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Abstract—Complex matrix derivatives play an important role
in matrix optimization, since they form a theoretical basis for the
Karush-Kuhn-Tucker (KKT) conditions associated with matrix
variables. We commence with a comprehensive discussion of
complex matrix derivatives. First, some fundamental conclusions
are presented for deriving the optimal structures of matrix
variables from complex matrix derivatives. Then, some restric-
tions are imposed on complex matrix derivatives for ensuring
that the resultant first order equations in the KKT conditions
exploit symmetric properties. Accordingly, a specific family of
symmetric matrix equations is proposed and their properties are
unveiled. Using these symmetric matrix equations, the optimal
structures of matrix variables are directly available, and thereby
the original optimization problems can be significantly simplified.
In addition, we take into account the positive semidefinite con-
straints imposed on matrix variables. In order to accommodate
the positive semidefinitness of matrix variables, we introduce a
matrix transformation technique by leveraging the symmetric
matrix equations, which can dramatically simplify the KKT
conditions based analysis albeit at the expense of destroying
convexity. Moreover, this matrix transformation technique is
valuable in practice, since it offers a more efficient means of
computing the optimal solution based on the optimal structures
derived directly from the KKT conditions.

Index Terms—Matrix variable optimization, complex matrix
derivatives, Karush-Kuhn-Tucker conditions, matrix symmetric
structures, matrix variable transformation.

I. INTRODUCTION

Matrix optimization plays an essential role in wireless
system designs [1]–[4]. For example, multiple-input multiple-
output (MIMO) system optimization, including both transmit
precoder (TPC) matrix optimization and equalizer matrix
optimization, is an important design issue in wireless systems
[1], [2], [4]–[8]. Complex matrix derivatives provide efficient
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tools for solving these advanced matrix optimization problems
[9]. In view of the importance of complex matrix derivatives,
there is already some literature, in which many insightful
results are tabulated for readers to look up the required ones
[9]–[13]. With the evolution of wireless technologies, many
new matrix optimization problems are emerging subject to new
constraints. Solving these problems generally requires efficient
mathematical optimization tools, which which is the core of
our work.

Because the matrix variables are typically high-dimensional,
the key issue in matrix optimization is how to reduce the
computational complexity. A popular strategy is based on
the Karush-Kuhn-Tucker (KKT) conditions, which constitute
necessary conditions for finding optimal solutions [14]. Specif-
ically, for convex optimization problems, the solutions that
satisfy the KKT conditions are the optimal solutions, since
the KKT conditions act as sufficient and necessary conditions
for this case. Even for many non-convex problems, all the
solutions derived from the KKT conditions have a common
structure, which is also the analytical structure of the optimal
solution. Therefore, the KKT conditions having beneficial
mathematical tractability play a vital role in solving general
optimization problems [3], [15]. The second strategy is that
of leveraging majorization theory, which relies on matrix
inequalities associated with the diagonal elements of Hermi-
tian matrices [2]. However, there are strict limitations on the
optimization objective functions and constraints when utilizing
the majorization theory based methods. For example, for the
classical MIMO transceiver design, the majorization theory
is only suitable for handling Schur-convex or Schur-concave
objective functions subject to the total power constraint [16],
[17]. The third one is referred to as the matrix monotonic
optimization framework, which exploits the monotonicity of
the positive semidefinite matrix cone to derive the optimal
structures of matrix variables [1], [18], [19]. Unfortunately, the
matrix monotonic optimization framework is not applicable to
many practical applications, such as the optimization problems
where multiple constraints conflict with each other.

Among the three strategies, the KKT conditions based
strategy may be declared to be the prime technique of matrix
variable optimization, given its appealing mathematical sim-
plicity [3], [15], which has also been well studied by wireless
researchers. Nevertheless, in general, the KKT conditions
are only necessary conditions for the optimal solutions. The
complex matrix derivative is a fundamental tool conceived
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TABLE I

COMPARISON BETWEEN OUR WORK AND THE EXISTING LITERATURE

[1] [2] [3] [15] [16] [17] [18] [19] [20] [21] Proposed

KKT conditions

MSE X X
Capacity X X X

QoS X X X
Data rate X X X

Robust rate X
Robust MSE X

Majorization theory
MSE X X X
SINR X X
Rate X X
BER X X

Matrix monotonic framework
MSE X X X X

Capacity X X X X
BER X X X

for deriving the KKT conditions, which usually has close
relationships with the specific structures of matrix variables.
A number of papers and textbooks have been published on
complex matrix derivatives [9], [13]. Building upon these
works, the complex matrix derivatives for the KKT conditions
associated with matrix variables can be derived.

The studies [3], [15] have shown the advantages of the
KKT conditions based algorithms, in which complex matrix
derivatives act as a theoretical basis for formulating the
KKT conditions. Generally, there exist equivalent variants
of a real-valued function based on matrix manipulations,
thereby leading to complex matrix derivatives in a diverse
range of mathematical formulas. Motivated by this fact, the
KKT conditions based methods usually rely on a case-by-
case implementation. Specifically, it was found in [3] that
the optimal water-filling structure of the positive semidefinite
transmit signal covariance matrix directly accrues from the
KKT conditions. In [21], the optimal structures of matrix
variables were derived from KKT conditions utilizing uplink-
downlink duality. However, the authors of [15] pointed out that
the optimal solution structure is difficult to directly obtain from
the KKT conditions, since the corresponding optimization
problem is non-convex. Fortunately, these KKT conditions
can be simplified by exploiting the fact that when a matrix
multiplied by a diagonal matrix is diagonal, the original matrix
must also be diagonal. Based on this, the optimal closed-
form linear TPC/equalizer was derived and also proved to be
able to diagonalize the MIMO channel into its eigen sub-
channels. In the face of the ever increasing requirements
for wireless communications, the performance optimization
problems can be diverse. Considering the existence of multiple
objective functions, a general framework of KKT conditions
based matrix variable optimization is investigated in this paper.
Our novel contributions are contrasted to the above-mentioned
literature, which can be seen at a glance in Table I and are
further detailed as follows:

• We provide a number of fundamental conclusions regard-
ing complex matrix derivatives for wireless communi-
cations. It is noted that there are several mathematical
formulations for traditional complex matrix derivatives.
In contrast to ignoring some strict restrictions on com-
plex matrix derivatives in some classical textbooks, we
additionally define symmetric complex matrix derivative
operators for reasons of mathematical rigour. Therefore,
our provided fundamental conclusions form a firm basis
for the successive theoretical analysis and mathematical

derivations.
• Inspired by matrix Hermitian symmetry, we propose

the concept of symmetric matrix equations and some
important conclusions to simplify the related theoretical
analysis. Considering several typical matrix optimization
problems in MIMO systems, we derive the corresponding
symmetric matrix equations from their KKT conditions.
Based on this, the optimal structures of matrix variables
are available and thereby the original optimization prob-
lems can be significantly simplified.

• For practical wireless communications, we consider the
positive semi-definite constraints imposed on matrix vari-
ables, which substantially affect the resultant complex
matrix derivatives. Therefore, we introduce an efficient
variable transformation technique to transform the posi-
tive semi-definite matrices into matrices associated with
independent variables. It is shown that this transfor-
mation technique can automatically satisfy the matrix
rank constraints. Although the variable transformation
may destroy the convexity of the original optimization
problems, it can simplify the derivation of the optimal
structures of matrix variables. Consequently, the opti-
mization problems can be drastically simplified.

