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Structural vibration control has always received considerable attentions for the unpleasant motions and 

environmental noise pollutions. Engineers and researchers have been looking for the more suitable and 

efficient methods to reduce structural vibration. Topology optimization method, as one design tool which 

could provide designers a design space with substantially more freedoms than size and shape 

optimization, has the potential to solve the long-standing problems. Stemming from this idea, the aim of 

this project is to apply topology optimization method to structural attenuation design.  

In this thesis, the optimal distribution of damping material on vibrating structures by using topology 

optimization method has been investigated. Four topology optimization models for bi-material plate, free 

damping layer plate and constrained damping layer plate are established respectively to achieve structure 

vibration suppression design. In the bi-material case, both the sensitivity expressions for power flow 

response and dynamic compliance are derived. The comparison of these two objective functions 

illustrates minimization of power flow response also has great effect on the vibration suppression. In free 

damping layer plate topology optimization case, by comparing the optimal topology pattern with the 

steady-state responses of the structure, a rapid strategy to obtain a feasible damping material layout is 

proposed. Also in this research, an interface finite element is introduced to build the viscoelastic layer of 

constrained damping layer which reduces the computation cost of optimization procedure in constrained 

damping layer plate topology optimization case. One conclusion can be drawn that a better performance 

of vibration suppression can be achieved by increasing the thickness of viscoelastic layer or constrained 

layer. But with the increase of thickness of the constrained layer, the vibration amplitude decrease 

continuously while the same phenomenon is not that obvious for viscoelastic layer. The relationship 

between the constrained damping patch distribution and mode shape of the structure is also discovered 

in this case. In addition, a convenient implementation framework written by Python is developed for 

implement topology optimization method in Abaqus. Further extensions such as new topology 

optimization model, new objective functions and different optimizers could be easily built. 
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Chapter 1 Introduction 

1 Introduction 

1.1 Background 

Structural vibration is a common problem in the field of engineering which would cause 

unpleasant vibration, noises and damages of the structure life. For many years, vibration 

suppression has been an urgent problem for engineers and scientists. Meanwhile, structure 

attenuation design, as one of the solutions for vibration reduction, has long been of concern for 

researchers.  

Many strategies including active[1], semi-active control and passive control[2] have been 

proposed to address these problems. Among those control methods, passive vibration control, 

as a conventional approach, is advantageous for its simplicity and ease of implementation and 

has been widely applied in various fields, such as civil engineering[3] and aircraft industry[4]. 

Representative examples include minimization of the vibration amplitude of key structural 

components for fatigue damage reasons[5], and reduction of acoustic noise levels[6][7].  

Structural design and materials distribution have great impact on the structural dynamic 

characterization which is essential for passive vibration control. Topology optimization, firstly 

proposed by Bendsøe and Kikuchi[8], is a suitable method to address this problem. This method 

was developed for determining the distribution of materials within an admissible design domain 

to yield an optimal structure which satisfies the required performance. Compared with the 

traditional size and shape optimization, this method provides the designers a design space with 

substantially more freedoms in the initial stage, which implies that much more efficient 

structures may be obtained. Thus topology optimization method gradually become a useful 

structure design tool to achieve higher performance, lower costs and lightweight structures.  

This research is concern on optimizing structural topology layout by topology optimization 

method to achieve the better performance of vibration suppression. A systematic research 

involving both free damping layer structure and sandwich structure topology optimization for 

vibration suppression is performed. For the objective functions, topology optimization methods, 

design variables and optimization algorithms have a visible impact on the optimization effect 

for vibration reduction, thus it’s necessary to compare and analyses the impact of these factors 

in topology optimization to find out the applicable methods for different engineering problems 

http://www.sciencedirect.com/science/article/pii/S0141029697002253
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and to guide engineering practice. In addition, an effective and efficient topology optimization 

tool will be developed in this research to implement topology optimization method and 

experiments will be designed to validate the effect of the optimized model.  

1.2 Aims of this Thesis  

The primary aim of this MPhil project is to apply topology optimization method to structural 

design for the better performance of passive vibration suppression. This project will explore the 

feasible topology optimization models to improve the performance of structural suppression 

design. Meanwhile the mechanism of vibration suppression and factors affecting the efficiency 

of suppressing vibration will be investigated. In order to expand topology optimization method 

to a wide range of engineering problems, a topology optimization package will be developed 

for commercial finite element software.  

1.3 Achievement of this Thesis 

1) A three-layer framework code is proposed to implement topology optimization method in 

Finite Element commercial software Abaqus. By taking advantage of the modelling 

capability of Abaqus, topology optimization method can be expanded to more engineering 

problems. Meanwhile, customized objective function is available for research purpose.  

2) The power flow response is firstly proposed as the objective function in topology 

optimization to achieve vibration suppression. Both the sensitivity expression of power 

flow response and dynamic compliance as the objective function are derived. These results 

of comparison between the two cases provide numerical evidence that topology 

optimization with respect to minimum power flow response also has a strong improving 

effect on the vibration suppression. 

3) An artificial damping material model for free damping layer plate that has a similar form 

as in the Solid isotropic material with penalization method (SIMP) approach is suggested 

with the sensitivity expression of steady-state vibration amplitude be given. The analysis 

of the results illustrates that there is no constant positive relationship between the 

performance of vibration suppression and the area of damping layer laid. By comparing 

the optimal topology pattern with the steady-state responses of the structure, a rapid 

strategy to obtain a feasible damping material layout is proposed. 

4) Based on the analytical solution of constrained damping layer plate model established in 

thesis, vibration reduction effects with respect to different viscoelastic layer thicknesses 

and constrained layer thickness are compared. The results illustrate the difference of 

contributions to vibration suppression between constrained layer and the viscoelastic layer, 
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which plays a helping role in design of constraint damping layer structures  

5) An interface finite element is introduced to build the viscoelastic layer of constrained 

damping layer which reduce the computation cost of optimization procedure. Based on the 

topology optimization model with respect to maximize modal damping ratio, the results 

discovered the relationship between the constrained damping patch distribution and mode 

shape of the structure. 

1.4 Structure and content of this Thesis 

For a comprehensive view of the field of topology optimization it is necessary to bring together 

three key areas of elasticity theory, engineering and optimization theory. This thesis begins by 

covering these areas before moving on to showing the work in the subsequent chapters. Hence 

the thesis is organised as follows: 

Chapter 2 highlights a number of key issues in the field of structural optimization including the 

basic concept of topology optimization, widely used numerical solvers for topology 

optimization, numerical instability issue in topology optimization, applications of structural 

dynamics topology optimization and development of topology optimization codes. 

Chapter 3 presents the FE modelling method for topology optimization models considering in 

this thesis. For the extensibility of topology optimization method, the framework and design 

process of Python topology optimization package based on solid isotropic material with 

penalization method for Abaqus has been detailed.  

Chapter 4 shows case studies on dynamic topology optimization of bi-material plate structure 

for vibration suppression. The mathematical formulation of topology optimization is 

established based on power flow response and bi-material solid isotropic material with SIMP 

model. The results of numerical examples and comparison of optimal results between two 

topological designs with minimum power flow response and minimum dynamic compliance 

verified the efficiency of this method.  

Chapter 5 investigates topology optimization model of vibrating structure with damping layer 

under harmonic excitations. An artificial damping material mode with penalization that has a 

similar form as in the SIMP approach is suggested. Numerical examples are given for 

illustrating the applicability and efficiency of the present approach. Optimal topologies 

obtained under different excitation frequencies and damping coefficients are also compared.  

Chapter 6 derived the analytical solution of constrained damping layer plate model and 



 

4 

vibration reduction effects of this sandwich structure has also been discussed. The results 

indicate the reason why the constrained damping layer model could achieve a better 

performance of vibration energy dissipation than the free damping layer model. Then a topology 

optimization approach was proposed to design of the constrained damping layer treatments on 

flat base plates. In the proposed approach, an interface finite element is introduced to modelling 

the viscoelastic layer of constrained damping layer treatment to simplify the FE model in the 

optimization procedure. The SIMP interpolation scheme is applied to generate the mass and 

stiffness matrices of the structure. The optimal layout obtained in optimization achieve a 

remarkable effect on vibration suppression with 50% reduction of weight.  

Finally, Chapter 7 concludes the thesis by recounting the achievements and limitations of the 

work. Ideas for future work are set out as possible topics for investigation. 
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Chapter 2   Literature review 

2 Literature review 

This chapter presents some general concepts related to structural optimization with topology 

optimization method. The basic concept of topology optimization is introduced in the Section 

2.1. A short development history of topology optimization is reviewed followed by the 

introduction of widely used numerical solvers for topology optimization. Optimizer is also 

critical part in the process of optimization. This part is detailed in Section 2.4. The problem of 

numerical instability is inevitable especially when you are dealing with optimization under 

multiple non-linear constraints. Section 2.5 presents the development of techniques to avoid 

numerical instability in topology optimization. Topology optimization method of structural 

dynamics is reviewed in Section 2.6 and last, the research related to topology optimization 

codes is presented in Section 2.7.  

2.1 Basic concept of topology optimization 

Generally, design variables, objective functions and constraints form an integral part of an 

optimization problem. Each of these three plays an important role in structural optimization. 

Among them, design variable is the main factor used to distinguish optimization methods. As a 

result, there are several structural optimization techniques in terms of the dimensions of design 

variables: sizing, shape, and topology optimizations. Fig 2.1 shows the examples that three 

main structural optimization techniques are applied to a beam problem.  

 

(a) Size Optimization 

 

(b) Shape Optimization 

 

 (c) Topology Optimization 

Fig 2.1 Difference between Size, Shape and Topology optimization[9] 
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Size optimization aims to search the optimal size parameters in design space while keeping 

shape and topology unchanged. Usually this method employs discrete design variables as 

shown in Fig 2.1 a). The thickness of each of the three portions is considered as the design 

variable and is optimized. This technique has been widely applied to real world problems 

because of its ease of use and mature theory and algorithm. Shape optimization aims to search 

the optimal boundary and geometry of structure while only keeping the topology of the structure 

unchanged. As shown in Fig 2.1 b), specifically employs geometrical entities such as surfaces 

or edges. The edges are defined using spline nodes which can be freely moved up or down in 

order to maximize/minimize an objective function such as maximum deflection or maximum 

stress and so on.  

Different from size optimization and shape optimization, topology optimization method aims 

to search the optimal topological pattern of the structure, in other words, an art to find the best 

locations for cavities in a given design domain. In topology optimization, not only the boundary 

shape of the structure is changed, but also the material distribution in the structure are totally 

reorganized. Obviously, this method allows greater design freedom than sizing and shape 

optimization. This topic has been intensively investigated in the past three decades. At present, 

it is mainly used in the applications such as the force path in the mechanics, the heat conduction 

channel in the heat conduction structure, and the waveguide design in the wave propagation 

and so on.  

2.2 Overview of structural topology optimization 

Structural topology optimization is one of the most advanced and challenging subjects in the 

field of structural optimization, which is a multidisciplinary research subject including topology 

theory, mechanics, computer science and optimization theory. The origin of structural topology 

optimization can be traced back to 1904 when Michell[10] adopted the analytic method to study 

the topology optimization design of truss structures under stress constraints. The condition that 

the lightest weight truss configuration should meet is known as the Michell criterion, and the 

truss satisfying the Michell criterion is called the Michell Truss. In 1981, the study of Olhoff 

and Cheng Gengdong[11] on the material distribution of solid plates obtained a global optimal 

plate design with infinite ribs. This work is considered to be the pioneer of topology 

optimization of modern continuum structures. Later, Bendsøe and Kikuchi[8] firstly proposed 

the homogenization method for topology optimization, in which identifying the optimal 

topology of a structure is transformed to a size optimization problem with the geometry 

parameters describing the microstructure of materials as design variables. Although the 

milestone laid the foundation for the later development of topology optimization method, the 
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homogenization method requires great computational effort because elastic properties of the 

porous material and the geometry parameters of its microstructure with complex geometries 

need to be established in applying this approach. On the basis of previous works, a number of 

different methods has been developed from the original homogenization approach concept, 

including Solid Isotropic Material with Penalisation (SIMP) and Evolutionary Structural 

Optimization (ESO) approaches and Level Set Method  

The early structural optimization algorithms are mainly based on the intuitive criterion method, 

such as full stress criterion and full strain criterion, but the nonlinear mathematical 

programming method has better robustness and adaptability. However, topology optimization 

problems often require the computation of objective functions, constraint equations and their 

derivatives[15], and the computational time depends on the number of design variables. This 

means that when the number of design variables increases, these mathematical programming 

methods will become very time-consuming and inefficient [16]. In topology optimization, 

especially the topology optimization based on the finite element method, the number of design 

variables is proportional to the number of finite elements in the design area. In order to 

overcome the efficiency problem of topology optimization, the Optimality Criteria (OC) 

method appeared in 1960s. OC method is an effective method for solving topology optimization. 

Its advantage lies in its fast convergence speed, high computational efficiency, simple concept 

and easy implementation. Later Svanberg proposed Method of Moving Asymptotes（MMA[17]）

based on Sequential Convex Programming in 1987 which has become one of the most popular 

optimization method for topology optimization. With the development of artificial intelligence, 

there are more and more non-gradient optimization algorithms be applied in topology 

optimization such as neutral network and genetic algorithm.  

2.3 Numerical methods of topological optimization  

2.3.1 Homogenisation Method 

In 1988, Bendsøe and Kikuchi[8] firstly introduced the homogenization method into the 

structural topology optimization problem. Since then, the topology optimization theory has 

been developed rapidly. By introducing material microstructure model with cavity into the 

macrostructure, topological design problem is transformed into a relatively simple material size 

optimization problem. Then, the homogenization method is used to solve the macroscopic 

materials characteristics with different microstructure configurations. The optimal structure 

macroscopic topology can be obtained by optimizing the microstructure size because the 

relationship between the macroscopic characteristics and the microstructure size has been 

obtained. Suzhki[18] studied structural shape and topology optimization collaborative design 
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based on homogenization method. In his paper, a structural topology optimization algorithm 

considering multiple working conditions was proposed. Tenek etc.[22] adapted the mathematical 

programming algorithm as the optimization solver for structural topology design based on 

homogenization theory. Hassani and Hinton[23] systematically summarized the topology 

optimization theory and algorithm based on homogenization method, and proposed the 

mathematical topology optimization model based on homogenization method. With the help of 

homogenization theory, topology optimization problem is transferred to size optimization to 

some extent which greatly reduces the difficulty of searching optimal solution.   

2.3.2 Solid isotropic material with penalization method 

Shortly after the homogenization approach to topology optimization was introduced, Bendsøe[24] 

and later others[25] suggested the solid isotropic material with penalization(SIMP) approach, 

‘which first was meant as an easy but artificial way of reducing the complexity of the 

homogenization approach and improving the convergence to 0-1 solutions.’ Compared with the 

homogenization method, the model can obtain the relationship between the material density 

and the elastic modulus without computation burden which reduces the amount of the 

optimization design variables and also simplifies the optimization process.  

The distributed function of design variables in SIMP method is interpreted as the material 

density of each finite element 𝜌𝑒 . ‘usually the density variables are penalized with a basic 

power law (whose value is finite) and multiplied onto physical quantities such as material 

stiffness and density’[9], see Eq. (2.1).  

 𝐸(𝜌𝑒) = 𝜌𝑒
𝑝𝐸0 (2.1) 

where 𝑝 is the penalization parameter and 𝐸0 is the Young’s modulus of solid material. The 

values of density range as 0 ≤  𝜌𝑒  ≤  1 where 0 corresponds to a void element, 1 to a solid 

element.  

In 1999, Bendsøe and Sigmund[26] proved the existence of microstructure of the intermediate 

density elements in the process of continuum structure topology optimization which further 

completed SIMP method theoretically. Since then, the SIMP method entered a period of rapid 

development. Sigmud[27] in 2001 published a Matlab program and then Tchernika and 

Sigmud[28]developed the topology optimization program on web pages so that more scholars 

and engineers have the access to understand and use the SIMP method. In 2003, Sigmud and 

Bendsøe in 2003 published an important book[9] which systematically introduced the theory and 

applications of topology optimization method. 

In the process of the development of SIMP model, Sigmud and Olhoff have also made 
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outstanding contributions to the application of this method, including compliant mechanism[29], 

geometric nonlinear structure[30], phononic crystal structure[31][32], phononic crystal band gap 

material[33]. reliability based topology optimization[34] and continuum vibration 

problems[35][36][37]. In addition, due to the development and progress of commercial finite 

element software (Opti Struct, Genesis, MSC / Nastran, Ansys, Tosca, etc.), topology 

optimization has been widely used in the fields of automobile, aerospace industry. SIMP 

method has also become a must-have option in most of commercial softwares for structural 

optimization. 

2.3.3 Evolutionary structural optimization method 

Evolutionary optimization method (ESO) is based on the idea of evolution to gradually remove 

invalid or inefficient materials to achieve topology optimization of continuum structures, thus 

avoiding the solution of multivariable mathematical programming. The study of this algorithm 

was first developed by Xie and Stephen[38]. Manickarajah et al. [39] proposed a ESO optimization 

method for buckling of thin plates based on stress criterion. Li et al. [40][41]carried out the shape 

optimization and topology optimization design of heat conduction structure based on ESO 

method and applied the filtering algorithm in his research. Yang et al. [42]proposed a 

bidirectional evolutionary structural optimization algorithm(BESO), which not only can be 

deleted, but also can be added, which is a good way to improve the single direction 

evolutionary algorithm. Huang et al. [43] pointed out that the BESO method has a great 

advantage in terms of computational efficiency and optimization ability compared with 

previous method.  

2.3.4 Level set approach 

Compared with the optimization process of homogenization method, evolutionary optimization 

method and solid isotropic material with penalization method, level set method is mainly 

developed from the field of boundary propagation and based on implicit functions that define 

structural boundaries rather than an explicit parameterization of the design domain. Fig 2.2 b) 

demonstrates an implicit representation where the structural boundary is implicitly specified as 

a contour line of the field Φ, which is a function of 𝑥. 
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Fig 2.2 a) Explicit versus b) Implicit representation of a design domain and boundaries (from Deaton et al[44]) 

In 2001, Osher and Santosa[46] used the level set function to describe the geometric boundary 

of the structure. In their research, the variational principle and gradient projection method were 

used to derive the velocity function and the optimal design of the structure self-vibration 

problem was studied. Allaire[47][48][49]  applied the level set approach to the static problems, 

dynamic problems and multiple loadings problems including maximum stiffness design of 

linear and nonlinear problems. The capability for topology design for stiffness under a volume 

constraint was demonstrated. Additional discussion of multiple material level set method can 

be found in Wang et al. [50] and Wang et al.[51]. However, as the Hamilton–Jacobi equation is 

employ to evolve the level set function and lack of the mechanism to insert holes into the design 

regions, the convergence rate of the traditional level set method is slower than that of 

conventional method. This difficulty can be overcome by topological derivative technique 

which was firstly proposed by Eschenauer et.al [52]. By employing this hole insertion 

mechanism, the efficiency of the level set method can be greatly enhanced and the initial design-

dependency of the optimal topologies can be alleviated. 

2.4 Update schemes 

As a highly developed tool for structural design, topology optimization plays an important role 

in mechanical, automotive and aerospace industries[54]. Optimizer, as a critical part in topology 

optimization process, undoubtedly deserves more attention. So far, a large number of different 

design update schemes have been suggested for topology optimization problems, which can 

be roughly divided into two categories: gradient-based topology optimization algorithms and 

non-gradient approaches.  

2.4.1 Gradient-based topology optimization algorithm 

Gradient-based topology optimization algorithms for continuum topology optimization 

problems has been applied to almost all topology optimization methods such as solid isotropic 

material with penalization approach [16][24], level set approach[50][55], evolutionary structural 
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optimization approach[56], etc.  

Compliance minimization problem with a volume constraint is very common in static topology 

optimization. However, this case is very special because the gradients of the objective function 

have same sign during each iteration, so basically any rigorous mathematical methods and even 

intuitive criterion methods (eg. Optimality Criteria) work well for this kind of optimization. 

Once more difficult problems such as the non-selfadjoint problems are considered, varying 

signs on gradients or more than one non-linear constraint will lead to fail of majority of the 

intuitive criterion methods.  

A large number of studies have shown that the sequential convex programming method has 

strong adaptability to solve the topology optimization problem. The Method of Moving 

Asymptotes (MMA) proposed by Svanberg[17] belongs to a classical method of convex 

programming method. Currently, the MMA and global convergence version GCMMA [58] have 

become one of the most widely used method in topology optimization. The basic idea of MMA 

is to produce a strict convex approximation sub-problem in each iteration step and to solve 

them. This sub-problem is controlled by the so-called moving asymptotes which greatly 

improve the stability and efficiency of the iterative process. So far, more advanced 

mathematical programming tools [59][60] have emerged and tested; however, they have not been 

proven to be more effective or reliable than Method of Moving Asymptotes methods [61]. 

2.4.2 Non-gradient-based topology optimization algorithm 

Besides the development of gradient-based topology optimization algorithms, another type of 

optimization approach based on random processes was continuously proposed by scholars. 

Such methods encompass Genetic Algorithms[65][66][67], Artificial Immune Algorithms[68], and 

Differential Evolution schemes[69]. These methods only use objective function evaluations to 

converge to a reasonable solution. Sigmund[70] compares the gradient-based and non-gradient 

topology optimization algorithms technologies systematically. Although non-gradient topology 

optimization algorithms may solve extremely coarse problems quite well, it is obvious that it 

cannot solve even slightly larger problems since the number of possible combinations grows 

exponentially with respect to increase in design variables[70]. And non-gradient topology 

optimization algorithms cannot guarantee obtaining the global optimum in every case. Thus 

gradient-based topology optimization technologies, so far, are still the most efficient and 

reliable technology to achieve the optimal design for topology optimization[70]. 

2.5 Numerical instability of topological optimization 

The topology optimization theory of continuum has been well developed[71][72] and applied in 
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the structure, material, mechanical, electromagnetic and other industrial fields, but there is still 

instability phenomenon during the optimization process such as checkerboard structure and 

mesh dependence and so on[73].  

2.5.1 Checkerboards problems 

Checkerboards refers to the formation of adjacent solid-void elements arranged in a 

checkerboard pattern as shown in Fig 2.3. Fig 2.3. a) shows typical checkerboards problem 

occurring in topology optimization. Fig 2.3. b) and Fig 2.3. c) are the optimal results for 

different discretization.   

 

Fig 2.3 Numerical instability; (a) Design problem (b) Example of checkerboards (c) Solution for 600 elements 

discretization (d) Solution for 5400 elements discretization (Deaton et. al 2014) 

The chessboard format in the topology optimization results in the difficulty of manufacturing, 

so the chessboard structure in the topology optimization should be avoided as much as possible. 

The main processing methods of chessboard structure are as follows: 

(1) Smoothing: that is image post-processing[77]. However, this method ignores the problem 

itself and should be avoided in practical engineering.  

(2) High-order Finite Elements: literature[78] pointed out that the finite element model with 8 

or 9 nodes can suppress checkerboard structure to a great extent. The disadvantage of this 

method is the increasing computation load due to the use of higher-order element models.  

(3) Filter: Based on the filtering technology in image processing, Sigmund[79][80] proposed a 

checkerboard structure filtering technology by modifying the design sensitivity of each 

element in which the sensitivity of an element is decided by all adjacent elements in the 
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filter radius range instead of itself. Literature[81] pointed out that the ability to suppress 

chessboard structure was improved by using this method.  

2.5.2 Mesh dependence 

Mesh dependence means that the optimal topological structure of the same optimization 

problem will change if the number of elements increase, meanwhile the geometric complexity 

of the optimal topological structure is also increasing. As shown in Fig. 2.3, (c) the optimization 

results obtained by using 600 finite elements; (d) the optimization results obtained by using 

5400 finite elements. Document[82] pointed out that the reason for mesh dependency of topology 

optimization is that the optimal solution does not exist or exists, but is not unique. Zhou and 

other[83] pointed out that the chessboard format is a form of meshing dependency, so the 

designers can eliminate the meshing dependency by using the checkerboard pattern filtering 

technology. 

2.6 Topology optimization method of structural dynamics  

The early structural optimization design mainly focuses on the static strength of the structure, 

however, a great deal of engineering experience shows that the structural accidents are often 

related to the dynamic stiffness of structures. Therefore, performing dynamic optimization 

design of structures is necessary. Because the structure dynamic performance is much more 

complex compared to static performance, so there are a variety of indicators for structural 

dynamic performance evaluation, mainly include: natural frequency of structure, frequency 

response, dynamic compliance, power flow response, modal loss factor and so on. 

The natural frequency characteristics of structures can often be used to effectively describe the 

dynamic characteristics of structures. For example, in low frequency vibration, the dynamic 

response of the structure depends mainly on the fundamental frequency and the first order mode 

of the structure. So, in general, the design and optimization of structural natural frequencies is 

often considered to be able to improve the dynamic performance of structures. Therefore, the 

research on the optimization of structural natural frequencies is the earliest, the most 

comprehensive in the development of structural dynamics optimization. There are mainly two 

kinds of frequency optimization problems in the traditional sense: one is the minimization of 

the structure weight under a certain frequency; the other is the maximization of the fundamental 

frequency or frequencies gap of the structure under the constraint of a given weight. For these 

objectives, sensitivity of the eigenvalue and eigenvector analysis is very important, so a large 

number of scholars dedicated to the research on this problem. 

Allaire et al. [84]presented a procedure that maximized the first eigenvalues of a combination of 
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two elastic materials in a bounded domain, extended the homogenization method, originally 

developed for compliance optimization, to frequency optimization problems. Subjected to a 

volume constraint for the rigid material, the optimal materials distribution of admissible design 

domain was achieved for two- and three-dimensional problems. Du J. and Olhoff N. [84] 

discussed dynamic topology optimization problems involving simple and multiple 

eigenfrequencies of linearly elastic structures without damping. In that paper, the maximization 

of the fundamental eigenfrequency of beam-like 2D structure and plate-like 3D structures were 

investigated. The results represented a feasible approach to move structural resonance 

frequencies far away from external excitation frequencies and thereby avoid high vibration 

levels. For avoiding the artificial localized modes occurred in areas where elements are assigned 

with lower density values, Du and Olhoff[86] modified the interpolation formulation to place a 

heavy penalty on the mass of elements to avoid the occurrence of spurious, localized 

eigenmodes. In their paper, the design objective functions are to maximize the distances (gaps) 

between two consecutive eigenfrequencies of the structures. Madeira et al.[88] employed a 

genetic algorithm to achieve the maximization of the stiffness and the maximization of the first 

and the second eigenfrequencies of a plate. Compared with classical gradient optimizer based 

on SIMP method, genetic algorithm avoid grey areas for only integer design variables are 

interpreted. However, although avoiding the calculation of objective sensitivity, a much larger 

iteration is required by using Genetic Algorithm.  

In many cases, the structure may work at a specific frequency or frequency range for a long 

period of time (such as engine), so study on the specified frequency response of structure is 

also very important. The common structural dynamic responses include displacement, 

acceleration, velocity and so on. In addition to frequency response of a specified position of the 

structure, a global structural frequency response indicator can also be used to evaluate dynamic 

performance of structure, such as the concept of compliance in the static optimization which 

has applied to the dynamic optimization, named "dynamic compliance and this concept is 

currently has been widely accepted. 

