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A B S T R A C T   

Modern problems in agricultural management require non-traditional solutions, one of which is by utilizing 
domain adaptive machine learning models for crop yield prediction which are able to perform reliably in 
different temporal or spatial domains. However, most studies have focused on the application of domain 
adaptation to classification tasks such as crop type identification, while the application to regression tasks such as 
crop yield prediction have been limited. In this study, we explore the generalisability and transferability of 
ordinary Deep Neural Network (DNN) and domain adaptive neural network models created using three domain 
adaptation algorithms, namely Discriminative Adversarial Neural Network (DANN), Kullback-Leibler Importance 
Estimation Procedure (KLIEP), and Regular Transfer Neural Network (RTNN). These three algorithms represent 
feature-based, instance-based, and parameter-based domain adaptations, respectively. Maize yield records, 
weather variables, and remotely sensed features from 11 states in the US corn belt acquired in 2006–2020 were 
compiled and segregated into classes according to temporal (year) and spatial characteristics (annual growing 
degree days [GDD], vapor pressure deficit [VPD], soil organic content [SOC], and green chlorophyll vegetation 
index/GCI). We found that models trained using datasets from temperate regions with medium-high GDD and 
moderate VPD perform well whereas SOC does not significantly affect the generalisability. It is not advisable to 
train models with datasets constrained by GCI as this feature correlates significantly with the maize yield, and 
adaptation between two domains that rarely intercept will not work well. We also demonstrate that Kullback- 
Leibler divergence computed using features from source and target domains can be used to justify the feasi-
bility of domain adaptation. Based on the divergence, a model trained in the US (or another region with sufficient 
data) is expected to work reliably in other regions through domain adaptation, especially feature-based 
adaptation.   

1. Introduction 

The fast-growing human population, which is expected to reach 9.7 
billion in 2050 (UN, 2019), requires a significant increase in global food 
production. For instance, to meet the demand for cereals in 2050, the 
global production must increase by 25%− 70% compared to the actual 
production in 2014 (Hunter et al., 2017). This figure is in line with the 
expected rise of the total global food demand from van Dijk et al. (2021). 
By considering plausible socioeconomic pathways, van Dijk et al. (2021) 
estimated an increase of 35% to 56% in food demand, from 2010 to 
2050. This poses a grand challenge in maintaining food security under a 
changing climate (Kang et al., 2009; Kumar, 2016). Intensification and 
expansion of agricultural activities are possible solutions to increase 

food production. Among others, timely crop monitoring and accurate 
estimation and prediction of crop yield plays an important part in 
developing policy to maintain food security and close the gap between 
attained and potential yield (Mueller et al., 2012). Nowadays, these 
approaches include the utilization of multispectral or even hyperspectral 
remote sensing data in tandem with relevant physical parameters and 
in-situ measurements to develop data-driven models of crop yield 
(Azzari et al., 2017; Yang et al., 2021; Yoosefzadeh-Najafabadi et al., 
2021; Vergopolan et al., 2021). Simple linear regression (Becker-Reshef 
et al., 2010; Qader et al., 2018), multiple linear regression (Gonza-
lez-Sanchez et al., 2014), and machine learning (Johnson, 2016; You 
et al., 2017; Kang et al., 2020) have been used to estimate and predict 
yields of different crop types using remotely sensed and other data, each 
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with its own advantages and limitations (Duncan et al., 2015). At one 
end of the list of approaches, linear regression is commonly used as the 
basis of yield prediction due to its simplicity and frugality in terms of 
multidimensional data requirements. At the other end, various machine 
learning techniques alternatively generate models by accounting for 
non-linear relationships between multiple variables with crop yield as 
the dependent variable. Supported by increased computing resources, 
machine learning techniques have become an increasingly popular 
approach (Chlingaryan et al., 2018; van Klompenburg et al., 2020). 

There are a number of recent studies that use remote sensing data 
and machine learning techniques for predicting yields (Park et al., 2018; 
Zhao et al., 2020; Vergopolan et al., 2021) with an aim to derive accu-
rate yield estimates at county/district level. These studies are typically 
performed by using remotely sensed variables in combination with 
weather data with a typical resolution of ~1 km. For example, Kang 
et al. (2020) built machine learning models for predicting maize yield in 
the US corn belt and achieved well-performing models with 9% mean 
absolute percentage error. Other studies have focused on estimating 
crop yield at higher spatial resolution, e.g. by incorporating 10-m res-
olution data from Sentinel 2 and field level crop yield data (e.g., Jin 
et al., 2019). So far, the performance of published models are mostly 
represented by coefficients of determination (R2) that range from 0.5 to 
0.9 with the note that the values depend on the training and validation 
data utilized. In general, accommodating more input data generally 
increases the performance of the model (Vergopolan et al., 2021) while 
limiting the dimension of input data may yield underperforming models, 
even compared to simple linear regression as the benchmark (Meroni 
et al., 2021). 

The performance of machine learning models is highly reliant on the 
quality and volume of input data, hence previous studies have been 
predominantly performed in data-rich regions as the source domain. The 
transferability of established models to a different target region is sub-
ject to influence from the divergence between source and target do-
mains. Some studies have mentioned this matter as the limitation of 
machine learning models. Loss of accuracy may occur when the models 
encounter conditions at extreme ends of the training data or beyond, 
such as different climatic conditions in the future that severely affecting 
the crop yield (Jeong et al., 2016). Traditional machine learning models 
trained using a specific dataset may require re-training to gain accept-
able performance when dealing with another dataset (Pan and Yang, 
2009; Xu et al., 2021). In reality, the re-training process cannot be 
performed since the target domain may be lacking labelled data or the 
re-training may be costly. This hinders the application of well-trained 
machine learning models to often food-insecure regions such as Africa 
and South Asia where reliable data is not always available. Transfer 
learning through domain adaption can potentially improve machine 
learning performance in this context, though the application to crop 
yield prediction is in its infancy. 

Domain adaptation is a subset of transfer learning methods which 
aim to transfer knowledge established during the training process in one 
source domain to improve the predictive capability in a different target 
domain. Domain adaptation is regarded as transductive transfer learning 
where the model deals with data from domains with slightly different 
distributions, but performs the same tasks like classification or regres-
sion in another domain (Pan and Yang, 2009). There have been many 
applications of domain adaptation for classification tasks based on 
remotely sensed data (Tuia et al., 2016; Teng et al., 2020). Through 
domain adaptation, the impact of domain shifts caused by the utilization 
of nonidentical sensors, data acquisition in different conditions, or the 
spatial variations, is minimized to improve prediction (Pacifici et al., 
2014;Walker et al., 2012; Li et al., 2021). In the field of remote sensing, 
domain adaptation can be performed through: (i) selection of invariant 
features, (ii) adaptation of the data distribution, and (iii) adaptation of 
the classifier/regressor (Tuia et al., 2016). In the first approach, the data 
from source and target domains are compared until features that are less 
affected by domain shift can be identified (Izquierdo-Verdiguier et al., 

2013). In the second approach, instance-based adaptation can be used to 
re-weight the instance in both source and target data such that the 
divergence between them is suppressed (Pan and Yang, 2009). In the 
third approach, the parameters of the model(s) trained using the source 
domain are tweaked according to the characteristics of the target 
domain. For this purpose, a subset of labelled data from the target 
domain is required. 

Apart from application to classification tasks, applications of domain 
adaptation to regression tasks that invoke remote sensing data is limited. 
For example, Wang et al. (2018) presented the application of deep 
transfer learning for crop yield prediction with the transfer from 
Argentinean crops as the source domain and Brazilian crops as the 
target. More recently, Ma et al. (2021) reported the implementation of 
an adaptive domain adversarial neural network (ADANN) for crop yield 
prediction in the US corn belt where the study area was divided into two 
major ecosystem regions, namely eastern temperate forests and great 
plains. In that study, the domain adaptation scheme projected the fea-
tures from both source/training and target/test domains into the same 
subspace through adversarial learning (Ganin et al., 2016). The trans-
ferability experiments were performed by training the model using 
projected data from one region and testing using data from another 
domain. They demonstrated that models with transfer learning through 
ADANN outperform Random Forest and Deep Neural Network baseline 
models. Moreover, spatial variation of the prediction error is obvious 
when direct transfer is applied while transfer learning reduces this kind 
of variation. 

