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Abstract: In this work, we revisit neutrino mixing sum rules arising from discrete sym-

metries, and the class of Littlest Seesaw neutrino models. These theoretical models offer

predictions for the leptonic CP phase and mixing angles, and correlations among them,

which can be tested in forthcoming neutrino experiments. In particular we study the solar

neutrino mixing sum rules, arising from charged lepton corrections to Tri-bimaximal (TB),

Bi-maximal (BM), Golden Ratios (GRs) and Hexagonal (HEX) neutrino mixing, and at-

mospheric neutrino mixing sum rules, arising from preserving one of the columns of these

types of mixing, for example the first or second column of the TB mixing matrix (TM1 or

TM2), and confront them with an up-to-date global fit of the neutrino oscillation data. We

show that some mixing sum rules, for example an atmospheric neutrino mixing sum rule

arising from a version of neutrino Golden Ratio mixing (GRa1), are already excluded at

3σ, and determine the remaining models allowed by the data. We also consider the highly

predictive Littlest Seesaw models, which are a special case of tri-maximal mixing models

(TM1), and discuss their prospects.
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1 Introduction

Neutrino mass and mixing represents the first and so far only new physics beyond the

Standard Model (SM) of particle physics. We know it must be new physics because its

origin is unknown and it is not predicted by the SM. Independently of the whatever the new

(or nu) SM is, we do know that the minimal paradigm involves three active neutrinos, the

weak eigenstates νe, νµ, ντ (the SU(2)L partners to the left-handed charged lepton mass

eigenstates) which are related to the three mass eigenstates m1,2,3 by a unitary PMNS

mixing matrix [1].

The PMNS matrix is similar to the CKM matrix which describes quark mixing, but in-

volves three independent leptonic mixing angles θ23, θ13, θ12 (or s23 = sin θ23, s13 = sin θ13,

s12 = sin θ12), one leptonic CP violating Dirac phase δ which affects neutrino oscillations,

and possibly two Majorana phases which do not enter into neutrino oscillation formu-

las. Furthermore neutrino oscillations only depend on the two mass squared differences

∆m2
21 = m2

2 − m2
1, which is constrained by data to be positive, and ∆m2

31 = m2
3 − m2

1,

which current data allows to take a positive (normal) or negative (inverted) value. In 1998,

the angle θ23 was first measured to be roughly 45o (consistent with equal bi-maximal νµ−ντ
mixing) by atmospheric neutrino oscillations, while θ12 was determined to be roughly 35o

(consistent with equal tri-maximal νe−νµ−ντ mixing) in 2002 by solar neutrino oscillation

experiments, while θ13 was first accurately found to be 8.5o in 2012 by reactor oscillation

experiments.

Various simple ansatzes for the PMNS matrix were proposed, the most simple ones

involving a zero reactor angle and bimaximal atmospheric mixing, s13 = 0 and s23 = c23 =

1/
√
2, leading to a PMNS matrix of the form,

U0 =

 c12 s12 0

− s12√
2

c12√
2

1√
2

s12√
2

− c12√
2

1√
2

 , (1.1)
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where the zero subscript reminds us that this form has θ13 = 0 (and θ23 = 45◦).

For golden ratio (GRa) mixing [2], the solar angle is given by tan θ12 = 1/ϕ, where

ϕ = (1 +
√
5)/2 is the golden ratio which implies θ12 = 31.7◦. There are two alternative

versions where cos θ12 = ϕ/2 and θ12 = 36◦ [3] which we refer to as GRb mixing, and GRc

where cos θ12 = ϕ/
√
3 and θ12 ≈ 20.9◦.

For bimaximal (BM) mixing (see e.g. [4–6] and references therein), we insert s12 =

c12 = 1/
√
2 (θ12 = 45◦) into Eq. (1.1),

UBM =


1√
2

1√
2

0

−1
2

1
2

1√
2

1
2 −1

2
1√
2

 . (1.2)

For tri-bimaximal (TB) mixing [7], alternatively we use s12 = 1/
√
3, c12 =

√
2/3

(θ12 = 35.26◦) in Eq. (1.1),

UTB =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2

 . (1.3)

Finally another pattern studied in the literature with θ13 = 0 (and θ23 = 45◦) is the

hexagonal mixing (HEX) where θ12 = π/6.

These proposals are typically by finite discrete symmetries such as A4, S4, S5 (for a

review see e.g. [8]). After the reactor angle was measured, which excluded all these ansatze,

there were various proposals to rescue them and hence to maintain the notion of predictivity

of the leptonic mixing parameters, in particular the Dirac CP phase δ, which is not directly

measured so far and remains poorly determined even indirectly. Two approaches have been

developed, in which some finite symmetry (typically a subgroup of A4, S4, S5) can enforce a

particular structure of the PMNS matrix consistent with a non-zero reactor angle, leading

to solar and atmospheric sum rules, as we now discuss.

The first approach, which leads to solar sum rules, is to assume that the above patterns

of mixing still apply to the neutrino sector, but receive charged lepton mixing corrections

due to the PMNS matrix being the product of two unitary matrices, which in our convention

is written as VeLV
†
νL , where V †

νL is assumed to take the BM, TB or GR form, while VeL

differs from the unit matrix. If VeL involves negligible 13 charged lepton mixing, then it

is possible to generate a non-zero 13 PMNS mixing angle, while leading to correlations

amongst the physical PMNS parameters, known as solar mixing sum rules [9–12]. This

scenario may be enforced by a subgroup of A4, S4, S5 which enforces the Vν structure [8]

while allowing charged lepton corrections.

In the second approach, which leads to atmospheric sum rules, it is assumed that

the physical PMNS mixing matrix takes the BM, TB or GR form but only in its first or

second column, while the third column necessarily departs from these structures due to the

non-zero 13 angle. Such patterns again lead to correlations amongst the physical PMNS

parameters, known as atmospheric mixing sum rules. This scenario may be enforced by
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a subgroup of A4, S4, S5 which enforces the one column Vν structure [8] while forbidding

charged lepton corrections.

