistics on failure distribution on FFT benchmark 65

3.7 Statistics on failure distribution on Bitcount benchmark 65

3.8 Statistics on failure distribution on StringSearch benchmark 66

3.9 Statistics on error distribution for QSort benchmark 68

4.1 Critical values for Dickey-Fuller t-distribution, source from [3] 75

4.2 ADF Test Results for Dijkstra benchmark 76

4.3 Average Mean Absolute Error (MAE) for different α values in SES 83

4.4 Average Akaike Information Criterion (AIC) for different orders of ARMA
model . 86

4.5 Mean Absolute Error (MAE) for different size of sliding window, W in a
LN model . 90

4.6 Comparison between different forecasting methods in One-Step Ahead
Prediction . 91

4.7 Student’s T-Distribution Table . 97

4.8 Confusion matrix for early detection of anomalous behaviour 98

4.9 Analysis on the optimum value for C . 99

4.10 Detection results for zthresh between 1 and 10 102

4.11 Top result for Residual Distribution using SES, ARMA and LN method
with C = 5 . 103

4.12 Detection results with probability between 80% and 97.5% using SES
prediction method . 106

4.13 Detection results with probability between 80% and 97.5% using ARMA
prediction method . 107

4.14 Detection results with probability between 80% and 97.5% using LN pre-
diction method . 108

4.15 Analysis using SES, ARMA and LN method for Number of Successive
Anomalies, c = 5 using Prediction Interval 109

xi

xii LIST OF TABLES

5.1 Detection time for Dijkstra benchmark Anomalous Dataset 1 120

5.2 Detection time for Dijkstra benchmark Anomalous Dataset 2 121

5.3 Detection time for Dijkstra benchmark Anomalous Dataset 3 122

5.4 Detection time for Bitcount benchmark Anomalous Dataset 1 124

5.5 Detection time for FFT benchmark Anomalous Dataset 1 125

5.6 Performance in execution time of each method measured on an Intel ar-
chitecture . 126

B.1 Statistics on error distribution for Dijkstra benchmark 142

B.2 Statistics on error distribution for FFT benchmark 143

B.3 Statistics on error distribution for Bitcount benchmark 144

B.4 Statistics on error distribution for StringSearch benchmark 145

Listings

5.1 Creating a FIFO . 117

5.2 Using a FIFO . 117

xiii

Research Thesis: Declaration of

Authorship

Print Name: Woo Lai Leng

Title of thesis:
Predicting Potential Failure in Real-Time through Monitoring and
Detection of Anomalous Behaviour using Hardware
Performance Counters

I declare that this thesis and the work presented in it are my own and has been generated

by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree

at this University;

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this had been clearly

stated;

3. Where I have consulted the published work of others, this is always clearly at-

tributed;

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as listed in Section 1.5 of this thesis.

Signature: Date:

xv

Acknowledgements

My deepest gratitude to my main supervisor, Prof. Dr. Mark Zwolinski and my co-

supervisor, Dr. Basel Halak for their continuous advice, support, guidance, supervision,

motivation and useful insight during my entire Ph.D study. I could not have imagined

having better mentor and advisor for without their support and guidance, I would not

have come this far.

A very special gratitude to the School of Electronics and Computer Science (ECS),

University of Southampton for granting me the PhD scholarship.

I would like to acknowledge the Microsoft Azure through the Microsoft Azure Research

Award number CRM: 0518905 which had provided all the necessary resources to under-

take the required research.

I also like to thank my fellow team members who have supported me through our formal

and informal discussions, exchange of ideas as well as knowledge. A special shout-out

to the parishioners of St. Edmund Catholic Church especially Adrienne Hendry, Simon

Lewis, Kate Murelli, Monsignor Vincent Harvey and many others who supported us in

one way or other.

My eternal gratitude to my parents (Woo Choe Keong and Chan Sau Ching), my siblings

(Woo Tiki, Woo Lai Yenn, Woo Lai Yee and Chow Kok Kien) and my in-laws for their

unconditional love, unending support and motivation, prayers and sacrifices throughout

the whole period of my studies.

Lastly, my utmost appreciation and love to my husband, Egbert Adolf Naintin. You

were my source of support and encouragement, who stood by me through thick and

thin, motivates me when I am feeling lost, encourage me when I am feeling down,

challenge me when I am feeling overly confident and pray for me every single day. I am

truly thankful for having you in my life.

xvii

To my children, Daniel, Elisha and Joelle, who taught me love and
patience (plus lots of hard work) the key to success.

xix

Abbreviations

AAKR Autoassociative Kernel Regression

ADF Augmented Dickey-Fuller

AIC Akaike Information Criterion

AMD Advanced Micro Devices

ANN Artificial Neural Network

API Application Programming Interface

ASIC Application Specific Integrated Circuits

AR Autoregressive

ARMA Autoregressive Moving Average

BIST Built-In-Self-Test

CMOS Complementary Metal-Oxide-Semiconductor

CPLD Complex Programmable Logical Devices

CPU Central Processing Unit

DDoS Distributed Denial of Service

DMR Double Modular Redundancy

DSP Digital Signal Processors

DVFS Dynamic Voltage and Frequency Scaling

FFT Fast-Fourier Transform

FN False Negative

FP False Positive

FPGA Field Programmable Gate Arrays

FS Full-System

HPC Hardware Performance Counter

ISA Instruction Set Architecture

LLC Last Level Cache

LN Single-Layer Linear Network

LV-SVM Least Squares Support Vector Machine

MA Moving Average

MAE Mean Absolute Error

MLP Multi-Layer Perceptron

MMU Memory Management Unit

MSE Mean Squared Error

xxi

xxii Chapter 0 Abbreviations

MSR Model Specific Registers

MSE Mean Squared Error

NEqO Near-Equatorial Low Earth Orbit

PC Program Counters

PME Performance Monitoring Event

PMU Performance Monitoring Unit

SAA South Atlantic Anomaly

SE System-call Emulation

SES Single Exponential Smoothing

SLP Single Layer Perceptron

SSFM Single Stuck-at Fault Model

SVM Support Vector Machine

TLNN Time-Lagged Neural Network

TMR Triple Modular Redundancy

TN True Negative

TP True Positive

UAV Unmanned Aerial Vehicle

Nomenclature

C Number of consecutive anomalies

c Constant offset in an Autoregressive Moving Average model

df Degree of freedom

et Residual between observed value and forecast value at time t

ē Residual average for n sample

h Forecast horizon

k Number of estimated parameters in an Autoregressive Moving Average model

L Maximum value of the likelihood function for an Autoregressive Moving Average model

lt Level series at time t

MSE Average of squared errors for (n− 1) sample

n Sample size

PI Students T-Distribution at 100(1− a) percentile with df

p Order of the Autoregressive model

q Order of the Moving Average model

v Weight vector in Single Layer Linear Network model

W Size of sliding window

Yt Observed value at time t

Ŷt+1 Forecast value at time t

Ȳ Average of Y values for W number of sample

z Number of standard deviations away from residual average, ē

zupper Upper bound threshold value in Prediction Interval

zlower Lower bound threshold value in Prediction Interval

zthresh Threshold value for z in Residual Distribution

α Smoothing parameter in Single Exponential Smoothing model

εt White noise at time t

σ2 Residual variance for n sample

xxiii

Chapter 1

Introduction

Figure 1.1: RazakSAT satellite, source from https://www.angkasa.gov.my

RazakSAT, as shown in Figure 1.1, is an earth observation satellite that was launched

on July 14, 2009. It was the first satellite in the world placed into a Near-Equatorial

Low Earth Orbit (NEqO), providing many imaging opportunities for countries around

equatorial region, such as Malaysia. It was targeted to have an operational lifespan of

three years, however, it ceased operation on August 30, 2010, just a year and sixteen

days from the launch date. The NEqO orbit exposes the satellite to the South Atlantic

Anomaly (SAA) phenomenon on every orbit it takes around the earth. SAA is a region

of reduced magnetic intensity where the inner radiation belt makes its closest approach

to the Earth’s surface. Satellites in low-Earth orbit pass through the SAA periodically,

1

https://www.angkasa.gov.my

2 Chapter 1 Introduction

exposing them to several minutes of strong radiation each time, creating problems for

scientific instruments, human safety, and single event upsets (SEU) [4]. The failure of

RazakSAT resulted in a loss of RM10.89 million in 2009, of which RM7.7 million went

towards insurance premiums for the faulty satellite [5].

The Therac-25 was a computer-controlled radiation therapy machine produced by Atomic

Energy of Canada Limited (AECL) in 1982. It suffered a concurrent programming error

which saw the system giving its patients radiation doses that were hundreds of times

greater than normal, thus resulting in death or serious injury [6].

On June 4, 1996, the maiden flight of Ariane 5 launcher, known as Flight 501, veered off

its flight path, broke up and exploded about 40 seconds after the initiation of the flight

sequence. The end result was that the entire mission was a failure and the cost which

includes the destroyed spacecrafts was approximately $370 Million. The report issued

by the Inquiry Board in charge of inspecting the Ariane 5 Flight 501 failure concluded

that the failure of the active and back-up Inertial Reference System caused the two solid

boosters to steer or swivel into extreme positions, and slightly later, the Vulcain engine

swivelled, causing the launcher to veer abruptly [7].

RazakSAT, Therac-25 and Ariane 5 Flight 501 are examples of failure in a critical

embedded system. A critical system can be divided into three categories:

1. Mission-Critical Systems: A system whose failure may result in the failure of some

goal-directed activity. Some examples of mission-critical systems are an on-board

computer or a navigational system in a spacecraft.

2. Business-Critical Systems: A system whose failure may result in very high costs

for the business using that system. Examples of business-critical systems are the

customer accounting system in a bank or the online shopping cart.

3. Safety-Critical Systems: A system whose failure may result in loss of life, injuries,

or significant damage to property or the environment.

The improvement on transistors size and integrated circuit performance, known as tech-

nology scaling, has allowed the growth of these computing systems across various mis-

sions [8]. As shown in Figure 1.2, the number of transistors on integrated circuits doubles

every two years, driven by Moore’s Law. Technology scaling has set the pace for semi-

conductor industries over the last decade whereby, with every technology generation,

it had resulted in lower cost, lower power consumption, higher performance and higher

transistor density per die but it also came with a cost: cheaper and better performance

transistors are becoming less and less reliable [8, 9].

Chapter 1 Introduction 3

Figure 1.2: Transistors count against date of introduction, source
from https://ourworldindata.org/wp-content/uploads/2013/05/

Transistor-Count-over-time.png

1.1 Reliability in Safety-Critical Embedded Systems

1.1.1 Embedded Systems

Embedded systems are becoming more common and widely used in various applications

and devices such as automotive industry, factory automation, medical and health, power

plants, telecommunication, smart homes, robotics and many others [10, 11]. Driven by

advances in microelectronics and software, embedded systems are becoming more af-

fordable for daily usage, and had thus, enrich our lives and connect people together.

According to the new market research report on embedded systems market [12], this

market is expected to be valued at USD 110.46 Billion by 2023, driven mainly by the

increasing adoption of embedded systems in the automotive industry, use of multicore

processor technology in military applications, growing market for wearable devices, in-

crease in usage of embedded systems in smart appliances of smart homes, and rising

demand for embedded systems in healthcare equipment.

Unlike general-purpose computing system, embedded systems are computing systems

that are embedded within larger mechanical or electrical systems and are dedicated to

https://ourworldindata.org/wp-content/uploads/2013/05/Transistor-Count-over-time.png
https://ourworldindata.org/wp-content/uploads/2013/05/Transistor-Count-over-time.png

4 Chapter 1 Introduction

perform specific functions. Embedded systems are widely associated with micropro-

cessors or microcontrollers, although some embedded systems can contain other tech-

nologies like digital signal processors (DSPs), complex programmable logical devices

(CPLDs), application-specific integrated circuits (ASICs), and field programmable gate

arrays (FPGAs). An embedded system can be defined as [10]:

Embedded systems are information processing systems embedded into en-

closing products.

1.1.2 Characteristics of Embedded Systems

Figure 1.3: Characteristics of an embedded system

Despite various types of applications and implementation methods that are available,

embedded systems are bound by some common characteristics as shown in Figure 1.3,

which are briefly explained as follows:

• Application Specific: An embedded system is used to perform specific tasks related

to its specific application, in contrast to a general-purpose computing system that

executes a variety of applications [13].

• Limited Resources: Due to the many reasons such as the nature of application,

production costs, and available hardware technology, embedded systems have tight

constraints and limited resources concerning hardware resource, processor speed,

power consumption and memory size [14]. For example, a microprocessor used

in a general computing system operates at a clock speed above 2GHz, while the

clock speed for a microcontroller varies between 20MHz and 300MHz, a fraction

compared to the clock speed of a microprocessor.

Chapter 1 Introduction 5

• Real-Time: Embedded systems have to perform tasks or interact with the external

environment within specific timing constraints, where the correctness of the system

depends on the output results as well as the time the results are produced [11].

• Performance and Efficiency: Embedded systems are expected to achieve high per-

formance, usually defined by the amount of tasks completed within certain execu-

tion time. Given the limited resources faced by these systems, embedded systems

also have to be efficient in utilising the power consumption, memory utilisation

and hardware resources [10].

• Dependability: Dependability is the ability to avoid service failures that are more

frequent and more severe than what is acceptable [15,16]. The common issues that

arise in creating a dependable system are reliability, safety, security, availability,

integrity and repairability [10,13,15,16].

– Safety means the system is able to function without catastrophic failure or

reducing the frequency of failures.

– Reliability means ensuring the system completes the task without experienc-

ing any failure.

– Security means the ability of the system to protect itself against deliberate

or accidental intrusions.

– Availability means the system is able to deliver the service when it is required.

– Integrity means the system is protected against improper or unauthorised

system alterations.

– Repairability means the system can undergo modifications or repairs.

As the number of embedded systems being deployed increases, the designers have

a duty to ensure these systems are dependable.

In this thesis, the focus is given to addressing safety and reliability in a safety-critical

embedded system. The reliability of an embedded system will be further discussed in

Section 2.2. However, this does not diminish the importance of other attributes.

1.1.3 Safety-Critical Embedded Systems

According to [17], safety can be defined as a property of a system that it will not endanger

human life or the environment. Therefore, a safety-critical embedded system can be

defined as:

A system where a failure or a malfunction might result in loss of life or severe

injury to people, loss or severe damage to property or equipment, and severe

damage to the environment.

6 Chapter 1 Introduction

Safety-critical embedded systems exist in the automotive industry and in various indus-

tries such as aviation, medical, nuclear engineering, power plants and many more [18].

The falling cost of hardware and the improvement in hardware quality will continue to

be a catalyst driving the growth of safety-critical embedded systems.

With technology scaling, increased complexity in a system, introduction of new mate-

rials and devices, as well as increasing constraints in terms of time and money, experts

have predicted that reliability will soon become a major concern [19]. Not only that,

various conditions such as faulty devices, bit errors due to Single Event Upsets (SEUs),

more pronounced ageing effects, process variations [9, 20, 21] or inadequate testing and

verification processes coupled with increased time-to-market pressure [22,23] may cause

a system to experience faults.

These faults can manifest themselves as errors and cause the system to experience

anomalous behaviour, which could lead to system failure, and thus contribute to a

system behaving unreliably. This is a major concern and challenge not only for users,

but also for technology vendors, system designers and system architects. One existing

technique for preventing system failure in the presence of faults is by having a fault-

tolerant system, which is usually achieved through the implementation of error detection

and recovery [15,16, 23, 24]. Existing fault tolerance techniques look at detecting errors

through the failure that results, and very often, users are only aware of the presence of

anomalies in the system after a failure has occurred.

1.2 Anomalous Behaviour

Figure 1.4: Illustration of anomaly behaviour, source from http://www.dbta.com/

Editorial/

Anomalous behaviour, or in short, anomalies, is behaviour that does not conform to a

normal, expected pattern and can also be identified as outliers, exceptions, peculiarities,

http://www.dbta.com/Editorial/
http://www.dbta.com/Editorial/

Chapter 1 Introduction 7

contaminants or other terms according to the domain being studied [25,26]. Figure 1.4

depicts an analogy of what an anomaly is all about and Grubbs [27] has defined an

outlier as:

An outlying observation, or outlier, is one that appears to deviate markedly

from other members of the sample in which it occurs.

In data mining, anomaly detection refers to scientific techniques applied to identify

behaviours, events or data points that do not belong to the rest of the data in a dataset.

Chandola [26] defined anomaly detection as:

The problem of finding patterns in data that do not conform to expected

behaviour.

The reliability of a system can be compromised by various sources such as (a) design

errors, (b) manufacturing problems, (c) external disturbances, (d) harsh environmental

conditions, and (e) system misuse. The impact from these reliability problems causes

anomalous behaviour in the system. Research on anomalous behaviour is usually as-

sociated with malicious activities, cyber intrusions or terrorist activities [26, 28], but

anomalous behaviour in the system could also be due to the breakdown of a system

caused by reliability issues [26, 29]. Anomaly detection can be applied in various do-

mains and applications such as fraud detection in credit card applications, loan facilities

applications, state benefits, fraudulent usage of credit cards and mobile telecommunica-

tion [25], network intrusion detection [30], network performance detection [31], activity

monitoring [32, 33], system health management [34], sensor networks [35] and many

more. Chapter 2 provides further understanding and discussion of anomaly detection.

1.3 Research Motivation

The failure observed in incidents like RazakSAT, Therac-25, Ariane 5 Flight 501 or in

other similar examples, had a devastating impact not only to society in general, but also

to the economy and environment of a country. The presence of anomalies in the systems

had gone undetected, and users were only aware that something had gone wrong when

a failure occurred.

Research in fault prevention looks into ways of strengthening the circuit, architecture or

even system from these reliability issues. Fault prevention techniques are applied during

the design and manufacturing phases with the focus on designing a better circuit, a better

architecture, or a better system to prevent fault [23]. Techniques such as radiation

hardening, shielding and others modify existing circuits or architectures, which more

8 Chapter 1 Introduction

often than not, struck a raw nerve with hardware designers because this means the

circuits that have been designed are deemed not reliable enough. However, modification

of existing circuits does not address the issue of reliability that still occurs after the

post-silicon validation stage.

Another way to attain reliability for systems that are already in operation is through fault

tolerance. Fault tolerance research is about preventing system failure in the presence

of errors, and it is usually achieved through the implementation of redundancy, error

detection and recovery [23,36]. Fault forecasting techniques aim to estimate the number

of faults in the system, possible occurrence of faults in the future and the consequences

of those faults and fault forecasting is done by evaluating the system’s behaviour when

a fault occur or is activated [16].

Current research on fault tolerance looks at detecting errors by examining the failure

that occurs, but to date, there had been no research on predicting potential failures in

real-time by detecting anomalous behaviour in the system before the user encounters

the failure. Research in fault forecasting mostly revolves around mechanical systems

or physical structures by using sensors to collect data [26] and there is no research

that attempts to predict potential failure in an embedded system by monitoring anoma-

lies in the system. Predicting the possible failure in a safety-critical embedded system

by monitoring and detecting anomalous behaviour can help to minimise or even avoid

failure-induced risk which could jeopardise the safety of the user or the surrounding

environment.

The aim of this thesis is to complement current fault tolerance techniques and contribute

to a better protection strategy by presenting the design of a detector that will be able

to predict potential failure in real time through the detection of anomalous behaviour in

a processor. In this thesis, we evaluate various strategies for achieving quick detection

and high accuracy with minimal computational time and resources.

1.4 Research Objectives

As discussed in Section 1.3, it is crucial to detect the error before a failure occur as this

could help to reduce or avert any risk which could threaten the safety of the user or the

surrounding environment. Therefore, the fundamental research question for this thesis

is:

Is it possible to predict a potential failure in an embedded system by monitoring and

detecting the anomalous behaviour in the system?

In order to assist the fundamental research question, several other research questions

had been formulated:

Chapter 1 Introduction 9

1. What are the available hardware performance counters in a processor which can

represent a behaviour of a system and can be monitored online and in real-time?

2. What are the suitable techniques to model the behaviour of the system and perform

early detection of anomalies to predict potential failure?

3. How do different prediction algorithms impact the implementation of the detector?

The following objectives are presented as follows to address the above questions:

• Investigate how a manifested fault affects the behaviour of the system and identify

the various Performance Monitoring Events (PMEs) available that can be used

across different types of processors. Identify the number of hardware performance

counters available in processors used in embedded systems, in particular, the num-

ber of available counters in an Intel Atom processor used in this work. Select

different PMEs and compare them to determine which is better for detection.

• Develop an algorithm for early detection suitable to be implemented in embedded

systems taking into account the constraints and limitations of an embedded system.

Explore several methods for one-step ahead prediction and anomaly classification

rules and perform evaluation on methods used in the early detection algorithm.

• Implement the developed algorithm as a hardware-based detector. Validate the

implementation through experimental simulations and analyse the performance

and cost of the proposed detector.

1.5 Publications

Part of the research in this thesis have been published as:

1. E. W. L. Leng, M. Zwolinski and B. Halak, “Hardware performance counters for

system reliability monitoring,” 2nd International Verification and Security Work-

shop (IVSW), 2017

2. L. L. Woo, M. Zwolinski and B. Halak, “Early detection of system-level anomalous

behaviour using hardware performance counters” in Design, Automation Test in

Europe Conference Exhibition (DATE), 2018. IEEE

3. L. L. Woo, M. Zwolinski and B. Halak,“Predicting Potential Failure from Anoma-

lous Behavior in Embedded Systems”, in IEEE Transactions on Reliability (sub-

mitted in July 2019)

10 Chapter 1 Introduction

1.6 Thesis Organisation

This thesis is organised as follows:

• Chapter 2: This chapter provides an overview of reliability and discussed how

defects, faults, errors and failures can affect the reliability of an embedded system.

This chapter also covers existing online error detection techniques with particular

emphasis on anomaly detection techniques. Discussion on hardware performance

counters (HPCs) and how they can be used to detect anomalous behaviour are

also presented in this chapter. The chapter concludes by identifying the gap in

current online error detection and how utilising HPCs for anomaly detection and

prediction of potential failure can address the gap.

• Chapter 3: This first objective of the thesis is addressed in this chapter. Embed-

ded systems that performs a routine task exhibit a certain profile. When a fault

is manifested as an error, it first causes deviations in the profile, indicating some

anomalous behaviour has occurred in the system before the user encounters the

failure. This chapter presents how HPCs can be used to observe the anomalous

behaviour in the system by observing the deviations in the execution profile. Using

GemFI, a fault injection tool developed based on Gem5 architectural simulator,

single bit-flips are injected in various stages of a pipeline, and the behaviour of the

system is observed. The first contribution of the thesis is also presented in this

chapter where the HPC is utilised for monitoring anomalous behaviour that occur

at a system level due to a reliability issue. A suitable Performance-Monitoring

Event (PME) and sampling interval are proposed based on the experiment con-

ducted.

• Chapter 4: This chapter addresses the second objective and provide the second

and third contributions of the thesis. In this chapter, the novel early detection

algorithm that detects anomalous behaviour in a processor core using HPCs and

predict potential failure in real-time is presented. The algorithm consists of three

stages: (i) a one-step ahead algorithm to predict the next value in the time-series,

(ii) measurement of deviation algorithm between predicted value and observed

value, and (iii) mechanism to classify if the observed value deviates too much from

the expected behaviour and is deemed anomalous. Through the experiments, the

optimal values of each parameter in the one-step ahead prediction methods and

anomaly classification methods are identified. The novel detection time measure-

ment attribute developed refers to the earliest time for the algorithm to predict

potential failure. This attribute provides an indicator of how well the early detec-

tion and prediction algorithm has performed.

• Chapter 5: The last contribution of the thesis is addressed in this chapter, where

a proof of concept for a detector that predicts potential failure in real-time by

Chapter 1 Introduction 11

detecting anomalous behaviour that occurs is developed using the early detection

algorithm developed and optimised in Chapter 4. This chapter also presents the

analyses on the performance and size of the detector, where it shows that the

detector can be realised with minimal computational time and resources. It over-

comes the drawback in existing error detection techniques where an error is only

detected after a failure has occurred.

• Chapter 6: The findings and contributions of this thesis is concluded in this chap-

ter. Suggestions for future research direction are provided in this chapter as well.

Chapter 2

Background and Related Work

2.1 Introduction

In Chapter 1, an overview of reliability, especially in safety-critical embedded systems,

and how it leads to the failure of these systems was presented. In this chapter, a

more in-depth study on reliability and how anomalous behaviour affects reliability is

discussed, with particular focus on hardware performance counters, and how they can

be used to detect anomalies in embedded systems. This chapter is organised as follows.

Section 2.2 discusses what reliability is and the available means to attain a reliable

system. Section 2.3 will look at the threats to reliability, which are usually defined in

defects, faults, errors, and failures, and how a fault is propagated into an error which

causes a failure in the system. From the user’s perspective, the system fails when it is

unable to deliver its intended function although the reason for failure may be unknown

to the user. However, there could be some traces of anomalous behaviour in the system

prior to a failure which can be detected. One of the main techniques for online error

detection is via anomaly detection, which is presented in Section 2.4. This section also

discusses damage detection, the application domain for anomaly detection which is of

interest in this thesis, and the available techniques for anomaly detection in this domain.

In Section 2.5, other techniques for online error detection, such as Built-In-Self-Test,

Redundancy and Dynamic Verification are presented. Past research has shown that

Hardware Performance Counters (HPCs) can be used to detect anomalous behaviour in

a CPU [37,38]. In Section 2.6, an overview of HPCs is provided and some past research

that uses HPCs are mentioned in brief. Section 2.7 concludes the whole chapter.

2.2 Reliability

Reliability can be described as the probability that a system will produce the correct

or required outputs at time t + 1, given that the system was performing correctly at

13

14 Chapter 2 Background and Related Work

time, t [16, 23, 24, 39]. Reliability is a crucial aspect in a computer system, even if it is

at the expense of the performance of the system. Safety-critical embedded systems are

systems that require high reliability whereby these systems are expected to be opera-

tional without interruptions or when maintenance is unavailable [16], and failure and

data loss is almost unacceptable. Nanometre technology scaling has allowed systems to

be built for a higher performance at a lower cost and power consumption, but, this is

also accompanied by reliability problems that cause different failures over time.

Figure 2.1: The ’bathtub curve’, after [39,40], is a combination of a decreasing hazard
of early failure (green line) and an increasing hazard of wear-out failure (pink line), and

a constant hazard of useful-life failure (blue line)

The bathtub-curve shown in Figure 2.1 is widely accepted and used to represent the

failure rate of equipment and systems over time. It consists of three parts – early

failures, constant failures, and wear-out failures. Early failures, which happen in the

first zone, have a decreasing pattern where the rate of failures decreases during the

early times of operation. In complementary metal-oxide-semiconductor (CMOS) tech-

nology, early failures are mainly caused by oxide defects, particulate masking defects

or contamination-related defects. In the middle zone, the failures remain at a constant

rate. The occurrence of these failures are mostly random, manifesting in the form of

soft errors over the major part of the system operation life. The failures that occur in

the middle zone will be the target of this thesis. In the third zone, wear-out occurs

in the final stage of the system lifetime where the failure rate increases. For example,

electromigration-related defects, oxide wear-out, or hot carrier injection which occur

in integrated circuits are some of the conditions which causes the failure rate in these

circuits to increase [39].

The issue of computer reliability has been a major concern with researchers looking

for methods and solutions for improving resilience and reliability particularly in dealing

with embedded systems as they have limited resources in terms of hardware, processor

speed, memory size and power consumption. There is also a rising demand for embedded

systems in life-critical or system-critical applications such as military, space, medical or

Chapter 2 Background and Related Work 15

even automotive industries where an error or a sudden breakdown of a system may cause

catastrophic results. Various means have been developed to attain reliability in a system

which can be grouped into four major categories [15,16,23]:

• Fault Prevention: Techniques that aim to prevent the introduction or occurrence

of faults in the system;

• Fault Tolerance: Techniques that aim to ensure the system continues to function

correctly in the presence of faults;

• Fault Removal: Techniques that aim to reduce the number of faults which are

present in the system; and

• Fault Forecasting: Techniques that aim to estimate how many faults are present

in the system, possible future occurrences of faults and the consequences of faults.

The techniques in each category can be applied on their own or used in combination

with techniques from other categories to attain reliability. The aim of this thesis is to

predict potential failure through detection of anomalous behaviour in the system. This

is to ensure that the reliability of a safety-critical embedded system is not compromised

in the presence of faults. Fault tolerance techniques are used to achieve the aim of this

thesis as fault tolerance is aimed at failure avoidance [15,39]. A fault tolerant system can

be achieved via fault avoidance, fault masking, detection of erroneous or compromised

system operation, containment of error propagation, and recovery to normal system

operations [39]. However, in this thesis, the focus is specifically towards online error

detection, which will be discussed further in Section 2.4 and Section 2.5.

2.3 Threats to Reliability

The relationship between the system’s function, behaviour, structure and service is im-

portant in order to understand how a reliability of a system can be threatened. As

described in [15], the function of such a system refers to what the system is tasked to

do and is described by the functional specification in terms of functionality and perfor-

mance. The behaviour of a system is what the system does to implement its function

and is defined as a sequence of states (e.g., computation, communication, stored infor-

mation, interconnection, and physical condition), and the structure of a system is what

enables the system to generate the said behaviours. From a structural viewpoint, a

system’s structure is composed of a set of components (e.g., hardware modules, software

modules or other systems) which are bound together to interact and to provide a service.

The service delivered by the system is the behaviour of the system as perceived by the

receiver.

16 Chapter 2 Background and Related Work

The reliability of a system can be threatened at any stage – function, behaviour, struc-

ture or even at the service stage. The following terms are crucial as it relates to how

anomalous behaviour in a system occurs, and thus, it is imperative that these terms be

clearly defined. The four types of threats to reliability are defects, faults, errors, and

failures. Although they give the message that something is not right, there exists a

difference between each type. The difference between a defect, a fault, an error and a

failure given below is extended from [41]:

The difference between a defect, a fault, an error, and a failure is that, in the case of

a defect, the problem occurred on the physical level; in the case of a fault, the problem

occurred on the functional level; in the case of an error, the problem occurred on the

computational level; and in the case of a failure, the problem occurred on a system level.

Section 2.3.1 provides a detailed definition of defect, fault, error and failure, adapted

from [15,42].

2.3.1 Defect, Fault, Error and Failure

A defect is defined as the unintended difference between implemented hardware and

its intended design [42]. Defects can be divided into process defects such as a bad

etching or soldering, parasitic transistors, oxide breakdown, etc; material defects such

as a broken pin, surface impurities, etc; and age defects such as dielectric breakdown,

electro-migration, etc.

A fault is the logic level abstraction of a physical defect. A fault is used to describe the

change in the logic function of a device caused by the defect [42]. Both defects and faults

are the imperfections in the hardware and function respectively. Physical defects are

modelled as logical faults to reduce the complexity of fault simulation. Logical faults may

be in the form of static (e.g. shorts, breaks), dynamic (components out of specification,

timing failures) or intermittent (environmental factors). Some examples of faults could

be a frozen memory bit, a stuck-at fault, an uninitialised variable in software, or a bit

flip due to an alpha particle hit or cosmic ray ionisation.

An error occurs at the behavioural stage of the system where a part of the total state

of the system deviates from its correct state, and hence, it may subsequently lead to

service failure [15]. An error happens when the result of a computation is inaccurate

due to a fault that was present in the system. One example of an error could be when

the system is trying to access a portion of the memory that may have been hit with

a fault, thus resulting in incorrect output due to a computational flaw. However, not

every fault causes an error. An error is created by a fault that is active.

Chapter 2 Background and Related Work 17

A failure is defined as “an event that occurs when the delivered service deviates from

correct service” [15]. In other words, a failure is said to have occurred when the system

has failed to implement its intended function.

Figure 2.2: Relationship between fault, error, failure

Figure 2.2 above shows the relationship between defect, fault, error and failure. Faults

are logical abstraction of physical defects. Faults will develop into errors, and multiple

errors may cause a system to fail. In other words, faults are the reason for errors, and

errors are the reason for failures. From the user point of view, the system has failed

but the reason for failure may be unknown to the user. However, there could be some

anomalous behaviour in the system prior to a failure which can be observed and detected.

2.3.2 Origin of Faults

As mentioned in Section 2.3.1, a failure is caused by the presence of one or more errors,

and an error is caused by the presence of a fault. A fault is a representation of a physical

defect and a defect could happen at any of these stages: during the design stage or

during the operational stage. In the design stage, a defect could be caused by problems

arising during specification, implementation or even the fabrication process [16]. During

the operational stage, a defect could happen due to both internal and external factors,

such as component degradation, external phenomena such as temperature and voltage

variation, electromagnetic disturbances that result in single event effects [23] or malicious

attacks by users [16].

2.3.3 Duration of Faults

The duration of a fault can be classified as permanent, transient or intermittent according

to [16,43].

18 Chapter 2 Background and Related Work

• A permanent fault is a fault that is persistent or remains active; that is, it continues

to exist until the faulty component is repaired or replaced. Typically, this type of

fault is caused by defective components such as broken wire, an incorrect bonding,

etc during the manufacturing process. It could also be caused by a component

that is starting to degrade.

• A transient fault is a fault that occurs temporarily and does not leave any perma-

nent damage on the chip. It is usually caused by environmental conditions such

as radiation or noise. It happens randomly and therefore, these faults are hard to

detect.

• Intermittent faults are faults that occur for few cycles, and apparently at random,

then vanish, and then reoccur again, then vanish again. Unstable or ageing hard-

ware that got activated by a change in environmental condition (e.g. temperature

change) are usually the cause of these faults.

2.3.4 Fault-Error-Failure Chain

Figure 2.3: The fundamental chain of threat in a system, [44]

Figure 2.3 shows how the activated chain of threats of fault-error-failure may lead to an

accidental situation which in turn risks the human life. Barton, Christian, Siewiorek,

Koopman and Kaliorakis [45–49] have identified the various type of failures that can be

observed by users due to the activation of faults in the system which can be classified

in the following Table 2.1. These failures can be grouped into four categories, namely:

(a) System Failure, (b) Application Failure, (c) Output Failure and (d) Silent Failure.

A System Failure is where the Operating System (OS) has stop functioning properly

or crashed. An Application Failure happens when a system ceases to respond to input,

but the OS is still running and responding. Output Failure is where there is a mismatch

between the actual output and the expected output while Silent Failure is where the

failure is masked or was not noticeable by the user.