Dynamic compliance was firstly introduced into topology optimization with density method by 

Jog [89]. In his paper, dynamic compliance was treated as the objective function to reduce the 

vibrations in an overall. Du and Olhoff[93] dealt with the topological design problem with 

structures that are subjected to time-harmonic, design-independent (or –dependent) dynamic 

loading by the same objective function. Jensen[94] proposed an efficient procedure for topology 

optimization of dynamics based on frequency responses represented by Padé approximants. An 

accurate approximation of the frequency response and design sensitivities was given and the 

accuracy of the Padé approximants is studied for simple 1-D and 2-D systems. 
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Fig 2.4 Optimized topologies (40% volume fraction) and loading boundaries of 2D inlet for three different loading 

frequencies. (a) Admissible design domain, loading and support conditions. (b) 𝜔𝑝 = 0 rad/s. (c) 𝜔𝑝 = 800 rad/s 

(d) 𝜔𝑝 = 1000 rad/s. (From Olhoff and Du 2006[93]) 

More recently, a concurrent topology optimization methodology was proposed by Vicente 

W.M.[95] to conduct designs of the macro and micro structures simultaneously. In their model, 

macro structure and micro structure are coupled using the homogenization theory. It is assumed 

that the macro structure is composed of a periodic material and the effective properties of this 

material obtained from the micro structure is used in finite element analysis. Bi-directional ESO 

method is applied to find the optimum layout on both macro and micro scales of the structure, 

with the objective of minimizing the frequency response in the macro structure. For a structure 

with a non-dominant damping effect, modal loss factor method can be used as a convenient 

way to measure structure’s ability to absorb vibration, thus modal loss factors are often chosen 

as objective functions in the optimization of constrained damping layer structures. 

Mohammed[99] studied the optimal layout of damping materials with maximum energy 

dissipation as objective function. In his paper, the shear strain energy of the viscoelastic 

damping materials is designed by the inverse mean - square method. The position and shape 

optimization of the material damping layer on the surface of the structure to reduce the vibration 

in a frequency band is studied by Alvelid[99]. 

2.7 Topology optimization codes 

Several educational articles[99][104] were published aimed at introducing fundamentals of various 

algorithms by presenting computer program implementations since topology optimization 

method has received more attentions. The first topology optimization method Matlab codes 

based on SIMP method was published by Sigmund[99]. The 99 lines codes provide a compact 
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implementation of solid isotropic material with penalization method to obtain the optimal 

structure under various boundaries. An 88-line Matlab code was later developed by Andreassen 

et al. [106] as an extension to Sigmund’s 99-line Matlab code with improved efficiency. Huang 

and Xie [105] published a Matlab code for 2D compliance minimization using the Bi-directional 

evolutionary structure optimization method. Later a discrete topology optimization method 

code using the level-set method was presented by Challis [107] in 2010. However, the codes 

provided by these papers are only for 2D optimization problems. Inspired by the previous work, 

Liu K. and Tovar A. [108] presented a Matlab implementation using a modified SIMP model for 

3D topology optimization for linear structures with regular 8-noded elements. Niels Aage et al. 

[109] proposed a parallel framework for topology optimization method. In his work, the widely 

used MMA optimization algorithm is parallelized as a fundamental part of framework. Zuo Z.H. 

and Xie Y. M. [110] presented a simple Python topology optimization code for general 2D and 

3D structures based on Abaqus /CAE. With simple modifications, the basic Python code has 

been extended to enhance computational efficiency and to consider multiple load cases and 

nonlinearities. So far, most of work on the implementation of topology optimization method 

require the researchers to write their own finite element code for the optimization problems. 

However, we know that many mature commercial finite element software, such as ANSYS and 

Abaqus, have been widely used in many engineering fields. So how to make better use of these 

resources for topology optimization is also a problem worthy of attention. 

2.8 Motivation for current work  

In a summary, current research on the passive vibration control by using topology optimization 

method is still in its infancy. Most of their work mainly focused on taking intrinsic properties 

of the structures like fundamental eigenfrequencies, frequency response or dynamic compliance 

as objective function, but the possibility of using other objective to achieve the vibration 

reduction still exits. These attempts research are very limited in current work. In addition, there 

is a lack of systematic research on different vibration reduction strategies for plate structures 

by using topology optimization method. Thus a comprehensive study and comparison on 

different strategies to achieve the purpose of plate vibration reduction is necessary. Moreover, 

a convenient platform to run topology optimization is not available at present. Researchers 

usually need to write optimization algorithms or finite element codes by themselves, which has 

a certain impact on the development of research work. 

To achieve deeper and more comprehensive understanding of applying the topology 

optimization method in vibration suppression design of plate structure forms the foundational 

motivation of this MPhil project. This thesis mainly focuses on the aspects associated with the 
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passive vibration control of plate structure by using topology optimization method, including:  

1. Proposing a SIMP model based on power flow response to achieve dynamic topology 

optimization for plate vibration deduction. 

2. Proposing topology optimization models based on different strategies for vibration deduction 

and evaluating the efficiency.  

3. Developing Python package works with commercial finite element software Abaqus to apply 

topology optimization method 
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Chapter 3 Finite element modelling for topology 

optimization 

3 Finite element modelling for topology optimization  

FE method is a necessary tool to implement topology optimization method. In this chapter, the 

method of modelling four-node Mindlin[131] plate element and eight-node 5 degrees of freedom 

interface element are given. In addition, a code framework to implement topology optimization 

method based on Abaqus are presented. All these works pave the way for the case studies and 

applications in the following chapters. 

3.1 Finite element modelling of Mindlin plates 

3.1.1 Introduction of Mindlin plate theory 

Before we start to introduce of the modelling details, the background of our model adapted is 

discussed here. In this thesis, plate is the main object to adapt the topology optimization for 

vibration suppression. In terms of the relationship of thickness and length(width), plates might 

be classified as thin if thickness/min(length, width)< 1/20 and thick if thickness/min(length, 

width)< 1/10[131] . Correspondingly, different theories need to be adopted in modelling. 

The Kirchhoff-Love[131] plate theory is applicable to thin plate. The following assumptions are 

made: 

(i) The middle plane of the plate remains free of in-plane stress/strain. Bending of the plate 

will cause material above and below this mid-plane to deform in-plane.  

(ii) Line elements lying perpendicular to the middle surface of the plate remain 

perpendicular to the middle surface during deformation, 

(iii) Line elements lying perpendicular to the mid-surface do not change length during 

deformation, so that 𝛾𝑧𝑧 throughout the plate.  

When the plate is relatively thick, one is advised to use a more exact theory, for example one 

of the shear deformation theories: Mindlin plate theory. The Mindlin plate theory was 

developed in the mid-1900s to allow for possible transverse shear strains. In this theory, there 

is the added complication that vertical line elements before deformation do not have to remain 

perpendicular to the mid-surface after deformation, although they do remain straight. Thus 

shear strains 𝛾𝑥𝑧 and 𝛾𝑦𝑧 are generated, constant through the thickness of the plate. In this 

Chapter, both Kirchoff and Mindlin theories are adapted and the models are also subject to the 

assumptions for these two theories. 
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3.1.2 Finite element discretization 

 

Fig 3.1 Mindlin plate: illustration of geometry, degrees of freedom 

We consider the assumed displacement field 𝝌 as below: 

 𝝌 = {
𝑢
𝑣
𝑤
} = {

𝑧𝜙𝑥
𝑧𝜙𝑦
𝑤

} (3.1) 

Where z denotes the poison in z-axis. 𝜙𝑥 and 𝜙𝑦 are the rotations along 𝑦- and 𝑥-axis. 𝑢, 𝑣 

are the displacements in 𝑥- and 𝑦- direction. 𝑤 is the longitudinal displacements in the mid-

plane. Then bending strains field 𝜺𝒇  can be obtained as

 𝜺𝒇 = {
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 (3.2) 

Where 𝜀𝑥, 𝜀𝑦  and 𝛾𝑥𝑦  are the strain components in three directions. And transverse shear 

deformations field 𝜺𝒄  are obtained as: 

 𝜺𝒄 = {
𝛾𝑥𝑧
𝛾𝑦𝑧
} =

{
 

 
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧}
 

 
=

{
 

 
𝜕𝑤

𝜕𝑥
+ 𝜙𝑥

𝜕𝑤

𝜕𝑦
+ 𝜙𝑦}

 

 
 (3.3) 

After both bending and shear deformations are defined, the strain energy 𝑃 of the Mindlin plate 

can be given as 

 𝑃 =
1

2
∫ 𝝈𝒇

𝑻

𝑉

𝜺𝒇𝑑𝑉 +
𝜅

2
∫ 𝝈𝒄

𝑻

𝑉

𝜺𝒄𝑑𝑉  (3.4) 
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𝝈𝒇 and 𝝈𝒄 are bending stress and shear stress respectively. 𝜅 is a shear correction factor 

which takes the value 5/6 for the rectangle section in this case.  

For homogeneous isotropic material and plane stress problem are considering here, thus the 

constitutive relations can be reduced to the plane stress approximation as below: 

 𝜺𝒇 = [

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
] =

1

𝐸
[

1 −𝜇 0
−𝜇 1 0

0 0 2(1 + 𝜇)
] 𝝈𝒇 (3.5) 

𝜇 is Poissons’ ratio and 𝐸 is Young’s modulus, which has the inverse: 

 𝝈𝒇 =
𝐸

(1 − 𝜇2)
[

1 𝜇 0
𝜇 1 0

0 0
1 − 𝜇

2

] 𝜺𝒇 (3.6) 

Similarly, transverse shear stresses 

 
𝝈𝒄 = [

𝐺 0
0 𝐺

] 𝜺𝒄 
(3.7) 

Introducing these concepts into the strain energy, we obtain 

 𝑃 =
1

2
∫ 𝜺𝒇

𝑻

𝑉

𝑫𝒇𝜺𝒇𝑑𝑉 +
𝜅

2
∫ 𝜺𝒄

𝑻

𝑉

𝑫𝒄𝜺𝒄𝑑𝑉  (3.8) 

Where: 

 

𝑫𝒇 =
𝐸

(1 − 𝜇2)
[

1 𝜇 0
𝜇 1 0

0 0
1 − 𝜇

2

] , 𝑫𝒄 = [
𝐺 0
0 𝐺

] 

(3.9) 

𝐺 is the shear modulus, and the interpolation functions of the displacements in mid-plane can 

be given as follow: 

 

𝑤(𝑥, 𝑦, 𝑡) = ∑𝑤𝑘(𝑡)𝜓𝑘(𝑥, 𝑦)

4

𝑘=1

𝜙𝑥(𝑥, 𝑦, 𝑡) = ∑𝜙𝑥𝑘(𝑡)𝜓𝑘(𝑥, 𝑦)

4

𝑘=1

𝜙𝑦(𝑥, 𝑦, 𝑡) = ∑𝜙𝑦𝑘(𝑡)𝜓𝑘(𝑥, 𝑦)

4

𝑘=1

   (3.10) 

𝜓𝑘  (𝑘 = 1, 2, 3, 4) are the shape functions of a bilinear four-node Q4 element., which can be 

expressed as: 

 𝜓𝑘 =
1

4
(1 + 𝜉𝜉𝑘)(1 + 𝜂𝜂𝑘) (3.11) 

Rewrite the equations in matrix form as follow: 
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 [𝝌]𝟑×𝟏 = [𝑵]3×12[𝒅
𝒆]12×1 (3.12) 

Where 𝒅𝑒
(𝑖) is the elemental nodal displacements vector: 

 𝒅𝒆 = [𝑤𝑘 , 𝜙𝑥𝑘 , 𝜙𝑦𝑘]
𝑇

12×1
 (𝑘 = 1,2,3,4)  (3.13) 

   𝑵 = [𝑁1   𝑁2  𝑁3  𝑁4]3×12  (3.14) 

 𝑵𝒌 = [

0 𝜓𝑘 0
0 0 𝜓𝑘
0 𝜓𝑘 𝜓𝑘

]

3×3

 (3.15) 

According to linear elastic stress-strain relations and use Eq. (3.5), the strains can be written in 

matrix form as follow: 

 [𝜺𝒇 ]𝟑×𝟏
= [

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
] =

[
 
 
 
 
 
 𝑧

𝜕𝜙𝑥
𝜕𝑥

𝑧
𝜕𝜙𝑦

𝜕𝑦

𝑧(
𝜕𝜙𝑦

𝜕𝑥
+
𝜕𝜙𝑥
𝜕𝑦

)
]
 
 
 
 
 
 

= 𝑧[𝑩𝑠]3×12[𝒅
𝒆]12×1 (3.16) 

Where Bs is strain-displacement matrix for bending contributions 

 𝑩𝑠 = [𝑩𝑠1 𝑩𝑠2 𝑩𝑠3 𝑩𝑠4]3×12 (3.17) 

           𝑩𝑠𝑘 =

[
 
 
 
 
 
 0

𝜕𝜓𝑘
𝜕𝑥

0

0 0
𝜕𝜓𝑘
𝜕𝑦

0
𝜕𝜓𝑘
𝜕𝑦

𝜕𝜓𝑘
𝜕𝑥 ]

 
 
 
 
 
 

3×3

   𝑘 = 1,2,3,4  (3.18) 

According to linear elastic stress-strain relations and use Eq. (3.7), the strains can be written in 

matrix form as follow: 

 𝜺𝒄 𝟐×𝟏 = [
𝛾𝑥𝑧
𝛾𝑦𝑧
] =

[
 
 
 
𝜕𝑤

𝜕𝑥
+ 𝜙𝑥

𝜕𝑤

𝜕𝑦
+ 𝜙𝑦]

 
 
 

= [𝑩𝑣]2×12[𝒅
𝒆]12×1 (3.19) 

Where Bv is strain-displacement matrix for shear contributions 

 𝑩𝑣 = [𝑩𝑣1 𝑩𝑣2 𝑩𝑣3 𝑩𝑣4]2×12 (3.20) 

           𝑩𝑣𝑘 =

[
 
 
 
𝜕𝜓𝑘
𝜕𝑥

𝜓𝑘 0

𝜕𝜓𝑘
𝜕𝑦

0 𝜓𝑘]
 
 
 

2×3

   𝑘 = 1,2,3,4  (3.21) 

We then obtain the plate strain energy as: 

 𝑈𝑒 =
1

2
𝒅𝒆

𝑻
∫ ∫ 𝑧2𝑩𝒔

𝑻

𝑧𝑉

𝑫𝒇𝑩𝒔𝑑𝑧𝑑𝑉𝒅
𝒆 +

𝜅

2
𝒅𝒆

𝑻
∫ ∫ 𝑩𝒗

𝑻

𝑧𝑉

𝑫𝒄𝑩𝒗𝑑𝑧𝑑𝑉𝒅
𝒆  (3.22) 
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So stiffness element matrix is described as follow: 

 

[𝑲𝒆]𝟏𝟐×𝟏𝟐 =
ℎ3

12
∫ [𝑩𝒔

𝑻]12×3
𝑉

[𝑫𝒇]𝟑×𝟑[𝑩𝒔]𝟑×𝟏𝟐𝑑𝑉 

         +𝜅ℎ∫ [𝑩𝒗
𝑻]12×2

𝑉

[𝑫𝒄]2×2[𝑩𝒄]𝟐×𝟏𝟐𝑑𝑉  

(3.23) 

Where h is the thickness of the plate. The stiffness matrix integrals are computed by numerical 

integration. The stiffness integral is solved by considering for the Q4 element, 2×2 Gauss points 

for the bending contribution and 1 Gauss point for the shear contribution. This selective 

integration proved to be one of the simplest remedies for avoiding shear locking.  

By using the kinetic energy for the plate 

𝑇𝑒 =
1

2
𝒅̇𝒆

𝑻
∫ 𝜌𝑵𝑇

[
 
 
 
 
ℎ 0 0

0
ℎ3

12
0

0 0
ℎ3

12]
 
 
 
 

𝑵
𝑉

𝑑𝑉𝒅̇𝒆  (3.24) 

We may compute the mass matrix as: 

[𝑴𝒆]𝟏𝟐×𝟏𝟐 = ∫ 𝜌[𝑵𝑇]12×3

[
 
 
 
 
ℎ 0 0

0
ℎ3

12
0

0 0
ℎ3

12]
 
 
 
 

3×3

[𝑵]𝟑×𝟏𝟐
𝑉

𝑑𝑉  (3.25) 

3.1.3 Model validation 

A standard FE approach is used to set up discretized equations: 

 𝑺𝑼 = 𝑭  (3.26) 

Where 

 𝑺 =  −𝜔2𝑴+  𝑖𝜔𝑪 +  𝑲  (3.27) 

in which 𝑴, 𝑪 and 𝑲 are the mass-, damping- and stiffness matrices, respectively, 𝑼 is a 

vector containing the complex nodal variables and 𝑭 is a load vector. The matrices  𝑴, 𝑪 

and 𝑲 are collected in the dynamic stiffness matrix 𝑺.  

The analytical solutions and numerical solutions obtained by present FE model of square plate 

are compared. A plate with dimensions of 1m×1m×0.01 m and four simply supported edges is 

chosen as validation case. The material properties are Young’s modulus E = 2.1GPa, density is 

ρ = 7800Kg/m3 and Poisson’s ratio 𝜇=0.3. 
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Table 3.1 Comparison of the eigenfrequencies of present FE model analytical solution 

Methods 
Mode Frequency (Hz) 

m=1, n=1  m=1, n=2    m=2, n=1    m=2, n=2   m=1, n=3 m=2, n=3   

Analytical Solution 4.9 12.3 12.3 19.7 24.7 32.1 

Present FE Model 4.9 12.4 12.4 19.8 25.2 32.5 

The first six eigenfrequencies of present FE model shown in  

Table 3.1which agree well with those calculated by analytical solutions which indicate the 

present FE model in this Chapter is acceptable. 

3.2 Finite element modelling of constrained damping layer plate 

Accurate evaluation of damped sandwich plate vibration requires careful analysis of the shear 

deformation field of the viscoelastic core. This shear deformation requires to be modelled 

correctly in order to accurately quantify the increased damping capacity of the sandwich plate. 

In conventional FE model, all three layers are modelled with Mindlin shell elements and he 

coupling between the shell elements are handled by kinematic constraints (Ling Z. et al. [111]). 

In this chapter, a more efficient model is introduced. In this model, the viscoelastic layer is 

modelled using a special interface element with eight nodes (shown in Fig 3.2 b)) that can 

couples two plate elements layers using Kirchhoff-Love plate theory together directly. Only 20 

degrees of freedom are required for each element. We also assume no slip happened between 

the cover layer and viscoelastic layer. 

  

Fig 3.2 Schematic of finite element model. a) constrained damping layer; b) interface element for viscoelastic core 

Based on the classical Kirchhoff-Love plate theory, the displacement field of the face-layers 

can be written as: 

h1 
h2 
h3 
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𝑢𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0𝑖(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤

𝜕𝑥

𝑣𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0𝑖(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤

𝜕𝑦

𝑤𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑡)

         𝑖 = 1,3 (3.28) 

Where 𝑢𝑖, 𝑣𝑖 , 𝑤  are the longitudinal displacements along 𝑥 -, 𝑦 -, 𝑧 -axis. 𝑢0𝑖, 𝑣0𝑖  and 𝑤  are 

the longitudinal displacements in the midplane. 𝜕𝑤/𝜕𝑥 and 𝜕𝑤/𝜕𝑦 are the rotations along 𝑥- 

and 𝑦-axis. z is the poison in z-axis. As shown in Fig 3.2 b), each node of this interface element 

has three translational and two rotational degrees of freedom. The transverse and longitudinal 

displacements of the element are then expressed in terms of the elemental nodal displacements 

vector: 

 𝝌(𝑖) = [

𝑢𝑖
𝑣𝑖
𝑤𝑖
] = [

1 0 0 −𝑧 0
0 1 0 0 −𝑧
0 0 1 0 0

]

{
  
 

  
 
𝑢0𝑖
𝑣0𝑖
𝑤
𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑦}
  
 

  
 

  𝑖 = 1, 3   (3.29) 

where 𝑖  in Eq. (3.29) denotes the layer index in sandwich model as shown in Fig 3.2. 

𝝌 denotes displacement field. The interpolation functions of the displacements in mid-plane 

can be given as follow: 

 

𝑢0𝑖(𝑥, 𝑦, 𝑡) = ∑𝑢0𝑘(𝑡)𝜓𝑘(𝑥, 𝑦)

4

𝑘=1

𝑣0𝑖(𝑥, 𝑦, 𝑡) = ∑𝑣0𝑘(𝑡)𝜓𝑘(𝑥, 𝑦)

4

𝑘=1

𝑤(𝑥, 𝑦, 𝑡) = ∑[𝑤𝑘(𝑡)𝜑𝑘1(𝑥, 𝑦) +
𝜕𝑤𝑘
𝜕𝑥

𝜑𝑘2(𝑥, 𝑦) +
𝜕𝑤𝑘
𝜕𝑦

𝜑𝑘3(𝑥, 𝑦)]

4

𝑘=1

   (3.30) 

𝜓𝑘  (𝑘 = 1, 2, 3, 4)  and 𝜑𝑘𝑙  (𝑘 = 1, 2, 3, 4 and 𝑙 = 1, 2, 3) are the linear and Hermite cubic 

interpolation functions, respectively, which can be expressed as 

 

𝜓𝑘 =
1

4
(1 + 𝜉𝜉𝑘)(1 + 𝜂𝜂𝑘)

𝜑𝑘1 =
1

8
(1 + 𝜉𝜉𝑘)(1 + 𝜂𝜂𝑘)(2 + 𝜉𝜉𝑘 + 𝜂𝜂𝑘 − 𝜉

2 − 𝜂2)

𝜑𝑘2 =
1

8
𝜉𝑘(1 + 𝜉𝜉𝑘)

2(𝜉𝜉𝑘 − 1)(1 + 𝜂𝜂𝑘)𝑎

𝜑𝑘3 =
1

8
𝜂𝑘(1 + 𝜂𝜂𝑘)

2(𝜂𝜂𝑘 − 1)(1 + 𝜉𝜉𝑘)𝑏

 (3.31) 

where 𝑎 and 𝑏 are the half length of the rectangular element along the 𝑥- and 𝑦-directions, 

respectively. Rewrite the equations in matrix form as follow: 
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 [𝝌(𝑖)]3×1 = [𝑯]𝟑×𝟓[𝑵𝒔]𝟓×𝟐𝟎[𝒅𝑒
(𝑖)]20×1   𝑘 = 1,3 (3.32) 

Where 𝒅𝑒
(𝑖) is the elemental nodal displacements vector 

 𝒅𝑒
(𝑖) = [𝑢0𝑘, 𝑣0𝑘 , 𝑤𝑘 ,

𝜕𝑤𝑘
𝜕𝑥

,
𝜕𝑤𝑘
𝜕𝑦

]𝑇

20×1

 (𝑘 = 1,2,3,4)  (3.33) 

 𝑯 = [
1 0 0 −𝑧 0
0 1 0 0 −𝑧
0 0 1 0 0

]

3×5

  (3.34) 

   𝑵𝒔 = [𝑁𝑠1  𝑁𝑠2  𝑁𝑠3  𝑁𝑠4]5×20  (3.35) 

 𝑵𝒔𝒌 =

[
 
 
 
 
 
 
 
𝜓𝑘 0 0 0 0
0 𝜓𝑘 0 0 0
0 0 𝜑𝑘1 𝜑𝑘2 𝜑𝑘3

0 0
𝜕𝜑𝑘1
𝜕𝑥

𝜕𝜑𝑘2
𝜕𝑥

𝜕𝜑𝑘3
𝜕𝑥

0 0
𝜕𝜑𝑘1
𝜕𝑦

𝜕𝜑𝑘2
𝜕𝑦

𝜕𝜑𝑘2
𝜕𝑦 ]

 
 
 
 
 
 
 

 (3.36) 

According to linear elastic stress-strain relations and use Eq. (3.16), the strains for each layer 

can be written in matrix form as follow: 

 [𝛆𝒔
(𝑖)]3×1 =

[
 
 
 𝜀𝑥
(𝑖)

𝜀𝑦
(𝑖)

𝛾𝑥𝑦
(𝑖)
]
 
 
 
= [

𝜕𝑢𝑖 𝜕𝑥⁄

𝜕𝑣𝑖 𝜕𝑦⁄

𝜕𝑢𝑖 𝜕𝑦⁄ + 𝜕𝑣𝑖 𝜕𝑥⁄
] = [𝑩𝑠]3×20[𝒅𝑒

(𝑖)]20×1 (3.37) 

Where Bs is strain-displacement matrix 

 𝑩𝑠 = [𝑩𝑠1 𝑩𝑠2 𝑩𝑠3 𝑩𝑠4]3×20 (3.38) 

 𝑩𝑠𝑘 =

[
 
 
 
 
 
 
𝜕𝜓𝑘
𝜕𝑥

0
𝜕2𝜑𝑘1
𝜕𝑥2

0
𝜕𝜓𝑘
𝜕𝑦

𝜕2𝜑𝑘1
𝜕𝑦2

𝜕𝜓𝑘
𝜕𝑦

𝜕𝜓𝑘
𝜕𝑥

𝜕2𝜑𝑘1
𝜕𝑥𝜕𝑦

    
𝜕2𝜑𝑘2
𝜕𝑥2

𝜕2𝜑𝑘3
𝜕𝑥2

    
𝜕2𝜑𝑘2
𝜕𝑦2

𝜕2𝜑𝑘3
𝜕𝑦2

     
𝜕2𝜑𝑘2
𝜕𝑥𝜕𝑦

𝜕2𝜑𝑘3
𝜕𝑥𝜕𝑦 ]

 
 
 
 
 
 

, 𝑘 = 1,2,3,4         (3.39) 

The kinetic energies and potential energies of base layer and constrained layer are: 

 

𝑇𝑒
(1,3) =

1

2
∫ 𝜌𝝌̇(1,3)

𝑇
𝝌̇(1,3)𝑑𝑉

𝑉𝑒

𝑈𝑒
(1,3) =

1

2
∫ 𝛆𝒔

(1,3)𝑇𝑫𝒇𝛆𝒔
(1,3)𝑑𝑉

𝑉𝑒

 (3.40) 
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Where: 

 

𝑫𝒔 =
𝐸

(1 − 𝜇2)
[

1 𝜇 0
𝜇 1 0

0 0
1 − 𝜇

2

] 

(3.41) 

So the mass element matrix and stiffness element matrix describe as follow 

 

[𝑴𝑒
(1),(3)]20×20 =∭ 𝜌𝑒

(1),(3)[𝑵𝑠
𝑇]20×5[𝑵𝑠]5×20𝑑𝑉

𝑉𝑒
(1),(3)

[𝑲𝑒
(1),(3)]20×20 =∭ [𝑩𝑠

𝑇]20×3[𝑫𝑠]3×3[𝑩𝑠]3×20𝑑𝑉
𝑉𝑒
(1),(3)

 (3.42) 

Where 𝜌𝑒 is element material density and 𝑉𝑒 is element volume. 

3.2.1 Modelling of the viscoelastic layer 

To better measure the tensile and shear deformation of viscoelastic layer, solid element is 

adopted here and at the same time we assume no slip occurs at the interfaces of the layers the 

shear. Requiring continuity of the displacements at the adjacent layers and assuming the 

displacements is small related to the model size, the displacement field of viscoelastic layer can 

be expressed in linear interpolation. So the displacement field shown as below(see Fig 3.2Error! 