Apart from the large lepton mixing angles, another puzzle is the extreme lightness

of neutrino masses. Although the type I seesaw mechanism can qualitatively explain the

smallness of neutrino masses through the heavy right-handed neutrinos (RHNs), if one

doesn’t make other assumptions, it contains too many parameters to make any particular

predictions for neutrino mass and mixing. The sequential dominance (SD) [13, 14] of

right-handed neutrinos proposes that the mass spectrum of heavy Majorana neutrinos is

strongly hierarchical, i.e. Matm ≪ Msol ≪ Mdec, where the lightest RHN with mass

Matm is responsible for the atmospheric neutrino mass, that with mass Msol gives the solar

neutrino mass, and a third largely decoupled RHN gives a suppressed lightest neutrino

mass. It leads to an effective two right-handed neutrino (2RHN) model [15, 16] with a

natural explanation for the physical neutrino mass hierarchy, with normal ordering and the

lightest neutrino being approximately massless, m1 = 0.

A very predictive minimal seesaw model with two right-handed neutrinos and one tex-

ture zero is the so-called constrained sequential dominance (CSD) model [9, 17–25]. The

CSD(n) scheme, also known as the Littlest Seesaw, assumes that the two columns of the

Dirac neutrino mass matrix are proportional to (0, 1,−1) and (1, n, 2−n) or (1, 2−n, n) re-

spectively in the RHN diagonal basis (or equivalently (0, 1, 1) and (1, n, n−2) or (1, n−2, n))

where the parameter n was initially assumed to be a positive integer, but in general may

be a real number. For example the CSD(3) (also called Littlest Seesaw model) [18–22],

CSD(4) models [23, 24] and CSD(2.5) [26] can give rise to phenomenologically viable pre-

dictions for lepton mixing parameters and the two neutrino mass squared differences ∆m2
21

and ∆m2
31, corresponding to special constrained cases of lepton mixing which preserve the

first column of the TB mixing matrix, namely TM1 and hence satisfy atmospheric mix-

ing sum rules. As was observed, modular symmetry remarkably suggests CSD(1 +
√
6) ≈

CSD(3.45) [27–30].

In this paper we shall revisit neutrino solar and atmospheric mixing sum rules aris-

ing from discrete symmetries, and also discuss the class of Littlest Seesaw models. These

theoretical models offer predictions for the leptonic CP phase and mixing angles, and

correlations among them, which can be tested in forthcoming neutrino experiments. In

particular we study the solar neutrino mixing sum rules, arising from charged lepton cor-

rections to TB, BM and GR neutrino mixing, and atmospheric neutrino mixing sum rules,

arising from preserving one of the columns of these types of mixing, for example the first

or second column of the TB mixing matrix (TM1 or TM2), and confront them with an

up-to-date global fit of the neutrino oscillation data. We show that some mixing sum rules,

for example all the atmospheric neutrino mixing sum rule arising from a Golden Ratio mix-

ings are already excluded at 3σ a part from GRa2, and determine the remaining models

allowed by the data. We also consider the highly predictive Littlest Seesaw models, which

are a special case of tri-maximal mixing models (TM1), and discuss their prospects.

The layout of the remainder of the paper is as follows. In Chapter 2 we introduce

the notation for the PMNS matrix and discuss the symmetries of the leptonic Lagrangian.

In Chapter 3 and 4 we introduce the atmospheric and solar sum rules for the different
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models we are studying and confront them with the up-to-date neutrino data global fit.

We proceed in Chapter 5 discussing the CDS and the Littlest Seesaw model, showing its

high predictivity and the viable parameter space given the experimental data and its fit.

Finally we conclude in Chapter 6.

2 Lepton mixing and symmetries

The mixing matrix in the lepton sector, the PMNS matrix UPMNS, is defined as the matrix

which appears in the electroweak coupling to the W bosons expressed in terms of lepton

mass eigenstates. With the mass matrices of charged leptonsMe and neutrinosmν
LL written

as1

L = −eLM
eeR − 1

2
νLM

ννcL +H.c. , (2.1)

and performing the transformation from flavour to mass basis by

VeL M e V †
eR

= diag(me,mµ,mτ ), VνL Mν V T
νL

= diag(m1,m2,m3), (2.2)

the PMNS matrix is given by

UPMNS = VeLV
†
νL

. (2.3)

Here it is assumed implicitly that unphysical phases are removed by field redefinitions, and

UPMNS contains one Dirac phase and two Majorana phases. The latter are physical only

in the case of Majorana neutrinos, for Dirac neutrinos the two Majorana phases can be

absorbed as well.

According to the above discussion, the neutrino mass and flavour bases are misaligned

by the PMNS matrix as follows,

 νe
νµ
ντ

 =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 ν1

ν2
ν3

 ≡ UPMNS

 ν1
ν2
ν3

 , (2.4)

where νe, νµ, ντ are the SU(2)L partners to the left-handed charged lepton mass eigenstates

and ν1,2,3 are the neutrinos in their mass basis. Following the standard convention we can

describe UPMNS in terms of three angles, one CP violation phase and two Majorana phases

UPMNS =

 1 0 0

0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

P, (2.5)

1Although we have chosen to write a Majorana mass matrix, all relations in the following are independent

of the Dirac or Majorana nature of neutrino masses.

– 4 –



=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23
s12s23 − c12s13c23e

iδ −c12s23 − s12s13c23e
iδ c13c23

P, (2.6)

where P contains the Majorana phases

P = diag
(
1, eiα21/2, eiα31/2

)
, (2.7)

The current 3σ parameters intervals coming from the global fit of the neutrino oscillation

data by the nuFIT collaboration [31] are

θ12 = [31.31◦, 35.74◦], θ23 = [39.6◦, 51.9◦], θ13 = [8.19◦, 8.89◦], (2.8)

δ = [0◦, 44◦] & [108◦, 360◦],
∆2

21

10−5eV2 = [6.82, 8.03],
∆2

3l

10−3eV2 = [2.428, 2.597].