Chapter 2 Background and Related Work 19

T
a
b
l
e
2
.1
:

C
o
m

p
a
ri

so
n

o
f

F
a
il

u
re

s
T

y
p

e

C
a
te

g
o
ri

e
s

o
f

F
a
il
u

re
B

a
rt

o
n

(1
9
9
0
)

C
h

ri
st

ia
n

(1
9
9
1
)

S
ie

w
io

re
k

(1
9
9
3
)

K
o
o
p

m
a
n

(2
0
0
0
)

K
a
li
o
ra

k
is

(2
0
1
5
)

S
y
st

e
m

F
a
il
u

re
M

ac
h

in
e

C
ra

sh
T

as
k

S
to

p
C

ra
sh

C
ra

sh
A

b
or

t
(c

ra
sh

w
it

h
ab

or
t

m
es

sa
ge

)
C

at
as

tr
op

h
ic

A
b

o
rt

C
ra

sh
A

ss
er

t

A
p

p
li
c
a
ti

o
n

F
a
il
u

re
R

es
p

on
se

to
o

la
te

T
im

in
g

(E
ar

ly
,

L
at

e)
L

at
e

R
es

p
on

se
(T

im
eo

u
t)

R
es

ta
rt

H
in

d
er

in
g

T
im

eo
u

t

O
u

tp
u

t
F
a
il
u

re
In

va
li

d
O

u
tp

u
t

In
co

rr
ec

t
R

es
p

on
se

(v
al

u
e,

st
at

e)
F

ai
lu

re
(I

n
co

rr
ec

t
an

sw
er

)
-

D
et

ec
te

d
U

n
re

co
ve

ra
b

le
E

rr
o
r

S
Il

e
n
t

F
a
il
u

re
N

o
E

rr
or

O
m

is
si

on
R

es
u

lt
s

re
tu

rn
ed

O
K

(n
o

er
ro

r
d

et
ec

te
d

)
O

K
S

il
en

t
M

a
sk

ed
S

il
en

t
D

a
ta

C
o
rr

u
p

ti
o
n

20 Chapter 2 Background and Related Work

Error detection is the vital aspect in fault tolerance because a processor cannot tolerate

a problem that it is not aware of. Even if the processor cannot recover from a detected

fault, it can still alert the user that an error has occurred and halt. Thus, error detection

provides, at the minimum, a measure of safety [50]. Online error detection is the ability

to detect any form of violation of system specifications during run-time. However, due

to the increased complexity of processors, inadequate pre- and post-silicon testing and

verification as well as pressure to reduce time-to-market, major design bugs or faults can

still exist even after the chip is in operation [51–53]. Hardware defects due to variations

in temperature and voltage, components degradation and Single Event Upsets (SEU)

also contribute to the increased presence of faults in a chip. Thus, various online error

detection schemes are applied to ensure these less-than-perfect chips can still operate

effectively.

Online error detection is mainly applied to protect the CPU cores, memory hierarchy

control logic and interconnection logic, whereas memories such as caches and register files

are well protected using well-known error-correcting codes (ECC) [53]. Section 2.4 and

Section 2.5 will describe the techniques that have been applied for online error detection,

namely (a) Anomaly Detection, (b) Built-In-Self-Test (BIST), (c) Redundancy, and (d)

Dynamic Verification.

2.4 Anomaly Detection

2.4.1 Definition of an Anomaly

The failures listed in Table 2.1 occur when a fault has manifested itself an error and

causes some high-level behaviour to be anomalous. Anomalous behaviour, or in short,

anomalies, are behaviours that do not conform to a normal, expected pattern which

can also be identified as outliers, exceptions, peculiarities, contaminants or other terms

according to the domain being studied [26]. Chandola [26] has also categorised anomalies

into three different structures, namely (a) point anomalies, (b) contextual anomalies, and

(c) collective anomalies.

• Point anomalies: An individual data instance is deemed to be anomalous with

respect to the rest of the data if it is “too far” from the rest of the data. Figure

2.4 shows an example of point anomalies where points O1 and O2 are deemed

anomalous with respect to S1 and S2 as these points are located “too far” from

the rest of the data.

• Contextual anomalies: An individual data instance is deemed to be anomalous in a

specific context, but not otherwise. This type of anomaly is common in time-series

data. Figure 2.5 shows an example of a contextual anomaly, T2. The graph shows

Chapter 2 Background and Related Work 21

Figure 2.4: Point O1 and Point O2 are point anomalies as they deviates far from the
rest of the data.

the average monthly temperature collected at Southampton from January 2017

until December 2018 obtained from Southampton Weather Station 1. The value

of T2 bears similarity to the value of T1, but the low temperature of T2 happened

during the summer period instead of the winter period, hence it is considered

anomalous.

• Collective anomalies: Individual data instances may not be anomalies themselves,

but their occurrence together as a collection with respect to the rest of the data

is deemed anomalous. Figure 2.6 shows an example of a collective anomaly corre-

sponding to an Atrial Premature Contraction in a human electrocardiogram out-

put. The value -5.5 as shown in 2.6 is not a value that deviates far from the rest

of the data, but because it occurs consecutively for a period, hence it is considered

anomalous.

As we will show in Chapter 3, the anomalies in this study are of the collective type,

where individual data instances in a collective anomaly may not be anomalies themselves

but their occurrence together as a collection is considered anomalous. The presence of

collective anomalies in the system could potentially lead the system to failing to execute

correctly and these failures can be classified as masked errors, silent data corruption,

affected output, crash or hang as shown in Table 2.1.

1http://www.southamptonweather.co.uk

http://www.southamptonweather.co.uk

22 Chapter 2 Background and Related Work

Figure 2.5: An example of contextual anomaly, T2 in a monthly temperature time
series. Note that the temperature at T2 is similar to T1, but because it occurs in the

month of July instead of November, hence it is considered anomalous.

Figure 2.6: An example of collective anomaly corresponding to an Atrial Premature
Contraction in a human electrocardiogram output

Anomaly detection is one of many approaches used for online error detection in a micro-

controller core. It is about detecting “likely errors” by detecting anomalous behaviours.

Some example of detectable anomalies in a microcontroller are unusual data values,

branch mispredictions, exceptions, page faults, crashes, etc.

Chapter 2 Background and Related Work 23

2.4.2 Anomaly Detection Techniques

Due to the nature of data and the type of anomalies that occur in different applica-

tion domains, applying an anomaly detection technique developed for one domain into

another domain is not a straightforward task [26]. Availability of labels in the dataset

also plays an important role in deciding the type of techniques to be used. There are

numerous techniques proposed for anomaly detection such as Replicator Neural Net-

works (also known as Autoencoders), One-Class Support Vector Machines, Bayesian

Networks, Hidden Markov Models (HMMs), K-based Nearest Neighbours, Fuzzy Logic-

based techniques and many more. Choosing an appropriate technique for anomaly detec-

tion depends very much on the available dataset as illustrated in Figure 2.7. In general,

anomaly detection techniques can be divided into three broad categories as below [54]:

Figure 2.7: Different anomaly detection modes depending on the availability of labels
in the dataset. (a) Supervised anomaly detection uses a dataset that contains both
normal and anomalies for training. (b) Semi-supervised anomaly detection uses a “nor-
mal behaviour” training dataset. (c) Unsupervised anomaly detection algorithms use

unlabelled dataset for training.

• Supervised anomaly detection:

Techniques that fall under the category of supervised anomaly detection require the

available samples in each data set to be labelled as either “normal” or “abnormal”.

A common approach involves training a classifier and building a predictive model

24 Chapter 2 Background and Related Work

for both normal and abnormal class. New, unobserved data is then compared to

the model to determine which class it belongs to. Some widely used techniques for

supervised anomaly detection are Support Vector Machine (SVM) [37], decision

trees, logistic regression, multi-layer perceptron networks [55] and linear regres-

sion. However, there are some issues using this approach as discussed in [26, 55].

Firstly, the available data are imbalanced as anomalous data is harder to obtain

and less frequent compared to normal data. Imbalanced data causes over-fitting

and the trained model lacks generalisation. Another issue is the challenges faced

in obtaining labelled data, especially for anomalous data. Labelling the data re-

quires a human expert, and it is a costly exercise, not to mention time-consuming,

to obtain a huge amount of all possible samples of anomalous data.

• Semi-supervised anomaly detection:

For techniques that fall under this category, it involves building a model rep-

resenting normal behaviour from a given normal training dataset [56]. As it

does not require labels from anomalous class, this approach is more widely used

compared to supervised techniques. Unknown samples are classified as outliers

when their behaviour is far from that of the known normal samples. Common

techniques for semi-supervised anomaly detection include statistical-based tech-

niques [33,34,57,58], one-class classifiers [59], cluster-based techniques [60], prob-

ability density function and others.

• Unsupervised anomaly detection:

Techniques for unsupervised anomaly detection do not require any training data.

The data samples in the training set could contain both normal and anomalous

data. However, it makes the assumption that there are more normal data instances

compared to anomalous data in the training set. If the assumption is incorrect,

then these techniques suffer from high false alarm rate [26]. Clustering-based

techniques [61], Hierarchical Temporal Memory (HTM) networks [35], Principal

Component Analysis (PCA) [62], one-class SVM and Self-Organising Map (SOM)

are some techniques used for unsupervised anomaly detection.

Supervised techniques require both normal and anomalous data in building a model.

Imbalanced data will give a low accuracy to the model. As the amount of anomalous

data available from the dataset is less than 10% while the majority of the data consist

of points that depict a normal behaviour, supervised techniques for anomaly detection

are not suitable and thus, will not be considered in this thesis. Unsupervised techniques

can be effective only if the assumption of having more “normal” data holds true. Else, a

high false detection will occur. Semi-supervised techniques which use a normal training

dataset to build a model is a more balanced approach compared to supervised and un-

supervised techniques. According to [63], using this approach, it is possible to achieve

high detection rate with good accuracy. Although there exist numerous techniques for

Chapter 2 Background and Related Work 25

semi-supervised anomaly detection, not all techniques are suitable for detecting anoma-

lies online and in real-time [35]. Most of the techniques used in real-time streaming time

series data are statistical techniques that are computationally lightweight, as one of the

main requirements are the ability of the algorithm to learn continuously without storing

the whole stream of data [64].

2.4.3 Anomaly Detection in Damage Detection Domain

Anomaly detection is applied in various domains such as fraud detection, intrusion

detection, medical and public health anomaly detection, industrial damage detection,

sensor networks, image processing and many more [26]. As the interest of this thesis is

the application of anomaly detection in the domain of industrial damage detection, the

background review will be limited to the damage detection domain.

Industrial damage detection refers to detection of different faults and failures in complex

industrial systems, structural damage, intrusions in electronic security systems, suspi-

cious events in video surveillance, abnormal energy consumption, etc that may result

from deterioration and breakage due to continuous usage and normal wear and tear.

Such damage needs to be detected early to prevent further escalation and losses, as well

as reduce risks to users. The fundamental question in a damage detection problem is

whether a fault is present [65]. The problem is simply to identify from measured data if a

machine or structure has deviated from normal condition, i.e., if the data is anomalous.

Damage detection is mostly applied either in detecting faults in mechanical components

or detecting defects in physical structures.

The observed data in this domain has a temporal aspect because it is observed and

recorded with respect to the passage of time [26, 66]. Typically, an array of sensors is

used to collect measurements either continuously or at a regular time interval [67, 68].

The type of anomalies that are found in this domain are anomalies that occur mostly

because of an observation in a specific context (contextual anomalies) or as an anoma-

lous sequence of observations (collective anomalies) [26]. Semi-supervised techniques

are usually applied in damage detection as datasets describing the “normal behaviour”

are readily available. Of the many approaches to the problem, some are drawn from

condition monitoring, others from the field of pattern recognition and yet others from

univariate and multivariate statistics. The latter field has a very substantial body of

theory to support it and is proving to be a fruitful source of algorithms for damage

detection [69].

In [70], Autoassociative Kernel Regression (AAKR) is used to model the normal be-

haviour using a multi-sensor monitoring observation to produce the healthy baseline of

engine monitoring. On-line detection is then performed to detect any abnormal con-

ditions based on deviation from the baseline model. The results show some anomalies

26 Chapter 2 Background and Related Work

are observed in the cooling system and a pre-warning is generated. In [71], the Least

Squares Support Vector Machine (LS-SVM) algorithm is used in its on-line and non-

invasive anomaly detection system to continuously monitor the sensors and hardware

components via flight data in an Unmanned Aerial Vehicle (UAV) while in [72], the LS-

SVM is used to monitor for collective anomalies in satellite telemetry data. These are

just some examples of research in damage detection where the same concept is applied

– first a model of normal or expected behaviour is produced, then the model is used to

predict the next data in the series. Once the actual data is available, it is used to com-

pare with the predicted data. If the deviation is above a threshold, the data is deemed

anomalous. The key difference in this type of research lies in the type of techniques used

by the model to predict the next data in the series and the measurement of deviation

between predicted data and observed data.

The application of anomaly detection in industrial damage detection domain was basi-

cally meant for mechanical components or physical structures, and there is no research

so far on applying damage detection in electronic components, in particular, to a micro-

controller. Existing anomaly detection approach for error detection in a microcontroller

is developed based on the concept that every activated fault must manifest itself as some

form of anomalies, and by monitoring these anomalies, the error, and subsequently the

fault can be identified. A good example of this approach is SoftWare Anomaly Treat-

ment (SWAT) [73] and subsequently, mSWAT [74] that were both developed using zero

to low-cost hardware and software monitors to monitor and detect anomalous software

behaviour such as fatal traps, hangs, high-OS, and panic. Once an anomaly is detected,

the control is then transferred to the firmware to invoke a diagnosis process that will

distinguish between transient faults, permanent faults and bugs. Although error detec-

tion on mSWAT has minimal overhead, the diagnosis component itself can incur a high

overhead [74], which may not be very beneficial for an embedded system. Furthermore,

this method is only able to detect the anomalous behaviour as it happens but gives no

indication of forthcoming anomalies which may happen. In the case of detecting anoma-

lies in an embedded system, the detection has to be performed online and in real-time

as early detection of possible failure in the processor is important to minimise or reduce

potential risk and damage.

2.5 Other Online Error Detection Techniques

Other techniques that have been explored for online error detection in a processor include

Built-In-Self-Test (BIST), Redundancy, and Dynamic Verification.

Chapter 2 Background and Related Work 27

2.5.1 Built-In-Self-Test

Another category for error detection is based on the traditional Built-In-Self-Test (BIST)

mechanisms. BIST is a design-for-testability technique that includes additional hardware

or software features into integrated circuits to allow them to perform self-testing. It was

originally used for manufacturing testing as there is a huge saving concerning the amount

of time for testing as compared to testing using an external automated test equipment,

and it is less costly. In a generic BIST scheme in testing mode, the test pattern generator

applies a series of test patterns to the circuit under test and the test responses are

evaluated by the response monitor. The test responses are then compacted to form a

signature to be compared with the reference signature stored on-chip. If there is any

discrepancy between the two signatures, an error signal is sent. The basic architecture

of BIST is as shown in Figure 2.8.

Figure 2.8: Basic architecture of BIST

BIST could come in the form of hardware or software and is performed either during

idle time or executed periodically. Hardware-based BIST requires extensive and manual

design changes as it uses dedicated hardware to generate the test patterns. However,

this causes an increase in the circuit area and degrades its performance [75]. There are

four primary concerns in BIST-based approaches – (a) fault coverage; (b) size of test

set; (c) hardware overhead; and (d) performance penalty [76]. To address the hardware

overhead and performance degradation in a hardware BIST, software BIST is proposed

as it is non-intrusive and has a low test overhead [77]. Software BIST does not require

any change in the design but utilises existing processor resources and instructions to

perform self-testing [51,75]. However, software BIST has a longer testing time compared

to hardware BIST [78].

28 Chapter 2 Background and Related Work

Unfortunately, BIST has the limitation that it is only able to detect permanent faults

[51, 53]. Newer approaches of software-based self-testing from [79] utilise the multiple

cores in a multiprocessor to run parallel test programs in a scheduled manner. However,

the experiment revealed that running the test program on multiple cores causes serious

performance loss as it creates a congestion for shared hardware resources. [52] provided

a solution to run the test program in parallel, however, it is noted that the existing

workload has to be suspended in all the cores to allow the cores to be synchronised to

execute the test program in parallel. This limitation is also agreed by [80] where test

programs will not only have to share processor resources but are also faced with limited

memory resources and this could limit the effectiveness of the usual methodologies used

for writing test programs.

2.5.2 Redundancy

Another category of error detection uses redundancy. Redundancy is a common tech-

nique used to achieve fault tolerance, and can be achieved via hardware or software.

According to [16], redundancy is the provision of additional functional capabilities that

can either be a replicated hardware component, an additional check bit attached to a

string of digital data, or a few lines of program code verifying the correctness of a pro-

gram’s result. There are four types of redundancy used in fault tolerant systems, which

are (a) hardware redundancy; (b) time redundancy; (c) information redundancy; and

(d) software redundancy.

2.5.2.1 Hardware Redundancy

Hardware redundancy can be divided into passive or active redundancy [16]. Active

hardware redundancy such as dual modular redundancy (DMR) refers to two identical

hardware modules performing the exact same task, but only the output from one module

will be used, while the output from the other module is not used. The module which

the output is usually used is the main module, while the other module is termed as the

backup module. Both hardware modules are equally powerful to ensure that the system

will not suffer any performance degradation. Figure 2.9 illustrates the error detection

using active hardware redundancy called duplication with comparison. The voting logic

in the comparison module will compare the results between the main module and the

backup module. If the results are the same, no error has occurred. However, if the

results are different, a mechanism to switch the output from the main module to the

backup module is used. The most challenging aspect in DMR is to determined when to

switch the output from the main module to the backup module. A more reliable form of

voting logic involves an odd number of three devices or more, such as in triple modular

redundancy (TMR) and N-modular redundancy. All perform identical functions and the

outputs are compared by the voting logic. The voting logic establishes a majority when

Chapter 2 Background and Related Work 29

there is a disagreement, and the majority will act to deactivate the output from other

module(s) that disagree.

Figure 2.9: Active hardware redundancy

A passive hardware redundancy means the backup module is in idle mode until the main

module fails or break down. When the main module has failed, the backup module takes

over the task. In passive hardware redundancy, the switching mechanism is required to

switch both the input and output from the main module to the backup module. Both

active and passive hardware redundancy have high cost and introduce high overheads,

both of which are unacceptable in a microcontroller. Not only it comes with high

hardware overheads, but the additional voting step in active hardware redundancy may

increase the runtime [81].

2.5.2.2 Time Redundancy

Hardware redundancy has a huge impact on physical entities such as cost, weight, size,

power consumption, etc [16,82]. An alternative to hardware redundancy is time redun-

dancy, where certain operations, computations or data transmissions are repeated on the

same module and the results are compared with a stored copy of the previous results.

Time redundancy can be used to distinguish transient faults from permanent faults. If it

is a transient fault, the fault disappear after re-computation, else it is a permanent fault.

Therefore, time redundancy by means of task re-execution is a common technique to

mitigate soft errors at system level [83]. Although time redundancy reduces the amount

of hardware required, the total time and the active energy consumption are doubled

because twice as much work is performed [50]. Figure 2.10 shows how a fault can be

detected in the processor at the expense of time.

30 Chapter 2 Background and Related Work

Figure 2.10: Time redundancy

2.5.2.3 Information Redundancy

Information redundancy, according to [82], is the addition of extra information to data

to allow error detection and correction. The addition of extra information means adding

redundant bits to a datum to detect when it has been affected by an error. This is

also known as encoding, according to [16]. This includes error-detecting codes (EDC),

error-correcting codes (ECC), and self-checking circuits. The data will be encoded into

a code word during the encoding process. The data is recovered from the code word

during the decoding process. If there is a mismatch between the decoded data and the

expected data, an error has occurred. Error detection by means of information redun-

dancy requires additional hardware resources because the encoded data and programs

require a larger amount of memory for storage. Another downside of using encoding for

error detection is the increase of runtime, as shown in [81].

2.5.2.4 Software Redundancy

Software redundancy techniques largely leverage on the experience of hardware redun-

dancy. For example, in N-version programming, the program is written N times, and

all N programs are executed in parallel with majority votes taken, much like having

N-modular redundancy. However, just like N-modular redundancy being an expensive

effort, N-version programming is equally costly and difficult to maintain. For example,

Error Detection by Duplication (EDDI) [84] or SWIFT [85] duplicates all instructions

and has 100% overhead in performance. A recent approach in [86] uses a data-flow graph

where a redundant instance is inserted into the graph. The output from the execution

of both the redundant instance and the original instance is compared. Although it is

flexible and allows for parallelism, it is noted that benchmarks that stress the memory

bus show performance degradation while other benchmarks have recorded up to 23%

overheads.

Chapter 2 Background and Related Work 31

A combination of full code duplication with selective comparison, as presented in [87],

is aimed to improve the fault detection ratio and decrease the imposed overhead. While

it did improve the code size overhead and execution time overhead of the combination

methods by 43.5% and 22.2%, respectively, compared to a full instruction duplication

method, it was less sensitive in detecting the errors caused by an injected fault. In [88],

instructions-based TMR was implemented to mitigate against space-borne single event

effects on processor architectures. However, the overhead of instructions-based TMR

was 10.32%.

The emergence of simultaneous multi-threading (SMT) and multi-core processors (CMP)

also saw techniques such as Redundant Multithreading gaining wide interest. For ex-

ample, in [89, 90], two copies of the same program are run on separate threads and the

outputs are compared. Although this is successful in detecting faults, it cannot be ap-

plied in embedded systems, as embedded systems have limited resources for redundant

multi-threading.

The REPAIR architecture, introduced in [91], is targeted at detecting hard errors in

a multicore processor. It first identifies instructions that will use or have used faulty

processor structures. These potentially incorrectly executed instructions are routed to

an Instruction Re-Execution unit (IRU) to be re-executed and the results are compared.

The results from the IRU will be applied if the results from the core and IRU do not

match. However, the comparison is done post execution, where the pipeline operations

are halted pending the re-execution. On the availability of the results, the necessary reg-

isters are updated and the regular operation of the processor pipeline continues. There

is also an issue of loss of performance from stalling the instructions while awaiting the

duplicated results, which may not be favourable in safety-critical systems. To overcome

this problem, PreFix was introduced in [92]. It is similar to REPAIR, but re-execution of

faulty instructions are reduced substantially because in PreFix, these faulty instructions

are predicted and verified beforehand. With this technique, a faulty core is allowed to

continue its operation on the assumption that the second core running duplicated in-

structions is healthy and free of error. The issue arises when the secondary core is faulty

and the results from running the duplicated instructions cannot be trusted.

2.5.3 Dynamic Verification

Dynamic verification is another form of online error detection that operates during run-

time execution of the software. It differs from software BIST and software redundancy as

the behaviour of the software is observed dynamically using dedicated hardware check-

ers to verify selected high-level invariants. Invariants are program properties that must

be preserved when the code is modified and can be classified into preconditions, post

conditions and loop invariants. Thus, the key to dynamic verification is identifying

the invariants to check. The selection of high-level invariants that define the correct

32 Chapter 2 Background and Related Work

behaviour such as control-flow checking, dynamic [93] or static data-flow checking, com-

putation results, software invariants [94] or any mixture of these [95] are pre-identified.

However, this method of using invariants for error detection incurs additional area mainly

due to history fields and signature computation logic used for data-flow and control-flow

checking. For example, in [95], there is a 16.6% increase in area of the core component

alone and the decrease in performance was measured to be around 3.2% average.

2.5.4 Summary of Existing Online Error Detection Techniques

Existing online error detection techniques such as redundancy-based techniques, BIST

or dynamic verification have high overheads or require more resources than an embedded

processor can offer. Anomaly detection techniques have proved to be a promising ap-

proach for online error detection as they incur low overheads [73,74], and this approach

will be used to detect anomalous behaviour in a system prior to a failure. Hardware

performance counters (HPCs) are a valuable tool for detecting anomalous behaviour in a

processor [96]. Section 2.6 provides an overview of HPCs as well as existing applications

that use HPCs.

2.6 Hardware Performance Counters (HPCs)

2.6.1 Overview of HPCs

Most modern processors have special, on-chip hardware that can monitor performance

known as Hardware Performance Counters or HPCs. HPCs are sets of special-purpose

counters built into processors such as Intel Pentium, ARM, Cray, PowerPC, Ultrasparc

and MIPS architectures [97] to track low-level Performance Monitoring Events (PMEs)

within the processors, such as the number of cache misses, the number of instructions

retired, the number of branch instructions retired in real-time.

HPCs are part of the wider Performance Monitoring Unit (PMU) built into most modern

processors. A PMU consists of two components: performance event select registers and

event counters. A counter is paired with an event select register to monitor a particular

PME. In an Intel x86 processor, the performance event select registers are known as

model specific registers (MSRs) [1], and for an ARM Cortex-A series processors, the

registers are controlled through the event bus, PMUEVENT [2]. The PMU is interrupt-

based, such that an interrupt is generated after a certain interval of time or the number

of occurrences of the desired event exceeds a predefined threshold. In other words, it

is possible for PMU to do either time-based sampling or event-based sampling. The

counters are incremented on an instruction-by-instruction basis, thus ensuring accurate

Chapter 2 Background and Related Work 33

results [98,99]. As these counters are built-in, there are no additional overheads to access

the enormous information available in the CPU.

The number of available counters in each processor is limited and the available PMEs

differ from one processor to another due to architectural differences. The number of

available counters limits the number of PMEs that can be monitored in real-time. For

example, an Intel Atom has only two programmable performance-monitoring counter

registers per processor core. This means that only two PMEs can be monitored simul-

taneously. Therefore, it is not practical to utilise more microarchitectural events than

the number of available counters to achieve high accuracy as it requires executing the

application multiple times, since the hardware can only count a small subset of events

concurrently [100]. It has been shown, however, that a single counter is sufficient to

describe the behaviour of a program [101, 102]. Table 2.2 shows the number of avail-

able counters and the number of available PMEs for some common processors such as

Intel, ARM, POWER4, and UltraSparc II. The total available counters in the processor

and number of available PMEs are taken from the technical reference manual of each

processor.

Table 2.2: Number of available counters and events for some processors

Processor
Number of

Available HPCs
Number of

Available PMEs

Intel Atom [1] 2 + 3 (fixed functions) 129

Intel Core i7 Nehalem [1] 4 + 3 (fixed functions) 129

ARM Cortex-A9 [2] 6 57

POWER4 [103] 8 >100

UltraSparc II [104] 2 >4 bil

Table 2.3 and Table 2.4 list some PMEs that can be observed from an Intel R© and ARM

architecture.

Table 2.3: Pre-defined architectural performance monitoring events for Intel R© archi-
tecture [1]

Bit Position
CPUID.AH.EBX

Performance Monitoring
Event (PME) Name

0 UnHalted Core Cycles

1 Instruction Retired

2 UnHalted Reference Cycles

3 LLC Reference

4 LLC Misses

5 Branch Instruction Retired

6 Branch Misses Retired

34 Chapter 2 Background and Related Work

Table 2.4: Examples of performance monitoring events for ARM architecture [2]

Name Event Number Description

PMUEVENT[0] 0x00 Software increment

PMUEVENT[1] 0x01 Instruction cache miss

PMUEVENT[2] 0x02 Instruction micro TLB miss

PMUEVENT[3] 0x03 Data cache miss

PMUEVENT[4] 0x04 Data cache access

PMUEVENT[5] 0x05 Data read

PMUEVENT[6] 0x06 Data writes
...

...
...

PMUEVENT[56] 0xA4 PLE FIFO Overflow

PMUEVENT[57] 0xA5 PLE request programmed

2.6.2 Application of HPCs

HPCs were originally designed to be used as hardware verification or debugging tools for

performance analysis or tuning purposes [105], but have since been used for performance

evaluation [98,106], workload estimation [107], detection of malicious activities [96,100–

102,108–111], integrity checking [99] and anomaly detection [37,74].

For example, in [109], the authors proposed BRAIN, which stands for BehaviouR based

Adaptive Intrusion detection in Networks and that uses statistics gathered from hard-

ware, network and application to detect and mitigate Distributed Denial of Service

(DDoS) attacks on an application. The HPCs that form the hardware in BRAIN are

used to characterise the host behaviour during load and attack. The result shows that

by correlating the HPCs with network statistics and application statistics can success-

fully detect DDoS with high accuracy, low cost and performance overheads. In [112], the

authors present NumChecker, a Virtual Machine Monitor (VMM) based framework that

securely and efficiently monitors the execution of system calls to detect kernel rootkits

by leveraging on existing HPCs. In [110], ConFirm is a low-cost technique that uses

HPCs as a signature to verify the execution of the computational paths in order to

detect malicious modification of firmware in embedded control systems.

Wang et al. [106] use HPCs to monitor and quantify the interference between virtual

machines located in the same host and competing for shared physical resources. Using

Last Level Cache (LLC) miss-rates, one of the counters available, the data is fed into

the interference prediction model to predict performance degradation between virtual

machines and through the information gathered, it can determine which virtual ma-

chine is utilising most of the resources. Another example of how HPCs are used for

performance monitoring is shown in [107] where the authors proposed to monitor L1

cache activity counters in order to estimate the workload and set the Dynamic Voltage

and Frequency Scaling (DVFS) based on the estimated workload. This method resulted

Chapter 2 Background and Related Work 35

in energy saving of 23% compared to the on-demand frequency setting policy used in

Linux.

A common trait in all these works is that HPCs have been used to identify or detect

some form of deviation from normal or expected behaviour. As explained in detail in

Chapter 3, a single HPC is used to monitor the execution profile of a processor core

running a workload. A system that behaves normally exhibits a certain profile, and any

deviation from the profile indicates anomalous behaviour has occurred in the system.

2.7 Summary

This chapter presents the fundamental concepts and definitions in the scope of this thesis.

The existing online error detection techniques require either some external monitors to

be built-in or some means of redundancy. A dedicated hardware-based detector can

be intrusive as it meddles with the rest of the hardware and a pure software detector,

though unobtrusive, may be too slow to react. As well as the additional overhead, these

techniques are only able to detect an error in the processor after a failure had occurred.

This thesis addresses the gap where it is possible to use an HPC to detect anomalous

behaviour and predict potential failure before the failure happens. Predicting potential

failure in an embedded system is important to minimise or reduce potential risk. Since

these systems usually operate continuously, the detection of anomalous behaviour has

to be performed online and in real-time. By utilising the built-in HPC, the overhead

incurred will be lower than for software profilers [100,112]. However, prior to performing

online error detection, it is important to understand what constitutes normal behaviour

of a system, and what causes the system to behave anomalously. A system that behaves

normally exhibits a certain pattern, thus any behaviour that deviates from that normal

pattern should be identifiable. Chapter 3 discusses how anomalous behaviour can be

identified using HPCs and the results gathered from the experiment conducted also show

a correlation between errors that occur and failures caused by these errors.

Chapter 3

Identification of Anomalous

Behaviour using Hardware

Performance Counter (HPC)

3.1 Introduction

Embedded systems typically perform routine or repetitive tasks, and anything that

is repetitive has a pattern. Based on this understanding, a system that is behaving

normally (i.e. functioning without any error) has a pattern, and thus, any abnormal

behaviour that deviates from this normal pattern should be identifiable. The problem

is to determine what kind of features in a system or which system components provide

meaningful information about the system’s behaviour. Appiah et. al in [113] and Zhai

et. al in [114] have shown that it is possible to use Program Counters (PCs) as a feature

to characterise a Central Processing Unit (CPU).

Several experiments were performed where the PCs were extracted to characterise the

behaviour of the system running simple programs such as Queens, SQR Root and Angle

Conversion. The amount of data generated using PCs as the monitoring feature is huge,

amounting to 10 GB and over for each program. Not only that, the time involved to

generate data was long, around one to two hours for a simple program. This suggest

that using PCs to observe the behaviour of a system is not a feasible solution. An

alternative to PCs is using Hardware Performance Counters (HPCs) to characterise

normal behaviour. As presented in the previous chapter, these counters are built into a

processor and record specific events that occur in the processor precisely and accurately.

In this chapter, identification of anomalous behaviour using HPC is presented. The main

objectives of this chapter are as follows:

37

38
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

1. Investigate the type of events available to be monitored using an HPC. In par-

ticular, two events which are (a) the number of instructions retired, and (b) the

number of cache misses will be investigated.

2. Investigate and determine a suitable sampling rate for HPCs. Several sampling

rates are proposed and selection of an appropriate sampling rate will be presented.

3. Investigate the behaviour of HPC data when a fault has manifested itself as an

error and subsequently, led the system into a failure. The behaviour of the HPC

data with a manifested fault that leads to a failure, in particular, (a) a hang; or

(b) a crash will be presented.

This chapter is organised as follows. The process of gathering anomalous and non-

anomalous data is presented in Section 3.2. In Section 3.3 and Section 3.4, the selection

of fault model and HPC event used in the experiment are presented. The selection of

benchmarks for the experiment is presented in Section 3.5, while Section 3.6 explains the

simulator used for the experiment. Analyses of the results are presented in Section 3.8,

while correlations between a manifested fault (also known as an error) and a failure are

presented in Section 3.9. Section 3.10 concludes the chapter.

3.2 Methodology

Similar to what has been done in [99, 109], the hardware counters are used to create

execution profiles for several benchmarks based on the methodology shown in Figure 3.1.

Briefly, the first two steps involve identifying the fault model to be used and the type of

event to be monitored using an HPC. After identifying the benchmarks to be used in the

experiment, the next step involves creating, executing and obtaining initial pattern from

fault-free executable, which will form as the baseline patterns for the benchmarks. Fault

injection is performed and anomalous behaviour from the system is observed through

the counter data. The following Sections 3.3, 3.4, 3.5, 3.6 and 3.7 explained in detail

the steps that have been taken.

3.3 Selection of Fault Model

The first step is to identify which fault model will be used in the experiment. There are

several fault models that are typically used to investigate the effects of physical faults

on higher levels of abstraction. The fault models outlined by Wang and Chattopadhyay

[115] are as follows:

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 39

Figure 3.1: The methodology set-out for this experiment

• Single Stuck-at Fault model (SSFM) is used to model the condition where a value

in a memory cell or a logic gate is permanently stuck at either logic value zero

or one. This fault model is the most common model used in digital test pattern

generator due to its simplicity. SSFM can be used to model many physical defects.

• Single Bit-flip Fault model is used to model transient faults due to soft errors that

can occur either in the register file, arithmetic logic units, or in different pipeline

registers of a processor. This fault model causes the flipping of a logic value from

one value to another when a defect occurs. The bit-flipping takes place within

40
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

the duration of the defect, and the value flips back to its original value after the

duration of the defect.

• Multiple Bit-flip Fault model is used to represent simultaneous change of logic

values for multiple bits. Like single bit-flip fault model, multiple bit-flip fault

model involves flipping various bits located either in the register file, arithmetic

logic units, or in different pipeline registers of a processor at the same time, and

for the duration of the fault.

