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UNIVERSITY OF SOUTHAMPTON 

Abstract 

FACULTY OF SOCIAL SCIENCES
 
SOUTHAMPTON BUSINESS SCHOOL
 

Doctor of Philosophy 

by Ahmad Maaitah 

This thesis sheds new light on the exogenous and endogenous determinants of volatility 
in Bitcoin prices across many major countries around the globe. Different empirical 
strategies are proposed to investigate and understand the complex behaviour of volatility, 
its movements and significant persistence. Chapter Two identifies and characterises the 
‘givers and receivers’ of volatility in cross-market Bitcoin prices and discusses interna­
tional diversification strategies in this context. Using both time and frequency domain 
mechanisms, we provide estimates of outward and inward spillover effects. These have 
implications for (weak-form) cross-market inefficiency. In our setting, we treat a high 
degree of spillover as an indicator of weak-form inefficiency, because investors can utilise 
information on the dynamic spillover effects to produce best long-run predictions of 
the market. Our results show that Bitcoin prices depict strong (dynamic) spillover in 
volatility, especially during episodes of high uncertainty. The Bitcoin-USD exchange rate 
possesses net predictive power, mirrored by the tendency of the Bitcoin-EURO market as 
a net receiver relative to other markets. Robustness exercise generally supports our claim. 
The overall implication is that during episodes of high uncertainty, Bitcoin markets depict 
greater dynamic inefficiency, instrumenting the role of asymmetric information in the 
path-dependence and predictive power of Bitcoin prices in an interdependent market. 

Chapter Three investigates the endogenous growth mechanisms of Bitcoin prices aligned 
with empirical tests designed to show whether persistence is a product of such a model. 
However, characterising learning in the Bitcoin market is exceedingly complex, as it is 
frequently affected by news and/or economic/financial dynamics. Sudden arrival of a 
shock (for instance, Brexit) can break the cycle of endogenous persistence generating 
mechanisms. We propose a variant of ARFIMA Markov Switching, with endogenous 
switch governing the internal dynamics of Bitcoin prices or volatility system. This MS­
ARFIMA (endogenous) is synchronised with different mechanisms and shows the credible 
role of policy on containing volatility persistence. Our model and empirical strategies are 
new, and our results show the significance of true memory under episodes of structural 
breaks. 

http://www.soton.ac.uk
https://www.southampton.ac.uk/about/departments/faculties/faculty-business-law.page
https://www.southampton.ac.uk/business-school/index.page
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Chapter Four studies Bitcoin prices/volatility during cyber attacks and identifies how 
they can be seriously manipulated in some markets. In the meantime, exchange rate 
differentials across markets offer investors the opportunity to enhance portfolio returns. 
Under these scenarios, it is expected that price volatility on one particular Bitcoin-to­
currency exchange market (e.g. Bitcoin-USD) can flow to other markets and can also be 
acquired from others. Any quantitative information on the centrality or relative isolation 
of some Bitcoin-to-currency markets can actually help investors to better anticipate their 
complex dynamic behaviour and exploit potential for forecast-able gain. These premises 
are rigorously tested in the current paper, using daily price data on six major Bitcoin­
to-currency exchange rates. We show the net predictive power and the net receiver of 
volatility during different cyber attacks. Eventually, such tendencies could help investors 
design trending strategies to systematically beat the market, hedging and diversifying 
their investment to maximise profit with the lowest associated risk, and speculating on 
the behaviour of the market in future attacks. 
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1.1 Research context 

During the last century, the move towards a digital world began to increase rapidly, 
particularly in the financial industry. The arrival of the global financial crisis in 2008 was 
the straw that broke the camel’s back and the starting spark of a new financial era. The 
first state-of-the-art, well-developed digital currency was introduced on 31 Oct 2008 by 
the pseudonymous "Satoshi Nakamoto" to tackle all the restrictions and disadvantages 
of fiat currencies, and facilitate movement and exchange around the world at very low 
cost, and highly secure system (Nakamoto, 2008). Indeed, trading and transferring of 
cryptocurrencies (Bitcoin) does not need a central authority or financial institution to 
verify and transfer the transaction among users 1,2 . 