The error generated during model testing using the target domain 
depends on the empirical source error and the divergence between the 
source and target domains (Ben-David et al., 2010). The divergence it-
self can be estimated using statistical measures like Kullback-Leibler 
divergence (Kullback and Leibler, 1951; Perez-Cruz, 2008). Based on 
this theorem, we can justify the conditions (in terms of domain diver-
gence) that enable domain adaptation to perform well. In domain 
adaptation, it is essential to know when, what, and how to transfer 
knowledge (Tuia et al., 2016). The first aspect is related to the condi-
tions on which the domain adaptation perform sufficiently well in 
improving the accuracy of machine learning models. The latter two 
aspects are related to the methods or approaches to take while per-
forming adaptation. Among the three families of domain adaptation 
methods mentioned before, one may be good for a specific case while 
others may work better in other situations. The preference on what and 
how to adapt depends on the specific problem considered (Tuia et al., 
2016). 

In this study, we explore the generalisability and transferability of 
machine learning models and also the capability of domain adaptation 
to alleviate the problem of deteriorating performance when machine 
learning is implemented on different domains, specifically focusing on 
crop yield prediction. By using data from the US corn belt which is 
segregated temporally and spatially, we address issues related to what, 
how, and when to perform domain adaptation for crop yield prediction. 
Three domain adaptation algorithms representing feature-based, 
instance-based, and parameter-based approaches are evaluated, with 
an ordinary deep neural network without transfer learning used as the 
baseline model. The anticipated results are important because state-of- 
the-art machine learning models need to tackle real data with various 
characteristics. Through domain adaptation (or other kinds of transfer 
learning techniques), models trained in a data rich country or region are 
expected to be applicable to the other countries or regions with limited 
training data. This would improve crop yield prediction in many data- 
poor regions, which often have the most need for research into 
improving crop production and food security. 
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2. Data and methods 

2.1. Area of study 

The United States is the top maize-producing country in the world 
with a total production of 383 million tonnes in 2021 and record- 
breaking productivity of 11.9 tonnes per hectare (USDA, 2022). The 
US corn belt is an ideal area for experimentation using machine learning 
because of wealth of data including a reliable crop mask for most of the 
corn production regions since 2006 and abundant remote sensing and 
climate data. We acquired crop yield records from eleven states (Illinois, 
Indiana, Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, 
Ohio, South Dakota, and Wisconsin) from the National Agricultural 
Statistics Service of the United State Department of Agriculture 
(USDA/NASS), which has provided tabulated county-level maize yield 
since the 1980s. The Cropland Data Layers product (Boryan et al., 2011) 
was used to indicate maize crop activity in a certain year. We used crop 
yield records from 2006 to 2020 to build the training and testing data-
sets for our experiments (see Fig. 1). The complete dataset contains 10, 
546 crop yield records (all years combined) from 845 counties. 

Following the work of Ma et al. (2021), the area of study was 
segregated into five different classes according to a defined categoriser 

where generalisability and transferability experiments can be performed 
using data from those classes. Categorisers used are year, annual 
Growing Degree Days (GDD), Vapor Pressure Deficit (VPD), Soil Organic 
Content (SOC), and the maximum Green Chlorophyll Index (GCI). These 
features were selected as categorisers because they show a gradual 
pattern across the area of study (see Fig. 2). To be noted that the year 
was used as categoriser but it was not used as feature in the modeling. 
Year can be regarded as the standard categoriser where the machine 
learning models are usually tested using data from different years (Ju 
et al., 2021). GDD correlates with the geographical latitude while the 
VPD map shows a gradual change from east to west. SOC almost re-
sembles the ecological system defined by the US Environmental Pro-
tection Agency (EPA, 2001) while the GCI represents the effectiveness of 
agricultural activities in the region. Further descriptions of these cate-
gorisers are provided in Table 1. 

2.2. Remote sensing and weather data 

Based on the review of van Klompenburg et al. (2020), there are 
seven groups of features that are commonly used in the machine 
learning models for crop yield prediction, namely soil information (type, 
moisture, content, etc.), solar radiation information (incoming 

Fig. 1. The boxplot of the district-level maize yields from the study area as a function of year. An increasing trend of yields can be seen beside the drop in 2012.  

Fig. 2. Area of study includes 11 states in the US corn belt (a). Spatially, this area can be categorised into classes according to the annual Growing Degree Days (b), 
maximum Vapor Pressure Deficit in August (c), Soil Organic Content (d), and the maximum Green Chlorophyll Index (e). The categorisations shown in the maps are 
based on the average value in 2006–2020 while the actual categorisations on yearly data may vary slightly. 
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shortwave radiation), weather (humidity, precipitation, temperature 
etc.), nutrients (nitrogen, magnesium, etc.), crop information (type, 
density, etc.), crop growth parameters (vegetation indices, canopy 
cover, etc.), and field management practices. Not all the features have a 
significant effect on crop yield prediction. Some features have higher 
correlation with annual crop yield while others may only have an in-
direct association to the crop yield. Some features are time-invariant 
while others are dynamically changing over time. According to the an-
alyses by Johnson et al. (2016) and Kang et al. (2020), dynamic features 
such as vegetation indices and land surface temperature obtained in the 
mid-season correlate well with annual crop yield. Consequently, these 
features can be good predictors for within-season crop yield prediction. 
Different regions may exhibit different phenology of corn, but for most 
of the US corn belt, the season peaks in August (Johnson, 2014; Kang 
et al., 2020). In this study, monthly aggregate values of the dynamic 
variables acquired in August are selected as the predictive features. In 
contrast to some studies that utilised tens of features derived from 
time-series data with a wider range of time, we demonstrate that the use 
of peak season data is enough to produce a good crop yield prediction. 

Based on the Pearson’s correlation coefficient with the crop yield and 
the feature importance metric computed during the training of machine 
learning models, among twenty features (see Table A1 in the appendix) 

we selected the best ten features to be included in the experiments. 
Variables with high correlations to the crop yield and high importance 
scores (mean decrease of accuracy) were selected. We also performed 
variable reduction by dropping similar variables with high inter- 
correlation. For instance, Normalised Difference Vegetation Index 
(NDVI) well correlates with EVI while its importance is less than EVI. We 
ended up with GCI, Enhanced Vegetation Index (EVI), Fraction of 
Photosynthetically Active Radiation (FAPAR), Normalized Difference 
Water Index (NDWI), Daytime Land Surface Temperature (LST), mean 
temperature (Tmean), GDD, VPD, SOC, and elevation. Vegetation 
indices and LST were derived from remote sensing data acquired using 
the Moderate Resolution Imaging Spectroradiometer (MODIS). The 
annual GDD was calculated from the daily average temperature from the 
Parameter-elevation Relationships on Independent Slopes Model 
(PRISM, Daly et al., 2008, 2015). PRISM is a product of 
Climatologically-Aided Interpolation with the input of weather param-
eters from ground stations and 4-km resolution outputs. The maximum 
daily VPD is also provided in the PRISM. Static information regarding 
soils, especially SOC was obtained from SoilGrids (Hengl et al., 2017) 
which contains global predictions of several soil properties derived from 
soil profiles from around the world and some remote sensing data with 
epoch 2000. SoilGrids provides soil properties in seven standard depths 
(0 to 200 cm), but we only use the surface properties (0-cm depth). 
Lastly, the elevation data was extracted from the Shuttle Radar Topog-
raphy Mission (SRTM) digital elevation dataset. Descriptions of these 
features including the sources and resolutions are provided in Table 1. 
As an additional information, the full list of features including the ones 
not selected is provided in Table A1. 