As discussed in Chapter 2, a transient fault is a fault that happens at a random time

and is hard to detect. However, for a safety-critical embedded system such as a control

system in a spacecraft, detection of errors caused by transient faults is very important

to ensure the errors are mitigated and thus, prevent the system from entering into a

failure that is caused by radiation. Therefore, in this work, the single bit-flip fault

model is chosen as a study case as this fault model closely represents the transient faults

experienced by the system.

3.4 Selection of Event

Table 3.1: Architectural events that can be monitored in an Intel Atom processor

Bit Position Event Name Explanation

0 UnHalted Core Cycles Counts core clock cycles when the
clock signal on a specific core is run-
ning (not halted).

1 Instruction Retired Counts the number of instructions
that were completely executed, and it
only counts for instructions that are
on the correct execution path.

2 UnHalted Reference Cycles Counts reference clock cycles at a
fixed frequency while the clock signal
on the core is running.

3 LLC Reference Counts requests originating from the
core that reference a cache line in the
last level on-die cache.

4 LLC Misses Counts each cache miss condition for
references to the last level on-die
cache.

5 Branch Instructions Retired Counts branch instructions at retire-
ment.

6 Branch Misses Retired Counts mis-predicted branch instruc-
tions at retirement.

The second step is to identify which Performance-Monitoring Events (PMEs) the hard-

ware counter will monitor to create a profile of the system. As the number of available

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 41

counters in a processor is limited, this imposes a limit on the number of PMEs that

can be monitored concurrently in real-time. For example, the Intel Atom used in this

work only has two programmable performance monitoring counter registers per pro-

cessor core, which means only two PMEs can be captured simultaneously. However,

researchers in [101] and [102] have shown that using a single counter to monitor a single

PME is sufficient to describe the behaviour of a program.

Due to the limitation of available counters for monitoring, selection of the PME is

important to ensure it is applicable across benchmarks that have different instruction

distributions and that run on different processors. Architectural PMEs are the common

events that can be monitored across different processors and architectures. Table 3.1

shows some examples of architectural PMEs available in an Intel Atom processor. In this

work, two different PMEs, namely the number of instructions retired and the number

of cache misses are chosen. These two PMEs were chosen as it was found that the same

PMEs are also available on other processors, namely the ARM Cortex processor [2] and

the POWER4 processor [103]. The data from the two PMEs are collected and monitored

separately before being compared to determine which PME is better suited for detection

of anomalous behaviour.

3.5 Benchmarks

The benchmarks used in this experiment are from MiBench [116], which consists of a set

of 35 embedded applications divided into six suites, with each suite targeting a specific

area of the embedded market. These 35 embedded applications can also be grouped ac-

cording to different classes of instruction. There are three main classes of instructions,

namely (a) logical and program control instructions (such as unconditional and condi-

tional branch instructions), (b) arithmetic instructions, which includes both integer and

floating-point instructions, and (c) data transfer or memory operation instructions (load

and store). It was impossible to conduct experiments utilising all 35 benchmarks as each

benchmark is executed more than 100 times. Therefore, at least one benchmark from

each suite was chosen. The chosen benchmarks also have different computational charac-

teristics to ensure the results obtained will not be dependent on one type of benchmark.

The following benchmarks have been chosen for this experiment:

• Bitcount taken from Automotive and Industrial Control Suite, is an algorithm that

tests bit manipulation ability of a processor by counting the number of bits in an

array of integers. This is known as a computationally intensive benchmark as it

has a large percentage of arithmetic instructions.

• QSort, which is also from Automotive and Industrial Control Suite, uses the pop-

ular quick-sort algorithm implemented in the GNU C standard library to sort a

42
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

large array of strings into ascending order. QSort is also another computationally

intensive benchmark as it has more than 79% arithmetic instructions.

• Dijkstra is a benchmark taken from the Network suite that calculates the shortest

path between between two nodes using an adjacency matrix of size 100x100. 100

paths are calculated during each execution. This benchmark is categorised as a

memory intensive benchmark as it contains 40% memory operation instructions.

• FFT is a benchmark taken from Telecommunication suite that performs a Fast

Fourier Transform on an array of 32,768 floating point data. Fourier transforms are

used in digital signal processing to find the frequencies contained in a given input

signal. The input data is a polynomial function with pseudorandom amplitude

and frequency sinusoidal components. This benchmark can be categorised as both

computational and control intensive benchmark due to the high arithmetic as well

as logical and program control instructions.

• StringSearch is a benchmark taken from Office suite that searches for given words

in phrases using a case-insensitive comparison algorithm. This benchmark has a

high number of arithmetic and memory operation instructions.

3.6 Architectural Simulator

In the work described in this thesis, we studied the presence of transient faults in a

processor’s registers and their effect on the overall behaviour of the processor. Building

a real system to study the effects of transient faults in the processor’s registers involves a

huge cost [117]. A more cost-effective way is to rely on computer architecture simulators.

A simulator also provide the ease of evaluation, debugging and understanding of the

behaviour of the existing system, allowing one to see what is happening “in the system”

[118].

There are several simulators available such as Gem5 [119], Multi2Sim [120], PTLSim

[121], MARSSx86 [122] and others. However, Gem5 was selected as the simulation tool

in this work because of its ease of configurability, support of various Instruction Set

Architecture (ISAs), support of a complete operating system (OS) and support from its

active community of developers. Another reason for selecting Gem5 was the availability

of GemFI [123], a fault injection tool that was developed based on the Gem5 simulator.

All the experiments were performed using the Gem5 architectural simulator and GemFI

fault injection tool. The Gem5 simulator is an instruction set simulator, widely used in

computer architecture research. Gem5 provides a flexible, modular simulation system

that is capable of evaluating a broad range of systems, encompassing system-level archi-

tecture down to processor micro-architecture. It supports various ISAs such as Intel x86,

ARM, MIPS, Alpha, Sparc and Power, and can be used either in System-call Emulation

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 43

(SE) or Full-System (FS). SE mode allows users to emulate most common system calls,

thus avoiding the need to model devices or even an OS. In FS mode, Gem5 models the

complete system including the OS and devices, executing both user-level and kernel-level

instructions.

In principle, GemFI is able to support any processor model and ISA available in Gem5,

but at the time of our experiments, GemFI only supported Alpha and Intel x86 ISAs. For

this work, Intel x86 ISA is used. Running in FS mode, GemFI injects fault onto registers

in the processor core while simulating both user-level and kernel-level instructions and

models a complete system including the central processing unit (CPU), memory and

peripheral devices. It evaluates the impact of faults from the architectural level up to the

application level. There are two intrinsic functions provided by the GemFI Application

Programming Interface (API):

• void FI init() initialises the fault injection module;

• void FI activate (int id, int command) is a pseudo-assembly instruction to

toggle a fault on a specific thread. The thread is given a numerical identification

number.

These two API functions are required to be added into the benchmark to be tested.

GemFI also generates a list of possible faults which can be injected into various loca-

tions such as: (a) the Fetch instruction, (b) the selection of read/write registers during

Decoding stage, (c) the result of an instruction in an Execution stage or (d) memory

transactions during Load and Store. Each fault in the list is characterised by four at-

tributes: Location, Thread ID, Time and Type.

• Location defines the targeted location for fault injection. Supported locations

include the fetched instruction, the selection of read/write registers during the

decoding stage, the result of an instruction at the execution stage, and finally

memory transactions (load/stores).

• Thread ID allows a fault to be injected into a specific thread by using the nu-

merical identification number given to the thread upon the execution of the API

function, void FI activate (int id, int command).

• Time defines when the fault will be injected, which means, the fault is injected

after a certain number of instructions have been executed from the point the fault

injection is initiated.

• Type defines how the value of a specified location can be corrupted: (a) by flipping

the running value at specific bit location (which mimics a single bit-flip), and (b)

by setting all bits of the location to either 0 or 1 (which mimics a single stuck-at-

fault).

44
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

Figure 3.2: A sample of fault being injected into the Fetch instruction

Figure 3.2 shows an example of how a fault is injected. The fault is injected in bit 19 of

the fetched instruction in the CPU, when the application fetches the 39007th instruction

after the initiation of fault injection for this thread (FI activate). The fault is activated

for all threads at the 39007th instruction, and stays active for a period of one instruction

and the type of fault being injected is a single bit-flip fault, identified with the keyword

Flip as shown in Figure 3.2.

The experiments have been conducted on a Linux virtual machine as both Gem5 and

GemFI require the Linux operating system. The virtual machine was created using

Microsoft Azure virtual machine platform with 16 central processing units (CPUs), 32

gigabytes (GBs) of memory and 1 terabyte (TB) of data storage and running Ubuntu

version 16.04 LTS as the operating system. Microsoft Azure is a public cloud computing

platform providing a range of cloud services, including services needed for storage, net-

working, databases, artificial intelligence and machine learning, analytics and compute.

A major part of the work in this thesis has been supported by Microsoft Azure that

provided the computing resources required to perform the experiments. These resources

allowed the experiments to be executed at a much faster pace compared to using a

normal desktop computing system. It provided significant storage capacity to store all

simulation results.

3.7 Experimental Setup

To extract the HPC data that will be used to monitor system reliability, there are several

steps involved:

1. Set up the benchmarks required for testing.

Each benchmark is compiled dynamically in two different versions - one in the

original version and another with GemFI intrinsic functions added. Both versions

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 45

are compiled for Intel x86 ISA. For Bitcount, the input to the benchmark is an

array of integers while for QSort, the input to the benchmark contains a list of

words. The input for Dijkstra benchmark is a large graph in the form of an

adjacency matrix, whereas for FFT, the input to the benchmark is an array of

32,768 floating point data. Lastly, the input for the StringSearch benchmark is a

list of phrases.

2. Perform the simulation.

Simulations of the benchmarks were performed in GemFI under FS mode. FS mode

simulates the execution of the benchmark in an OS-based simulation environment.

A script file is created to assist in the execution of the benchmarks. After fault

injection has been initialised and enabled, a set of faults is created using the fault

generator in GemFI. A fault configuration file describing the faults to be injected

is provided for GemFI. This file is parsed at startup and each fault is injected into

one of the four internal queues, each of which corresponds to a pipeline stage. The

simulation continues as normal until it is time for the fault to be injected. Once

the fault has been injected (i.e. a bit has been flipped), the simulation continues.

If an injected fault is activated or manifest as an error, it leads to the system

experiencing some form of failure, else, the experiment terminates successfully.

Figure 3.3 provides a general overview of how the simulation works using the

GemFI API. The blue lines indicate that the tasks belong to the user, the red

lines indicate the responsibility of GemFI, and the orange line denotes the HPC

values as outputs from the OS.

Each experiment is executed in six conditions:

(a) Initial Run refers to running the binary executables without any GemFI API

functions added to it. The Initial Run condition was executed to obtain

the original behaviour of the benchmarks without any GemFI API functions

added to it.

(b) With Fault Activated refers to running the binary executables that have been

added with GemFI API functions, but fault is not being injected. This con-

dition provides the baseline behaviour for all benchmarks

(c) Fault injection in the Fetch Instruction refers to running the binary executa-

bles with GemFI API functions added, and a fault is injected in the Fetched

instruction.

(d) Fault injection in the read or write register during Decoding stage refers to

running the binary executables with GemFI API functions added, and a fault

is injected in either a read or a write register during Decoding stage.

(e) Fault injection in the result of an instruction during Execution stage refers

to running the binary executables with GemFI API functions added, and a

fault is injected in a register that contains the result of an instruction at the

Execution stage.

46
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

Figure 3.3: Overview of the GemFI API, after [123]. The red components show
possible fault injection locations; Thread 1 is where the executables run.

(f) Fault injection during memory transactions in Load/Store stage refers to run-

ning the binary executables with GemFI API functions added, and a fault

is injected in the memory instruction that is either loading a value from a

register, or storing a value into a register.

For each experiment, the fault model applied is a single bit-flip fault model where a

single bit-flip fault is injected randomly at a stage in the pipeline. The benchmarks

were simulated at two clock speeds: (a) at clock speed of 2GHz, a speed that is

typically found in microprocessors, and (b) a clock speed of 250MHz, a typical

speed found in microcontrollers. Two different speeds were applied to identify the

number of clock cycles it takes for the system to suffer a failure, particularly, a fail-

ure that resulted in a crash. This information is used to evaluate the effectiveness

of the early detection and prediction algorithm presented in Chapter 4.

The runtime for each experiment ranges from a minimum of five minutes to two

hours depending on the benchmark, the clock speed and the sampling interval.

Lower clock speeds and smaller sampling intervals result in longer runtime and

generation of a huge amount of data. For example, for the FFT benchmark running

at clock speed 250MHz and sampling at 5000ns, the total runtime required was two

hours and the total data generated was 8GB. Compare with the same benchmark

but running at a clock speed of 2GHz and sampling at 100,000ns, the total runtime

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 47

required was just around thirty minutes and the total data generated was 100MB.

For each experiment conducted, the HPCs are traced using the method outlined

below.

3. Trace and record the required HPC values.

Two different tracing methods were used to log the counter values obtained. The

first method was to obtain the counter value after the execution of the benchmark

has been completed. The total count for the benchmark with fault injection will be

compared against the total count for baseline benchmark (benchmark with fault

activated but without fault injection). However, this method was only able to

provide an indication that an error has occurred which causes the application to

either hang, crash or provide incorrect output, but was unable to determine when

the error occurred. The second method was to log the counter value at certain

intervals. Using this method, the execution profile for each benchmark is created,

and the execution profile is able to detect the instance an error has occurred which

causes a failure to the system.

Sampling interval plays an important factor in determining the accuracy of time

sampling methods [124]. It is important to ensure that the execution profiles cre-

ated contain sufficient amount of data that can be used to identify the anomalous

behaviour in the system. Several sampling intervals were chosen to determine

which interval duration is most suitable for this work. The sampling intervals

listed below were chosen from the order of magnitude 2 to the order of magnitude

5, increasing one order of magnitude each time.

• 100000ns;

• 50000ns;

• 10000ns;

• 5000ns;

• 1000ns; and

• 800ns

4. Obtain, compare and analyse the results.

The counter values obtained from Initial Run condition and With Fault Activated

condition are first plotted and compared. Besides trying to establish the base line

behaviour for each benchmark, the comparison is also done to ensure that the

insertion of GemFI API will not alter the behaviour of the benchmarks. The base

line behaviour is used to study and compare between two different PMEs, the

various sampling interval as well as using different input data, which are presented

in Section 3.8.1, Section 3.8.2 and Section 3.8.3.

Next, the counter values obtained from the remaining four conditions, (a) Fault

injection in the Fetch Instruction, (b) Fault injection in the read or write register

48
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

during Decoding stage, (c) Fault injection in the result of an instruction during

Execution stage, and (d) Fault injection during memory transactions in Load/Store

stage are obtained. The counter values from the four conditions are compared

against counter value obtained from With Fault Activated condition that forms the

baseline of the behaviour for each benchmark. The characteristics of the counter

values observed are further discussed in Section 3.8.4.

The outcome from each experiment are categorised either as (a) Crash, (b) Hang,

Fail Silence Violation or Not Manifested. A Crash is said to have occurred when

the experiment terminated unexpectedly while a Hang occurred when the exper-

iment had stalled or do not response within specific time. Fail Silence Violation

occurred when the counter values has some slight deviation from the baseline

counter values but no apparent failure can be observed by the user as the experi-

ment terminated successfully. Not Manifested is where the experiment terminated

successfully, and the counter values do not deviate from the baseline counter val-

ues. The errors that causes these anomalous behaviours are further discussed in

detail in Section 3.9.

3.8 Results and Discussion

In this section, the results obtained from the experiment is discussed. Section 3.8.1

compares the results obtained using two different PMEs while Section 3.8.2 compares the

results obtained using various sampling intervals. In Section 3.8.3, the execution profiles

of two benchmarks using different input data are presented and discussed. All the results

in Section 3.8.1, Section 3.8.2 and Section 3.8.3 are obtained from experiments running

With Fault Activated condition, and it shows the normal behaviour of the benchmarks.

The characteristics of anomalous behaviour observed in the processor are presented in

Section 3.8.4, where in this section, the counter values from the remaining four con-

ditions, (a) Fault injection in the Fetch Instruction, (b) Fault injection in the read or

write register during Decoding stage, (c) Fault injection in the result of an instruction

during Execution stage, and (d) Fault injection during memory transactions in Load-

/Store stage conditions are compared against counter value obtained from With Fault

Activated condition. These anomalous behaviour are categorised as either (a) Crash, (b)

Hang, Fail Silence Violation or Not Manifested.

3.8.1 Comparisons between two PMEs

Figure 3.4 compares the execution profiles obtained from Dijkstra benchmark running

at two clock speeds (a) 250MHz, and (b) 2GHz. The profiles were generated from With

Fault Activated condition (i.e. fault was not injected), which forms as the baseline

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 49

(a) Clock Speed = 250MHz (b) Clock Speed = 2GHz

(c) Clock Speed = 250MHz (d) Clock Speed = 2GHz

Figure 3.4: Execution profiles using Number of Instructions Retired and Number of
Cache Misses for Dijkstra benchmark running at 250MHz and 2GHz clock speed

behaviour for this benchmark. Figure 3.4(a) and Figure 3.4(b) show the behaviour

of Dijkstra benchmark monitored using the number of retired instructions against the

simulation time in picoseconds while Figure 3.4(c) and Figure 3.4(d) show another set

of results where the behaviour of the benchmarks were monitored using the number

of cache misses plotted against simulation time in picoseconds. The counter values for

each experiment begin after the OS has boot-up. For example, in Figure 3.4(a) and

Figure 3.4(c), it takes about 6.44s for the OS to boot-up, while in Figure 3.4(b) and

Figure 3.4(d), it takes about 5.134s for the OS to boot-up. The difference in the boot-up

time is caused by running Ubuntu on different virtual machines.

As can be seen in Figure 3.4, the profile for each benchmark is similar even though it is

50
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

running at a different clock speed. From the results, it shows that a program exhibits

the same behaviour regardless of any clock speed it runs on. This suggests that the PME

monitored using HPC can be used to create the execution profile of an application, and

thus, identifying the normal behaviour of the system.

(a) Clock Speed = 250MHz (b) Clock Speed = 2GHz

(c) Clock Speed = 250MHz (d) Clock Speed = 2GHz

Figure 3.5: Execution profiles using Number of Instructions Retired and Number of
Cache Misses for Bitcount benchmark running at 250MHz and 2GHz clock speed

Figure 3.5 shows the execution profiles obtained from Bitcount benchmark where Fig-

ure 3.5(a) and Figure 3.5(b) show the behaviour of Bitcount benchmark monitored using

the number of retired instructions (axis Y) against the simulation time in picoseconds

(axis X) while Figure 3.5(c) and Figure 3.5(d) show another set of results where the

behaviour of the benchmarks were monitored using the number of cache misses plot-

ted on axis Y. It is clear that the execution profiles for Dijkstra benchmark shown in

Figure 3.4 completely differs from the execution profiles for Bitcount benchmark shown

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 51

in Figure 3.5 whether it is using instructions retired PME or cache misses PME. Like

Dijkstra benchmark, it takes about 6.43s for the OS to boot-up for the Bitcount bench-

mark running at 250MHz as shown in Figure 3.5(a) and Figure 3.5(c), and 5.128s for

the Bitcount benchmark running at 2GHz as shown in Figure 3.5(b) and Figure 3.5(d).

Additional results on the execution profiles for FFT, StringSearch and QSort bench-

marks can be referred to in Appendix A. From the results obtained, it is clear that each

application has its own signature profile, which can be monitored using HPC.

(a) Clock Speed = 250MHz

(b) Clock Speed = 2GHz

Figure 3.6: Correlation between Number of Instructions Retired and Number of Cache
Misses for Dijkstra benchmark running at 250MHz and 2GHz clock speed

52
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

Figure 3.6 shows the correlation between instructions retired PME and cache misses

PME for Dijkstra benchmark. As can be observed, there is a positive correlation between

the two PMEs, which is more prominent in the execution profile obtained when running

at lower clock speed (Figure 3.6(a)), where both the counter values increase and decreases

in parallel. This is expected as higher cache misses means higher latency, where more

clock-ticks are required for an instruction to retire.

(a)

(b)

Figure 3.7: Comparison between Number of Instructions Retired and Number of
Cache Misses for Dijkstra benchmark running at 2GHz clock speed

Figure 3.7 and Figure 3.8 show the comparison between cache misses PME and instruc-

tions retired PME for Dijkstra benchmark running at 2GHz and 250MHz. As can be

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 53

(a)

(b)

Figure 3.8: Comparison between Number of Instructions Retired and Number of
Cache Misses for Dijkstra benchmark running at 250MHz clock speed

observed from Figure 3.7 and Figure 3.8, the value of both the counters record a sudden

and huge increase at Data Point 47,000 in Figure 3.7 and at Data Point 4,491,100 in

Figure 3.8. This indicates that an error is present in the system, thus causing the system

to behave anomalously.

By comparing the values recorded using cache misses PME and instructions retired PME,

it is found that values recorded using cache misses are lower compared to instructions

retired. For example, in Figure 3.7, the values recorded for instructions retired PME

54
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

are in the range of 67,000 and 100,000, while for cache misses PME, the values recorded

are between 0 and 4,500. Similarly, for Figure 3.8, the values recorded for cache misses

are between 0 and 110, while values recorded for instructions retired PME are between

450 and 950. In general, the values recorded for cache misses are between three and

seven bits while value recorded for instructions retired PME are around seventeen bits,

more than twice the values recorded for cache miss PME. Therefore, the computational

size and speed can be greatly reduced by monitoring the behaviour using cache misses

compared to using instructions retired.

Another observation is that the cache misses PME is also more susceptible to detection

where the counter data recorded bigger deviation (more than 10% as seen in Figure 3.7(b)

and Figure 3.8(b)) when the pattern begins to deviate from the normal behaviour com-

pared to number of instructions retired PME, where the deviation recorded is around

5%. A bigger deviation in the counter values is easier for detection, and thus, provides

better detection accuracy. Based on all these findings, the cache misses PME is found

to be more suitable for monitoring anomalous behaviour in the system.

3.8.2 Comparison on various Sampling Interval

Figure 3.9 shows the results for Dijkstra benchmark running at 250MHz clock speed

with various sampling interval. The results display various execution profiles which

were plotted with number of cache miss plotted against simulation time. The difference

between each figure is the amount of data collected from the counter. For example, in

Figure 3.9(d) where experiment with the sampling interval set at 5000ns, there were more

data collected compared to the experiment with 100000ns sampling interval as shown

Figure 3.9(a). A total of 120,000 data points are collected from the experiments running

at 5000ns while only 6000 data points are collected from the experiments running at

100000ns.

The shorter the duration of the interval, the higher the amount of data is generated.

Shorter intervals allows the anomalous behaviour to be detected earlier as the amount of

data from the point the fault manifested as an error to the point where a failure occurs

increases. Another observation is the value of the counter gets smaller as the sampling

interval gets smaller. This finding is consistent with the behaviour of HPC itself, where

in time-based sampling, the counter is incremented on an instruction-by-instruction

basis until an interrupt is generated. Smaller sampling interval means the interrupt

is generated quicker. However, it is found that sampling interval below 5000ns is not

suitable as it is difficult to distinguish between an anomalous point from a normal point.

Another problem of having an interval that is too short is that the same activity can

be recorded several times, thus inflating the sample size. Therefore, the most suitable

sampling interval chosen is 5000ns.

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 55

(a) 100000 ns (b) 50000 ns

(c) 10000 ns (d) 5000 ns

(e) 1000 ns (f) 800 ns

Figure 3.9: Execution profiles using Number of Cache Misses for Dijkstra benchmark
running at different sampling interval

56
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

(a)

(b)

Figure 3.10: Execution profiles using Number of Cache Misses for (a) QSort and (b)
Dijkstra benchmarks with multiple inputs.

3.8.3 Comparison on using Different Input Data

The experiment was also conducted for QSort and Dijkstra benchmarks with different

sets of input data and the execution profile for each benchmark was compared. An

input data is defined as a file that contains data that serve as an input to a program.

Executing the benchmarks with different sets of input data simulate the condition where

applications do not always run on the same input data. There are three different sets

of input data used for the QSort benchmark and four different sets of input data used

for Dijkstra benchmark. For QSort benchmark, the first set of input data consisting of

words and integers, the second set of input data consists of a mixture of words, integers

and floating points and the third set of input data contains only integers and floating

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 57

points. Since the Dijkstra benchmark is a benchmark that calculates the shortest path

between every pair of nodes in a graph, different sets of input data means having different

nodes in each input data.

Figure 3.10 shows the execution profile generated for QSort and Dijkstra benchmarks

with different sets of input data and from the results shown, the execution profile for

each benchmark still bears a strong similarity. This finding suggests that regardless of

any input used, the execution profile remains similar, and thus, it is possible to observe

anomalies that may occur based on the profiles generated by the counter.

3.8.4 Characteristics of Anomalous Behaviour in a Processor

In the experiment conducted, as a single bit-flip fault is injected randomly in each stage of

the pipeline, the manifested fault leads to different kind of errors such as segmentation

fault, invalid opcodes, kernel panic, bad paging and others. These errors causes the

program to experience anomalous behaviour, which can be divided into either (a) masked

error (or fault free), (b) fail silence violation, (c) hang, or (d) crash. The correlation

between these errors and failure observed in the system will be further discussed in

detail in Section 3.9. However, every injected fault that manifests itself as an error can

be shown using a single counter. The anomalous behaviour is captured in the execution

profile for each benchmark as shown in Figure 3.11.

In the work described in this thesis, the characteristics observed from Hang and Crash

are used to develop the early detection and prediction algorithm. For a Hang, there is a

huge deviation in the beginning of the error before the counter value becomes constant

at a point. The amount of time for the system to stay unresponsive or hang varies as

it depends on when the user sends an interrupt to the system. For Crash, the counter

will also spot a huge deviation before it stops. As for Masked Error and Fail Silence

Violation, there is either no deviation from the counter values observed (for the case of

Masked Error) or an extremely small deviation in the counter values (for Fail Silence

Violation). In other words, the pattern profile remains the same as a fault-free system

for both situations, and hence, it is not considered in this thesis.

The different failures caused by manifested faults can be illustrated using Figure 3.12

which shows the temporal relationship between a fault, error and failure. Assume that

a single bit-flip fault occurs at time tf . When the fault propagates or manifests into

an error, the counter begins to deviate, and a string of anomalies occur from time te

onwards until the system encounters failure at time tfail. In other words, a bit-flip fault

may occur at anytime, but it does not causes an error in the system immediately. The

counter values begin to deviate only when the fault is activated. Hence, it is crucial

to detect when the fault has been activated or manifest as an error. The important

time interval is δtd, which is the time interval between error to failure. For a prediction

58
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

(a) Bitcount

(b) FFT

(c) Dijkstra

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 59

(d) QSort

(e) StringSearch

Figure 3.11: Execution profiles that shows how different failures can be detected for
the following benchmarks - (a) BitCount, (b) FFT, (c) Dijkstra (d) QSort and (e)

StringSearch

method to become useful, the detection of anomalous behaviour has to be as early as

possible within the time interval.

Figure 3.13 and a close-up of it in Figure 3.14 show how the fault manifested as an error

after being injected into the system until the system fails. It shows how from the time

the fault is manifested as an error until the time when the failure is observed on the

system, there is a delay of approximately 5,000µs, equivalent to 1,250,000 (or 1.25M)

clock cycles. Experiments were further conducted to determine the minimum number

of clock cycles it takes for a system to crash after a fault has manifested as an error.

A comparison was made between two benchmarks running at two different clock speed

that suffered a crash failure after a fault has been manifested as an error. There were

60
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

Figure 3.12: Temporal relationship between fault, error and failure

Figure 3.13: From injected fault to manifested fault and finally system failure

14 data sets and 11 data sets from Dijkstra and Bitcount benchmarks running at clock

speed of 2GHz, and another 20 data sets and 5 data sets from Dijkstra and Bitcount

benchmarks running at 250MHz. From the experiment, the minimum amount of clock

cycles it takes for a system to crash is found to be approximately 1M clock cycles as

shown in Figure 3.15, which is equivalent to 4,000µs for a system running at 250MHz

clock speed. In other words, δtd is 1M clock cycles or 4,000µs for a system running at

250MHz clock speed.

1M clock cycles seems to be a “big” number, but it only takes 4ms for a system to

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 61

Figure 3.14: Close-up of Fault Injection to Fault Manifestation and System Failure

Figure 3.15: Number of clock cycles to crash

crash from the time the fault manifests itself as an error. In the most basic system,

each instruction may occur in exactly one cycle. This involves fetching an instruction to

execute from a program memory, decoding the instruction in the hardware, executing the

instruction and finally storing the result of the instruction. However, systems nowadays

are far more complex, even for a safety-critical embedded system, and not all CPU

operations have equal operation of cost in terms of CPU cycles. [125] has provided a list

of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD

and VIA CPUs, where it shows that the number of clock cycles for each operation differs

from one another.

62
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

To illustrate how it is possible to take 1M clock cycles to cause a crash, assume a

single bit-flip fault is present in one of the registers of a certain fetch instruction. The

fault gets activated when the faulty instruction is fetched from the program memory

into instruction register. Fetching the instruction from a program memory may take a

few clock cycles. The instruction register is split into two parts – opcode and address.

This opcode is then decoded at the control unit, which takes another clock cycle. The

number of clock cycles involved in the execute stage depends on the type of instruction

decoded by the control unit. Arithmetic operations usually takes a few clock cycles

while integer multiplication, integer division and floating point division take between 10

and 40 clock cycles [125]. If the bit-flip happened at the opcode part of the instruction,

it causes a wrong instruction to be executed. If the bit-flip happened at the address

part of the instruction, it causes the program to access a wrong location in the memory.

The benchmarks were also executed under an operating system, where there are system

APIs. These system APIs causes kernel calls, and switching between kernel and user

mode, between address spaces and between threads is inherently expensive [126,127]. A

single kernel call require at least 1000-1500 CPU clock cycles. All of this contributes to

the 1M clock cycles.

Therefore, it is imperative to detect deviation as early as possible and below 1M clock

cycles (or below 4,000µs). However, there could be instances where the system crashes

in less than 1M clock cycles after a fault had occurred. This happens when the fault

causes the system to perform an illegal operation such as erroneously try to access a non

available address, memory or instruction. When an illegal operation is performed, the

system terminates the process.

3.9 Correlation Between Errors and Failures

3.9.1 Analyses of the Distribution of Failure

As mentioned in Section 2.3, a failure is said to have occurred when the system transi-

tioned from correct service to incorrect service. A failure is caused by the presence of an

error in the system where an error is the terminology used for an active or manifested

fault. A fault in the system is caused by a defect in the hardware, which in this case

happens to be a single bit-flip at the instruction in the pipeline. To observe the corre-

lation between errors and failures, the failures and errors are first classified and defined

according to [128]. Table 3.2 described four categories of failures and Table 3.3 defines

the various type of errors which may occur.

The experiment was performed on the QSort benchmark, where a total of 1200 single

bit-flip faults were injected (300 faults at each stage of the pipeline). This amount

of fault injections is sufficient to provide 95% confidence in the test results according

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 63

Table 3.2: Failure categories

Failure Category Description

Crash The system stops working.

Hang System resources are exhausted, resulted in a nonoperational
system.

Fail silence violation Either the system or the application erroneously detects the
violation presence of an error or allows an incorrect
data/response to propagate out.

Not manifested The corrupted instruction is used, but it does not have a
visible abnormal impact to the system.

Table 3.3: Error categories

Error Category Description

Segmentation fault Access violation, raised by hardware with memory
protection, notifying an OS the software has attempted to
access a restricted area of memory.

Invalid opcode An illegal instruction that is not defined in the instruction
set is executed.

Kernel panic The operating system detects an error.

NULL pointer Unable to handle kernel NULL pointer de-reference.

Bad paging A page fault. The kernel tries to access some other bad
page except NULL pointer.

Assertion error Assertion evaluates to false at run-time.

Bad trap Unknown exception.

General protection fault Exceeding segment limit, writing to a read-only code
or data segment, loading a selector with a system
descriptor, reading an execution-only code segment.

Table 3.4: Statistics on failure distribution on QSort benchmark

Pipeline
Stage

Num of
Injected Fault

Not
Manifested

Fail
Silence

Violation
Hang Crash

Fetch 300 232 13 35 20

Decode 300 300 0 0 0

Execute 300 199 18 42 41

Load/Store 300 207 22 44 27

Total 1200 939 52 121 88

to [129]. Faults are injected into fetch instructions, selection of read/write registers

during decode stage, result of an instruction during execution stage and finally during

memory transactions in load/store stage. Table 3.4 and Figure 3.16 show the total

failures observed and the number of failures observed in each pipeline. The findings

from this experiment can be summarised as follows:

64
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Fetch	 Decode	 Execute	 Load/Store	

%
 o

f F
au

lts
 M

an
ife

st
ed

 a
s

Er
ro

r

Various Stages of the Pipeline

Failures Distribution on QSort Benchmark

Crash	

Hang	

Fail	Silence	
ViolaEon	
Not	
Manifested	

Figure 3.16: Percentage of failures distribution observed in the experiment conducted
for QSort benchmark

• Out of 1200 faults injected in various stages of the pipeline, only a total of 261

faults manifested as errors and caused the system to behave anomalously.

• From the 261 failures observed, 121 of the failures are of type hang, 88 failures are

of type crash and 52 failures are of type fail silence violation.

• The Execute stage in the pipeline is more susceptible to the presence of faults

where out of 300 faults injected, 33.67% of faults were manifested as failures. This

is followed by the LoadStore pipeline where there are 31.00% of faults manifested as

failures and finally, in the Fetch pipeline, a total of 22.67% of faults were manifested

as failures.

• An interesting observation from this experiment was none of the faults injected

in the Decode stage of the pipeline were manifested as an error or caused some

anomalous behaviour to the system. In fact, all 300 of the faults injected in this

stage returns as Not Manifested. This could mean the corrupted register where

a fault is injected was either not used during the execution or it was overwritten

before the erroneous value was used, thus it did not affect the system.