(2.9)

The PMNS matrix reads

|U |w/o SK-atm
3σ =

 0.803 → 0.845 0.514 → 0.578 0.142 → 0.155

0.233 → 0.505 0.460 → 0.693 0.630 → 0.779

0.262 → 0.525 0.473 → 0.702 0.610 → 0.762

 . (2.10)

These results are obtained considering normal ordering, which is the current best fit, and

without including the Super-Kamiokande (SK) data. Simple mixing patter such TB, BM

or GR could explain the first neutrino oscillation data. These patterns can be enforced via

symmetries of the mass matrices. Let us take a basis where the charged lepton Me mass

matrix is diagonal and we notice that for 3 generations we have that ZT
3 is a symmetry of

the Lagrangian

T †
(
M †

eMe

)
T = M †

eMe, (2.11)

where T = diag
(
1, ω2, ω

)
and ω = ei2π/3. The light Majorana neutrino mass matrix is

invariant under the Klein symmetry: ZU
2 × ZS

2 . This can be seen taking the diagonal

neutrino mass matrix and performing the transformations

Mν = STMνS, Mν = UTMνU, (2.12)

and Mν is left invariant with

S = U∗
PMNS diag(+1,−1,−1)UT

PMNS

U = U∗
PMNS diag(−1,+1,−1)UT

PMNS,
(2.13)
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PSL2(7) SO(3)∆(96)

∆(27)

SU(3)

A4

S4 A5T7

Figure 1: Subgroups of SU(3) with triplet representations. The smaller of two groups connected

in the graph is a subset of the other. Figure from [8].

Figure 2: A schematic diagram that illustrate the way that the two subgroups ZU
2 ×ZS

2 and ZT
3

of a finite group work in the charged lepton and neutrino sectors in order to enforce a particular

pattern of PMNS mixing. In this example, the group S4 leads to TB mixing.

where this result follows from the fact that, in the charged lepton mass eigenstate basis,

the neutrino mass matrix is diagonalised by UPMNS as in Eq. (2.2), where any two diagonal

matrices commute. Then Eq. (2.13) shows that the matrices S,U are both diagonalised

by the same matrix UPMNS that also diagonalises the neutrino mass matrix. Given this

result, we can always find the two matrices S,U for any PMNS mixing matrix, and hence

the Klein symmetry is present for any choice of the PMNS mixing. However not all Klein

symmetries may be identified with finite groups of low order.

This description is meaningful if the charged leptons are diagonal (T is conserved) or

approximately diagonal (T is softly broken). We are therefore interested in finite groups

that are superset of ZU
2 × ZS

2 and ZT
3 and have a triplet representation. Groups of low

order that satisfy these constraints are given in Figure 1.

One simple example is the group G = S4, of order 24, which is the group of permutation

of 4 objects. The generators follow the presentation rules [8]
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Figure 3: In order to generate a non-zero (13) PMNS element, one or more of the generators

S, T, U must be broken. In the left panel we depict T breaking leading to charged lepton mixing

corrections and possible solar sum rules. In the right panel, U is broken, while either S or SU is

preserved leading to neutrino mixing corrections and atmospheric sum rules.

S2 = T 3 = (ST )3 = U2 = (TU)2 = (SU)2 = (STU)4 = 1, (2.14)

The two possible S4 triplet irreducible representations with a standard choice of basis [32],

gives the generators explicit expression

S =
1

3

−1 2 2

2 −1 2

2 2 −1

 , T =

 1 0 0

0 ω2 0

0 0 ω

 , U = ∓

 1 0 0

0 0 1

0 1 0

 , (2.15)

where again ω = ei2π/3 and the sign of the U matrix corresponds to the two different triplet

representation. The group S4 predicts a TB mixing [7], see Figure ??. This can be checked

by the fact that S and U are diagonalised by UTB, see Equations (2.13). Another commonly

used group is A4, which has two generators S and U that follow the same presentation

rules as in Equation (2.14) and in a standard basis [33], the generators have the same form

as in Equation (2.15).

In order to explain the experimental results G needs to be broken and generate a

non-zero (13) PMNS element. This will lead to corrections to the leading order PMNS

predictions from the discrete group G. In Figure 3 we illustrate two possible direction

we can proceed to do that. The first one is to break the T generator while the Klein

symmetry in the neutrino sector is exact (left hand side). This means that the charged

lepton matrix is approximately diagonal. In the mass basis we will have then a correction

to the neutrino mixing matrix by a unitary matrix Ve and the PMNS is now UPMNS =

V †
e Vν . Applying this to a group G will lead to solar sum rules. The second direction is

to preserve ZT
3 but breaking ZU

2 while keeping either ZSU
2 or ZS

2 unbroken (right hand

side). This leads to corrections to the prediction of G within the neutrino mixing and to

atmospheric sum rules. It is convenient to introduce small parameters that can simplify

the sum rules expressions and help us understand their physical behaviour since both in
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solar and atmospheric sum rules we implement a small deviation from the prediction of

the exact finite discrete symmetries. We can consider the deviation parameters s, r, a [34]

sin θ12 ≡
1 + s√

3
, sin θ13 ≡

r√
2
, sin θ23 ≡

1 + a√
2

, (2.16)

that highlight the differences from TB mixing. Given the latest fit the 3σ allowed range

for the solar, reactor and atmospheric deviation are respectively

−0.0999 < s < 0.0117,

0.20146 < r < 0.21855,

−0.0985 < a < 0.1129.

(2.17)

This shows that the reactor angle differs from zero significantly (r ̸= 0), but the solar

and atmospheric angles remain consistent with TB mixing (s = a = 0) at 3σ. From a

theoretical point of view, one of the goals of the neutrino experiments would be to exclude

the TB prediction s = a = 0 [35], which is so far still allowed at 3σ.

3 Solar sum rules

The first possibility to generate a non-zero reactor angle, whilst maintaining some of the

predictivity of the original mixing patterns, is to allow the the charged lepton sector to

give a mixing correction to the leading order mixing matrix Uν . This will lead to the so-

called solar sum rules, that are relations between the parameters that can be tested. This

operation is equivalent to considering the T generator of the S4 symmetry which enforces

the charged lepton mass matrix to be diagonal (in our basis) to be broken.

When the T generator is broken, the charged lepton matrix is not exactly diagonal

and it will give a correction to the PMNS matrix predicted by the symmetry group G.

For example for the S4, UPMNS is not exactly UTB but it receives a correction that we will

compute. The fact that S and U are preserved leads to a set of correlations among the

physical parameters, the solar sum rules which are the prediction of the model. For the

solar sum rules we can obtain a prediction for cos δ as we shall now show.