Reference source not found..): 

 

𝑢2 =
1

2
(𝑢1 + 𝑢3) −

𝑧

ℎ2
(𝑢1 − 𝑢3)

𝑣2 =
1

2
(𝑣1 + 𝑣3) −

𝑧

ℎ2
(𝑣1 − 𝑣3)

𝑤2 =
1

2
(𝑤1 + 𝑤3) −

𝑧

ℎ2
(𝑤1 −𝑤3)

 (3.43) 

Rewrite Eq. (3.43) in matrix form as follow: 

 [𝝌(2)]3×1 = [𝑻1 𝑻2]3×6[𝝌
(1) 𝝌(3)]

𝑇

6×1
 (3.44) 

Where 

 𝑻1 =

[
 
 
 
 
 
 
1

2
−
𝑧

ℎ2
0 0

0
1

2
−
𝑧

ℎ2
0

0 0
1

2
−
𝑧

ℎ2]
 
 
 
 
 
 

3×3

       𝑻2 =

[
 
 
 
 
 
 
1

2
+
𝑧

ℎ2
0 0

0
1

2
+
𝑧

ℎ2
0

0 0
1

2
+
𝑧

ℎ2]
 
 
 
 
 
 

3×3

 (3.45) 

where 𝝌(1), 𝝌(2) and 𝝌(3) are the displacement field of the top surface of the base layer, both 

surfaces of viscoelastic layer and the bottom surface of the constrained layer, respectively. By 
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introducing Eq. (3.45) to Eq. (3.44) and combining Eq. (3.32), the displacement field of the 

viscoelastic layer is derived as the following equation: 

 [𝝌(2)]3×1 = [𝑵𝑣]3×40[𝒅𝑒
(1)  𝒅𝑒

(3)]
𝑇

40×1
 (3.46) 

 

[𝑵𝒗]3×40 = [𝑻1 𝑻2]3×6 [

𝑯
(𝑧=

ℎ1
2
)

𝟎

𝟎 𝑯
(𝑧=−

ℎ3
2
)

]

6×10

[
𝑵𝒔 𝟎

𝟎 𝑵𝒔
]
10×40

 (3.47) 

where 𝑯 and 𝑵𝒔 are defined in equation Eq. (3.34) and Eq. (3.35), 𝑻𝟏 and 𝑻𝟐 are defined 

in Eq. (3.45). 𝒅𝑒
(1) and 𝒅𝑒

(3)are nodal displacement vectors of the base layer and constrained 

layer, respectively. According to linear isotropic elastic stress-strain relations in three 

dimensions: 

 [𝜺𝑠
(2)]

6×1
=

[
 
 
 
 
 
𝜀𝑥
𝜀𝑦
𝜀𝑧
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑧𝑥]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑤

𝜕𝑧
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧
𝜕

𝜕𝑦

𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑧

𝜕

𝜕𝑦
𝜕

𝜕𝑧
0

𝜕

𝜕𝑥]
 
 
 
 
 
 
 
 
 
 
 
 

6×3

[𝝌(2)]
3×1

 (3.48) 

Substitute the Eq. (3.47) into Eq. (3.48) to obtain 

 [𝜺𝑠
(2)]

6×1
= [𝑩𝑣]6×40[𝒅𝑒

(1)  𝒅𝑒
(3)]

𝑇

40×1
 (3.49) 

Where 

 [𝑩𝑣]6×40 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧
𝜕

𝜕𝑦

𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑧

𝜕

𝜕𝑦
𝜕

𝜕𝑧
0

𝜕

𝜕𝑥]
 
 
 
 
 
 
 
 
 
 
 
 

6×3

[𝑵𝑣]3×40 (3.50) 
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The kinetic energies and potential energies of base layer and constrained layer are: 

 

𝑇𝑒
(2) =

1

2
∫ 𝜌𝝌̇(2)

𝑇
𝝌̇(2)𝑑𝑉

𝑉𝑒

𝑈𝑒
(2) =

1

2
∫ 𝛆𝒔

(2)𝑇𝑫𝒗𝛆𝒔
(2)𝑑𝑉

𝑉𝑒

 (3.51) 

Where: 

 

𝑫𝒗 =
𝐸

1 + 𝜇

[
 
 
 
 
 
 
 
 
 
1 − 𝜇

1 − 2𝜇

𝜇

1 − 2𝜇

𝜇

1 − 2𝜇
0 0 0

𝜇

1 − 2𝜇

1 − 𝜇

1 − 2𝜇

𝜇

1 − 2𝜇
0 0 0

𝜇

1 − 2𝜇

𝜇

1 − 2𝜇

1 − 𝜇

1 − 2𝜇
0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 
 
 
 
 

6×6

 (3.52) 

Similar to the cover layer element, the mass element matrix and stiffness element matrix can 

be written as: 

 

[𝑴𝑒
(2)]

40×40
=∭ 𝜌𝑒

(2)[𝑵𝑣
𝑇]40×3[𝑵𝑣]3×40𝑑𝑉

𝑉𝑒
(2)

[𝑲𝑒
(2)]

40×40
=∭ [𝑩𝑣

𝑇]40×6[𝑫𝑣]6×6[𝑩𝑣]6×40𝑑𝑉
𝑉𝑒
(2)

 (3.53) 

The present interface element directly couples the two cover layers modelled with shell 

elements to the viscoelastic layer in between with no extra nodes added. Then, the matrix of 

elemental interpolation functions is determined and the strain-displacement matrix can be 

obtained by differentiating the interpolation function matrix with respect to the local element 

coordinates. Appling the principal of virtual work, the mass matrix and stiffness matrix of the 

element can be readily calculated. 

3.2.2 Model validation 

To validate the model proposed in last section, we compare the natural frequencies and modal 

loss factors for first six modes with the solutions published by Johnson C.D.et al.[112] . Natural 

frequencies are the frequency at which an elastic body make free vibration. Loss factor is 

a factor which when multiplied by energy lost at time of peak and the number of load periods 

will give overall average energy lost. It is calculated as the ratio of the average load loss to the 

peak load loss. Both natural frequencies and modal loss factors are important characteristics to 

describe vibration. 

 

 

https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Energy
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Table 3.2 The natural frequencies and modal loss factors of a plate with passive constrained damping layer 

Mode 

m , n 

Analytical solution 

(Johnson C.D. et al. [112]) 

NASTRAN/MSE 

(Johnson C.D. et al. [112]) 

Present solution 

Frequency

(Hz) 

Loss factor Frequency

(Hz) 

Loss factor Frequency

(Hz) 

Loss factor 

1 , 1 60.3 0.190 57.4 0.176 59.1 0.206 

1 , 2 115.4 0.203 113.2 0.188 113.9 0.211 

2 , 1 130.6 0.199 129.3 0.188 129.1 0.206 

2 , 2 178.7 0.181 179.3 0.153 176.8 0.185 

1 , 3 195.7 0.174 196.0 0.153 194.1 0.177 

As seen in Table 3.2 The natural frequencies and modal loss factors of a plate with  constrained 

damping layer, both the natural frequencies and loss factors of present solution are a slight 

higher than the analytical solution. One possible explanation for this is that the elastic modulus 

of the viscoelastic core is considered in this finite element model but not in the analytical 

solution. Thus the whole model is stiffer than the model in analytical case which lead to higher 

natural frequency. Also as the in-plane deformation of viscoelastic core layer has been taken 

into account, the loss factor is larger than the analytical solution. Compared to the simulation 

results in NASTRAN/MSE, this interface finite element model is more accurate on the loss 

factors especially for the mode (2,2) and (1,3). The loss factors of these two modes in 

NASTRAN/MSE model is much lower than the analytical solution. 

3.3 Topology optimization method code development for Abaqus based on SIMP 

model 

A topology optimization python package based on SIMP model has been discussed in this 

Section. This package provides a convenient platform to imply topology optimization method 

in Abaqus. By taking the advantage of the modelling power of the commercial finite element 

software, more complex structures, material properties and contact conditions which are more 

close to the real engineering problems can be taken into account. Besides that, different 

objective functions can be defined flexibly according to the needs of research and engineering 

problems with simple modifications.  

Recently, Zuo, et al [110]presented a simple Python code for topology optimization of general 

2D and 3D structures in Abaqus based on bi-directional evolutionary structural optimization 
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method. They integrate the optimization algorithm into the FE analysis process which provide 

convenience for implementation. But there are still some places can be improved in their work. 

First, Abaqus build-in Python kernel is usually not the latest version which means some useful 

packages of Python, such as Scipy, Matplotlib etc. which cover calculation, visualization, and 

analysis optimization fields are not accessible. Without these useful tools may limit the 

extension of re-development of Abaqus. Second, performance is always a drawback for an 

advanced dynamic script language. Pure Python is not a good solution for high density 

calculation task. A common answer for this issue is to separate the heavy calculation step from 

main cycle and call external library written by low-level but high efficiency language like C or 

FORTRAN. At last, the objective functions they choose are limited to the outputs field provided 

by Abaqus, more flexible definition objective of functions are required for various optimization 

problems. Inspired by their work, a new framework for topology optimization is proposed to 

integrate the Abaqus kernel as FE solver into the optimization process. The details of 

implementation of the code are shown in the follow sections. 

 

3.3.1 Framework of the code  

Different from the previous work that integrating topology optimization algorithm into Abaqus, 

this framework imports Abaqus as external FE solver. The framework proposed in this thesis is 

built up by three layers as shown in Fig 3.4. 

  

Run&Model 

Export 

Kernel 

Read Data 

Communication 

Update Model 

Objectives 

Calculation 

Sensitivities 

Fig 3.3 Framework of topology optimization code in Abaqus 
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Fig 3.4 Flowchart of topology optimization implementation in Abaqus 

To introduce Abaqus as finite element solver into the topology optimization process, an 

interface is needed to communicate with the kernel for modelling, we call it “Kernel Layer”. 

Fortunately, Abaqus already provides a tool to handle this kind of job and name it as Abaqus 

Scripting Interface(ASI) which is an extension of the Python language. One obvious advantage 

for ASI is that we can execute the whole optimization process using one single language rather 

than maintain different versions of codes. As a standard component of the Abaqus software, 

ASI provides convenient interfaces of the models and results. With the interfaces provided by 

Abaqus (shown in Fig 3.5 Python interface structure), a complex structure can be built by 

several lines of Python code. ASI also help user define or retrieve model data and analysis 

results in the FE analysis process. 

Second layer called “Communication Layer” which is responsible for retrieving results and 

updating model. Usually there may be hundreds of iterations during an optimization case, the 

data produced during the process is also very important for the analysis afterwards, thus we 

Fig 3.5 Python interface structure 
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need a database to store the intermediate datasets. In this package, a database named by model 

is created to store the model data, optimization parameters, FE analysis results and optimization 

history. Also the database is the source for the objective calculation and sensitivity analysis. In 

this framework, according to the requirement of sensitivity analysis and objective function, the 

output data could be displacement, velocity, element stiffness/mass matrix and gross 

stiffness/mass matrix. 

Besides retrieving intermediate data, “Communication Layer” is also responsible for model 

updating. Solid isotropic material with penalization method is a density-based approach in 

which each element has an independent density variable in optimization process so that tens or 

even hundreds of thousands of materials and sections will be created depending on the numbers 

of elements in the finite element model. To avoid the low efficiency operations in Abaqus /CAE 

GUI, finite element model is updated by modifying *.INP file directly which greatly improve 

the efficiency of optimization especially when the model is complex. *.INP file is the input file 

generated by Abaqus before running the FE analysis which contains comprehensive model 

information including node coordinates, element mesh, material properties, loads definition and 

boundary conditions, etc. so any change of FE model can be realized by modifying this input 

file. Based on the study on the file structure of INP file, a ‘Updating_INP’ function in the 

“Communication Layer” is developed to modify material information and boundary conditions. 

The last layer is “Calculation Layer” which focus on objective and sensitivities calculation. 

Obviously, “Calculation Layer” is the most time-consuming step during the optimization 

process. Introducing this layer is to define arbitrary objective functions with proper efficiency. 

So far, the sensitivities analysis for four objective functions: dynamic compliance, power flow 

response, displacement and modal damping ratio have been developed in this thesis. Python 

libraries also provide the possibility of further visualization and analysis in post-process step. 

In addition, to improve the efficiency of optimization, optimizers and sensitivities analysis for 

objective functions have been written in FORTRAN dynamic library for higher performance.  

3.3.2 Advantages of this framework 

The main advantages of this package are as follows: 

1) Abaqus is a reliable FE analysis software which has been widely applied to the static, 

dynamic, heat analysis in many areas during last decades. The wide range of elements 

are available to solve various engineering problems. So by importing Abaqus as finite 

element solver, this package is capable of modelling more complex structures for the 

topology optimization models. 

2) Highly extendable framework for topology optimization. Its extensibility can be seen 
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in two aspects. Firstly, this thesis proposed a SIMP topology optimization model for 

vibration suppression, which is widely accepted method in many topology 

optimizations filed. However, this framework is also compatible with the Bi-directional 

evolutionary structural optimisation method or level-set method which are also applied 

to other topology optimization problems. On the other hand, Python is one kind of 

complete programming languages which has many mature libraries for computing, 

graph and optimization. The accessibly of Python various packages enables this 

framework to execute data analysis and visualization in one single script which 

provides a convenient platform for topology optimization research work.  

3) Abaqus has its own topology optimization module called ATOM which only support 

optimization problem taking displacement as objective function. However, in this 

package, the objective functions are highly customizable because the “Calculation 

Layer” is completely independent of Abaqus kernel so there is no limit on the objective 

functions definition. 

4) More efficient and less memory is required. Compared to the topology optimization 

case with self-written finite element code, this package has more advantages in 

computing speed and stability by integrating Abaqus as finite element solver. To 

achieve higher efficiency of optimization, a Fortran version of MMA algorithm is 

introduced to replace Python one. Different from the Abaqus ATOM module which 

stores all sections and nodes data after each iteration during optimization process, this 

framework will re-call Abaqus FE solver at each iteration and clear all intermediate 

data from memory and dump the results to the database. Therefore, this mechanism can 

guarantee memory occupation will be released in time and maintain high execution 

efficiency. At the same time, the stability has been greatly improved and the unexpected 

errors has been greatly reduced. 

3.4 Summary 

This chapter presents the FE modelling method for topology optimization in this report. Four-

node Mindlin plate and eight-node interface element are derived. For the extensibility of 

topology optimization method, Python topology optimization package for Abaqus based on 

SIMP model has been developed. This new topology optimization framework integrates 

Abaqus as external finite element solver to achieve better extensibility and performance. With 

simple modifications, the basic Python code can be extended to enhance computational 

efficiency and to consider a wide range of engineering problems.   
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Chapter 4 Case study: bi-material square plate  

4 Case Study: bi-material square plate 

A numerical case study is investigated in this Chapter which aim to establish a complete 

topology optimization model including FE modelling, material interoperation function 

definition, sensitivity analysis and implementation of optimization algorithm. The 

mathematical formulation of topology optimization is established based on power flow 

response and bi-material solid isotropic material with penalization(SIMP) model. Optimum 

results between topological design of minimum power flow response and minimum dynamic 

compliance are compared, showing that the power flow response has strong adaptability for 

structural dynamic topology optimization problems. 

4.1 Minimization of power flow response using topology optimization  

4.1.1 Introduction of power flow analysis 

A power flow analysis provides a technique to describe the dynamic behaviour of vibrational 

structures by considering not only the amplitudes of force and velocity vectors, but also the 

phase relationship of the two quantities. The approach focuses on the flow of vibrational energy 

rather than the detailed spatial pattern of the structural response. The fundamental concept of 

power flow, which is originally devised by Belov, et al[125], is discussed by Goyder, et al [126]. 

From a more generic viewpoint of continuum mechanics, Xing, et al[129], developed a power 

flow analysis method based on continuum dynamics. Compared with a mobility based power 

flow model, a power flow mode theory based on a system’s damping distribution, proposed by 

Xiong, et al[130], provides a new technique to describe the dynamic behaviour of complex 

structures and coupled systems.  

In a dynamical analysis, harmonic quantities are often represented mathematically in complex 

mathematical forms. For example, a real harmonic force 𝑓(𝑡)  with amplitude 𝐹  and 

frequency 𝜔 , or a real velocity 𝑣(𝑡)  with amplitude 𝑉  , frequency 𝜔  and relative phase 

angle 𝜃, are given by 

 
𝑓(𝑡) = 𝐹 𝑒𝑖𝜔𝑡 = 𝐹̃𝑒𝑖𝜔𝑡  

𝑣̃(𝑡) = 𝑉 𝑒𝑖(𝜔𝑡+𝜃) = 𝑉̃𝑒𝑖𝜔𝑡 
(4.1) 

In this notation, the tilde denotes a complex quantity. For equivalence of representations, either 

the real part 𝑅𝑒 or imaginary part 𝐼𝑚 of the complex quantity is chosen. Herein, we use the 

real part of a complex quantity to represent the corresponding measurable quantity such that 
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𝑓(𝑡) = 𝑅𝑒{𝑓(𝑡)} =
1

2
(𝑓 + 𝑓𝐻) 

𝑣̃(𝑡) = 𝑅𝑒{𝑣̃(𝑡)} =
1

2
(𝑣̃ + 𝑣̃𝐻) 

(4.2) 

where the superscript 𝑣̃ denotes the complex conjugate. 

In power flow analysis, the power is defined as the rate at which work is done and therefore it 

is a practical measurable quantity. Thus the real power at time t is given by 

 𝑞(𝑡) = 𝑅𝑒{𝑓(𝑡)}𝑅𝑒{𝑣̃(𝑡)} =
1

4
(𝑓 + 𝑓𝐻)(𝑣 + 𝑣̃𝐻)    (4.3) 

Thus, the time-average of this real power over a period of vibration 𝜔/2𝜋, i.e. the mean power, is given 

by 

 < 𝑞 >=
𝜔

2𝜋
∫ 𝑅𝑒{𝑓(𝑡)}𝑅𝑒{𝑣̃(𝑡)}𝑑𝑡 =

1

2
|𝐹̃𝑉̃|𝑐𝑜𝑠𝜃

 𝜔/2𝜋

0

    (4.4) 

Mathematically, an instantaneous complex power may be defined as 

 𝑞̃(𝑡) = 𝑓(𝑡)𝑣̃(𝑡) = 𝐹̃𝑉̃𝑒2𝑖𝜔𝑡     (4.5) 

Although it has some applications in vibrational experiments, its mean value 

 < 𝑞̃ >=
𝜔

2𝜋
∫ 𝑓𝑣̃𝑑𝑡 = 0
 𝜔/2𝜋

0

    (4.5) 

This result clearly conveys the essential difference between a physical power and a complex 

power. Therefore, real power is the primary quantity considered in a total time-average power 

flow analysis. In this section, a bi-material square plate topology optimization model discussed 

in this section which takes the phase relationship of force and velocity vectors into account and 

formulates directly with the design objective of minimizing the power flow response, which is 

another angle to represent the physical insight of structural vibration. 

4.1.2 SIMP model of bi-material plate 

In this Chapter, a bi-material plate subjected to a harmonic force with prescribed amplitude and 

frequency is investigated. A bi-material plate (see Fig 4.1) indicates two different materials 

distributing in a single layer, one is stiffer material and the other one is relative soft. By 

searching the optimal topology pattern for the plate structure, better performance of the 

vibration suppression can be achieved. Here we assume the two materials are perfectly ideal 

contacted, so strict constraints are applied to the elements of both materials in all degree of 

freedom. 
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Fig 4.1 A bi-material plate configuration 

Following Bendsøe and Sigmund[113], the SIMP model for single-material can be easily 

extended to bi-material design by using the rule of mixtures. The element stiffness matrix and 

mass matrix of the bi-material model may be stated in a similar way as follows: 

 
𝑴𝒆(𝜌𝑒) = 𝜌𝑒

𝑞𝑴𝒆
𝒔 + (1 − 𝜌𝑒

𝑞)𝑴𝒆
𝒘

𝑲𝒆(𝜌𝑒) = 𝜌𝑒
𝑝𝑲𝒆

𝒔 + (1 − 𝜌𝑒
𝑝)𝑲𝒆

𝒘 
 (4.6) 

where 𝑴𝒆
𝒔 and 𝑲𝒆

𝒔 are the element mass and stiffness matrices of stiffer material, 𝑴𝒆
𝒘 and 𝑲𝒆

𝒘 

are the element mass and stiffness matrices of weak material . It is known that a pertinent value 

of the power 𝑞 is 1 in design for the maximization of eigenfrequencies because the penalization 

of the ratio between stiffness and mass (representing the squared eigenfrequencies) is an 

important aspect in such a topology design problem[114][115]. The design objective functions (i.e., 

the dynamic compliance) in this Chapter depends mainly on the dynamic stiffness matrix of the 

structure, especially in the case of high loading frequencies. Thus, the same penalization is 

applied simultaneously to the stiffness and mass. For a given element in Eq (4.6), 𝜌𝑒 = 1 

implies that the element fully consists of the solid material, whereas 𝜌𝑒 = 0 means that the 

element is void. 

4.1.3 Power flow modelling 

Taking the form  𝑼̇ = 𝑽𝑒𝑖𝜔𝑡  in which 𝑽  is the real velocity vector and 𝜔  is excitation 

frequency in rad/s, then the dynamic governing equation can be expressed as: 

 𝒁𝑽 = 𝑭 (4.7) 

Where 𝒁 denotes the impedance matrix, and can be expressed as:  

 𝒁 = 𝑖𝜔𝑴+ 𝑪 +
𝑲 

𝑖𝜔
 (4.8) 

Real-life systems are not undamped but possess some kind of energy dissipation mechanism or 

damping. In order to apply modal analysis of undamped systems to damped systems, it is 

common to assume the proportional damping, a special type of viscous damping such as the 

Rayleigh damping[116], which can be expressed as a linear combination of 𝑴 and 𝑲:  

 
𝑪 = 𝛼𝑴 + 𝛽𝑲 

(4.9) 
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where 𝛼 and 𝛽 denote the mass damping and stiffness damping coefficients, respectively. 

With this formulation the damping ratio is the same for axial, bending and torsional response. 

Rayleigh damping results in different damping ratios for different response frequencies, 

according to the equation 

 𝜉 =
1

2
(
𝛼

𝜔
+ 𝛽𝜔) (4.10) 

Where 𝜉 is the damping ratio and 𝜔 is the response frequency in rad/s. It can be seen from this 

that the mass proportional term gives a damping ratio inversely proportional to response 

frequency and the stiffness proportional term gives a damping ratio linearly proportional to 

response frequency. One limitation of Rayleigh damping is the damping ratio varies with the 

frequency but in many real systems display hysteretic damping which is largely independent of 

frequency. Despite the limitation, Rayleigh damping can and has been used as a heuristic, as 

opposed to strictly physical, attenuation mechanism. 

The total time-averaged power flow response by all excitation forces applied to the structure is 

given by the expression[130]: 

 𝑷 =
𝟏

𝟐
𝑅𝑒(𝑭𝑯𝑽)  (4.11) 

In this thesis, the material layout is represented by the distribution of two prescribed linearly 

elastic materials in the admissible design domain for the structure. The optimization problem 

is formulated as follows: 

  𝑚𝑖𝑛  Π =
𝟏

𝟐
𝑹𝒆(𝑭𝑯𝑽)    (4.12) 

 𝑠. 𝑡.  𝑹 = 𝒁𝑽 − 𝑭 = 𝟎, 

 

 ∑𝜌𝑒𝑉𝑒 − 𝑓𝑣∑𝑉𝑒

𝑁𝑒

𝑒=1

𝑁𝑒

𝑒=1

≤ 0, (4.13) 

     0 ≤ 𝜌𝑒 ≤ 1, 𝑒 = 1,⋯ ,𝑁𝑒 

 Symbol Π represents the optimization objective. In the bi-material design problem, we are aim 

to find the optimal topology layout to minimize power flow response subject to a volume limit. 

where 𝜌𝑒 is the volumetric density of the stiffener material in element 𝑒 and plays the role of 

the design variable in the problem. The symbol 𝑓𝑣 denotes the volume fraction limit of the 

stiffener material.  

4.1.4 Design sensitivity analysis 

As usual, the optimization problem Eq. (4.12) is solved by a gradient-based mathematical 

programming algorithm, which necessitates sensitivity analysis of the objective function with 

respect to the design variables. In what follows, the objective function Π  only explicitly 
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depending on the amplitudes of the velocity response 𝑽 is considered. The sensitivity analysis 

scheme for Π is derived by using the adjoint variable method which is more efficient than the 

direct variable method in the problems involving a large number of design variables but only a 

few behaviour functions, as in the case of a topology optimization. 

Considering the vibration equation and its conjugate equation, we can rewrite the function Π 

as follows: 

 Φ = Π+ 𝚼𝟏
𝑇(𝒁𝑽 − 𝑭) + 𝚼𝟐

𝑇(𝒁𝑽̅̅ ̅̅ − 𝑭̅) (4.14) 

where 𝒁̅ and 𝑭̅ denote the conjugates of the impedance matrix 𝒁 and the force amplitude 

vector 𝑭, respectively; 𝑽 and 𝑽̅ denote the velocity response and conjugates of the velocity 

response; 𝚼𝟏 and 𝚼𝟐 are the adjoint vectors. Differentiating Eq. (4.13) with respect to the 𝑒th 

design variable leads to 

 

𝑑Φ

𝑑𝜌𝑒
= 𝚼𝟏

𝑇 𝜕𝒁

𝜕𝜌𝑒
𝑽 + 𝚼𝟐

𝑇 𝜕𝒁̅

𝜕𝜌𝑒
𝑽̅ 

       + (
𝜕Π

𝜕𝑽𝑹
+ 𝚼𝟏

𝑇𝒁 + 𝚼𝟐
𝑇𝒁̅)

𝜕𝑽𝑹
𝜕𝜌𝑒

 

 

        +(
𝜕Π

𝜕𝑽𝑰
+ 𝑖𝚼𝟏

𝑻𝒁 − 𝑖𝚼𝟐
𝑻𝒁̅)

𝜕𝑽𝑰
𝜕𝜌𝑒

 (4.15) 

where 𝑽𝑰 and 𝑽𝑹 represent the real part and image part of vector 𝑽, respectively. 

Let the adjoint variables 𝚼𝟏 and 𝚼𝟐 satisfy the following equations: 

 (
𝜕Π

 𝜕𝑽𝑹 
+ 𝚼𝟏

𝑇𝒁 + 𝚼𝟐
𝑇𝒁̅) = 0  

  (
𝜕Π

 𝜕𝑽𝑰 
+ i𝚼𝟏

𝑇𝒁 − 𝑖𝚼𝟐
𝑇𝒁̅) = 0 (4.16) 

We can obtain equations as follow: 

 𝚼𝟏
𝑇𝒁 =

1

2
( 𝑖

𝜕Π

𝜕𝑽𝑰
−
𝜕Π

𝜕𝑽𝑹
)  

  𝚼𝟐
𝑇𝒁̅ =

1

2
(−𝑖

𝜕Π

𝜕𝑽𝑰
−
𝜕Π

𝜕𝑽𝑹
) (4.17) 

It can be seen from Eq. (4.17) that 𝚼𝟏 = 𝚼̅𝟐. Therefore, it is sufficient to solve Eq. (4.16) to 

determine the adjoint vectors in Eq. (4.15). Then Eq. (4.15) becomes 

 
𝑑Φ

𝑑𝜌𝑒
= 𝚼𝟏

𝑻 𝜕𝒁

𝜕𝜌𝑒
𝑽 + 𝚼𝟐

𝑻 𝜕𝒁̅

𝜕𝜌𝑒
𝑽̅  

 = 2𝑅𝑒 (𝚼𝟏
𝑻 𝜕𝒁

𝜕𝜌𝑒
𝑽)  

 = 2Re(𝚼𝟏
𝑻 (𝑖ω

𝜕𝑴

𝜕𝜌𝑒
+
𝜕𝑪

𝜕𝜌𝑒
+
1

𝑖ω

𝜕𝑲

𝜕𝜌𝑒
)𝐕) (4.18) 
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Assuming design load is real and independent, then 𝑭 = 𝑭̅  and considering the total time-

averaged power flow response as: 

 Π =
1

2
𝑅𝑒(𝑭𝐻𝑽) =

1

2
(𝑭𝑹

𝑻𝑽𝑹 + 𝑭𝑰
𝑻𝑽𝑰) (4.19) 

So the expression with respect to real part and imagine part of velocity are: 

 𝜕Π

𝜕𝑽𝑹
=
1

2
𝑭𝑹
𝑻 ,    

𝜕Π

𝜕𝑽𝑰
=
1

2
𝑭𝑰
𝑻 (4.20) 

Then 𝚼𝟏 can be obtained from Eq. (4.17): 

 𝚼𝟏
𝑻𝒁 =

1

4
(𝑖𝑭𝑰

𝑻 − 𝑭𝑹
𝑻) = −

1

4
𝑭𝑯 (4.21) 

Comparing Eq. (4.21) to Eq. (4.7) we can obtain that: 

 𝚼𝟏
𝑻 = −

1

4
𝑽𝑯 (4.22) 

Substituting Eq. (4.22) into Eq. (4.18) then the sensitivity of dynamic compliance can be 

expressed as follow: 

 
𝑑Φ

𝑑𝜌𝑒
= −

1

2
𝑅𝑒(𝑽𝑯 (𝑖ω

𝜕𝑴

𝜕𝜌𝑒
+
𝜕𝑪

𝜕𝜌𝑒
+
1

𝑖ω

𝜕𝑲

𝜕𝜌𝑒
)𝑽) (4.23) 

The derivatives of the mass matrix, the damping matrix and the stiffness matrix with respect to 

the design variables can be easily calculated at the elemental level with the following relations: 

 
𝜕𝑴

𝜕𝜌𝑒
= 𝑞 ∗ 𝜌𝑒

𝑞−1𝑴𝒆
𝒔 − 𝑞 ∗ 𝜌𝑒

𝑞−1𝑴𝒆
𝒘) (4.24) 

 
𝜕𝑲

𝜕𝜌𝑒
= 𝑝 ∗ 𝜌𝑒

𝑝−1𝑲𝒆
𝒔 − 𝑝 ∗ 𝜌𝑒

𝑝−1𝑲𝒆
𝑾) (4.25) 

 

𝜕𝑪

𝜕𝜌𝑒
=  𝛼

𝜕𝑴

𝜕𝜌𝑒
+ 𝛽

𝜕𝑲

𝜕𝜌𝑒
            (4.26) 

 

Fig 4.2 Sensitivity analysis results of power flow response at the loading point with respect to the element relative 

density 
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In order to verify the finite element model and sensitivity analysis procedures, we first calculate 

a square plate with 4 edges simply supported and discretized with 400 uniform-sized square 

elements. Such a coarse mesh is used here for ease of graphical illustration of the sensitivity 

analysis results. The total number of degrees of freedom is n = 1323. As an initial design of 

later topology optimization, the relative densities are given random value from 0 to 1. The 

sensitivity of 40 elements picked from all 400 elements by random have been calculated by 

both adjoint method and finite difference method to verify the sensitivities. The results in Fig 

4.2 show that the sensitivities obtained by these two methods agree well. 