As a matter of outlook (section 3.4), we also acquired features from 
other corn producing states in the US and some selected regions outside 
the US. For the regions outside the US where the PRISM dataset is not 
available, we used TerraClimate (Abatzoglou, 2013) as the source of 
weather parameters. Additionally, the crop mask is provided by the 
Global Food-Support Analysis Data (Teluguntla et al., 2015). The dy-
namic features (vegetation indices and weather parameters) are asso-
ciated with the mid-seasons which are different across countries. 

All remote sensing data and weather models listed in Table 1 were 
accessed and pre-processed in Google Earth Engine (Gorelick et al., 
2017). The pre-processing stage includes quality assessment for daily 
remote sensing data, temporal aggregation, cropland masking, and 
spatial averaging over the counties. As mentioned before, we only 
selected the maximum values of the dynamic features acquired in 
August each year. We prefer the maximum over the average because the 
maximum values correlate more to the annual crop yield (Bolton and 
Friedl, 2013). Next, we employed the Cropland Data Layer (CDL, 
Boryan et al., 2011) to mask the maize-planting area. Due to crop 
rotation practices, it is necessary to use the year-specific CDL. Finally, 
both static and dynamic features were averaged over the county areas 
and extracted into tabulated values for experiments using machine 
learning. 

2.3. Machine learning models 

We used Deep Neural Network (DNN) as the baseline model where 
the dataset from the source domain (XS ∈ X) is passed through a series of 
densely-connected layers with a hundred neurons at every layer. At the 
end of the network, there is an output layer which is related to the crop 
yield as the model output (XS ∈ Y). In this context, X is the input feature 
space while Y is the crop yield. The model learns the distribution of D 
(XS, YS) and predicts the relevant distribution for the target domain D 
(XT, YT) which is not always similar to the distribution in the source 
domain. Inside the DNN, a non-linear activation function is used to 
select or to weight neurons during the transition between layers such 
that a certain neuron may be activated or deactivated in the network. 
Rectified linear unit (ReLU) is a popular choice of activation function 
considering its simplicity that enables faster learning processes (Lecun 

Table 1 
Description of features used as the predictors.  

Feature Formula Remarks 

Green Chlorophyll Index 
(GCI) 

B2

B4
− 1 MODIS Nadir 

Bidirectional Reflectance 
Enhanced Vegetation 

Index (EVI) 
2.5(B2 − B1)

(B2 + 6B1 − 7.5B3 + 1)
Distribution Function 
Adjusted Reflectance 
(MCD43A4.006) 

Normalized Difference 
Water Index (NDWI) 

B2 − B6

B2 + B6 

Resolution: 500 m, daily 
Source: 10.5067/ 
MODIS/MCD43A4.006 
B1: red (620–670) 
B2: NIR (841–876 nm) 
B3: blue (459–479 nm) 
B4: green (545–565 nm) 
B6: SWIR (1628–1652 
nm) 

Fraction of 
Photosynthetically 
Active Radiation 
(FAPAR)  

MODIS Leaf Area Index 
product (MOD15A2H). 
Resolution: 500 m, 8 
days 
Source: 10.5067/ 
MODIS/MOD15A2H.006 

Daytime Land Surface 
Temperature (LST)  

MODIS Terra Land 
Surface Temperature and 
Emissivity 
(MOD11A1.006) 
Resolution: 1000 m, 
daily 
Source: 10.5067/ 
MODIS/MOD11A1.006 

Average Temperature 
(Tmean)  

Parameter-elevation 
Relationships on 
Independent 

Growing Degree Date 
(GDD) 

∑
min(max(Tmean,10),

30) − 10 
Slopes Model (PRISM,  
Daly et al., al.,2008, 

2015) 
Vapor Pressure Deficit 

(VPD)  
Resolution: 4000 m, 
daily 

Soil Organic Content 
(SOC)  

SoilGrids (Hengl et al., 
2017) 
Resolution: 250 m, single 
epoch: 2000 

Elevation  SRTM digital elevation 
model 
Resolution: 90 m, single 
epoch: 2000 
Source: https://srtm.csi. 
cgiar.org  
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et al., 2015; Glorot et al., 2011). The parameter or weight of every 
neuron at every layer is adjusted during the training processes such that 
the loss function is minimized. 

In practice, we employed DNN with an input layer, six hidden layers, 
and one output layer which was created using the Tensorflow version 
2.7 package in Python (Abadi et al., 2015). Each hidden layer consists of 
100 neurons activated using ReLU as the activation function. The model 
was trained in 50 epochs with the Adam algorithm (Kingma and Ba, 
2014) as the stochastic gradient descent method to optimize the model. 
A constant learning rate of 0.001 was set during the optimization. This 
configuration was selected among different hyperparameter sets evalu-
ated through systematic training and testing with a small dataset. In 
general, deeper neural networks do not always provide better results 
while overtraining in many epochs without proper batch normalization 
may yield overfitting. 

For the domain adaptation, we used ADAPT (Awesome Domain 
Adaptation Python Toolbox) package developed by de Mathelin et al. 
(2021). This toolbox contains three major classes of domain adaptation 
which are feature-based, instance-based, and parameter-based adapta-
tions (see Fig. 3). Feature-based domain adaptation can be regarded as 
representation learning where the features from both source and target 
domains are projected to a common space such that the source and 
target become indistinguishable to a certain degree. Among several 

alternative algorithms, we selected Discriminative Adversarial Neural 
Network (DANN, Ganin et al., 2016) to represent feature-based ap-
proaches. Initially, DANN was developed and tested for classification 
tasks, but it has been used in some studies related to regression tasks, 
including maize yield prediction by Ma et al. (2021). The architecture of 
DANN consists of three major parts which are the deep feature extractor 
or encoder, the deep label predictor or task layers, and the domain 
classifier. In the common machine learning algorithm, an encoder 
transforms categorical data into numerical form while in our DANN, the 
encoder encapsulates an encoder function (Φ(X)) that extracts and 
projects the numerical features into a certain space such that source and 
target domains cannot be distinguished by the domain classifier (D(X)). 

Parallel with that, projected features from the source domain are 
passed through the task layers (F(X)) up to the output layer such that the 
loss function can be evaluated. The gradient reversal layer, which con-
nects the domain classifier and encoder, establishes the adversarial 
learning part of the DANN (see Fig. 4). The overall learning process can 
be performed using standard back propagation and stochastic gradient 
descent methods such that the DANN scheme can be implemented with 
common deep learning packages (Ganin et al., 2016). In the case of 
domain adaptation with unlabelled data from the target domain, the loss 
incurred in the prediction task for the source needs to be minimized 
together with the divergence between features from the source and 

Fig. 3. Schematic illustrations of (a) feature-based, (b) instance-based, and (c) parameter-based domain adaptations.  
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target domains. Following this idea, the optimization problem in DANN 
is 

argmin
F,Φ (L(F,Φ,XS) − λ R(D,Φ,XS,XT))

where Φ, F, and D are encoder, task, and discriminator functions, L is the 
task loss function, while R is regularization function. 

R = log(1 − D(Φ,XS)) + log(D(ϕ,XT))

In DANN, λ tunes the trade-off and convergence between domains 
and the prediction loss. When the features from the source and target 
domains converge or are indistinguishable in the new feature space, we 
can expect a model with better performance when implemented in the 
target domain. We experimented with DANN consisting of an input 
layer, single layer as encoder, five hidden layers for prediction task, 
three hidden layers for discriminating domains and one output layer for 
both task and discriminator. Every hidden layer contains 100 neurons 
with ReLU as the activation function such that the DANN basically has a 
similar configuration compared to the baseline DNN defined before. This 
relatively shallow neural network is in contrast with the one defined in 
Ma et al. (2021), where the encoder has more layers than the remaining, 
though the depth is similar. DANN with less encoder layers can be 
perceived as domain adaptation with simpler non-linear feature pro-
jection. Instead of using variable or adaptive values of λ as in Ma et al. 
(2021), we used a fixed λ = 1.0 in our experiments. 

