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Abstract: Monitoring laser ablation when using high power lasers can be challenging due to 

plasma obscuring the view of the machined sample. Whilst the appearance of the generated 

plasma is correlated with the laser ablation conditions, extracting useful information is 

extremely difficult due to the highly nonlinear processes involved. Here we show that deep 

learning can enable the identification of laser pulse energy and a prediction for the appearance 

of the ablated sample, directly from camera images of the plasma generated during single-pulse 

femtosecond ablation of silica. We show that this information can also be identified directly 

from the acoustic signal recorded during this process. This approach has the potential to 

enhance real-time feedback and monitoring of laser materials processing in situations where 

the sample is obscured from direct viewing, and hence could be an invaluable diagnostic for 

laser-based manufacturing. 

 

1. Introduction 

Lasers are used for a variety of scientific and industrial areas, such as microscopy [1–3], 

spectroscopy [4,5], fusion [6], 3D mapping [7], telecommunications [8,9], cutting [10,11], 

marking [12–14], welding [15,16] and deposition [17,18], owing to their versatility, speed, 

efficiency, and precision [19]. The industrial lasers global market size was $5.7 billion in 2018 

[20], and it is projected to experience a compound annual growth rate (CAGR) of 9.1% from 

2022 to 2030 [21], with the main driving factor being the capability for shaping and cutting 

materials with high precision. As such, techniques focussed on improving the prediction and 

real-time monitoring capability of the laser parameters and the sample appearance during 

materials processing has the potential to be significantly valuable to both academia and 

industry. However, the plasma plume and associated light emitted during the laser ablation 

process can make it difficult to directly observe the workpiece during machining [22,23].  

The plasma light observed when using high peak power and high average power lasers to 

ablate materials is caused by the conversion of material into plasma via ionization [24]. Whilst 

ultrashort pulsed lasers have the capability to ablate materials precisely with little or no heat 

affected zone (HAZ) [25,26], they do also produce plasmas. In laser ablation at relatively high 

intensity using ultrashort pulses (≥ 1012 Wcm-2), the laser-material interaction is predominantly 

multiphoton ionization [27]. Being able to demonstrate the ability to predict the laser power 

and then produce an image of an ablated region that would otherwise be obscured by plasma 

could be of benefit for real-time laser processing. However, modelling such phenomena can be 

difficult due to the highly nonlinear processes occurring during the laser ablation process. 

Deep learning is a type of artificial intelligence that has been increasingly used over the past 

five years across many research domains, owing to the capability of graphics cards and 

development in algorithms [28–30]. Deep learning is a data-driven approach that enables 

solutions to complex tasks to be identified through the processing of large amounts of data. 

Convolutional neural networks (CNNs) are a class of deep learning neural networks that have 

been successful in image recognition tasks [31], and they have been used in the field of lasers 

for a variety of laser-based tasks [32], such as laser-based spectroscopy [33] and particulate 



sensing [34]. Specifically for laser manufacturing, CNNs have been used for laser ablation 

monitoring [35,36], laser welding [37] and laser powder bed fusion [38]. 

A variant of the CNN known as a conditional adversarial neural network (cGAN) [39] has 

been used for a wide range of image-to-image translations [40]. This technique has been shown 

effective at synthesizing photos from sketches [41], colourising images [42], and transforming 

scattering patterns to images [43]. Related to laser machining, cGANs have been used for 

generating laser intensity patterns from fibres [44], laser welding [45], modelling laser 

machined shapes [46], and microstructure prediction of laser sintering [47]. 

Previous results have shown the application of plasma sensing for real-time composition 

monitoring for laser additive manufacturing [48], for non-contact monitoring of the laser 

welding [49], and have also shown the use of acoustic monitoring of laser welding [50,51] and 

laser ablation [52]. Here, we show how deep learning can be applied for the identification of 

laser machining parameters and sample appearance, directly from images of plasma (and 

acoustic spectra) recorded during laser machining. 

2. Experimental methods 

2.1 Setup 

A schematic of the experimental setup is shown in Fig. 1. A Light Conversion Pharos SP was 

used to produce 190 fs, 1 mJ pulses with a central wavelength of 1030 nm. Pulses were focussed 

using a 20× Nikon objective onto the surface of a coverslip (500 micron thick silica which had 

itself been glued to a 0.75 mm glass slide) to give a laser fluence of approximately 98 mJcm-2 

(with attenuation of the laser pulse energy scaling the laser fluence on the sample accordingly). 

The sample was attached to a Thorlabs XYZ motorized translation stage to allow for automated 

translation of the sample within the laser focus. A Basler acA4112-20uc camera (1914 × 1200, 

RGB) was used to image the surface of the ablated coverslip (imaged along the laser axis), 

whilst a Basler daA1920-160uc camera (4096 × 3000, RGB) was used to image the emitted 

plasma, with the camera orientated perpendicular to the laser axis. A microphone (Adafruit 

USB microphone, 22.2mm × 18.3mm × 7.0mm, 22.1 kHz) was placed approximately 2 

millimeters beneath the coverslip and positioned just outside of the laser path to avoid any 

damage. Single pulses from the laser were triggered using Python software to enable the 

synchronization of image capture and microphone recording. 