For example consider the case of TB neutrino mixing with the charged lepton mixing

corrections involving only (1,2) mixing, so that the PMNS matrix in Eq. 2.3 is given by,

UPMNS =

 ce12 se12e
−iδe12 0

−se12e
iδe12 ce12 0

0 0 1



√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2

 =


· · · · · · se12√

2
e−iδe12

· · · · · · ce12√
2

1√
6
− 1√

3
1√
2

 (3.1)

The elements of the PMNS matrix are clearly related by [12, 37]

|Uτ1|
|Uτ2|

=
sν12
cν12

= tν12 =
1√
2
. (3.2)
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Figure 4: Solar mixing sum rule predictions for TB neutrino mixing. In the both panels the

red band is the allowed region of the exact TB solar sum rules using the 3σ range of r (i.e. the

deviation of sin θ13) and it is plotted in the 3σ range of s (i.e. the deviation of sin θ23 from the TB

value) and using the best fit value for a = 0.071. The blue band is given by the linearised sum rule.

In the right panel the blue band is the second order expansion sum rule prediction, it matches the

exact sum rule.

This relation is easy to understand if we consider only one charged lepton angle to be non-

zero, θe12 then the third row of the PMS matrix in Eq. 3.1 is unchanged, so the elements

Uτi may be identified with the corresponding elements in the uncorrected mixing matrix

in Eq.1.1. Interestingly, the above relation still holds even if both θe12 and θe23 are non-zero.

However it fails if θe13 ̸= 0 [36].

The above relation in Eq.3.2 can be translated into a prediction for cos δ as [37]2

cos δ =
tan θ23 sin θ

2
12 + sin θ213 cos θ

2
12/ tan θ23 − (sin θν12)

2
(
tan θ23 + sin θ213/ tan θ23

)
sin 2θ12 sin θ13

,

(3.3)

where only the parameter sin θν12 is model dependent and we have respectively sin θν12 =

1/
√
3, sin θν12 = 1/

√
2, tan θν12 = 1/φ and θν12 = π/5, cos θν12 = φ/

√
3 and θν12 = π/6 for

mixing based on TB, BM, GRa, GRb, GRc and HEX where φ = (1 +
√
5)/2.

Let us discuss an approximation of the sum rules for the TB mixing as an example,

where sin θν12 = 1/
√
3. We can re-write Equation (3.3) using the parameters s, a and r

defined in Equation (2.16) and then expand in them. The linearised sum rule reads [34]

cos δ =
s

r
, (3.4)

but it does not describe adequately the exact sum rules as shown in the left panel of Figure

4. Therefore we can go to the second order expansion, which is

cos δ =
s

r
+

r2 + 8as

4r
, (3.5)

2See also [38].
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Figure 5: Solar mixing sum rule predictions for BM neutrino mixing. In the both panels the

red band is the allowed region of the exact BM solar sum rules using the 3σ range of r (i.e. the

deviation of sin θ13) and it is plotted in the 3σ range of s (i.e. the deviation of sin θ23 from the

TB value) and using the value a = −0.1. The blue band is given by the linearised sum rule in the

left panel. In the right panel the blue band is the second order expansion sum rule prediction, it

matches the exact sum rule.

and it matches the exact sum rule behaviour as seen on the right panel in Figure 4.

Similarly we can obtain higher order expansion for the other cases and check them against

the data, like for the BM case showed in Figure 5. In this case we did not choose the best

fit value for a because otherwise it would fall out of the physical range of cos δ since BM

is almost excluded by the data. The approximated expression for the sum rules can help

us understand its behaviour and the dependence of cos δ on the other parameters that are

in general non-linear and assess the deviation from the non-corrected PMNS mixing. We

then expect for the exact sum rules a first order linear dependence on s.

In Figure 6 we present the exact sum rules prediction from Equation (3.3) for TB,

BM, GRa, GRb, GRc and HEX and the constraints from the fit of the neutrino oscillation

data [31]. We require cos δ to fall in the physical range −1 < cos δ < 1 and we present it

in the y-axis. In all panel the x-axis is sin2 θ12 and the different colour bands are sampled

in the allowed sin θ23 region. The width of the band is given by allowing sin θ13 to vary in

its 3σ range. We notice that the θν12 = 45◦ BM mixing (top-right panel) is closed to be

excluded at 3σ and only low values of sin2 θ12 and high values of sin2 θ12 are still viable.

Similarly for GRc mixing (bottom-left panel), with cos θν12 = φ/3, the viable parameter

space is very tight, only for maximal values of sin θ13 and minimal values of sin θ12 and

sin θ23 we can obtain physical results for the CP phase. For TB mixing (top-left panel)

with sin θν12 = 1/
√
3 in the neutrino sector with charged lepton correction lead consistent

results in all parameters space, with the prediction for cos δ that shows an approximately

linear dependence on sin2 θ12 as understood by the leading order term in the sum rules in

Equation (3.4). The prediction for the CP phase lies in the 0.52 ≲ cos δ ≲ 0.12 range. The

yellow and green bands are the 1σ range respectively of sin2 θ12 and cos δ and we notice how

these ranges favor GRa and GRb mixing. For both these models we see that the prediction

of cos δ are in the negative plane. For GRa (center-left panel), with tan θν12 = 1/φ, the

whole parameter space leads to physical prediction of cos δ. For GRb (center-right panel),

– 10 –
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Figure 6: Summary of exact solar sum rule predictions for different types of neutrino mixing. In

the top left hand panel we present with the different colored band the sum rule prediction for TB

for cos δ letting sin θ12 vary in its 3σ range, the different color denoted different choice of sin θ23
given in the legend, in its 3σ range and the width of the band is given by the 3σ range in sin θ13.