In the next approach, instance-based adaptation was performed by 
recalculating the weight for every instance or data point considering the 
difference between source and target domains. More weights are 
assigned to instances from the source domain that are located in the 
feature space intercepting with the target domain such that the model 
can perform better in the target domain. Normally, the weight is defined 
as the ratio between densities estimated from source and target domains, 
but the empirical density estimation in multidimensional space becomes 

a cumbersome task. Sugiyama et al. (2007) proposed an alternative way 
of instance weighting through Kullback-Leibler Importance Estimation 
Procedure (KLIEP) where the weights are directly estimated based on 
the instances from source and target domains while the convergence 
between the two domains after re-weighting is measured using 
Kullback-Leibler divergence (Kullback and Leibler, 1951). In KLIEP, the 
main optimization problem is 

argmax
αi

∑

XT

log

(
∑

XT

αiKσ

)

subject to 

∑

XS

(
∑

XT

αiKσ

)

= nS  

such that the new weight becomes 

w(XS) =
∑

XT

αiKσ 

Here, x are the instances either from source (XS) or target (XT) 
domain, α are the basis functions coefficients, while Kσ are kernel 
functions with bandwidth of σ. The Gaussian kernel with σ ∈ [0.001, 
0.01] was used in our experiments. After the weights are estimated, the 
DNN model defined before can be implemented on the target dataset. 

Lastly, we used Regular Transfer with Neural Network (RTNN, 
Chelba and Acero, 2006) as the representation of parameter-based 
domain adaptations. Different from previous approaches, RTNN is 
semi-unsupervised domain adaptation since it requires some labelled 
data from the target domain, e.g. crop yield records from the target 
dataset. In this approach, the models trained using source and target 
datasets are assumed to share parameters or a prior distribution of 
hyperparameters such that the domain adaptation becomes a regulari-
zation problem (Pan and Yang, 2009). RTNN works by fitting the neural 
network to the source dataset to optimize the following equation: 

argmin
β ||F(XS, β) − YS||

2  

where β represents possible parameters for the neural network F con-
sisting of d layers. Then, the parameters for the target domain are ob-
tained by solving the following 

argmin
β=(β1 ,...,βd )

|F(XT , β) − YT |
2
+
∑d

i=1
λi
⃒
⃒βi − βsi

⃒
⃒2 

The λ are the trade-off parameters that determine the generalisability 
and transferability of the domain adapted model. Intuitively, we expect 
that the performance of domain adaptation depends on the size and 
quality of the labelled target dataset supplied to the algorithm. If we 
have more labelled data that represents the general distribution of the 
target domain, we expect a better chance of adaptation. In contrast, the 
adaptation will not improve the model if the supplied target data is far 
from the ridgeline. In the experiments, we randomly selected 40 labelled 
target datasets (approximately 2% of the whole sample) and used fixed λ 
= 1.0 for all layers. 

2.4. Experiment design 

Previously, we mentioned that the complete dataset containing 
~10,000 rows of data can be categorised into equal-size classes ac-
cording to five categorisers (year, GDD, VPD, SOC, and GCI). Based on 
the year, we divided the data into eight classes each containing ~1400 
data from 2 years of record. For the remaining categorisers, we binned 
the data into five equal-size classes (~2400 data values in each class). 
The generalisability experiments were performed by training the models 
(DNN, DANN, KLIEP, and RTNN) using data from a certain class (e.g., 

Fig. 4. Illustration of the DANN that consists of single layer encoder, three 
layers domain classifier, and five layers of regressor. Comparable DNN only 
contains input and regressor layers. 
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years 2006–2007) as source domain and testing the models using data 
from the remaining classes (e.g., years 2009–2020). Meanwhile, trans-
ferability evaluations were performed on the models using data from a 
specific class (e.g., years 2008–2009) as the target. For each source and 
target pair, Kullback-Leibler divergence (DKL) between features from 
those domains was calculated using the method of Perez-Cruz (2008). 
Basically, DKL measures the distance between density P(XS) and P(XT) by 
evaluating the following equation 

DKL =

∫

p(xS)log
p(xS)

p(xT)
dx 

The value of DKL is nearly zero when both densities are similar (P(XS) 
≈ P(XT)) and it grows as the densities diverge. In the method proposed 
by Perez-Cruz (2008), DKL is estimated according to the cumulative 
density function or k-nearest-neighbours density estimation. This 
method is applicable for multidimensional data. 

In our experiments, the divergences between source and target fea-
tures categorised by years have typical DKL ≈6, while other catego-
risations can produce DKL from 3 to 22. In more detail, the divergence 
between the northernmost and the southernmost regions (categorised by 
the annual GDD) is about 19. The same extreme divergence is associated 
with the pair of driest and the most humid regions (according to the 

maximum VPD). The divergences between classes categorised by the 
SOC range from 3 to 17 while the divergences between GCI classes are 
slightly higher with the range of 4 − 22. 

For evaluating the model performance, we computed the coefficient 
of determination (R2) and root mean square error (RMSE). We also 
normalised the RMSE by the average crop yield to obtain the relative 
root mean square error (RRMSE) in percentage. As a rule of thumb, an 
excellent model has a typical RRMSE of <10%, a good model has 
10–20% RRMSE, a fair model has 20–30% RRMSE, while a model with 
more than 30% RRMSE is considerably poor. Considering the fact that 
the outputs of deep learning are subject to the stochastic variations in 
terms of performance scores, we repeated the training and testing pro-
cedures 16 times for each source and target domains pair. The statistical 
properties, especially the median score can be calculated using the 
resulted scores. 

3. Results 

3.1. Inter-annual generalisability 

The first result from the generalisability experiments is associated 
with the models trained using data from certain years and tested on the 

Fig. 5. Boxplot of coefficient of determinations (R2, top), root mean square errors (RMSE, middle), and relative root mean square errors (RRMSE, bottom) of the 
models trained using data from selected years and tested on the remaining years. The median values are marked with thick horizontal lines in the boxplot and also 
printed on the panels. 
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data from the remaining years. Because the divergence between source 
and target domains categorised by year is relatively low, this result can 
be compared with the results reported in the literature, such as the 
works of Kang et al. (2020) and Ma et al. (2021). A more homogeneous 
distribution of features and yields across years is expected, unless a 
weather anomaly occurred in a certain year or there is an unaccounted 
factor that affected the crop yield. 

Fig. 5 shows the performance scores achieved by the four models as a 
function of training years. In general, the median R2 is around 0.60 with 
typical interquartile range (IQR) less than 0.05. A small declining trend 
in R2 is observable especially for DNN and KLIEP, while a significant 
drop is obvious for models trained using data from 2014 to 2015. 
Anomalous condition caused by drought in 2012 (Lobell et al., 2014) 
does not produce significant decrease of generalisability of the models 
trained using data from that year. A plausible explanation for this result 
is that the drought affects the values of remotely sensed features in the 
same way as it affects the annual crop yield. Consequently, the anomaly 
does not affect the generalisability. Conversely, there may be other 
factors affecting the crop yield in 2014–2015 and the following years 
that are not accounted for in the models. Models trained using data 
before 2014 have a lower RMSE compared to the ones that were trained 
using data in 2014 and after (with 95% confidence interval), except for 
RTNN that shows the opposite pattern. Relatively low R2 achieved by 
models trained using 2020 data are likely to be associated with the size 
of the dataset (approximately half of the other training datasets). From 
the probabilistic point-of-view, a smaller dataset has a lower capability 
to capture the characteristics of the general population. The behaviors 
and performances of data-driven models are dependent on the charac-
teristics of the data utilized in training and testing processes (Reichstein 
et al., 2019). 

Similar patterns can be observed when we evaluate the RMSE and 
RRMSE as the measure of generalisability (Fig. 5 middle and bottom). 
The median RMSE are more than 1.4 Mg/ha with typical IQR of less than 
0.5 Mg/ha. An increasing trend of RMSE is clear for the DNN without 
domain adaptation. The IQRs tend to be wider since 2014, except for the 
RTNN where the performance scores are governed by randomly selected 
labelled data from the target domain. The same patterns are observed in 
the RRMSE plot as the variation of the average yields in the defined 
target domains is negligible. For most of the cases, the median RRMSEs 
stay under 20% indicating good generalisability. 