"You will not find a solution to political problems in cryptography. Yes, but we can win 
a major battle in the arms race and gain a new territory of freedom for several years. 
Governments are good at cutting off the heads of a centrally controlled networks like 
Napster, but pure P2P networks like Gnutella and Tor seem to be holding their own." 

SatoshiNakamoto 3 . 

The peer-to-peer electronic cash system is completely decentralised, which enables users 
to totally control the ownership of currency and prevent double spending (reversal) 
transactions. Thus, on the one hand, the Bitcoin has bypassed the financial turmoil 
of 2008 by decentralising the system and becoming an unrestricted and independent 
digital currency, unlike others. On the other hand, the novelty of Bitcoin and block-chain 
technology has created a status of uncertainty and ambiguity around the globe in the 
absence of strict monetary and financial regulations. 

After the white paper of Bitcoin was introduced at the end of 2008, Satoshi Nakamoto 
released the first block (the Genesis block) on Jan 3, 2009, as the first transaction in 
the history of Bitcoin, under the following title, "The Times 03/Jan/2009 Chancellor 
on brink of second bailout for banks". To date, that is until midnight, Feb 12, 2020, 
the number of blocks that have been generated over the last 11 years is 616,996 blocks 
with market capitalisation exceeding $ 185 billion and circulating supply around BTC 18 
million. However, the circulating supply should approach BTC 21 million by the end of 
2140 4,5,6,7 . 

In spite of the market capitalisation of the cryptocurrencies market (more than 2000 
digital currencies) exceeding $ 290 billion, the Bitcoin market still the most important one; 

1To review the history of digital currency before 2008, see (Chuen, 2015) 
21 Satoshi = 0.00000001 BTC 
3Metzdowd.com 
4Thetimes.co.uk 
5Btc.com 
6Coinmarketcap (Feb 11, 2020) 
7Mining the rest of Bitcoins will be progressively slower because the block reward is halving every 
210,000 blocks (approximately each four years) and reduce new bitcoin supply by 50 percent. 

https://www.metzdowd.com/pipermail/cryptography/2008-November/014823.html
https://www.thetimes.co.uk/articlechancellor-alistair-darling-on-brink-of-second-bailout-for-banks-n9l382mn62h
https://btc.com/block?date=2020-0211
https://coinmarketcap.com/currencies/bitcoin/


3 Chapter 1 Introduction 

hence its market share is around 63%. Therefore, huge contributions from this market 
are participating directly and indirectly through different channels in the global financial 
markets. Consequently, investigating and studying the Bitcoin markets furnishes us 
with a deeper understanding of market behaviour and connectedness with other markets, 
providing insights for investors and policy makers. Broadly, we can divide the research into 
three main areas, allowing us to scrutinise the Bitcoin market critically and systematically, 
and providing valuable information to interested agents by: firstly, studying the static and 
dynamics of Bitcoin prices in both the short and long-run domains; secondly, studying 
the endogenous dynamics of Bitcoin prices and assessing the volatility persistence in such 
a system; thirdly, studying the technological aspects of Bitcoin, such as cyber securities, 
and identifying their major impact on the Bitcoin markets. 

The issue of spillover effects is very important nowadays as globalisation strengthens 
the connectedness between the markets around the globe. Thus, volatility spillover is 
more profound when market interdependence is high, especially during financial crisis and 
episodes of economy-wide uncertainty. Information on a within-market transmission of 
shocks possesses high policy value because viable policy interventions can limit the possible 
proliferation of shocks beyond certain acceptable bounds. Some studies such as Corbet et 
al. (2018) shed light on the spillover effects of volatility from a ‘cryptocurrency market’ 
to ‘other asset markets’ (such as stock and gold), Cheah et al. (2018) demonstrating the 
importance of cross-market dynamic interdependence of Bitcoin prices by estimating a 
system-wide long-memory. 