The green and yellow band are the 1σ range for respectively cos δ and sin θ23. Similar plots for

BM, GRa, GRb, GRc and HEX are presented respectively on the top right, center right, center

left, bottom left, bottom right panels.

with θν12 = π/5 mixing, larger values sin θ23 are excluded for small values of sin2 θ12. We

finally notice that TM and HEX are the only model predicting positive values of cos δ

and HEX (bottom-right panel), with θν12 = π/6 in particular the only predicting values of

cos δ ≳ 0.2. Of the mixing pattern we studied GRa and GRb are favoured by the current

1σ ranges and BM and GRc are much disfavoured and only consistent with the far corners

of the parameter space with a prediction of | cos δ | ≈ 1.
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4 Atmospheric sum rules

In this section we discuss the second possibility, that is to have the T generator unbroken,

therefore the charged lepton mixing matrix is exactly diagonal. In this case the correction

to the PMNS matrix predicted from the group G comes from the neutrino sector and

it provides a non zero reactor angle. For each group there are two possible corrections

achieved either breaking U and preserving S or with S and U broken and SU preserved.

Therefore for each discrete symmetry we will study two mixing pattern [39–41].

Let us consider again G = S4 and the TB mixing in Equation (1.3) as an example. If

we break S and U but preserve SU the first column of the TB matrix is preserved and we

have the so-called TM1 mixing pattern [42, 43]

UTM1 ≈


√

2
3 − −

− 1√
6
− −

1√
6

− −

 , (4.1)

if instead S is unbroken the second column is preserved and we have the second mixing

pattern TM2

UTM2 ≈


−
√

1
3 −

−
√

1
3 −

− −
√

1
3 −

 . (4.2)

We can explicitly check this noticing that

S


√

1
3√
1
3√
1
3

 =


√

1
3√
1
3√
1
3

 , (4.3)

meaning that the second column of the TB mixing matrix is an eigenvector of the S matrix.

Similarly for the first column with the SU matrix. In this second case where the second

column of TB matrix is conserved we have

|Ue2| = |Uµ2| = |Uτ2| =
1√
3
, (4.4)

and given the parametrisation in Equation (2.6) we have

|Ue2| = |s12c13|, |Uµ2| = |c12c23 − s12s13s23e
iδ|, (4.5)

|Uτ2| = | − c12s23 − s12s13c23e
iδ|. (4.6)

Using the first equation |Ue2| = |s12c13| we have the first atmospheric sum rule

– 12 –
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Figure 7: The red band is the allowed region of the exact TM2 sum rules using the 3σ

range of r (i.e. the deviation of sin θ13 and sin θ23 from the TB value). The red band is

given by the linearised sum rule. On the right we zoom on the region −0.1 < a < 0.

s212 =
1

3 c213
, (4.7)

that allows us to write θ12 in terms of θ13 and removing a parameter in our description and

gives a prediction that can be tested. Using Equation (4.7) and |c12c23− s12s13s23e
iδ|2 = 1

3

we obtain the second atmospheric sum rule [42, 43]

cos δ =
2c13 cot 2θ23 cot 2θ13√

2− 3s213
. (4.8)

For the other models the discussion is similar where we call X1 and X2 the atmospheric

sum rules respectively derived by preserving the first and second column of the unbroken

group with mixing X. In terms of the deviation parameters for TM2 we have the sum rule

cos δ =
2a(2 + a)

(
−1 + r2

)
(1 + a)

√
1− 2a− a2r

√
4− 3r2

. (4.9)

We can expand this expression for small deviation parameters and at the zero-th order we

have [39]

cos δ = −2a

r
(4.10)

and in Figure 7 we test this approximation against the exact sum rules using the experimen-

tal constraint in (2.9). We can see that given the updated data the linear approximation is

now insufficient to describe the exact expression as it was instead in previous studies [39].

Similarly for TM1, as seen in Figure 8. This is true for the other model we will discuss

later and therefore we provide the higher order expansions that agrees with the exact sum

rule in Equation (4.9) given the current data and is
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Figure 8: The red band is the allowed region of the exact TM2 sum rules using the 3σ

range of r (i.e. the deviation of sin θ13 and sin θ23 from the TB value). The blue band is

given by the second order sum rule. On the right we zoom on the region −0.1 < a < 0.

cos δ = −2a

r
− a2

r
(4.11)

For the TM2 example we see in Figure 7 that the second order expansion is a good de-

scription of the exact sum rule. For TM1 instead, as shown in Figure 8 the third order

expansion is needed. Since the second exact sum rules are quite involved having an

Exact sum rule Approximated sum rule

TM1 cos δ = − cot 2θ23(1−5 sin θ213)
2
√
2 sin θ13

√
1−3 sin θ213

cos δ = a
r + a2

2r + 2a3

r − 7ar
4

TM2 cos δ = 2 cos θ13 cot 2θ23 cot 2θ13√
2−3 sin θ213

cos δ = −2a
r − a2

r

GRa2 cos δ = (1−tan2 θ23) csc θ(1−3 sin2 θ13+(1+sin2 θ13) cos 2θ)

8 sin θ13 cos θ23
√

cos2 θ13−sin2 θ
cos δ = a

√
1+cos 2θ csc θ

r

(
1 + a

2

)
Table 1: Exact and approximated sum rules for the experimentally viable models, where

θ = arctan 1
ϕ and ϕ = 1+

√
5

2 .

approximated expression is of help to understand the physical meaning of it and to under-

stand the difference with respect to the TB model. We present in Table 1 the exact and

approximated second sum rule for TM1, TM2 and GRa2 that as we will see later are the

viable atmospheric mixing. Note that the approximated lead to simple results for TM1

and TM2 because the parameters a, r and s are built as deviation parameters from the TB

mixing and beyond the first order expansion may not bring new insight for other mixing.

We present in Table 2 the first atmospheric sum rules used in Figure 9. These results were

derived using the normal ordered data without SK atmospheric results, the discussion re-

garding linearisation is the same including SK or considering the inverted ordering since

sin θ13 is very constrained and it does not change much in the different case considered.
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TM1 cos θ12 =
√

2
3

1
cos θ13

TM2 sin θ12 =
1√

3 cos θ13

BM1 cos θ12 =
1√

2 cos θ13
BM2 cos θ12 =

1√
2 cos θ13

GRa1 cos θ12 =
cos θ
cos θ13

GRa2 cos θ12 =
sin θ

cos θ13

GRb1 cos θ12 =
1+

√
5

4 cos θ13
GRb2 sin θ12 =

√
5+

√
5

4 cos θ13

GRc1 cos θ12 =
1+

√
5

2
√
3 cos θ13

GRc2 sin θ12 =
1+

√
5

2
√
3 cos θ13

HEX1 cos θ12 =
√
3

2 cos θ13
HEX2 sin θ12 =

1
2
√
2 cos θ13

Table 2: Exact sum rules plotted in Figure 9. where θ = arctan 1
ϕ and ϕ = 1+

√
5

2 .
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s
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2
)
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2
θ12
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Figure 9: We present the 3σ allowed region in green. The pink, blue, red, orange and

black curves are respectively the predictions for TM1, TM2, GRa1, GRa2 and GRb1 mixing

patterns.