Domain adaptive models do not always outperform the baseline DNN 
model. In terms of R2, models with KLIEP are comparable to the DNN 
while KLIEP tends to produce higher errors. If we assume that the 
categorization by year does not produce highly divergent source and 
target domains, then the source domain in the generalisability experi-
ment can be regarded as a subset of the target domain. Consequently, 
recalculating the weights of the instances as in KLIEP does not improve 
the generalisabililty score significantly. Next, RTNN models which were 
supplied with some labelled data from target domains tend to perform 
better than the DNN, though the performance scores are strongly 
affected by the selection of the labelled data for regularization. This is 
indicated by the wide IQR plotted in Fig. 5. Lastly, DANN models have a 
higher generalisability score compared to the DNN, both in R2 and 
RMSE. 

In addition to the above analyses, we can also compare the scores 
achieved by the models in this study with the same measures in the 
literature. From the local experiments presented in Ma et al. (2021), the 
R2 for DNN are within 0.55− 0.81 while the RMSE range from 0.95 to 
1.26. For the DANN, the scores are R2 = [0.47, 0.81] and RMSE = [1.00, 
1.65]. Lastly, ADANN performs best with R2 = [0.62, 0.85] and RMSE =
[0.84, 1.08]. In terms of coefficient of determination, the median scores 
of our models are within those quoted ranges, though the RMSE tend to 
be higher. Note that Ma et al. (2021) used vegetation indices and 
weather variables as the predictive features and then trained the models 
using 10-years of data while the testing was performed on a dataset from 
a single year. In contrast, our models were trained using 2-years of data 

and tested for generalisability using 13-years of data. 

3.2. Inter-region generalisability 

More explainable variations of scores can be seen in Fig. 6 and Fig. 7 
which summarize the results from the generalisability experiments using 
spatially segregated domains. Except for the bottom panel where the 
domains are categorised by the maximum GCI, the R2 scores vary around 
0.6, but with different spreads and trends. The typical value of RRMSE is 
above the one from the inter-annual generalisability experiments, that is 
≳15%. Apart from that, some important points can be extracted from the 
results. 

Firstly, higher generalisability scores can be achieved by the models 
trained using the middle-class source (e.g. class 3) while the models 
trained using edge-classes tend to perform worse. However, the trends 
are not symmetrical. Models from regions with the lowest annual GDD 
(northernmost regions) have significantly lower scores than the models 
from the other end of classification. This also needs to be understood 
when trying to adapt machine learning models across regions with lat-
itudinal difference. 

Secondly, the generalisability scores slightly increase as a function of 
the maximum VPD class, but the scores for class-5 models drop signifi-
cantly. If we refer to Fig. 1, class-1 VPD is associated with regions with 
the highest crop yields in the north-eastern part of US corn belt while the 
next classes are westward of those regions. The dataset extracted from 
each class has its own characteristics that determine the models’ per-
formance. Class-1 is associated with regions with relatively high yields 
with low statistical range/spread. The crop yields from class-2 to class-3 

Fig. 6. Coefficient of determination (R2) as a function of source classes cat-
egorised by (a) annual GDD, (b) maximum VPD, (c) SOC, and (d) 
maximum GCI. 
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regions have a broader range such that the models have more chance to 
learn general patterns from the training datasets. On the other hand, 
class-5 occupies regions which are climatically categorised as great 
plains semi-arid eco-regions (Bolton and Friedl, 2013). The general-
isability scores from the models trained in this class is significantly lower 
than others. This is in agreement with the results from Bolton and Friedl 
(2013) that correlations between vegetation indices (NDVI and EVI2) 
and crop yield drop significantly for the semi-arid regions. For such 
regions, NDWI serves as a better yield predictor. We can also compare 
this finding to the transferability experiments from Ma et al. (2021). 
They noted that model transfer from east regions (Eastern Temperate 
Forests, ETF) to the west (Great Plains, GP) tend to produce a lower 
coefficient of determination compared to the inverse transfer (GP → 
ETF). 

Next, experiments using regions segregated by SOC produced gen-
eralisability scores which are more stable compared to the scores ach-
ieved in other categorisations. Slight decreases of R2 and increases in 
RRMSE are observed for models trained using data from class 5. This 
class occupies more than half of the counties in North Dakota, Minne-
sota, and Wisconsin where the average crop yields are relatively low. 
Again, the lack of spread in crop yield distributions is associated with the 
lower performance scores, though the difference is small. 

Lastly, the categorization based on the maximum GCI produced re-
gions which are also distinguished in terms of crop yields. GCI and 
similar vegetation indices are known to have a good correlation with 

crop yield (Bolton and Friedl, 2013; Kang et al., 2020). This feature also 
highly correlates with other features used in this study, especially EVI, 
NDWI, VPD, LST, and Tmean, where the last three show negative cor-
relation with GCI. Segregating regions according to GCI means dividing 
data into segments that rarely intercept with each other both in input 
and output space. Consequently, we cannot expect models with good 
generalisability scores if the models are trained using GCI-segregated 
datasets, even with a proper domain adaptation. As seen in Fig. 5, the 
median R2 for DANN are close to zero while the scores for other models 
show wide spreads. These results emphasize that in order to obtain 
reliable models, we need to use training datasets which cover a wider 
range of input and output space. Domain adaptation has a capability to 
improve the models implemented on different targets by correcting 
domain shifts (Pan and Yang, 2009; Tuia et al., 2016). If the training 
datasets are too constrained, then the models face extrapolation prob-
lems where the prediction errors beyond the range of training datasets 
grow substantially. 

As an additional test, we also fed the data from four selected states 
(Illinois, Indiana, Iowa, and Missouri) acquired in 2006–2015 into the 
models and tested the models using the data from all eleven states ob-
tained in 2018–2019. The four states were selected considering the re-
sults from generalisability experiments, especially the fact that good 
models were usually trained using datasets from the temperate regions 
(not too cold, not too dry) with sufficient range of crop yields. Fig. 8 
summarizes the comparison between the predicted and actual crop 

Fig. 7. Same as Fig. 6, but for RRMSE.  
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yields. Small negative bias between the predicted and the actual crop 
yield can be observed. Most of the predicted values lay on the left side of 
the one-to-one dashed line in the scatter plot telling that the actual 
values are above the predicted ones. As seen in Fig. 1, the average crop 
yield in 2006–2014 is lower than the average yield in 2018–2019. This 
difference becomes the reason why the models predict lower yield than 
the actual values. Technological advancement or any improvement in 
managerial aspects may lead to a systematically higher crop yield that is 
not clearly reflected in remote sensing data we use. Except for KLIEP, the 
models achieved R2 > 0.70. RTNN achieved R2 = 0.73, but with RMSE 
= 1.81 Mg/ha (RRMSE = 15.8%), which indicates more bias is intro-
duced by this domain adapted model. Spatially, we can evaluate the 
model performances by calculating the absolute error (|ŷi − yi|) and 
mapping the scores over the area of study. DNN and DANN are com-
parable though clear improvements (lower errors) can be observed in 
North Dakota (ND) and South Dakota (SD). Apart from that, KLIEP and 
RTNN show low accuracy for the western regions. In addition to the 
visual mapping, we also computed the Moran’s I index (Moran, 1950; 
Anselin, 1995; Shermer, 2008) for spatial dependence of the observed 

errors. The results from all four models show clustering of the errors 
(IDNN = 0.39, IDANN = 0.31, IKLIEP = 0.32, IRTNN = 0.41) meaning that 
prediction errors correlate with geographic location. Effective domain 
adaptation like DANN shows a significant reduction of I with respect to 
the benchmark model (DNN). 