However, memory is logically imperishable during the lifespan of a boundedly rational 
agent. The only characteristic one can note about the existence of memory is whether it 
is small or big, and concerns the long or short ‘trail’ of associations it inherently defines 
over a period of time - just as Louis L’Amour (an American author) has famously quoted. 
In the case of cryptocurrency, a similar strand of research has begun to emerge (see for 
instance, (Bariviera, 2017)) barring some exceptions (viz. Cheah et al., 2018) where some 
directions of the source of long-memory are discussed. 

From a technical point of view, cyber criminality in the cryptocurrency market is a 
very serious matter, and extensive efforts from legislators and decision-makers are being 
made to create an efficient environment with flexible boundaries to restrict or frustrate 
manipulation across cryptocurrency markets(Böhme, Christin, Edelman, & Moore, 2015; 
Dwyer, 2015; Gandal, Hamrick, Moore, & Oberman, 2018). The impact of cyber attacks 
on the return of cryptocurrencies has caused the system to be highly volatile, and the 
increasing number of attacks appearing to have a major impact on the volatility market. 



4 Chapter 1 Introduction 

1.2 Research aims 

The aim of this thesis is to study and investigate the cross-market dynamics of Bitcoin 
prices by employing a spillover effects index, long-memory measures and network topology 
from an empirical perspective. The thesis sheds light on a new alternative investment, 
proposing credible empirical strategies to help investors, policy makers and researchers to 
make crucial decisions and build coherent future investment plans. 

The aims of each chapter are as follows: 

Chapter Two provides a comprehensive study of the cross-market spillovers of volatility 
in Bitcoin prices and the predictive power each market possesses relative to others. 
Essentially, the chapter sheds light on the net receivers and prime givers of volatility 
across markets to help investors design trending strategies to systematically beat the 
market. 

Chapter Three aims to detect the volatility persistence in the Bitcoin cross-market and 
identify the true long memory within the market, so as to have a deeper understanding 
of the endogenous dynamics in the system, and how the market frequently reacts to news 
and economic events. Indeed, the presence of true long memory could enable investors to 
capture speculative profits via market timing, and policy makers could introduce circuit 
breakers to stop trading in Bitcoin cross-markets when the market switches abruptly to a 
high-volatility regime. 

The aim of Chapter Four is to study the reaction of Bitcoin prices during cyber attack 
episodes, and how volatility can seriously flow across markets. Indeed, quantitative 
information on the centrality or relative isolation of some Bitcoin-to-currency markets 
could actually help investors to better anticipate their complex dynamic behaviour and 
exploit potential of forecastable gains. 
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1.3 Research objectives 

The research objectives for each chapter of the thesis are as follows: 

The research objectives in Chapter Two are: 

•	 To empirically quantify the volatility spillover effects in cross-market Bitcoin prices 
through generalised variance decomposition process. 

•	 To identify the net receiver and prime giver of volatility across Bitcoin markets and 
manage the shocks within a dynamic/static system. 

•	 To examine the co-movement of uncertainty index and total directional volatility 
spillover across Bitcoin markets. 

•	 To detect the volatility spillover in the short-run and long-run horizon. 

The research objectives in Chapter Three are: 

•	 To detect the true long memory properties within Bitcoin markets and distinguish 
between structural breaks and long-range dependence. 

•	 To empirically estimate an endogenous switch led ARFIMA model, which allows 
’memory’ co-moves with ’switches’ endogenously to detect the true persistence 
pattern across markets. 

•	 To quantify and detect the speed of adjustment behaviour of long-memory proprieties 
within the markets. 

The research objectives in Chapter Four are: 

•	 To empirically examine the impact of cyber attacks on the Bitcoin financial system. 

•	 To design weighted directed networks of Bitcoin prices volatilities during episodes 
of hacking events. 