This paper is organized as follows. In Section II, we present
fundamental definitions and results concerning complex matrix
derivatives, which provide the theoretical basis for our work. In
Section III, we derive some fundamental results for the family
of the symmetric matrix equations, which form the basis of
the KKT conditions based methods harnessed for deriving the
optimal structures of matrix variables. Moreover, a number
of specific applications are presented in this section. In Sec-
tion IV, the positive semidefinite constraints are investigated,
and the corresponding symmetric matrix equations are derived.
In Section V, our numerical results are presented in support
of our conclusions offered in Section VI.
Notations: We use regular letters for scalars, lowercase and
uppercase boldface letters for vectors and matrices, respec-
tively. (·)∗, (·)T, (·)H and (·)−1 represent the conjugate,
transpose, Hermitian and inverse operators, respectively. 0
denote the zero matrix and I denote the identity matrix. For a
complex matrix X , XR and XI denote its real and imaginary
parts, respectively. [X]i,j denote the (i, j)-th element of X .
|X| and Tr(X) represent the determinant and trace of X ,
respectively. λi(X) denote the ith largest eigenvalue of X .
X � 0 means that the matrix X is positive semidefinite and
(x)+ = max{0, x}.
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TABLE II

SUMMARY OF MAIN SYMBOLS

Symbols Denotations Symbols Denotations
s The transmitted signal Ωn The weighting matrix associated with the per-antenna power constraints
n The additive noise Ω The equivalent weighting matrix associated with the sum power constraints
F The precoding matrix Π The covariance matrix of the additive noise
H The channel matrix Λ The diagonal matrix of SVD
Q The covariance matrix of the transmitted signal µ The Lagrange multiplier associated with the sum power constraints

II. FUNDAMENTAL RESULTS ON COMPLEX MATRIX
DERIVATIVES

Optimization relying on matrix variables is more general
than based on vector or scalar variables, but it subsumes
both vector and scalar optimization as its special cases. Sec-
ondly, complex-valued matrix derivatives play an important
role in wireless communications. From the engineering point
of view, the phases of signals must be taken into account.
Therefore, the matrices involved in wireless communications
are usually defined as complex matrices. However, new appli-
cations are continuously emerging, which involve new com-
plex matrix variable optimization subject to specific structural
constraints. For example, in hybrid beamforming optimization
or transceiver design, the complex-valued analog matrix is a
special matrix variable with each element subject to constant
modulus constraints. Another example is a reconfigurable
intelligent surface aided MIMO system, where the complex
reflecting matrix is a diagonal matrix having diagonal elements
under constant modulus constraints. It is therefore necessary to
investigate complex matrix derivative operators under practical
structural constraints. This is a widely open issue.

Let the optimization objective function (OF) f be a real-
valued scalar function of the complex matrix variable X =
XR + jXI, where j =

√
−1. Then the following fundamental

linear complex matrix derivative operators may be defined [9],
[12], [13].

∂f(X)

∂X
=

1

2

(
∂f(X)

∂XR
− j

∂f(X)

∂XI

)
,

∂f(X)

∂X∗
=

1

2

(
∂f(X)

∂XR
+ j

∂f(X)

∂XI

)
. (1)

The real matrix derivative operator involved in (1) is defined
as follows [9], [12], [13]

∂f(Z)

∂Z
=


∂f(Z)
∂[Z]1,1

· · · ∂f(Z)
∂[Z]1,Nc

...
. . .

...
∂f(Z)
∂[Z]Nr,1

· · · ∂f(Z)
∂[Z]Nr,Nc

 , (2)

where Z ∈ RNr×Nc is a real matrix. When Z is a symmetric
matrix, the right hand side of (2) must also be a symmetric
matrix.

Highlight 1. When some structural constraints are imposed
on Z, e.g., Z is a diagonal matrix, the definition given in (2)
becomes meaningless.

It should be highlighted that for some intermediate steps,
the complex matrix derivations with respect to X itself and
with respect to its conjugateX∗ are different. For example, the
following complex matrix operators are defined in the classic
textbooks [9], [12]

∂Tr
(
XH

)
∂X

= 0,
∂Tr

(
XH

)
∂X∗

= I. (3)

It is worth noting that the role of complex matrix derivatives
is to find extreme values. From a mathematical viewpoint,
it is meaningless to argue that a complex number is larger
or smaller than another complex number. Therefore, setting
the complex derivatives of a complex valued function is
totally meaningless. In the classic textbook [12], the following
complex matrix derivative operators were defined:

∂Tr(WX)

∂X
=WT,

∂Tr(WHXH)

∂X
= 0, (4)

and

∂Tr(WX)

∂X∗
=0,

∂Tr(WHXH)

∂X∗
=WH, (5)

where X is a complex matrix variable and W is a complex
matrix of appropriate dimension. It is worth noting that
Tr(WX) can be a complex-valued function. In this case,
the matrix derivative operators of (4) and (5) would become
meaningless from a mathematical viewpoint. However, in real-
world applications Tr(WX) and Tr(WHXH) usually appear
in together. Thus, it is more meaningful to define the following
complex matrix derivative operators

∂
[
Tr(WX) + Tr

(
WHXH

)]
∂X

=WT,

∂
[
Tr(WX) + Tr

(
WHXH

)]
∂X∗

=WH, (6)

instead of the previous operators of (4) and (5).

Highlight 2. The complex matrix derivative can be set either
with respect to a complex matrix variable X itself or to its
conjugate X∗. For these two matrix derivatives, the resultant
KKT conditions are exactly the same.

The key is that regardless of which complex matrix deriva-
tion is used, the resultant KKT conditions must be the same.
In the following, two quadratic derivative operators are defined

∂Tr(XWXH)

∂X∗
=XW ,

∂Tr(XWXH)

∂X
= (WXH)T,

(7)

where W must be a Hermitian matrix, i.e., W = WH. If
W is indeed a square matrix but not a Hermitian matrix,
the definition in (7) becomes meaningless and the following
operator can be defined

∂[Tr(XWXH) + Tr(XWHXH)]

∂X∗
=X(W +WH), (8)

in which the term (W+WH) is definitely a Hermitian matrix.
The complex matrix derivative based methods are much

more straightforward than the existing traditional signal pro-
cessing techniques, and they can substantially simplify the
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optimization [22]. Upon considering beamforming as an ex-
ample, the corresponding beamforming optimization problem
is formulated as [22]

max
w

wHAw

wHBw + σ2
, s.t. wHw ≤ P. (9)

The first order equation (FOEqu) of its KKT conditions may
be formulated as

(wHBw + σ2)Aw − (wHAw)Bw

(wHBw + σ2)2
= λw. (10)

Based on (10) and exploiting that wHw = P , the Lagrange
multiplier can be derived as

λ =
σ2

P

wHAw

(wHBw + σ2)2
. (11)

Upon substituting (11) into the FOEqu (10), the following
matrix equality holds

Aw =
wHAw

wHBw + σ2

(
B +

σ2

P
I

)
w. (12)

It may then be concluded that the optimal beamforming vector
w equals to

wopt =P

((
B +

σ2

P
I

)−1
A

)
, (13)

where the operator P(M) denotes the principal eigenvector of
M [23]. Let us now consider a more complex beamforming
optimization problem under per-antenna power constraints,
which is formulated as [22]

max
w

wHAw

wHBw + σ2
, s.t. [wwH]n,n ≤ Pn. (14)

The FOEqu of its KKT conditions is given by

(wHBw + σ2)Aw − (wHAw)Bw

(wHBw + σ2)2
=
∑
n

λnΩnw

= λ
∑
n

λn
λ

Ωnw. (15)

Let us now define λn

λ , λ̃n and
∑
n λ̃nΩn , Ω, where the

value of λ is chosen for ensuring that the optimal beamformer
w satisfies wHΩw =

∑
n Pn. Hence, the optimal w is given

by

wopt = P

(B +
σ2∑
n Pn

∑
n

Ω

)−1
A

 , (16)

where Ω is a diagonal matrix. If all the diagonal elements
of Ω are identical, the optimal solutions of the above two
optimization problems, namely, (13) and (16), are the same.
The values of {λ̃n} can be computed using the subgradient
algorithm, as proposed in [18]. It may then be concluded that
the KKT conditions based method is a powerful counterpart
of the family of numerical optimization methods relying on
optimization software toolboxes.

Highlight 3. In the traditional definition of complex matrix
derivatives, there is no restriction imposed on the structures

of the matrix variable. The elements of the matrix variable are
independent variables.

Conclusion 1. Complex matrix derivatives may also be inter-
preted as concise and elegant expressions for multiple vari-
ables’ derivatives. This kind of expression can substantially
simplify the derivation and analysis processes. Furthermore,
it is always possible to use separate real and imaginary parts
to define the corresponding real matrices’ derivatives.