In Figures 9 and 10 we study the exact atmospheric sum rules for models obtained

modifying TB, BM, GRa, GRb, GRc and HEX. In Figure 9 we present first atmospheric

sum rule in Table 2, where the green band is the 3σ range for sin2 θ12. The models that do

not appear are already excluded and far from the 3σ region. Therefore BM1, BM2, GRa1,

GRb2, GRc1, GRc2, HEX1 and HEX2 are already excluded. In red we show GRa1 that

is excluded a 3σ and in blue TM2, that is still not excluded only in a narrow parameter

space, for high values of the solar and atmospheric angle. TM1 is showed in purple, GRa2
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Figure 10: We present with the blue band the sum rule prediction for TM2 for cos δ

letting sin θ13 vary in its 3σ range. In orange and purple the sum rules for GRa2 and TM1.

The yellow and gray regions are respectively the 1σ range of sin θ23 and cos δ, while the

plot covers the whole 3σ range.

in orange and GRb1 in black.

In Figure 10 we show the exact atmospheric sum rules (Table 1) and the corresponding

equations for other models that are still allowed from Figure 9. We plot cos δ against sin θ23
and letting sin θ13 vary in its 3σ range, this gives the width of the different bands, in yellow

and gray respectively are the 1σ band for sin2 θ23 and cos δ. The GRb1 mixing do not

appear in the plot because it lays in unphysical values of cos δ. In purple, blue and orange

we present TM1, TM2 and GR12. We can see that given the 1σ bands, the GRa2 mixing is

favoured when considering normal ordering and without the SK data, since TM2 is allowed

only on a small portion of the parameter space as shown in Figure 9.

5 Littlest Seesaw

The Littlest Seesaw (LS) mechanism is the most economic neutrino mass generation mech-

anism that is still consistent with the experimental neutrino data [18, 19]. We will show

that after the choice of a specific n value, all the neutrino observables are fixed by two free

parameters. Different values of n can be realised by different discrete symmetry groups.

The LS introduces two new Majorana right-handed (RH) neutrinos Natm
R and N sol

R that

will be mostly responsible for providing the atmospheric and solar neutrino mass respec-

tively and the lightest SM neutrino is approximately massless; this is the idea of sequential

dominance (SD) of RH neutrinos combined with the requirement for the Natm
R - νe inter-

action to be zero [44]. The Majorana neutrino mass matrix is given by the standard type

I seesaw equation
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mν = −mDM−1
R mDT

, (5.1)

where the RH neutrino mass matrix MR is a 2× 2 diagonal matrix

MR =

(
Matm 0

0 Msol

)
, M−1

R =

(
M−1

atm 0

0 M−1
sol

)
, (5.2)

that comes from the Lagrangian term

LLS ⊃ −1

2
MatmN̄

atm
R Natm

R − 1

2
MsolN̄

sol
R N sol

R + h.c. . (5.3)

The Dirac mass matrix is instead a 3× 2 matrix with arbitrary entries

mD =

 d a

e b

f c

 ,
(
mD

)T
=

(
d e f

a b c

)
, (5.4)

where the entries are the coupling between the Majorana RH neutrinos and the SM neutri-

nos. The first column describe the interaction of the neutrinos in the flavour basis with the

atmospheric RH neutrino and the second with the solar RH neutrino. The SD assumptions

are that d = 0, d ≪ e, f , and

(e, f)2

Matm
≫ (a, b, c)2

Msol
, (5.5)

these, together with the choice that of the almost massless neutrino to be the first mass

eigenstate m1, leads to m3 ≫ m2 and therefore a normal mass hierarchy. This description

can be further constrained choosing exactly e = f , b = na and c = (n − 2)a giving a

simplified Dirac matrix

mD =

 0 a

e na

e (n− 2)a

 , (5.6)

that is called constrained dominance sequence (CSD) for positive integer n [9, 17, 18].

Following the literature we will refer to models with n real as LS models [19]. It has been

shown that the reactor angle is [19]

θ13 ∼ (n− 1)

√
2

3

m2

m3
, (5.7)

– 17 –



therefore this can provide non-zero and positive angle for n > 1 and also excludes already

models with n ≥ 5 since they do not fit the experimental value.

The littlest seesaw Lagrangian unifies in one triplet of flavour symmetry the three

families of electroweak lepton doublets while the two extra right-handed neutrinos, νatmR

and νsolR are singlets and reads [19]

L = −yatmL̄ · ϕatmν
atm
R − ysolL̄ · ϕsolν

sol
R − 1

2
Matmν

c̄
R
atmνatmR − 1

2
Msolν

c
R
solνsolR + h.c. ,

(5.8)

which can be enforced by a Z3 symmetry and where ϕatm and ϕsol can be either Higgs-like

triplets under the flavour symmetry or a combination of Higgses electroweak doublets and

flavons depending on the specific choice of symmetry to use. In both cases the alignment

should follow

ϕT
atm ∝ (0, 1, 1), ϕT

sol ∝ (1, n, n− 2), (5.9)

or

ϕT
atm ∝ (0, 1, 1), ϕT

sol ∝ (1, n− 2, n). (5.10)

We will refer to the first possibility in Equation (5.9) as the normal case and the second,

in Equation (5.10) as the flipped case. The predictions for n in the flipped case are related

to the normal one, as we will discuss later, by

tan θ23 → cot θ23 δ → δ + π, (5.11)

therefore we will discuss them together as one single n case.