•	 To detect the connectedness between Bitcoin markets statistically and dynamically 
under a series of cyber attacks. 
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1.4 General Literature Review and Contributions
 

Cryptocurrency literature has been subject to an astounding amount of research over the 
last five years. The explosion of work focuses primarily on several aspects, such as the 
connectedness among cryptocurrencies and other assets in a financial market, volatility 
persistence within the market, and the risk generated by cybercrime and hacking events. 

Several studies have attempted to study the spillover phenomenon in cryptocurrency 
markets. Kurka (2017) investigated the interconnectedness between the cryptocurrency 
market and a bundle of traditional assets. Different spillover index approaches were 
applied to a group of financial assets, including Bitcoin, to detect the linkages between 
them. Interestingly, they found a very low level of linkage between Bitcoin and other assets, 
except for gold, which received several shocks from Bitcoin during that period. Corbet et 
al. (2018) employed a generalised variance decomposition method in time and frequency 
domains to investigate the connectedness amongst several financial assets, and three 
major cryptocurrencies. They found high levels of linkage among the cryptocurrencies, 
and very low connectedness between the cryptocurrencies and other financial assets. Their 
analysis suggested that the cryptocurrencies market contains its own risk which is hard 
to hedge against. 

Bouri et al. (2018) studied the level of linkage between particular cryptocurrencies and four 
major financial assets8 in both bear and bull market conditions through VAR-asymmetric 
GARCH method. The model suggested that Bitcoin and the commodities markets are 
not completely isolated from one another. In addition, the results clearly showed that 
Bitcoin was receiving shocks more than transmitting them to other markets. 

Consequently, Chapter Two contributes to the literature in the following two significant 
ways. 

•	 Previous studies have investigated the spillover effects between a cryptocurrency 
market and a conventional asset market. Hence a major contribution of the second 
chapter is to quantify (dynamic) spillover effects in cross-market Bitcoin prices, and 
to shed light on the net receiver and prime giver of volatility across markets for a 
single cryptocurrency (Bitcoin). 

•	 As a further contribution, we employ Parkinson’s (1980) high-low volatility measure, 
as well as Garman-Klass type of volatility estimates to capture dynamic movements 
between high and low Bitcoin prices. 

8Equities, bonds, currencies and commodities 
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A wide range of empirical research also focuses on long-range persistence, cointegration 
and structural breaks to explain the complex behaviour and non-linear dynamics of 
Bitcoin prices (Alvarez-Ramirez et al., 2018; Caporale, Gil-Alana, & Plastun, 2018; Cheah 
et al., 2018). 

Neglecting the time series properties during the analysis process could generate misleading 
information. Several studies have analysed the time varying behaviour of long-range 
dependence through different tests, such as Hurst exponent and detrended fluctuation 
analysis DF A and exact local whittle estimation with rolling windows (Alvarez-Ramirez 
et al., 2018; Bariviera, 2017; Bariviera, Basgall, Hasperué, & Naiouf, 2017; Caporale et 
al., 2018; Cheah et al., 2018). Statistical properties may be subject to sudden changes 
over time, especially in the Bitcoin markets, which may leave some distortion shocks 
permanency; hence, structural breaks testing is crucial to validate the long-range stability 
process (Al-Yahyaee et al., 2018; Bouri et al., 2019; Charfeddine & Maouchi, 2019; Mensi 
et al., 2018, 2019). A long debate in the literature suggests that the presence of structural 
breaks in a time series could appear as high long-range persistence; thus, level shifts and 
long memory are easily confused, as Diebold and Inoue (2001) suggested. 

All the aforementioned studies ignore the fact that diagnosing structural breaks and 
long memory individually does not clarify the problem, and provides unstable results. 
On the contrary, Diebold and Inoue (2001) suggested that long-range dependence and 
turning points should be modelled in a conquer unified framework, allowing the system to 
distinguish between the latter phenomena simultaneously and endogenously. The focus on 
a cross-market rather than a single market has significance in our context: by employing 
ARF IMA Markov Switching with endogenous switches governing the internal dynamics 
of Bitcoin prices or volatility system, we will be able to distinguish between the true and 
spurious long memory with higher accuracy. Accordingly, Chapter Three contributes to 
the nascent literature on the source and implications of ‘memory’ in Bitcoin markets in 
the following three significant ways: 

•	 The chapter puts forward an identification strategy to demonstrate the source and 
implications of long memory in Bitcoin markets. It also proposes a demand-driven 
long memory channel for Bitcoin, showing that there are waves of Buyer initiated 
transactions (given a fixed supply of Bitcoin) which follow a Beta distribution with 
memory, by following a linear algorithm of aggregation and power distribution. 