In the above definitions of this section, no structural con-
straints are imposed on the matrix variable X . If there are
some specific structural constraints, the results given above
may become incorrect. For example, when X is a symmetric
real matrix, i.e., X = XT, but W is not a symmetric real
matrix, we have

∂Tr(WTX)

∂X
=
1

2
(W +WT). (17)

This example shows that a matrix specific structure signif-
icantly influences the matrix derivatives. Moreover, for the
same function of complex matrix, there are more than one
mathematical formulae for complex matrix derivatives. Here,
the MIMO channel capacity may be considered as an example,
which satisfies the following equalities

C = log
∣∣I + FFHHHH

∣∣ = log
∣∣I +HFFHHH

∣∣, (18)

where F is the linear TPC at the source and H is a constant
channel matrix. Therefore, we have the following complex
matrix derivative operators

∂ log
∣∣I+FFHHHH

∣∣
∂F ∗

=HHH
(
I+FFHHHH

)−1
F ,

(19)

∂ log
∣∣I+HFFHHH

∣∣
∂F ∗

=HH
(
I+HFFHHH

)−1
HF .

(20)

It is plausible that the complex matrix derivative operators
in (19) and (20) must be equal to each other, since they are
derived from the same OF. This conclusion is always true,
because the following equality always holds:(

I +HFFHHH
)
H =H

(
I + FFHHHH

)
. (21)

The mathematical formulation of (20) is better than that of
(19). Explicitly the formulation in (19) is not suitable for
analysis, since the matrix FFHHHH may not have an
eigenvalue decomposition (EVD) for a general matrix F [23].

Symmetry is an important property that can be exploited
to derive the optimal structure of F . The following section
provides important design guidelines, based on which the
optimal structure of matrix variables can be derived.

III. MATRIX SYMMETRIC EQUATIONS

In this section, several important design guidelines are
provided for complex matrix derivatives to guarantee having a
symmetric structure. First, we introduce the following matrix
equality for the pair of Hermitian matrices A and B of
appropriate dimensions:

AB = Φ, (22)
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where Φ is also a Hermitian matrix. This kind of matrix
equation is referred to as matrix symmetric equation. We will
show that A, B and Φ have the same unitary EVD matrix.

Lemma 1. For a pair of Hermitian matrices A and B
satisfying AH = A and BH = B, both A and B as well as
AB have the same unitary EVD matrix, provided that AB is
a Hermitian matrix, i.e., BHAH = AB.

It should be pointed out that for a Hermitian matrix, its EVD
is not unique. In other words, a Hermitian matrix can have
multiple unitary EVD matrices. The statement in Lemma 1
means that there exists at least one unitary matrix that is also
the unitary EVD matrix of A, B and AB. This result is given
in Theorem 4.1.6 of [23]. However, there is no requirement
that A and B should be positive definite here.

Lemma 2. For complex matrices A and B of appropriate
dimensions, when AHBHBA and AHA have the same
unitary EVD matrix, BHB and AAH have the same unitary
EVD matrix.

Proof. The proof is given in Appendix A.

Conclusion 2. For a pair of matrices A and B of appropriate
dimensions, when BHAHAB and BHB have the same
unitary EVD matrix, the right unitary matrix in singular value
decomposition (SVD) of A and the left unitary matrix in SVD
of B are the same.

Proof. Conclusion 2 is a direct result of Lemma 2.

Conclusion 3. For a pair of matrices A and B of appropriate
dimensions and a positive definite matrix Φ, whenBHAHAB
and BHΦB have the same unitary EVD matrix, there exists
a unitary matrix that is simultaneously the right unitary SVD
matrix of AΦ−

1
2 and the left unitary SVD matrix of Φ

1
2B.

In other words, Φ−
1
2AHAΦ−

1
2 and Φ

1
2BBHΦ

1
2 have the

same unitary EVD matrix.

Proof. Conclusion 3 can be inferred upon replacing B and A
in Conclusion 2 by B̃ = Φ

1
2B and Ã = AΦ−

1
2 , respectively.

Conclusion 4. For an arbitrary complex matrix A,
AH(AAH + I)kA and AHA have the same unitary EVD
matrix. The scalar k can be an arbitrary real number.

Proof. Upon expressing the SVD of matrix A as A =
UΛV H, we have AHA = V ΛHΛV H and AH(AAH +
I)kA = V ΛH(ΛΛH + I)kΛV H.

Highlight 4. The EVD is not unique for a Hermitian matrix
since the eigenvalues can be arranged in different orders.
For two N × N positive semidefinite matrices A and B,
the following matrix inequalities can be exploited to choose
eigenvalues pairing [1]

Matrix Inequ. 1: log |I +AB| ≤
N∑
i=1

log [1+λi(A)λi(B)] ,

(23)

Matrix Inequ. 2: log |A+B|≤
N∑
i=1

log [λN−i+1(A)+λi(B)] ,

(24)

Matrix Inequ. 3: Tr(AB) ≥
N∑
i=1

[λN−i+1(A)λi(B)] , (25)

Matrix Inequ. 4: Tr
[
(A+B)−1

]
≥

N∑
i=1

[λN−i+1(A) + λi(B)]−1. (26)

Having a symmetric matrix structure is an important charac-
teristic that can be exploited to derive the optimal solution. In
the following subsection, a number of specific matrix variable
optimization examples are given to illustrate how to derive the
optimal structures of the matrix variables based on symmetric
matrix equations.

A. Optimization for MIMO Communications

We mainly consider a general MIMO downlink communi-
cation scenario, where the BS and the user are equipped with
Nt and Nr antennas, respectively. Then the signal received at
the user can be expressed as

y =HFs+ n, (27)

where H ∈ CNr×Nt denotes the channel matrix, F represents
the precoding matrix, s is the transmitted signal satisfying
E[ssH] = I , and n is the additive noise vector at the user.
Based on (27), the capacity of the system can be expressed as

C = log
∣∣Π + FHHHHF

∣∣, (28)

and the mean square error (MSE) can be expressed as

MSE = Tr
(
(Π + FHHHHF )−1

)
, (29)

where Π satisfying Π = E[nnH] is the covariance matrix
of the additive noise. We consider the following optimization
problem relying on a combined OF under practical per-antenna
power constraints.

P1 : max
F

γ1 log
∣∣Π + FHHHHF

∣∣
− γ2Tr

(
(Π + FHHHHF )−1

)
s.t. Tr

(
ΩnFF

H
)
≤ Pn, 1 ≤ n ≤ Nt, (30)

where γ1 and γ2 are the weighting factors, and Pn denotes
the maximum transmit power of the n-th antenna at the BS.

To obtain the optimal structure of F , we firstly derive the
FOEqu of the KKT conditions associated with P1, given by

FOEqu1 : γ1H
HHF (Π + FHHHHF )−1

+ γ2H
HHF (Π + FHHHHF )−2 = µΩF ,

Ω ,
Nt∑
n=1

λn
µ

Ωn, (31)

where λn is the Lagrange multiplier associated with the n-th
weighted power constraint. Based on FOEqu1 (31), we have
the following matrix symmetric equation (MSEqu)

MSEqu1 : FHHHHF︸ ︷︷ ︸
A
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Algorithm 1: Proposed algorithm for solving P1
Input : Initial parameters γ1, γ2,Π,H, {Ωk}, {Pn}.

1 Initialize {λn} and set t = 1.
2 repeat
3 Calculate µ = (

∑Nt

n=1 λ
(t)
n Pn)/P .

4 Derive Ω = (
∑Nt

n=1 λ
(t)
n Ωn)/µ.

5 Obtain UH and UΠ from (34).
6 Derive ΛF by the water-filling method.
7 Derive the optimal F from (33).
8 Update λ(t+1)

n = [λ
(t)
n + ρ(Tr(ΩnFF

H)− Pn)]+
with the decreasing step size ρ.

9 Set t = t+ 1.
10 until |µ(Tr(ΩnFF

H)− Pn)| ≤ ε,∀n;
Output: The optimal precoder F .