There is an equivalent convention that can be found in the literature [29], where the

alignment is chosen to be

ϕT
atm ∝ (0, 1,−1), ϕT

sol ∝ (1, n, 2− n). (5.12)

or

ϕT
atm ∝ (0, 1,−1), ϕT

sol ∝ (1, 2− n, n). (5.13)

that leads to the same results as the previous two cases respectively. In the neutrino mass

matrix there will appear a (−1) factor that is only a non-physical phase that can therefore

be neglected. In particular the case n = 1 +
√
6 that can be obtained with modular

symmetry in [29] is still n = 1 +
√
6 in our convention using the Equation (5.9).

We will compute everything following the derivation in [19] and using Equation (5.9)

and deriving the flipped result with Equation (5.11). We will consider n = 2.5, 3 and
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1 +
√
6 ≈ 3.45 and their flipped cases. The mass matrix then in the diagonal charged

lepton basis is given by

mν = ma

 0 0 0

0 1 1

0 1 1

+mbe
iη

 1 n n− 2

n n2 n(n− 2)

1 n(n− 2) (n− 2)2

 , (5.14)

where we used Equations (5.1), (5.2) and (5.6)

ma =
|e|2

Matm
mb =

|a|2

Msol
, (5.15)

and the only relevant phase is η = arg(a/e). At this point we notice that, in the diagonal

charged lepton mass basis where we work, the PMNS mixing matrix is fully specified by

the choice of n and the parameters ma/mb and η. Indeed it is possible to derive exact

analytic results for the masses and mixing angles [19], and hence obtain the LS prediction

for the neutrino oscillation observables.

We first observe that

mν


√

2
3

−
√

1
3√

1
3

 =

 0

0

0

 , (5.16)

where the vector (
√

2
3 ,−

√
1
3 ,
√

1
3)

T is the first column of the TB matrix in Equation (1.3)

and is then an eigenvector of the neutrino mass matrix with eigenvalue 0 and it corresponds

to the massless neutrino eigenstate. This means that for a generic n we get a TM1 mixing,

Equation (4.1), where the first column of the TB matrix is preserved and the other two

can change. Therefore we can think of the LS as a special case of the atmospheric sum

rules for the TB mixing. Since the atmospheric sum rules were derived only using the fact

that the first column of the TB matrix is preserved all LS implementations also follow the

TM1 sum rules in Equation (4.1). Once we have noticed this it is clear that mν can be

block diagonalised using the TB matrix

mν
block = UT

TBm
νUTB =

 0 0 0

0 x y

0 y z

 , (5.17)

with

x = 3mbe
iη, y =

√
6mbe

iη(n− 1), z = |z|eiϕz = 2
[
ma +mbe

iη(n− 1)2
]
. (5.18)
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Finally we diagonalise mν
block to obtain a matrix diag (0,m2,m3)

UT
block m

ν
block Ublock = P ∗

3νR
T
23νP

∗
2νm

ν
block P

∗
2νR23νP

∗
3ν = mν

diag = diag (0,m2,m3) , (5.19)

where the phases are

P2ν =

 1 0 0

0 eiϕ
ν
2 0

0 0 eiϕ
ν
3

 ,

P3ν =

 eiω
ν
1 0 0

0 eiω
ν
2 0

0 0 eiω
ν
3

 ,

(5.20)

and the angle we use to diagonalise

R23ν =

 1 0 0

0 cos θν23 sin θν23
0 − sin θν23 cos θν23

 ≡

 1 0 0

0 cν23 sν23
0 −sν23 cν23

 , (5.21)

with the angle being fully specified by the free parameters ma/mb and η

t ≡ tan 2θν23 =
2|y|

|z| cos(A−B)− |x| cosB
, (5.22)

where

tanB = tan (ϕν
3 − ϕν

2) =
|z| sinA

|x|+ |z| cosA
, (5.23)

and

A = ϕz − η = arg
[
ma +mbe

iη(n− 1)2
]
− η. (5.24)

The PMNS matrix is therefore the product of the TB and the Ublock matrices

UPMNS = UT
blockU

T
TB. (5.25)

sin θ13 =
1√
3
sν23 =

1√
6

(
1−

√
1

1 + t2

)1/2

tan θ12 =
1√
2
cν23 =

1√
2

(
1− 3 sin2 θ13

)1/2
tan θ23 =

∣∣∣ eiB√
2
cν23 +

1√
3
sν23

∣∣∣∣∣∣ eiB√
2
cν23 − 1√

3
sν23

∣∣∣ = |1 + ϵν23|
|1− ϵν23|

,

(5.26)
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with

ϵν23 ≡
√

2

3
tan θν23e

−iB =

√
2

3
t−1
[√

1 + t2 − 1
]
e−iB. (5.27)

The neutrino masses can be computed from mν
block and they are

Hν
block = mν

block m
ν†
block =

 0 0 0

0 |x|2 + |y|2 |x||y|+ |y|eiηz∗

0 |x||y|+ |y|e−iηz |y|2 + |z|2

 , (5.28)

and after diagonalisation we are left with

m2
2 +m2

3 = T ≡ |x|2 + 2|y|2 + |z|2,
m2

2m
2
3 = D ≡ |x|2|z|2 + |y|4 − 2|x||y|2|z| cosA,

(5.29)

and finally

m2
3 =

1

2
T +

1

2

√
T 2 − 4D,

m2
2 = D/m2

3,

m2
1 = 0,

(5.30)

and the CP phase is

δ = − arg
(
sign(t)eiη

(
4
(√

t2 + 1− 1
)
+
(
−2 + 3e2iB

)
t2
))

. (5.31)

Therefore we notice that by just specifying two parameters, the phase η and the ratio of

the masses r = ma/mb and choosing the n that eventually is determined by the choice

of flavour symmetry, LS predicts all the neutrino oscillation observables, that is why it is

called littlest seesaw.