As for Dijkstra, FFT, Bitcount and StringSearch benchmarks, a total of 120 single bit-

flip faults were injected randomly at different bit location of each stage in the pipeline

and Table 3.5, Table 3.6, Table 3.7 and Table 3.8 show the number of failures observed in

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 65

Table 3.5: Statistics on failure distribution on Dijkstra benchmark

Pipeline
Stage

Num of
Injected Fault

Not
Manifested

Fail
Silence

Violation
Hang Crash

Fetch 40 24 3 2 11

Decode 30 30 0 0 0

Execute 30 24 1 0 5

Load/Store 30 18 9 0 3

Total 130 96 13 2 19

Table 3.6: Statistics on failure distribution on FFT benchmark

Pipeline
Stage

Num of
Injected Fault

Not
Manifested

Fail
Silence

Violation
Hang Crash

Fetch 30 24 1 3 2

Decode 30 30 0 0 0

Execute 30 17 4 6 3

Load/Store 30 21 2 3 4

Total 120 92 7 12 9

Table 3.7: Statistics on failure distribution on Bitcount benchmark

Pipeline
Stage

Num of
Injected Fault

Not
Manifested

Fail
Silence

Violation
Hang Crash

Fetch 30 23 2 0 5

Decode 30 30 0 0 0

Execute 30 26 2 0 2

Load/Store 30 20 2 3 5

Total 120 99 6 3 12

the pipeline stages for each benchmark. From these four benchmarks, it is also observed

that both Execute stage and LoadStore stage are more susceptible to the presence of

faults, with the exception of Bitcount benchmark. However, this could be due to the

faults being injected randomly, as well as the reduced number of experiments performed.

3.9.2 Analyses of Error Distribution and Its Effect to the System Be-

haviour

It is also interesting to find out what are the typical errors that cause crash and hang in

the system. Table 3.9 provides the statistics on error distribution for QSort benchmark

and Figure 3.17 and Figure 3.18 both show the distribution of errors that cause the

system to either crash or hang. Additional results on the error distribution for Dijkstra,

FFT, Bitcount and StringSearch benchmarks can be referred to in Appendix B. Based

on this analysis, it can be concluded that:

66
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

Table 3.8: Statistics on failure distribution on StringSearch benchmark

Pipeline
Stage

Num of
Injected Fault

Not
Manifested

Fail
Silence

Violation
Hang Crash

Fetch 30 23 3 4 0

Decode 30 30 0 0 0

Execute 30 21 1 5 3

Load/Store 30 21 1 6 2

Total 120 95 5 15 5

Segmenta(on	Fault	
69%	

Invalid	Opcode	
4%	

Kernel	Panic	
10%	

NULL	Pointer	
7%	

Bad	Paging	
9%	

General	Protec(on	
Fault	
1%	

Overall Distribution of Crash Causes

Figure 3.17: Analysis of different types of errors that causes crash in the system.

• The main cause of systems crashing is due to a segmentation fault, where 69% of

the crashes observed were caused by this error. This is followed by kernel panic

errors which account for 10% of the total. A segmentation fault is a common error

that causes a system to crash. This happens when the system is trying to read

from or write to an illegal memory location such as trying to access a variable

which has been freed, writing to a read-only part of the memory, attempting to

access memory that it does not have any right to. When a fault is injected in the

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 67

Segmenta(on	Fault	
2%	 Invalid	Opcode	

3%	

NULL	Pointer	
26%	

Bad	Paging	
51%	

Bad	Trap	
17%	

General	Protec(on	
Fault	
1%	

Overall Distribution of Hang Causes

Figure 3.18: Analysis of different types of errors that causes hang in the system.

Execute pipeline, it alters the memory access instruction which usually leads to a

segmentation fault due to the fault altering the resulting address.

• The main cause of a system resulting in a non-operational mode or hang is due to

bad paging (51%), followed by a NULL pointer (26%). Bad paging is an exception

raised by the system when the running program is trying to access a memory page

that is not currently mapped by the memory management unit (MMU) into the

virtual address space of the program. This is observed in the LoadStore pipeline

where the injected fault alters the value of the address to an address located in an

unmapped page.

68
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

T
a
b
l
e
3
.9
:

S
ta

ti
st

ic
s

o
n

er
ro

r
d

is
tr

ib
u

ti
o
n

fo
r

Q
S

o
rt

b
en

ch
m

a
rk

P
ip

e
li
n

e
S

ta
g
e

T
y
p

e
o
f

F
a
il
u

re
S

e
g
m

e
n
ta

ti
o
n

F
a
u

lt
In

v
a
li
d

O
p

c
o
d

e
K

e
rn

e
l

P
a
n

ic
N

U
L

L
P

o
in

te
r

B
a
d

P
a
g
in

g
A

ss
e
rt

io
n

E
rr

o
r

B
a
d

T
ra

p

G
e
n

e
ra

l
P

ro
te

c
ti

o
n

F
a
u

lt

N
o

E
rr

o
r

T
o
ta

l

F
et

ch

N
ot

M
an

if
es

te
d

0
0

0
0

0
0

0
0

2
3
2

2
3
2

F
ai

l
S

il
en

ce
V

io
la

ti
on

0
0

0
0

0
0

0
0

1
3

1
3

H
an

g
0

2
0

14
16

0
3

0
0

3
5

C
ra

sh
13

2
1

0
0

3
0

1
0

2
0

D
ec

o
d

e

N
ot

M
an

if
es

te
d

0
0

0
0

0
0

0
0

3
0
0

3
0
0

F
ai

l
S

il
en

ce
V

io
la

ti
on

0
0

0
0

0
0

0
0

0
0

H
an

g
0

0
0

0
0

0
0

0
0

0
C

ra
sh

0
0

0
0

0
0

0
0

0
0

E
x
ec

u
te

N
ot

M
an

if
es

te
d

0
0

0
0

0
0

0
0

1
9
9

1
9
9

F
ai

l
S

il
en

ce
V

io
la

ti
on

0
0

0
0

0
0

0
0

1
8

1
8

H
an

g
1

1
0

12
22

0
6

0
0

4
2

C
ra

sh
31

0
6

2
1

1
0

0
0

4
1

L
oa

d
/S

to
re

N
ot

M
an

if
es

te
d

0
0

0
0

0
0

0
0

2
0
7

2
0
7

F
ai

l
S

il
en

ce
V

io
la

ti
on

0
0

0
0

0
0

0
0

2
2

2
2

H
an

g
1

1
0

6
24

0
11

1
0

4
4

C
ra

sh
15

1
2

0
5

4
0

0
0

2
7

Chapter 3 Identification of Anomalous Behaviour using Hardware Performance
Counter (HPC) 69

3.10 Summary

Every system that behaves normally (i.e without fault) exhibits a pattern, and any

deviation from that pattern indicates an anomalous behaviour has occurred. In this

chapter, monitoring of these anomalous behaviours using HPCs is presented. Firstly,

the profile of a system behaving normally is captured and plotted against time. The

execution profile was captured using two different PMEs – (i) the number of instructions

retired PME, and (ii) the number of cache misses PME. The results show that the

execution profile for system running with different benchmarks differ from one another,

but for system that runs the same benchmark but at different clock speed, the execution

profiles bear striking similarities. This shows that by tracing the HPC data in a time

interval and plotting the execution profile based on the data gathered, it can assist in

monitoring the system for any anomalous behaviour.

Between the two PMEs, it was found that the cache miss PME is more suitable for

detection where the counter data records bigger deviation (more than 10%) when the

pattern begins to deviate from the normal behaviour compared to the instructions retired

PME, where the deviation recorded is around 5%. Values recorded using the cache miss

PME are also much lower compared to the instructions retired PME, where the values

are between three and seven bits, while values recorded for instructions retired PME are

around seventeen bits. Therefore, the early detection and prediction algorithm presented

in Chapter 4 will use cache misses PME as the univariate time-series data. The suitable

sampling interval for sampling HPC data in an embedded system was found to be at

5000ns where the amount of data generated was large enough to ensure quick detection

can be performed. Sampling interval below 5000ns is not suitable as it is difficult to

distinguish an anomalous point from a normal point.

Next, a single bit-flip fault is injected into a location on the processor pipeline and the

behaviour of the system is captured. The failure triggered by manifested fault in the

processor can be divided into a) masked error, b) fail silence violation, c) crash and

d) hang. These four behaviours can be observed by using a single HPC. The work in

this thesis focuses on two failures namely crash and hang. In the case of hang, a huge

deviation is observed in the HPC when the fault is manifested into an error before the

counter value becomes constant at a point. When the system experiences a crash, the

counter also spots a huge deviation before the counter value stops. The number of clock

cycles it takes for the system to fail from the time the fault is manifested as an error is

about 1M clock cycles (equivalent to 4000µs).

The results in this chapter clearly show that the HPC can be used to identify two main

types of failure: crash and hang. As for fail silence violation, it is a little harder as

the execution profile does not deviate much from the fault free model. Each of these

failures clearly exhibits different characteristics, which will be useful for developing a

detector. The correlation between the type of errors that occur and the various failures

70
Chapter 3 Identification of Anomalous Behaviour using Hardware Performance

Counter (HPC)

observed was also presented in this chapter. The following chapter will present the early

detection algorithm which uses HPC data to detect anomalous behaviour in the system

and predict potential failure in real time.

Chapter 4

Early Detection and Prediction

Algorithm

4.1 Introduction

A dedicated hardware-based detector can be expensive and intrusive while a pure software-

based detector, though unobtrusive, may be too slow to react. Existing online error

detection techniques look at detecting errors through the failures they encounter, and

very often, users are only aware of the anomalous behaviour after a failure has occurred.

Chapter 3 showed how Hardware Performance Counters (HPCs) can be used to profile

the behaviour of a system, and any deviation from the normal behaviour profile indicates

anomalous behaviour. This chapter presents the novel algorithm that predicts potential

failure in real-time by detecting anomalous behaviour in a processor using a single HPC.

The main objectives of the work in this chapter are as follows:

1. Identify available forecasting techniques suitable for time-series forecasting. Based

on design considerations, pattern and characteristics of the cache misses PME,

three different techniques, (a) Single Exponential Smoothing (SES), (b) Autore-

gressive Moving Average (ARMA), and (c) Single Layer Linear Network (LN), will

be investigated.

2. Devise a measurement test which distinguishes anomalous data instances from nor-

mal data instances. In particular, two methods that measure the deviation between

predicted data and observed data, namely Residual Distribution and Prediction

Interval will be presented. The rule to classify each observed data as normal or

anomalous according to the deviation will be discussed.

3. Determine the rule in predicting potential failure. Failure in the system is not

caused by point anomalies, but collective anomalies that begin when the fault has

71

72 Chapter 4 Early Detection and Prediction Algorithm

been manifested into an error. The rule in deciding the number of consecutive

anomalies to be detected before predicting potential failure will be presented.

This chapter is organised as follows. Section 4.2 describes the data sets used to develop

the early detection and prediction algorithm while in Section 4.3, the characteristics and

features of the HPC data sets collected are investigated. Section 4.4 presents the algo-

rithm for prediction of potential failure through the detection of anomalous behaviour.

Section 4.5 discuss about the number of consecutive anomalies to be detected in the

algorithm in order to be able to predict potential failure. In Section 4.6, three different

forecasting methods are presented and discussed in detail. Section 4.7 will explain the

two different methods used to measure the deviation between predicted data and ob-

served data and the rule to classify each observed data whether it is normal or anomalous.

Discussion on results and analysis is presented in Section 4.8 while Section 4.9 concludes

the chapter.

4.2 Generating Data Set

The Dijkstra benchmark is used as a case study in this chapter. Based on the findings

presented in Chapter 3, it is found that the cache miss PME is more suitable compared

to instructions retired PME for monitoring deviation in the profile. The values recorded

using the cache miss PME are much lower, between three and seven bits. Besides that,

the deviations recorded using the cache miss PME are also higher, making it easier

to detect anomalous behaviour in the system. Hence, the cache miss PME is used to

build the data sets, which are then used in the development of the early detection and

prediction algorithm.

The sampling interval of 5000ns is selected to generate the required data sets as it is

found that this interval duration generates sufficient amount of data for the algorithm

to distinguish an anomalous point from a normal point. A total of nine data sets were

obtained with the input data for each data set differ from one data set to another. All

data sets contain approximately 120,000 data points and all the data sets exhibit fault-

free behaviour, which means there is no anomalous behaviour detected in the execution

profile. As each data set is different, all nine data sets will be used as training data sets.

As for testing data set, a different data set is used. This data set contains 118,860 data

points, compared to a normal data set that contains approximately 120,000 data points.

This data set also contains collective anomalies. All experiments were performed using

Matlab R2017b.

Chapter 4 Early Detection and Prediction Algorithm 73

4.3 Understanding the Data Set

The hardware counter data obtained from the Dijkstra benchmark is a univariate type of

time-series data. Time-series data is defined as a sequence of observations continuously

streaming at time t and are gathered at an equally spaced time intervals [130–133]. It

can be represented as Y {t} = Y1, Y2, Y3, ..., Yt. A univariate time-series is a sequence of

measurements of the same variable collected over time, where in this case, the variable

being the number of cache misses collected at every 5000ns.

To determine a suitable algorithm that can be utilised for monitoring and detecting a

change in the data, the first step is to determine the data pattern in the data set. There

are four different types of time-series data patterns: horizontal, seasonal, cyclical and

trend. Spyros et al [134] provided a brief summary of these four types of data series:

• A horizontal (H) pattern exists when the data values fluctuates around a constant

mean. Such data is called stationary in its mean.

• A seasonal (S) pattern exists when a series is influenced by seasonal factors. In

other words, there is a clear pattern that repeats itself over fixed interval of time

(e.g., the quarter of the year, monthly, or day of the week).

• A cyclical (C) pattern exists when the data exhibit rises and falls that are not

of a fixed period. The main difference between a seasonal pattern and a cyclical

pattern is that the former is of a constant length and recurs on a regular periodic

basis, while the latter varies in length.

• A trend (T) pattern exists when there is a long-term increase or decrease in the

data.

For time-series data, a time plot where data are plotted over time can reveal any seasonal

behaviour, trend over time or any other features of the data. Figure 4.1 shows the time

plot of Dijkstra benchmark with three different sets of input data. From Figure 4.1,

there is no obvious trend, cyclical or seasonal patterns that is present in all three time

plots. However, all three time plots show there exists a horizontal pattern (data is

roughly horizontal along the time axis), which means this data could be a stationary

time-series data. The time plot is also compared against Pegels’ (1969) classification of

trend and seasonality patterns as shown in Figure 4.2. Based on Pegels’ classification,

the time plot exhibits no trend and no seasonal effect.

A stationary time series is where its statistical properties like the mean, variance and

autocorrelation structure do not change over time. Other than comparing time plots

with Pegels’ (1969) classification, one can also perform a Unit Root Test to determine if

the time-series is stationary. Unit root tests are tests for stationarity in a time series. The

74 Chapter 4 Early Detection and Prediction Algorithm

Figure 4.1: Time plot of Dijkstra benchmark with 3 different sets of input data

Figure 4.2: Patterns based on Pegels’ (1969) classification

presence of unit roots are one cause for non-stationarity where it can cause unpredictable

results in the analysis. The most widely used test for unit root testing is the Augmented

Dickey-Fuller (ADF) test. The hypotheses used for the ADF test in this work are:

• The null hypothesis is that a unit root is present in the data; and

Chapter 4 Early Detection and Prediction Algorithm 75

• The alternate hypothesis is that the time-series data is stationary.

The general equation used to carry out ADF test on the time-series is Equation 4.1.

Since the mean of the series is non-zero, the value of α will not be restricted to 0.

However, as there is no trend in the series, the value of β will be restricted to zero, thus

the revised equation is Equation 4.2 using the basic regression model that has a constant

and no trend:

∆Yt = α+ βt+ γYt−1 + δ1∆Yt−1 + ...+ δp∆Yt−p+1 + εt (4.1)

∆Yt = α+ γYt−1 + δ1∆Yt−1 + ...+ δp∆Yt−p+1 + εt (4.2)

Table 4.1: Critical values for Dickey-Fuller t-distribution, source from [3]

Critical Values for Dickey-Fuller t-Distribution

Sample size, T
No Trend With Trend
1% 5% 1% 5%

T = 25 -3.75 -3.00 -4.38 -3.60

T = 50 -3.58 -2.93 -4.15 -3.50

T = 100 -3.51 -2.89 -4.04 -3.45

T = 250 -3.46 -2.88 -3.99 -3.43

T = 500 -3.44 -2.87 -3.98 -3.42

T = ∞ -3.43 -2.86 -3.96 -3.41

The test is then carried out under the null hypothesis γ = 0 against the alternative

hypothesis of γ < 0. Once the value is computed, it is compared to the relevant critical

value for ADF test. If the test statistic is less than the critical value, then the null

hypothesis γ = 0 is rejected and the series is a stationary series. In general, if the p-

value is less than 5%, the null hypothesis can be rejected. Comparison can also be made

between the calculated DFt statistic and the tabulated critical value in Table 4.1. If the

calculated DFτ is more negative than the table value, the null hypothesis is rejected.

The equation for DFτ is:

DFτ =
γ̂

SE(γ̂)
(4.3)

As the number of samples in each data set is more than 500, the critical value for T =∞
is chosen. As observed in Figure 4.1 also, the benchmark data set also exhibits no trend.

Hence, the 5% critical value from Table 4.1, which is −2.86, is chosen. The ADF test

is performed on all nine data sets of the Dijkstra benchmark and the value of DFτ for

each sample of data is shown in Table 4.2.

From the test results shown in Table 4.2, the value of DFτ for each data set in Dijkstra

benchmark is found to be more negative compared to -2.86, therefore the null hypothesis

γ = 0 is rejected and the time-series is found to be stationary.

76 Chapter 4 Early Detection and Prediction Algorithm

Table 4.2: ADF Test Results for Dijkstra benchmark

ADF Test Results

Sample Sample Size DFτ
Data Set 1 122934 -91.09

Data Set 2 117091 -90.60

Data Set 3 117091 -90.60

Data Set 4 122697 -99.56

Data Set 5 116855 -96.52

Data Set 6 119122 -101.99

Data Set 7 114191 -99.54

Data Set 8 120289 -99.21

Data Set 9 120471 -100.08

4.4 Algorithm Overview

In designing the algorithm to predict potential failure in real-time through detection

of anomalous behaviour, the following design considerations, which were adapted from

[26,58], were applied:

• Timeliness:

The purpose of this algorithm is to be able to predict potential failure in the

processor before the actual failure occurs. Therefore, it is imperative that the

detection of anomalous behaviour has to be performed in real-time.

• Nature of Data:

The data recorded using HPC is a continuous, univariate time-series data as it is

recorded from one monitored PME, which is the number of cache misses.

• Data Label:

The available data set consists of normal points, which is used to develop the model

for a normal behaviour. Subsequently, the model is then tested on anomalous data.

• Rate of Change:

The values of the PME are relatively static, whereby the changes between each

data instances are rather small. Values that have sudden, huge changes indicate

some anomalous behaviour.

To meet all the design requirements as outlined above, the algorithm to detect anomalous

behaviour and predict potential failure using HPC data consists of three stages, with

each stage building from its predecessor:

1. An algorithm to predict the next value in the time-series using a one-step ahead

prediction method;

Chapter 4 Early Detection and Prediction Algorithm 77

	

Predict	the	next	𝑌"#$%	using	One-Step	Ahead	
Prediction	

Measure	the	deviation	between	predicted	value,	
𝑌"#$%		and	observed	value,	𝑌#$%				

Compare	deviation	with	pre-determined	
threshold	

𝑌#$%	out	of	range?	

Mark	𝑌#$%as	anomalous	

No	

Yes	

Consecutive	anomalies	
>	C	

No	

Yes	

Predict	potential	failure	

Figure 4.3: Early detection algorithm using hardware performance counter

2. Measurement of deviation between the predicted value and the observed value at

current time;

3. A mechanism to classify if the observed value deviates “too much” and is deemed

anomalous.

Figure 4.3 shows the algorithm for early detection of anomalous behaviour using a uni-

variate type of time-series data gathered from HPC. Briefly, one-step ahead prediction

is used to predict the next sequential data Ŷt+1. The predicted value will be measured

against the observed value and the observed value will be classified as anomalous if

78 Chapter 4 Early Detection and Prediction Algorithm

it falls outside the defined threshold. An alarm for a potential failure is raised if the

number of anomalous points detected consecutively exceeds a predefined value, else, the

actual observed value Yt+1 is added to the front of the series and the next sequential

data is predicted.

4.5 Predicting Potential Failure

The main objective of this algorithm is to predict a potential failure in the system before

the system experiences a failure. As mentioned in Chapter 2, the type of anomalies in

this study is collective anomalies, which means, the failure of the system is not caused

by one anomalous point, but rather, it is caused by a group of points. These points that

have been identified as anomalous indicate the beginning of the system experiencing

a failure. In Chapter 3, one of the behaviours exhibited by the counter when a fault

has manifested into an error is that the counter begins to deviate from the normal

behaviour. This leads to the crux of the algorithm, that is, to determine how many

consecutive anomalies are required to be detected before raising an alarm on potential

failure.

The optimal value of consecutive anomalies, denoted by C, is one that is able to predict

potential failure in the shortest time possible but at the same time, avoid being overly

sensitive. As shown in Chapter 3, the minimum amount of clock cycles it takes for a

system to crash is about 1M or 4,000µs. Essentially, this means the algorithm needs to

detect and predict potential failure below 1M clock cycles or 4,000µs. In this thesis, the

following assumption is made:

The minimum value for C is 4. This means the algorithm has to detect at least four

consecutive anomalies before raising an alarm. If C ≤ 4, this creates an overly sensitive

algorithm where an inappropriate alarm is raised on normal points wrongly identified as

anomalies.

The optimal value for parameter C is presented in Section 4.8.2.

4.6 One-Step Ahead Prediction

As presented in Chapter 2, anomaly detection has been applied in various domains,

and one of the domain is Damage Detection where anomaly detection is used for de-

tecting damage in advance to minimise losses, prevents further escalation and reduces

risk. However, instead of performing damage detection on mechanical components or

structural components, the damage detection in this work is performed on an electrical

component, in this case, being a processor. To detect manifested error as early as possi-

ble and predict possible failure, it requires time-series forecasting, i.e. making prediction

Chapter 4 Early Detection and Prediction Algorithm 79

of the next data instance based on a model fitted to present and past data instances.

Applying a threshold rule on the HPC data will not work because the anomalies that

occur in HPC data are not point anomalies, but collective anomalies. Using an overall

thresholding rule on the data set will not only result in high false alarms, but it will not

be able to predict a potential failure in a timely manner. Schmueli et al. [135] gave a

very clear distinction between time-series forecasting and time-series analysis as quoted

below:

In descriptive modelling, or time-series analysis, a time-series is modelled to

determine its components concerning seasonal patterns, trends, relation to

external factors, and the like. In contrast, time-series forecasting uses the

information in a time-series (perhaps with additional information) to forecast

future values of that series.

There is a variety of forecasting methods, and the choice depends on many factors,

such as, type of data, background knowledge, the objectives to be achieved and others.

In order to detect anomalies on-chip and in real time, the selection of one-step ahead

prediction methods must satisfy the following requirements:

1. Minimal computational complexity; and

2. Does not require any pre-processing on the data;

As shown in 4.3, the nature of the data set is a univariate time-series data that is found

to be stationary with no trend or seasonality. Other design considerations such as the

unavailability of data label, the timeliness and the rate of change in the data also play a

role in determining the suitable forecasting methods. The selection of a proper model is

extremely important as it reflects the underlying structure of the series and this fitted

model will in turn, be used for future forecasting [132]. Simple Moving Average and

Exponential Weighted Moving Average were used to model the structure of the series

and forecast the next data, but these methods not only gives a low accuracy and high

detection time, but also produces high false alarms. Other methods like Replicator

Neural Network (also known as Autoencoder) and Principal Component Analysis were

not suitable as well because these methods require the entire fitted model to be stored in

memory, which means, it requires huge amount of storage. Replicator Neural Network

is also not suitable to be used for forecasting the next data point. It is a good method

to replicate the whole data set from time t = 1 until time t = n, but it is unable to

forecast the next data point, t = n+ 1 and beyond.

Three other forecasting methods are considered namely, (a) Single Exponential Smooth-

ing (SES), (b) Autoregressive Moving Average (ARMA), and (c) Single Layer Linear

Network (LN). Initial results have been promising, where the detection time is lower and

80 Chapter 4 Early Detection and Prediction Algorithm

accuracy rate is higher compared to Simple Moving Average and Exponential Weighted

Moving Average. The amount of data to be stored in the memory for processing is also

much lower compared to Replicator Neural Network and Principal Component Analysis.

Based on these requirements, three forecasting methods have been selected namely, (a)

Single Exponential Smoothing (SES), (b) Autoregressive Moving Average (ARMA), and

(c) Single Layer Linear Network (LN).

A report by Makridakis et al. [136] provides an interesting finding on how statistical

forecasting methods such as SES and ARMA outperform other machine learning al-

gorithms such as K-Nearest Neighbour Regression (KNN), Bayesian Neural Network

(BNN), Support Vector Regression (SVR) and many more in terms of accuracy and

forecasting performance while at the same time ensuring low computation time and

complexity. The findings from this report further strengthen the choice in choosing

SES, ARMA and LN methods for one-step ahead prediction.

Another factor that plays an important role in time-series forecasting is the forecast

horizon. Forecast horizon, denoted by h, is the length of time into the future for which

the forecast data is prepared and could take the value of h = 1, 2, 3, However,

researchers in [137] had shown that for regular or fast-moving data, forecasting in a

short term horizon is more accurate compared to longer forecasting horizon. In this

thesis, the forecast horizon, h is set at 1 (hence, the name one-step ahead). Forecasting

one-step ahead allows the deviation between predicted value and observed value to be

observed as soon as possible. If there is a huge deviation between predicted value and

observed value, an anomaly may have occurred. If the forecast horizon is set at several

time steps away, there will be a delay in detecting the anomalous behaviour as the

comparison between predicted value and observed value has to be made at the same

time stamp.

4.6.1 Single Exponential Smoothing

Single Exponential Smoothing (SES) [33, 133, 138] method is a type of exponential

smoothing prediction method that uses historical data and assigns weights to forecast

future values. The one-step-ahead forecast for time t+ 1 is a weighted average of all the

observations in the series Y1, · · · , Yt. The rate at which the weights decrease is controlled

by the parameter α, also known as the smoothing parameter. Weights are decreased

exponentially as data is further in the past. In other words, the older the data, the

smaller the weight is associated with as shown in Equation 4.4 with α between 0 and 1.

Ŷt+1 = αYt + α (1− α)Yt−1 + α (1− α)2 Yt−2 + · · · , (4.4)

Chapter 4 Early Detection and Prediction Algorithm 81

However, according to [138], SES can also be represented in a component form. As the

time-series does not exhibit any trend or seasonal pattern, the only component included

is the level, lt. Component form representations of SES comprises a forecast equation

and a smoothing equation for each of the components included in the method and is

given by Equation 4.5.

Smoothing Equation: lt = αYt + (1− α) lt−1

Forecast Equation: Ŷt+1 = lt
(4.5)

Ŷt+1 consists of the weighted average of the most recent observation Yt and the smoothed

value of the series, lt−1. The smoothing parameter, α, is used to smooth or dampen older

observations and it takes a value between 0 and 1. If α is small, i.e. close to 0, past

observations are given more weight. Vice-versa, if the value of α is big, i.e. close to 1,

more weight is given to the more recent observations.

In order to start the SES prediction process, the initial smoothed value, denoted as

l0 needs to be estimated. l0 is needed in the recursive calculations that start with

l1 = αY1 + (1− α) l0. There are two commonly used methods to estimate the initial

l0 [33, 131,138,139]:

1. Set l0 = Y0

2. Take the average of the available data or a subset of the available data, Ȳ , and set

l0 = Ȳ1

For large data sets, the estimation of l0 has little relevance [131]. However, it is important

to note that smaller the value of α, the more sensitive the forecast will be on the initial

forecast value, l1. In this work, the initial forecast value, l0 is set to the initial value of

the time series as given in Equation 4.6:

l0 = Y0 (4.6)

Once the initial smoothed value, l0 has been set, it is substituted into Equation 4.5,

where l1 = αY1 + (1− α) l0. The first predicted value at time 2, Ŷ2 takes the value of l1.

Thus, the current smoothed value, lt is an interpolation between the previous smoothed

value, lt−1 and the current observation, Yt. The forecast value for the next period, Ŷt+1

is simply the current smoothed value.

A typical practice in determining the optimal value for parameter α is by optimising

the selected forecast-error metric. The forecast-error metric chosen for SES is Mean

Absolute Error (MAE). The difference, or the residual between the actual observation

82 Chapter 4 Early Detection and Prediction Algorithm

Yt for the time period t and the forecast value Ŷt of the same period is given by Equation

4.7:

et = Ŷt − Yt (4.7)

MAE is defined as a measure of the average absolute deviation between forecast values

and observed (or original) values |et| =
∣∣∣Yt − Ŷt∣∣∣ and it shows the magnitude of the

overall error occurred due to forecasting [3,131,132,134]. In MAE, the effects of positive

and negative errors do not cancel out. To get a good forecast, the value of MAE should

be as small as possible. MAE can be defined using Equation 4.8:

MAE =
1

n

n∑
t=1

|et| (4.8)

The SES model with α value that produces the smallest MAE is selected. In devel-

oping the model, the principle of parsimony is followed where the simplest model with

the smallest possible number of parameters is to be selected to provide an adequate

representation of the underlying time-series data [132].

The first step of this experiment involves obtaining the optimal value of α. The training

data used involves all nine data sets. The α value is varied between 0 and 1 in increments

of 0.1. The MAE is obtained for each α value for each data set during training, and

the MAE values from all nine data sets are then averaged with the results as shown in

Table 4.3. As can be seen from Table 4.3, the lowest mean MAE achieved is 0.49 when

α = 0.7.

The next step is to validate how well the model performs on the data that were not used

when fitting the model. For this experiment, Data Set 8 was used as the training data,

and Data Set 1, Data Set 3, Data Set 5 and Data Set 9 were used as the validation data.

As had been mentioned in Section 4.1, each data set uses different input data for the

benchmark. By using different sets of data, this helps to provide a reliable indication of

how well the model is likely to forecast on new data. The validation of the SES model

generated using α = 0.7 identified in the previous step is presented in Section 4.6.4.

Chapter 4 Early Detection and Prediction Algorithm 83

T
a
b
l
e
4
.3
:

A
ve

ra
ge

M
ea

n
A

b
so

lu
te

E
rr

o
r

(M
A

E
)

fo
r

d
iff

er
en

t
α

va
lu

es
in

S
E

S

A
lp

h
a

(a
)

M
A

E
A

v
e
ra

g
e

D
a
ta

se
t

1
D

a
ta

se
t

2
D

a
ta

se
t

3
D

a
ta

se
t

4
D

a
ta

se
t

5
D

a
ta

se
t

6
D

a
ta

se
t

7
D

a
ta

se
t

8
D

a
ta

se
t

9

0
.0

9
.3

5
05

9.
3
13

5
9
.3

1
35

8.
25

42
8.

28
47

8.
24

10
8.

23
84

8.
2
52

5
8
.2

3
7
9

8
.6

1

0
.1

0
.6

6
70

0.
6
15

5
0
.6

1
55

0.
78

11
0.

72
87

0.
70

82
0.

72
14

0.
7
00

1
0
.7

0
2
0

0
.6

9

0
.2

0
.5

5
38

0.
5
06

4
0
.5

0
64

0.
66

67
0.

63
45

0.
62

65
0.

63
97

0.
6
13

4
0
.6

2
1
2

0
.6

0

0
.3

0
.5

0
02

0.
4
59

3
0
.4

5
93

0.
61

14
0.

59
36

0.
59

00
0.

60
20

0.
5
74

2
0
.5

8
2
9

0
.5

5

0
.4

0
.4

6
68

0.
4
32

6
0
.4

3
26

0.
57

78
0.

56
87

0.
56

73
0.

57
90

0.
5
50

5
0
.5

5
8
5

0
.5

3

0
.5

0
.4

4
47

0.
4
14

8
0
.4

1
48

0.
55

64
0.

55
15

0.
55

18
0.

56
39

0.
5
35

2
0
.5

4
1
9

0
.5

1

0
.6

0
.4

2
99

0.
4
03

0
0
.4

0
30

0.
54

27
0.

54
14

0.
54

24
0.

55
45

0.
5
26

4
0
.5

3
1
1

0
.5

0

0
.7

0
.4

2
03

0.
3
96

2
0
.3

9
62

0
.5

3
5
6

0
.5

3
6
4

0
.5

3
8
6

0
.5

4
9
9

0
.5

2
2
7

0
.5

2
5
7

0
.4

9

0
.8

0
.4

1
53

0
.3

9
4
0

0
.3

9
4
0

0.
53

64
0.

53
98

0.
54

18
0.

55
23

0.
5
25

8
0
.5

2
7
5

0
.4

9

0
.9

0
.4

1
4
9

0.
3
96

2
0
.3

9
62

0.
54

25
0.

54
84

0.
54

99
0.

55
97

0.
5
33

3
0
.5

3
4
5

0
.5

0

1
.0

0
.4

1
96

0.
4
02

7
0
.4

0
27

0.
55

47
0.

56
27

0.
56

37
0.

57
31

0.
5
46

6
0
.5

2
2
7

0
.5

1

84 Chapter 4 Early Detection and Prediction Algorithm

4.6.2 Autoregressive Moving Average

The second forecasting method is the Autoregressive Moving Average (ARMA) method,

also known as the Box-Jenkins method [140]. ARMA has been widely used for forecasting

as it is suitable for univariate time-series modelling [130–132, 134]. An ARMA(p, q)

model is a combination of an autoregressive (AR) part and a moving average (MA)

part. An AR(p) involves coefficients ϕt with t = 1, ..., p that reflects the relationship

between Ŷt+1 and the past values of the time-series. As mentioned in [132], AR(p) can

be expressed mathematically as shown in Equation 4.9:

Yt = c+ ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + εt

= c+

p∑
i=1

ϕiYt−i + εt
(4.9)

Here, Yt and εt refers to the actual value and white noise at time t, c is the constant and

ϕi(i = 1, 2, . . . , p) are the AR model parameters, and p is the order of the model. The

MA part involves coefficients θt with t = 1, . . . , q which reflects the relationship between

Ŷt+1 and the residues. This can be expressed mathematically as shown in Equation 4.10:

Yt = µ+ θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q + εt

= µ+

q∑
j=1

θjεt−j + εt
(4.10)

µ is the mean of the series and θi(i = 1, 2, . . . , q) are the MA model parameters, and q

is the order of the model. The data does not require any differencing as it is found to

be stationary, as shown in Section 4.3. Autoregressive (AR) and Moving Average (MA)

models can be effectively combined to form a general and useful class of time-series

models, known as the ARMA models. Following [131, 132], an ARMA (p, q) model can

be defined mathematically as shown in Equation 4.11:

Ŷt+1 = c+ ϕ1Yt−1 + · · ·+ ϕpYt−p + εt − θ1εt−1 − · · · − θqεt−q

= c+ εt +

p∑
i=1

ϕiYt−i +

q∑
j=1

θjεt−j
(4.11)

where Ŷt+1 is the variable to be predicted using previous samples of the time-series, εt

denotes white noise, and c is a constant offset.