×
(
γ1(Π+FHHHHF )−1+γ2(Π+FHHHHF )−2

)︸ ︷︷ ︸
B

=µFHΩF . (32)

According to Lemma 1, FHHHHF and FHΩF have the
same unitary EVD matrix, and FHHHHF and Π have the
same unitary EVD matrix. Hence it can be concluded from
Conclusion 3 that the optimal solution of F for P1 satisfies
the following structure:

Fopt = Ω−
1
2UHΛFU

H
Π, (33)

where the unitary matrices UH and UΠ are defined based on
the following EVDs

Ω−
1
2HHHΩ−

1
2 = UHΛHU

H
H , Π = UΠΛΠU

H
Π. (34)

As there are two EVDs, an eigenvalue pairing problem natu-
rally exists based on Highlight 4. Specifically, when γ1 ≥ 0

and γ2 ≥ 0, it can be concluded that based on MSEqu1, the
eigenvalues of the two EVDs in (34) are in the reverse order.
Moreover, for the general case, when γ1 ≥ 0 and γ2 ≥ 0

are not guaranteed, we can fix the eigenvalue ordering of the
first EVD and then perform an exhaustive search to find the
optimal eigenvalue ordering of the second EVD. The proposed
algorithm based on the optimal structure is summarized in
Algorithm 1.
Highlight 5. It is worth noting that when γ1 = 0, P1 reduces
to the MSE minimization problem. Whereas when γ2 = 0, P1
becomes the classical MIMO capacity maximization problem.
In particular, when γ1 ≥ 0 and γ2 ≥ 0, P1 is convex.
Nonetheless, γ1 and γ2 are not limited to nonnegative values.
Therefore, the optimal structure derived based on the KKT
conditions is also applicable to the case, when P1 is nonconvex
or does not satisfy the matrix-monotonic property [18].

Highlight 6. Under the assumption of imperfect CSI, we
may derive the expectation of problem P1 with respect to the
channel error, which is ultimately formulated as [16]

max
F

γ1 log
∣∣I +R−1ĤFFHĤH

∣∣
− γ2Tr

(
(I +R−1ĤFFHĤH)−1

)
,

s.t. Tr
(
ΩnFF

H
)
≤ Pn, 1 ≤ n ≤ Nt, (35)

where Ĥ denotes the estimated channel matrix, and R =
Π + Tr(RTFF

H)RR. RR and RT denote the receive and
transmit spatial correlation matrices, respectively. Similarly,
we can derive the optimal structure of F as follows

Fopt = Γ−
1
2URΛFU

H
DFT, (36)

where the positive semidefinite matrix Γ satisfies

Γ = µΩ + γ1Tr
(
R−1RR − (R+ ĤFFHĤH)−1RR

)
RT

+ γ2Tr
(
(I −D)DR−1RR

)
RT. (37)

with D = (I +R−1ĤFFHĤH)−1

and UR is the unitary matrix defined by the following EVD.

Γ−
1
2 ĤHR−1ĤΓ−

1
2 = URΛRU

H
R. (38)

B. Other Specific Examples

1) Min-Max Diagonal Element of Matrix Inversion: First,
we investigate the optimization problem of minimizing the
maximum diagonal element of a matrix inverse under mul-
tiple weighted power constraints. The detailed mathematical
formulation is elaborated as follows.

P2 : min
F

max
1≤n≤N

[(
I + FHHHHF

)−1]
n,n

s.t. Tr
(
ΩkFF

H
)
≤ Pk, 1 ≤ k ≤ K. (39)

The min-max optimization problem considered in [2] is a
special case of P2, which aims to minimize the MSE for the
worst user. The traditional complex matrix derivative operator
is difficult to apply to the max-min OF. In order to overcome
this difficulty, an auxiliary variable t is introduced and the
optimization problem (39) is reformulated as

min
t,F

t

s.t.
[(
I + FHHHHF

)−1]
n,n
≤ t, ∀n,

Tr
(
ΩkFF

H
)
≤ Pk, 1 ≤ k ≤ K.

(40)

The FOEqu of the KKT conditions for the optimization
problem (40) is given by

FOEqu2 : αHHHF
(
I+FHHHHF

)−1(
I+FHHHHF

)−1
= µΩF , Ω =

K∑
k=1

λk
µ

Ωk, (41)

where α is the common Lagrange multiplier associated with
the first N constraints of the problem (40). The derivation is
given in Appendix B. Note that we can prove that all the
Lagrange multipliers for the first N constraints are equal.
From FOEqu2 (41), we have the following matrix symmetric
equation (MSEqu)

MSEqu2 :

αFHHHHF︸ ︷︷ ︸
A

(
I+FHHHHF

)−1 (
I+FHHHHF

)−1︸ ︷︷ ︸
B

= µFHΩF . (42)
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Based on both (42) and Lemma 1, it can be concluded that
FHHHHF and FHΩF have the same EVD unitary matrix.
Then based on Conclusion 3, the optimal F satisfies the
structure:

Fopt = Ω−
1
2UHΛFU

H
F , (43)

where UH is the right SVD unitary matrix of HΩ−
1
2 and the

unitary matrix UF is still unknown. Furthermore, according
to the KKT conditions of (40), the following equalities must
hold [(

I + FHHHHF
)−1]

n,n
= t, ∀n. (44)

Consequently, the optimal UF can be chosen as a DFT matrix
[23] and thus the optimal F satisfies the following structure

Fopt = Ω−
1
2UHΛFU

H
DFT. (45)

It is seen that for the min-max design, the method of
KKT conditions based on symmetric matrix equations is more
straightforward than that based on majorization theory [2].

2) Optimization of Matrix Inversion: For completeness, we
also investigate the following optimization problem with the
OF in the form of summing up the diagonal elements of matrix
inversion

P3 : max
F

Tr
((

(I + FHHHHF )−1 + Ψ
)−1)

s.t. Tr
(
ΩkFF

H
)
≤ Pk, 1 ≤ k ≤ K.

(46)

The FOEqu of the KKT conditions for P3 and the associated
MSEqu are given respectively by

FOEqu3 :

HHHF (I+FHHHHF )−1
(
(I+FHHHHF )−1+Ψ

)−2
× (I+FHHHHF )−1 = µΩF , (47)

MSEqu3 : FHHHHF︸ ︷︷ ︸
A

×

(I+FHHHHF )−1
(
(I+FHHHHF )−1+Ψ

)−2
(I+FHHHHF )−1︸ ︷︷ ︸

B

= µFHΩF . (48)

According to Lemma 1, FHHHHF and FHΩF have the
same unitary EVD matrix. Moreover, FHHHHF and Ψ have
the same unitary EVD matrix. As such, the optimal F for
the optimization problem P3 of (46) satisfies the following
structure

Fopt = Ω−
1
2UHΛFU

H
Ψ, (49)

where UH and UΨ are the unitary matrices defined by the
following EVDs

Ω−
1
2HHHΩ−

1
2 = UHΛHU

H
H , Ψ = UΨΛΨU

H
Ψ. (50)

As there are two EVDs, an eigenvalue pairing problem natu-
rally exists. According to Highlight 4, the eigenvalues of the
two matrices given in (50) are in the same order.

3) Optimization of Combined Functions: Similarly, another
optimization of combined OFs is expressed as

P4 : max
F

γ1 log
∣∣I + FHHHHF

∣∣
− γ2Tr

(
W (I + FHHHHF )−1

)
s.t. Tr(ΩkFF

H) ≤ Pk, 1 ≤ k ≤ K, (51)

with weighting factors γ1 and γ2. Sepcifically, when γ1 = 0,
P4 reduces to the weighted MSE minimization problem.
Whereas when γ2 = 0, P4 becomes the classical MIMO
capacity maximization problem. Similar to P3, γ1 and γ2 are
not limited to nonnegative values. The FOEqu of the KKT
conditions and the corresponding MSEqu are then respectively
shown in (52) and (53) at the top of the next page. According
to Lemma 1, FHHHHF and FHΩF have the same unitary
EVD matrix. Furthermore, FHHHHF and W have the same
unitary EVD matrix. Based on Conclusion 3, the optimal
structure of F for P4 is given by

Fopt = Ω−
1
2UHΛFU

H
W , (54)

where the unitary matrices UH and UW are defined by the
following EVDs

Ω−
1
2HHHΩ−

1
2 = UHΛHU

H
H , W = UW ΛWU

H
W . (55)

When γ1 ≥ 0 and γ2 ≥ 0, it can be concluded that the
eigenvalue ordering of the two EVDs in (55) are in the same
order. Furthermore, for the general case, when γ1 ≥ 0 and
γ2 ≥ 0 are not guaranteed, again we can fix the the eigenvalue
ordering of the first EVD and then perform an exhaustive
search to find the optimal eigenvalue ordering of the second
EVD.