3.3. Transferability among diversity 

Domain shifts induce errors to crop yield predictions and domain 
adaptation algorithms try to suppress these errors. As in the classifica-
tion tasks with domain adaptations, factors affecting the performances 
of machine learning models include the sufficiency (and quality) of 
labelled data for training and the degree of divergence between source 
and target datasets (Wang et al., 2019; Kluger et al., 2021). This issue 
was explored in our transferability experiments where pairs of source 
and target domains were generated and used for training and testing 
processes. Fig. 9 summarizes the scores achieved by four models as a 
function of Kullback-Leibler divergence (DKL). The statistics (e.g. median 
scores) were calculated using scores achieved in the experiments using 

Fig. 8. Top: scatter plot of predicted versus actual crop yield in 2018–2019 with color coded density. The predictions are provided by four models (DNN, DANN, 
KLIEP, RTNN) trained using data from 4 states from 2006 to 2015. Below: map of the average absolute errors with the mean average error (MAE) printed on 
each panel. 
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regions categorised by the annual GDD, VPD, and SOC. Prior to the 
statistical aggregation, the results were binned into 16 equal-sized bins 
according to the divergence. Results from the experiments using tem-
poral segregation were not included in the statistical aggregation since 
the domains in those experiments are less diverse. On the other hand, 
the categorization by GCI produces systematically lower scores as dis-
cussed before such that these results were not included in the statistical 
aggregation of performance scores in Fig. 9. 

From Fig. 9, it is obvious that the performance deteriorates with 
increasing divergence between source and target domains, but domain 
adaptation algorithms generally perform their tasks by lowering the 
slope of decline. The spread of the scores also increases as indicated by 

the length of the boxplots. As emphasized by Ben-David et al. (2010), the 
target error is a combination of empirical source error and the error 
induced by the divergence. Direct comparison of the scores achieved by 
the models is presented in Fig. 10. To see how good are the improve-
ments provided by the three domain adaptation algorithms with respect 
to the baseline model, the relative scores (ΔR2, ΔRMSE, and ΔRRMSE) 
are also plotted. From this figure, we learn that the RTNN models tend to 
produce higher errors at low DKL, mainly due to the random selection of 
labelled data from target domains. The bottom right panel of Fig. 9 also 
shows the RMSE with large variations produced by RTNN models. In 
other words, wrongly selected labelled data from the target domain may 
cause negative transfer where the score of the domain adapted model is 

Fig. 9. Performance scores (above: R2, middle: RMSE, bottom: RRMSE) as a function of Kullback-Leibler divergence between source and target domains. Blue dots 
represent the score from transferability experiments using GCI-segregated regions. Scores from experiments using GDD, VPD, and SOC as categorisers are binned and 
aggregated into boxplots with median values in very thick dots. 

Fig. 10. Top panels: comparison between median scores (R2, RMSE, RRMSE) achieved by four different models as a function of Kullback-Leibler divergence. Bottom 
panels: score differences relative to the baseline DNN. 
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lower than the traditional model. In terms of R2, the domain adaptations 
slightly improve the performances at DKL < 10, while the improvements 
are more prominent at larger DKL. Within the range of 10 ≲ DKL ≲ 20, 
there is no sign of turning points of ΔR2 and ΔRMSE implying that 
domain adaptations can be utilized effectively, possibly beyond this 
divergence range. 

4. Discussion 

4.1. Comparison to other studies 

Results presented in Fig. 8 demonstrate how well the selected ma-
chine learning models predict maize yield in the US corn belt. With only 
ten features that capture the conditions in the peak season (August) as 
the input features, those models achieve performances that are compa-
rable to the results in the literature. However, the performance com-
parisons are not always apple-to-apple as the performance score is 
highly dependent on the data used for both training and testing. 

As a good representation from our study, the DANN acquires RMSE 
= 1,40 Mg/ha, RRMSE = 12.2%, R2 = 0.74, and MAE = 1.14 Mg/ha. 
This model was trained using data from four states and tested using data 
from all eleven states acquired in different years. In recent literature, a 
well-trained machine learning model can achieve RMSE as low as 0.9 
Mg/ha, especially when the training and testing datasets come from the 
same area but different time (Kang et al., 2020; Ansarifar et al., 2021; 
Ma et al., 2021). The common recipe to achieve this excellent perfor-
mance includes the use of time-series data that capture the phenology of 
the crop, i.e. features extracted in different times starting from the 
vegetative to ripening stage. The inclusion of some managerial aspects 
can also be the key of success though these factors are rarely available. 
Time is a crucial factor in the crop yield prediction. A good model with 1 
Mg/ha RMSE can deteriorate (RMSE > 1.5 Mg/ha) when it is laboured to 
provide prediction based on the features acquired at the vegetative stage 
(Kang et al., 2020; Ansarifar et al., 2021). In terms of RRMSE, the re-
ported values range from 9% (Shahoseini et al., 2020) to 18% (Jin et al., 
2017) depending on the spatial and temporal scope of the study. From a 
different model family, a crop model with data assimilation can achieve 
1.24 Mg/ha RMSE and 11.5% RRMSE (Lu et al., 2022). 

The above comparisons positioned the results of our current study in 
the pursuit of accurate and reliable predictions. Our results are not 
among the top, but they provide fairly good predictions only with ten 
features. 

4.2. What to transfer 

In this study, we demonstrated that domain adaptation improves the 
validity and performance of machine learning model for crop yield 
prediction, especially when the model is transferred to different target 
domain. Features that characterize soil (organic content, elevation), 
crop health (vegetation indices), and weather (temperature, humidity, 
etc.) conditions were used as the key inputs to the model. Most of those 
features are region-specific and highly dependent on the climate. Some 
are seasonally variable while the other can be assumed to be invariant 
for the whole year. We highlighted the importance of the ten features in 
predicting the maize yield in the US corn belt. GCI, EVI, NDWI, and 
FAPAR are features that capture the crop health. LST, GDD, and VPD 
represent the weather conditions that influence the yield. Lastly, SOC 
and Elevation are two features that characterize the soil. In the domain 
adaptation stage, those features can be transformed or re-weighted 
with/without the help of some crop yield data for training. 

Except for the annual GDD, the features used in our machine learning 
models can be obtained immediately such that within-season crop yield 
prediction can be performed, assuming that crop type map is available 
(see Johnson and Mueller, 2021). For most of the corn crop in the US 
corn belt, the season peaks around August and the features obtained in 
August can be good proxies of the yield (Johnson, 2014; Kang et al., 

2020). utilization of features obtained in August resulted in a sufficiently 
good crop yield prediction. However, we do not reject the notion that 
the peak vary by location, especially when a finer resolution (below 
county level) is addressed. Capturing the exact peak of season through 
phenology analysis is expected to slightly improve the prediction 
accuracy. 

The urge of domain adaptation is not only raised by regional dif-
ference between source and target domains. Domain adaptation is 
required when we are dealing with different data sources or distin-
guished instruments for data acquisition. For instance, we used vege-
tation indices that are derived from MODIS datasets in this study while 
higher resolutions are widely available to capture the condition at crop- 
level (Kayad et al., 2019; Skankun et al., 2021). Transferring models that 
was trained using MODIS-based vegetation indices to work with a higher 
resolution remote sensing data can be a new challenge for domain 
adaptation, a challenge that needs to be addressed in future studies. The 
same necessity arises by the fact that weather parameters from PRISM 
dataset are only available for conterminous US. The use of different data 
source with global coverage, such as TerraClimate, is the only option 
available if we want to transfer the model to work outside the US 
without exhaustively re-training the model from scratch. Intuitively, the 
correlation between PRISM and TerraClimate data needs to be assessed 
prior to the transfer. A statistical model can be built to predict the 
PRISM-like weather parameters according to the available TerraClimate 
data in the target region. In this simple way, a model that was trained 
using PRISM data can be transferred to regions uncovered by PRISM. 

More complex ways of transfer can also be constructed and evalu-
ated. Recently, Ma et al. (2023) presented a case of multisource domain 
adaptation scheme to reduce the domain shift between US and 
Argentina in the context of maize yield. In that case, some weather pa-
rameters were acquired from different sources considering the dataset’s 
geographical coverage. In the source domain where multisource data 
was available, two models were trained in parallel using two datasets 
from different sources. Adversarial training sequence was performed 
recursively to find predictive and domain-invariant features that are 
applicable in the target region. 