 

Fig. 1. Schematic of the experimental setup and corresponding examples of experimentally 

collected images and acoustic spectra occurring during the time period when a single laser pulse 

is incident on the target sample. 

 

2.2 Data collection and processing 

Data collection was automated using Python code to allow camera images to be recorded 

before, during and after the arrival of a single laser pulse on the sample, where the white-light 

source that was illuminating the sample was blocked via a shutter for the camera images 

recorded during the laser pulse. Audio data was recorded for a total of 3 seconds, starting from 

1 second before each single laser pulse was triggered from the laser, and the top-down (surface 

image) and side-view (plasma) camera images were recorded with integration times of 1200 

ms and 300 ms, respectively. This dataset per pulse (audio, plasma, and surface image data) 

were collected once for every position in a square array, such that a fresh unablated surface was 

used as the target for the next laser pulse, and therefore to collect the next set of data. A single 

laser pulse was fired at the sample surface each time the sample was moved by 75 microns in 

the X or Y direction in an 8 × 8 grid. Data collection therefore resulted in a square array of 64 

ablated circles. Each pulse had a randomly chosen pulse energy (to avoid bias in the images 

due to surface topography etc.) from 0.2 mJ to 1 mJ in steps of 0.01 mJ. This 8 × 8 grid of data 

collection was repeated three times in new unablated regions of the sample surface to produce 

three sets of data for each pulse (i.e., ablated surface images, plasma images and acoustic signal) 

and for each pulse energy. The collection of each set of pulse energy data took approximately 

8 seconds, due to the programmed synchronisation. The surface and plasma images were 

cropped and resized to 512 × 512 pixels.  

The acoustic signal collected by the microphone was saved as a ‘.wav’ file and was loaded 

and converted to the spectral domain using MATLAB, via the Audio Toolbox and 



‘audioFeatureExtractor’ function. Since the microphone recorded for 3 seconds, the signal from 

the laser was cropped from the spectrum using peak detection algorithms to identify the signal 

at the temporal position corresponding to when the pulse was incident on the sample surface. 

Once the peak was found, the signal was cropped to 42.3 ms with the peak centred in the time 

axis, and the frequencies were split into 94 bands from 11.4 kHz to 22.1 kHz (lower frequencies 

were removed due to low signal to noise levels), with the spectrum array being resized to a 

square array of 512 × 512, and duplicated into 3 channels to give a 512 × 512 RGB image. 

 

2.3 Neural networks 

A schematic of the application of the neural networks used in this work is presented in Fig. 2. 

Two CNNs with a regression output were used in the work (purple and grey boxes in Fig 2), 

with one associated with plasma images and one associated with acoustic spectra images. Both 

neural networks consisted of 18 layers with data input size of 512 × 512 × 3 (the plasma or 

acoustic spectra images) and with a regression output layer, hence giving a numerical output. 

The neural network architecture is drawn in more detail in Fig 3(a), showing the decrease in 

spatial dimensions of the image as its fed through the neural network filters to give a 1 × 1 × 1 

output. The training parameters for both neural networks consisted of a minibatch size of 2, an 

initial learn rate of 0.0001, ADAM optimizer [53], learn rate drop factor of 0.1 and period of 

50, and they were both trained for 100 epochs. A total of 228 images were used in the training 

of each network, with testing carried out on 15 images for each neural network. 

 

Fig. 2. Concept diagram of the application of the four neural networks used in this work, showing 

the use of plasma images and acoustic spectra for predicting the laser pulse energy and for 

predictive visualization of the appearance of the laser ablated samples. 



Two cGANs were trained using the “pix2pix” architecture [40] for transforming images of 

either plasma or acoustic spectra into microscope images of ablated surfaces (blue and orange 

boxes in Fig. 2). More detail of the architecture of the generator part of the cGAN is shown in 

Fig. 3(b). The cGAN utilizes a U-Net structure to firstly reduce the size of the input image 

(plasma image or spectra) but then, unlike a CNN which reduces the output to a single pixel, 

the cGAN upscales the image to the dimensions of the input size image. Therefore, the input to 

the neural network is either a plasma image or acoustic spectra image of size 512 × 512 × 3, 

and the output is a generated surface image of size 512 × 512 × 3, which is then compared to 

an actual image using a discriminator network. The generator’s U-Net architecture has a 

contracting path (shown in cyan) and an expansive path (shown in grey). Green arrows 

represent down-sampling convolutions, orange arrows represent up-sampling convolutions, 

and red arrows represent skip connections. The feature maps from the expansive path are 

combined with the feature maps from the corresponding layer in the contracting path through 

skip connections. The multi-channel feature maps are represented by coloured rectangular 

boxes. The dimensions of each map are indicated inside the box and the number of channels is 

indicated below. Both networks were trained using the same parameters, which included a 

minibatch size of 2, a generator and discriminator learn rate of 2×10-4, an L1-to-GAN loss ratio 

of 100:1 with an ADAM optimizer and were trained for 10 epochs. A total of 234 pairs of 

images were used in the training of each neural network, with testing using 3 plasma images 

and 3 acoustic spectra. 