•	 We model the (non-)existence of long memory to an endogenous market system 
mechanism which might give rise to persistent shock, with or without a mean 
reversion. We discuss this in the light of an endogenous switch in the memory and 
mean of the Bitcoin price process. 

•	 Using daily Bitcoin data for five different markets, we study the nature of persistence 
in Bitcoin volatility, while considering an endogenous switch in volatility. From 
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this, we shed light on the nature of the true long memory, and quantify to what 
extent true ’memory’ governs the internal dynamics of the system. 

Regulations, information systems and cyber criminality are very important corners in 
cryptocurrency markets, allowing legislators and decision-makers to design appropriate 
regulations and create an efficient environment with flexible boundaries to restrict the 
frustration and manipulation across these markets (Böhme et al., 2015; Dwyer, 2015; 
Gandal et al., 2018). 

Abhishta et al. (2019) found that DDoS attacks have a direct negative impact on Bitcoin 
prices, and induce the network to be more volatile and vulnerable over time. Moreover, 
cyber attacks on Bitcoin (e.g. DDoS, code bugs or user errors) and the common response 
from users (e.g. code revision, computer security measures or temporary suspension) could 
diminish the value of Bitcoin and leave a serious distortion in the network. Caporale et al. 
(2019) investigated the impact of cyber attacks on the returns of four cryptocurrencies (e.g. 
Bitcoin, Stellar, Litecoin and Ethernam). The Markov switching analysis and cumulative 
measures suggested that cyber attacks induce the system to be highly volatile, the number 
of cyber attacks being positively correlated with the level of volatility. (Corbet et al., 2020) 
studied the relationship between cybercriminal events and cross-cryptocurrency markets. 
Results show very high episodes of volatility and broad co-movement in cryptocurrency 
markets when hijackers attempted to penetrate the network. 

Consequently, Chapter Four contributes to the literature in the following two significant 
ways. 

•	 We study the network topology of Bitcoin prices volatilities by designing several 
weighted directed networks during 19 major cyber attacks. Although economic 
and political events can generate volatilities within financial markets, cyber attacks 
could have a more significant impact on the cryptocurrencies market, being fully 
electronic and vulnerable to cyber attack. Each cryptocurrency has a unique and 
distinct infrastructure (network); thus focusing on the Bitcoin market rather than 
cryptocurrencies markets allows us to investigate the network more thoroughly and 
efficiently. 

•	 We examine the impact of 19 cyber attacks on Bitcoin markets through variance 
decomposition method. To the best of our knowledge, there is no available financial 
theoretical model to justify conditioning the predictive power of an asset market 
on volatility in a cryptocurrency market. In this sense, a major contribution of 
the current chapter is to measure and identify the network connectedness between 
Bitcoin markets under several cyber attacks. In so doing, we aim to shed light on 
six Bitcoin markets under different security breaches to identify their magnitude 
and direction statically, dynamically and graphically. 
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1.5 A schematic representation of the thesis 

Chapter One gives a general introduction and background on the Bitcoin markets, 
followed by the research aims and objectives which systematically cover the purpose of 
this thesis. 

Chapter Two sheds light on the ‘givers and receivers’ of volatility in cross-market Bitcoin 
prices and discusses international diversification strategies in this context. In this chapter, 
the spillover index method is used to analyse and identify the magnitude and direction of 
volatility movement under a time domain and frequency domain process. A battery of 
robustness checks are applied to validate the conducted results. 