Chapter 4 Early Detection and Prediction Algorithm 85

Once the model has been described, the next concern is to select the appropriate model

that can produce accurate forecast based on the historical data and determine the opti-

mal model orders. Statisticians George Box and Gwilym Jenkins developed a practical

approach called the Box-Jenkins methodology to build ARMA model, which best fit to a

given time-series and also satisfy the parsimony principle. The Box-Jenkins methodology

uses a three-steps iterative approach namely model identification, parameter estimation,

and model verification to determine the best model from a general class of ARMA mod-

els [131, 132, 140]. This three-step process is repeated several times until a satisfactory

model is finally selected and can be used for forecasting future values of the time-series.

A crucial step in deciding an appropriate model is to determine the model’s optimal

parameters including the coefficients denoted by p and q. To assist in identifying the

suitable ARMA model, one of the popular method is by using the Autocorrelation

Function (ACF) and Partial Autocorrelation Function (PACF) plots. However, ACF

and PACF only give an estimation of what parameters p and q can be and cannot

be used to measure the suitability of an ARMA model. Another widely used measure

for model identification and parameter estimation is the Akaike Information Criterion

(AIC) developed by Akaike in 1974 [141]. AIC is used to estimate the quality of each

model, where the less amount of information the model loses, the better the quality of

that model. The higher the quality of the model, the lower the value of AIC.

AIC avoids both the risk of overfitting and the risk of underfitting, and finding a balance

between the goodness of fit of the model and the simplicity of the model. One way of

selecting the optimal ARMA model order is by choosing the number of model parameters

has the lowest AIC. AIC value for each corresponding model was obtained using Equation

4.12:

AIC = 2(k)− 2log(L) (4.12)

where L is the maximum value of the likelihood function for the model, and k is the

number of estimated parameters in the model. The model’s parameters are estimated

according [131]. By varying the coefficients (p, q) between 0 and 6 in increments of 1,

a total of forty-eight ARMA models with different orders of model parameters were

built, with the exception of (0, 0). An ARMA (0, 0) model is used on a time-series that

contains basically a constant and white noise. Since the time-series obtained from the

Dijkstra benchmark does not consists of a constant and white noise, ARMA (0, 0) is not

considered.

86 Chapter 4 Early Detection and Prediction Algorithm

T
a
b
l
e
4
.4
:

A
ve

ra
ge

A
ka

ik
e

In
fo

rm
a
ti

o
n

C
ri

te
ri

o
n

(A
IC

)
fo

r
d

iff
er

en
t

o
rd

er
s

o
f

A
R

M
A

m
o
d

el

M
o
d

e
l

P
a
ra

m
e
te

r
(p

,
q
)

A
v
e
ra

g
e

A
IC

q
=

0
q

=
1

q
=

2
q

=
3

q
=

4
q

=
5

q
=

6

p
=

0
N

IL
6.

54
1E

+
05

6.
38

6E
+

05
6.

23
3E

+
05

6.
14

0E
+

05
6.

10
4E

+
0
5

6
.0

6
3
E

+
0
5

p
=

1
6.

05
9E

+
05

5.
87

6E
+

05
5.

82
0E

+
05

5.
81

9E
+

05
5.

80
6E

+
05

5.
80

2E
+

0
5

5
.8

0
2
E

+
0
5

p
=

2
5.

98
8E

+
05

5.
82

4E
+

05
5.

81
9E

+
05

5.
81

7E
+

05
5.

80
4E

+
05

5.
80

1E
+

0
5

5
.8

0
1
E

+
0
5

p
=

3
5.

87
5E

+
05

5.
82

4E
+

05
5.

81
5E

+
05

5.
80

7E
+

05
5.

80
3E

+
05

5.
80

1E
+

0
5

5
.7

9
7
E

+
0
5

p
=

4
5.

85
8E

+
05

5.
80

0E
+

05
5.

79
9E

+
05

5.
79

9E
+

05
5
.7

9
8
E

+
0
5

5.
79

8E
+

0
5

5
.7

9
4
E

+
0
5

p
=

5
5.

85
4E

+
05

5.
79

9E
+

05
5.

79
9E

+
05

5.
79

9E
+

05
5.

79
8E

+
05

5.
79

4E
+

0
5

5
.7

9
3
E

+
0
5

p
=

6
5.

83
9E

+
05

5.
79

9E
+

05
5.

79
9E

+
05

5.
79

6E
+

05
5.

79
4E

+
05

5.
79

4E
+

0
5

5
.7

9
3
E

+
0
5

Chapter 4 Early Detection and Prediction Algorithm 87

Up to six autoregressive parameters and six moving average parameters are used to

determine the best ARMA model for this problem. Increasing the number of parameters

increases the complexity of the model by nearly 5% in terms of execution time [142].

Each data set is trained with all forty-eight ARMA models and the AIC value for each

model on all nine data sets are calculated. Table 4.4 shows the average AIC values

for all forty-eight ARMA models with different orders of model parameters. As can

be observed from Table 4.4, the lowest AIC value obtained is 5.793 x 105 when p = 6

and q = 6. However, based on the initial experiments conducted, it is found that the

detection accuracy reduces significantly while the detection time increases significantly

for models having coefficients greater than 4. Due to that, a trade-off is made where the

coefficients for p and q which is 4 is chosen.

Based on this result, the most suitable ARMA model to be used for one-step ahead

prediction was found to be ARMA (4, 4). After deciding the model parameters, the

final step is to perform model verification where the developed model is verified against

validation data set. Data Set 8 was used as training data to develop ARMA (4,4) model

while Data Set 1, Data Set 3, Data Set 5 and Data Set 9 were used as validation data

sets. The MAE scores calculated between the model and the validation data sets are

presented in Section 4.6.4.

4.6.3 Single Layer Linear Network

The third forecasting method chosen is the Single Layer Linear Network (LN) (also

known as a single layer perceptron network) [57, 143]. LN is derived from Artificial

Neural Networks (ANNs) approach, an alternative and popular technique to time-series

forecasting. Inspired by the way biological neural networks in a human brain process

information, ANNs’ objective is to try to recognise regularities and patterns in the input

data, learn from experience and then provide generalised results based on their known

previous knowledge [132]. ANNs have been applied on a variety of tasks, such as speech

recognition, machine translation, computer vision, social network filtering, playing board

and video games and medical diagnosis.

There are several types of ANN architectures used in forecasting problems such as Single

Layer Perceptrons (SLPs), Multi-Layer Perceptrons (MLPs) and Time-Lagged Neural

Networks (TLNNs). SLPs, MLPs and TLNNs are derived from feed-forward neural

network type and Sanger [144] has given a clear definition of the feed-forward neural

network quoted below:

It is a network which has a distinct set of input units onto which values are

clamped. These values are then passed through a set of weights to produce

the inputs to the next layer of “hidden” or internal units. These units modify

the input using a non-linear function (usually in the shape of a sigmoid) to

88 Chapter 4 Early Detection and Prediction Algorithm

produce the outputs. As many layers as desired of this form can be stacked,

and the units of the final layer become the outputs of the network.

TLNN is not applicable for this study as TLNN is used for seasonal time-series data

where the input nodes are the time-series values at some particular lags. In this work,

SLPs is favoured over MLPs as the computational complexity for MLPs is much higher

due to the presence of additional hidden layers. The hidden neurons and output neurons

in the additional layers causes the computational time to increase. Overall, simulation

time (or the time cost/complexity) increases linearly with the increase in pattern count

(or neuron count in both hidden and output layers) [145]. Figure 4.4 illustrates how the

input layers are connected to an output layer in a SLP and the information flows only

in one direction.

Figure 4.4: Single Layer Perceptron

LN is a type of SLP without any hidden layer, and the connections between the nodes

do not form a cycle. Without the hidden layer, LN is a function of a linear combination

of the input variable [146] and is the simplest form of neural network. It consists of

a single layer of output nodes where the inputs are fed directly to the output which

takes a weighted sum of all its inputs. It can be represented mathematically as shown

in Equation 4.13:

Y = f

(∑
i

viYi

)
(4.13)

In the LN method, the next data Ŷt+1 is predicted as a linear combination using previous

data multiplied by a set of weights represented by v0, v1, ..., vW−1. The amount of

Chapter 4 Early Detection and Prediction Algorithm 89

previous data used in the one-step ahead prediction is determined by the size of the

sliding window, denoted by W . This can be mathematically expressed using Equation

4.14:

Ŷt+1 =

(∑W−1
i=0 viYt−i

)
∑W−1

i=0 vi
(4.14)

It defines the relationship between the sliding window Yt−W , ..., Yt and the predicted

value of Ŷt+1. The LN model has the same mathematical form as the traditional au-

toregressive (AR) model of Box and Jenkins, and thus has similar capabilities [57].

Following [143], the weight vectors are assigned as 1, 2, ..., v with the weight vector to

be inversely proportional to the distance between each point in the sliding window, that

is, the further point Yt from Ŷt+1, the smaller the weight vector will be. Thus, the

size of the sliding window, W , plays an important role in determining the optimal LN

model for predicting one-step ahead. Unlike other popular methods such as the Delta

Learning Rule or Yule-Walker equation to determine the parameters of this model (i.e.

v0, v1, ..., vW−1), the weight vector is assigned to be inversely proportional to the distance

between each point in the sliding window. This is done to ensure that the forecasting

model created is robust and applicable to any type of process. Selection of the optimal

value for parameter W in LN model is based on the Mean Absolute Error (MAE) as the

chosen forecast-error metric given in Equation 4.8.

Following the steps taken in determining the optimal values for parameters in SES and

ARMA, finding the optimal window size, W involves using all nine data sets. For each

data set, the value W is varied between 1 and 10 in increments of 1. The MAE value

obtained for each W size from all nine data sets are then averaged and the results is as

shown in Table 4.5. From the result in Table 4.5, the lowest average MAE obtained was

0.50 when W = 3.

Once the optimal window size has been determined, the developed LN model is verified

against validation data set. For this purpose, Data Set 8 was used as training data to

develop LN model and Data Set 1, Data Set 3, Data Set 5 and Data Set 9 were used as

validation data sets. The MAE scores calculated between the LN model and validation

data sets are presented in Section 4.6.4.

90 Chapter 4 Early Detection and Prediction Algorithm

T
a
b
l
e
4
.5
:

M
ea

n
A

b
so

lu
te

E
rr

o
r

(M
A

E
)

fo
r

d
iff

er
en

t
si

ze
o
f

sl
id

in
g

w
in

d
ow

,
W

in
a

L
N

m
o
d

el

W
in

d
o
w

S
iz

e
,

(W
)

M
A

E
A

v
e
ra

g
e

M
A

E
D

a
ta

se
t

1
D

a
ta

se
t

2
D

a
ta

se
t

3
D

a
ta

se
t

4
D

a
ta

se
t

5
D

a
ta

se
t

6
D

a
ta

se
t

7
D

a
ta

se
t

8
D

a
ta

se
t

9

1
0
.4

1
9
7

0.
40

28
0.

40
28

0.
55

48
0.

56
28

0.
56

37
0.

57
32

0.
54

67
0
.5

4
7
2

0
.5

1

2
0.

42
08

0
.4

0
0
3

0
.4

0
0
3

0.
55

27
0.

55
73

0.
56

21
0.

57
32

0.
54

25
0
.5

4
4
7

0
.5

1

3
0.

42
64

0.
40

42
0.

40
42

0
.5

4
5
6

0
.5

4
9
1

0
.5

5
3
7

0
.5

6
6
7

0
.5

3
4
2

0
.5

3
8
6

0
.5

0

4
0.

43
67

0.
41

34
0.

41
34

0.
54

94
0.

55
18

0.
55

54
0.

56
95

0.
53

65
0
.5

4
1
5

0
.5

1

5
0.

44
91

0.
42

33
0.

42
33

0.
55

71
0.

55
81

0.
56

10
0.

57
47

0.
54

17
0
.5

4
7
6

0
.5

2

6
0.

46
08

0.
43

22
0.

43
22

0.
56

31
0.

56
20

0.
56

47
0.

57
84

0.
54

56
0
.5

5
1
9

0
.5

2

7
0.

47
10

0.
44

0.
44

0.
57

15
0.

56
85

0.
57

06
0.

58
46

0.
55

19
0
.5

5
8
7

0
.5

3

8
0.

48
12

0.
44

73
0.

44
73

0.
58

06
0.

57
57

0.
57

71
0.

59
15

0.
55

84
0
.5

6
5
8

0
.5

4

9
0.

49
09

0.
45

45
0.

45
45

0.
58

97
0.

58
30

0.
58

37
0.

59
82

0.
56

52
0
.5

7
2
9

0
.5

4

1
0

0.
50

0
0.

46
0.

46
0.

59
85

0.
59

01
0.

58
99

0.
60

47
0.

57
17

0
.5

7
9
7

0
.5

5

Chapter 4 Early Detection and Prediction Algorithm 91

4.6.4 Comparison between Forecasting Methods

This section presents the comparison between three different forecasting methods, namely

SES, ARMA and LN. The optimal model for each method was obtained using Data Set

8 as training data. Besides using Data Set 1 as a validation data set, the optimal mod-

els were also verified against Data Set 3, Data Set 5 and Data Set 9, which were used

as validation data sets. Table 4.6 shows the performance of each data set forecasting

method against four different validation data sets.

Table 4.6: Comparison between different forecasting methods in One-Step Ahead
Prediction

Training Data
(Dataset 8)

MAE
(Dataset 1)

MAE
(Dataset 3)

MAE
(Dataset 5)

MAE
(Dataset 9)

SES (α= 0.6)
MAE = 0.526

1.91 (+3.63%) 2.12 (+4.03%) 1.36 (+2.59%) 1.42 (+2.70%)

ARMA(4,4)
MAE = 0.592

1.86 (+3.14%) 2.06 (+3.48%) 1.32 (+2.23%) 1.38 (+2.33%)

LN (W = 3)
MAE = 0.534

1.87 (+3.50%) 2.08 (+3.90%) 1.34 (+2.51%) 1.39 (+2.60%)

The MAE obtained from Data Set 8 for all three forecasting methods are used as the

baseline. For example, in Table 4.6, the baseline MAE for SES method is 0.526. When

the forecast model is used to validate Data Set 1, the MAE obtained is 1.91, an increase

of 3.63%. This indicates that the forecast model is not overfitting or underfitting. A

model that is underfit will have high training and high validation error while an overfit

model will have extremely low training error but a high validation error. The results in

Table 4.6 shows a low validation error, less than 5% in all data sets.

From the results shown in Table 4.6, all three forecasting methods are comparable with

one another. However, the forecast model developed using the ARMA provides the

lowest MAE score on all validation data sets compared to the SES and LN methods.

This indicates that ARMA (4,4) creates a better forecast model for one-step ahead

prediction.

4.7 Measurement of Deviation and Anomaly Classification

Once the next data has been predicted using either the SES, ARMA or LN forecasting

methods, the next step is to define a measure to determine how much the observed

behaviour of the time-series deviates from the expected pattern. If the observed value

falls outside the defined threshold, it is classified as anomalous. Two different methods

have been selected to measure the deviation between the observed data from the expected

data, namely: (a) Residual Distribution; and (b) Prediction Interval, which will be

explained further in Section 4.7.1 and Section 4.7.2.

92 Chapter 4 Early Detection and Prediction Algorithm

To test how well the predicted model can be used to classify anomalies, a different

Dijkstra data set is used — a testing data set that has not been trained or validated,

and which contains anomalies. The anomalous dataset contains 118,860 data points,

compared to a normal dataset that contains approximately 120,000 data points. The

starting point for the occurrence of anomalies were detected at point 118,072, and ends

at point 118,860 since these are collective anomalies type. Figure 4.5 shows the region of

collective anomalies that occurred in the anomalous dataset as compared to a fault-free

dataset.

Figure 4.5: Collective anomalies which occurred in the Dijkstra anomalous dataset

4.7.1 Residual Distribution

This method is adapted from [33] where the residual at specific time t is used to define

the deviation between predicted value and observed (or actual) value. The deviation

between observed data and predicted data at time t is known as the forecast residual

and is given in Equation 4.7. Analysis of residuals is done by looking at the distribution

of the residuals for each method. Graphical methods are used to examine residuals and

one of the common methods is to use a histogram to display the distribution of a group

of residuals.

The residuals were obtained by calculating the absolute difference between actual value

observed in the validation Data Set 1 against the predicted value from the models

Chapter 4 Early Detection and Prediction Algorithm 93

developed using SES, ARMA or LN method at time t. The residuals series for each

method is then plotted using a histogram and the result is shown in Figure 4.6.

As can be seen from Figure 4.6, the histograms show an approximately normal distribu-

tion curve. However, while they resemble the normal distribution family of curves, all

three histograms have a much taller peak and the tails decay much slower compared to a

normal distribution. This type of distribution is known as Cauchy Distribution [139,147],

where the residuals are not normally distributed due to too many extreme positive and

negative residuals. In other words, the distribution is heavy tailed. This can be observed

in Figure 4.7 where the probability plot shows the residuals are not distributed normally.

In contrast, a normal probability plot of the residuals is approximately linear supporting

the condition that the error terms are normally distributed.

Unlike Normal distribution that is centred around zero-mean, µ, with a standard de-

viation, σ, a Cauchy Distribution has its mean undefined and the variance is infinite.

However, it is possible to calculate the residual average of a sample, denoted by n, in

a Cauchy distribution [148], where n is the total number of observations up until time

t, and determine the current residual is lying how many standard deviations away from

the average of the forecast residual. The equation for Residual Distribution as shown

in Equation 4.17 consists of two main components — residual average, ē and residual

variance, σ2 shown in Equation 4.15 and 4.16:

Residual average, ē =

∑n
i=1 |ei|
n

(4.15)

Residual variance, σ2 =

∑n
i=1 |ei|2

n
− ē2 (4.16)

Residual Distribution, z =
et − ē√
σ2

(4.17)

In order to determine if the observed value should be marked normal or anomalous, the

threshold rule, zthresh, is defined as the distance of the forecast error from the residual

average in terms of standard deviations. The value zthresh is varied between 1 and 10 in

increments of 1. After measuring the deviation between predicted and observed values,

if z > zthresh, the observed value is marked as anomalous.

4.7.2 Prediction Interval

The second method is the prediction interval [149] which is commonly used in regression

analysis. It is an estimate of a range where the observed values will fall with a certain

probability. Prediction interval describes the uncertainty for a single specific value where

94 Chapter 4 Early Detection and Prediction Algorithm

(a)

(b)

(c)

Figure 4.6: Distribution of forecast residuals from validation data set 1 and forecast
models developed using SES, ARMA and LN method

Chapter 4 Early Detection and Prediction Algorithm 95

Figure 4.7: Probability plot of residuals for all three one-step ahead prediction meth-
ods

uncertainty comes from the errors in the model itself and noise in the input data and

provides probabilistic upper and lower bounds based on the estimate of a predicted

variable. If the observed data falls within the upper and lower bounds, it is considered

to be normal and if it falls outside the upper and lower bounds, it will be marked

anomalous. The formula to calculate Prediction Interval is given in Equation 4.18.

zupper and zlower represent the upper and lower thresholds for acceptance or rejection of

the observed data. The current observed data point is considered normal if it satisfies

the condition zlower < Yt < zupper, else it is marked as anomalous.

zupper = Ŷt+1 + PI ∗

√√√√√√MSE ∗

1 +
1

n
+

(
Ŷt+1 − ȳ

)2

∑n
i=1 |ei|

2



zlower = Ŷt+1 − PI ∗

√√√√√√MSE ∗

1 +
1

n
+

(
Ŷt+1 − ȳ

)2

∑n
i=1 |ei|

2


(4.18)

Three important parameters are required to calculate the prediction interval for new

predicted data. The first parameter is Ŷt+1, which is the predicted data point at time

96 Chapter 4 Early Detection and Prediction Algorithm

t + 1. The second parameter given by

√
MSE ∗

(
1 + 1

n +
(Ŷt+1−ȳ)

2∑n
i=1|ei|

2

)
is known as the

standard error of the predicted model [150]. It depends on the mean squared error (MSE),

the sample size n which is the total number of observations until time t, the distance in

squared units the predicted value Ŷt+1 is from the average of Y values in the window W ,

and the sum of the squared absolute deviation, |ei|2. The equations to calculate MSE

and the average of Y values are given in Equation 4.19 and Equation 4.20 respectively,

while calculation of ei follows Equation 4.7.

MSE =

√∑n
i=1 |ei|

2

n
(4.19)

ȳ =
1

W
•

t−1∑
i=t−W

Yi (4.20)

Finally, the third parameter is PI, which represents the 100%(1− a; df) of the Students

T-distribution with df degrees of freedom. It reflects the confidence associated with

the calculation of the upper and lower bounds of Ŷt+1. Table 4.7 lists a few selected

values for T-distributions with df degrees of freedom for a range of one-sided critical

regions. The first column is df , the percentages along the top are confidence levels,

and the numbers in the body of the table represent the 100%(1− a; df). The values in

the body of the main table refers to the critical values for the one-sided critical regions

ranges from 75% to 99.5% with df degrees of freedom, and is substituted in parameter

PI. In this work, the confidence level is varied from 80% to 97.5% while the value of

df is varied between 1 and 3 and the size of the sliding window, W is varied between

3 and 10. The value df is chosen between 1 and 3 because the higher the value of df ,

the narrower the width between the upper bounds and lower bounds. A higher value of

df will affect the anomaly classification process as normal data points will be marked

erroneously as anomalous because the observed data points do not satisfy the threshold

rule.

4.8 Analysis and Evaluation

4.8.1 Evaluation Metric

In order to evaluate the effectiveness of early detection algorithm, we look at how well

the anomaly classification methods have performed in classifying the anomalies. The

early detection algorithm consists of three stages. The first stage is to predict the next

data point using either SES, ARMA or LN one-step ahead prediction as discussed in

Section 4.6. The second stage is to measure how much the observed data has deviated

Chapter 4 Early Detection and Prediction Algorithm 97

Table 4.7: Critical values of Student’s T-distribution with df degrees of freedom,
[139,151]

Prob., 100%(1-a)
75% 80% 85% 90% 95% 97.5% 99% 99.5%

DOF, df

1 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66

2 0.816 1.080 1.386 1.886 2.920 4.303 6.965 9.925

3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841

4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604

5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499

8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355

9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169

11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106

12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055

13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012

14 0.692 0.868 1.079 1.345 1.761 2.145 2.624 2.977

15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947

from the defined threshold, which has been discussed in Section 4.7. And finally, in

the third stage, if the measurement of deviation does not satisfy the threshold rule, the

observed data point is marked as anomalous.

Two evaluation metrics are used to measure how well the detection algorithm has per-

formed. The first metric is the accuracy statistical attribute. As the name implies,

the accuracy metric defines how accurate the detection algorithm is in detecting both

anomalies and non-anomalies. Another attribute that is important in evaluating the

early detection and prediction algorithm is the detection time. This is a novel perfor-

mance measurement attribute developed with the objective of determining which method

is quickest in identifying the anomalous behaviour in the system. Existing performance

attributes such as AUC (Area Under The Curve) and ROC (Receiver Operating Char-

acteristics) curves are not suitable to be applied in the damage detection domain as the

usage of AUC and ROC attributes require the algorithm to detect almost all anoma-

lous points. As discussed in Section 2.4.3, in a damage detection domain, the type of

anomalies can be either contextual anomalies or collective anomalies. As discussed in

Section 4.7, the type of anomalies observed in this work are collective anomalies. There-

fore, the main goal is to detect several anomalies consecutively and from there, predict

potential failure as early as possible.

Calculation of both accuracy and detection time is done using True Positives (TP), True

Negatives (TN), False Positives (FP) and False Negatives (FN) as described in Table 4.8.

TP refers to an anomalous observation while TN refers to a normal observation. TP

and TN are the ideal situations where data points are detected and identified correctly,

98 Chapter 4 Early Detection and Prediction Algorithm

Table 4.8: Confusion matrix for early detection of anomalous behaviour

Outcome
Detection

Anomalous Non-Anomalous

Anomalous

True Positives (TP)
(data points that are

anomalous and
identify as anomalous)

False Negatives (FN)
(data points that are

anomalous but
identify as normal)

Non-Anomalous

False Positives (FP)
(data points that are

normal but
identify as anomalous)

True Negatives (TN)
(data points that are

normal and
identify as normal)

while FP and FN are undesirable cases which are impossible to eliminate but need to be

kept to a minimum. The formulae to calculate detection time and accuracy are shown

in Equation 4.21 and Equation 4.22.

Detection time = (TP + FN) ∗ Logging Interval (4.21)

Accuracy =
TP + TN

(TP + FN + TN + FP)
(4.22)

While it is true that a good anomaly detection model should maximise the number of

correct detections and keep the false detection as low as possible [31, 33, 57], the main

objective of the detection model is to be able to predict failure at the earliest time.

Therefore, the key attribute is the lowest detection time that can be attained from the

proposed methods. The detection time has to be below 4, 000µs, which is equivalent to

1M clock cycles.

4.8.2 Minimum Consecutive Anomalies to be detected, C

As discussed in Section 4.5, the minimum number of consecutive anomalies to be de-

tected, C, is 4. Table 4.9 shows the results of the lowest detection time achieved when

C = 4, C = 5 and C = 6. As can be seen, the lowest detection time of 325µs is achieved

with C = 5. This means, the anomalous behaviour was detected at 325µs after the

fault manifested itself as an error. Increasing the value of C increases the detection time

as more consecutive anomalies are required to be detected. When C = 4, no detection

time was recorded as the algorithm was overly sensitive and not able to detect anomalies

correctly. The algorithm managed to detect the anomalies only when the parameters

for anomaly classification methods are enlarged. Another observation was all three fore-

casting methods gave the same detection time whether they use Residual Distribution

or Prediction Interval for anomaly classification. All three forecasting methods have

comparable performance in predicting the data point one-step ahead.

Chapter 4 Early Detection and Prediction Algorithm 99

T
a
b
l
e
4
.9
:

A
n

a
ly

si
s

o
n

th
e

o
p

ti
m

u
m

va
lu

e
fo

r
C

N
u

m
b

e
r

o
f

C
o
n

se
c
u

ti
v
e

A
n

o
m

a
li

e
s

(c
)

L
o
w

e
st

D
e
te

c
ti

o
n

T
im

e
(µ

s)
R

e
si

d
u

a
l

D
is

tr
ib

u
ti

o
n

(z
th
r
es
h

=
6
)

S
E

S
A

R
M

A
L

N

C
=

4
N

aN
(1

71
5
µ

s
w

it
h
z t
h
r
es
h

=
9)

N
aN

(1
71

5
µ

s
w

it
h
z t
h
r
es
h

=
9)

N
a
N

(1
7
15
µ

s
w

it
h
z t
h
r
es
h

=
9
)

C
=

5
32

5
32

5
3
2
5

C
=

6
58

5
58

5
5
8
5

N
u

m
b

e
r

o
f

C
o
n

se
c
u

ti
v
e

A
n

o
m

a
li

e
s

(c
)

L
o
w

e
st

D
e
te

c
ti

o
n

T
im

e
(µ

s)
P

re
d

ic
ti

o
n

In
te

rv
a
l

(P
I

=
3
.0

7
8

w
h

e
re

P
ro

b
a
b

il
it

y
=

9
0
%

,
d

f
=

1
a
n

d
W

=
3
)

S
E

S
A

R
M

A
L

N

C
=

4
N

aN
(5

75
µ

s
w

it
h

W
=

5)
N

aN
(5

75
µ

s
w

it
h

W
=

5)
N

a
N

(5
7
5µ

s
w

it
h

W
=

5
)

C
=

5
32

5
32

5
3
2
5

C
=

6
58

5
58

5
5
8
5

100 Chapter 4 Early Detection and Prediction Algorithm

4.8.3 Detection Accuracy using Residual Distribution

Anomaly classification using the Residual Distribution method analyses how many stan-

dard deviations the current residual is lying away from the average of the forecast resid-

ual. The value z is calculated using Equation 4.17 and is compared against the threshold,

zthresh. Figure 4.8 shows the results of how anomalies are classified using the Residual

Distribution method. The value zthresh in Figure 4.8 has been set to 6, and values that

exceed the threshold are marked as anomalous. The complete detection result using this

method where the value zthresh is varied between 1 and 10 is shown in Table 4.10.

As can be observed in Table 4.10, when parameter zthresh is set between 1 and 4,

the detection was too sensitive with a lot of normal points being wrongly classified as

anomalous points. However, for zthresh = 8, zthresh = 9 and zthresh = 10, the anomaly

classification method was found to be unresponsive as it was unable to detect both

normal and anomalous points. The optimum value for zthresh was found to be 6, where

the number of TP is the lowest across all three prediction methods. The top three results

from Table 4.10 were further analysed to obtain the detection time and accuracy using

Equation 4.21 and Equation 4.22.

Table 4.11 shows the top three results obtained for this method where the lowest de-

tection time was 325µs (or ≈ 82000 clock cycles) after a fault is injected. The number

of anomalous points, TP, that are correctly detected is between 15 and 19, while the

non-anomalous points, TN, that are correctly identified lie between 118050 and 118067.

The number of missed anomalies and false alarms (FN and FP) is between 135 and 182,

giving an accuracy between 99.85% to 99.89%. While all three prediction methods are

able to achieve the lowest detection time of 325µs, the ARMA method has managed to

detect fewer false alarms (FP) compared to SES and LN.

Chapter 4 Early Detection and Prediction Algorithm 101

(a)

(b)

(c)

Figure 4.8: Anomaly classification using Residual Distribution

102 Chapter 4 Early Detection and Prediction Algorithm

T
a
b
l
e
4
.1
0
:

D
et

ec
ti

o
n

re
su

lt
s

fo
r
z t

h
r
e
s
h

b
et

w
ee

n
1

a
n

d
1
0

z t
h
r
es
h

S
E

S
A

R
M

A
L

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N

1
0

0
22

9
45

06
0

0
20

9
45

26
0

0
23

7
44

98

2
0

0
16

1
19

77
9

0
0

13
7

19
80

1
0

0
17

8
19

76
2

3
0

0
29

9
78

00
7

0
0

22
6

78
08

0
0

0
31

2
77

99
4

4
0

0
14

6
78

16
7

0
0

16
0

78
21

3
0

0
13

8
78

17
5

5
1
7

4
8

2
1
6

1
1
7
9
4
0

2
5

4
0

1
6
3

1
1
7
9
9
3

2
0

4
5

2
0
5

1
1
7
9
5
1

6
1
5

5
0

1
3
2

1
1
8
0
6
4

1
9

4
6

8
9

1
1
8
0
6
7

1
8

4
7

1
0
6

1
1
8
0
5
0

7
2
1

9
5

6
8

1
1
8
0
8
8

2
3

9
3

4
7

1
1
8
1
0
9

2
1

9
5

6
0

1
1
8
0
9
6

8
0

0
0

0
0

0
0

0
0

0
0

0

9
0

0
0

0
0

0
0

0
0

0
0

0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

Chapter 4 Early Detection and Prediction Algorithm 103

T
a
b
l
e
4
.1
1
:

T
op

re
su

lt
fo

r
R

es
id

u
a
l

D
is

tr
ib

u
ti

o
n

u
si

n
g

S
E

S
,

A
R

M
A

a
n

d
L

N
m

et
h

o
d

w
it

h
C

=
5

P
re

d
ic

ti
o
n

M
e
th

o
d

s
S

E
S

(a
=

0
.7

)
A

R
M

A
(4

,4
)

L
N

(W
=

3
)

P
a
ra

m
e
te

r
(z
th
r
es
h
)

5
6

7
5

6
7

5
6

7

T
P

1
7

15
21

25
19

23
20

1
8

2
1

F
N

4
8

50
95

40
46

93
45

4
7

9
5

F
P

2
16

13
2

68
16

3
89

47
2
05

1
0
6

6
0

T
N

11
79

40
11

80
24

11
80

88
11

79
93

11
80

67
11

8
10

9
1
17

95
1

1
1
8
0
5
0

1
1
8
0
9
6

A
c
c
u

ra
c
y

9
9.

7
8%

99
.8

5%
99

.8
6%

99
.8

3%
99

.8
9%

99
.8

8
%

99
.7

9
%

9
9
.8

7
%

9
9
.8

7
%

D
e
te

c
ti

o
n

T
im

e
µ
s

3
25

32
5

58
0

32
5

32
5

58
0

3
25

3
2
0

5
8
0

104 Chapter 4 Early Detection and Prediction Algorithm

4.8.4 Detection Accuracy using Prediction Interval

The second anomaly classification method is the Prediction Interval where the predicted

data point is used to estimate, with a certain probability, the range where the observed

values will fall. Prediction Interval provides upper and lower bounds where if the ob-

served data point falls outside the upper and lower bounds, it is marked as anomalous.

The upper bound zupper, and lower bound zlower values are calculated using Equation

4.18. Figure 4.9 shows the results of how anomalies are classified using this method. The

upper and lower bounds in Figure 4.9 were calculated using 90% one-tailed probability

with 1 Degree of Freedom. From these figures, it is shown that the upper and lower

bounds calculated generate good envelopes for the actual data where the majority of

the data points lies between the upper and lower bounds. However, it requires at least

20µs for the calculation to stabilise. This means, if anomalies happen at the start of

the program, this method would not be able to detect those anomalies and subsequently

predict a failure.

For anomaly classification using the Prediction Interval method as discussed earlier in

Section 4.7.2, the parameter PI plays an important role in setting the threshold rule.

Table 4.12, Table 4.13 and Table 4.14 show the complete detection results using SES,

ARMA and LN prediction method respectively where the probability is varied between

80% and 97.5% with the degree of freedom, df between 1 and 3 and the size of W

between 3 and 10. As can be observed from all three tables, when the parameter PI

uses the probability of 80% with any corresponding value for degree of freedom, the

detection was too sensitive and resulted in a higher number of normal data points being

wrongly classified as anomalous points. The critical values from the probability of 80%

with df = 1, df = 2 and df = 3 were 1.376, 1.080 and 0.978 respectively. These values

created a narrow width between the upper bound and lower bound, thus more false

alarms occurred where normal data points were wrongly classified as anomalous points.

In Table 4.15, the top three results for each prediction method using Prediction Interval

is presented. The detection time achieved for all top three results was 325µs, but the best

results were achieved with Probability = 90%, df = 1 and W = 3. This is due to the

number of false alarms (FP) which are slightly lower, thus resulting in a higher accuracy

compared to the results obtained using PI = 2.920 and PI = 2.353. The number of

anomalous points, TP, that are correctly detected is between 15 and 19, while the non-

anomalous points, TN, that are correctly identified lie between 118058 and 118072. The

number of missed anomalies (FN) is between 46 and 50 while the number of false alarms

(FP) is between 84 and 98, giving the accuracy of 99.88%, 99.89% and 99.88% for the

SES, ARMA and LN method respectively.