4.1.5 Numerical study 

In this section, we show the example of bi-material plate optimized with the objective of 

minimizing the power flow response given by Eq. (4.12). The plate we discuss here is made of 

two materials with different properties, one of which has relatively larger Yong’s modulus to 

ensure the strength requirements of the structure. The 

other material is relatively soft which is aim to increase 

the energy dissipation. The aim of this case study is 

mainly to perform a complete topology optimization 

process with FE analysis and numerical optimization so 

that the feasibility of applying topology optimization 

method to passive structure vibration control can be 

verified. Thus, the materials properties adopted here 

may not have a very solid engineering background, but 

the topology optimization model still could be applied to 

realistic engineering problem with proper material 

parameters. In addition, we also assume these two 

materials are ideal contacted.  

The simply supported square plate has a geometrical 

dimension of 𝑎 = 0.5 𝑚  and the thickness  𝑡 =

0.003 𝑚. Four-node Mindlin plate element is used in the 

finite element modelling. An external force 𝑭𝑒𝑖𝜔𝑡  is 

applied at centre point. Young’s modulus, Poisson’s 

ratio and the mass density of the stiffer material(metal-

like material) are  E𝑠 = 1.0 × 10
11 𝑁/𝑚2 , μs = 0.3 

and ρ𝑠 = 7800 kg/m
3, respectively, while the properties of soft material(rubber-like material) 

are E𝑤 = 1.0 × 1010 𝑁/𝑚2，μw = 0.3 and ρw = 780 kg/m3, respectively. Rayleigh damping 

Fig 4.3 Flow chart of optimization procedure 
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is one kind of common damping model which is adopted in this case for its mathematical 

convenience. The damping coefficients of the damping material are given as α = 1 × 10−4, 𝛽 =

1 × 10−5 . Obviously, the overall damping ratio is mainly contributed by the stiffness 

proportion in this case. 

In order to ensure the accuracy of result by FE method at high frequency level, the FE model is 

meshed into 100×100. The optimization procedure will be stopped when the relative difference 

of the objective function values between two adjacent iteration steps satisfies |Φ𝑛𝑒𝑤 −Φ𝑜𝑙𝑑)/

Φ𝑜𝑙𝑑| < 0.005 or iteration >100. Although with filter technology, the optimized topology 

layout is still with large grey area leading to a non 0-1 distribution. One way to handle this 

problem was proposed by Sigmund[61]. The Matlab script in that paper is intended as a post-

processing step that converts a grey scale design. This technology is also adopted in this thesis. 

The iteration history of topology optimization for load frequency ω = 531.0Hz has been 

shown in Fig 4.4. A dramatic decrease of the power flow response between the initial design 

and the optimum design can be observed. The unstable fluctuation in the iteration curve might 

be explained as the process of global searching. In this explanation, each suddenly raise means 

jumping out of a local optimal.  

 

Fig 4.4 The optimal topology layout and iteration history of the design objective function for 𝜔 = 531.0𝐻𝑧 

We consider five different loading frequencies ranging from a low frequency level to high 

frequency level here. The optimal topologies are shown in Fig 4.5 a) to Fig 4.5 d) in which 

brown and blue areas in topology pattern represent stiffer material and soft material respectively. 

When looking at the optimized topology layouts we can notice that they all have stiffer material 

of different size or shape at the centre of plate. The reason might be that the load applied to 

plate is a central force, therefore it is necessary to place stiffer material at the centre to resistant 
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the external force. With the loading frequencies increase, the central stiffer materials (see Fig 

4.5 a)) are spreading to the edges and the optimal shape also become more complex. That 

probably because at lower frequency level, the mode shape of plate is simple, for example, the 

mode shape of the first loading frequency is like large funnel. The largest deformation is 

happened at the centre of plate, which leads to the all stiffer material concentrate on the centre 

of the plate. Similarly, as the loading frequency increases, the optimal layouts of the stiffer 

materials become spatially more complex as the mode shape changed. A similar tendency was 

also reported in the study of Du and Olhoff[117]. This is natural since a higher loading frequency 

will excite higher order of eignemodes, which typically have more localized features. 

After obtaining the optimal topology layouts for five different loading frequencies, the new 

optimized finite element models are used to re-calculate the power flow responses for 

comparison. The power flow responses have been shown in Fig 4.6 a) to Fig 4.6 d). It is noted 

that, compared to the initial designs, the power flow responses have a remarkable decrease. The 

reason is that all the given excitation frequencies are very close to the natural eigenfrequencies 

of the initial design. For the optimal design Fig. 4.6 b), we find that its second and third 

eigenfrequencies of free vibrations are ω2 = 167.3 𝐻𝑧 and ω3 = 317.2 𝐻𝑧, which are far 

away from the given excitation frequency  ω𝑝 = 205 𝐻𝑧 . This demonstrates that large 

displacement amplitudes have been avoided effectively at the excitation frequency ω𝑝 =

205 𝐻𝑧 with the optimal design. 

c)  ω=367.0 Hz 

a) ω=40.7 Hz b)  ω=205.0 Hz 

d)  ω=693.0 Hz 

Fig 4.5 Optimum topologies of 

simply supported bi-material 

Mindlin plate obtained by 

minimization of the input power flow 

subject to five different loading 

frequencies with central forece 

loading is applied to the upper 

surface of the plate.  
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We could also observe a large reduction at the excitation frequencies. This reduction has been 

obtained because the eigenfrequencies are moved away from the excitation frequencies. The 

lowest point of the response curve is now located close to the excitation frequency and a relative 

large span around this frequency exists where the power flow response is small.  

 

a) Power flow response at optimization frequency=40.8 Hz 

 

b) Power flow response at optimization frequency=205.0Hz 
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c) Power flow response at optimization frequency=367Hz 
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d) Power flow response at optimization frequency=693Hz 

Fig 4.6 Power flow responses of five optimum layouts finite element plate model with excitation frequency from 0 

Hz to 1000Hz 

4.1.6 Damping effect 

As we know, structural damping, even with a small value, probably has a remarkable effect on 

the structural dynamic behaviour. Therefore, in this section, the impact of structural damping 

on optimal layouts of the plate is investigated. Here, the structural damping is considered as 

Rayleigh damping. Taking the same problem settings as in Section 4.1.1. Considering the 

contribution of mass damping coefficient 𝛼 is quite small, we only investigate the effect of 

stiffness damping coefficient 𝛽 . A small value is assigned to the mass damping coefficient 

(𝛼 =  1 × 10−5) with respect to different stiffness damping coefficients in a certain range 

(𝛽 = 1 × 10−5~0.5 × 10−3). According to Eq. (4.10), that means the damp ratios of the plate 

range from 0.37 to 1.88 correspondingly. Through the comparison, it can be observed that the 

effect of different damping levels on the topology layout is significant. The results are shown 

in Fig 4.7. As we expected, the effect of the stiffness damping on the optimal topology is quite 

remarkable. That is because the elastic modulus of stiffness matrix is approximately 109 larger 

than material density in mass matrix. Thus, it is less surprise that the stiffness damping 

coefficient has more remarkable effect on the result of topology optimization than the mass 

damping coefficient does. Higher damping ratio means more energy will be dissipated during 

the vibration, so it also can be observed that the volume of stiffer material in 𝛽 = 0.5 × 10−3 

case is obviously less than 50%. That probably because higher capability to dissipate energy lead less 

strong material is required. 
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Fig 4.7 Effect of the stiffness damping coefficient on the topology design (ω𝑝 = 600Hz) 

In the second case, the damping coefficients are fixed at larger values α = 1 × 10−4 and β =

1 × 10−3, the optimal bi-material topologies with respect to different excitation frequencies are 

given in Fig 4.8. It is found that the optimal design is insensitive to the change of the excitation 

frequency within a broad frequency interval when the structural damping, especially the 

stiffness damping, is large. There are not remarkable changes between the optimal topologies 

 

𝜔𝑝 = 600𝐻𝑧                 𝜔𝑝 = 500𝐻𝑧 

ωp=400Hz              ωp=300Hz 

Fig 4.8 Optimal bi-material topologies at 

different excitation frequencies with large 

structural damping (α = 1 × 10−4, β =

1 × 10−3) 

 

𝜔𝑝 = 400𝐻𝑧                    𝜔𝑝 = 300𝐻𝑧    
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for different frequencies. Moreover, the iteration process becomes more stable even at the high 

excitation frequency as the structural damping increases.  

4.2 Minimization of dynamic compliance based on topology optimization 

4.2.1 Objective function for topology optimization 

The problem of optimizing the topology of a continuum structure for minimum value of the 

integral dynamic structural compliance can be formulated in a discrete form as follows: 

 𝑚𝑖𝑛   C𝑑 = |𝑭
𝑻𝑼| = |𝑼𝑻𝑺𝑼| (4.27) 

 𝑠. 𝑡.  𝑺𝑼 = 𝑭              

      𝑺 = 𝑲 + 𝑖𝜔𝑝𝑪 − 𝜔𝑝
2𝑴  

           ∑𝜌𝑒𝑉𝑒 − 𝑓𝑣

𝑁𝑒

𝑒=1

∑𝑉𝑒

𝑁𝑒

𝑒=1

≤ 0,      

            0 ≤ 𝜌𝑒 ≤ 1, 𝑒 = 1,⋯ ,𝑁𝑒   

In this bi-material design problem, we are aim to find the optimal topology layout to minimize 

dynamic compliance subject to a volume limit. Where 𝐶𝑑 represents the optimization objective 

dynamic compliance which is equal to the work done by the external dynamic forces against 

corresponding displacements, 𝑼 denotes the steady-state amplitude vector and 𝑭 denotes the 

load magnitude vector. The harmonic external loading vector 𝒇(𝑡) with the given excitation 

frequency 𝜔𝑝 can then be expressed as 𝒇(𝒕) = 𝑭𝑒𝑖𝜔𝑡 and the displacement response vector 

as  𝒖(𝑡) = 𝑼𝑒𝑖𝜔𝑡. The symbols 𝑲 and 𝑴 represent the structural stiffness and mass matrix, 

where N is the number of DOFs. The symbol 𝑪 is Rayleigh damping where 𝛼 and 𝛽 denote 

the mass damping and stiffness damping coefficients, respectively. Here, the same bi-material 

optimization model as last case is used for this one. The volumetric densities of two materials 

play the role of the design variable in the problem. 

4.2.2 Design sensitivity analysis 

In what follows, the objective function 𝐶𝑑 only explicitly depending on the amplitudes of the 

velocity response 𝑼 is considered. The sensitivity analysis scheme for 𝐶𝑑 is derived by using 

the adjoint variable method which is more efficient than the direct variable method in the 

problems involving a large number of design variables but only a few behaviour functions, as 

in the case of a topology optimization. 

 

Considering the vibration equation and its conjugate equation, we can rewrite the function: 
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 Φ = 𝐶𝑑 + 𝚼𝟏 
𝑻(𝑺𝑼 − 𝑭) + 𝚼𝟐 

𝑻(𝑺𝑼̅̅ ̅̅ − 𝑭̅) (4.28) 

where 𝑺̅  and 𝑭̅  denote the conjugates of the dynamic stiffness matrix 𝑺  and the force 

amplitude vector 𝑭, respectively; 𝑼 and 𝑼̅ denote the steady-state amplitude vector and its 

conjugate respectively; 𝚼𝟏  and 𝚼𝟐  are the adjoint vectors. Differentiating Eq. (4.28) with 

respect to the 𝑒th design variable leads to 

 
𝑑Φ

𝑑𝜌𝑒
= 𝚼𝟏 

𝑻
𝜕𝑺

𝜕𝜌𝑒
𝑼 + 𝚼𝟐 

𝑻
𝜕𝑺̅

𝜕𝜌𝑒
𝑼̅  

       + (
𝜕𝐶𝑑
𝜕𝑼𝑹

+ 𝚼𝟏 
𝑻𝑺 + 𝝁𝟐

𝑻𝑺̅)
𝜕𝑼𝑹
𝜕𝜌𝑒

  

      + (
𝜕𝐶𝑑
𝜕𝑼𝑰

+ 𝑖𝚼𝟏
𝑻𝑺 − 𝑖𝚼𝟐

𝑻𝑺̅)
𝜕𝑼𝑰
𝜕𝜌𝑒

 (4.29) 

where 𝑼𝑹 and 𝑼𝑰 represent the real part and image part of vector 𝑼, respectively. 

Let the adjoint variables satisfy the following equations: 

 (
𝜕𝐶𝑑
𝜕𝑼𝑹

+ 𝚼𝟏
𝑇𝑺 + 𝚼𝟐

𝑇𝑺̅) = 0 
 

  (
𝜕𝐶𝑑
𝜕𝑼𝑰

+ i𝚼𝟏
𝑇𝑺 − 𝑖𝚼𝟐

𝑇𝑺̅) = 0 (4.30) 

We can obtain equations as follow: 

 
𝚼𝟏

𝑇𝑺 =
1

2
(𝑖
𝜕𝐶𝑑
𝜕𝑼𝑰

−
𝜕𝐶𝑑
𝜕𝑼𝑹

) 

 

 
 𝚼𝟐

𝑇𝑺̅ =
1

2
(−𝑖

𝜕𝐶𝑑
𝜕𝑼𝑰

−
𝜕𝐶𝑑
𝜕𝑼𝑹

) (4.31) 

It can be seen from Eq. (4.31) that 𝚼𝟏 = 𝚼̅𝟐. Therefore, it is sufficient to solve Eq. (4.30) to 

determine the adjoint vectors in Eq. (4.29). Then Eq. (4.29) becomes 

𝑑Φ

𝑑𝜌𝑒
= 𝚼𝟏

𝑇 𝜕𝑺

𝜕𝜌𝑒
𝑼 + 𝚼𝟐

𝑇 𝜕𝑺

𝜕𝜌𝑒
𝑼̅ 

 

= 2𝑅𝑒 (𝚼𝟏
𝑇 𝜕𝑺

𝜕𝜌𝑒
𝑼) 

 

                   = 2Re(𝚼𝟏
𝑇 (−ω2

𝜕𝑴

𝜕𝜌𝑒
+ 𝑖𝜔

𝜕𝑪

𝜕𝜌𝑒
+
𝜕𝑲

𝜕𝜌𝑒
)𝐔) 

(4.32) 

Considering the expression of dynamic compliance  
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 𝐶𝑑 = √(𝑭𝑹
𝑻𝑼𝑹 + 𝑭𝑰

𝑻𝑼𝑰)
2 + (𝑭𝑰

𝑻𝑼𝑹 + 𝑭𝑹
𝑻𝑼𝑰)

2 (4.33) 

Assuming design load is real and independent, then 𝑭 = 𝑭𝑹 = 𝑭
𝐻 . So the expression with 

respect to real part and imagine part of displacement is: 

 
𝜕𝐶𝑑
𝜕𝑼𝑹

=
𝑭𝑻𝑼𝑹
𝐶𝑑

𝑭𝑻 ,        
𝜕𝐶𝑑
𝜕𝑼𝑰

=
𝑭𝑻𝑼𝑰
𝐶𝑑

 𝑭𝑻 (4.34) 

Substitute Eq. (4.34) into Eq. (4.31) 

 𝚼𝟏
𝑇𝑺 =

1

2
(𝑖
𝑭𝑻𝑼𝑰
𝐶𝑑

−
𝑭𝑻𝑼𝑹
𝐶𝑑

)𝑭𝑻 = −
1

2𝐶𝑑
𝑭𝑻𝑼̅𝑭𝑻 = −

1

2𝐶𝑑
(𝑼𝑻𝑺𝑼̅)𝑭𝑻 (4.35) 

From Eq. (4.27), we can obtain that 𝑼𝑻𝑺 = 𝑭𝑻, then using Eq. (4.35) 

 𝚼𝟏
𝑇 = −

1

2𝐶𝑑
(𝑼𝑻𝑺𝑼̅)𝑼𝑻 (4.36) 

So Eq. (4.32) can be written as 

 
𝑑Φ

𝑑𝜌𝑒
= −𝑅𝑒(

𝑼𝑻𝑺𝑼̅

𝐶𝑑
𝑼𝑻 (−ω2

𝜕𝑴

𝜕𝜌𝑒
+ 𝑖𝜔

𝜕𝑪

𝜕𝜌𝑒
+
𝜕𝑲

𝜕𝜌𝑒
)𝑼) (4.37) 

Substituting Eq. (4.27) into Eq. (4.37) then the sensitivity of dynamic compliance can be 

expressed as follow: 

 
𝑑Φ

𝑑𝜌𝑒
= −𝑅𝑒((

𝑼𝑻𝑺𝑼̅

|𝑼𝑻𝑺𝑼|
)𝑼𝑇 (−ω2

𝜕𝑴

𝜕𝜌𝑒
+ 𝑖𝜔

𝜕𝑪

𝜕𝜌𝑒
+
𝜕𝑲

𝜕𝜌𝑒
)𝑼) (4.38) 

Similarly, a square plate with 4 edges simply supported and discretized with 400 uniform-sized 

square elements is built to verify the finite element model and sensitivity analysis. The result 

in Fig 4.9 shows that the sensitivity obtained by these two methods agrees well. 
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Fig 4.9 Sensitivity analysis results of vibration amplitude at the loading point with respect to the element relative 

density 

4.2.3 Numerical study 

Fig 4.10 The optimal topology layout and iteration history of the design objective function for load frequency 𝜔 =

693.0𝐻𝑧 

In this section we show the example of plate optimized with the objective of minimizing the 

dynamic compliance given by Eq. (4.27). The optimized model here is the same as that in 

Section 4.1.4, which has a geometrical dimension of 𝑎 = 0.5 𝑚  and  𝑡 = 0.003 𝑚 . An 

external force 𝑭𝑒𝑖𝜔𝑡 is applied at centre point. Young’s modulus, Poisson’s ratio and the mass 

density of the strong material are E𝑠 = 1.0 × 10
11 𝑁/𝑚2, 𝑣𝑠 = 0.3 and ρ𝑠 = 7800 Kg/m

3, 

respectively, while the properties of weak material are E𝑤 = 1.0 × 10
10 𝑁/𝑚2 , 𝜇𝑤 = 0.3  

and ρw = 780 𝐾𝑔/𝑚
3, respectively. The damping coefficients of the damping material are 

given as α = 1 × 10−4, 𝛽 = 1 × 10−5. In order to ensure the accuracy of result by FE method 

at high frequency level, the FE model is meshed into 100×100. Same as the case study above, 
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the design variables 𝜌𝑒(𝑒 = 1,2,⋯ ,𝑁𝑒) are initialized, usually by given uniform values 0.5. 

The dynamic compliance, as well as their derivatives with respect to the design variables, are 

then calculated. Using these data, the design variables are updated by the MMA optimizer. The 

optimization process repeats until the relative difference of the objective function values in two 

adjacent iteration steps |(Φ𝑛𝑒𝑤 −Φ𝑜𝑙𝑑)/Φ𝑜𝑙𝑑| is less than 0.001 or the iteration number >100. 

The iteration history and the optimal topology layout are shown in Fig 4.1010.  

The steady-state amplitudes of the bi-material plate at the frequency 𝜔=693.0𝐻𝑧 are shown 

in Fig 4.11. It is seen that the largest displacements are located around the plate centre where 

the load is applied for both initial layout and optimal layout. But the largest displacement 

amplitude of the optimized plate has been greatly decreased.  

 

Fig 4.11 Steady displacement amplitudes subjected to a point load applied to the centre of plate with load 

frequency 𝜔 = 693.0𝐻𝑧 a) initial design b) optimal design 

To compare the topology layouts obtained by different objective function, it is seen from Fig 

4.12 that the optimal topologies of two objective functions are slightly different for all five 

loading frequencies. Especially for the topology layouts with the first two optimization 

frequencies, they are almost indistinguishable (see Fig 4.12 a) and Fig 4.12 b). With the 

increasing of loading frequency, the difference of optimal topology layout between two 

objective functions becomes obvious (see Fig 4.12 c), d) and e)). These results provide 

numerical evidence that topology optimization with respect to minimum power flow response 

also has a great effect on the vibration suppression as well. 

 

a) 

b) 
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Fig 4.12 Comparison of topology optimum layouts with two objective functions 

Powerflow response                       Dynamic compliance 
Frequency ω=40.7 Hz 

 

Powerflow response                       Dynamic compliance 
Frequency ω=205.0Hz 

 

Powerflow response                       Dynamic compliance 
Frequency ω=367.0Hz 

 

Powerflow response                       Dynamic compliance 

Frequency ω=693.0Hz 
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4.3 Summary  

This chapter shows case studies on dynamic topology optimization of bi-material plate structure 

for vibration suppression. The mathematical formulation of topology optimization is 

established based on power flow response and bi-material solid isotropic material with SIMP 

model. The results of numerical examples and comparison of optimal results between two 

topological designs with minimum power flow response and minimum dynamic compliance 

verified the efficiency of this method. There is a common phenomenon in all numerical 

examples which obtained remarkable effect worth to notice. All these optimal designs have 

either driven the nearest resonance frequency as far away as possible from the prescribed 

excitation frequency, or has increased the gap between two neighbouring resonance frequencies 

as much as possible by redistributing material in space so that successfully avoid the resonance 

phenomenon occur. That is the reason why all these methods have great effect on vibration 

control.  

Base on the investigation, the following conclusion can be drawn: 

 Material distribution has a significant impact on structural vibration characteristic.  

 Both the power flow response and dynamic compliance objective functions have great 

effect on vibration suppression. 

 The effect of the Rayleigh damping ratio has a great impact on optimal topology pattern. 

In addition, the stiffness damping coefficient has more remarkable effect on the result 

of topology optimization than the mass damping coefficient. 

 The reason for great effect on vibration suppression by redistributing material is that 

different material distribution will apply new dynamic characteristic on structure which 

drives the nearest resonance frequency as far away as possible from the prescribed 

excitation frequency, or has increased the gap between two neighbouring resonance 

frequencies as much as possible so that successfully avoid the resonance phenomenon 

occur. 

Although the bi-material plate topology optimization model based on the two objective 

functions has achieved good results for vibration reduction, we have to admit the limitation of 

this bi-material model in application. In the previous examples, both materials are assumed to 

be ideally contacted, and not slip happened between the contact surfaces. So far, this model is 

too ideal to be manufactured in real world, therefore this Chapter is mainly to perform a 

complete topology optimization process with FE analysis and numerical optimization so that 

the feasibility of applying topology optimization method to passive structure vibration control 

can be verified. More models will be introduced in the following chapters.  
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Chapter 5 Application to free layer damping plate 

5 Application to free layer damping plate 

Reducing vibration is often a major concern for structures subject to dynamic excitations. In 

particular, passive vibration control of flexible shell structures by incorporating damping 

materials has been used in many engineering fields, including vehicles, airplanes, automobiles, 

ships. This chapter investigates the optimal distribution of damping material in vibrating 

structures subject to harmonic excitations by using topology optimization method. An artificial 

damping material model that has a similar form as in the SIMP approach is suggested and the 

relative densities of the damping material are taken as design variables. In addition, different 

with most of the past research implemented the optimal damping layer design by their own 

finite element code, a Python package of commercial FE software Abaqus to implement 

topology optimization method is applied in this chapter. The optimal layouts obtained by 

topology optimization are discussed. 

5.1 Governing equations 

In this Chapter, the topology optimization problem for the layout design of the damping 

material surface layer with the aim to reduce the vibration amplitude is considered. Such a 

structure is schematically illustrated in Fig 5.1. It is assumed that the damping layer and the 

base structure is perfectly bonded. The governing equations of steady-state displacement are: 

 (−𝜔𝑝
2𝑴+ 𝑖𝜔𝑝𝑪 + 𝑲)𝑼 = 𝑭, (5.1) 

Or 

 𝑺𝑼 = 𝑭, (5.2) 

Fig 5.1 A plate structure with free damping layer treatments 
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where symbols 𝑲 and 𝑴 represent the structural stiffness and mass matrix; 𝑺 = −𝜔𝑝
2𝑴+

𝑖𝜔𝑝𝑪 + 𝑲 is referred to as the dynamic stiffness matrix. 𝑼 denotes the steady-state amplitude 

vector and 𝑭 denotes the load magnitude vector. The steady state displacement amplitudes of 

each degree of freedom is given by  

 

𝐴𝑗 = √(𝑈𝑗
𝑅)

2
+ (𝑈𝑗

𝐼)
2
,       (𝑗 = 1, 2, … , 𝑛 ) (5.3) 

where 𝑈𝑗
𝑅  and 𝑈𝑗

𝐼  (𝑗 = 1, 2, … , 𝑛 ) are the real and imaginary parts of the complex amplitude 

𝐴𝑗, respectively. Here 𝑛 is the number of degree of freedom. 