4) Capacity Maximization of Dual-Hop MIMO: The ca-
pacity maximization problem for the dual-hop amplify-and-
forward MIMO system is formulated as [24]

P5 : max
F

log
|H2FH1H

H
1 F

HHH
2 + σ2

1H2FF
HHH

2 + σ2
2I|

|σ2
1H2FFHHH

2 + σ2
2I|

s.t. Tr
(
F (H1H

H
1 + σ2

1I)F
H
)
≤ P, (56)

where H2 and H1 are the channel matrices in the second hop
and the first hop, respectively, while F is the relay forwarding
matrix. The FOEqu with respect to F is given by

FOEqu5 :

HH
2 (H2FΦFHHH

2 + σ2
2I)
−1H2F

−HH
2 (σ2

1H2FF
HHH

2 + σ2
2I)
−1σ2

1H2FΦ−1 = µF , (57)

where Φ = H1H
H
1 + σ2

1I . Based on (57), the following
MSEqu holds

MSEqu5 : FHHH
2

(
H2FΦFHHH

2 + σ2
2I
)−1

H2F

− FHHH
2

(
σ2
1H2FF

HHH
2 + σ2

2I
)−1

σ2
1H2FΦ−1 = µFHF .

(58)

According to MSEqu5, FHHH
2

(
σ2
1H2FF

HHH
2 +

σ2
2I
)−1

σ2
1H2F is a Hermitian matrix, and we conclude

that FHHH
2 H2F as well as Φ have the same unitary EVD

matrix. Similarly, FFH and FHHH
2 H2F also have the same
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FOEqu4 :

HHHF
(
γ1(I + F

HHHHF )−1+γ2(I+F
HHHHF )−1W (I+FHHHHF )−1

)
=µΩF , (52)

MSEqu4 : FHHHHF︸ ︷︷ ︸
A

×
(
γ1(I+F

HHHHF )−1+γ2(I+F
HHHHF )−1W (I+FHHHHF)−1

)︸ ︷︷ ︸
B

=µFHΩF . (53)

unitary EVD matrix. As a result, the optimal relay forwarding
matrix F satisfies the following structure

F = VH2ΛFU
H
H1
, (59)

where the unitary matrices VH2 and UH1 are defined based
on the following EVDs

H1 = UH1
ΛH1

V H
H1
, H2 = UH2

ΛH2
V H
H2
. (60)

It follows from MSEqu5 that the eigenvalues of FHHHHF
and FHF are in the same order. Therefore, the eigenvalues
of the two EVDs in (60) are in the same order.

It can be seen that using symmetric matrix equation, the
KKT conditions based method is much more straightforward
than the derivations given in [24].

5) Two alternative BER minimization examples: Bit error
rate (BER) is an important performance metric for MIMO
transceiver optimization, which reflects the reliability of data
transmission. However, since an analytical expression of BER
may be not readily accessible, we instead consider an al-
ternative BER performance metric, i.e., the so-called MSE
metric, for guaranteeing the reliable data transmission. This
approach has been widely adopted in the existing MIMO
related literature [15]. For example, two alternative BER
minimization examples are given below. Firstly, in terms of
the transmitted signal detection at high SNRs, the alternative
BER minimization (i.e., sum MSE minimization) problem can
be relaxed as

P6 : min
F

Tr
(
(FHΠF )−1

)
s.t. Tr

(
ΩkFF

H
)
≤ Pk, 1 ≤ k ≤ K.

(61)

The FOEqu of the KKT conditions for P6 is given by

FOEqu6 : ΠF
(
FHΠF

)−2
= µΩF , (62)

based on which the following MSEqu is obtained

MSEqu6 :
(
FHΠF

)−1
= µFHΩF . (63)

It can be concluded that FHΠF and FHΩF have the same
unitary EVD matrix. Based on Conclusion 3, the optimal F
satisfies the following structure

Fopt = Ω−
1
2UΠ̃ΛFU

H
Arb, (64)

where the unitary matrix UΠ̃ is defined in the following EVD

Ω−
1
2 ΠΩ−

1
2 = UΠ̃ΛΠ̃U

H
Π̃
, (65)

and UArb is an arbitrary unitary matrix of appropriate dimen-
sions.

Secondly, from the perspective of channel estimation at
high SNRs, the relaxed sum MSE minimization problem is
expressed as [25]

P7 min
F

Tr
(
(FΠFH)−1

)
s.t. Tr

(
ΩkFF

H
)
≤ Pk, 1 ≤ k ≤ K.

(66)

Note that P6 and P7 are significantly different, because of the
position of the Hermitian operation in the OF. The FOEqu of
the KKT conditions for P7 is given by

FOEqu7 :
(
FΠFH

)−2
FΠ = µΩF , (67)

based on which the following MSEqu holds

MSEqu7 :
(
FΠFH

)−1
= µΩFFH. (68)

We conclude that FHΩF and Ω have the same unitary EVD
matrix, and FHΠF and FHΩF have the same unitary EVD
matrix. Recalling Conclusion 3 yields the optimal structure
of F

Fopt = UΩΛFU
H
Π, (69)

where the unitary matrices UΠ and UΩ are defined using the
following EVDs

Π = UΠΛΠU
H
Π, Ω = UΩΛΩU

H
Ω . (70)

As there are two EVDs, there is an eigenvalue pairing issue
according to Highlight 4. From MSEqu7, the optimal eigen-
values involved in ΛΠ and ΛΩ in (70) are in the reverse order.
C. EVD Pairing Results

Based on the symmetric matrix equations derived for the
KKT conditions based method, the optimal structure of the
matrix variable can be efficiently obtained. However, since
the eigenvalues of a Hermitian matrix can be arranged in dif-
ferent orders, the optimal matrix variable cannot be uniquely
determined from the optimal structure. In order to overcome
this issue, an important conclusion is given in the following.

Conclusion 5. For the OF that is a matrix monotonic function
with respect to FHHHHF under multiple weighted power
constraints, i.e., when Tr(ΩkFF

H) ≤ Pk, if FHHHHF and
FHΩF have the same unitary EVD matrix, we can conclude
that the eigenvalues of the matrices FHHHHF and FHΩF
are in the same order.

IV. POSITIVE SEMIDEFINITE CONSTRAINTS

In many MIMO optimization problems, the covariance
matrix Q of the transmit signal is the complex matrix variable,
which is positive semidefinite [26]–[29]. In contrast to an
unconstrained complex matrix variable, there are two con-
straints imposed on Q: 1) it is conjugate symmetric, and 2) its
eigenvalues are all nonnegative. Based on the definition of
the complex matrix derivative [12], when the OF is a real
valued function, the matrix derivative result is a Hermitian
matrix of the same dimension. Motivated by this fact, we have
the following equality for the corresponding complex matrix
derivative operators(

∂f(Q)

∂Q

)T

=
∂f(Q)

∂Q∗
. (71)
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For example, based on the complex matrix derivative and on
the fact that Q is positive semidefinite, we have the following
complex matrix derivative operators

∂Tr(WQ)

∂Q∗
=
∂Tr

(
WQH

)
∂Q∗

=W . (72)

It can be seen that the matrix derivative operators of (72)
are significantly different from those of (3). Here the matrix
W must be a Hermitian matrix. Otherwise, this derivation
definition is meaningless. In other words, there is no definition
for the complex matrix derivative in this case. In the following,
we consider the derivative of a quadratic function with respect
to Q

∂Tr(QWQH)

∂Q∗
= QW +WQ, (73)

where W = WH and Q = QH. It is plausible that the
right-hand side of (73) is also a Hermitian matrix. It is worth
pointing out that this result is significantly different from the
traditional result derived without specific structural constraints.

A. Positive Semidefinite Matrix Variable

Moreover, as Q is a positive semidefinite matrix, the com-
plex matrix derivative must be defined on the set of positive
semidefinite matrices. Unfortunately, the existing definitions
of complex matrix derivatives never consider this. In other
words, there is a relaxation when performing complex matrix
derivatives in the classical literature, and if the final solution is
positive semidefinite, then there will be no loss. This is usually
guaranteed by the mathematical formula of the OF.