Chapter 4 Early Detection and Prediction Algorithm 105

(a)

(b)

(c)

Figure 4.9: Anomaly classification using Prediction Interval

106 Chapter 4 Early Detection and Prediction Algorithm

T
a
b
l
e
4
.1
2
:

D
et

ec
ti

on
re

su
lt

s
w

it
h

p
ro

b
a
b

il
it

y
b

et
w

ee
n

8
0
%

a
n

d
9
7
.5

%
u

si
n

g
S

E
S

p
re

d
ic

ti
o
n

m
et

h
o
d

D
O

F
=

1

P
ro

b
a
b

il
it

y
8
0
%

8
5
%

9
0
%

9
5
%

9
7
.5

%

W
in

d
o
w

S
iz

e
,

W
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N

3
0

0
12

3
19

82
4

0
0

14
5

78
16

8
1
5

5
0

8
8

1
1
8
0
6
8

0
0

0
0

0
0

0
0

4
0

0
20

0
57

64
3

0
0

98
78

21
5

20
96

62
11

80
94

0
0

0
0

0
0

0
0

5
0

0
23

6
78

07
0

0
0

91
89

45
4

77
29

2
49

11
81

07
0

0
0

0
0

0
0

0

6
0

0
19

2
78

11
4

0
0

68
89

47
7

71
29

8
41

11
81

15
0

0
0

0
0

0
0

0

7
0

0
14

7
78

15
9

14
45

11
1

11
80

45
64

30
5

38
11

81
18

0
0

0
0

0
0

0
0

8
0

0
12

2
78

19
1

15
50

98
11

80
58

57
31

2
33

11
81

23
0

0
0

0
0

0
0

0

9
0

0
10

3
78

21
0

24
92

86
11

80
70

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

11
1

89
43

4
21

95
71

11
80

85
0

0
0

0
0

0
0

0
0

0
0

0

D
O

F
=

2

P
ro

b
a
b

il
it

y
8
0
%

8
5
%

9
0
%

9
5
%

9
7
.5

%

W
in

d
o
w

S
iz

e
,

W
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N

3
0

0
14

9
97

26
0

0
11

8
19

82
9

0
0

17
1

78
13

5
1
5

5
0

1
0
0

1
1
8
0
5
6

66
3
03

38
1
18

1
1
8

4
0

0
16

2
19

78
0

0
0

19
5

57
64

8
0

0
11

3
78

20
0

21
95

71
11

80
8
5

50
3
19

28
1
18

1
2
8

5
0

0
13

8
19

80
4

0
0

22
9

78
07

7
0

0
10

6
89

43
9

81
28

8
56

11
81

0
0

0
0

0
0

6
0

0
11

8
19

82
9

0
0

18
8

78
11

8
0

0
77

89
46

8
74

29
5

45
11

81
1
1

0
0

0
0

7
0

0
10

2
19

84
5

0
0

14
5

78
16

8
0

0
62

89
48

3
69

30
0

40
11

81
1
6

0
0

0
0

8
0

0
18

6
57

65
7

0
0

11
9

78
19

4
14

45
10

4
11

80
52

64
30

5
36

11
81

2
0

0
0

0
0

9
0

0
24

5
78

06
1

0
0

10
0

78
21

3
15

50
93

11
80

63
57

31
2

33
11

81
2
3

0
0

0
0

1
0

0
0

21
1

78
09

5
0

0
10

7
89

43
8

24
92

81
11

80
75

50
31

9
27

11
81

2
9

0
0

0
0

D
O

F
=

3

P
ro

b
a
b

il
it

y
8
0
%

8
5
%

9
0
%

9
5
%

9
7
.5

%

W
in

d
o
w

S
iz

e
,

W
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N

3
0

0
16

9
97

06
0

0
14

9
19

79
3

0
0

16
6

57
67

7
0

0
99

89
44

6
22

94
79

1
18

0
7
7

4
0

0
18

4
19

75
4

0
0

11
9

19
82

8
0

0
18

8
78

11
8

0
0

66
89

47
9

81
2
88

58
1
18

0
9
8

5
0

0
15

9
19

78
3

0
0

20
4

57
63

9
0

0
13

3
78

18
0

1
5

5
0

1
0
2

1
1
8
0
5
4

74
2
95

44
1
18

1
1
2

6
0

0
14

0
19

80
2

0
0

16
7

57
67

6
0

0
10

5
78

20
8

24
92

83
11

80
7
3

68
3
01

40
1
18

1
1
6

7
0

0
12

4
19

82
4

0
0

20
7

78
09

9
0

0
10

5
89

44
0

20
96

67
11

80
8
9

58
3
11

35
1
18

1
2
1

8
0

0
11

1
19

83
6

0
0

17
4

78
13

2
0

0
85

89
46

0
20

96
59

11
80

9
7

53
3
16

29
1
18

1
2
7

9
0

0
20

0
57

64
3

0
0

14
3

78
17

0
0

0
68

89
47

7
77

29
2

49
11

81
0
7

0
0

0
0

1
0

0
0

17
4

57
66

9
0

0
12

1
78

19
2

0
0

60
89

48
5

74
29

5
44

11
81

1
2

0
0

0
0

Chapter 4 Early Detection and Prediction Algorithm 107

T
a
b
l
e
4
.1
3
:

D
et

ec
ti

on
re

su
lt

s
w

it
h

p
ro

b
a
b

il
it

y
b

et
w

ee
n

8
0
%

a
n

d
9
7
.5

%
u

si
n

g
A

R
M

A
p

re
d

ic
ti

o
n

m
et

h
o
d

D
O

F
=

1

P
ro

b
a
b

il
it

y
8
0
%

8
5
%

9
0
%

9
5
%

9
7
.5

%

W
in

d
o
w

S
iz

e
,

W
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N

3
0

0
74

19
87

3
0

0
11

2
78

20
1

1
9

4
6

8
4

1
1
8
0
7
2

0
0

0
0

0
0

0
0

4
0

0
15

3
57

69
0

0
0

84
78

22
9

24
92

52
11

81
0
4

0
0

0
0

0
0

0
0

5
0

0
17

0
78

13
6

0
0

84
89

46
1

70
29

9
36

11
81

2
0

0
0

0
0

0
0

0
0

6
0

0
13

8
78

16
8

0
0

66
89

47
9

67
30

2
29

11
81

2
7

0
0

0
0

0
0

0
0

7
0

0
11

0
78

19
6

17
42

12
9

11
80

27
58

31
1

25
11

81
3
1

0
0

0
0

0
0

0
0

8
0

0
94

78
21

9
21

44
98

11
80

53
54

31
5

21
11

81
3
5

0
0

0
0

0
0

0
0

9
0

0
86

78
22

7
29

87
81

11
80

75
0

0
0

0
0

0
0

0
0

0
0

0

1
0

0
0

98
89

44
7

28
88

66
11

80
90

0
0

0
0

0
0

0
0

0
0

0
0

D
O

F
=

2

P
ro

b
a
b

il
it

y
8
0
%

8
5
%

9
0
%

9
5
%

9
7
.5

%

W
in

d
o
w

S
iz

e
,

W
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N

3
0

0
11

6
97

59
0

0
71

19
87

6
0

0
12

1
78

1
85

2
2

4
3

1
0
8

1
1
8
0
4
8

5
8

3
11

2
7

1
18

12
9

4
0

0
11

2
19

83
0

0
0

15
0

57
69

3
0

0
88

78
2
25

27
89

6
5

11
80

91
5
1

3
18

2
0

1
18

13
6

5
0

0
80

19
86

2
0

0
16

6
78

14
0

0
0

93
89

4
52

75
2
94

4
4

11
81

12
0

0
0

0

6
0

0
71

19
87

6
0

0
13

6
78

17
0

0
0

77
89

4
68

70
2
99

3
3

11
81

23
0

0
0

0

7
0

0
57

19
89

0
0

0
11

4
78

19
9

0
0

57
89

4
88

65
3
04

2
7

11
81

29
0

0
0

0

8
0

0
14

3
57

70
0

0
0

92
78

22
1

17
42

12
2

11
80

3
4

58
3
11

2
3

11
81

33
0

0
0

0

9
0

0
17

4
78

13
2

0
0

85
78

22
8

20
45

10
1

11
80

5
5

54
3
15

2
1

11
81

35
0

0
0

0

1
0

0
0

15
6

78
15

0
0

0
94

89
45

1
29

87
78

11
80

7
8

50
3
19

2
0

11
81

36
0

0
0

0

D
O

F
=

3

P
ro

b
a
b

il
it

y
8
0
%

8
5
%

9
0
%

9
5
%

9
7
.5

%

W
in

d
o
w

S
iz

e
,

W
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N

3
0

0
13

9
97

36
0

0
92

19
85

0
0

0
13

3
57

7
10

0
0

9
0

89
45

5
2
9

87
7
0

1
18

08
6

4
0

0
13

5
19

80
3

0
0

71
19

87
6

0
0

13
6

78
1
70

0
0

6
1

89
48

4
7
8

2
91

4
5

1
18

11
1

5
0

0
10

7
19

83
5

0
0

15
7

57
68

6
0

0
10

7
78

2
06

2
2

4
3

1
1
4

1
1
8
0
4
2

6
8

3
01

3
3

1
18

12
3

6
0

0
82

19
86

0
0

0
12

9
57

71
4

0
0

87
78

2
26

29
87

7
9

11
80

77
6
2

3
07

2
7

1
18

12
9

7
0

0
72

19
87

5
0

0
15

5
78

15
1

0
0

93
89

4
52

26
90

5
8

11
80

98
5
6

3
13

2
3

1
18

13
3

8
0

0
62

19
88

5
0

0
12

6
78

18
0

0
0

80
89

4
65

23
93

4
7

11
81

09
5
1

3
18

2
0

1
18

13
6

9
0

0
15

2
57

69
1

0
0

11
0

78
20

3
0

0
69

89
4
76

71
2
98

3
7

11
81

19
0

0
0

0

1
0

0
0

13
7

57
70

6
0

0
92

78
22

1
0

0
55

89
4
90

68
3
01

3
3

11
81

23
0

0
0

0

108 Chapter 4 Early Detection and Prediction Algorithm

T
a
b
l
e
4
.1
4
:

D
et

ec
ti

on
re

su
lt

s
w

it
h

p
ro

b
a
b

il
it

y
b

et
w

ee
n

8
0
%

a
n

d
9
7
.5

%
u

si
n

g
L

N
p

re
d

ic
ti

o
n

m
et

h
o
d

D
O

F
=

1

P
ro

b
a
b

il
it

y
8
0
%

8
5
%

9
0
%

9
5
%

9
7
.5

%

W
in

d
o
w

S
iz

e
,

W
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N

3
0

0
11

2
19

83
5

0
0

15
2

78
16

1
1
7

4
8

9
8

1
1
8
0
5
8

0
0

0
0

0
0

0
0

4
0

0
22

7
57

61
6

0
0

10
7

78
20

6
22

94
64

11
80

92
0

0
0

0
0

0
0

0

5
0

0
26

0
78

04
6

0
0

10
0

89
44

5
69

30
0

49
11

81
07

0
0

0
0

0
0

0
0

6
0

0
20

5
78

10
1

0
0

82
89

46
3

62
30

7
40

11
81

16
0

0
0

0
0

0
0

0

7
0

0
15

9
78

14
7

16
43

15
8

11
79

98
59

31
0

34
11

81
22

0
0

0
0

0
0

0
0

8
0

0
13

6
78

17
7

18
47

12
3

11
80

33
53

31
6

28
11

81
28

0
0

0
0

0
0

0
0

9
0

0
11

2
78

20
1

24
92

95
11

80
61

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

11
9

89
42

6
23

93
76

11
80

80
0

0
0

0
0

0
0

0
0

0
0

0

D
O

F
=

2

P
ro

b
a
b

il
it

y
8
0
%

8
5
%

9
0
%

9
5
%

9
7
.5

%

W
in

d
o
w

S
iz

e
,

W
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N

3
0

0
14

1
97

34
0

0
11

1
19

83
6

0
0

17
5

78
13

1
1
8

4
7

1
2
7

1
1
8
0
2
9

59
3
10

36
1
18

1
2
0

4
0

0
15

1
19

79
1

0
0

21
9

57
62

4
0

0
12

8
78

18
5

23
93

76
11

80
8
0

50
3
19

23
1
18

1
3
3

5
0

0
12

2
19

82
0

0
0

25
3

78
05

3
0

0
11

0
89

43
5

76
29

3
60

11
80

9
6

0
0

0
0

6
0

0
11

0
19

83
7

0
0

19
5

78
11

1
0

0
94

89
45

1
67

30
2

49
11

81
0
7

0
0

0
0

7
0

0
91

19
85

6
0

0
15

5
78

15
8

0
0

76
89

46
9

60
30

9
39

11
81

1
7

0
0

0
0

8
0

0
20

7
57

63
6

0
0

13
2

78
18

1
15

44
14

4
11

80
12

59
31

0
33

11
81

2
3

0
0

0
0

9
0

0
26

4
78

04
2

0
0

10
9

78
20

4
18

47
11

8
11

80
38

53
31

6
28

11
81

2
8

0
0

0
0

1
0

0
0

22
8

78
07

8
0

0
11

6
89

42
9

24
92

93
11

80
63

50
31

9
23

11
81

3
3

0
0

0
0

D
O

F
=

3

P
ro

b
a
b

il
it

y
8
0
%

8
5
%

9
0
%

9
5
%

9
7
.5

%

W
in

d
o
w

S
iz

e
,

W
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N
T

P
F

N
F

P
T

N

3
0

0
17

6
96

99
0

0
13

4
19

80
8

0
0

18
6

57
65

7
0

0
10

5
89

44
0

24
92

86
1
18

0
7
0

4
0

0
17

8
19

76
0

0
0

11
0

19
83

7
0

0
19

6
78

11
0

0
0

79
89

46
6

76
2
93

60
1
18

0
9
6

5
0

0
14

8
19

79
4

0
0

23
2

57
61

1
0

0
14

4
78

16
9

1
8

4
7

1
3
5

1
1
8
0
2
1

67
3
02

46
1
18

1
1
0

6
0

0
12

6
19

81
6

0
0

18
4

57
65

9
0

0
11

6
78

19
7

24
92

84
11

80
6
2

60
3
09

38
1
18

1
1
8

7
0

0
11

2
19

83
5

0
0

22
1

78
08

5
0

0
11

1
89

43
4

23
93

72
11

80
8
4

55
3
14

31
1
18

1
2
5

8
0

0
99

19
84

8
0

0
18

2
78

12
4

0
0

96
89

44
9

21
95

61
11

80
9
5

50
3
19

24
1
18

1
3
2

9
0

0
22

5
57

61
8

0
0

14
9

78
16

4
0

0
85

89
46

0
69

30
0

52
11

81
0
4

0
0

0
0

1
0

0
0

19
5

57
64

8
0

0
13

3
78

18
0

0
0

73
89

47
2

67
30

2
46

11
81

1
0

0
0

0
0

Chapter 4 Early Detection and Prediction Algorithm 109

T
a
b
l
e
4
.1
5
:

A
n

al
y
si

s
u

si
n

g
S

E
S

,
A

R
M

A
an

d
L

N
m

et
h

o
d

fo
r

N
u

m
b

er
o
f

S
u

cc
es

si
ve

A
n

o
m

a
li

es
,

c
=

5
u

si
n

g
P

re
d

ic
ti

o
n

In
te

rv
a
l

M
e
th

o
d

s
S

E
S

(α
=

0
.7

)
A

R
M

A
(4

,4
)

L
N

(W
=

3
)

P
a
ra

m
e
te

r
P

I
(p

ro
b

.,
d

f)

P
I

=
3
.0

7
8

(p
ro

b
=

9
0
%

,
d

f
=

1
,

W
=

3
)

P
I

=
2
.9

2
0

(p
ro

b
=

9
5
%

,
d

f
=

2
,

W
=

3
)

P
I

=
2
.3

5
3

(p
ro

b
=

9
5
%

,
d

f
=

3
,

W
=

5
)

P
I

=
3
.0

7
8

(p
ro

b
=

9
0
%

,
d

f
=

1
,

W
=

3
)

P
I

=
2
.9

2
0

(p
ro

b
=

9
5
%

,
d

f
=

2
,

W
=

3
)

P
I

=
2
.3

5
3

(p
ro

b
=

9
5
%

,
d

f
=

3
,

W
=

5
)

P
I

=
3
.0

7
8

(p
ro

b
=

9
0
%

,
d

f
=

1
,

W
=

3
)

P
I

=
2
.9

2
0

(p
ro

b
=

9
5
%

,
d

f
=

2
,

W
=

3
)

P
I

=
2
.3

5
3

(p
ro

b
=

9
5
%

,
d

f
=

3
,

W
=

5
)

T
P

1
5

1
5

15
19

22
22

1
7

1
8

18

F
N

5
0

5
0

50
46

43
43

4
8

4
7

47

F
P

8
8

1
00

10
2

84
10

8
11

4
9
8

1
27

13
5

T
N

1
18

06
8

1
18

05
6

11
80

54
11

80
72

11
80

48
11

80
4
2

1
1
80

58
1
18

0
29

11
80

2
1

A
c
c
u

ra
c
y

9
9.

8
8%

9
9.

87
%

99
.8

7
%

99
.8

9
%

99
.8

7
%

99
.8

7
%

9
9
.8

8
%

9
9.

85
%

99
.8

5
%

D
e
te

c
ti

o
n

T
im

e
(µ

s)
3
25

3
25

32
5

32
5

32
5

32
5

3
2
5

3
25

32
5

110 Chapter 4 Early Detection and Prediction Algorithm

The results from Table 4.12, Table 4.13 and Table 4.14 also suggest that the value of PI

can be selected among 2.920, 3,078, 3.182 and 4.303. From the results shown in Table

4.11 and Table 4.15, one-step ahead prediction using ARMA method provides higher

accuracy compared to SES and LN. This can be attributed to lower number of false

alarms (FP) identified when using ARMA for prediction. The optimised parameters

obtained from this analysis will be used in the following chapter where the proof of

concept for a lightweight detector that predicts potential failure through the detection

of anomalous behaviour is presented.

4.9 Summary

In this chapter, a novel algorithm that detects anomalous behaviour in a processor using

HPC data and predict potential failure in real-time is presented. The algorithm consists

of three main stages, (a) one-step ahead prediction to predict the next data in the

time-series, (b) measurement of deviation between predicted value and observed value,

and (c) mechanism to classify if the observed value deviates “too much” and is deemed

anomalous. Three forecasting methods have been identified for one-step ahead prediction

namely, (a) Single Exponential Smoothing, (b) Autoregressive Moving Average, and (c)

Single Layer Linear Network. Two methods are used for measurement of deviation and

anomaly classification, namely: (a) Residual Distribution, and (b) Prediction Interval.

The algorithm predicts a potential failure if the number of consecutive anomalies, C

equals 5.

Two attributes are used to measure the performance of the algorithm. The first at-

tribute is the accuracy, which measures how accurately the detector has predicted both

anomalies and normal data points correctly. The second attribute is the detection time

attribute, a novel performance measurement attribute developed specifically for this

problem. It refers to the earliest time for the algorithm to raise an alarm at a potential

failure.

Based on analysis conducted, the lowest detection time achieved was 325µs for Resid-

ual Distribution with threshold value, zthresh equal to 6. Meanwhile, using Prediction

Interval, the best detection time achieved was also 325µs with optimum parameters

PI = 90%, df = 1 and W = 3. One-step ahead prediction using ARMA(4,4) proves to

be a better forecasting method as the number of detected false alarms (FPs) are lower

compared to SES and LN. Although the best detection time using Residual Distribu-

tion and Prediction Interval is same, using Prediction Interval has a slight drawback –

it requires time for the calculation to stabilise, thus it may be at a little disadvantage

compared to Residual Distribution method.

Chapter 4 Early Detection and Prediction Algorithm 111

The following chapter will present the proof of concept for a lightweight detector that

predicts potential failure through the detection of anomalous behaviour based on the

early detection and prediction algorithm developed in this chapter.

Chapter 5

Detector for Predicting Potential

Failure from Anomalous

Behaviour

5.1 Introduction

In previous research that uses HPC to detect anomalous behaviour, the data collected is

usually sent for offline processing to be analysed and anomalies are only detected after

a failure has happened [37, 74, 152]. In contrast to that work, the detector proposed

and designed here aims to predict potential failure in real-time through the detection of

anomalous behaviour. The key difference lies in the ability of the detector to detect and

predict within a certain number of clock cycles and prevent the system from entering

into a failure state. In Chapter 3, the minimum number of clock cycles before the system

crashes was found to be approximately 1,000,000.

In Chapter 4, the algorithm for early detection and prediction of potential failure is

presented where the best detection time was found to be 325µs or approximately 82,000

clock cycles. This chapter presents the proof of concept for a lightweight detector that

predicts potential failure through detection of anomalous behaviour based on the algo-

rithm presented in Chapter 4. The design of this detector is realised using the optimal

parameters that have been determined earlier in the previous chapter. The main objec-

tives of the work in this chapter are as follows:

1. To design and simulate the detector through experimental validation by imple-

menting one-step ahead prediction and anomaly classification presented in the

previous chapter.

113

114 Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour

2. To test the detector on several embedded benchmarks and evaluate the effective-

ness of the detection and prediction in terms of “Time to Detect” against “Time

to Failure”.

3. To measure the performance of the detector based on its total instructions, Cycles

Per Instruction (CPI), total execution time and size.

This chapter is organised as follows. Section 5.2 will present the proposed design of

detector and Section 5.3 outlined the experimental setup to validate the design. Sec-

tion 5.4 will present the results of testing the detector on several benchmarks while

Section 5.5 and Section 5.6 present the performance analysis and source-byte analysis of

the detector based on total instructions, Cycles Per Instruction (CPI), total execution

time and size while Section 5.7 provides the summary of the performance analysis. The

chapter is concluded in Section 5.8.

5.2 Proposed Design of the Detector

The computer industry, be it from a high-end, customised, special-purpose comput-

ing in avionics, telecommunications and networking to low-power embedded computing

in video games and portable computing, the expectations from consumers remain the

same – faster, more efficient and more powerful. However, single core products are

showing a decline in the ability to boost performance to keep pace with consumer de-

sire. Multicore-processors have now been recognised as one of the key components in

improving computing performance.

Multicore technologies aim to either exploit concurrency, increase compute density, han-

dle partitioned workloads, or achieve some combination of these objectives. Integrating

multicore technologies for embedded systems requires developing multicore processors

which can be integrated into a small area such as a classic microcontroller. Fortunately,

this has been made possible with the recent developments. For example, most Intel

Atom processors have between two and four cores while the NXP LPC4300 contains

an ARM Cortex-M4 and a Cortex-M0 processor, and the Freescale Vybrid contains a

Cortex-M4 and a Cortex-A5 processor. This illustrates that the need for multi-processor

designs in certain microcontroller application areas is expanding.

The idea of using a dedicated hardware processor to detect anomalous behaviour in the

main processor is aimed at achieving a quick response for detection and prediction with

minimal performance overhead. Rather than placing the detector on the main core in

a multicore microcontroller, it is designed to be placed on secondary core to ensure no

overhead is imposed on the main core running the application. However, there are some

challenges for using a multicore processor in a microcontroller, and the most notable

Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour 115

challenge is deciding which part of the system will be shared, and which part of the

system will not be shared.

Following the design guidelines as proposed in [153], the main core and secondary core

have been designed to have private caches and private memories. This is to ensure that

the HPC data from the main core that uses the number of cache misses as its PME will

not be compromised due to the presence of a secondary core. Figure 5.1 illustrates how

the proposed detector is designed in such a way that the secondary processor can receive

the PME counts from the main processor with minimal overhead to the main processor

via the communication pipeline.

Figure 5.1: Proposed hardware-based detector utilising multi-cores architecture

The important consideration in this design is the inter-core communication pipeline

where HPC data from the main core can be sent via a dedicated pipeline to the detector

core as shown in Figure 5.1. The inter-core communication pipeline between the main

core and the detector core is established when the main core sends a command to turn

on the detector core. It is important to have a dedicated pipeline to ensure that the

HPC data sent from the main core to the detector core will not be compromised that

can affect the detection and prediction. Figure 5.2 shows the overall execution between

the main core, called Core A, and the secondary core, called Core B.

Core A which functions as the main core, starts up the whole microcontroller, initialises

the memory, peripherals and stack pointers. Core A will then turn on Core B and

initialised the inter-core communication pipeline to Core B. After Core B has been

turned on and the communication pipeline to Core A has been established, Core B

loads the detector program. Core A will run the application and send one HPC data at

every 1250 clock cycles to Core B. Core B, prior to receiving the HPC data, will perform

one-step ahead prediction and predict the next data. Once the actual data (or observed

data) is available, Core B will measure the deviation between predicted data and actual

data. If it exceeds the threshold, the actual data will be marked as anomalous. If there

are five anomalous data points detected consecutively, Core B sends an interrupt to

116 Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour

Figure 5.2: Overall execution flow between main core, Core A and secondary core,
Core B

Core A. Core A, upon receiving the interrupt, will close the inter-core communication

pipeline with Core B, halt the application, and raise an alarm for potential failure.

In this work, it is assumed that Core B, being the detector core, is protected against

transient faults.

Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour 117

5.3 Experimental Validation of the Detector

The experiments were performed on a workstation running Ubuntu 16.04 LTS as the

operating system with an Intel Core i5-5257U operating at 2.70GHz and 11.1 GB of

memory. An environment is simulated in such a way that a main processor core (or

Core A) will be running the benchmark, and a secondary core (also known as Core

B) runs the early detection algorithm to predict and classify the stream of HPC data

coming from Core A through a protected inter-core communication pipeline. In the

experimental setup, to simulate Core A running a benchmark, a stream of HPC data

from a benchmark is used as an input to Core A, which will then read and send a data

to Core B. The time granularity has been fixed where the HPC data is being transferred

from Core A to Core B at every 5µs.

The implementation of inter-core communication pipeline is realised using a named pipe

(also known as a FIFO), as it is one of the methods for inter-process communication.

Unnamed pipes allow any process to use the pipes to send commands while named pipes

only allow processes that have establish connections with the pipes to send or receive

commands. Using named pipe, Core A established an inter-core connection with Core

B, and vice-versa. When five anomalies have been detected consecutively, Core B sends

an interrupt to Core A and closes the connection to Core A. Core A, upon receiving the

interrupt, stops the execution and prompt an error message on the screen.

Function 5.1 and 5.2 shows how a FIFO is created and used.

1 /* int mkfifo(const char *pathname , mode_t mode); */

2 int file1;

3 file1 = mkfifo("fifo_counter" ,0666);

Listing 5.1: Creating a FIFO

1 /* Open named fifo */

2 int fifo_in;

3 fifo_in = open("fifo_counter", O_WRONLY);

Listing 5.2: Using a FIFO

Three different benchmarks have been chosen to validate the detector. The benchmarks

chosen are Dijkstra, FFT and Bitcount benchmarks, each from a different suite as ex-

plained in Section 3.5. These benchmark applications have been injected with a single

bit-flip randomly at any of the location in the various stages of the pipeline. As the

main processor core is running a benchmark application, it sends one piece of HPC data

at every 1250 clock cycles through the communication pipeline to the detector core.

Six different detectors were implemented with each detector running a combination of

one-step ahead prediction with anomaly classification techniques.

The first stage is to predict the value for next data point using one-step ahead prediction.

Three different methods were used for one-step ahead prediction, namely SES, ARMA

118 Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour

and LN. For one-step ahead prediction using the SES method, the optimum value for

parameter α, which has been determined in Section 4.6.1, is 0.7. As for one-step ahead

prediction using the ARMA method, the optimal value for parameter (p, q) is (4, 4) as

shown in Section 4.6.2. And for one-step ahead prediction using the LN method, the

optimum window size, W , is 3 as shown in Section 4.6.3.

For the second stage, two different methods were applied. The first method is Residual

Distribution where, the threshold rule, zthresh, is defined as the number of standard

deviations away from the average of the residual. If the residual distribution, z exceeds

the threshold rule, zthresh, the observed data is marked as anomalous. The optimum

value for zthresh is 6, as shown in Section 4.8.3. The second method is Prediction Interval,

used to estimate the range where the observed data will fall. zupper and zlower are the

upper and lower boundary thresholds defined in Equation 4.18. The ideal confidence

level, determined in Section 4.8.4, was 90% with window size, W = 3 and df = 1. The

algorithms for the Residual Distribution method and the Prediction Interval method are

shown in Figure 5.3 and Figure 5.4, respectively.

In the secondary core, the detector will classify if the current point is anomalous and raise

the alarm of the impending failure of the main core if five anomalous points are detected

consecutively. The interrupt is transmitted to the main core via another dedicated

communication pipeline. This is to ensure that the pipeline that is being used to send

an HPC data from the main core to the detector core do not need to wait and check for

any alarm from the detector core, which could impede the detection process.

Figure 5.5 shows the simulation of the detector core performing one-step ahead pre-

diction, measurement of deviation between predicted values and observed values and

classification of the observed values. The detector core in Figure 5.5 has used the

ARMA method for one-step ahead prediction and the Residual Distribution method

for measurement of deviation and anomaly classification. Upon five anomalies detected

consecutively, an interrupt is sent to the main core. Figure 5.6 shows the main core

upon receiving an interrupt for a potential failure, terminates the current process.

5.4 Experimental Results

The six different detectors were tested on three benchmarks namely Dijkstra, FFT and

Bitcount benchmarks. These benchmarks are tasked to run at the same clock speed and

provide HPC data at the same sampling interval of 5µs. As mentioned in Chapter 3

and Chapter 4, it takes about 1M clock cycles for the system to fail and crash, therefore

any potential failure has to be predicted before 1M clock cycles, which is equivalent to

4,000µs.

Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour 119

Figure 5.3: Algorithm for early detection and prediction using Residual Distribution

5.4.1 Experimental Results for the Dijkstra Benchmark

For the Dijkstra benchmark, twenty experiments were performed where in each experi-

ment, a single bit-flip fault is injected. Out of the twenty experiments conducted, three

experiments were found to experience crash failure due to the injected fault manifested

itself as an error. Table 5.1, Table 5.2 and Table 5.3 show the detection results for three

different anomalous data sets. As can be seen from these results, potential failure in

the main core can be predicted by at least three detectors out of a total of six detectors

with the detection time are all under 4,000µs.

In Table 5.1, the detectors running SES with Residual Distribution, LN with Resid-

ual Distribution, SES with Prediction Interval and LN with Prediction Interval have

managed to predict a potential failure in 1820µs, 285µs, 245µs and 1790µs, respectively.

120 Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour

Figure 5.4: Algorithm for early detection and prediction using Prediction Interval

Table 5.1: Detection time for Dijkstra benchmark Anomalous Dataset 1

Anomaly Classification Residual Distribution Prediction Interval

One-Step Ahead Prediction SES ARMA LN SES ARMA LN

Fault injection (s): 7.0134 7.0134

System crash (s): 7.0183 7.0183

Start of anomalous behaviour (s): 7.0149 7.0149

Anomalies detected at (s): 7.0168 7.0148 7.0152 7.0151 7.015 7.017

Detection time (µs) 1820 -120 285 245 -145 1790

Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour 121

Figure 5.5: Simulation of the Detector Core

Figure 5.6: Simulation of the Main Core

Table 5.2: Detection time for Dijkstra benchmark Anomalous Dataset 2

Anomaly Classification Residual Distribution Prediction Interval

One-Step Ahead Prediction SES ARMA LN SES ARMA LN

Fault injection (s): 6.9702 6.9702

System crash (s): 6.9756 6.9756

Start of anomalous behaviour (s): 6.9717 6.9717

Anomalies detected at (s): 6.9741 6.9721 6.8700 6.9725 6.7887 6.9717

Detection time (µs) 2420 350 -101685 770 -183009 25

122 Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour

Table 5.3: Detection time for Dijkstra benchmark Anomalous Dataset 3

Anomaly Classification Residual Distribution Prediction Interval

One-Step Ahead Prediction SES ARMA LN SES ARMA LN

Fault injection (s): 6.6587 6.6587

System crash (s): 6.6636 6.6636

Start of anomalous behaviour (s): 6.6597 6.6597

Anomalies detected at (s): 6.6623 6.6600 6.6620 6.6622 6.6601 6.6608

Detection time (µs) 2595 350 2595 2425 405 1075

However, for detectors running with ARMA method, the detection time were -120µs and

-145µs. This indicates that the detector was too sensitive and had detected false alarms

instead of actual anomalies. In Table 5.2, the detectors running SES with Residual Dis-

tribution, ARMA with Residual Distribution, SES with Prediction Interval and LN with

Prediction Interval have managed to predict a potential failure in 2420µs, 350µs, 770µs

and 25µs, respectively, while in Table 5.3, all six detectors have managed to predict

a potential failure in the system in 2595µs, 350µs, 2595µs, 2425µs, 405µs and 1075µs

respectively. This means, the detector core had successfully predicted a potential failure

of the main core before actual failure occurs.

Figure 5.7 shows the result of “Time to Detect” versus “Time to Failure” for each

detector. “Time to Failure” is calculated from the time the fault is injected into the

system until the time when the system crashes. “Time to Detect” is calculated from the

start of the anomalous behaviour in the system until the time the detector had detected

5 anomalous data points consecutively and send an interrupt to the main core notifying

a potential failure. The minimum value on the Y-axis in Figure 5.7 is 0 as it shows the

time to predict potential failure by detecting and identifying actual anomalies. Negative

values indicate that the detector has detected false alarms and wrongly identified the

normal data points as anomalies. Based on these figures, the time to detect is well-below

4,000µs. This means, there is a possibility for some preventive or corrective actions to

be taken to avert the impending failure.

5.4.2 Experimental Results for the Bitcount Benchmark

The detectors were built based on trained and optimised models, where training and

optimisation were performed using the Dijkstra benchmark. These same detectors were

also tested against the Bitcount benchmark. Out of twenty experiments conducted, one

experiment was found to experience failure after a fault had been injected. Table 5.4

shows the result of the detector detecting anomalies and predicting a potential failure.

All detectors managed to detect the anomalies and predict potential failure with the

detection time ranging from 525µs to 2450µs.

Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour 123

(a) DataSet 1

(b) DataSet 2

(c) Dataset 3

Figure 5.7: Time to Detect vs Time to Failure for Dijkstra benchmark

124 Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour

Table 5.4: Detection time for Bitcount benchmark Anomalous Dataset 1
Anomaly Classification Residual Distribution Prediction Interval

One-Step Ahead Prediction SES ARMA LN SES ARMA LN

Fault injection (s): 6.6756 6.6756

System crash (s): 6.6806 6.6806

Start of anomalous behaviour (s): 6.6766 6.6766

Anomalies detected at (s): 6.6791 6.6771 6.6790 6.6791 6.6772 6.6790

Detection time (us) 2465 525 2420 2450 545 2375

In Figure 5.8, the detector that utilised the ARMA method for one-step ahead prediction

has the quickest detection time compared to using SES or LN method. The time to

detect using the ARMA method with either Residual Distribution or Prediction Interval

is around 500µs, with at least 3000µs to spare for any preventive or corrective actions

to be taken.

Figure 5.8: Time to Detect vs Time to Failure for Bitcount benchmark

5.4.3 Experimental Results for the FFT Benchmark

All six detectors were also used in the FFT benchmark. In the FFT benchmark, a total

of 20 experiments were performed, and one experiment was found to experience failure

after the injected fault had manifested itself as an error. Table 5.5 shows the results for

each detector in detecting the anomalous behaviour and predicting a potential failure.

Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour 125

From the results, all detectors were able to predict a failure in the main core, with the

detection time ranges from 930µs to 4025µs.

Table 5.5: Detection time for FFT benchmark Anomalous Dataset 1
Anomaly Classification Residual Distribution Prediction Interval

One-Step Ahead Prediction SES ARMA LN SES ARMA LN

Fault injection (s): 7.1101 7.1101

System crash (s): 7.1161 7.1161

Start of anomalous behaviour (s): 7.1121 7.1121

Anomalies detected at (s): 7.1157 7.1130 7.1141 7.1144 7.1137 7.1137

Detection time (us) 4025 930 1960 2270 1610 1635

Figure 5.9 shows the time to detect versus time to failure for all six detectors detecting

the anomalies in the FFT benchmark. From the figure, it is seen that the detector that

utilises ARMA for prediction has the quickest detection time compared to SES and LN.

The detector took 930µs to predict a potential failure with 3070µs to spare.

Figure 5.9: Time to Detect vs Time to Failure for FFT benchmark

All three benchmarks, as illustrated in Figure 5.7, Figure 5.8 and Figure 5.9, show that

the ARMA method is the most suitable method for predicting the next data point. Both

FFT and Bitcount benchmarks had not been used in the training, validation and testing

of the algorithm in Chapter 4, but still the detector managed to detect the anomalous

behaviour and predict potential failure well before the time of failure. For measuring the

deviation between the predicted point and the actual point, both Residual Distribution

126 Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour

and Prediction Interval are comparable. The only downside of using Prediction Interval

for anomaly classification is that it requires at least 20µs for the calculation to stabilise,

which means, if the fault is manifested into an error during that initial period, it will

not be detectable. This is due to the parameter in Prediction Interval algorithm which

is the standard error of the predicted model. One of the component in the parameter is

the Mean Squared Error (MSE), shown in Equation 4.19. In the beginning of the time

series data, the calculated value of MSE is large when the total sum of squared error

is divided by a small number of sample, n. As n increases, the MSE decreases until it

stabilises at a point of time, which in this experiment, is after 20µs.

5.5 Performance Analyses of the Detector

Analysis on the performance of the detector is done by calculating the total execution

time, T using the given formula in Equation 5.1.

T = I ∗ CPI ∗ CPU Clock Cycle (5.1)

The detector is designed to run on secondary processor core. Both the main core and the

secondary core were simulated using the same Intel processor, and the main processor

is tasked to run the benchmarks as a form of single-tasking system. The assembly codes

for all six different detectors which were developed are obtained, and the reciprocal

throughput and latencies for each instruction are calculated based on Intel processor

metrics obtained from [125]. The CPU clock cycle is calculated as 1/Clock Rate where

the clock rate is set at 250MHz. Table 5.6 displays the results of total instructions, I,

Cycles per Instruction, CPI, and the total execution time, T , for each detector.

Table 5.6: Performance in execution time of each method measured on an Intel ar-
chitecture

Method
Total

Instructions
(I)

Cycles
per

Instruction
(CPI)

Total
Execution

Time
(T) - µs

SES with Residual Distribution 250 1.8780 1.878

ARMA with Residual Distribution 311 1.7186 2.138

LN with Residual Distribution 243 1.8992 1.846

SES with Prediction Interval 334 1.7006 2.272

ARMA with Prediction Interval 384 1.6810 2.582

LN with Prediction Interval 330 1.8273 2.412

As shown in Table 5.6, the total execution time for evaluating a single data point ranges

from 1.8µs to 2.6µs, well below the sampling time of 5µs (or 5000ns), which is equivalent

to sampling at every 1250 clock cycles for a processor with a clock rate of 250MHz. In

Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour 127

other words, as the current data point being sampled, the detector is able to determine

if the current data point is normal or anomalous. The total number of instructions using

Prediction Interval is higher compared to using Residual Distribution as the computation

for lower and upper bounds require more values as can be seen in Algorithm 5.4. The

CPI for methods using Residual Distribution are just slightly higher as there are more

dependencies in the detection and prediction algorithm, hence there are more latencies.

5.6 Source Byte Analysis of the Detector

Figure 5.10: Size of detector in bytes

The size of the detector is measured by the size of the executable code and data. As can

be seen from Figure 5.10, the combined size of executable code and data did not exceed

2000 bytes or 2 kB. As ARMA has the most instructions compared to SES and LN,

naturally the size of the detector using ARMA will be bigger. The size of the detector

that applies Prediction Interval method is also bigger by almost 500 bytes compared

to using Residual Distribution. Figure 5.11 compares the size of the detector that uses

ARMA with Residual Distribution with the size of the embedded benchmarks used

for testing. As can be observed, the size of the detector is as light as the embedded

benchmarks used. However, the size and complexity of the detector developed in this

work are independent of the benchmarks.

128 Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour

Figure 5.11: Size of detector in comparison with size of benchmarks

5.7 Summary on the Results Analyses

The one-step ahead prediction using the ARMA method has provided the quickest detec-

tion time in most of the datasets for Dijkstra, Bitcount and FFT benchmarks compared

to using SES or LN prediction methods. From these analyses, it is observed that all the

techniques detected anomalous behaviour well before the system failed, but the com-

bination of using ARMA method with Residual Distribution method is the fastest, as

shown in Figure 5.7, Figure 5.8 and Figure 5.9. The Residual Distribution methods

are faster compared to Prediction Interval method for evaluating a single data point as

shown in Table 5.6 and have slightly smaller code sizes as shown in Figure 5.10. Thus,

by a small margin, the combination of ARMA with Residual Distribution is the best

choice for prediction and detection of anomalies.

Placing the detector on a secondary core means there will be no additional hardware

imposed on the main core. The main core utilises the existing hardware performance

counter in its own core and send the data to the secondary core for detection of anomalous

behaviour. Based on source byte analysis, the proposed detector can be deemed as

a lightweight detector since the size is below 2 kB. It is also worth noting that the

size of the detector is independent of the size of the benchmarks, which means, the

size of the detector remains at 2 kB even if the size of the benchmark exceeds 2 kB.

Although the experiments were performed in the form of simulations, other work has

demonstrated that using a secondary processor core to monitor main processor core’s

Chapter 5 Detector for Predicting Potential Failure from Anomalous Behaviour 129

HPC is possible [37]. However, compared to this work which uses real-time streaming

HPC data to detect for anomalies and predict potential failure, they capture the total

count of HPC data after the application has completed and performed the analysis offline

to determine if the application running is benign or anomalous.

5.8 Summary

In this chapter, a proof of concept for a lightweight detector to predict potential failure

through the detection of anomalous behaviour in a microcontroller is presented. The

detector has been designed to run from a secondary processor, where the main core

sends one HPC data sampled at every 1250 clock cycles via an inter-core communication

pipeline. The secondary core, dubbed as Core B, will first load the detector program

after start-up, and begin predicting the next data. Once it receives the actual data from

the main core, it will measure how much the actual data deviate from the threshold and if

the deviation exceeds the threshold, the actual data will be classified as anomalous. Five

anomalies detected consecutively will result in the secondary core sending an interrupt to

the main core via another inter-core communication pipeline to alert for potential failure.

The main core, after receiving the interrupt, will close the communication pipeline, halt

the application and raise an alarm for potential failure.

The lightweight detector was designed based on the early detection and prediction al-

gorithm developed in Chapter 4. It is worth noting that while the early detection and

prediction algorithm was developed solely based on Dijkstra benchmark, it has been

proven that it is a general model where it can be applied to other benchmarks, such as

FFT and Bitcount. Based on the results presented, it is possible to predict potential

failure in the real-time by detecting the anomalous behaviour that appeared in the pro-

cessor when a fault has manifested into an error. The detector has managed to detect

anomalous behaviour and predict potential failure in all three benchmarks below the

“Time to Failure” of 4000µs, with ARMA prediction method and Residual Distribution

for anomaly classification providing the best performance compared to other methods.

There was no cost involved in the main core, as the HPC is built-into the processor,

while for the detector, the total size of the detector does not exceed 2 kB. As mentioned

earlier, each HPC data is sampled at 1250 clock cycles, which is equivalent to every

5µs for a 250MHz clock speed. The total execution time of a single data point using

ARMA(4,4) with Residual Distribution was 2.138µs, well within the sampling time.

While both the main core and the detector core were simulated using the same Intel

processor, it is possible for the detector core to operate on an Intel processor which is

smaller and with reduced power compared to the main core as it is shown that the total

size of the detector core is less than 2 kB.

Chapter 6

Conclusions and Future Work

Reliability in safety-critical embedded systems is a major concern because a failure in a

safety-critical embedded system can result in death, injury, severe damage to equipment,

property or environment. While existing research in fault tolerant systems focused

on providing a complete error tolerant system, the techniques often come with high

overhead, are resource-intensive and some techniques have only managed to detect the

fault after a failure has occurred. The contributions from the work described in this

thesis provide a mechanism to predict potential failure in real-time by monitoring and

detecting anomalous behaviour in the system using a Hardware Performance Counter

(HPC). The work in this thesis addresses the gap found in current research on fault

tolerant systems and is targeted to complement current fault tolerance techniques and

contribute to a better protection strategy for embedded systems. The proposed detector

that can predict potential failure in the processor in real-time is the first of its kind, and

not only it does not require any additional hardware resources, it is also very light (less

than 2 kB of code).

6.1 Summary and Contributions

In this thesis, the work presented can be evaluated against the research questions and

research objectives detailed in Chapter 1, Section 1.4, which are reiterated here for

clarity.

Research questions:

1. Is it possible to predict a potential failure in an embedded system by monitoring

and detecting the anomalous behaviour in the system?

2. What are the available hardware performance counters in a processor which can

represent a behaviour of a system and can be monitored online and in real-time?

131

132 Chapter 6 Conclusions and Future Work

3. What are the suitable techniques to model the behaviour of the system and perform

early detection of anomalies to predict potential failure?

4. How do different prediction algorithms impact the implementation of the detector?

Research objectives:

1. Investigate how a manifested fault affects the behaviour of the system and identify

the various Performance Monitoring Events (PMEs) available that can be used

across different types of processors. Identify the number of hardware performance

counters available in processors used in embedded systems, in particular, the num-

ber of available counters in an Intel Atom processor used in this work. Select

different PMEs and compare them to determine which is better for detection.

2. Develop an algorithm for early detection suitable to be implemented in embedded

systems taking into account the constraints and limitations of an embedded system.

Explore several methods for one-step ahead prediction and anomaly classification

rules and perform evaluation on methods used in the early detection algorithm.

3. Implement the developed algorithm as a hardware-based detector. Validate the

implementation through experimental simulations and analyse the performance and

cost of the proposed detector.

The first objective is achieved in Chapter 3 where a HPC is used to monitor the anoma-

lous behaviour caused by manifested faults. As presented in Chapter 2, the use of HPCs

has been applied in various research such as performance evaluation, workload estima-

tion and detection for malicious activities. A common trait in all these works is how

HPCs have been used to identify or detect some form of deviation from normal or ex-

pected behaviour. But none have actually used HPC to predict potential failure in the

processor, caused by a single bit flip, by monitoring and detecting anomalous behaviour

at a system-level. A system that behaves normally exhibits a pattern, and any devi-

ation from that pattern indicates an anomaly had occurred. The experiments which

were performed using GemFI, show how the behaviour pattern of the system leading

either to a crash or a hang can be clearly observed by using a single HPC. From the

experiments conducted, it takes about 1,000,000 (or 1M) clock cycles for a system to

crash from the time the fault manifested as an error. This information is then used to

guide the detection algorithm where error detection and prediction of potential failure

has to be done below 1M clock cycles (or 4,000µs) for a system running at a clock speed

of 250MHz.

Two different architectural-level PMEs that were common across different types of pro-

cessor were selected for comparison, namely (i) number of instructions retired PME,

and (ii) number of cache misses PME. While both PMEs can be used for anomalous

Chapter 6 Conclusions and Future Work 133

behaviour monitoring, the latter is better suited for detection where the counter data

records a bigger deviation (more than 10%) when the pattern begins to deviate from the

normal behaviour compared to the former where the deviation recorded is around 5%.

The cache miss values are much lower than the instructions retired values, and hence,

where cache miss values have between three and seven bits, the instructions retired

values have around seventeen bits. This means the computational effort and speed to

perform early detection using cache misses will be smaller. Therefore, the first objective

has been fulfilled.

The second objective is achieved in Chapter 4 where a novel algorithm to predict poten-

tial failure in real-time by monitoring and detecting anomalous behaviour in a processor

is presented. Embedded systems have limitations and constraints concerning hardware

resources, speed, power and memory size. Therefore, the algorithm for error detec-

tion and prediction of potential failure must be lightweight with minimal computational

complexity and do not require any pre-processing on the data. Statistical methods are

preferred over machine learning algorithms as these methods not only satisfy the above

criteria, but statistical methods have also been found to outperformed machine learning

algorithms in terms of forecasting accuracy.

The novel algorithm consists of three stages, with each stage building from its predeces-

sor: (i) predicting the next data using one-step ahead prediction method, (ii) measuring

the deviation between predicted data and actual data, and (iii) classifying if the actual

data deviates “too much” and is deemed anomalous. Based on the analyses conducted

in Chapter 3, when a fault manifested as an error, the counter value begins to deviate

and the system starts behaving anomalously before it finally experiences failure. Based

on this characteristic, prediction of potential failure relies on how many consecutive

anomalies are required to be detected. From the experiments conducted, the algorithm

is able to predict potential failure with low detection time and high accuracy if there

are five anomalies detected consecutively. The detection time attribute in this thesis

is a novel performance measurement attribute that specifically measures how well the

early detection and prediction algorithm perform. It refers to the earliest time for the

algorithm to predict potential failure.

Three different methods have been applied for one-step ahead prediction, namely, (i)

Single Exponential Smoothing (SES), (ii) Autoregressive Moving Average (ARMA) and

(iii) Single-Layer Linear Network (LN) while two anomaly classification methods namely,

(i) Residual Distribution and (ii) Prediction Interval for measuring the deviation and

classification are explored. Based on the results of the experiment, the earliest detection

time achieved was 325µs from the time the fault has manifested itself into an error, and

this was achieved with the optimum parameters zthresh = 6 for Residual Distribution

and PI = 90%, df = 1,W = 3 for Prediction Interval. ARMA (4,4) has proven to be a

better prediction method as the number of false alarms and missed anomalies (FPs and

FNs) are lower compared to SES and LN methods. Between Residual Distribution and

134 Chapter 6 Conclusions and Future Work

Prediction Interval, the latter is at a certain disadvantage for it requires a time of at

least 20µs for the calculation to stabilise. Hence, if an error occur at the initial start-up

of the program, the Prediction Interval method for anomaly classification will not be

able to detect those anomalous behaviours, and would not be able to predict a potential

failure. Therefore, based on these results, the second objective has been fulfilled.

In Chapter 5, the third objective of the thesis is achieved where a proof of concept for

a lightweight detector that predicts potential failure from the detection of anomalous

behaviour is presented. A total of six different detectors were designed and simulated,

with each detector built using either SES, ARMA or LN methods for one-step ahead

prediction and Residual Distribution or Prediction Interval methods for anomaly classi-

fication. The detector is designed to run on a secondary core, where it receives one HPC

data from the main core at every 1250 clock cycles via a dedicated, inter-core communi-

cation pipeline. It measures the deviation between the HPC data received from the main

core and the data it predicted earlier and marked the observed data as anomalous if it

exceeds the threshold set either in Residual Distribution or Prediction Interval method.

If the detector detected five anomalies consecutively, it sends an interrupt to the main

core to alert for potential failure. Upon receiving the interrupt from the detector, the

main core will halt the application and raise an alarm for potential failure.

In Chapter 4, the detectors were developed based on Dijkstra benchmark. However, the

detectors were also tested on two additional benchmarks that have not been trained or

tested. Based on the results obtained, it is proven that the detector has managed to

detect the anomalous behaviour that had occurred and was able to predict potential

failure in real-time before the system experience failure. For Dijkstra benchmark, the

detector raised the alarm for potential failure at 350µs, where else, for FFT and Bitcount

benchmarks, the alarm is raised at 930µs and 525µs respectively, well below the 4,000µs

limit. These results were recorded using the detector which implements ARMA(4,4) for

one-step ahead prediction and Residual Distribution for measurement of deviation. The

total execution time required for a single data point was 2.138µs, which is well-within

the sampling time of 5µs. This means that within the time of 2.138µs, the detector is

able to predict the next data, measure the deviation between predicted data and actual

data, and classify the actual data as normal or anomalous before sending an interrupt to

the main core if the number of consecutive anomalies exceeds 5. The size of the detector

is also very small, less than 2 kB. No modification was required on the main core as

all the prediction and classification of the HPC data was performed on the secondary

core, and the main core is only tasked to send the existing, built-in HPC data from the

processor core itself to the secondary core via the inter-core communication pipeline.

Therefore, the third objective has been achieved.

All the four contributions in this thesis are aimed at providing a new strategy for online

error detection in a processor. Based on the findings in this work, it can be concluded

that it is possible to predict a potential failure in the embedded system by monitoring

Chapter 6 Conclusions and Future Work 135

the system for any anomalous behaviour. The lightweight detector proposed is suitable

to be used in multicore microcontrollers and there is no additional cost imposed on

the main core running the application. This novel algorithm for early detection and

prediction of potential failure in a processor has proven to work even on benchmarks

that were not used for training and testing. This algorithm can complement existing

fault forecasting and fault tolerance techniques and will contribute to a better protection

strategy for microprocessors, especially those that are used in embedded computing.

6.2 Future Work

The combination of fault forecasting, fault tolerance, fault removal and fault prevention

techniques helps in developing a dependable system for embedded computing. The

research in this thesis is focused on predicting potential failure through the detection of

anomalous behaviour in a processor. Some possible areas for future research which have

been identified are presented as follows.

6.2.1 Diagnostics

This research could be further extended to include diagnostic information. At the

present, the detector is able to predict potential failure in the processor but provides

no diagnostic information as to the location of the fault that causes the anomalous be-

haviour or the type of fault that causes the anomalous behaviour. Additional diagnostic

data will assist in ensuring proper corrective action is taken.

6.2.2 Recovery

Another important area that has been identified is to design corrective action that

will be applicable and suitable to be taken to address the anomalies detected in the

system. While the detector is able to detect in advance the signs of a system behaving

anomalously, the detector does not address the corrective action that needs to be taken.

In other words, there is no fault correction attempt by the detector besides halting the

application. This extreme corrective action of halting the system may be practical or

applicable for some non-critical embedded systems, but for some safety-critical systems,

this action may be deemed to extreme and impractical to be applied as it would cause

catastrophic results. Therefore, the technique of applying suitable correction is still

very much dependent on the nature of the application itself. However, as the prediction,

detection and classification process for a single point performed by the detector only

takes up about 2.138µs, there is at least 2.5µs available for corrective action to be taken.

136 Chapter 6 Conclusions and Future Work

6.2.3 Implementation of the Inter-Core Communication Pipeline

Current technology allows core-to-core communication via shared memory space between

cores. However, shared memory communication involves coherence invalidation and

cache misses, which means this could affect how the HPC data is collected by the main

core. The goal of this research is to be able to predict potential failure in real-time using

HPC where data recorded truly depicts the behaviour of the system. Implementation of

a dedicated, inter-core communication pipeline as suggested will ensure the reliability

of the data collected and analysed by the detector. This dedicated pipeline will ensure

the HPC data sent from main core to detector core is not compromised or changed and

the HPC data will provides a real picture of the behaviour of the main core running the

specific application.

Appendix A

Execution Profiles for FFT,

Stringsearch and QSort

Benchmarks

Figure A.1, Figure A.2 and Figure A.3 shows the execution profiles obtained from FFT,

StringSearch and QSort benchmark where the execution profiles are plotted using two

different PMEs, namely instructions retired PME and cache misses PME.

137

138 Appendix A Execution Profiles for FFT, Stringsearch and QSort Benchmarks

(a) Clock Speed = 250MHz (b) Clock Speed = 2GHz

(c) Clock Speed = 250MHz (d) Clock Speed = 2GHz

Figure A.1: Execution profiles using Number of Instructions Retired and Number of
Cache Misses for FFT benchmark running at 250MHz and 2GHz clock speed

Appendix A Execution Profiles for FFT, Stringsearch and QSort Benchmarks 139

(a) Clock Speed = 250MHz (b) Clock Speed = 2GHz

(c) Clock Speed = 250MHz (d) Clock Speed = 2GHz

Figure A.2: Execution profiles using Number of Instructions Retired and Number of
Cache Misses for StringSearch benchmark running at 250MHz and 2GHz clock speed

140 Appendix A Execution Profiles for FFT, Stringsearch and QSort Benchmarks

(a) Clock Speed = 250MHz (b) Clock Speed = 2GHz

(c) Clock Speed = 250MHz (d) Clock Speed = 2GHz

Figure A.3: Execution profiles using Number of Instructions Retired and Number of
Cache Misses for QSort benchmark running at 250MHz and 2GHz clock speed

Appendix B

Error Distribution for Dijkstra,

FFT, Bitcount and StringSearch

Benchmarks

141

142
Appendix B Error Distribution for Dijkstra, FFT, Bitcount and StringSearch

Benchmarks

T
a
b
l
e
B
.1
:

S
ta

ti
st

ic
s

o
n

er
ro

r
d

is
tr

ib
u

ti
o
n

fo
r

D
ij

k
st

ra
b

en
ch

m
a
rk

P
ip

e
li
n

e
S

ta
g
e

T
y
p

e
o
f

F
a
il
u

re
S

e
g
m

e
n
ta

ti
o
n

F
a
u

lt
In

v
a
li
d

O
p

c
o
d

e
K

e
rn

e
l

P
a
n

ic
N

U
L

L
P

o
in

te
r

B
a
d

P
a
g
in

g
A

ss
e
rt

io
n

E
rr

o
r

B
a
d

T
ra

p

G
e
n

e
ra

l
P

ro
te

c
ti

o
n

F
a
u

lt

S
ta

ck
O

v
e
rfl

o
w

N
o

E
rr

o
r

T
o
ta

l

F
e
tc

h

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

0
2
4

2
4

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

0
3

3

H
a
n

g
0

0
0

0
0

0
2

0
0

0
2

C
ra

sh
9

1
0

0
0

0
0

0
1

0
1
1

D
e
c
o
d

e

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

0
0

0

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

0
0

0

H
a
n

g
0

0
0

0
0

0
0

0
0

0
0

C
ra

sh
0

0
0

0
0

0
0

0
0

0
0

E
x
e
c
u

te

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

0
2
4

2
4

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

0
1

1

H
a
n

g
0

0
0

0
0

0
0

0
0

0
0

C
ra

sh
4

0
0

0
0

0
0

0
1

0
5

L
o
a
d

/
S

to
re

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

0
1
8

1
8

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

0
9

9

H
a
n

g
0

0
0

0
0

0
0

0
0

0
0

C
ra

sh
3

0
0

0
0

0
0

0
0

0
3

Appendix B Error Distribution for Dijkstra, FFT, Bitcount and StringSearch
Benchmarks 143

T
a
b
l
e
B
.2
:

S
ta

ti
st

ic
s

o
n

er
ro

r
d

is
tr

ib
u

ti
o
n

fo
r

F
F

T
b

en
ch

m
a
rk

P
ip

e
li
n

e
S

ta
g
e

T
y
p

e
o
f

F
a
il
u

re
S

e
g
m

e
n
ta

ti
o
n

F
a
u

lt
In

v
a
li
d

O
p

c
o
d

e
K

e
rn

e
l

P
a
n

ic
N

U
L

L
P

o
in

te
r

B
a
d

P
a
g
in

g
A

ss
e
rt

io
n

E
rr

o
r

B
a
d

T
ra

p

G
e
n

e
ra

l
P

ro
te

c
ti

o
n

F
a
u

lt

N
o

E
rr

o
r

T
o
ta

l

F
e
tc

h

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

2
4

2
4

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

1
1

H
a
n

g
0

0
1

0
0

0
2

0
0

3
C

ra
sh

2
0

0
0

0
0

0
0

0
2

D
e
c
o
d

e

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

3
0

3
0

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

0
0

H
a
n

g
0

0
0

0
0

0
0

0
0

0
C

ra
sh

0
0

0
0

0
0

0
0

0
0

E
x
e
c
u

te

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

1
7

1
7

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

4
4

H
a
n

g
0

0
0

1
4

0
1

0
0

6
C

ra
sh

1
0

1
0

0
0

0
1

0
3

L
o
a
d

/
S

to
re

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

2
1

2
1

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

2
2

H
a
n

g
0

0
0

0
3

0
0

0
0

3
C

ra
sh

4
0

0
0

0
0

0
0

0
4

144
Appendix B Error Distribution for Dijkstra, FFT, Bitcount and StringSearch

Benchmarks

T
a
b
l
e
B
.3
:

S
ta

ti
st

ic
s

o
n

er
ro

r
d

is
tr

ib
u

ti
o
n

fo
r

B
it

co
u

n
t

b
en

ch
m

a
rk

P
ip

e
li
n

e
S

ta
g
e

T
y
p

e
o
f

F
a
il
u

re
S

e
g
m

e
n
ta

ti
o
n

F
a
u

lt
In

v
a
li
d

O
p

c
o
d

e
K

e
rn

e
l

P
a
n

ic
N

U
L

L
P

o
in

te
r

B
a
d

P
a
g
in

g
A

ss
e
rt

io
n

E
rr

o
r

B
a
d

T
ra

p

G
e
n

e
ra

l
P

ro
te

c
ti

o
n

F
a
u

lt

N
o

E
rr

o
r

T
o
ta

l

F
e
tc

h

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

2
3

2
3

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

2
2

H
a
n

g
0

0
0

0
0

0
0

0
0

0
C

ra
sh

4
1

0
0

0
0

0
0

0
5

D
e
c
o
d

e

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

3
0

3
0

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

0
0

H
a
n

g
0

0
0

0
0

0
0

0
0

0
C

ra
sh

0
0

0
0

0
0

0
0

0
0

E
x
e
c
u

te

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

2
6

2
6

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

2
2

H
a
n

g
0

0
0

0
0

0
0

0
0

0
C

ra
sh

2
0

0
0

0
0

0
0

0
2

L
o
a
d

/
S

to
re

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

2
0

2
0

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

2
2

H
a
n

g
0

0
1

1
0

0
1

0
0

3
C

ra
sh

5
0

0
0

0
0

0
0

0
5

Appendix B Error Distribution for Dijkstra, FFT, Bitcount and StringSearch
Benchmarks 145

T
a
b
l
e
B
.4
:

S
ta

ti
st

ic
s

o
n

er
ro

r
d

is
tr

ib
u

ti
o
n

fo
r

S
tr

in
g
S

ea
rc

h
b

en
ch

m
a
rk

P
ip

e
li
n

e
S

ta
g
e

T
y
p

e
o
f

F
a
il
u

re
S

e
g
m

e
n
ta

ti
o
n

F
a
u

lt
In

v
a
li
d

O
p

c
o
d

e
K

e
rn

e
l

P
a
n

ic
N

U
L

L
P

o
in

te
r

B
a
d

P
a
g
in

g
A

ss
e
rt

io
n

E
rr

o
r

B
a
d

T
ra

p

G
e
n

e
ra

l
P

ro
te

c
ti

o
n

F
a
u

lt

S
ta

ck
O

v
e
rfl

o
w

N
o

E
rr

o
r

T
o
ta

l

F
e
tc

h

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

0
2
3

2
3

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

0
3

3

H
a
n

g
0

1
0

1
2

0
0

0
0

0
4

C
ra

sh
0

0
0

0
0

0
0

0
0

0
0

D
e
c
o
d

e

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

0
3
0

3
0

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

0
0

0

H
a
n

g
0

0
0

0
0

0
0

0
0

0
0

C
ra

sh
0

0
0

0
0

0
0

0
0

0
0

E
x
e
c
u

te

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

0
2
1

2
1

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

0
1

1

H
a
n

g
0

0
3

0
0

0
1

1
0

0
5

C
ra

sh
3

0
0

0
0

0
0

0
0

0
3

L
o
a
d

/
S

to
re

N
o
t

M
a
n

if
e
st

e
d

0
0

0
0

0
0

0
0

0
2
1

2
1

F
a
il

S
il
e
n

c
e

V
io

la
ti

o
n

0
0

0
0

0
0

0
0

0
1

1

H
a
n

g
0

2
0

0
3

0
0

0
1

0
6

C
ra

sh
2

0
0

0
0

0
0

0
0

0
2

Appendix C

Matlab Code

C.1 One-Step Ahead Prediction

C.1.1 Single Exponential Smoothing

1 function y = singleSmoothed(data , model , alpha)

2 y = (alpha * data) + ((1- alpha) * model);

3 end

C.1.2 Autoregressive Moving Average

1 function y = arma(data , diff , const , ar , ma, p, q, i)

2 delta = 0;

3 theta = 0;

4 if p ~= 0

5 for a = 1:p

6 if (i - a) <= 0

7 e = 1;

8 else

9 e = i - a;

10 end

11 delta = delta + (ar{a} * data(e));

12 end

13 end

14 if q ~= 0

15 for a = 1:q

16 if (i - a) <= 0

17 e = 1;

18 else

19 e = i - a;

20 end

21 theta = theta + (ma{a} * diff(e));

22 end

23 end

24 y = const + delta + theta;

25 end

147

148 Appendix C Matlab Code

C.1.3 Single-Layer Linear Network

1 function model = linearNetwork(data , position , window)

2 sum_weight = 0;

3 result = 0;

4 for i = 1: window

5 weight = window - i + 1;

6 sum_weight = sum_weight + weight;

7 point = position - i;

8 if (point <= 0)

9 result = result + 0;

10 else

11 result = result + (data(point) * weight);

12 end

13 end

14 model = result / sum_weight;

15 end

References

[1] Intel, Intel R©64 and IA32 Architectures Performance Monitoring Events, Intel.

[2] ARM, Cortex-A9 Technical Reference Manual, ARM.

[3] W. A. Fuller, Introduction to Statistical Time Series. Wiley, 1976.

[4] P. C. Anderson, F. J. Rich, and S. Borisov, “Mapping the South Atlantic Anomaly

continuously over 27 years,” Journal of Atmospheric and Solar-Terrestrial Physics,

vol. 177, pp. 237 – 246, 2018, dynamics of the Sun-Earth System: Recent Obser-

vations and Predictions.

[5] S. Teoh, “RM142m RazakSAT faulty after just one year, says federal auditor,”

The Malaysian Insider, October 2011.

[6] N. G. Leveson and C. S. Turner, “An investigation of the Therac-25 accidents,”

Computer, vol. 26, no. 7, pp. 18–41, July 1993.

[7] J.-L. Lions, “ARIANE 5 – flight 501 failure,” Independent Inquiry Board,

Failure Report, 1996. [Online]. Available: https://esamultimedia.esa.int/docs/

esa-x-1819eng.pdf

[8] A. DeHon, N. Carter, and H. Quinn, “Final report of CCC cross-layer

reliability visioning study,” Computing Community Consortium (CCC) Visioning

Study, United States, Full Report of Computing Community Consortium

(CCC) Visioning Study, 2011. [Online]. Available: http://www.relxlayer.org/

FinalReport?action=AttachFile&do=view&target=final report.pdf

[9] N. Wehn, “Reliability: A cross-disciplinary and cross-layer approach,” Asian Test

Symposium, pp. 496–497, 2011.

[10] P. Marwedel, Embedded System Design: Embedded Systems Foundations of Cyber-

Physical Systems, and the Internet of Things. Springer, 2018.

[11] A. Armoush, “Design patterns for safety-critical embedded systems,” Ph.D. dis-

sertation, RWTH Aachen University, 2010.

149

https://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
https://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
http://www.relxlayer.org/FinalReport?action=AttachFile&do=view&target=final_report.pdf
http://www.relxlayer.org/FinalReport?action=AttachFile&do=view&target=final_report.pdf

150 REFERENCES

[12] MarketsAndMarkets.com, “Embedded systems market by hardware (MPU,

MCU, application specific IC / application specific standard product, DSP,

FPGA, and memory), software (middleware and operating system), appli-

cation, and geography - global forecast to 2023,” United States, 2017.

[Online]. Available: https://www.marketsandmarkets.com/Market-Reports/

embedded-system-market-98154672.html

[13] M. D. P. Emilio, Features of Embedded Systems. Switzerland: Springer

International Publishing, 2015, pp. 25–31. [Online]. Available: https:

//doi.org/10.1007/978-3-319-06865-7 2

[14] H. Psaier and S. Dustdar, “A survey on self-healing systems: Approaches and

systems,” Computing, vol. 91, no. 1, pp. 43–73, Jnauary 2011.

[15] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and tax-

onomy of dependable and secure computing,” IEEE Transactions on Dependable

and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan 2004.

[16] E. Dubrova, Fault-Tolerant Design. Springer, 2013.

[17] N. R. Storey, Safety Critical Computer Systems. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 1996.

[18] J. C. Knight, “Safety critical systems: challenges and directions,” in 24th Inter-

national Conference on Software Engineering (ICSE), May 2002, pp. 547–550.

[19] ITRS, “International technology roadmap for semiconductors, 2013 edition

- process integration, devices and structures summary,” The International

Technology Roadmap for Semiconductors: 2013, International Technology

Roadmap for Semiconductors, 2013 Edition, 2013. [Online]. Available:

http://www.itrs2.net/itrs-reports.html

[20] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M. Tahoori, and

N. Wehn, “Reliable on-chip systems in the nano-era: Lessons learnt and future

trends,” in 50th ACM/EDAC/IEEE Design Automation Conference (DAC), May

2013, pp. 1–10.