5.2 Topology optimization problem formulation 

The aim of this Chapter is to find the optimal distribution of a given amount of damping material 

within a prescribed design domain for minimizing the vibration amplitudes at specified 

positions. The topology optimization problem is thus formulated as  

  min 
𝜌

 Π =∑𝐴𝑗

𝑚

𝑗=1

           

                         𝑠. 𝑡.  (−𝜔𝑝
2𝑴+ 𝑖𝜔𝑝𝑪 + 𝑲)𝑼 = 𝑭                   (5.4) 

                   ∑𝜌𝑒𝑉𝑒
0

𝑁𝑒

𝑒=1

− 𝑓𝑣∑𝜌𝑒

𝑁𝑒

𝑒=1

𝑉𝑒
0 ≤ 0,         

                         0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 (𝑒 = 1,… , 𝑁𝑒)              

where symbols 𝑲  and 𝑴  represent the structural stiffness and mass matrix; 𝝆 =

{𝜌1, 𝜌2, 𝜌3, … , 𝜌𝑁,}
𝑇 is the vector of the relative density design variables describing the damping 

material distribution. 𝑁𝑒 denotes the total number of finite elements in the design domain; 𝑚 

is the number of specified degrees of freedom at which the displacement amplitudes 𝐴𝑗(𝑗 =

1,2, … ,𝑚) are of interest. 𝜔𝑝 is excitation frequency in rad/s. Symbol 𝑓𝑣 denotes the volume 

fraction ratio and 𝑉𝑒
0 is the damping material volume of the 𝑒th element when 𝜌𝑒 = 1. As the 

spurious local eigenmodes will occur if the density of an element becomes extreme small, 

therefore the lower bound limit of the density variables 𝜌𝑚𝑖𝑛 is prescribed as a small positive 

value, which is set to be 0.001 in this study. 𝜔𝑝 is the excitation frequency in rad/s. Since the 

system consists of a base-material load-bearing structure and a damping layer, the matrix 𝑴 

and 𝑲 can be further expressed as 

 
𝑴 = 𝑴𝑏 +𝑴𝑑

𝑲 = 𝑲𝑏 + 𝑲𝑑
 (5.5) 
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where the superscript 𝑏  denotes the quantities associated with the base material structure, 

while the superscript 𝑑  denotes the contributions of the damping material. In general, the 

damping effect of the conventional base material is much smaller than that of the damping 

material. Therefore, damping properties of the base layer are neglected. The global mass matrix 

and the global stiffness matrix in the framework of the SIMP approach can be rewritten as 

 

𝑴 =∑𝑴𝑒
𝑏

𝑁𝑒

𝑒=1

+ 𝜌𝑒∑𝑴𝑒
𝑑

𝑁𝑒

𝑒=1

𝑲 =∑𝑲𝑒
𝑏

𝑁𝑒

𝑒=1

+ 𝜌𝑒
𝑝
∑𝑲𝑒

𝑑

𝑁𝑒

𝑒=1

 (5.6) 

where 𝑲𝒆
𝒃 and 𝑴𝒆

𝒃 denote the element stiffness matrix and element mass matrix of the base 

material, respectively, and they remain unchanged during the process of the optimization. The 

penalty 𝑝 for element stiffness matrix is set to be 3. As mentioned, the damping effect of the 

base structural material is neglected. Therefore, the damping matrix in Eq. (5.1) becomes 

 𝑪 =∑𝑪𝑒
𝑑

𝑁𝑒

𝑒=1

 (5.7) 

Where 𝑪𝒆
𝒅  is the element damping matrix, which is related to the density design variables. 

Analogously as in the elastic constant interpolation used in the SIMP model, an artificial 

damping model is suggested here for penalizing intermediate densities. Thus the elemental 

damping matrix in Eq. (5.7) is assumed as  

 𝑪𝑒
𝑑 = 𝛼0

𝑑𝜌𝑒
𝑞1𝑴𝑒

𝑑 + 𝛽0
𝑑𝜌𝑒

𝑞2𝑲𝑒
𝑑 (5.8) 

Here, the constants 𝛼0
𝑑 and 𝛽0

𝑑 are Rayleigh damping coefficients of the fully solid damping 

material 𝜌𝑒 = 1 , real scalars 𝑞1 > 1 and 𝑞2 > 1  are penalty factors for the damping 

coefficients. In this section, both penalty factors for element damping matrix are set to be  𝑞1 =

𝑞2 = 3 , which are suitable values for yielding a clear topology and a stable convergence from 

numerical experiences. 

5.3 Design sensitivity analysis 

As usual, the optimization problem Eq. (5.4) is solved by a gradient-based mathematical 

programming algorithm, which necessitates sensitivity analysis of the objective function with 
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respect to the design variables. The sensitivity analysis scheme for objective function Π  is 

derived by using the adjoint variable method, which is more efficient than the direct variable 

method in the problems involving a large number of design variables[70]. Considering the 

vibration equation and its conjugate equation, we can rewrite the function Π as 

 Φ = Π + 𝚼𝟏
𝑻(𝑺𝑼 − 𝑭) + 𝚼𝟐

𝐓(𝑺𝑼̅̅ ̅̅ − 𝑭̅) (5.9) 

Where 𝑺̅  and 𝑭̅  denote the conjugates of the dynamic stiffness matrix 𝑺  and the force 

amplitude vector , respectively; 𝑼 and 𝑼̅ denote the steady-state amplitude vector and its 

conjugate respectively; 𝚼𝟏  and 𝚼𝟐  are the adjoint vectors. Differentiating Eq. (5.9) with 

respect to the 𝑒th design variable leads to 

 

𝑑Φ

𝑑𝜌𝑒
= 𝚼𝟏

𝑻
𝜕𝑺

𝜕𝜌𝑒
𝑼 + 𝚼𝟐

𝑻
𝜕𝑺̅

𝜕𝜌𝑒
𝑼̅

    +
𝜕𝑼𝑹
𝜕𝜌𝑒

(
𝜕Π

𝜕𝑼𝑹
+ 𝚼𝟏

𝑻𝑼 + 𝚼𝟐
𝑻𝑼̅)

    +
𝜕𝑼𝑰
𝜕𝜌𝑒

(
𝜕Π

𝜕𝑼𝑰
+ 𝑖𝚼𝟏

𝑻𝑼 − 𝑖𝚼𝟐
𝑻𝑼̅)

 (5.10) 

Let the adjoint variables satisfy the following equations 

 

𝚼𝟏
𝑇𝑺 =

1

2
(−

𝜕Π

𝜕𝑼𝑹
+ 𝑖

𝜕Π

𝜕𝑼𝑰
) ,

𝚼𝟐
𝑇𝑺̅ =

1

2
(−

𝜕Π

𝜕𝑼𝑹
− 𝑖

𝜕Π

𝜕𝑼𝑰
) .

 (5.11) 

It can be seen from Eq. (5.11) that 𝚼𝟏 = 𝚼𝟐̅̅ ̅ . Therefore, it is sufficient to solve Eq. (5.11) to 

determine the adjoint vectors in Eq. (5.9). Then Eq. (5.9) becomes 

 

   
𝑑𝛱

𝑑𝜌𝑒
= 2𝑅𝑒(𝚼𝟏

𝑇 𝜕𝑺

𝜕𝜌𝑒
𝑼)

       = 2𝑅𝑒(𝚼𝟏
𝑇(−𝜔2

𝜕𝑴

𝜌𝑒
+ 𝑖𝜔

𝜕𝑪

𝜌𝑒
+
𝜕𝑲

𝜌𝑒
)𝑼)

 (5.12) 

where the derivatives of the mass matrix, the damping matrix and the stiffness matrix with 

respect to the design variables can be easily calculated as follow: 

 

𝜕𝑴

𝜌𝑒
= 𝑴𝑒

𝑑

𝜕𝑲

𝜌𝑒
= 𝑝𝜌𝑒

𝑝−1
𝑲𝑒
𝑑

𝜕𝑪

𝜌𝑒
= 𝑞1𝜌𝑒

𝑞1−1𝑲𝑒
𝑑 + 𝑞2𝜌𝑒

𝑞2−1𝑴𝑒
𝑑

 (5.13) 
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Take the sensitivity analysis of the vibration amplitude of the 𝑗 th DOF 𝐴𝑗  as an example. 

Position vector 𝒑0 = {0,0,1,… 0}
𝑇 represents the position of the specified degrees of freedom 

in which the element equal 1 at the specified position and 0 elsewhere. The derivative of the 

objective function with respect to the real part of steady state vibration displacement response 

as follow:  

 

𝑑𝐴𝑗

𝑑𝑼𝑹
=
𝜕√(𝑈𝑗

𝑅)
2
+ (𝑈𝑗

𝐼)
2

𝜕𝑼𝑹

        =
𝜕√(𝑈𝑗

𝑅)
2
+ (𝑈𝑗

𝐼)
2

𝜕𝑈𝑗
𝑅 𝒑0 =

𝑈𝑗
𝑅

𝐴𝑗
𝒑0

 (5.14) 

 

𝑑𝐴𝑗

𝑑𝑼𝑰
=
𝜕√(𝑈𝑗

𝑅)
2
+ (𝑈𝑗

𝐼)
2

𝜕𝑼𝑰

         =
𝜕√(𝑈𝑗

𝑅)
2
+ (𝑈𝑗

𝐼)
2

𝜕𝑈𝑗
𝐼 𝒑0 =

𝑈𝑗
𝐼

𝐴𝑗
𝒑0

 (5.15) 

Substituting Eq. (5.14) and Eq. (5.15) into Eq. (5.11), then obtains the adjoint equations for 

this particular behaviour function:  

 𝚼1
𝑇𝑺 =

1

2𝐴𝑗
(−𝑈𝑗

𝑅 + 𝑖𝑈𝑗
𝐼)𝒑0 = −

𝑈𝑗

2𝐴𝑗
𝒑0 (5.16) 

Once the adjoint vector is found by solving the adjoint equations, the derivative of the behaviour 

function Π can be obtained from Eq. (5.16).  

5.4 Numerical studies 

In this section, two numerical examples: cantilever plate (see Fig 5.2) and simply supported 

plate (see Fig 5.11) are presented for illustrating the validity of the proposed sensitivity analysis 

and topology optimization formulation. In FE models, the base layer and damping layer are 

modelled with shell elements S4R in Abaqus with tie constraints at the contact faces and we 

assume there is no slip happened between the surfaces. Both layers has a geometrical dimension 

of 𝑎 = 3𝑚  and 𝑡𝑏 = 𝑡𝑑 = 0.02𝑚 . To define a more precise surface geometry for contact 

problems, the reference faces of base layer and damping layer are set to be top and bottom 

respectively. The design domain is discretized by a 60 × 60 mesh in the subsequent examples 

with total number of degrees of freedom equal 22326.  
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5.4.1 Implementation of topology optimization 

The method of moving asymptotes is employed for solving the optimization problem Eq. (5.4). 

At the beginning, the design variables are
 
𝜌𝑒 = 0.5 (𝑒 = 1,2,3, … , 𝑁𝑒). The volume fraction ratio 

of the damping material is restricted by 𝑓𝑣 = 0.5. The well-known sensitivity filter technique 

proposed by Sigmund[119] with a filter radius of  𝑟𝑚𝑖𝑛 = 0.1𝑚  is employed for preventing 

checkerboard formation and mesh dependency of the optimal solution. The optimization 

procedure will be stopped when the relative difference of the objective function values between 

two adjacent iteration steps satisfies|(𝑓𝑛𝑒𝑤 − 𝑓𝑜𝑙𝑑)/𝑓𝑜𝑙𝑑| < 0.005. 

5.4.2 Topology optimization of damping layer in a cantilever square plate 

In the first example, the optimal layout design of the damping layer attached to a cantilever 

square plate as shown in Fig 5.2 is considered. External force 𝒇(𝑡) = 𝑭𝑒𝑖𝜔𝑡 is applied at point 

I (the mid-point of the free edge) with 𝐹 = 105𝑁, 𝜔 = 2𝜋𝑓𝑝 and 𝑓𝑝 = 30𝐻𝑧. Young’s modulus, 

Poisson’s ratio and the mass density of the base material (aluminium) are 𝐸𝑏 = 6.9 × 1010𝑁/𝑚2, 

𝜇𝑏 = 0.3 and 𝜌𝑏 = 2700𝐾𝑔/𝑚3, respectively, while the properties of the damping material (a 

rubber-like material) are 𝐸𝑑 = 2.2 × 108𝑁/𝑚2,  𝜇𝑑 = 0.49 and  𝜌𝑑 = 980𝐾𝑔/𝑚3, respectively. 

Similar as the explanation in Section 4.1.3, Rayleigh damping model is adopted here for its 

mathematical convenience. Here, the damping coefficients of the damping material are given 

as 𝛼0
𝑑 = 0.5, 𝛽0

𝑑 = 1.0. According to the Eq. (4.10) in Chapter 3, the damping layer is an over-

damped structure since the overall damping ratio ξ is larger than 1.0. The Rayleigh damping 

coefficients adopted here is to magnify the damping effect. The objective of the design is to 

minimize the sum of vibration amplitudes at the loading point (point I) and two endpoints of 

the free edge (points II and III). 

 

Fig 5.2 A cantilever square plate (a=3, td=tb=0.02m) with a time-harmonic load applied at the 

mid-point of the free edge 
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5.4.3 Results and discussions for cantilever square plate case 

The iteration history of objective function value and volume fraction ratios are shown in Fig 

5.3. It can be observed that the optimization procedure converged after 60 iterations and a stable 

decreasing of the objective function value during the optimization process. The objective 

function value has decreased from 1.21 for the initial design to 0.27 for the final optimal 

solution, a remarkable decreasing by 77.6% of the initial value. The volume fraction of damping 

material keeps stable at 0.5 during the whole optimization process except a slight downward at 

beginning. The damping material distribution and the deformation contour of the initial design 

and the optimal design are shown in Fig 5.4. 

 

Fig 5.3 Iteration histories of objective function value and volume fraction ratio 

In Fig 5.4(a), the grey-scale indicates the relative density of the damping material in the initial 

design. It can be seen that there are still a few ‘grey’ elements with material densities neither 0 

nor 1 in the final design (In Fig 5.4(b)). In fact, obtaining a clear 0-1 distribution is extremely 

difficult and quite time-consuming. Many factors such as filter radius, penal for stiffness and 

mass and sensitivities filter have significant effects on the final topology layout. A balance way 

to handle this problem is to stop the optimization process when the difference of two objective 

function values between adjacent iteration steps less than a prescribed value and then adopted 

a post-processing step proposed by Sigmund[61] to suppress the grey scale design. An adjustment 

of solid and void elements distribution according to the volume fraction limit set initially and 

material densities obtained by the optimization will be processed by this technique. The final 

clear distribution after post-processing step is shown in Fig 5.4(d) which indicates this 

technique is able to remove the ‘grey elements’ and keep the characteristic of original design at 

the same time. 
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Fig 5.4(e) and Fig 5.4(f) are the vibration amplitudes comparisons between the initial design 

and optimal design. Since the model is a symmetrical plate with a point force at the middle of 

the edge, the displacements at point II and point III are exactly the same. It is also seen that not 

only the vibration amplitudes at the concerned positions, but also the overall vibration level of 

the constrained damping layer plate has been significantly reduced. 

In order to investigate the effect of damping coefficients on reducing the vibration amplitude, 

the topology optimization cases with the damping coefficients 𝛼0
𝑑 = 0 and 𝛽0

𝑑 = 0 are also be 

investigated. Both damping coefficients set to be 0 means the attached damping layer only 

contributes to the mass and the stiffness of the structure. Starting from the initial design 𝜌𝑒 =

0.5 (𝑒 = 1,2, … ,3600) , the optimization process converged to a final design as given in Fig 

5.5(b). 

Fig 5.4 Comparison of initial design (a,c,e) and final topology optimization result (b,d,f). a,b Distribution of 

damping materal; c,d Deformed shape; e,f Deformation contour 

 

(a) Initial design (b) Topology optimization 

design 

(c)  

(c)  Initial distribution of damping 

materialdesign 

(a)  

(d) Optimal distribution of damping material 

(e) Vibration amplitude of initial design (f) Vibration amplitude of optimal design 

(g)  

II         I         III II         I         III 

0.371 

0.371 
0.106 

0.106 
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Although similar to last case, a different optimal layout of the attached damping layer is 

obtained without considering the damping effect. Similarly, the displacements at point II and 

point III are exactly the same. One conclusion drawn from the comparison is that the 

optimization case considering damping effect is much better than the one without considering 

the damping effect. This can be seen from that the maximal vibration amplitude of the optimized 

structure shown in Fig 5.5(f) which is much higher than that is shown in Fig 5.4(f). This result 

implies that the damping effect of the attached damping layer plays a significant role in optimal 

layout for vibration suppression. Based on this conclusion, the investigation of the damping 

effect on the optimal layout is performed. 

(a) Initial design (b) Topology optimization design 

(c) Initial distribution of damping material (d) Optimal distribution of damping material 

(e) Vibration amplitude of initial design (f) Vibration amplitude of optimal design 

 Fig 5.5 Initial design (a,c,e) and final topololgy optimization result (b,d,f) without damping effect. a,b 

Distribution of damping materal; c,d Deformed shape; e,f Deformation contour 

II          I          III II          I         III 

0.371 

0.371 0.227 

0.227 
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All parameters of this case is kept the same but three more different values of the stiffness 

damping coefficients 𝛽0
𝑑 =0.1, 0.5, 0.8 are considered. Based on the conclusion obtained from 

Chapter 4 that the effect of the stiffness damping coeifficent on the optimal topology is more 

remarkable than that of the mass damping coeifficent, thus only the effect of stiffness damping 

is investigated here. All optimal layouts with different damping coefficients from 0.0 to 1.0 are 

shown in Fig 5.6 We can see that the optimal distribution with 𝛽0
𝑑 = 0.1 (Fig 5.6 (b)) is almost 

the same as the case with 𝛽0
𝑑 = 0.0 (Fig 5.6 (a)) and objective values of these two cases are 

nearly the same at 30Hz in Fig 5.7. The reason is mainly because stiffness damping coefficient 

is not larger enough to reflect the suppression effect on vibration. As the stiffness damping 

coefficient increases, the optimal layout become different gradually and a remarkable reduction 

can be seen in Fig 5.7. A visible tendency is that the damping materials move from the free 

edge to the clamped edge. For example, the centre part of damping material in Fig 5.6 move 

from the place close to the free edge to the place with larger vibaration amplitude close to the 

clamped edge. An explanation for the significant reduction as the stiffness damping coefficient 

increases is that damping materials tend to distribute on the place with larger amplitude to 

increase energy comsumed by damping material. In addition, the damping materials attached 

on the base plate also change the dynamic characteristic of the whole structure which move the 

resonant peak away from the optimizaiton frequency.  

(a)  𝛼0
𝑑 = 0.5, 𝛽0

𝑑 = 0.0 (b)  𝛼0
𝑑 = 0.5, 𝛽0

𝑑 = 0.0 

(d)  𝛼0
𝑑 = 0.5, 𝛽0

𝑑 = 0.5 (e)  𝛼0
𝑑 = 0.5, 𝛽0

𝑑 = 0.8 (g)  𝛼0
𝑑 = 0.5, 𝛽0

𝑑 = 1.0 

 
Fig 5.6 Optimal results under excitation frequency fp=30Hz with different damping coefficients 



 

63 

 

Another evidence can also be observed in Fig 5.7 as well. The red line in Fig 5.7 is the optimal 

layout with  𝛽0
𝑑 = 0.0 , which means no damping effect is considered in the case. But a 

remarkable reduction can be seen compared to the bare plate (blue dash line) at 30Hz. The 

reason to explain this reduction is the optimal distribution of damping layer change the natural 

frequency of original structure which benefit the effect of vibration suppression. The same 

reason has been discussed in Chapter 3.  

 

Fig 5.8 optimal objective values with Initial design, Optimized design and Full coverage design at range of 0Hz to 

60Hz 

Fig 5.8 compares the initial, optimized and full coverage design when stiffness coefficient 𝛽0
𝑑 =

1.0. A remarkable reduction between initial design and optimized design can be seen and the 

Error! Reference source not found. Fig 5.7 Optimal objective values with different stiffness damping coefficient at range of 0Hz to 60Hz 
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optimized design with only 50% volume of damping material has similar effect of vibration 

suppression with the design fully covered. The results illustrate significance of the damping 

material distribution optimization in vibration suppression, minimizing structure weight and 

saving materials.  

The effect of elastic modulus of damping mateirals is investigated subsequently. The damping 

coefficients are chosen as 𝛼0
𝑑 = 0, 𝛽0

𝑑 = 0. Four different elastic modulus values of damping 

mateirals:  𝐸𝑑 = 10%𝐸𝑏 , 𝐸𝑑 = 30%𝐸𝑏 , 𝐸𝑑 = 100%𝐸𝑏 and 𝐸𝑑 = 200%𝐸𝑏 are considered, see 

Fig 5.9. It can be observed that the optimal layouts in Fig 5.9(a), Fig 5.9(b) and Fig 5.9(c) are 

almost the same. The optimal objective values of these three cases are also very close at 30Hz 

in Fig 5.10 even though the elastic modulus of the case in Fig 5.9 (c) is 100 times larger than 

the case in Fig 5.9 (a). An explaination is that the elastic modulus of the case in Fig 5.9 (c) is 

still too small compared to base plate to change the eigenfrequency effectively. When the elastic 

modulus of damping layer increases to the same level as the base plate (yellow line in Fig 5.10), 

a better optimized result can been obtained.  

 

(a) Original

(c) 𝐸𝑑 = 30%𝐸𝑏,  

 

(b) 𝐸𝑑 = 10%𝐸𝑏, 

(d) 𝐸𝑑 = 100%𝐸𝑏, (e) 𝐸𝑑 = 200%𝐸𝑏 ,

Fig 5.9 Optimal damping layout under excitation frequency fp=30Hz with different elastic modulus ( 𝛼0
𝑑 = 0, 𝛽0

𝑑 = 0 ) 
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Further, when the elastic modulus of damping layer increases to 200% of elastic modulus of 

the base plate, a better topology layout has been achieved. We could see a large gap with the 

excitation frequency rested at the concave of the green line in Fig 5.10. The significant 

reduction of the objective value is because a stiff layer with larger elastic modulus has a greater 

impact on dynamic characteristic of the whole struture which leads to a shift of natural 

frequency to avoid optimized frequency. The same essence has been shown in bi-material plate 

case in Chapter 4. However, for some applications, the dynmaic characteristic of the structure 

ususlly require to keep unchanged. Thus, attaching a stiff layer is not a suitable solution for 

these cases. And what’s more, as shown in Fig 5.7, reducing vibration by increasing damping 

coefficent has a remarkable suppression effect on overall vibration level compared to origial 

desin. Thus, enhancing damping effect of the damping material is a better way to suppress 

vibration for free damping layer case. 

5.4.4 Topology optimization of FLD square plate  

In this example, topology optimization of a square plate under different excitation frequencies 

Fig 5.10 Optimal objective values with different elastic modulus ( , ) Fig 5.10 Optimal objective values with different elastic modulus ( 0.00 d , 0.00 d ) 

Fig 5.11 A simply supported square plate (a=3, td=tb=0.02m) with a time-harmonic load applied at centre 
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and different damping coefficients are considered. The geometry of the plate, the elastic 

properties and mass densities of the damping and base materials are as the same as the previous 

example. All the edges are simply supported and a time-harmonic load 𝒇(𝑡) = 𝑭𝑒𝑖𝜔𝑡, with the 

amplitude 𝑭 = 105𝑁 is applied to the centre of the structure, as shown in Fig 5.11.  

The different boundaries between the simply supported square plate and the cantilever plate 

lead to a different strategy to define objective function. In cantilever plate case, the 

displacement at the free edge is always dominant steady-state responses of the whole structure. 

So the sum of the amplitudes of the loading point and two endpoints on the free edge is chosen 

as objective in last case. However, it’s a different case for simply supported plate. As the 

excitation frequency increases, the modes of structure become complex and the amplitude of 

the loading point is probably not the largest one of the whole structure. Therefore, it’s not 

enough to achieve a good topology layout by just taking the amplitude of the loading point as 

the objective. So, the design objective chosen here is the sum of the vibration amplitudes of all 

nodes on plate. In what follows, the impacts of the excitation frequencies and the damping 

coefficients on the optimal layout of the damping layer will be explored.  

5.4.5 Results and discussions for simply supported square plate case 

 

(a) 𝜔𝑝=15Hz (b) 𝜔𝑝= 60Hz (c) 𝜔𝑝= 90Hz 

(d) 𝜔𝑝= 150Hz (e) 𝜔𝑝= 200Hz (f) 𝜔𝑝= 300Hz 

  Fig 5.12  (a)-(f) Optimization results with different values of prescribed loading frequencies and small 

damping coefficients 
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We first considered 6 different excitation frequencies, 𝜔𝑝 = 15, 60, 90, 150, 200 and 300 Hz. 

The damping coefficients of the damping material are given as 𝛼0
𝑑 = 0.5 and 𝛽0

𝑑 = 0.001 . The 

optimal distributions obtained under each loading frequency are shown in Fig 5.12. It is obvious 

that, as the loading frequency 𝜔𝑝  increases, the optimal layouts of the damping material 

become spatially more complex. This is natural since a higher loading frequency will excite 

higher order of eigenmodes, which typically have more localized features.  

Comparison between the amplitude contours and corresponding optimal layouts under 150Hz, 

200Hz and 300Hz are shown in Fig 5.13. An interesting phenomenon can be observed is that 

the places which covered with damping material in the optimal layout are mostly the place with  

large amplitude. This phenomenon validates the conclusion achieved in Section 5.4.4 that the 

(a) amplitude contour (b) optimal layout 

(c) amplitude contour (d) optimal layout 

(e) amplitude contour (f) optimal layout 

 Fig 5.13 Comparison between 

the amplitude contour and 

according optimal layout under 

150Hz, 200Hz and 300Hz 
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optimal damping materials are more likely to be distributed in the places with large amplitude 

which help to take advantage of damping material to dissipate vibration energy.  

5.5 Optimization strategy for free layer damping plate 

From the conclusion drawn above, a rapid material distribution strategy for obtaining the 

distribution of damping material is proposed. For the similarity of the optimal layouts and the 

steady-state amplitude contours, the damping material distribution can be achieved according 

to the steady-state responses from the initial structure by assigning the element to be solid if its 

amplitude are larger than a threshold and to be void if its amplitude are smaller than a threshold. 

The threshold is determined by material volume limit. According to this strategy, the material 

distributions can be obtained rapidly and the comparison between the optimal layouts and the 

layouts obtained by new strategy is shown in Fig 5.14. 

Table 5.1 Comparison of the objective values in different cases 

Case Frequency 
Objective Value 

Bare Plate Optimal  New Strategy Full Coverage 

1 15Hz 2.7988 1.7014 1.7016 1.6506 

2 60Hz 0.5952 0.2472 0.2446 0.2351 

3 90 Hz 0.2962 0.1914 0.1923 0.1923 

4 150Hz 0.1570 0.1348 0.1482 0.1750 

5 200Hz 0.0715 0.0419 0.0429 0.0429 

6 300Hz 0.0703 0.0257 0.0290 0.0271 

      New Strategy * represents the layout obtained by steady-state response of initial structure 

As seen in Table 5.1, most of the optimization cases have remarkable reduction on the objective 

values and some of them are even better than full coverage cases which indicates the optimal 

layouts of damping materials have a better performance of energy dissipation. Besides that, the 

objective values of the layouts obtained from the steady-state responses of initial structure are 

very close to optimal objective values which indicates this strategy can be an alternative 

measure to achieve the optimal material distribution directly from the steady-state analysis of 

initial structure. In addition, Case 4 indicates another noticeable conclusion that the plate with 
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60Hz 

90Hz 

150Hz 

200Hz 

300Hz 

a) 

 

b) 

 Fig 5.14 Comparison between 

the optimal layouts and 

steady-state response layouts 

under 60Hz, 90Hz, 150Hz, 

200Hz and 300Hz. Series a) 

represent optimal layouts and 

Series b) represent steady-

state response layouts. 
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fully covered damping material may not only cannot suppress vibration but also even strength 

the vibration behaviour in some cases. The result demonstrates the necessity of damping 

materials distribution optimization. 

Although the new strategy is able to achieve a damping material layout which has similar 

performance as the optimal layout, there is a prerequisite for implying this strategy. That is the 

damping layer should have a small effect on the natural frequency of base plate. If the addition 

of damping layer has a remarkable effect on dynamic characteristics, it probably keeps 

changing the mode of the structure to completely different shapes during the optimization 

process. In this situation, the layout obtained from the steady-state response would not work. 

But if the condition satisfied, we can obtain a feasible layout from its steady-state response 

which could save a lot of time and computation sources. 