Chapter Three focuses on the endogenous dynamics in cross-market Bitcoin prices. 
The chapter introduce a first-hand strategy to detect and identify long memory properties 
while quantifying the structural breaks simultaneously. An endogenous Markov switching 
ARFIMA mechanism with Shimotsu long memory test and Bai & Perron estimation are 
used to create an empirical strategy for investors and policy makers to provide a credible 
role of policy on containing volatility persistence across Bitcoin markets. 

Chapter Four sheds light on the technological aspect of Bitcoin, and shows how cyber 
attacks can severely affect the network and leave a lengthy distorted footprint. Generalised 
variance decomposition approach is applied to confirm the movement of volatility across 
markets, then network theory with the help of rolling windows to identify the depth of 
impact from different types of cyber attacks. 

Chapter Five provides a detailed conclusion, and presents the main implications of the 
thesis. 





Chapter 2 

Giver and the Receiver: 
Understanding Spillover Effects and 
Predictive Power in Cross-market 
Bitcoin Prices 

Abstract 

We identify and characterise the ‘givers and the receivers’ of volatility in cross-market 
Bitcoin prices and discuss international diversification strategies in this context. Using 
both time and frequency domain mechanisms, we provide estimates of outward and inward 
spillover effects. These have implications for (weak-form) cross-market inefficiency. In 
our setting, we treat high-degree of spillover as an indicator of weak-form inefficiency 
because investors can utilise information on the dynamic spillover effects to produce 
a best long-run prediction of the market. Our results show that Bitcoin prices depict 
strong (dynamic) spillover in volatility, especially during episodes of high uncertainty. 
The Bitcoin-USD exchange rate possesses net predictive power, mirrored by the tendency 
of the Bitcoin-EURO market as a net receiver relative to other markets. Robustness 
exercise generally supports our claim. The overall implication is that during episodes of 
high uncertainty, Bitcoin markets depict greater dynamic inefficiency, instrumenting the 
role of asymmetric information in the path-dependence and predictive power of Bitcoin 
prices in an interdependent market. 

Keywords: Cross-market Bitcoin prices; Return and volatility spillovers; 
Uncertainty; Inefficiency; Prediction 
JEL Classification: C1; E4; D5 
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2.1 Introduction 

Since it was actively traded in 2013, Bitcoin – the biggest and most active cryptocurrency 
with a market capitalization over $1101 billion – has struck investors’ expectations of 
a quick and sizeable return, like none other. In the absence of strict monetary and 
financial regulations, cryptocurrency investors seem to be fully exploiting this opportunity 
and are quickly moving from a state of despondency (due to recurrent losses from their 
investments in regulated financial markets) to one of hope (because, Bitcoin prices are 
fundamentally driven by the ‘feeling and the memory’ of investors at a point of time.2 To 
investigate the nature of such type of investment decisions and help governments design 
adequate regulations for limiting cross-market movement of shocks, a remarkable growth 
of research has sprung lately. 

A helicopter survey3 reveals that the literature has focused on two main aspects of 
cryptocurrency price movements. First, conceptual designs aiming to depict potential 
weaknesses of this market show how the latter can subject investors to insurmountable 
unsystematic risks (see for instance, Cheah & Fry, 2015; Cheah et al., 2018; Gandal et 
al., 2018). Second, a plethora of empirical research has systematically presented state-of­
the-art estimation techniques to identify, among others, informational inefficiency (viz. 
Urquhart, 2016), long-range persistence behavior and cointegration (viz. Alvarez-Ramirez 
et al., 2018; Caporale et al., 2018; Cheah et al., 2018), volatility spillovers and dynamic 
interactions with other financial assets (viz. Corbet et al., 2018). Thus far, the extant 
research has laregely focused on a cross-section of cryptocurrencies and sparsely on a 
cross-market dynamics of a single cryptocurrency (except for the leading work of Cheah et 
al., 2018). This chapter aims to contribute to this nascent literature by studying volatility 
spillover across Bitcoin markets, exchanged in various currencies. 