[21] A. Rahimi, L. Benini, and R. K. Gupta, “Variability mitigation in nanometer cmos

integrated systems: A survey of techniques from circuits to software,” Proceedings

of the IEEE, vol. 104, no. 7, pp. 1410 – 1448, July 2016.

[22] S. Borkar, “Designing reliable systems from unreliable components: The challenges

of transistor variability and degradation,” IEEE Micro, vol. 25, no. 6, pp. 10–16,

2005.

[23] A. Avizienis, “Fundamental concepts of dependability,” Computers and Operations

Research, pp. 1–20, 2012.

https://www.marketsandmarkets.com/Market-Reports/embedded-system-market-98154672.html
https://www.marketsandmarkets.com/Market-Reports/embedded-system-market-98154672.html
https://doi.org/10.1007/978-3-319-06865-7_2
https://doi.org/10.1007/978-3-319-06865-7_2
http://www.itrs2.net/itrs-reports.html

REFERENCES 151

[24] K. Chakraborty and P. Mazuder, Fault Tolerance and Reliability Techniques for

High-Density Random-Access Memories. Prentice Hall, 2002.

[25] V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,” Artificial

Intelligence Review, vol. 22, no. 2, pp. 85 – 126, 2004.

[26] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM

Computer Survey, vol. 41, no. 3, pp. 15: 1 –15: 58, July 2009.

[27] F. E. Grubbs, “Procedures for detecting outlying observations in samples,”

American Statistical Association and American Society for Quality, Tech. Rep. 1,

1969. [Online]. Available: http://www.jstor.org/stable/1266761

[28] M. Usman, V. Muthukkumarasamy, and X. W. Wu, “Mobile agent-based cross-

layer anomaly detection in smart home sensor networks using fuzzy logic,” IEEE

Transactions on Consumer Electronics, vol. 61, no. 2, pp. 197 – 205, May 2015.

[29] A. DeOrio, Q. Li, M. Burgess, and V. Bertacco, “Machine learning-based anomaly

detection for post-silicon bug diagnosis,” in Design, Automation Test in Europe

Conference Exhibition (DATE), March 2013, pp. 491–496.

[30] J. Lin, Q. Zhang, H. Bannazadeh, and A. Leon-Garcia, “Automated anomaly

detection and root cause analysis in virtualized cloud infrastructures,” in IEEE/I-

FIP Network Operations and Management (NOMS) Symposium, April 2016, pp.

550–556.

[31] Y. Zhang, S. Debroy, and P. Calyam, “Network-wide anomaly event detection and

diagnosis with perfSONAR,” IEEE Transactions on Network and Service Man-

agement, vol. 13, no. 3, pp. 666–680, Sept 2016.

[32] P. Fiadino, A. D’Alconzo, M. Schiavone, and P. Casas, “Towards automatic detec-

tion and diagnosis of internet service anomalies via DNS traffic analysis,” in Inter-

national Wireless Communications and Mobile Computing Conference (IWCMC),

Aug 2015, pp. 373–378.

[33] G. Galvas, “Time series forecasting used for real-time anomaly detection on web-

sites,” Master’s thesis, Faculty of Science, Vrije Universiteit, 10 2016.

[34] A. Kumar, A. Srivastava, N. Bansal, and A. Goel, “Real time data anomaly de-

tection in operating engines by statistical smoothing technique,” in 25th IEEE

Canadian Conference on Electrical and Computer Engineering (CCECE), April

2012, pp. 1–5.

[35] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time anomaly

detection for streaming data,” Neurocomputing, vol. 262, no. Supplement C, pp.

134 – 147, 2017, online Real-Time Learning Strategies for Data Streams.

http://www.jstor.org/stable/1266761

152 REFERENCES

[36] R. S. Hammer, D. T. McBride, and V. B. Mendiratta, “Comparing reliability and

security: Concepts, requirements and techniques,” Bell Labs Technical Journal,

vol. 12, no. 3, pp. 65 – 78, Fall 2007.

[37] M. F. B. Abbas, S. P. Kadiyala, A. Prakash, T. Srikanthan, and Y. L. Aung,

“Hardware performance counters based runtime anomaly detection using SVM,”

in TRON Symposium (TRONSHOW), Dec 2017, pp. 1–9.

[38] K. Ott and R. Mahapatra, “Hardware performance counters for embedded soft-

ware anomaly detection,” in EEE 16th International Conference on Dependable,

Autonomic and Secure Computing, 16th International Conference on Pervasive

Intelligence and Computing, 4th International Conference on Big Data Intelli-

gence and Computing and Cyber Science and Technology Congress, Aug 2018, pp.

528–535.

[39] M. Stanisavljević, A. Schmid, and Y. Leblebici, Reliability of Nanoscale Circuits

and Systems – Methodologies and Circuit Architectures. Springer, 2011.

[40] J. Lienig and H. Bruemmer, Fundamentals of Electronic Systems Design, 1st ed.

Springer Publishing Company, Incorporated, 2017.

[41] A. Avizienis, “The four-universe information system model for the study of fault

tolerance,” in 12th International Symposium on Fault-Tolerant Computing (FTCS-

12), 1982, pp. 6–13.

[42] M. Zwoliński, Digital System Design with SystemVerilog, ser. Prentice Hall modern

semiconductor design series. Addison-Wesley, 2010.

[43] G. K. Saha, “Software fault tolerance through run-time fault detection,” Ubiquity,

vol. 2005, no. December, pp. 2–2, Dec 2005.

[44] P. Koopman, “Reliability, safety and security in everyday embedded systems,”

Dependable Computing, Lecture Notes in Computer Science, vol. 4746/2007, 2007.

[45] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek, “Fault injection

experiments using FIAT,” IEEE Transactions on Computers, vol. 39, no. 4, pp.

575–582, Apr 1990.

[46] F. Cristian, “Understanding fault-tolerant distributed systems,” Commun. ACM,

vol. 34, no. 2, pp. 56–78, Feb. 1991.

[47] D. P. Siewiorek, J. J. Hudak, B. H. Suh, and Z. Segal, “Development of a bench-

mark to measure system robustness,” in 23rd International Symposium on Fault-

Tolerant Computing (FTCS-23), June 1993, pp. 88–97.

[48] P. Koopman and J. DeVale, “The exception handling effectiveness of POSIX op-

erating systems,” IEEE Transactions on Software Engineering, vol. 26, no. 9, pp.

837–848, Sep 2000.

REFERENCES 153

[49] M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, N. Foutris, and D. Gizopoulous,

“Differential fault injection on microarchitectural simulators,” in IEEE Interna-

tional Symposium on Workload Charaterization (IISWC), Oct 2015, pp. 172 –

182.

[50] D. J. Sorin, “Fault tolerant computer architecture in syn-

thesis lectures on computer architecture,” 2009. [Online]. Avail-

able: http://www.cslab.ntua.gr/∼nkoziris/presentations/ACACES2010/Fault%

20Tolerant%20Computer%20Architecture.pdf

[51] A. Kamran and Z. Navabi, “Hardware acceleration of online error detection in

many-core processors,” Canadian Journal of Electrical and Computer Engineering,

vol. 38, no. 2, pp. 143 – 153, Spring 2015.

[52] M. Kaliorakis, M. Psarakis, N. Foutris, and D. Gizopoulous, “Accelerated online

error detection in many-core microprocessor architectures,” in IEEE 32nd VLSI

Test Symposium (VTS), April 2014, pp. 1 – 6.

[53] D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. K. S. Hari, D. Sorin,

A. Meixner, A. Biswas, and X. Vera, “Architectures for online error detection

and recovery in multicore processors,” in Design, Automation and Test in Europe

(DATE). IEEE, 2011, pp. 1–6.

[54] M. Goldstein and S. Uchida, “A comparative evaluation of unsupervised anomaly

detection algorithms for multivariate data,” PLOS One, pp. 1–31, April 2016.

[55] Y. Kawachi, Y. Koizumi, and N. Harada, “Complementary set variational autoen-

coder for supervised anomaly detection,” in IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), April 2018, pp. 2366–2370.

[56] H. Song, Z. Jiang, A. Men, and B. Yang, “A hybrid semi-supervised anomaly

detection model for high-dimensional data,” Computational Intelligence and Neu-

roscience, vol. 2017, pp. 1–9, 2017.

[57] D. J. Hill and B. S. Minsker, “Anomaly detection in streaming environmental

sensor data: A data-driven modeling approach,” Environmental Modeling and

Software, vol. 25, no. 9, pp. 1014–1022, September 2010.

[58] M. Toledano, I. Cohen, Y. Ben-Simhon, and I. Tadeski, “Real-time anomaly de-

tection system for time series at scale,” in Workshop on Anomaly Detection in

Finance, ser. Proceedings of Machine Learning Research, vol. 71. PMLR, 14 Aug

2018, pp. 56–65.

[59] M. S. Islam, W. Khreich, and A. Hamou-Lhadj, “Anomaly detection techniques

based on kappa-pruned ensembles,” IEEE Transactions on Reliability, vol. 67,

no. 1, pp. 212–229, March 2018.

http://www.cslab.ntua.gr/~nkoziris/presentations/ACACES2010/Fault%20Tolerant%20Computer%20Architecture.pdf
http://www.cslab.ntua.gr/~nkoziris/presentations/ACACES2010/Fault%20Tolerant%20Computer%20Architecture.pdf

154 REFERENCES

[60] V. Vercruyssen, W. Meert, G. Verbruggen, K. Maes, R. Bäumer, and J. Davis,

“Semi-supervised anomaly detection with an application to water analytics,” in

IEEE International Conference on Data Mining (ICDM), Nov 2018, pp. 527–536.

[61] J. Dromard, G. Roudiére, and P. Owezarski, “Online and scalable unsupervised

network anomaly detection method,” IEEE Transactions on Network and Service

Management, vol. 14, no. 1, pp. 34–47, March 2017.

[62] Y. Sasaka, T. Ogawa, and M. Haseyama, “A novel framework for estimating viewer

interest by unsupervised multimodal anomaly detection,” IEEE Access, vol. 6, pp.

8340–8350, 2018.

[63] N. H. Duong and H. D. Hai, “A semi-supervised model for network traffic anomaly

detection,” in 17th International Conference on Advanced Communication Tech-

nology (ICACT), July 2015, pp. 70–75.

[64] L. Song, H. Liang, and T. Zheng, “Real-time anomaly detection method for space

imager streaming data based on HTM algorithm,” in IEEE 19th International

Symposium on High Assurance Systems Engineering (HASE), Jan 2019, pp. 33–

38.

[65] K. Worden, G. Manson, and N. R. J. Fieller, “Damage detection using outlier

analysis,” Journal of Sound and Vibration, vol. 229, no. 3, pp. 647–667, January

2000.

[66] D. G. Pascual, Artificial Intelligence Tools Decision Support Systems in Condition

Monitoring and Diagnosis, 1st ed. CRC Press, 2015.

[67] M. D. Anis, “Towards remaining useful life prediction in rotating machine fault

prognosis: An exponential degradation model,” 2018 Condition Monitoring and

Diagnosis (CMD), pp. 1–6, 2018.

[68] C. Oriol, J. Clapes, A. Elyamani, J. Lana, C. Segúı, A. Mart́ın, and P. Roca, “Dam-

age detection using principal component analysis applied to temporal variation of

natural frequencies,” in 16th European Conference on Earthquake Engineering, 06

2018.

[69] A. Alizadeh, “Fatigue crack monitoring of helicopter fuselage through sensor net-

work,” Master’s thesis, Faculty of Industrial Engineering, Politecnico di Milano,

2014.

[70] M. Wei, B. Qiu, Y. Jiang, and X. He, “Multi-sensor monitoring based on-line diesel

engine anomaly detection with baseline deviation,” in Prognostics and System

Health Management Conference (PHM-Chengdu), Oct 2016, pp. 1–5.

[71] Y. Chen, B. Wang, W. Liu, and D. Liu, “On-line and non-invasive anomaly de-

tection system for unmanned aerial vehicle,” in Prognostics and System Health

Management Conference (PHM-Harbin), July 2017, pp. 1–7.

REFERENCES 155

[72] D. Liu, J. Pang, G. Song, W. Xie, Y. Peng, and X. Peng, “Fragment anomaly

detection with prediction and statistical analysis for satellite telemetry,” IEEE

Access, vol. 5, pp. 19 269–19 281, 2017.

[73] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou,

“SWAT: An error resilient system,” World Wide Web, 2008. [Online]. Available:

rsim.cs.uiuc.edu/Pubs/08SELSE-Li.pdf

[74] S. K. S. Hari, M.-L. Li, P. Ramachandran, B. Choi, and S. V. Adve, “mSWAT:

Low-cost hardware fault detection and diagnosis for multicore systems,” in 42nd

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

Dec 2009, pp. 122 – 132.

[75] N. K. A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-based self-testing

of embedded processors,” IEEE Transactions on Computers, vol. 54, no. 4, pp.

461 – 475, April 2005.

[76] H. Al-Asaad and M. Shringi, “On-line built-in self-test for operational faults,” in

IEEE Autotestcon Proceedings. IEEE Systems Readiness Technology Conference.

Future Sustainment for Military Aerospace, Sep. 2000, pp. 168–174.

[77] L. Chen and S. Dey, “Software-based self-testing methodology for processor cores,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 20, no. 3, pp. 369–380, March 2001.

[78] T.-F. Hsieh, J.-F. Li, K.-T. Wu, J.-S. Lai, C.-Y. Lo, D.-M. Kwai, and Y.-F.

Chou, “Software-hardware-cooperated built-in self-test scheme for channel-based

DRAMs,” in International Test Conference in Asia (ITC-Asia), Sep. 2017, pp.

107–111.

[79] M. Kaliorakis, N. Foutris, D. Gizopoulous, M. Psarakis, and A. Paschalis, “Online

error detection in multiprocessor chips: A test scheduling study,” in IEEE 19th

International On-Line Testing Symposium (IOLTS), July 2013, pp. 169 – 172.

[80] P. Bernardi, R. Cantoro, S. D. Luca, E. Sánchez, and A. Sansonetti, “Development

flow for on-line core self-test of automotive microcontrollers,” IEEE Transactions

on Computers, vol. 65, no. 3, pp. 744–754, March 2016.

[81] U. Schiffel, “Hardware error detection using AN-codes,” Ph.D. dissertation, Dres-

den University of Technology, 2011.

[82] K. Nørv̊ag, “An introduction to fault tolerant systems,” Norwegian University of

Science and Technology, 7034, Trondheim, Norway, IDI Technical Report 6/99,

2000. [Online]. Available: http://www.idi.ntnu.no/∼noervaag/IDI-TR-6-99/

IDI-TR-6-99.pdf

rsim.cs.uiuc.edu/Pubs/08SELSE-Li.pdf
http://www.idi.ntnu.no/~noervaag/IDI-TR-6-99/IDI-TR-6-99.pdf
http://www.idi.ntnu.no/~noervaag/IDI-TR-6-99/IDI-TR-6-99.pdf

156 REFERENCES

[83] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Synthesis of fault-tolerant schedules

with transparency/performance trade-offs for distributed embedded systems,” in

Design, Automation and Test in Europe Conference (DATE), vol. 1, March 2006,

pp. 1–6.

[84] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection by duplication in-

structions in super-scalar processors,” IEEE Transactions on Reliability, vol. 51,

no. 1, pp. 63 – 75, Mar 2002.

[85] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August, “SWIFT:

Software implemented fault tolerance,” in International Symposium on Code Gen-

eration and Optimization, March 2005, pp. 243 – 254.

[86] T. A. Alves, S. Kundu, L. A. J. Marzulo, and F. M. G. Franca, “Online error

detection and recovery in dataflow execution,” in 20th IEEE International On-

Line Testing Symposium (IOLTS), July 2014, pp. 9–104.

[87] V. Thati, J. Vankeirsbilck, N. Penneman, D. Pissoort, and J. Boydens, “An im-

proved data error detection technique for dependable embedded software,” in IEEE

23rd Pacific Rim International Symposium on Dependable Computing (PRDC), 12

2018, pp. 213–220.

[88] Y. Nezzari and C. Bridges, “Compiler extensions towards reliable multicore pro-

cessors,” in IEEE Aerospace Conference, June 2017.

[89] S. Hukerikar, K. Teranishi, P. C. Diniz, and R. F. Lucas, “An evaluation of lazy

fault detection based on adaptive redundant multithreading,” in IEEE High Per-

formance Extreme Computing Conference (HPEC), Sept 2014, pp. 1–6.

[90] K.-H. Chen, J.-J. Chen, F. Kribel, S. Rehman, M. Shafique, and J. Henkel, “Task

mapping for redundant multithreading in multi-cores with reliability and perfor-

mance heterogeneity,” IEEE Transactions on Computers, vol. 65, no. 11, pp. 3441–

3455, November 2016.

[91] J. Soman, N. Miralaei, A. Mycroft, and T. M. Jones, “REPAIR: Hard-error re-

covery via re-execution,” in IEEE International Symposium on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems (DFTS), Oct 2015, pp. 76–79.

[92] J. Soman, “A performance-efficient and practical processor error recovery

framework,” University of Cambridge, 15 JJ, Thomson Avenue, Cambridge

CB3 0FD, UK, UCAM Technical Report 931, 2019. [Online]. Available:

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-931.pdf

[93] A. Meixner and D. J. Sorin, “Error detection using dynamic dataflow verifica-

tion,” in 16th International Conference on Parallel Architecture and Compilation

Techniques (PACT), Sept 2007, pp. 104–118.

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-931.pdf

REFERENCES 157

[94] C. A. Lisboa, C. Grando, A. de Freitas Moreira, and L. Carro, “Using software

invariants for dynamic detection of transient errors,” in 10th Latin American Test

Workshop, March 2009, pp. 1–6.

[95] A. Meixner, M. E. Bauer, and D. J. Sorin, “Argus: Low-cost, comprehensive error

detection in simple cores,” IEEE Micro, vol. 28, no. 1, pp. 52 – 59, Jan 2008.

[96] A. Carelli, A. Vallero, and S. D. Carlo, “Performance monitor counters: Interplay

between safety and security in complex cyber-physical systems,” IEEE Transac-

tions on Device and Materials Reliability, vol. 19, no. 1, pp. 73–83, March 2019.

[97] L. Uhsadel, A. Georges, and I. Verbauwhede, “Exploiting hardware performance

counters,” in 5th Workshop on Fault Diagnosis and Tolerance in Cryptography

(FDTC), vol. 00, 08 2008, pp. 59–67.

[98] W. Mathur and J. Cook, “Toward accurate performance evaluation using hardware

counters,” in ITEA Modeling and Simulation Workshop, Dec 2003.

[99] C. Malone, M. Zahran, and R. Karri, “Are hardware performance counters a cost

effective way for integrity checking of programs,” in 6th ACM workshop on Scalable

Trusted Computing. ACM, 2011, pp. 71–76.

[100] H. Sayadi, H. M. Makrani, S. M. P. Dinakarrao, T. Mohsenin, A. Sasan, S. Rafati-

rad, and H. Homayoun, “2SMaRT: A two-stage machine learning-based approach

for run-time specialized hardware-assisted malware detection,” in Design, Automa-

tion Test in Europe Conference Exhibition (DATE), March 2019, pp. 728–733.

[101] M. B. Bahador, M. Abadi, and A. Tajoddin, “Hpcmalhunter: Behavioral mal-

ware detection using hardware performance counters and singular value decompo-

sition,” in 4th International Conference on Computer and Knowledge Engineering

(ICCKE), Oct 2014, pp. 703–708.

[102] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-based

side-channel attacks using hardware performance counters,” Appl. Soft Comput.,

vol. 49, no. C, pp. 1162–1174, Dec 2016.

[103] S. Behling, R. Bell, P. Farrell, H. Holthoff, F. O’Connell, and W. Weir, The

POWER4 Processor Introduction and Tuning Guide, IBM.

[104] S. Microsystems, UltraSparcTMUser Manual, SUN Microsystems.

[105] J. C. Foreman, “A survey of cyber security countermeasures using hardware per-

formance counters,” CoRR, vol. abs/1807.10868, 2018.

[106] S. Wang, W. Zhang, T. Wang, C. Ye, and T. Huang, “VMon: Monitoring and

quantifying virtual machine interference via hardware performance counter,” in

IEEE 39th Annual Computer Software and Applications Conference, vol. 2, July

2015, pp. 399–408.

158 REFERENCES

[107] S. Rasoolzadeh, M. Saedpanah, and M. R. Hashemi, “Estimating application work-

load using hardware performance counters in real-time video encoding,” in 7th

International Symposium on Telecommunications (IST), Sept 2014, pp. 307–311.

[108] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumadhavan,

and S. Stolfo, “On the feasibility of online malware detection with performance

counters,” SIGARCH Comput. Archit. News, vol. 41, no. 3, pp. 559–570, June

2013.

[109] V. Jyothi, X. Wang, S. K. Addepalli, and R. Karri, “BRAIN: Behavior based

adaptive intrusion detection in networks: Using hardware performance counters

to detect DDoS attacks,” in 29th International Conference on VLSI Design and

15th International Conference on Embedded Systems (VLSID), Jan 2016, pp. 587–

588.

[110] X. Wang, C. Konstantinou, M. Maniatakos, R. Karri, S. Lee, P. Robison, P. Ster-

giou, and S. Kim, “Malicious firmware detection with hardware performance coun-

ters,” IEEE Transactions on Multi-Scale Computing Systems, vol. 2, no. 3, pp.

160–173, July 2016.

[111] S. A. Musavi and M. R. Hashemi, “HPCgnature: A hardware-based application-

level intrusion detection system,” IET Information Security, vol. 13, no. 1, pp.

19–26, 2019.

[112] X. Wang and R. Karri, “Reusing hardware performance counters to detect and

identify kernel control-flow modifying rootkits,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 35, no. 3, pp. 485–498, March

2016.

[113] K. Appiah, X. Zhai, S. Ehsan, W. M. Cheung, H. Hu, D. Gu, K. McDonald-Maier,

and G. Howells, “Program counter as an integrated circuit metrics for secured

program identification,” in 4th International Conference on Emerging Security

Technologies (EST), Sept 2013, pp. 98–101.

[114] X. Zhai, K. Appiah, S. Ehsan, H. Hu, D. Gu, K. McDonald-Maier, W. M. Cheung,

and G. Howells, “Application of ICmetrics for embedded system security,” in 4th

International Conference on Emerging Security Technologies (EST), Sept 2013,

pp. 89–92.

[115] Z. Wang and A. Chattopadhyay, High-level Estimation and Exploration of Relia-

bility for Multi-Processor System-on-Chip. Springer, 2017.

[116] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown, “MiBench: A free, commercially representative embedded benchmark

suite,” in IEEE International Workshop, Proceedings of the Workload Charac-

terization (WWC-4), ser. WWC ’01. Washington, DC, USA: IEEE Computer

Society, 2001, pp. 3–14.

REFERENCES 159

[117] A. Akram and L. Sawalha, “A comparison of x86 computer architecture

simulators,” Western Michigan University, Computer Architecture and Systems

Research Laboratory Report, 11 2016. [Online]. Available: http://scholarworks.

wmich.edu/casrl reports/1

[118] ——, “A survey of computer architecture simulation techniques and tools,” IEEE

Access, pp. 1–1, 2019.

[119] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-

ness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,

M. D. Hill, and D. A.Wood, “The Gem5 simulator,” SIGARCH Comput. Archit.

News, vol. 39, no. 2, pp. 1 – 7, Aug 2011.

[120] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: A simulation

framework for cpu-gpu computing,” in 21st International Conference on Parallel

Architectures and Compilation Techniques, ser. PACT ’12. New York, NY, USA:

ACM, 2012, pp. 335–344.

[121] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64 microarchitectural

simulator,” in IEEE International Symposium on Performance Analysis of Sys-

tems Software, April 2007, pp. 23–34.

[122] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A full system simulator

for x86-CPUs,” in Design and Automation Conference (DAC), June 2011.

[123] K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bellas, “GemFI: A fault

injection tool for studying the behavior of applications on unreliable substrates,”

in 44th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks, June 2014, pp. 622–629.

[124] O. Wirth, J. Slaven, and M. A. Taylor, “Interval sampling methods and mea-

surement error: A computer simulation,” Journal of Applied Behavior Analysis,

vol. 47, no. 1, pp. 83–100, 2014.

[125] A. Fog, “4. Instruction Tables,” Technical University of Denmark, Software

Optimization Resources, 2018. [Online]. Available: https://www.agner.org/

optimize/instruction tables.pdf

[126] J. Liedtke, “On µ-Kernel construction,” in 15th ACM Symposium on Operating

System Principles (SOSP), December 1995.

[127] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter, “The perfor-

mance of µ-kernel-based systems,” in 17th ACM Symposium on Operating System

Principles (SOSP), October 1997.

[128] R. Iyer, Z. Kalbarczyk, and W. Gu, Benchmarking the Operating System against

Faults Impacting Operating System Functions. John Wiley & Sons, Inc., 2008,

pp. 311–339. [Online]. Available: http://dx.doi.org/10.1002/9780470370506.ch15

http://scholarworks.wmich.edu/casrl_reports/1
http://scholarworks.wmich.edu/casrl_reports/1
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
http://dx.doi.org/10.1002/9780470370506.ch15

160 REFERENCES

[129] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault injection:

Quantified error and confidence,” in Design, Automation Test in Europe (DATE)

Conference Exhibition, April 2009, pp. 502–506.

[130] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting, ser.

Springer Texts in Statistics. Springer International Publishing, 2016. [Online].

Available: https://books.google.co.uk/books?id=P3fhDAAAQBAJ

[131] D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to Time Series

Analysis and Forecasting, ser. Wiley Series in Probability and Statistics. Wiley,

2011. [Online]. Available: https://books.google.co.uk/books?id=-qaFi0oOPAYC

[132] R. Adhikari and R. K. Agrawal, “An introductory study on time series modeling

and forecasting,” CoRR, vol. abs/1302.6613, 2013.

[133] R. J. Hyndman, A. B. Koehler, R. D. Snyder, and S. Grose, “A state space fame-

work for automatic forecasting using exponential smoothing methods,” Interna-

tional Journal of Forecasting, vol. 18, no. 3, pp. 439–454, 2002.

[134] S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman, Forecasting: Methods

and Applications, ser. Wiley Series in Management. Wiley, 1998.

[135] G. Shmueli and K. C. L. Jr., Practical Time Series Forecasting with R - A Hands-

On Guide. Axelrod Schnall Publishers, 2018.

[136] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and machine

learning forecasting methods: Concerns and ways forward,” PLoS ONE, PLoS

ONE 13(3): e0194889, 2018. [Online]. Available: https://journals.plos.org/

plosone/article/file?id=10.1371/journal.pone.0194889&type=printable

[137] F. Petropoulos, S. Makridakis, V. Assimakopoulos, and K. Nikolopoulos, “’Horses

for Courses’ in demand forecasting,” European Journal of Operational Research,

vol. 237, pp. 152–163, 2014.

[138] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice

2nd Edition. OTexts: Melbourne, Australia, 2019. [Online]. Available:

https://otexts.com/fpp2

[139] NIST, “Nist/sematech e-handbook of statistical methods,” 2013.

[140] J. Zhao, L. Xu, and L. Liu, “Equipment fault forecasting based on ARMA model,”

in International Conference on Mechatronics and Automation, Aug 2007, pp.

3514–3518.

[141] H. Akaike, “A new look at the statistical model identification,” IEEE Transactions

on Automatic Control, vol. 19, no. 6, pp. 716–723, December 1974.

https://books.google.co.uk/books?id=P3fhDAAAQBAJ
https://books.google.co.uk/books?id=-qaFi0oOPAYC
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194889&type=printable
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194889&type=printable
https://otexts.com/fpp2

REFERENCES 161

[142] M. E. Lehr, “Maximum likelihood estimates of non-gaussian arma models,” Uni-

versity of California Riverside, Tech. Rep., 1996.

[143] Y. Yu, Y. Zhu, S. Li, and D. Wan, “Time series outlier detection based on sliding

window prediction,” Mathematical Problems in Engineering, no. 879736, 2014.

[144] T. D. Sanger, “Optimal unsupervised learning in feedforward neural networks,”

Master’s thesis, Department of Electrical Engineering and Computer Science, Mas-

sachusetts Institute of Technology, 1 1989.

[145] G. Serpen and Z. Gao, “Complexity analysis of multilayer perceptron neural

network embedded into a wireless sensor network,” Procedia Computer Science,

vol. 36, no. 192-197, pp. 493–500, 2014.

[146] Z. Tang and P. A. Fishwick, “Feedforward neural nets as models for time series

forecasting,” ORSA Journal on Computing, vol. 5, no. 4, pp. 374–385, 1993.

[147] K. Krishnamoorthy, Handbook of Statistical Distributions with Applications, ser.

Statistics: A Series of Textbooks and Monographs. CRC Press, 2006. [Online].

Available: https://books.google.co.uk/books?id=FEE8D1tRl30C

[148] N. S. Pillai and X.-L. Meng, “An unexpected encounter with Cauchy and Lèvy,”

Ann. Statist., vol. 44, no. 5, pp. 2089–2097, 10 2016.

[149] C. Chatfield, Prediction Intervals for Time-Series Forecasting. Boston, MA:

Springer US, 2001, pp. 475–494. [Online]. Available: https://doi.org/10.1007/

978-0-306-47630-3 21

[150] T. P. S. University, “Stat 501: Regression methods,” 2018. [Online]. Available:

https://newonlinecourses.science.psu.edu/stat501/node/274/

[151] “t-distribution table.” [Online]. Available: http://www.sjsu.edu/faculty/

gerstman/StatPrimer/t-table.pdf

[152] E. Chavis, H. Davis, Y. Hou, M. Hicks, S. F. Yitbarek, T. Austin, and V. Bertacco,

“SNIFFER: A high-accuracy malware detector for enterprise-based systems,” in

IEEE 2nd International Verification and Security Workshop (IVSW), July 2017,

pp. 70–75.

[153] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. M. (Burguiére), J. Reineke,

B. Triquet, and R. Wilhelm, “Predictability considerations in the design of multi-

core embedded systems,” in Embedded Real Time Software and Systems Confer-

ence, May 2010, pp. 36–42.

https://books.google.co.uk/books?id=FEE8D1tRl30C
https://doi.org/10.1007/978-0-306-47630-3_21
https://doi.org/10.1007/978-0-306-47630-3_21
https://newonlinecourses.science.psu.edu/stat501/node/274/
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf

	Research Thesis: Declaration of Authorship
	Acknowledgements
	Abbreviations
	Nomenclature
	1 Introduction
	1.1 Reliability in Safety-Critical Embedded Systems
	1.1.1 Embedded Systems
	1.1.2 Characteristics of Embedded Systems
	1.1.3 Safety-Critical Embedded Systems

	1.2 Anomalous Behaviour
	1.3 Research Motivation
	1.4 Research Objectives
	1.5 Publications
	1.6 Thesis Organisation

	2 Background and Related Work
	2.1 Introduction
	2.2 Reliability
	2.3 Threats to Reliability
	2.3.1 Defect, Fault, Error and Failure
	2.3.2 Origin of Faults
	2.3.3 Duration of Faults
	2.3.4 Fault-Error-Failure Chain

	2.4 Anomaly Detection
	2.4.1 Definition of an Anomaly
	2.4.2 Anomaly Detection Techniques
	2.4.3 Anomaly Detection in Damage Detection Domain

	2.5 Other Online Error Detection Techniques
	2.5.1 Built-In-Self-Test
	2.5.2 Redundancy
	2.5.2.1 Hardware Redundancy
	2.5.2.2 Time Redundancy
	2.5.2.3 Information Redundancy
	2.5.2.4 Software Redundancy

	2.5.3 Dynamic Verification
	2.5.4 Summary of Existing Online Error Detection Techniques

	2.6 Hardware Performance Counters (HPCs)
	2.6.1 Overview of HPCs
	2.6.2 Application of HPCs

	2.7 Summary

	3 Identification of Anomalous Behaviour using Hardware Performance Counter (HPC)
	3.1 Introduction
	3.2 Methodology
	3.3 Selection of Fault Model
	3.4 Selection of Event
	3.5 Benchmarks
	3.6 Architectural Simulator
	3.7 Experimental Setup
	3.8 Results and Discussion
	3.8.1 Comparisons between two PMEs
	3.8.2 Comparison on various Sampling Interval
	3.8.3 Comparison on using Different Input Data
	3.8.4 Characteristics of Anomalous Behaviour in a Processor

	3.9 Correlation Between Errors and Failures
	3.9.1 Analyses of the Distribution of Failure
	3.9.2 Analyses of Error Distribution and Its Effect to the System Behaviour

	3.10 Summary

	4 Early Detection and Prediction Algorithm
	4.1 Introduction
	4.2 Generating Data Set
	4.3 Understanding the Data Set
	4.4 Algorithm Overview
	4.5 Predicting Potential Failure
	4.6 One-Step Ahead Prediction
	4.6.1 Single Exponential Smoothing
	4.6.2 Autoregressive Moving Average
	4.6.3 Single Layer Linear Network
	4.6.4 Comparison between Forecasting Methods

	4.7 Measurement of Deviation and Anomaly Classification
	4.7.1 Residual Distribution
	4.7.2 Prediction Interval

	4.8 Analysis and Evaluation
	4.8.1 Evaluation Metric
	4.8.2 Minimum Consecutive Anomalies to be detected, C
	4.8.3 Detection Accuracy using Residual Distribution
	4.8.4 Detection Accuracy using Prediction Interval

	4.9 Summary

	5 Detector for Predicting Potential Failure from Anomalous Behaviour
	5.1 Introduction
	5.2 Proposed Design of the Detector
	5.3 Experimental Validation of the Detector
	5.4 Experimental Results
	5.4.1 Experimental Results for the Dijkstra Benchmark
	5.4.2 Experimental Results for the Bitcount Benchmark
	5.4.3 Experimental Results for the FFT Benchmark

	5.5 Performance Analyses of the Detector
	5.6 Source Byte Analysis of the Detector
	5.7 Summary on the Results Analyses
	5.8 Summary

	6 Conclusions and Future Work
	6.1 Summary and Contributions
	6.2 Future Work
	6.2.1 Diagnostics
	6.2.2 Recovery
	6.2.3 Implementation of the Inter-Core Communication Pipeline

	A Execution Profiles for FFT, Stringsearch and QSort Benchmarks
	B Error Distribution for Dijkstra, FFT, Bitcount and StringSearch Benchmarks
	C Matlab Code
	C.1 One-Step Ahead Prediction
	C.1.1 Single Exponential Smoothing
	C.1.2 Autoregressive Moving Average
	C.1.3 Single-Layer Linear Network

	References