5.6 Summary 

This chapter investigates topology optimization of damping layers in a vibrating structure under 

harmonic excitations. An artificial damping material mode with penalization that has a similar 

form as in the SIMP approach is suggested. Numerical examples are given for illustrating the 

applicability and efficiency of the present approach. Optimal topologies obtained under 

different excitation frequencies and damping coefficients are also compared. Similar as many 

other formulations for optimization of structural dynamic behaviours, the considered topology 

optimization problem is in nature a highly non-convex one, characterized by multiple local 

optima. However, numerical experiences in this study confirm that the present approach is 

usually able to provide meaningful solutions for guiding the layout design of the damping layer 

at a reasonable computational cost. In addition, a rapid strategy to obtain a feasible damping 

material layout from the steady-state response analysis has been proposed. Based on the 

investigation, the following conclusion can be drawn: 

 A free damping material layer plate with optimized material distribution could achieve 

a similar vibration reduction performance as the fully covered plate but with 50% less 

material volume. The results illustrate significance of the damping material distribution 

optimization in vibration suppression and minimizing structure; 

 Material distribution of damping layer on a base plate has a significant impact on 

structural dynamic characteristic. A plate with fully covered damping material may not 

always guarantee a better performance of vibration suppression; 

 The objective function should be sensitive to the distribution of damping material to 

ensure the success of the optimization process; 
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 The damping material tend to be distributed in the places with large amplitudes which 

help to dissipate vibration energy by taking advantage of the deformation of damping 

material. 

 If the additional damping layer has only a slight effect on the natural frequency 

compared to the base plate, a feasible material distribution layout could be obtained 

from the steady-state responses of initial structure. The performance of the material 

distribution layout obtained by this strategy is close to the one obtained by topology 

optimization in some cases. 

 

Compared with the bi-material topology optimization model in Chapter 4, the model proposed 

in this chapter has greatly improved the feasibility of topology optimization method. As long 

as there is a very tight contact between damping layer and base layer, free layer damping model 

is suitable for the vibration reduction design of plate structures. Usually strong adhesive could 

be used to manufacture the free layer damping plate. A possible application for FLD plate is to 

reduce car vibration during driving by laying damping materials inside, thus providing a more 

comfortable driving environment for car users. And at the same time, by using the model 

proposed in this Chapter, less damping materials are needed thereby reducing the cost to apply 

this strategy as well. In addition, the model can expand its application scope by building 

different finite element models.  
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Chapter 6 Application to passive constrained 

layer damping plate  

6 Application to passive constrained layer damping plate 

From the conclusion obtained in Chapter 5, an additional damping layer on a base plate has a 

significant impact on vibration characteristic of the whole structure and a proper material 

distribution of damping layer usually lead to a better performance of vibration suppression. In 

order to enhance the energy dissipated by the damping material, it’s natural to consider adding 

an extra stiff layer on the top of the damping layer to enlarge the shear deformation of the 

damping material so that increase vibration energy dissipation. In decades, after the first studies 

of constrained damping treatments, this area has been regarded as an effective way to suppress 

structural vibrations and sound radiation. In this Chapter, a topology optimization model has 

been proposed to obtain the optimal layout of constrained damping material treatments to 

enhance energy dissipation and suppress structural vibration in an economical and effective 

way. 

6.1 Analytical solutions for passive constrained layer damping plate 

7  

Fig 6.1 The dimensions and displacements of the sandwich plate 

The three-layered plate under consideration and layer displacements are shown in Fig 6.1 where 

ℎ1, ℎ2, and ℎ3 are the thicknesses of the base plate, viscoelastic layer and constrained layer, 

respectively; 𝑎 , 𝑏  are geometrical dimension of three-layered plate; 𝑤  is the longitudinal 

displacements in the mid-plane; 𝜙𝑥  is the rotation of the normal to the mid-lane of the 

viscoelastic core layer. 𝜙𝑥  given in the Fig 6.1 are positive. Before deriving the analytical 

solution for sandwich plate, some assumptions are made: 

1) no transverse shear deformation happens in face-layers;  
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2) no slip between the core and face-layers 

3) only consider the transverse inertia effects of the plate 

4) the core only carries transverse shear, no in-plane 

6.1.1 The relations of displacements 

Based on the classical laminate theory, the relations of between the displacements and strains 

in face layers can be expressed to be as follows:     

 {

𝜀𝑥
(𝑖)

𝜀𝑦
(𝑖)

𝛾𝑥𝑦
(𝑖)

} = {

𝜕𝑢𝑖 𝜕𝑥⁄

𝜕𝑣𝑖 𝜕𝑦⁄

𝜕𝑢𝑖 𝜕𝑦⁄ + 𝜕𝑣𝑖 𝜕𝑥⁄
} = {

𝜕𝑢0𝑖 𝜕𝑥⁄

𝜕𝑣0𝑖 𝜕𝑦⁄

𝜕𝑢0𝑖 𝜕𝑦⁄ + 𝜕𝑣0𝑖 𝜕𝑥⁄
} − 𝑧 {

𝜕2𝑤 𝜕𝑥2⁄

𝜕2𝑤 𝜕𝑦2⁄

2𝜕2𝑤 𝜕𝑥𝜕𝑦⁄

}  𝑖 = 1,3 (6.1) 

Where 𝜀𝑥, 𝜀𝑦 and 𝛾𝑥𝑦 are the strain components in three directions. 𝑢, 𝑣 are the displacement in 

𝑥- and 𝑦- direction. 𝑤 is the longitudinal displacements in the mid-plane. And 𝑖 = 1 stands for 

base layer and 𝑖 = 3 for cover layer. The shear strains 𝛾𝑥𝑧
(2)

 and 𝛾𝑦𝑧
(2)

 of viscoelastic core layer 

as follow: 

 
𝛾𝑥𝑧
(2)
= 𝜙𝑥 +

𝜕𝑤

𝜕𝑥

𝛾𝑦𝑧
(2) = 𝜙𝑦 +

𝜕𝑤

𝜕𝑦

 (6.2) 

Where 𝜙𝑥 and 𝜙𝑦 are the rotations along 𝑦- and 𝑥-axis. As shown in Fig 6.1, The continuity 

of displacements at the interfaces between the core and the face layers requires that the 

following relations hold: 

 
𝑢1 −

ℎ1
2

𝜕𝑤

𝜕𝑥
= 𝑢2 −

ℎ2
2
𝜙𝑥

𝑢3 +
ℎ3
2

𝜕𝑤

𝜕𝑥
= 𝑢2 +

ℎ2
2
𝜙𝑥

 (6.3) 

Where ℎ1, ℎ2, and ℎ3 are the thicknesses of the base plate, viscoelastic layer and constrained 

layer, respectively. similar equations are true in the 𝑦 direction and Eq.(6.3) are used, then : 

 
𝛾𝑥𝑧
(2)
= (𝑢3 − 𝑢1 + ℎ

𝜕𝑤

𝜕𝑥
)/ℎ2

𝛾𝑦𝑧
(2)
= (𝑣3 − 𝑣1 + ℎ

𝜕𝑤

𝜕𝑦
)/ℎ2

 (6.4) 

where ℎ =
(ℎ1+2ℎ2+ℎ3)

2
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6.1.2 The governing equations of free vibration 

 

Fig 6.2  a) and b) Free body diagram of the constrained layer and base layer; c) Free body diagram of 

viscoelastic layer 

Fig 6.2 shows the positive direction of the axial forces, moments and shear forces for each layer. 

The axial forces and moments of the constrained layer and base layer can be represented as 

follow: 

 

[

𝑁𝑥
(𝑖)

𝑁𝑦
(𝑖)

𝑁𝑥𝑦
(𝑖)

] =
𝐸𝑖ℎ𝑖

1 −  𝜇
𝑖

[
 
 
 
1  𝜇

𝑖
0

 𝜇
𝑖

1 0

0 0
1 −  𝜇

𝑖

2 ]
 
 
 

[

𝜕𝑢0𝑖 𝜕𝑥⁄

𝜕𝑣0𝑖 𝜕𝑦⁄

𝜕𝑢0𝑖 𝜕𝑦⁄ + 𝜕𝑣0𝑖 𝜕𝑥⁄
]

[

𝑀𝑥
(𝑖)

𝑀𝑦
(𝑖)

𝑀𝑥𝑦
(𝑖)

] =
𝐸𝑖ℎ𝑖

3

12(1 −  𝜇
𝑖
2)
[
 
 
 
1  𝜇

𝑖
0

 𝜇
𝑖

1 0

0 0
1 −  𝜇

𝑖

2 ]
 
 
 

[

𝜕2𝑤 𝜕𝑥2⁄

𝜕2𝑤 𝜕𝑦2⁄

2𝜕2𝑤 𝜕𝑥𝜕𝑦⁄

]

 (6.5) 

Where 𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦  are the axis forces and 𝑀𝑥 , 𝑀𝑦 , 𝑀𝑥𝑦 are the moments. 𝜇 is Poissons’ ratio 

and 𝐸  is Young’s modulus. 𝑢, 𝑣  are the displacement in 𝑥 - and 𝑦 - direction. 𝑤  is the 

longitudinal displacements in the mid-plane. For the viscoelastic core layer, which carries only 

shear stress, the constitutive equations are 

 𝜏𝑥𝑧 = 𝐺2
∗𝛾𝑥𝑧, 𝜏𝑦𝑧 = 𝐺2

∗𝛾𝑦𝑧  (6.6) 

Where 𝐺2
∗  is a complex shear modulus, 𝐺2

∗  = 𝐺2(1 + 𝑖𝜂𝑣) , 𝐺2  is the real shear modulus 

and 𝜂𝑣 is material loss factor in this expression. For the base layer, the force equilibrium in 𝑥, 

𝑦 and 𝑧 directions yields 

 

𝜕𝑁𝑥
(1)

𝜕𝑥
+
𝜕𝑁𝑦𝑥

(1)

𝜕𝑦
+ 𝜏𝑧𝑥

(2) = 0

𝜕𝑁𝑥𝑦
(1)

𝜕𝑥
+
𝜕𝑁𝑦

(1)

𝜕𝑦
+ 𝜏𝑧𝑦

(2) = 0

𝜕𝑄𝑥
(1)

𝜕𝑥
+
𝜕𝑄𝑦

(1)

𝜕𝑦
= 𝜌1ℎ1

𝜕2𝑤

𝜕𝑡2

 (6.7) 
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Based on the moment equilibrium, the following equations hold  

 

𝜕𝑀𝑥
(1)

𝜕𝑥
+
𝜕𝑀𝑥𝑦

(1)

𝜕𝑦
− 𝑄𝑥

(1) −
ℎ1
2
𝜏𝑧𝑥
(2) = 0

𝜕𝑀𝑥𝑦
(1)

𝜕𝑥
+
𝜕𝑀𝑦

(1)

𝜕𝑦
− 𝑄𝑦

(1) −
ℎ1
2
𝜏𝑧𝑦
(2) = 0

  (6.8) 

Substitute the Eq.(6.7) into Eq.(6.8) to eliminate 𝑄𝑥
(1) and 𝑄𝑦

(1) to obtain 

 
𝜕2𝑀𝑥

(1)

𝜕𝑥2
+
𝜕2𝑀𝑦

(1)

𝜕𝑦2
− 2

𝜕2𝑀𝑥𝑦
(1)

𝜕𝑥𝜕𝑦
−
ℎ1
2
(
𝜕𝜏𝑥𝑧

(2)

𝜕𝑥
+
𝜕𝜏𝑦𝑧

(2)

𝜕𝑦
) = 𝜌1ℎ1

𝜕2𝑤

𝜕𝑡2
   (6.9) 

For the constrained layer, similar to the base layer, only the directions of are opposite. 

The following equations are obtained following the same rules. 

 

𝜕𝑁𝑥
(3)

𝜕𝑥
+
𝜕𝑁𝑦𝑥

(3)

𝜕𝑦
− 𝜏𝑧𝑥

(2) = 0,

𝜕𝑁𝑥𝑦
(3)

𝜕𝑥
+
𝜕𝑁𝑦

(3)

𝜕𝑦
− 𝜏𝑧𝑦

(2) = 0,

𝜕2𝑀𝑥
(3)

𝜕𝑥2
+
𝜕2𝑀𝑦

(3)

𝜕𝑦2
− 2

𝜕2𝑀𝑥𝑦
(3)

𝜕𝑥𝜕𝑦
−
ℎ3
2
(
𝜕𝜏𝑥𝑧

(2)

𝜕𝑥
+
𝜕𝜏𝑦𝑧

(2)

𝜕𝑦
) = 𝜌3ℎ3

𝜕2𝑤

𝜕𝑡2

 (6.10) 

 

Applied the same to the 𝑧 direction of viscoelastic layer results in:  

 
𝜕𝑄𝑥

(2)

𝜕𝑥
+
𝜕𝑄𝑦

(2)

𝜕𝑦
+ 𝜌2ℎ2

𝜕2𝑤

𝜕𝑡2
= 0   (6.11) 

Where 𝑄𝑥
(2) = ℎ2𝜏𝑥𝑧

(2) and 𝑄𝑦
(2) = ℎ2𝜏𝑦𝑧

(2). According to the principle of virtual work, in which Eq. 

(6.8)-Eq. (6.11) are used, the governing equations of motion for sandwich plate with 

constrained damping layer are as follows: 

𝜕𝑁𝑥
(1)

𝜕𝑥
+
𝜕𝑁𝑦𝑥

(1)

𝜕𝑦
+ 𝜏𝑧𝑥

(2) = 0,
𝜕𝑁𝑥𝑦

(1)

𝜕𝑥
+
𝜕𝑁𝑦

(1)

𝜕𝑦
+ 𝜏𝑧𝑦

(2) = 0,

𝜕𝑁𝑥
(3)

𝜕𝑥
+
𝜕𝑁𝑦𝑥

(3)

𝜕𝑦
− 𝜏𝑧𝑥

(2) = 0,
𝜕𝑁𝑥𝑦

(3)

𝜕𝑥
+
𝜕𝑁𝑦

(3)

𝜕𝑦
− 𝜏𝑧𝑦

(2) = 0,

𝜕2𝑀𝑥
(1)

𝜕𝑥2
+
𝜕2𝑀𝑦

(1)

𝜕𝑦2
+
𝜕2𝑀𝑥

(3)

𝜕𝑥2
+
𝜕2𝑀𝑦

(3)

𝜕𝑦2
+ 2(

𝜕2𝑀𝑥𝑦
(1)

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑥𝑦

(3)

𝜕𝑥𝜕𝑦
) − ℎ(

𝜕𝜏𝑥𝑧
(2)

𝜕𝑥
+
𝜕𝜏𝑦𝑧

(2)

𝜕𝑦
) = 𝜌

𝜕2w

𝜕𝑡2

 (6.12) 

where𝜌 = 𝜌1ℎ1 + 𝜌2ℎ2 + 𝜌3ℎ3, these five equations include four in-plane equilibrium equations, 

two for shell and two for constrained layer and on transverse dynamic equation. Then substitute 

Eq. (6.5) into Eq. (6.12) to represent the results by displacements (101) 

6.1.3 Analytical solution for free vibration 

Simply supported boundary conditions are adopted in this thesis, which are 
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i. at 𝑥 = 0, 𝑎: 𝑣1 = 𝑣3 = 0, 𝑤 = 0 

ii. at 𝑦 = 0, 𝑏: 𝑢1 = 𝑢3 = 0, 𝑤 = 0 

For these boundary conditions the displacements and electric potential have the forms: 

 

𝑢𝑖(𝑥, 𝑦, 𝑡) = 𝑈𝑖 cos
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒𝑖𝜔

∗𝑡

𝑣𝑖(𝑥, 𝑦, 𝑡) = 𝑉𝑖sin
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏
𝑒𝑖𝜔

∗𝑡           𝑖 = 1,3

𝑤(𝑥, 𝑦, 𝑡) = 𝑊sin
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒𝑖𝜔

∗𝑡

 (6.13) 

where 𝜔∗ is complex frequency, (ω∗)2 = 𝜔2(1 + 𝜂𝑣𝑖) where 𝜂𝑣 is the loss factor of structure. 

U1, 𝑉1, 𝑈3, 𝑉3,𝑊 
are the coefficients of the natural mode shapes. Substituting Eq. (6.13) into 

Eq. (6.12) and rewrite the equations in matrix form as follow 

 
𝑴𝑿̈ + 𝑲𝑿 = 0  

(6.14) 

where 𝑿 = {𝑢1, 𝑣1, 𝑢3, 𝑣3, 𝑤}
𝑇, M is the mass matrix and K is the matrix differential operator of 

stiffness. The substitution of solutions into Eq. (6.14) results in an eigenvalue problem, from 

which the eigenfrequencies and the vectors of eigenfunctions can be found. Rao D.K. [120] 

proposed the formulate to calculate circular frequency and loss factor of the plate from the 

complex eigenfrequencies for a given mode of vibration 

 
𝜔 = √𝑅𝑒((𝜔∗)2), 𝜂𝑣 = 𝐼𝑚((𝜔∗)2)/𝑅𝑒((𝜔∗)2) 

(6.15) 

In order to validate the equation derived as well as numerical procedures used in the paper, the 

natural frequencies and modal loss factors have been calculated for plates analysed in Johnson 

C.D.[121]. The plate is an isotropic symmetric plate with constrained damping layer 𝑎=0.3048 

m, 𝑏 = 0.348 m, ℎ1 =ℎ3 =0.762 mm, ℎ2 =0.254 mm, and 𝑣1 =𝑣3 =0.3, 𝐸1 =𝐸3 =6.89×1010 N/m2 

𝜌1=𝜌3=2.74×103 kg/m3, 𝜌2=0.999×103 kg/m3, 𝜂𝑣=0.5, 𝐺2=0.896×106 N/m2. 

Table 6.1 The natural frequencies and modal loss factors of a plate with PCLD 

Mode 

m , n 

Analytical solution[3] NASTRAN/MSE[3] Present solution 

Frequency

(Hz) 

Loss 

factor 

Frequency

(Hz) 

Loss 

factor 

Frequency

(Hz) 

Loss 

factor 

1 , 1 60.3 0.190 57.4 0.176 60.2 0.190 

1 , 2 115.4 0.203 113.2 0.188 115.2 0.203 

2 , 1 130.6 0.199 129.3 0.188 130.4 0.199 

2 , 2 178.7 0.181 179.3 0.153 178.5 0.181 

1 , 3 195.7 0.174 196.0 0.153 195.4 0.174 
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The predicted modal frequencies and the corresponding modal loss factors are tabulated against 

the exact solution in Table 6.1. A very well agreement with the closed form analytical solution 

can be found in the table above. 

6.1.4 Analytical solution of forced vibration 

To solve the equation of the forced vibration, the mode superposition method is often used. For 

the continued plate structure, there are infinite number of natural frequencies and associated 

vibration modes. We express the dynamic deflections of the plate separable in space and time 

and in terms of all vibration modes: 

  

𝑢𝑖(𝑥, 𝑦, 𝑡) = ∑ 𝑈𝑚𝑛
(𝑖) cos

𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒𝑖𝜔𝑡

∞

𝑚,𝑛=1

𝑣𝑖(𝑥, 𝑦, 𝑡) = ∑ 𝑉𝑚𝑛
(𝑖) sin

𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏
𝑒𝑖𝜔𝑡

∞

𝑚,𝑛=1

  𝑖 = 1,3

𝑤(𝑥, 𝑦, 𝑡) = ∑ 𝑊𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒𝑖𝜔𝑡

∞

𝑚,𝑛=1

 (6.16) 

Where 𝑈𝑚𝑛
(𝑖)

,  𝑉𝑚𝑛
(𝑖), 𝑊𝑚𝑛   are the unknown (𝑚, 𝑛) order normal coordinates to be determin

ed. Assume load 𝑓(𝑥, 𝑦)𝑖𝜔𝑡 applied at the centre of the plate in 𝑧 direction. Then   the ge

neralized force can be obtained as follow: 

 𝑃𝑚𝑛(𝑡) = ∫ ∫ 𝑊𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑝(𝑥, 𝑦)𝑒𝑖𝜔𝑡𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

   (6.17) 

Then the force vector 𝑭 = {0,0,0,0, 𝑃𝑚𝑛(𝑡)}
𝑇 is applied at the right side of the Eq. (6.14). The 

maximum amplitude of steady state response can be solved after the normal natural modes and 

according normal coordinates are obtained. 

 𝑤(𝑥, 𝑦, 𝑡) = ∑ 𝑊𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒𝑖𝜔𝑡

∞

𝑚,𝑛=1

 (6.18) 

A same example as in section 6.1.3 is taken here to validate the performance of the constrained 

damping layer model. A unit transverse harmonic point load of 1N at the centre of the plate. 

Fig 6.3 shows the transverse frequency response function, calculated from Eq. (6.18) by using 

𝑚 = 1~10 and 𝑛 = 1~10 of the loading point.  
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Fig 6.3 Displacement frequency response of base plate, free damping layer plate and constrained damping layer 

plate 

As seen in Fig 6.3, dash blue curve and green curve represents the frequency response of the 

bare plate and free damping layer plate respectively which obtained from the finite element 

method represented in Chapter 3 and Chapter 4. The red curve represents the constrained 

damping layer plate. As expected, significant damping effects appeared in the constrained 

damping layer plate case. The answer can be found in Eq. (6.4). For the vibration energy 

dissipation is mostly due to the shear deformation of the viscoelastic core, the difference of in-

plane displacements between the constrained damping layer and base layer in Eq. (6.4) 

contributes to the extra shear strain which lead to more energy dissipation. In addition, the 

constrained layer also makes the whole model stiffer which help to reduce the vibration 

amplitude.  

For the free damping layer plate, an obvious reduction of the displacement amplitude can also 

be seen in Fig 6.3. That is because the additional damping materials are attached to the bare 

plate which has been explained in Chapter 5. It is also seen that as the shear modulus of 

viscoelastic material is quite small compared to the elastic modulus of the bare plate, the peaks 

of the frequency responses of the free damping layer plate is very close to that of the bare plate. 

However, in constrained damping layer model case, as the presence of the constrained layer, 

frequency shift phenomenon occurred. Overall, one conclusion can be drawn that the plate 

model with constrained damping layer has a better performance of vibration reduction than the 

bare plate and the free damping layer model. 
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Fig 6.4 Displacement frequency responses with different constrained layer thicknesses 

 

Fig 6.5 Displacement frequency responses with different viscoelastic layer thicknesses 

Fig 6.4 and Fig 6.5 show the comparison of viscoelastic core layer and constrained layer with 

different thicknesses. In Fig 6.4, the thickness of the viscoelastic core layer is kept as 0.254mm 

and the thicknesses of the constrained layer varies from 0.084mm to 0.762mm. In Fig 6.5, the 

thickness of the constrained layer is kept as 0.762mm while the viscoelastic layer varies from 

0.084mm to 0.762mm. It is seen that increasing the thickness of both two layers respectively 

resulted in a better performance of vibration suppression. However, the increasing of 

constrained layer has a continuous decreasing effect on the vibration amplitude while the same 

phenomenon is not that obvious for viscoelastic layer. When the thickness of viscoelastic layer 

reaches 0.254mm (red line in Fig 6.5), there is no obvious decreasing of the vibration amplitude 

when the thickness of the viscoelastic core layer continues to increase. 
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6.2 Modal loss factor definition 

For viscoelastic material, hysteretic damping is adopted instead of Rayleigh damping in FE 

modelling. Hysteretic damping is a type of dissipation that is a function of friction within a 

material. This form of damping is observed to not increase with frequency. Therefore more 

suitable for describing the behaviour of viscoelastic material.  

Shearing is assumed to be the only significant energy storage mechanism in the viscoelastic 

core, and dissipation under harmonic loading is introduced by taking the core shear modulus to 

be complex. In a certain frequency range, the shear modulus can be described approximately 

by a linear and viscoelastic, frequency-independent, complex constant shear modulus as Nakra 

B.C. et al.[122] 

 𝐺𝑣
∗ = 𝐺𝑣(1 + 𝑖𝜂𝑣) (6.19) 

The main objective in vibration damping is to dissipate the vibration energy, which can be 

achieved by maximizing the modal loss factors. Based on our FE model, the dynamic equations 

for free vibration of the structure with viscoelastic materials has the form as 

 𝑴𝑿̈ + (𝑲𝑹 + 𝑗𝑲𝑰)𝑿 = 0 (6.20) 

where M is the global mass matrix, 𝑲𝑹 is the real part of the global stiffness matrix, 𝑲𝑰 is the 

imaginary part of the global stiffness matrix, and X is the displacement vector. Then, the rth 

modal loss factor can be found using FE-MSE method[121] 

 𝜂𝑟 =
𝚽𝑟
𝑇𝑲𝑰𝚽𝐫

𝚽𝑟
𝑇𝑲𝑹𝚽𝐫

 (6.21) 

Where 𝚽𝐫 is the rth mode shape vector of the associated undamped system. 

6.3 MAC tracking technique in topology optimization problem 

Pseudo modes is an inevitable problem when the objective function is highly related to the 

eigenvalues and eigenvectors eg. Modal damping ratio in this case. Pseudo modes may lead to 

erroneous results and evoke instability in optimization process. The desired solutions can be 

obtained by removing the elements from the finite element model when they become void. 

However, this is not feasible in topology optimization based on SIMP model because once the 

element has been removed it is not possible for it to come back. In this Chapter, two measures 

have been taken to avoid the pseudo modes problem. The first one is to increase the eigenvalues 

of the local low density area by penalizing the mass matrix more than stiffness matrix. As low 
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order modes of the structure are mainly concerned in this case, the mass of void elements will 

be small compared with their stiffness, low order pseudo modes will vanish. Secondly, the 

MAC[102] tracking technique is introduced as constraint in optimization problem. The modal 

assurance criterion (MAC) defined as follows: 

 𝑀𝐴𝐶 =
(𝜱0

𝑇𝜱𝑟)
2

(𝜱0
𝑇𝜱0)(𝜱𝑟

𝑇𝜱𝑟)
 (6.22) 

Where 𝜱𝟎  and 𝜱𝒓  are column vectors respectively describing the targeted and objective 

mode shapes. MAC represents the degree of correlation between the two vectors. Its value 

varies between 0 and 1, and it defines the degree of resemblance between vectors 𝜱𝟎 and 𝜱𝒓, 

where a higher value indicates a greater degree of similarity. To synthesize the objective 

eigenmodes, MAC is added in the optimization as a new constraint: 

 𝛿 −
(𝜱0

𝑇𝜱𝑟)
2

(𝜱0
𝑇𝜱0)(𝜱𝑟

𝑇𝜱𝑟)
≤  0 (6.23) 

Where 𝛿  is a bound value, or a threshold which defines the minimal degree in similarity 

between the 𝑟th target and objective modes. 

6.4 Topology optimization of PCLD plate 

The same as before, the SIMP is used as interpolation schemes of variable density methods. 

Define the relative densities as the design variable vector 𝝆 = {𝜌1, 𝜌2, …  𝜌𝑁𝑒}, 𝑁𝑒 denotes the 

total number of the elements. The design domain contains not only viscoelastic layer but also 

its corresponding constraining layer. Then, the SIMP model can be expressed as 

 

𝑲 = 𝑲(1) +∑𝜌𝑒
𝑝
(𝑲(1) + 𝑗𝜂𝑣𝑲

(2) + 𝑲(3))

𝑁𝑒

𝑒=1

𝑴 = 𝑴(1) +∑𝜌𝑒
𝑞
(𝑴(2) +𝑴(3))

𝑁𝑒

𝑒=1

 (6.24) 

Where 𝑲(1) and 𝑴(1) are the stiffnessmatrix and mass matrix of the base layer, 𝑲(2) and 𝑴(2) 

are the real part of the stiffness matrix and mass matrix of the 𝑥th element of viscoelastic layer, 

respectively, and 𝑲(3) and 𝑴(3) are the real part of the stiffness matrix and mass matrix of the 

𝑥 th element of constraining layer, respectively. 𝑝  and q are the penalization factors. These 

penalty factors are used to accelerate the convergence of iteration results and obtain a clear 

pattern of the constrained damping layer treatments on the plate. In this Chapter, 𝑝 = 𝑞 =3 are 

applied in the topology optimization problem. 