The issue of cross-market volatility has been studied in a macroeconomic context (for 
instance, Diebold & Yilmaz, 2012), where it is shown that volatility spillover is more 
profound when market interdependence is high, especially during financial crisis and 
episodes of economy-wide uncertainty (Cheah et al., 2018). Information on a within-market 
transmission of shocks possesses high policy value because viable policy interventions 
can limit possible proliferation of shocks beyond certain acceptable bounds. Moreover, 
managing shocks within a system is relatively easier as one can exploit the system dynamic 
features of shocks so as to monitor their movements and generate better predictive power 
for an asset. Although Bitcoin is traded electronically, like a huge number of assets 

1coinmarketcap.com (Oct 2018) 
2See Cheah et al. (2018) for details. 
3Theoretical and empirical research in cryptocurrencies can be broadly divided into three important 

interdependent areas; viz., regulations and information system research, financial market and monetary 
theoretical formulation of cryptocurrency demand/supply, and development (and applications) of state-of­
the-art econometric and/or statistical mechanics to understand (predictive patterns of) price movements. 
To minimise space and repetition of a succinct literature review, interested readers are encouraged to 
refer to Corbet et al. (2019) for an excellent survey. 

http:1coinmarketcap.com
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globally, cross-economy differentials in the trading of Bitcoin reflects not only the role of 
macroeconomic and financial market regulations, but also represent investors’ sentiment 
concerning an investment in a risky asset. While former studies (such as Corbet et al. 
(2018)) shed light on spillover effects of volatility from a ‘cryptocurrency market’ to ‘other 
asset markets’ (such as stock and gold), Cheah et al. (2018) demonstrated the importance 
of cross-market dynamic interdependence of Bitcoin prices by estimating a system-wide 
long-memory. The focus on a cross-market rather than a single market cryptocurrency 
market in the latter study holds significance in our context: by modelling directional 
spillover effects one creates a stock of information for investors who decide on an arbitrage 
value of Bitcoin traded in various markets. The investors exploit information on the 
predictive power of each market, such as the net receiver and net giver of volatility. Such 
a study is helpful in shaping robust investment strategy of a single cryptocurrency traded 
in various markets. 

Broadly speaking, the current chapter’s main aim is to improve our limited understanding 
of the cross-market spillovers of volatility in Bitcoin prices and the predictive power each 
market possesses relative to others. Since Gandal et al. (2018) showed that Bitcoin prices 
can be seriously manipulated, a thorough understanding of volatility movements across 
Bitcoin markets is important to gauge net predictive power of each market. Accordingly, 
this chapter contributes to the literature in two significant ways. First, differing from the 
convention, we study spillover effects of return and volatility across markets for a single 
cryptocurrency. Although study of spillover effects between a cryptocurrency market 
and a conventional asset market offers important insights on if and whether shocks from 
cryptocurrency market impact volatility in an asset market, it lacks in a directional 
predictive power. This is because these two markets are distinct with respect to the 
modes of operandi. Moreover, to the best of our knowledge there is no available financial 
theoretic model to justify conditioning predictive power of an asset market on the volatility 
in a cryptocurrency market. In this light, a major contribution of the current chapter is 
to quantify (dynamic) spillover effects in cross-market Bitcoin prices. By doing so, we 
aim to shed light on the net receiver and prime giver of volatility across markets. As a 
further contribution, we employ Parkinson’s (1980) high-low volatility measure as well as 
Garman-Klass type of volatility estimates to capture dynamic movements between high 
and low Bitcoin. Using these volatility measure (details of which will be presented in 
Section 2), we show that the Bitcoin-USD exchange rate possesses net predictive power 
and that the Bitcoin-EURO market appears to be a net receiver of volatility relative to 
other markets. Eventually, such tendencies could help investors design trending strategies 
to systematically beat the market. 

To investigate further, the rest of the chapter is planned as follows.Section 2 review the 
literature. Section 3 discusses data and summary statistics. section 4 discusses estimation 
method. Section 5 presents empirical results and robustness analyses. Section 6 concludes 
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and presents the main implications of our research. Section 7 displays all the necessary 
estimations in appendix A. 