Let us consider n = 3 and the correspondent flipped case, which was realised success-

fully via S4 symmetry in [19]. We can plot the constraints on the parameter space given

by the experimental ranges of θ13 and the mass ratio m2
2/m

2
3. In Figure 11 we notice that

imposing these two experimental constraint leave only two small allowed parameter regions

in the plane r − η. The allowed range we consider in r and η are given by the maximal

and minimal values of them in the intersection of the blue and orange bands. Once we

have the value of r and η, thanks to the high predictivity of the model we can derive all

the physical parameters and we can test them against the observed values. We do this

for different values of n in Table 3 to 5. We do not present the plot for the flipped case

since it is exactly the same. In fact it involves only the mass ration and θ13. This fact
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n=3n=2.5 n=1+√6

Figure 11: The parameters η and r are constrained to a good degree by only two experi-

mental observables, namely θ13 and the mass ratio m2
2/m

2
3. The 3σ allowed region for θ13

and the mass ratio are respectively the orange and blue band. The area of intersection is

the allowed parameter space for η and r. From the left to the right we present, n = 2.5, 3

and 1 +
√
6.

n = 3 η = 2.1± 0.3 η = 4.2± 0.3 Exp. range

θ12 [
◦] 34.3+0.4

−0.7 34.3+0.4
−0.7 31.27− 35.86

normal θ23 [
◦] 46+4

−5 46+4
−5 39.5− 52.0

normal δ [◦] 93+12
−13 255+12

−13 0− 45 & 105− 360

flipped θ23 [
◦] 44+4

−5 44+4
−5 39.5− 52.0

flipped δ [◦] 273+12
−13 75+12

−13 0− 45 & 105− 360

Table 3: 3σ ranges of the predicted parameters and experimental ranges for n = 3. With

r = 0.10± 0.02.

can be understood easily studying the parameter t for example in the case n = 1 +
√
6

and the flipped. In this case going from n to the flipped changes sign of t in Equation

(5.22). The prediction for the mass ratio, θ13, θ12 are independent of this sign while θ23
and δ are affected by it, we can see this in Equations (5.26) and (5.31). The predictions as

anticipated before are related by tan θ23 → cot θ23 and δ → δ + π.

In Table 3 we studied the n = 3 and its flipped case. We present the theoretical

prediction and its uncertainty coming from the allowed region in Figure 11 and the ex-

perimental bound. We notice that η = 2.1 is still allowed only in the lower part of the δ

parameter space for the normal case and similarly η = 4.2 for the flipped case. In Table 4

for n = 1 +
√
6, which can be realised with a modular symmetry [29], we notice that the

region with η = 2.40 is excluded thanks to the experimental bounds on δ while the one

with η = 3.88 is well within the 3σ range. For the flipped case instead η = 3.88 is close

the lower boundary of the 3σ region in δ. For n = 2.5 in Table 5 we notice that η = 4.7

is excluded for normal case while for the flipped both values are allowed in the 3σ range.

This case is also known in the literature as n = −1/2 using the convention in Equation
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n = 1 +
√
6 η = 2.40± 0.04 η = 3.88± 0.04 Exp. range

θ12 [
◦] 34.4+0.4

−0.6 34.4+0.4
−0.6 31.27− 35.86

normal θ23 [
◦] 41.7+0.19

−0.12 41.6+0.19
−0.12 39.5− 52.0

normal δ [◦] 75± 3 285± 3 0− 45 & 105− 360

flipped θ23 [
◦] 48.3+0.19

−0.12 48.4+0.19
−0.12 39.5− 52.0

flipped δ [◦] 255± 3 103± 3 0− 45 & 105− 360

Table 4: 3σ ranges of the predicted parameters and experimental ranges for n = 1 +
√
6.

With r = 0.072± 0.004.

(5.13). But it is more consistent to refer to it as n = 2.5 in our notation. And in fact we

notice that the LS that are still allowed by the data, n = 2.5 and n = 1 +
√
6 have n ∼ 3

which is the original CDS that worked.

n = 2.5 η = 1.5± 0.4 η = 4.7± 0.4 Exp. range w/o SK

θ12 [
◦] 35.0± 0.1 35.0± 0.1 31.27− 35.86

normal θ23 [
◦] 47.0+3

−2 46.5+4
−2 39.5− 52.0

normal δ [◦] 289± 11 76± 11 0− 45 & 105− 360

flipped θ23 [
◦] 43.0+3

−2 43.5+4
−2 39.5− 52.0

flipped δ [◦] 109± 11 256± 11 0− 45 & 105− 360

Table 5: 3σ ranges of the predicted parameters and experimental ranges for n = 2.5.

With r = 0.15± 0.02.

6 Conclusions

In the past decades many attempts have been made to explain the flavour structure of the

PMNS matrix by imposing symmetry on the leptonic Lagrangian. These symmetries imply

correlations among the parameters that are called sum rules. We have studied two types

of sum rules: solar and atmospheric sum rules. The former breaks the T generator of a

given symmetry group in the charged lepton sector in order to generate a non-zero reactor

angle θ13. This leads with prediction for cos δ that can be tested against the experimental

data. These in turn show a preference for GRa and GRb mixing while BM and GRc are

constrained to live in a very small window of the parameter space.

The atmospheric sum rules instead come from either the breaking of both S and U in

the neutrino sector while preserving SU or by breaking S and preserving U . In this case

we have two relations among the parameters that can be tested. We noticed that only

TM1, TM2 and GRa2 are still allowed by the neutrino oscillation data with a preference

for GRa2 and with TM2 very close to be excluded.

We also studied LS models that follow the constrained sequential dominance idea with

n allowed to be real. These models are very predictive with only two free real parameters
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fixing all the neutrino oscillation observables. It is the most economical framework that

explains the neutrino masses that is still compatible with data. Despite the great predic-

tivity and the very small parameter space in the r - η plane allowed by the data all the LS

examples we considered are still allowed in one part of the parameter space.

Finally, we note that the recent global fits to experimental data have provided sig-

nificantly improved constraints on all of the above models and with future improvement

in the neutrino oscillation data we will be able to restrict the pool of viable models still

further. In particular advancements in the measurement of the leptonic CP violating Dirac

phase δ can strongly constrain more models in the near future. This is particularly true

in LS models where already the experimental bounds on the CP phase is removing the

degeneracy in the r - η parameter space and given the very precise theoretical prediction

can strongly constrain these LS models. Future precision neutrino experiments are of great

importance to continue to narrow down the possible PMNS flavour models and lead to a

deeper understanding of this part of the flavour puzzle of the SM.
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