1) Lagrange Multiplier Method: It is worth noting that
there are certain specific structural constraints that cannot be
imposed on the matrix derivative results, but they are reflected
by Lagrange multipliers. Considering the positive semidefinite
constraint as an example, i.e., Q � 0, the physical meaning of
this inequality is that all the eigenvalues of Q are nonnegative.
Then a matrix-valued Lagrange multiplier associated with this
positive semidefinite constraint may be introduced [21]

ΨQ = 0, Ψ � 0. (74)

In [27], the Lagrange multiplier for the positive semidefinite
matrix Q with rank constraints is also given. In the following,
we take a variant of P3 as an example:

P8 :max
Q

γ1 log
∣∣I +HQHH

∣∣−γ2Tr((I +HQHH)−1
)

s.t. Tr(ΩkQ) ≤ Pk, 1 ≤ k ≤ K, Q � 0. (75)

The optimization problem P8 is convex with respect to the
positive semidefinite matrix variable Q. It is straightforward
to see that the KKT conditions of P8 are the necessary and
sufficient conditions for the optimal solution. In the following,
a short discussion is given to show how to derive the optimal
solution based on the KKT conditions. More details can
be found in [27]. The FOEqu of the KKT conditions for
problem P8 is given by

FOEqu8 :HH
(
γ1
(
I+HQHH

)−1
+γ2

(
I+HQHH

)−2)
H

= Ω−Ψ, (76)

based on which the following MSEqu holds

MSEqu8 : Q
1
2HH

(
γ1
(
I +HQHH

)−1
(77)

+ γ2
(
I +HQHH

)−2)
HQ

1
2 = Q

1
2 ΩQ

1
2 .

It is plausible that the two matrices Q
1
2 ΩQ

1
2 and

Q
1
2HHHQ

1
2 have the same unitary EVD matrix. Then based

on Conclusion 3, the optimal structure of Q can be obtained
as

Qopt = Ω−
1
2UHΛQU

H
HΩ−

1
2 , (78)

where ΛQ is a diagonal matrix and the unitary matrix UH is
derived from the following EVD

Ω−
1
2HHHΩ−

1
2 = UHΛHU

H
H , (79)

where the eigenvalues involved in ΛH are arranged in a non-
increasing order.

Similar to the sum MSE minimization, in the following, we
consider another general optimization problem associated with
the OF in the form of matrix inversion

P9 min
Q

Tr
[
(I +NQNH)−K

]
s.t. Tr(ΩnQ) ≤ Pn, 1 ≤ n ≤ N, Q � 0.

(80)

The FOEqu of the KKT conditions for P9 and the associated
MSEqu are given respectively by

FOEqu9 : NH(I +NQNH)−K−1N = µΩ−Ψ, (81)

MSEqu9 : Q
1
2NH(I +NQNH)−K−1NQ

1
2 = µQ

1
2 ΩQ

1
2 .

(82)

It may be readily shown thatQ
1
2 ΩQ

1
2 andQ

1
2NHNQ

1
2 have

the same unitary EVD matrix. Then based on Conclusion 3,
the optimal structure of Q is derived as

Qopt = Ω−
1
2UNΛQU

H
NΩ−

1
2 , (83)

where ΛQ is a diagonal matrix and the unitary matrix UN is
defined in the following EVD

Ω−
1
2NHNΩ−

1
2 = UNΛNU

H
N , (84)

where the eigenvalues are sorted in a non-increasing order.
2) Relaxation-Based Methods: Another popular approach

to deal with the positive semidefinite constraint is utilizing
the relaxation-based method. For example, a MIMO training
optimization problem associated with the least square (LS)
estimator is formulated as [25]

P10 : min
Q

Tr
(
WQ−1

)
s.t. Tr(Q) ≤ P, Q � 0,

(85)

where both the matrix variable Q and the weighting matrix
W are positive definite. Using the relaxation-based method,
the positive definite constraint is firstly relaxed and thus the
original training optimization problem is simplified as

min
Q

Tr
(
WQ−1

)
s.t. Tr(Q) ≤ P.

(86)
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Accordingly, the KKT conditions of the problem (86) are given
by

Q−1WQ−1=λI, λ ≥ 0, λ(Tr(Q)− P )=0, Tr(Q) ≤ P.
(87)

The optimal solution satisfying the above KKT conditions is
unique, and is given by [25]

Q =
P

Tr(W
1
2 )
W

1
2 . (88)

The solution (88) is found to be positive definite, and thus it
is also the optimal solution of the original optimization prob-
lem (85). This relaxation-based method enjoys simplicity, but
a double check is needed for the derived solution. Moreover,
the main weakness of this kind of algorithm is that there are
strict requirements on the optimization problems considered.

Highlight 7. The complex matrix derivative for a real-valued
function with respect to a positive semidefinite matrix variable
must be a Hermitian matrix. The semi-positivity is guaranteed
by the fact that the optimal OF value occurs at the set of the
positive semidefinite matrix variables.

B. Variable Transformation for Single-matrix Variable

In order to overcome the challenges imposed by specific
structural constraints, an effective technique is to transform
the original complex matrix variables. For convex optimization
problems, it is possible to derive the optimal solutions purely
based on the KKT conditions. However, when the problem
considered is nonconvex, some variable transformation tech-
niques can be adopted to simplify the derivation of the optimal
structures of matrix variables. As such, the matrix derivative
operation involved can be substantially simplified.

In order to address the positive semidefinite constraint, such
as Q � 0, a feasible strategy is to exploit the equality

Q = F̃ F̃H, (89)

where F̃ is a general matrix without structural constraints.
The benefit of this strategy is twofold. On the one hand, no
structural constraint is imposed on F̃ and thus the complex
matrix derivative with respect to F̃ is much easier to derive.
On the other hand, the rank constraint can be taken into
account by adjusting the number of columns in F̃ . Unfortu-
nately, this strategy destroys convexity, where the KKT condi-
tions constitute necessary but not sufficient conditions for the
optimal solution. However in many non-convex optimization
problems, all the solutions that satisfy the KKT conditions
have a uniform structure, which is thus the optimal structure
of the matrix variable. It should be emphasized that having
optimal structures are of great importance, which can simplify
the original optimization problem.

For example, using the matrix variable transformation (89),
P9 can be transferred into

P11 : min
F̃

Tr
[
(I +NF̃ F̃HNH)−K

]
s.t. Tr

(
ΩnF̃ F̃

H
)
≤ Pn, 1 ≤ n ≤ N.

(90)

The FOEqu of the KKT conditions of the problem P11 is
given by

FOEqu11 : KNH
(
I +NF̃ F̃HNH

)−K−1
NF̃ = µΩF̃ ,

(91)

based on which the following MSEqu holds

MSEqu 11: KF̃HNH
(
I +NF̃ F̃HNH

)−K−1
NF̃

= µF̃HΩF̃ . (92)

It is plausible that F̃HΩF̃ and F̃HNHNF̃ have the same
unitary EVD matrix. Then based on Conclusion 3, the optimal
structure of F̃ can be derived as

F̃opt = Ω−
1
2UNΛF̃V

H
Arb, (93)

where ΛF̃ is a diagonal matrix and the unitary matrix UN

is defined based on the following EVD with the eigenvalues
arranged in a non-increasing order

Ω−
1
2NHNΩ−

1
2 = UNΛNU

H
N . (94)

Likewise, based on Q = F̃ F̃H, the problem P10 can be
transferred into the following one

P12 : min
F̃

Tr
(
W
(
F̃ F̃H

)−1)
s.t. Tr

(
F̃ F̃H

)
≤ P.

(95)

The FOEqu of the KKT conditions for the optimization P12
is given by

FOEqu12 :
(
F̃ F̃H

)−1
W
(
F̃ F̃H

)−1
F̃ = λF̃ , (96)

where λ is the Lagrange multiplier for the power constraint.
It follows from FOEqu12 that

F̃ F̃H =

√
1

λ
W

1
2 . (97)

Clearly, F̃ F̃H is the same as the optimal Q derived in [25].
This example shows that leveraging the variable transforma-
tion technique beneficially simplifies the derivation of the
optimal solution.