4.3. How to transfer 

Regarding the mechanism or the algorithm to transfer a machine 
learning model through domain adaptation, our results suggest that 
feature-based approach becomes the best alternative. On the other hand, 
instance-based approach with re-weighting process seems to be inferior. 
In an instance-based adaptation, there is a higher risk of overfitting as 
there are numerous possible samples of target data to be used for 
adjusting the model. Generally, domain adaptation using instance-based 
is less effective compared to the feature-based one (Pan and Yang, 2009; 
Bai et al., 2019). 

Among the three domain adaptation algorithms invoked in this 
study, DANN gains the best scores and provides the most significant 
improvements compared to the baseline model (see Fig. 9 and Fig. 10). 
Statistically, this algorithm can reduce the RMSE by 0.7 Mg/ha relative 
to the DNN. RTNN is second best both in terms of R2 and RMSE, except 
for the small divergence segment. If the algorithm is fed with more 
representative labelled data from the target domain, then the perfor-
mance is expected to be higher. Lastly, KLIEP improves the coefficient of 
determination for DKL≳10 while the improvement in terms of RMSE is 
less significant. Though these three algorithms cannot represent the 
whole domain adaptation, at least we can argue the following points 
about what and how to transfer the knowledge between domains. 
Firstly, a feature-based approach might be a good choice for domain 
adaptation since an additional learning process is imposed during 
feature encoding such that domain-invariant features can be revealed. 
Secondly, an instance-based approach may be an alternative, but its 
performance depends on how the distributions of source and target 
datasets intercept each other. The semi-supervised approach through 

R. Priyatikanto et al.                                                                                                                                                                                                                           



Agricultural and Forest Meteorology 341 (2023) 109652

13

regularization may produce a good result if the model adapts to some 
well-labelled data from the target domain. Otherwise, regularization has 
a higher chance of producing a negative transfer model. 

4.4. When to transfer 

The realization of a predictive model which is generally applicable to 
many regions is perhaps the ultimate objective of data-driven modeling. 
Any machine learning model is expected to be transferable to different 
regions but we need to consider the difference between the regions in 
terms of relevant environmental and biophysical parameters. 

Considering the fact that reliable crop yield records are not always 
available everywhere, transferable prediction models will be beneficial 
for agriculture monitoring and food security monitoring at the regional 
and global scales. To justify whether the model is transferable to a 
certain target domain, Kullback-Leibler divergence can be utilized. For 
the models discussed in this study, we can refer to Fig. 10 to justify the 
feasibility of transfer across domains. Suppose that a reliable model has 
performance scores of R2 ≥ 0.5 and relative RMSE of ≲20% or approx-
imately 2 Mg/ha, then we can expect that the baseline DNN can be 
transferred to the regions with DKL ≲ 12 divergence relative to the source 
domain. Domain adapted models can be transferred further. DANN, for 
instance, can be transferred to regions with DKL ≲ 15. To obtain a more 
geographically orientated picture of the Kullback-Leibler divergence, we 

computed the divergence between features extracted from selected re-
gions in the US and the regions outside the study area. For this purpose, 
we extracted the same features from other corn producing states in the 
US and some other countries (see Table 2). Divergences between those 
regions relative to the four selected states in the US (Illinois, Indiana, 
Iowa, and Missouri) were calculated and then plotted in Fig. 11. The 
2020 county level maize yields were acquired from NASS/USDA while 
the 2020/2021 national-level maize yields were acquired from the 
Foreign Agriculture Service USDA. It is worth noting that the selected 
states/provinces are among the top producers in each country such that 
the actual yields are higher than the national-average. 

Relative to the selected four states in the US corn belt, Mato Grosso 
(Brazil) resembles them most closely with DKL < 10. The US mid-west 
states have DKL between 10 and 20, while the mid-Atlantic states like 
New York (NY) and Pennsylvania (PA) have DKL ≳ 20. The north-eastern 
provinces (sheng) in China have similar climatic characteristics with the 
mid-Atlantic US such that the divergence between China and the 
reference regions is ~20. Even though located at lower latitudes, states 
in India and Nigeria have intermediate divergence. The southern states 
like Georgia (GA), Mississippi (MS), and Louisiana (LA) have larger di-
vergences compared to the central corn belt, while irrigated crops in 
these states have relatively high yields. The western states like Montana 
(MT), Wyoming (WY) and Colorado (CO) have DKL close to 30 and 
produce less corn per acre. From this outlook, transferring machine 
learning models trained using US datasets to other countries has a 
reasonable basis though the divergence measure is not the only factor to 
determine the feasibility of transfer learning. 

Alternatively, the divergence measures in general can also be utilized 
to select ideal source domains for training considering the characteris-
tics of the target domain (Kluger et al., 2021). Suppose that we have 
several models trained using datasets from different source domains 
with various divergences relative to the target domain. In such a situa-
tion, we can select a model based on the least-divergence criteria and 
boost the performance through domain adaptation. For instance, a 
model trained using data from the western states of the US is expected to 
be a good stepping stone for domain adaptation to regions with similar 
climate characteristics such as South Africa. 

4.5. Limitations 

This study demonstrates how domain adaptation can improve the 
performance of machine learning-based crop yield prediction models. 
This approach opens the wider possibility for transferring a well-trained 
model from a data rich region to different regions. However, there are 
limitations of this study which can be improved further. 

Firstly, we utilised ten features in the machine learning models. 
Among those ten features, there are dynamic features like vegetation 
indices and weather parameters that change over time. However, we 
only use the maximum values of those dynamic features in the model. 
Even though the features were selected carefully according to their 
importance, additional features may be beneficial to improve the models 
when applied to other regions. For example, Anghileri et al. (2022) 
showed the significance of precipitation as the predictor of crop yield in 
Malawi, Africa. Other hydrological parameters such as soil moisture also 
shows a higher correlation to crop yield in Zambia (Vergopolan et al., 
2021). In this study, VPD was selected as the drought sensitive variable 
(Lobell et al., 2014). Though it has a moderate anti-correlation with 
precipitation and soil moisture, inclusion of more weather and hydro-
logical variables is expected to produce more generalisable models. 

Secondly, the use of MODIS data to derive vegetation indices is 
considered to be sufficient for the case of county level maize yield in the 
US corn belt. In this region, large scale crops are common such that 250- 
m resolution images are adequate to capture the crop health at any time. 
However, the utilization of higher resolution images may be necessary 
when we are dealing with small scale cropping practices as commonly 
found in developing regions (Jin et al., 2019). The accurate 

Table 2 
List of states or provinces of some top corn-producing countries. The yields are 
national-averages from 2020/2021 statistics compiled by the Foreign Agricul-
ture Service USDA. The provincial-level yields are higher than the national- 
average.  

Country States/Provinces Maize Yield 

China Heilongjiang, Jilin, Liaoning 6.32 Mg/ha 
Brazil Mato Grosso 4.37 Mg/ha 
India Tamil Nadu, Karnataka 3.19 Mg/ha 
South Africa Free State, Mpumalanga, North West, Gauteng 5.42 Mg/ha 
Nigeria Kaduna, Niger, Katsina, Borno, Plateau 1.82 Mg/ha  

Fig. 11. Plot of 2020/2021 maize yields in some corn-producing states in the 
US (black) and some other countries (red) as a function of divergence relative to 
Illinois, Indiana, Iowa, and Missouri (as integral). 
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representation of vegetation indices from the crop is also reliant on the 
cropland identification and masking. For the case of the US corn belt, 
CDL becomes the best choice for that purpose though this map is 
available months after the harvest. Consequently, an independent crop 
map is required for mid-season maize yield prediction (Schwalbert et al., 
2020). The same applies for the extraction of features from regions 
outside the US where the global cropland mask is not sufficient. 