For convenience, the objective function is selected as the inverse of the modal loss factor, which 
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transforms the maximum problem to a minimum problem. Furthermore, in order to get an 

averaged effect over multi-mode, we define the final objective function Π as 

 Π =∑
𝑎𝑟
𝜂𝑟

𝑟

 (6.25) 

Where 𝑎𝑟  is the associated weighting factor and satisfies∑ 𝑎𝑟𝑟 = 1 . The mathematical 

formulation of the optimization problem is defined as  

   

   𝑀𝑖𝑛:     Π = ∑
𝑎𝑟
𝜂𝑟

𝑟

    𝑠. 𝑡.     ∑𝜌𝑒𝑉𝑒 − 𝛼𝑉0

𝑁𝑒

𝑒=1

            𝜙𝑟
𝑇(𝑲𝑟 − 𝜆𝑟𝑴)𝜙𝑟 = 0

            𝛿 −
(𝜱0

𝑇𝜱𝑟)
2

(𝜱0
𝑇𝜱0)(𝜱𝑟

𝑇𝜱𝑟)
≤  0

            0 ≤ 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1,   𝑒 = 1,2, … , 𝑁𝑒

 (6.26) 

Where 𝜱𝟎  and 𝜱𝒓  are column vectors respectively describing the targeted and objective 

mode shapes. 𝑲𝑟  is the real part of stiffness matrix, 𝑴  is the mass matrix and 𝜆𝑟  is the rth 

eigenvalue. 𝜂𝑟 is the rth modal loss factor. Symbol 𝛼 denotes the volume fraction ratio and V𝑒 is 

the damping material volume of the 𝑒 th element when 𝜌𝑒 = 1 .  𝑉0  is the volume limit for 

damping material. 𝛿 is a bound value for MAC tracking. 

6.5 Sensitivity analysis of MDR 

The sensitivity of the objective function with respect to the design variables can be expressed 

from Eq. (6.26)  

 
𝜕Π

𝜕𝜌𝑒
=∑𝑎𝑟

𝜕

𝜕𝜌𝑒
(
1

𝜂𝑟
)

𝑟

 (6.27) 

Where 

 
∂

𝜕𝜌𝑒
(
1

𝜂𝑟
) =

∂(𝜱𝑘
𝑇𝑲𝑹𝜱𝑘)
𝜕𝜌𝑒

(𝜱𝑘
𝑇𝑲𝑰𝜱𝑘) −

∂(𝜱𝑘
𝑇𝑲𝑰𝜱𝑘)
𝜕𝜌𝑒

(𝜱𝑘
𝑇𝑲𝑹𝜱𝑘)

(𝜱𝑘
𝑇𝑲𝑰𝜱𝑘)

2
 (6.28) 

Here, for convenience, orthonormal modes are used. That is 

 𝜱𝑘
𝑇𝑴𝜱𝑘 = 1, 𝜱𝑘

𝑇𝑲𝜱𝑘 = 𝜆𝑘 (6.29) 

Then, the Eq. (6.28) can be rewritten as 

 ∂

𝜕𝜌𝑒
(
1

𝜂𝑟
) =

∂𝜆𝑘
𝜕𝜌𝑒

(𝜱𝑘
𝑻𝑲𝑰𝜱𝑘) − 𝜆𝑘 (2 (

∂𝜱𝑘

𝜕𝜌𝑒
)
𝑇

𝑲𝑰𝜱𝑘) +𝜱𝑘
𝑻 𝑲𝑰

𝜕𝜌𝑒
𝜱𝑘

(𝜱𝑘
𝑻𝑲𝑰𝜱𝑘)

2
 

(6.30) 

Based upon the work by Lee and Jung[124], the sensitivities of eigenvalue and eigenvector are 
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found as  

 

{
 

 
𝜕𝜱𝑘

𝜕𝜌𝑒
𝜕𝝀𝑘
𝜕𝜌𝑒 }

 

 

= [
𝑲𝑅 − 𝜆𝑘𝑴 −𝑴𝜱𝑘

−𝝓𝑘
𝑇𝑴 0

]

{
 

 − (
𝜕𝑲𝑅

𝜕𝜌𝑒
− 𝜆𝑘

𝜕𝑴

𝜕𝜌𝑒
)𝜱𝑘

0.5𝝓𝑘
𝑻
𝜕𝑴

𝜕𝜌𝑒
𝜱𝑘 }

 

 

 (6.31) 

6.6 Numerical studies 

A simply supported sandwich plate is considered in this section. It has the same dimensions as 

the validation case except the constrained layer with thickness of 0.254 mm. The base plate and 

constrained layer are made of aluminium and treated with viscoelastic sheets of DYAD606 from 

SOUNDCOAT Company (Ling Z. et al.[111]). Physical parameters of viscoelastic core sheet are 

𝐺𝑣 = 20MPa, 𝑣𝑣 = 0.48, 𝜌𝑣 = 1140 kg/m3 and 𝜂𝑣 = 0.5. The aluminium plate has the constant 

properties of 𝐸𝐼=69.0GPa, 𝑣𝐼= 0.33, and 𝜌𝐼 = 2700 kg/m3. The boundary conditions are taken 

as simply supported at edges of base plate with unrestrained core and constrained layer on the 

top. 20 × 20 mesh and 400 elements in total are used in the FE model. 

Fig 6.6 shows the optimal layouts of the constrained damping layer when the first, second and 

third modal damping ratios are maximized. We could find that when the boundary conditions 

are symmetric, the optimal layouts are symmetrical as well. Fig 6.6 d), Fig 6.6 e) and Fig 6.6 

f) show the corresponding mode of the constrained damping layer model. As seen in the Fig 

6.6, the optimal layouts are related to the corresponding mode shapes. Fig 6.6 c) is similar to 

Fig 6.6 b) rotated by 90 degrees. The same difference can be seen between the mode shapes 

shown in Fig 6.6 e) and Fig 6.6 f).  

 Fig 6.6 The optimal topology layouts and corresponding mode for the first, second and third modal damping ratio case 

x 

y 

x 
z 

y 

a)                     b)             c) 

d)                     e)              f) 
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Fig 6.7-Fig 6.9 reflect the evaluation process of the first three modal damping ratios when 

iteration numbers increase. It can be seen that these modal damping ratios increase with 

iteration numbers gradually until the maximums are achieved. Especially in Fig 6.9 and Fig 

6.9, both objective modal damping ratios become the largest ones after about 40 iterations while 

the other two modal damping ratios almost keep the same as the initial value. The results 

indicate the optimization algorithm is capable of achieving a material distribution with a higher 

modal damping ratio. However, because the modal damping ratio is very sensitive to the 

material distribution, the optimization process is not stable enough, a slight fluctuant can be 

found in all three figures Fig 6.7-Fig 6.9. 

Fig 6.7 Iteration histories for different modes when objective function is the 1st modal damping ratio 

 

Fig 6.8 Iteration histories for different modes when objective function is the 2nd modal damping ratio 
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Fig 6.9 Iteration histories for different modes when objective function is the 3rd modal damping ratio 

Another phenomenon is worth to investigate. As shown in Fig 6.6, the void elements are 

concentrated in the centre of plate which is exactly opposite to results obtained in Chapter 5 

(see Fig 5.12(a)). The same results can be found in Fig 6.6 (b)&(e) and Fig 6.6 (c)&(f) as well. 

Usually, the places with the maximum amplitudes are void while the edges of the plate are 

distributed with solid elements. 

In order to explain this phenomenon, the gradient contours of mode shapes are shown in Fig 

6.10 a), b) and c) which represents the gradient contours of first, second and third mode 

respectively. The red lines represent the region with large deformation gradient, the blue lines 

indicate the deformation of that region is flatter than red ones. From this figure, we could find 

a good match with the optimal layouts in Fig 6.6. The viscoelastic material and constrained 

layer always distribute in the region with large deformation gradient. An explanation for this is 

that the large gradient will lead to large relative deformation between viscoelastic material and 

stiff face layer which increase the energy dissipation in corresponding mode. It’s a different 

Fig 6.10 The gradient contours of first three mode shapes 

a)                        b)                        c) 
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optimization logic when the modal damping ratio is chosen as the objective function.  

Usually, by using mode superposition method, good approximate steady-state amplitude 

solutions can be obtained via superposition with only first few mode shapes. Thus we can 

choose the objective function as the combination of several modal damping ratios to achieve a 

boarder range of vibration suppression. In next case, we consider the rectangular plate with first 

three modes as objective and the weighting factors in the objective function are 𝑎1 = 0.3, 𝑎2 =

0.4 and 𝑎3 = 0.3. Fig 6.11 shows the optimal layout of constrained damping layer. Compared 

to the optimal layouts in Fig 6.6, it looks like the combination of the three layouts in Fig 6.6. 

Fig 6.12 shows the evaluation of the modal damping ratio when the iteration increase. As we 

expected, all three modal damping ratios increase gradually. The frequency responses at the 

centre point of the rectangle plate with three different material distributions are illustrated in 

Fig 6.13. It can be seen that, although the results of the partial coverage case are not as good as 

that of the full coverage case, they still achieve significant improvement comparing with the 

results of the bare plate, and have 50% weight of the constrained damping patch saved 

comparing with the full covered case. 

 

 

 

 

 

 

 

Fig 6.11 The optimal layout of constrained damping layer when first 

three modal damping ratios are objective function 

Fig 6.12 Iteration histories for different modes when objective function is first three modal damping ratios 
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6.7 Summary 

The analytical solution of constrained damping layer plate model has been obtained in this 

Chapter and vibration reduction effects of this sandwich structure has also been discussed. The 

results indicate that constrained damping layer model could achieve a better performance of 

vibration energy dissipation than the free damping layer model. Then a topology optimization 

approach was proposed to design of the constrained damping layer treatments on flat base plates. 

In the proposed approach, an interface finite element is introduced to modelling the viscoelastic 

layer of constrained damping layer treatment to simplify the FE model in the optimization 

procedure. The SIMP interpolation scheme is applied to generate the mass and stiffness 

matrices of the structure. The optimal layout obtained in optimization achieve a remarkable 

effect on vibration suppression with 50% reduction of weight. Base on the investigation, the 

following conclusion can be drawn: 

 A stiff layer on a free damping layer treatments plate could increase the shear 

deformation of the viscoelastic core which would help to dissipate vibration energy. 

 The optimal layout based on maximum the modal damping ratio is related to the mode 

shapes and the constrained damping patches are more likely distributed in regions 

of mode shape with large deformation gradient. 

 As the modal damping ratio is sensitive to the material distribution, the optimization 

process is not stable enough, slight fluctuant can be found during the optimization 

process. But usually, an expected optimal result can be obtained after optimization. 

Fig 6.13tFrequency responses of base plate, fully covered plate and optimal layout plate 
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The performance of vibration reduction of the constrained damping layer plate is better than 

that of the plate with free damping layer, but the former is not as convenient as the latter in 

practical application considering that the addition of the constrained layer may have influence 

on the dynamic characteristics of the whole structure. A possible application of constrained 

layer damping plates is to achieve better properties as composite materials or as building 

materials to reduce vibration and achieve sound insulation. Since sandwich plate has been 

widely used in our life, its mature manufacturing process may be helpful for the application of 

the PCLD plate model proposed in this thesis. 

It is worth to point out that the work presented in this Chapter is limited to the case where the 

property of viscoelastic material is frequency-independent. It is, therefore, meaningful to carry 

out further study targeting to other frequency- dependent objective functions. Furthermore, the 

base structure is limited to the flat plat and also we assume there is no slip happened between 

cover layer and viscoelastic layer.  
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Chapter 7 Conclusion and recommendation for 

future work 

7 Conclusions and future work 

7.1 Conclusions 

This thesis has investigated the optimal distribution of damping material in vibrating structures 

subject to harmonic excitations by using topology optimization method. Objective functions 

for vibration suppression such as power flow response, dynamic compliance, steady-state 

vibration amplitude and modal damping ratio have been applied to topology optimization. The 

optimized topology layouts of three optimization models: bi-material, free damping layer plate 

and constrained damping layer plate also have been discussed. Advice of optimization strategy 

are given at the end of each chapter. The main conclusions are categorized into three parts: 

1) Bi-material topology optimization model: 

A Bi-material topology optimization model has been built for comparison between two 

topological designs with minimum power flow response and minimum dynamic 

compliance. The effect of Rayleigh damping ratio is discussed. Bi-material topology 

optimization model provides a general material mapping model which can be applied to 

almost all the SIMP models though it is a case study without clear engineering background. 

Conclusions are drawn as below: 

 The effect of the Rayleigh damping ratio has a great impact on optimal topology 

pattern. In addition, the stiffness damping coefficient has more remarkable effect on 

the result of topology optimization than the mass damping coefficient. 

 The reason for great effect on vibration suppression by redistributing material is that 

different material distribution will apply new dynamic characteristic on structure 

which drives the nearest resonance frequency as far away as possible from the 

prescribed excitation frequency, or has increased the gap between two neighbouring 

resonance frequencies as much as possible so that successfully avoid the resonance 

phenomenon occur. 

2) Free damping layer model: 

Based on the material interpolation method in bi-material optimization model, both simple 

supported and cantilever plate with free damping layer model under harmonic excitation 

are investigated. Different with the bi-material model, free damping layer model has been 

applied to the engineering problem for vibration suppression and noise reduction. 
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Conclusions are drawn as below: 

 A free damping material layer plate with optimized material distribution could achieve 

a similar vibration reduction performance as the fully covered plate but with 50% less 

material volume. The results illustrate significance of the damping material distribution 

optimization in vibration suppression and minimizing structure; 

 Material distribution of damping layer on a base plate has a significant impact on 

structural dynamic characteristic. A plate with fully covered damping material may not 

always guarantee a better performance of vibration suppression; 

 The damping material tend to be distributed in the places with large amplitudes which 

help to dissipate vibration energy by taking advantage of the deformation of damping 

material. 

 If the additional damping layer has only a slight effect on the natural frequency 

compared to the base plate, a feasible material distribution layout could be obtained 

from the steady-state responses of initial structure. The performance of the material 

distribution layout obtained by this strategy is close to the one obtained by topology 

optimization in some cases. 

3) Constrained damping layer model: 

Constrained damping layer structure is the most common structure in the real world among 

all three models. This kind of structure stem from the natural idea to add an extra stiff layer 

on the top of the damping layer to enlarge the shear deformation of the damping material 

so that increase vibration energy dissipation. Conclusions are drawn as below: 

 Increasing the thickness of viscoelastic layer and constrained layer respectively both 

resulted in a better performance of vibration suppression. However, the increasing of 

constrained layer has a continuous decreasing effect on the vibration amplitude while 

the same phenomenon is not that obvious for viscoelastic layer. 

 The optimal layout based on maximum the modal damping ratio is related to the mode 

shapes and the constrained damping patches are more likely distributed in regions 

of mode shape with large deformation gradient. 

 As the modal damping ratio is sensitive to the material distribution, the optimization 

process is not stable enough, slight fluctuant can be found during the optimization 

process. But usually, an expected optimal result can be obtained after optimization. 

7.2 Recommendations for future work 

The outcomes of the previous work demonstrate the importance of applying topology 

optimization method to structural design for vibration reduction. To further dig the potential of 
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this method, the following points summarize part of the future directions worth to work on: 

1) waves propagate along the periodic cells only within specific frequency bands called 

the pass bands, while these waves are completely blocked within other frequency bands 

called the stop bands. The band gap properties of metamaterials, such as Phononic 

crystals, has been widely concerned by many researchers, however, most of the 

applications in this area are related to acoustic and optical fields, the applications to the 

vibration control by topology optimization method are very limited. 

2) In this thesis, the current research is limited to optimization theory and numerical 

research work. In the future, the experimental platform of vibration active and passive 

control is established, and the experimental verification method related to structural 

vibration optimization is essential for further research on structural vibration topology 

optimization. 

3) The time spending on solving finite element model in topology optimization process is 

considerable. This situation is getting worse when solving large-scale finite element 

model with a great amount of degrees of freedom. While commercial finite element 

software is really good at solving large-scale liner equations. Thus a deeper integrating 

with mature finite element solver is always necessary. 
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9 Appendices 

10 Appendix I Analytical solutions for PCLD plate 

 

The governing equations of free vibration of sandwich represented by displacements 
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11 Appendix II Part of the Python code for ABAQUS package 

 

# Verison 1.2 

# Add Read_ESM function used to read STIFFNESS and MASS matrices from files. 

# Stop obtaining Element Elastic Energy from ABAQUS, Calculate Objective by external function  

# Delete Resubmit Function for it's useless. The reason, which is not sure enough, why ABAQUS 

collapse is MemoryError 

# Adopt SIMP model which means OC algorithm and sensitivity filter were introduced in this 

version 

# Add some help functions: Modify INP, Pre_Matrix, Result_Plot_SIMP 

#Version 1.3 

# SIMP Bi-Mateiral Model Static Optimization 

# Add Dynamic Optimization 

# Modify Obj_Cal for complex calculation 

# Fix a bug for Read_ESM function. It can't read MASS matrix before. 

# Fix a bug in preFlt function. distance of two elements should be sqrt of the sum of the 

squares of coordinates. 

# Add Self-define excitation frequency of load 

# Modify OC algorithm for Non-Negative in sqrt function 

#Version 1.4 

# Add Power-flow Objective function and redesign code structure which enable the code more 

compatible for different Objective function. 

# Fix excitation frequency. Should be natural(radian) frequency NOT cycles frequency 

# Add MMA Algorithm 

# Add Structural Intensity Function 

# Fix Structural Intensity Function under Global Coordinate System 

#Version 1.5 

# Add Restore Mechanism 

# Add Post-process  

# Revise the programming structure. Add global parameters setting 

# Add Final Run 

# Revise restore mechanism by global variables 

#Version 1.6 

# Add Displacement Objective 

# Add Free Damping Layer Model 

# Change the FEA run mode by command line 

# Add GROSS MATRIX READ function 

# Read Node Index as well as the Element Matrix 

# Add a function to change Node Number to DOF Number 

#Version 1.7 

# Add MDR Objective 

# Add Constrained Damping Layer Model 

# Add a function to construct gross stiffness/mass matrix for laminated plate 
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#Version 1.8 

# Rewrite the sensitivity of MDR by FORTRAN to improve the efficiency, now "mdr.dll" is used 

to solve the sensitivities of MDR. 

 

import os 

import time 

import pickle 

import numpy as np 

import numpy.linalg 

from numpy.ctypeslib import load_library,ndpointer 

from ctypes import c_int,c_double 

from caeModules import * 

import math, customKernel 

from AbaqusConstants import * 

from odbAccess import openOdb 

 

def Read_ESM(ESM_Name, STIF, MASS, NODENUM, NODESUM, DOFNUM, N, l1, l2, l3 , Slave, Master): 

    f=open(ESM_Name,'r') 

    E_line='Start' 

    E_NUM=0     

    while E_line<>'': 

        E_line = f.readline() 

        if E_line[3:17]=='ELEMENT NUMBER': 

            E_NUM=E_NUM+1 

        elif E_line[1:13]=='USER ELEMENT': 

            NODESUM=int(E_line[21:31].strip()) 

        elif E_line[3:16]=='ELEMENT NODES': 

            E_line = f.readline() 

            NODE_T=np.array(E_line[2:-1].strip().split(','),dtype=int) 

            E_line = f.readline() 

            DOFNUM=len(E_line.strip().split(',')) 

        Head=E_line[8:len(E_line)-1].strip() 

        if Head=='TYPE=STIFFNESS' and E_NUM<>0: 

            STIF[E_NUM-1],MASS[E_NUM-1]=Read_Matrices(f,N,Head[5:len(Head)],E_NUM) 

            if Slave<>[]: 

                # Construct DOF Index 

                NODE_T=list(np.kron(Node2DOF(NODE_T,l1,l2,l3),np.ones(DOFNUM,dtype=int))+np.kr

on(np.ones(NODESUM,dtype=int),range(DOFNUM))) 

                # Replace Constrained DOF 

                for i in range(len(Slave)): 

                    if Slave[i] in NODE_T: 

                        m=NODE_T.index(Slave[i]) 

                        NODE_T[m]=Master[i] 

                NODENUM[E_NUM-1]=NODE_T 
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    f.close() 

     

def Read_Matrices(f,N,Type,Enum): 

    Line_Matrix=[];K=np.zeros([N,N]);M=np.zeros([N,N]) 

    data_line = f.readline() 

    data_line=data_line.strip().split(',');data_line.pop()  

    while data_line[0]<>'**': 

        Line_Matrix.extend(data_line) 

        data_line = f.readline() 

        if data_line=='':break 

        data_line=data_line.strip().split(',') 

        if data_line[-1]=='': data_line.pop()   

    Line_Matrix.reverse() 

    for i in range(1,1+N):     

        for j in range(1,1+i): 

            K[i-1,j-1]=Line_Matrix.pop() 

            if i<>j:K[j-1,i-1]=K[i-1,j-1] 

    Line_Matrix.pop();Line_Matrix.pop() 

    for i in range(1,1+N):     

        for j in range(1,1+i): 

            M[i-1,j-1]=Line_Matrix.pop() 

            if i<>j:M[j-1,i-1]=M[i-1,j-1] 

    return K,M 

     

def Modify_INP(INP_name): 

    # Open *.INP 

    try: 

        f=open(INP_name+'.inp','r+') 

    except ValueError: 

        print 'Can\'t open {0}.inp'.format(INP_name)         

    E_line='Start' 

    while E_line<>'': 

        E_line = f.readline() 

        E_line=E_line.strip() 

        if E_line=='*End Step': 

            f.seek(-11,2) 

            f.write("*FILE FORMAT, ASCII\n*ELEMENT MATRIX OUTPUT, ELSET=LAYER-1.whole, FILE 

NAME=ESMLAYER3600-2, STIFFNESS=YES, MASS=YES, OUTPUT FILE=USER DEFINED\n*ELEMENT MATRIX 

OUTPUT, ELSET=BASE-1.whole, FILE NAME=ESMBASE3600, STIFFNESS=YES, MASS=YES, OUTPUT FILE=USER 

DEFINED\n*End Step\n") 

            E_line='' 

    f.close() 

 

def preFlt(Rmin,Elmts,Nds): 
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    Fm={} 

    # Calculate element centre coordinates 

    elm, c0 = np.zeros(len(Elmts)), np.zeros((len(Elmts),3)) 

    for i in range(len(elm)): 

        elm[i] = Elmts[i].label 

        nds = Elmts[i].connectivity 

        for nd in nds: c0[i] = np.add(c0[i],np.divide(Nds[nd].coordinates,len(nds))) 

    # Weighting factors 

    for i in range(len(elm)): 

        Fm[elm[i]] = [[],[]] 

        for j in range(len(elm)): 

            dis = np.sqrt(np.sum(np.power(np.subtract(c0[i],c0[j]),2))) 

            if dis<Rmin: 

                Fm[elm[i]][0].append(elm[j]) 

                Fm[elm[i]][1].append(Rmin - dis) 

        Fm[elm[i]][1] = np.divide(Fm[elm[i]][1],np.sum(Fm[elm[i]][1])) 

    return Fm 

 

def fltAe(Ae,Fm,Xe): 

    raw = Ae.copy() 

    for el in Fm.keys(): 

        Ae[el-1] = 0.0 

        for i in range(len(Fm[el][0])): Ae[el-1]+=raw[Fm[el][0][i]-

1]*Fm[el][1][i]*Xe[Fm[el][0][i]-1]/Xe[el-1] 

    return Ae 

 

def OC(Vf,Xe,Ae,Ele_NUM): 

    lo, hi, move = 0, 1e9, 0.1 

    tv = Vf*Ele_NUM 

    while (hi-lo)/(hi+lo) > 1.0e-3: 

        lmid = (lo+hi)/2.0 

        xnew=np.maximum(0.001,np.maximum(Xe-

move,np.minimum(1,np.minimum(Xe+move,Xe*np.sqrt(np.maximum(0,-Ae/lmid)))))) 

        if sum(xnew)-tv>0:  

            lo = lmid  

        else:  

            hi = lmid 

    return xnew 

 

def FE_Mdb(mdb,Mats,N,w): 

    # Params Define 

    mdl = mdb.models['Model-1'] 

    #-------First Model-------------# 

    PN=Part_Name[0] 
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    part = mdl.parts[PN] 

    # Build sections and assign solid section 

    # Define materials and element sets 

    # Updating Material Parameters 

    #-------Part1 Update-------------# 

    E0=Mats[PN]['E0'];E1=Mats[PN]['E1'];D0=Mats[PN]['D0'];D1=Mats[PN]['D1'] 

    alpha=Mats[PN]['alpha'];beta=Mats[PN]['beta'];th=Mats[PN]['th'];possion=Mats[PN]['possion'

] 

    E=Xe**penal*E1+(1-Xe**penal)*E0 

    D=Xe**penal*D1+(1-Xe**penal)*D0  

    for i in range(1,N+1): 

        mdl.Material('Material'+PN+str(i)).Elastic(((E[i-1], possion),)) 

        mdl.materials['Material'+PN+str(i)].Density(((D[i-1],),)) 

        mdl.materials['Material'+PN+str(i)].Damping(alpha=alpha, beta=beta) 

        mdl.HomogeneousSolidSection(name='Sec'+PN+str(i),material='Material'+PN+str(i),thickne

ss=None) 

        part.SectionAssignment(part.Set('Set'+PN+str(i),part.elements[i-1:i]),'Sec'+PN+str(i)) 

    #-------Part2 Update-------------# 

    PN=Part_Name[1] 

    part = mdl.parts[PN] 

    E0=Mats[PN]['E0'];E1=Mats[PN]['E1'];D0=Mats[PN]['D0'];D1=Mats[PN]['D1'] 

    alpha=Mats[PN]['alpha'];beta=Mats[PN]['beta'];th=Mats[PN]['th'];possion=Mats[PN]['possion'

] 

    E=Xe**penal*E1+(1-Xe**penal)*E0 

    D=Xe**penal*D1+(1-Xe**penal)*D0  

    for i in range(1,N+1): 

        mdl.Material('Material'+PN+str(i)).Elastic(((E[i-1], possion),)) 

        mdl.materials['Material'+PN+str(i)].Density(((D[i-1],),)) 

        mdl.materials['Material'+PN+str(i)].Damping(alpha=alpha, beta=beta) 

        mdl.HomogeneousShellSection(name='Sec'+PN+str(i),material='Material'+PN+str(i),thickne

ss=th) 

        part.SectionAssignment(part.Set('Set'+PN+str(i),part.elements[i-

1:i]),'Sec'+PN+str(i),offsetType=BOTTOM_SURFACE) 

    #mdl.steps['Step-1'].setValues(frequencyRange=((w, w, 2, 1.0), )) 

     

def Run_FEA(mdb,Iter): 

    # Job Submit 

    mdb.Job(name='Design_Job'+str(Iter), model='Model-1') 

    a=os.system('del Design_Job'+str(Iter)+'*') 

    mdb.jobs['Design_Job'+str(Iter)].writeInput(consistencyChecking=OFF) 

    # Modify INP for Gross Matrix 

    f=open('Design_Job'+str(Iter)+'.inp','r+') 

    E_line='Start' 

    while E_line<>'': 
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        E_line = f.readline() 

        E_line=E_line.strip() 

        if E_line=='*End Step': 

            f.seek(-11,2) 

            f.write("*END STEP\n*STEP, NAME=MATRIX\n*MATRIX GENERATE, STIFFNESS, MASS, VISCOUS 

DAMPING\n*Boundary\nBase-1.b, PINNED\n*Boundary\nBase-1.all, 6, 6\n*Boundary\nTop-1.all, 6, 

6\n*MATRIX OUTPUT, STIFFNESS, MASS, VISCOUS DAMPING\n*END STEP") 

            E_line='' 

    f.close() 

    # Submit and wait for finishing 

    os.system(u'Abaqus job='+'Design_Job'+str(Iter)) 

    FILE='Design_Job'+str(Iter)+'.lck' 

    while not os.path.exists(FILE): 

        time.sleep(1)        

    while os.path.exists(FILE):  

        time.sleep(1)     

    return 'Design_Job'+str(Iter) 

 

def Obj_Cal_DISP_READ(U,w,Name):     

    K=np.zeros([441*6,441*6]);M=np.zeros([441*6,441*6]);C=np.zeros([441*6,441*6]);L=np.zeros([