C. Variable Transformation for Multi-matrix Variables

1) Multi-user MIMO Capacity Maximization: The capacity
maximization problem of uplink multi-user MIMO communi-
cations can be formulated as [21]

P13 : max
{Qn}Nn=1

log

∣∣∣∣∣Π +

N∑
n=1

HnQnH
H
n

∣∣∣∣∣
s.t. Tr

(
N∑
n=1

Ωn,m,kQn

)
≤ Pm,k, ∀m, k,

Qn � 0, 1 ≤ n ≤ N, (98)

which can be equivalently transferred into the following prob-
lem by utilizing Qn = F̃nF̃

H
n

P14 : max
{F̃n}Nn=1

log

∣∣∣∣∣Π +

N∑
n=1

HnF̃nF̃
H
n H

H
n

∣∣∣∣∣
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s.t. Tr

(
N∑
n=1

Ωn,m,kF̃nF̃
H
n

)
≤ Pm,k, ∀m, k, (99)

where Hn denotes the channel between the n-th user and
the base station. The FOEqu of the KKT conditions for the
optimization P14 is then written as

FOEqu14 :

HH
n

(
Π +

N∑
n=1

HnF̃nF̃
H
n H

H
n

)−1
HnF̃n = µnΩnF̃n

Ωn =
∑
k

∑
m

λm,k
µn

Ωn,m,k, 1 ≤ n ≤ N. (100)

The scalars λm,k are the Lagrange multipliers associated with
the power constraints in P14. Then we have the following
MSEqu.

MSEqu14 :

F̃H
n H

H
n Σ
− 1

2
n

(
I + Σ

− 1
2

n HnF̃nF̃
H
n H

H
n Σ
− 1

2
n

)−1
Σ
− 1

2
n HnF̃n

= µnF̃
H
n ΩnF̃n,

Σn =
∑
j 6=n

HjF̃jF̃
H
j H

H
j + Π, 1 ≤ n ≤ N. (101)

From MSEqu14, we conclude that F̃H
n H

H
n Σ−1n H

H
n F̃n and

F̃H
n ΩnF̃n have the same unitary EVD matrix. By recalling

Conclusion 3, the optimal F̃opt,n satisfies the following
structure [18]

F̃opt,n = Ω
− 1

2
n UHn

ΛF̃n
V H
Arb,n, ∀n, (102)

where the unitary matrix UHn is defined according to the
following EVD

Ω
− 1

2
n HH

n Σ−1n HnΩ
− 1

2
n = UHnΛHnU

H
Hn
. (103)

Clearly, using the variable transformation technique, the
analytical structures of the optimal solutions for the more
complex multi-variable optimization are still available.

2) Dual-hop MIMO Optimization: Next, we investigate the
transmit precoder optimization of a dual-hop amplify-and-
forward MIMO relaying system having two matrix variables,
i.e., the transmit covariance matrix Q1 at the source and the
forwarding matrix F2 at the relay [24]. Specifically, using
Q1 = F̃1F̃

H
1 , the resultant matrix variable optimization prob-

lem is expressed as problem P15, shown at the top of the next
page. In P15, the precoder at the source and the forwarding
matrix at the relay are jointly optimized. Observe that P15
can be obtained by replacing H1 and F in the problem P5
with H1F̃1 and F2, respectively. Based on the results for P5,
we directly infer that F2F

H
2 and FH

2 H
H
2 H2F2 have the same

unitary EVD matrix, and FH
2 F2 and H1F̃1F̃

H
1 H

H
1 also have

the same unitary EVD matrix. In addition, the FOEqu of the
KKT condition for P15 with respect to F̃1 is given by

FOEqu15 : HH
1 ΣH1F̃1

(
F̃H
1 H

H
1 ΣH1F̃1 + I

)−1
= λ2H

H
1 F

H
2 F2H1F̃1 + λ2F̃1,

Σ = FH
2 H

H
2 (σ2

1H2F2F
H
2 H

H
2 + σ2

2I)
−1H2F2.

(105)

From (105), the following MSEqu holds

MSEqu15 : F̃H
1 H

H
1 ΣH1F̃1

(
F̃H
1 H

H
1 ΣH1F̃1 + I

)−1
= λ2F̃

H
1 H

H
1 F

H
2 F2H1F̃1 + λ2F̃

H
1 F̃1.
(106)

It can then be concluded that F̃1F̃
H
1 and F̃H

1 H
H
1 H1F̃1 have

the same unitary EVD matrix. Finally, the optimal structures
of F̃1 and F2 are derived as

F̃1 = VH1
ΛF̃1

UH
Arb, F2 = VH2

ΛF2
UH

H2
. (107)

D. Discussions and Results

Based on the aforementioned results, the most important
advantage of using the matrix variable Q (Q � 0) as the
optimization variable is that the convexity of the optimization
problem considered is guaranteed. Therefore, the optimal
solutions of the original optimization problems can be directly
derived from the KKT conditions. For example, the popular
water-filling solutions are available for MIMO communica-
tions from the KKT conditions of P13 [27], but the complex
matrix derivative with respect to Q is complicated, making it
hard to derive the corresponding KKT conditions.

On the other hand, using the transformed matrix variable
F̃ (F̃ F̃H = Q) as the optimization variable, the corre-
sponding optimization problem is no longer convex and the
corresponding KKT conditions are only necessary conditions
for the optimal solution. From a theoretical viewpoint, the
KKT condition based methods suffer from both “turning off”
effects and “permutation ambiguity” effects [30]. For example,
based on the KKT conditions of P15, the water-filling solution
cannot be derived directly. However, the complex matrix
derivative with respect to F̃ becomes simple, making the
inference of the optimal structure from the KKT conditions
simpler. Moreover, in many non-convex optimization prob-
lems, all the solutions that satisfy the KKT conditions have a
uniform structure, which is thus the optimal structure of the
matrix variable considered. Therefore, based on the derived
optimal structures, the original optimization problems can be
beneficially simplified. It can be concluded that the benefits
of the variable transformation often outweigh its drawbacks.

V. NUMERICAL RESULTS

In this section, we present numerical evidence to support
our conclusions. Specifically, we consider a point-to-point
MIMO system, where both the transmitter and the receiver are
equipped with 6 antennas. The MIMO channel is considered to
obey Rayleigh fading, denoted by H or N . Unless otherwise
stated, F and Q represent the transmit precoding matrix and
the transmit covariance matrix, respectively. The maximum
per-antenna power Pk is assumed to be the same for all the
users and the power weighting matrix Ωk is set to a diagonal
matrix whose k-th diagonal element is one and all the other
elements are zero. All the simulation results are obtained by
averaging over 100 random channel realizations.

First we consider the maximization problem P3, where we
set γ1 = γ2 = 1 and Π = I . We compare the performance
of three solutions, namely, 1) Our derived optimal solution
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P15 : max
F2,F̃1

log

∣∣H2F2H1F̃1F̃
H
1 H

H
1 F

H
2 H

H
2 + σ2

1H2F2F
H
2 H

H
2 + σ2

2I
∣∣∣∣σ2

1H2F2FH
2 H

H
2 + σ2

2I
∣∣

s.t. Tr
(
F2(H1F̃1F̃

H
1 H

H
1 + σ2

1I)F
H
2

)
≤ P2, Tr

(
F̃1F̃

H
1

)
≤ P1. (104)
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Fig. 1. The achievable performance as the functions of SNR obtained by
three different solutions for the optimization problem P3 under the weighted
power constraints.
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Fig. 2. Comparison between the optimal solution (83) using the Lagrange
multiplier method and the numerical solution using CVX toolbox for P9 as
well as between the optimal solution (88) using the relaxation-based method
and the numerical solution using CVX toolbox for P10.

to the optimal structure (33) in which the unitary matrices
UH and UΠ are defined in (34) and the diagonal elements
of ΛH and ΛΠ in (34) are sorted in the reverse order;
2) Diff-Unitary: The unitary matrices UH and UΠ in (33)
are chosen as random unitary matrices; and 3) Diff-Ordering:
The diagonal elements of ΛH and ΛΠ in (34) are sorted
in the same order. Fig. 1 shows the OF values achieved
by the three schemes as the functions of SNR. It can be
seen from Fig. 1 that our optimal solution achieves the best
performance, which demonstrates both the optimality of the
derived unitary matrices UH and UΠ and the fact that the
eigenvalues involved in ΛH and ΛΠ must be in the reverse
order.