 

Fig. 3. Schematic of the architectures for the (a) CNN and (b) cGAN used for this work. 

No data augmentation was carried out. The neural networks were trained using MATLAB 

on a Microsoft Windows 10 computer workstation with 3× NVIDIA A4050s (20 GB each), 

with an Intel® Xeon® Gold 5222 CPU @3.80 GHz and 3.79 GHz, and 192 GB RAM. 

 

 



3. Results and discussions 

3.1 Pulse energy prediction 

Figure 4 shows (black circles) predictions for laser pulse energies when inputting (a) plasma 

images and (b) acoustic spectra into their respective neural networks. A linear best fit is also 

shown. The R2 for the linear best fit for the predicted energies using the plasma images was 

0.997, while the R2 associated with the acoustic spectra was 0.957. The standard deviation for 

all predicted energies was 0.13 mJ when using plasma images, and 0.30 mJ when using acoustic 

spectra. The root-mean-square error (RMSE) between the predicted and actual energies using 

the plasma images and acoustic spectra was approximately 0.02 mJ and 0.05 mJ, respectively. 

The RMSE was calculated as follows,  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑|𝐴𝑖 − 𝑃𝑖|

2

𝑛

𝑖=1

 

where A is the actual, P is the predicted, and n is the number of test data. It is evident that the 

predictions of the incident laser pulse energy were more accurate when using the plasma images 

than when using the acoustic spectra. We also use a 3-sigma method [54], which is a statistical 

calculation that shows the bounds of data points that lie within three standard deviations from 

a mean in a normal distribution (i.e., 99.7%), to help quantify the accuracy. This method has 

similarly been applied in laser induced breakdown spectroscopy [55,56]. The upper and lower 

3-sigma limits were -0.029 mJ to 0.048 mJ for the plasma images, and -0.16 mJ to 0.12 mJ for 

the audio images. 

 

Fig. 4. Actual and predicted pulse energy for test images associated with (a) plasma images and 

(b) acoustic spectra.  

By passing images through the dropout layer for each neural network, it is possible to 

identify which features in the images are most strongly activated. Figure 5 shows the channels 

that have the maximum activation for one image for each of the pulse energies tested in Fig.4 

for (a) plasma images and (b) acoustic spectra, whereby the activation map (shown as a jet 

colourmap) is overlayed onto the image with a 50% alpha value. The features of the plasma 

plume in Fig. 5(a) near the surface and along the edge of the plume are most strongly activated 

by the neural network in predicting the output. In addition, it appears that as the structure of the 

plume along the laser axis is also considered by the network, since the activation region extends 

further along the plume with increasing pulse energies. For the acoustic spectra in Fig. 5(b) the 

activation of different bands depends strongly on the pulse energy, with the lower pulse energy 



image (0.3 mJ) having stronger activations at lower frequencies and the highest pulse energy 

image (0.9 mJ) having stronger activation at higher frequencies. 

 

Fig. 5. Examples of activation intensity for (a) plasma images and (b) acoustic spectra sent 

through their respective neural network dropout layer.  

3.2 Ablated surface image generation 

Figure 6 shows the results for predicting the appearance of the surface after the pulse has been 

incident on the surface, directly from (a) side plasma images and (b) acoustic spectra. The 

neural network is shown capable of reconstructing the approximate shape of the surface 

structure, with the larger holes being generated for larger pulses energies, in agreement with 

the actual (i.e., experimentally collected) images. Structural similarity index measurement 

(SSIM), which is a measurement of the similarity between two images (which has a value of 1 

if images are identical and a value of 0 if there is no similarity), was calculated for the generated 

images compared with the actual ablated images. The SSIM for 0.36 mJ, 0.68 mJ and 0.97 mJ 

energy images generated using the side plasma was 0.94, 0.94 and 0.92, respectively. For the 

images generated using the acoustic spectrum as input, the SSIM was 0.92, 0.90 and 0.90, for 

pulse energies of 0.36 mJ, 0.68 mJ and 0.97 mJ, respectively. It is evident that the plasma 

becomes larger with increasing pulse energies, and the shape also changes. The acoustic spectra 

also vary between energies with the most intense frequencies varying for all three spectra in 

Fig. 6(b). It is also clear that for 0.68 mJ the reconstruction is not as accurate as that for the 

other pulse energies when using acoustic spectra in (b).   

 



 

Fig. 6. Generated images and actual images of laser ablated surface for (a) plasma images and 

(b) acoustic spectra from different laser pulse energies.  

 

4. Conclusion 

In conclusion, we have shown the ability of neural networks to predict the incident laser pulse 

energy of an ablated region based directly from either images of the plasma emitted upon 

ablation, or the acoustic spectra. We have also shown that neural networks have the potential 



to predict the appearance of ablated regions on the sample directly from plasma or acoustic 

data. This approach could be invaluable in the laser materials processing industry in situations 

where viewing the workpiece during machining is restricted due to high brightness of the 

plasma created during ablation.  
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