441*6,1],dtype=complex) 

    Obj=0 

    #Reading Gross Matrix---------------------------------------# 

    #Reading STIFFNESS MATRIX 

    f=open(Name+'_STIF2.mtx','r') 

    data_line = f.readline() 

    while data_line<>'': 

        data_line=data_line.strip().split(',') 

        m=(int(data_line[0])-1)*6+int(data_line[1])-1 

        n=(int(data_line[2])-1)*6+int(data_line[3])-1 

        K[m,n]=float(data_line[4]) 

        K[n,m]=float(data_line[4]) 

        data_line = f.readline() 

    f.close() 

    #Reading MASS MATRIX 

    f=open(Name+'_MASS2.mtx','r') 

    data_line = f.readline() 

    while data_line<>'': 

        data_line=data_line.strip().split(',') 

        m=(int(data_line[0])-1)*6+int(data_line[1])-1 

        n=(int(data_line[2])-1)*6+int(data_line[3])-1 

        M[m,n]=float(data_line[4]) 

        M[n,m]=float(data_line[4]) 

        data_line = f.readline() 
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    f.close() 

    #Reading DAMPING MATRIX 

    f=open(Name+'_DMPV2.mtx','r') 

    data_line = f.readline() 

    while data_line<>'': 

        data_line=data_line.strip().split(',') 

        m=(int(data_line[0])-1)*6+int(data_line[1])-1 

        n=(int(data_line[2])-1)*6+int(data_line[3])-1 

        C[m,n]=float(data_line[4]) 

        C[n,m]=float(data_line[4]) 

        data_line = f.readline() 

    f.close() 

    #--------------------------------------------------------------# 

    W=K+1j*w*C-w**2*M 

    #Reading LOADING MATRIX 

    f=open(Name+'_LOAD2.mtx','r') 

    #=======================# 

    data_line = f.readline() 

    data_line = f.readline() 

    #=======================# 

    data_line = f.readline() 

    while data_line<>'': 

        data_line=data_line.strip().split(',') 

        nm=int(data_line[0])-1 

        nn=int(data_line[1])-1 

        nU=U[nm].data[nn]+complex(0,U[nm].conjugateData[nn]) 

        L[nm*6+nn]=-np.conj(nU)/2.0/np.abs(nU) 

        Obj+=np.abs(nU) 

        data_line = f.readline() 

    f.close() 

    mu=np.linalg.solve(W,L) 

    return mu.T,Obj 

         

def Obj_Cal_MDR_READ(l1,l2,l3,GROSS_DOF,Name):           

    K=np.zeros([GROSS_DOF,GROSS_DOF],dtype='f8',order='f');M=np.zeros([GROSS_DOF,GROSS_DOF],dt

ype='f8',order='f');C=np.zeros([GROSS_DOF,GROSS_DOF],dtype='f8',order='f') 

    #Reading Gross Matrix---------------------------------------# 

    #Reading STIFFNESS MATRIX 

    f=open(Name+'_STIF2.mtx','r') 

    data_line = f.readline() 

    while data_line<>'': 

        data_line=data_line.strip().split(',') 

        data_line[0]=int(data_line[0]) 

        data_line[1]=int(data_line[1]) 
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        data_line[2]=int(data_line[2]) 

        data_line[3]=int(data_line[3]) 

        data_line[4]=float(data_line[4])         

        if data_line[0] <= l1: 

            m=((data_line[0])-1)*6+data_line[1]-1 

        elif l1< data_line[0] <= l2: 

            m=l1*6+((data_line[0])-l1-1)*3+data_line[1]-1 

        elif l2< data_line[0] <= l3: 

            m=l1*6+(l2-l1)*3+((data_line[0])-l2-1)*6+data_line[1]-1 

        if data_line[2] <= l1: 

            n=((data_line[2])-1)*6+data_line[3]-1 

        elif l1< data_line[2] <= l2: 

            n=l1*6+((data_line[2])-l1-1)*3+data_line[3]-1 

        elif l2< data_line[2] <= l3: 

            n=l1*6+(l2-l1)*3+((data_line[2])-l2-1)*6+data_line[3]-1 

        K[m,n]=data_line[4] 

        K[n,m]=data_line[4] 

        data_line = f.readline() 

    f.close() 

    #Reading MASS MATRIX 

    f=open(Name+'_MASS2.mtx','r') 

    data_line = f.readline() 

    while data_line<>'': 

        data_line=data_line.strip().split(',') 

        data_line[0]=int(data_line[0]) 

        data_line[1]=int(data_line[1]) 

        data_line[2]=int(data_line[2]) 

        data_line[3]=int(data_line[3]) 

        data_line[4]=float(data_line[4])         

        if data_line[0] <= l1: 

            m=((data_line[0])-1)*6+data_line[1]-1 

        elif l1< data_line[0] <= l2: 

            m=l1*6+((data_line[0])-l1-1)*3+data_line[1]-1 

        elif l2< data_line[0] <= l3: 

            m=l1*6+(l2-l1)*3+((data_line[0])-l2-1)*6+data_line[1]-1 

        if data_line[2] <= l1: 

            n=((data_line[2])-1)*6+data_line[3]-1 

        elif l1< data_line[2] <= l2: 

            n=l1*6+((data_line[2])-l1-1)*3+data_line[3]-1 

        elif l2< data_line[2] <= l3: 

            n=l1*6+(l2-l1)*3+((data_line[2])-l2-1)*6+data_line[3]-1 

        M[m,n]=data_line[4] 

        M[n,m]=data_line[4] 

        data_line = f.readline() 
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    f.close() 

    #Reading DAMPING MATRIX 

    f=open(Name+'_DMPV2.mtx','r') 

    data_line = f.readline() 

    while data_line<>'': 

        data_line=data_line.strip().split(',') 

        data_line[0]=int(data_line[0]) 

        data_line[1]=int(data_line[1]) 

        data_line[2]=int(data_line[2]) 

        data_line[3]=int(data_line[3]) 

        data_line[4]=float(data_line[4])         

        if data_line[0] <= l1: 

            m=((data_line[0])-1)*6+data_line[1]-1 

        elif l1< data_line[0] <= l2: 

            m=l1*6+((data_line[0])-l1-1)*3+data_line[1]-1 

        elif l2< data_line[0] <= l3: 

            m=l1*6+(l2-l1)*3+((data_line[0])-l2-1)*6+data_line[1]-1 

        if data_line[2] <= l1: 

            n=((data_line[2])-1)*6+data_line[3]-1 

        elif l1< data_line[2] <= l2: 

            n=l1*6+((data_line[2])-l1-1)*3+data_line[3]-1 

        elif l2< data_line[2] <= l3: 

            n=l1*6+(l2-l1)*3+((data_line[2])-l2-1)*6+data_line[3]-1 

        C[m,n]=data_line[4] 

        C[n,m]=data_line[4] 

        data_line = f.readline() 

    f.close() 

    #----SETTING BOUNDARY CONDITION----------------------------# 

    N=[];N0=range(GROSS_DOF); 

    for i in N0: 

        if (K[i,i]==1.0e36) or (K[i,i]==0.0): 

            N.append(i) 

    dN=list(set(N0)-set(N));Ld=len(dN) 

    K=K[np.ix_(dN,dN)];M=M[np.ix_(dN,dN)];C=C[np.ix_(dN,dN)] 

    return K, M, C, np.array(dN,dtype='int'),Ld 

     

def Obj_Cal_DC(Elmts,Nds,STIF,MASS,w,alpha,beta,Odb_name,Xe,penal,E1,E0,D1,D0): 

    w=w*2*np.pi # Hz to Rad/s 

    opdb=openOdb(Odb_name+'.odb') 

    U=opdb.steps['Step-1'].frames[-1].fieldOutputs['U'].values 

    UR=opdb.steps['Step-1'].frames[-1].fieldOutputs['UR'].values 

    U_Obj_K=np.zeros(len(Elmts),dtype=complex);U_Obj_K_C=np.zeros(len(Elmts),dtype=complex) 

    U_Obj_M=np.zeros(len(Elmts),dtype=complex);U_Obj_M_C=np.zeros(len(Elmts),dtype=complex) 

    Obj_Layer=np.zeros(len(Elmts),dtype=complex) 
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    Obj_Base=np.zeros(len(Elmts),dtype=complex) 

    Obj=np.zeros(len(Elmts),dtype=complex) 

    for i in range(len(Elmts)): 

        Ue=[] 

        for ec in Elmts[i].connectivity: 

            j=Nds[ec].label-1 

            Ue.extend(U[j].data+1j*U[j].conjugateData) 

            Ue.extend(UR[j].data+1j*UR[j].conjugateData) 

        Ue=np.array([Ue],dtype=complex) 

        S_K=(1+1j*w*beta)*STIF[i+1] 

        U_Obj_K[i]=(np.dot(np.dot(Ue,S_K),Ue.T))[0][0] 

        U_Obj_K_C[i]=(np.dot(np.dot(Ue,S_K),np.conj(Ue.T)))[0][0] 

        S_M=(1j*w*alpha-w**2)*MASS[i+1] 

        U_Obj_M[i]=(np.dot(np.dot(Ue,S_M),Ue.T))[0][0] 

        U_Obj_M_C[i]=(np.dot(np.dot(Ue,S_M),np.conj(Ue.T)))[0][0] 

    # Calculate Objective 

    Obj_K=U_Obj_K*(Xe**penal*E1+(1-Xe**penal)*E0) 

    Obj_M=U_Obj_M*(Xe**penal*D1+(1-Xe**penal)*D0) 

    Obj_Layer=np.sum(Obj_K+Obj_M) 

    # Process sensitivities      

    Obj_K_C=U_Obj_K_C*(Xe**penal*E1+(1-Xe**penal)*E0) 

    Obj_M_C=U_Obj_M_C*(Xe**penal*D1+(1-Xe**penal)*D0) 

    Ae=(np.sum(Obj_K_C+Obj_M_C)) 

    Ae=-np.real(Ae*penal*Xe**(penal-1)*(U_Obj_M*(D1-D0)+U_Obj_K*(E1-E0)))    

    #------------------------------------------------------------------# 

    # Elmts=mdb.models['Model-1'].parts['Base'].elements 

    # Nds =mdb.models['Model-1'].parts['Base'].nodes 

    # alpha=0;beta=0 

    # STIF={};MASS={};Read_ESM('ESMBASE400.mtx',STIF,MASS,24)    

    # for i in range(len(Elmts)): 

        # Ue=[] 

        # for ec in Elmts[i].connectivity: 

            # j=Nds[ec].label-1 

            # for k in range(len(U[j].data)): 

                # Ue.append(U[j].data[k]+complex(0,U[j].conjugateData[k])) 

            # for k in range(len(UR[j].data)): 

                # Ue.append(UR[j].data[k]+complex(0,UR[j].conjugateData[k])) 

        # Ue=np.array([Ue],dtype=complex) 

        # S_K=(1+1j*w*beta)*STIF[i+1] 

        # U_Obj_K[i]=(np.dot(np.dot(Ue,S_K),Ue.T))[0][0] 

        # S_M=(1j*w*alpha-w**2)*MASS[i+1] 

        # U_Obj_M[i]=(np.dot(np.dot(Ue,S_M),Ue.T))[0][0] 

    # Obj_Base=np.sum(U_Obj_K+U_Obj_M) 

    opdb.close() 
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    Obj=np.abs(Obj_Layer)#+Obj_Base) 

    Ae=Ae/Obj 

    return Obj,Ae 

     

def Obj_Cal_DISP(Elmts,Nds,STIF,MASS,w,alpha,beta,Odb_name,Xe,penal,E1,E0,D1,D0): 

    w=w*2*np.pi # Hz to Rad/s 

    opdb=openOdb(Odb_name+'.odb') 

    U=opdb.steps['Step-1'].frames[-1].fieldOutputs['U'].values 

    UR=opdb.steps['Step-1'].frames[-1].fieldOutputs['UR'].values 

    Mu,Obj=Obj_Cal_DISP_READ(U,w,Odb_name) 

    U_Obj_K=np.zeros(len(Elmts),dtype=complex) 

    U_Obj_M=np.zeros(len(Elmts),dtype=complex) 

    for i in range(len(Elmts)): 

        Ue=[];Mue=[] 

        for ec in Elmts[i].connectivity: 

            j=Nds[ec].label-1 

            for k in range(len(U[j].data)): 

                Ue.append(U[j].data[k]+complex(0,U[j].conjugateData[k])) 

            for k in range(len(UR[j].data)): 

                Ue.append(UR[j].data[k]+complex(0,UR[j].conjugateData[k])) 

            Mue.extend(Mu[0,ec*6:ec*6+6]) 

        Ue=np.array([Ue],dtype=complex) 

        Mue=np.array([Mue],dtype=complex) 

        S_K=(1+1j*w*beta)*STIF[i+1]      

        S_M=(1j*w*alpha-w**2)*MASS[i+1] 

        U_Obj_K[i]=(np.dot(np.dot(Mue,S_K),Ue.T))[0][0] 

        U_Obj_M[i]=(np.dot(np.dot(Mue,S_M),Ue.T))[0][0] 

    # Process sensitivities      

    Ae=2*np.real(penal*Xe**(penal-1)*(U_Obj_M*(D1-D0)+U_Obj_K*(E1-E0)))  

    return Obj,Ae 

 

def Obj_Cal_MDR(ESM,Xe,penal,Mats,JOBName): 

    l1=143;l2=429;l3=572     

    GROSS_DOF=6*l1+3*(l2-l1)+6*(l3-l2) 

    K,M,C,dN,Ld=Obj_Cal_MDR_READ(l1,l2,l3,GROSS_DOF,JOBName)         

    C_STIF=ESM['ESMCORE_120_Elements.mtx']['STIF'];C_MASS=ESM['ESMCORE_120_Elements.mtx']['MAS

S'];C_NODENUM=ESM['ESMCORE_120_Elements.mtx']['NODENUM']   

    T_STIF=ESM['ESMTOP_120_Elements.mtx']['STIF'] ;T_MASS=ESM['ESMTOP_120_Elements.mtx']['MASS

'] ;T_NODENUM=ESM['ESMTOP_120_Elements.mtx']['NODENUM'] 

    C_E0=Mats['Core']['E0'];C_E1=Mats['Core']['E1'];C_D0=Mats['Core']['D0'];C_D1=Mats['Core'][

'D1'] 

    T_E0=Mats['Top']['E0'];T_E1=Mats['Top']['E1'];T_D0=Mats['Top']['D0'];T_D1=Mats['Top']['D1'

] 

    #load dynamic library 
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    flib = load_library("mdr","./");fun_1=flib.mdr_sen 

    Ae= np.empty(shape=(len(Xe)),dtype='f8',order='f') 

    Lf= np.empty(shape=(10),dtype='f8',order='f') 

    # call function 

    fun_1.argtypes = 

[ndpointer(dtype='f8',ndim=1),ndpointer(dtype='f8',ndim=1),ndpointer(dtype='f8',ndim=1),c_int,

c_int,c_int,c_int,c_int,c_double,c_double,c_double,c_double,c_double,\ 

    c_double,c_double,c_double,ndpointer(dtype='f8',ndim=2),ndpointer(dtype='f8',ndim=2),ndpoi

nter(dtype='f8',ndim=2),ndpointer(dtype='f8',ndim=3),ndpointer(dtype='f8',ndim=3),\ 

    ndpointer(dtype='f8',ndim=3),ndpointer(dtype='f8',ndim=3),ndpointer(dtype='int',ndim=2),nd

pointer(dtype='int',ndim=2),ndpointer(dtype='int',ndim=1)] 

    flib.mdr_sen(Ae,Lf,Xe,penal,GROSS_DOF,len(Xe),Ld,24,C_D0,C_E0,C_D1,C_E1,T_D0,T_E0,T_D1,T_E

1,K,M,C,C_STIF,C_MASS,T_STIF,T_MASS,C_NODENUM,T_NODENUM,dN) 

    return 1/Lf[0],Ae 

 

def Con_Constraint(x,y,z,l1,l2,l3): 

    # Construct constrained vectors  

    Master_P1=range(1,x*y+1) 

    Master_P2=((np.kron(np.ones(y,dtype=int),range((x-1)*y*z+1,0,-

z*y))).reshape([y,x])+(np.kron(range(y-1,-1,-

1),np.ones(x,dtype=int))).reshape([y,x])).flatten()+l1 

    Slave_P1=Master_P2+y 

    Slave_P2=np.array(range(1,x*y+1),dtype=int)+l2 

    Master=Master_P1;Master.extend(list(Master_P2)) 

    Slave=list(Slave_P1);Slave.extend(list(Slave_P2)) 

    return Master,Slave 

     

def Node2DOF(Mnodes,l1,l2,l3): 

    rem=[] 

    for mm in Mnodes: 

        if mm <= l1: 

            rem.append((mm-1)*6) 

        elif l1< mm <= l2: 

            rem.append(l1*6+(mm-l1-1)*3) 

        elif l2< mm <= l3: 

            rem.append(l1*6+(l2-l1)*3+(mm-l2-1)*6) 

    return np.array(rem,dtype=int) 

 

def Result_Plot_BESO(): 

    # Display final design 

    vp3 = session.Viewport('Final design', origin=(30,30),width=150, height=100) 

    p = mdb.models['Model-1'].parts['Part-1'] 

    vp3.setValues(displayedObject=p) 

    vp3.partDisplay.setValues(mesh=ON) 
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    vp3.partDisplay.displayGroup.remove(leaf=dgm.LeafFromSets(sets=(p.sets['vs'],))) 

 

def Result_Plot_SIMP(mdb,Xe,Instance_Name): 

    itern = len(mdb.customData.History['obj'])   

    # Plot objective function history 

    vp1 = session.Viewport('Objective history',origin=(20,20),width=150,height=100) 

    try: 

        xyPlot1 = session.XYPlot('Objective function') 

    except: 

        del session.xyPlots['Objective function'] 

        xyPlot1 = session.XYPlot('Objective function')   

    chart1 = xyPlot1.charts.values()[0] 

    objDat = [(k,mdb.customData.History['obj'][k]) for k in range(itern)] 

    xydo = session.XYData('Objective function',objDat) 

    chart1.setValues(curvesToPlot=[session.Curve(xydo)]) 

    chart1.axes1[0].axisData.setValues(title='Iteration') 

    chart1.axes2[0].axisData.setValues(title='Objective function') 

    vp1.setValues(displayedObject=xyPlot1)   

    # Display final design 

    opdb = session.openOdb(name= mdb.jobs.keys()[-1]+'.odb',readOnly=FALSE) 

    frame=opdb.steps['Step-1'].frames[-1] 

    MaterialDensity= frame.FieldOutput(name='MaterialDensity', description='Element Materials 

Density',type=SCALAR) 

    MyInstance=opdb.rootAssembly.instances[Instance_Name] 

    elementLabels=range(1,len(MyInstance.elements)+1) 

    elementValues=[[i]  for i in Xe] 

    MaterialDensity.addData(position=WHOLE_ELEMENT, instance=MyInstance, labels=elementLabels, 

data=elementValues) 

    opdb.save() 

opdb.close()     

 

def FinalRun(mdb, Xe, E0, E1, D0, D1, penal, Ele_NUM, possoin): 

    # Final Run 

    # Updating E, D, Obj, Volume  

    E=Xe**penal*E1+(1-Xe**penal)*E0 

    D=Xe**penal*D1+(1-Xe**penal)*D0 

    # Assign solid and void elements to each section 

    for i in range(Ele_NUM): 

        mdb.models['Model-1'].materials['Material'+str(i+1)].Elastic(((E[i], possoin),)) 

        mdb.models['Model-1'].materials['Material'+str(i+1)].Density(((D[i],),)) 

    mdb.Job('Final_Design','Model-1').submit() 

    mdb.jobs['Final_Design'].waitForCompletion() 

     

def Topot_Main(Limit_iter): 
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    global mdb, elmts, nds, Ele_NUM  

    global Part_Name, Instance_Name, ESM_Name 

    global vf, rmin, penal, change, iter_num, Xei, vh, oh, Fm  

    global w, alpha, beta, th, possoin 

    global Xe, upp, low 

    # Close Output Databases 

    for i in range(len(session.odbs.keys())): 

        session.odbs[session.odbs.keys()[0]].close() 

    print 'VolFrac:{0} Rmin:{1} Penal:{2}  X_initial:{3}'.format(vf,rmin,penal,Xei)   

    #print 'E_Strong:{0:.3e} E_Weak:{1:.3e} D_Strong:{2} D_Weak:{3}'.format(E1, E0, D1, D0) 

    #print 'alpha:{0} beta:{1} wp:{2}Hz'.format(alpha,beta,w) 

    # Start Time 

    to=time.time() 

    #-------------DOF Index-----------------# 

    x=11;y=13;z=2 

    l1=143;l2=429;l3=572 

    Master,Slave=Con_Constraint(x,y,z,l1,l2,l3) 

    TieDofNum=3;TieNodeNum=len(Master); 

    Master=list(np.kron(Node2DOF(Master,l1,l2,l3),np.ones(TieDofNum,dtype=int))+np.kron(np.one

s(TieNodeNum,dtype=int),range(TieDofNum))) 

    Slave 

=list(np.kron(Node2DOF(Slave,l1,l2,l3),np.ones(TieDofNum,dtype=int))+np.kron(np.ones(TieNodeNu

m,dtype=int),range(TieDofNum))) 

    #-------------Reading Matrix-------------# 

    ESM={} 

    for EN in ESM_Name: 

        ESM[EN]={};ESM[EN]['NODESUM']=0;ESM[EN]['DOFNUM']=0 

        ESM[EN]['STIF']=np.empty(shape=(len(Xe),24,24),dtype='f8',order='f') 

        ESM[EN]['MASS']=np.empty(shape=(len(Xe),24,24),dtype='f8',order='f') 

        ESM[EN]['NODENUM']=np.empty(shape=(len(Xe),24),dtype='int') 

        Read_ESM(EN,ESM[EN]['STIF'],ESM[EN]['MASS'],ESM[EN]['NODENUM'],ESM[EN]['NODESUM'], 

ESM[EN]['DOFNUM'], 24, l1, l2, l3, Slave, Master)     

        print 'READ {0} ELEMENT MATRICES IN TOTAL: {1}'.format(len(ESM[EN]['STIF']),EN) 

    #--------------FE Settings--------------# 

    FE_Mdb(mdb,Mats,Ele_NUM,w) 

    print "Optimization Start..."    

    # MMA INITIAL PARAMETERS 

    m=1;n=Ele_NUM;c0 = 1000;d = 0;a0 = 1;a = 0; 

    xold1=np.zeros(n,dtype='f8');xold2=np.zeros(n,dtype='f8') 

    xmin=0.001*np.ones(n,dtype='f8');xmax=np.ones(n,dtype='f8');Xmma=np.ones(n,dtype='f8') 

    # Load dynamic library 

    flib = load_library("mmsub","./");fmmsub=flib.mmsub 

    fmmsub.argtypes = 

[ndpointer(dtype='f8'),ndpointer(dtype='f8'),ndpointer(dtype='f8'),c_int,c_int,c_int,\ 
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    ndpointer(dtype='f8'),ndpointer(dtype='f8'),ndpointer(dtype='f8'),ndpointer(dtype='f8'),nd

pointer(dtype='f8'),\ 

    c_double,ndpointer(dtype='f8'),c_double,ndpointer(dtype='f8'),c_double,c_double,c_double,c

_double]   

    # Optimization iteration 

    while change > 0.001 and iter_num < Limit_iter: 

        # Run FEA 

        print 'Run_FEA_Time comsumed:{0}s'.format(time.time()-to) 

        odb_name=Run_FEA(mdb,iter_num) 

        print 'Run_FEA_Time comsumed:{0}s'.format(time.time()-to) 

        vh.append(np.sum(Xe)/Ele_NUM) 

        # Calculate Objective and sensitivities 

        #Obj,Ae=Obj_Cal_DISP(elmts,nds,STIF,MASS,w,alpha,beta,odb_name,Xe,penal,E1,E0,D1,D0) 

        #Obj,Ae=Obj_Cal_DC(elmts,nds,STIF,MASS,w,alpha,beta,odb_name,Xe,penal,E1,E0,D1,D0) 

        #Obj,Ae=Obj_Cal_PF(elmts,nds,STIF,MASS,w,alpha,beta,odb_name,Xe,penal,E1,E0,D1,D0) 

        Obj,Ae=Obj_Cal_MDR(ESM,Xe,penal,Mats,odb_name) 

        print 'Sensitivity_Cal comsumed:{0}s'.format(time.time()-to) 

        oh.append(Obj) 

        Ae=fltAe(Ae,Fm,Xe) 

        # SIMP optimization 

        #Xe=OC(vf,Xe,Ae,Ele_NUM) 

        # MMA Algorithm 

        f0val=Obj;df0dx=np.array(Ae,dtype='f8');fval=np.sum(Xe)-

vf*Ele_NUM;dfdx=np.ones(n,dtype='f8') 

        fmmsub(Xmma,low,upp,m,n,iter_num,Xe,xmin,xmax,xold1,xold2,f0val,df0dx,fval,dfdx,a0,a,c

0,d) 

        xold2 = xold1;xold1 = Xe;Xe=Xmma.copy(); 

        # ------------------Updating E, D, Obj, Volume ------------------# 

        PN=Part_Name[0];part = mdb.models['Model-1'].parts[PN] 

        E0=Mats[PN]['E0'];E1=Mats[PN]['E1'];D0=Mats[PN]['D0'];D1=Mats[PN]['D1'] 

        alpha=Mats[PN]['alpha'];beta=Mats[PN]['beta'];th=Mats[PN]['th'];possion=Mats[PN]['poss

ion'] 

        E=Xe**penal*E1+(1-Xe**penal)*E0 

        D=Xe**penal*D1+(1-Xe**penal)*D0  

        for i in range(Ele_NUM): 

            mdb.models['Model-1'].materials['Material'+PN+str(i+1)].Elastic(((E[i], 

possion),)) 

            mdb.models['Model-1'].materials['Material'+PN+str(i+1)].Density(((D[i],),)) 

        PN=Part_Name[1];part = mdb.models['Model-1'].parts[PN] 

        E0=Mats[PN]['E0'];E1=Mats[PN]['E1'];D0=Mats[PN]['D0'];D1=Mats[PN]['D1'] 

        alpha=Mats[PN]['alpha'];beta=Mats[PN]['beta'];th=Mats[PN]['th'];possion=Mats[PN]['poss

ion'] 

        E=Xe**penal*E1+(1-Xe**penal)*E0 

        D=Xe**penal*D1+(1-Xe**penal)*D0  
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        for i in range(Ele_NUM): 

            mdb.models['Model-1'].materials['Material'+PN+str(i+1)].Elastic(((E[i], 

possion),)) 

            mdb.models['Model-1'].materials['Material'+PN+str(i+1)].Density(((D[i],),))  

        change=np.max(np.abs(Xe-xold1)) 

        if oh[-1] <1e16: 

            iter_num += 1 

            print 'iter: {3} vol:{0:.2f}, obj:{1}, change:{2:.6f}'.format(vh[-1],oh[-

1],change,iter_num) 

 

        else: 

            print 'Optimization faild for extreamly large obj.';break  

        print "Optimization Finished!" 

    print 'Time comsumed:{0}s'.format(time.time()-to) 

    # Save results 

    mdb.customData.History = {'vol':vh,'obj':oh} 

    # Postprocess 

    y=sorted(Xe,reverse=True) 

    vt=y[int(np.floor((vf-0.001)*Ele_NUM/(1-0.001)))] 

    Exa=np.where(Xe>=vt) 

    Shr=np.where(Xe<vt) 

    Xe[Exa]=1.0;Xe[Shr]=0.001 

    # Display 

    Result_Plot_SIMP(mdb,Xe,Instance_Name) 

    #FinalRun(mdb, Xe, E0, E1, D0, D1, penal, Ele_NUM, possoin) 

    # Cal Structural Identity 

    #Cal_Identity(elmts,w) 

    pass 