Next we consider the general optimization problem P9 and
the LS estimation problem P10 under the positive semidefinite
matrix constraint. The positive definite weighting matrix W
is set to I . Notes that when we set K = 1, P9 actually
becomes MSE minimization. It is worth noting that both the
optimization problems are convex, and the globally optimal
solutions can be derived numerically using the CVX tool-
box [31]. Recall from Subsection IV-A that the Lagrange
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Fig. 3. Comparison of the objective values of problem P9/P11 under different
rank constraints of

{
F̃ ,Q

}
for the single-variable case.

multiplier method and the relaxation-based method can be
utilized to solve the problems P9 and P10, respectively, and
the corresponding optimal structures of Q are obtained as
(83) and (88), respectively. Fig. 2 confirms that the two
proposed optimal structures given in (83) and (88) are capable
of achieving the same performance as their corresponding
numerical CVX solutions for the optimization problems P9
and P10, respectively. This verifies the global optimality of
both these obtained structures.

As discussed in Subsection IV-B, using the transformation
of the positive semidefinite matrix variable Q = F̃ F̃H of (89),
the minimization problem P9 is converted to the minimization
problem P11, where the rank constraint of Q is taken into
account by adjusting the number of columns in F̃ . Fig. 3 plots
the achievable OF values of the problems P9 and P11 under
different rank constraints. As expected, when both the positive
semidefinite matrix Q and the transformed matrix variable
F̃ are full-rank, the same optimal performances are achieved
by the optimal structures of Q and F̃ . However, it follows
from Fig. 3 that for a rank-deficient Q, there is a significant
performance gap between the optimal OF values achieved by
the optimal structures of Q and F̃ . More specifically, the rank-
deficient F attains better performance than the rank-deficient
Q of the same rank. This is because the optimal solution Q
obtained by directly solving the problem P9 may not satisfy
the rank constraint. Therefore, a feasibleQ can only be derived
using a relaxation method, such as the Gaussian randomization
method, which causes a further degradation of the system
performance.

Similarly, using the transformation of the positive semidefi-
nite matrix variables Qn = F̃nF̃

H
n , the maximization problem

P13 is converted to the maximization problem P14, where the
rank constraints of Qn are taken into account by adjusting the
number of columns in Fn. Fig. 4 plots the achievable OF val-
ues of the maximization problems P13 and P14 under different
rank constraints. As expected, when the positive semidefinite
matrices Qn are of full-rank, the optimal structures of Qn

achieve the same optimal performance as that of the full-
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rank Fn. However, for rank-deficient Qn, there is a significant
performance gap between the optimal OF values achieved by
Fn and Qn, which also becomes larger when lower-rank Qn

are considered. Specifically, the rank-deficient Fn attain better
performance than the rank-deficient Qn of the same rank. This
is again because the optimal solutions Qn obtained by directly
solving the maximization problem P13 may not satisfy the
rank constraint. Therefore, a feasible Qn can only be derived
using a relaxation method such as the Gaussian randomization
method, which causes a further degradation of the system
performance.

Finally, Fig. 5 shows the BER performance achieved by
solving problem P1 with different parameter values, i.e.,
1) γ1 = 0 and γ2 = 1; 2) γ1 = 1 and γ2 = 0 and 3) γ1 = 1
and γ2 = 1, which corresponds to the MSE minimization,
the capacity maximization and the hybrid optimization, re-
spectively. It is clear from Fig. 5 that the optimal solution for
case 1) achieves the best BER performance among the three
considered cases, which demonstrates that the MSE is indeed
closely related to the BER. Moreover, we observe that cases 1)
and 2) have almost identical BER performance at low SNRs,
since the OFs in these two cases degenerate to the same form.
Under the assumption of Gaussian distributed received signals,
we recall the OF curve associated with the optimal solution
in (83) in Fig. 2, and find that the MSE-trend and BER-trend
are similar, which also verifies the close relationship between
MSE and BER.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have presented a comprehensive frame-
work of complex matrix derivatives, based on which the
KKT conditions of the matrix variable optimization prob-
lems considered can be derived directly. Our contribution has
been three-fold. In order to facilitate the theoretical analysis,
firstly some fundamental conclusions have been presented
for complex matrix derivatives, which represent the boundary
conditions for the applications of complex matrix deriva-
tives. Secondly, the symmetric properties involved in complex
matrix derivatives and the corresponding KKT conditions
have been investigated in depth. In addition, an important
matrix equation, referred to as symmetric matrix equation,
has been proposed in this paper. Using symmetric matrix
equations, the optimal structures of matrix variables can be
derived, based on which the matrix-variable optimization
is substantially simplified. Moreover, a number of specific
matrix-variable optimization problems have been discussed
in detail. Thirdly, considering positive semidefinite structural
constraints imposed on matrix variables, a useful variable
transformation technique has been discussed in depth, which
can be utilized for simplifying the KKT conditions and thus
for deriving the optimal structures more easily. In a nutshell,
we have improved the KKT conditions based methods of
matrix variable optimization beyond simply trying to derive
the optimal solutions purely based on the KKT conditions.

APPENDIX A
PROOF OF LEMMA 2

Assume that a unitary matrix U is the EVD matrix of both
AHBHBA andAHA. Therefore, it is straightforward to show
that A has the following SVD

A = QΛAU
H. (108)

Based on this and together with the fact that U is the
EVD unitary matrix of AHBHBA the following two matrix
equalities hold

UHAHBHBAU = ΛT
AQ

HBHBQΛA = Λ, (109)

where Λ is the diagonal EVD matrix of AHBHBA. It is
plausible that in the case that the diagonal matrix ΛA is a
square full rank matrix, the proof can be completed directly.
In general, however, some diagonal elements of ΛA may be
zero. To accommodate this general case, we define an index
set C as follows

[ΛA]n,n 6= 0, n ∈ C. (110)

Upon defining Q = [q1, · · · , qN ] and [ΛA]n,n = fn, the
second equality in (109) is equivalent to

[ΛT
AQ

HBHBQΛA]i,j = fifjq
H
i B

HBqj . (111)

Based on (111) as well as constructing Q̃ =[
q(1), · · · , q(N{C})

]
and Λ̃A = diag

{
f(1), · · · , f(N{C})

}
,

where (n) denotes the n-th largest index in C and N{C} is
the total number of indices in C, we have

Λ̃T
AQ̃

HBHBQ̃Λ̃A = Λ̃, (112)
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whereΛ̃ is a diagonal matrix. In (112), Λ̃A is a full-rank
diagonal matrix and thus it is concluded that Q̃ consists of
N{C} eigenvectors of BHB. In other words, the eigenvectors
of the EVD of AAH corresponding to the nonzero eigenvalues
are the eigenvectors of the EVD of BHB. This proves that
there exists a unitary EVD matrix of BHB, which is also the
unitary EVD matrix of AAH.

APPENDIX B
DERIVATION OF (41)

The Lagrange of the optimization (40) is given by [14]

L
(
F , t, {αn}, {λk}

)
=
∑
n

αn

([(
I+FHHHHF

)−1]
n,n
− t
)

+
∑
k

λk(Tr(ΩkFF
H)−Pk) + t,

(113)

based on which the KKT conditions of (40) are derived as

1 =
∑
n

αn,
[(
I + FHHHHF

)−1]
n,n

= t, (114)

λk(Tr(ΩkFF
H)− Pk) = 0, Tr(ΩkFF

H) ≤ Pk, αk ≥ 0,

HHHF
(
I+FHHHHF

)−1
Λα

(
I+FHHHHF

)−1
=µΩF .

Based on the first two KKT conditions, the Lagrange function
can be rewritten as

L(F ,t,{αn},{λk})

= t+
1

N
Tr
((
I + FHHHHF

)−1)∑
n

αn − t
∑
n

αn

+
∑
k

λk(Tr(ΩkFF
H)−Pk)

= αTr
((
I + FHHHHF

)−1)
+
∑
k

λk(Tr(ΩkFF
H)− Pk).

(115)

The first order equation with respect to F is then given by

αHHHF
(
I + FHHHHF

)−1 (
I + FHHHHF

)−1
= µΩF . (116)
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