Lastly, this study utilizes data from the US corn belt which is asso-
ciated with high yield agricultural practices. As reviewed by Lobell et al. 
(2009), the maize yield in this region is more than 40% of the potential 
yield derived using an idealized crop model. When transferring the 
model to regions with significantly higher yield gaps, additional 
adjustment or scaling will be required. From the perspective of crop 
modeling, the crop yield is regarded as a fraction of above-ground 
biomass that is harvested. The biomass itself is a product of the green 
canopy development and the crop transpiration (e.g., Vanuytrecht et al., 
2014). These variables can be estimated from remote sensing data while 
the final conversion of biomass to crop yield requires a harvest index 
which depends on many factors including cultivars. 

5. Conclusion 

Data-driven models, especially machine learning models have 
become an important part of modern agriculture monitoring and fore-
casting which aim to help achieve food security and sustainability. 
Beyond conventional modeling, domain adaptation scheme may in-
crease the generalisability and transferability of the models. 

In this study, we conducted systematic generalisability and trans-
ferability experiments using data from US corn belt segregated by fea-
tures namely year, annual grow degree days (GDD), vapor pressure 
deficit (VPD), soil organic content (SOC), and the green chlorophyll 
vegetation index (GCI). We trained traditional deep neural network 
(DNN) as the baseline, together with neural network equipped with 
three domain adaptation algorithms, namely Discriminative Adversarial 

Neural Network (DANN), Kullback-Leibler Importance Estimation Pro-
cedure (KLIEP), and Regular Transfer Neural Network (RTNN). Those 
models were trained using data from a specific source domain and 
trained to a different target domain where the difference between those 
domains was measured using Kullback-Leibler divergence. We found 
that the models trained using data from recent years (since 2014) tend to 
have lower generalisability scores. Unaccounted factors such as varia-
tion in precipitation, field managements and intensification may 
contribute to the variation of maize yields. We identified that models 
trained using data from colder regions with lower annual GDD lack 
generalisability. The same applies for models trained using data from 
dry semi-arid regions where the VPD is higher. The spread of training 
data in input and output space is also a determining factor of model 
performance as indicated by the results from experiments using GCI- 
segregated regions. Training using a subset of data with a limited 
range of GCI produces models with low performance. 

In general, the performance of machine learning models deteriorates 
as the divergence between source and target domains increases. Domain 
adaptations can alleviate this problem. Among three approaches eval-
uated in this study, re-weighting is the least preferable approach because 
it does not significantly improve the transferability. On the other hand, a 
feature-based approach provided the best performance. Parameter- 
based domain adaptation as a semi-supervised approach has fluctu-
ating performance due to random selection of labelled data from the 
target domain. Consequently, this approach requires carefully selected 
training data to gain comparable performance. The domain adaptation 
approach is expected to improve transferability of a machine learning 
model trained in the US (or other regions with sufficient data) to data 
poor regions of the world to estimate crop yield. 
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Table A1 
Complete list of features analysed in this study, including the ones not selected as the predictors. Feature importance based on the correlation to the crop yield (R2) and 
the mean decrease in accuracy (MDA) from fitting machine learning model are also displayed.  

Feature R2 MDA Formula Sources 

Green Chlorophyll Index (GCI) 0.76 0.67 B2

B4
− 1 MODIS Nadir Bidirectional Reflectance 

Distribution Function Adjusted Reflectance (MCD43A4.006) 
Enhanced Vegetation Index (EVI) 0.68 0.04 2.5(B2 − B1)

(B2 + 6B1 − 7.5B3 + 1)
Resolution: 500 m, daily 

Normalized Difference Water Index (NDWI) 0.74 0.45 B2 − B6

B2 + B6 

Source: 10.5067/MODIS/MCD43A4.006 
B1: red (620–670) 

Normalized Difference Vegetation Index (NDVI) 0.63 0.02 B2 − B1

B2 + B1 

B2: NIR (841–876 nm) 
B3: blue (459–479 nm) 
B4: green (545–565 nm) 
B6: SWIR (1628–1652 nm) 

Leaf Area Index (LAI) 0.33 0.01  MODIS Leaf Area Index product (MOD15A2H). 
Fraction of Photosynthetically Active Radiation (FAPAR) 0.51 0.01  Resolution: 500 m, 8 days 

Source: 10.5067/MODIS/MOD15A2H.006 
Daytime Land Surface Temperature (LST) 0.41 0.01  MODIS Terra Land Surface Temperature and 

Emissivity (MOD11A1.006) 
Resolution: 1000 m, daily 
Source: 10.5067/MODIS/MOD11A1.006 

Maximum Temperature (Tmax) 0.23 0.01  Parameter-elevation Relationships on Independent 
Slopes Model (PRISM, Daly et al., 2008, 2015) Average Temperature (Tmean) 0.14 0.03  
Resolution: 4000 m, daily Growing Degree Date (GDD) 0.06 0.01 

∑
min(max(Tmean,10),30) − 10 

Vapor Pressure Deficit (VPD) 0.30 0.03  
Bulk density of the fine earth fraction (BDOD) 0.02 0.01  SoilGrids (Hengl et al., 2017) 

Resolution: 250 m, single epoch: 2000 Volumetric fraction of coarse fragments (CFVO) 0.02 0.01  
Proportion of clay particles (CLAY) 0.01 0.01  
Total nitrogen (NITRO) 0.01 0.02  
Proportion of sand particles (SAND) 0.01 0.01  
Proportion of silt particles (SILT) 0.01 0.01  
Soil Organic Content (SOC) 0.01 0.02  
Elevation 0.01 0.05  SRTM digital elevation model 

Resolution: 90 m, single epoch: 2000 
Source: https://srtm.csi.cgiar.org  
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Estimation of corn yield based on hyperspectral imagery and convolutional neural 
network. Comput. Electron. Agric. 184. February.  

Yoosefzadeh-Najafabadi, M., Earl, H.J., Tulpan, D., Sulik, J., Eskandari, M., 2021. 
Application of machine learning algorithms in plant breeding: predicting yield from 
hyperspectral reflectance in soybean. Front. Plant Sci. 11 (January), 1–14. 

You, J., Li, X., Low, M., Lobell, D., and Ermon, S. (2017). Deep gaussian process for crop 
yield prediction based on remote sensing data. In Proceedings of the Thirty-First 
AAAI conference on artificial intelligence. 

Zhao, Y., Potgieter, A.B., Zhang, M., Wu, B., Hammer, G.L., 2020. Predicting wheat yield 
at the field scale by combining high-resolution Sentinel-2 satellite imagery and crop 
modelling. Remote Sens (Basel) 12 (6), 1024. 

R. Priyatikanto et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0050
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0050
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0050
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0051
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0051
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0054
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0054
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0054
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0055
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0055
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0055
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0056
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0056
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0056
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0056
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0058
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0058
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0061
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0061
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0061
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0061
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0061
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0062
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0062
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0062
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0063
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0063
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0063
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0064
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0064
http://refhub.elsevier.com/S0168-1923(23)00343-X/optSh6BMT03vX
http://refhub.elsevier.com/S0168-1923(23)00343-X/optSh6BMT03vX
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0065
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0065
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0065
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0066
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0066
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0066
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0067
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0067
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0067
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0068
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0068
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0068
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0068
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0069
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0069
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0069
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0071
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0071
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0071
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0072
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0072
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0072
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0073
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0073
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0073
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0074
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0074
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0074
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0076
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0076
http://refhub.elsevier.com/S0168-1923(23)00343-X/sbref0076

	Improving generalisability and transferability of machine-learning-based maize yield prediction model through domain adaptation
	1 Introduction
	2 Data and methods
	2.1 Area of study
	2.2 Remote sensing and weather data
	2.3 Machine learning models
	2.4 Experiment design

	3 Results
	3.1 Inter-annual generalisability
	3.2 Inter-region generalisability
	3.3 Transferability among diversity

	4 Discussion
	4.1 Comparison to other studies
	4.2 What to transfer
	4.3 How to transfer
	4.4 When to transfer
	4.5 Limitations

	5 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	Appendix
	References