2.2 Literature review 

Extensive research has been done on volatility spillover, because of the importance of 
volatility connectedness across global financial markets. Portfolio managers, traders, 
investors, policy makers and many others are interested in analysing the spillover of 
volatility across financial assets and markets. The current body of literature has identified 
significant contributions from the indirect effect of volatility on financial securities and 
Bitcoin. This section introduces the theoretical framework of volatility spillover across 
foreign exchange markets. Firstly, definitions and the roots of volatility connectedness will 
be introduced. Secondly, the theories most related to financial contagion literature will 
be revised. Thirdly, focusing on one stream of the literature, the exchange rate volatility 
spillover domain will be reviewed from 1990 until the present. Finally, the most adopted 
methodologies in the latter stream of the literature will be discussed. 

2.2.1 The volatility Spillover definition 

The rapid technological development in global financial markets has increased the inte­
gration and connectedness amongst economies around the world. The financial linkages 
have induced scholars and practitioners to investigate the effect of a particular event (e.g. 
economic, political, catastrophic) on a group of economies around the world and how 
the shocks generated flow across these economies. Different methodologies have been 
introduced to examine how a particular shock in a certain market could transmit the risk 
to another market or group of markets. 

Prior to the definition of volatility spillover, the term ‘financial contagion’, was the first 
terminology appearing in the literature. The word ‘contagion’ is derived from medicine 
and describes how a particular contagious disease can spread across a patient’s surrounding 
environment. Similarly, financial contagion can be defined as a series of shocks which 
affect a range of economies at varying levels, due to the extent of their connectedness 
(Claessens & Forbes, 2013)4. However, among the different types of volatility, this study 
adopts unconditional volatility (Parkinson 1980). Volatility is a statistical measure used 
to study the behaviour of economic variables over time (Enders, 2008). In addition, it 
is considered to be an unpredictable parameter in the econometric system. Mixing all 
the latter terms, volatility spillover effects can be defined as a measurement tool for a 
particular shock(s) generated in a certain financial asset (market) with full regard to the 

4This chapter uses the broader definition of contagion, see (Claessens & Forbes, 2013) for more 
definitions (e.g. the shift-contagion, etc) 
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linkages between the affected financial asset (market) and other assets (markets) across 
the world (Bollerslev & Hodrick, 2017; Engle & Susmel, 1993). 

2.2.2 Volatility Spillover theories 

The above definitions and explanation provide a clear concept of volatility linkage across 
financial markets. This section will revise the two main, well-known grounded theories in 
the volatility spillover effect literature: 

2.2.2.1 Heat waves and Meteor showers 

The first spark of financial contagion began after a long debate in the literature of efficient 
market hypotheses (EMH). The essence of this theory discussed how financial markets 
across the world react to the arrival of new information at different levels 5. Based on 
the EMH concept, a new stream of literature started to focus on the factors that could 
transmit the risk from market to market, and on how to identify the direction of risk flow 
among economies. 

Consequently, the seminal work by (Ito & Roley, 1987) was the first attempt to explore 
the idea of volatility spillover effect across financial markets. Their research question 
was: "News from the U. S. and Japan: which moves the Yen/Dollar exchange rate?". 
For the sake of analysis, the series of yen/dollar exchange rates from 1980 to 1985 was 
divided into four segments to scrutinize the behaviour of the series in each segment. Their 
analysis found a significant linkage in the fluctuations of the Japanese and U.S. markets. 

On the same ground, a seminal study by (Engle et al., 1990) introduced two distinguishable 
hypotheses: "Heat Waves & Meteor Showers ". They investigated the volatility clustering 
of the yen/dollar series across the U.S. and Japanese markets. The results indicated 
that the null hypothesis of Heat Waves was significantly rejected, while the hypothesis 
relating to Meteor Showers was not rejected, which implies that there was significant 
evidence of the transmission of volatility from one market to another. To understand the 
general conceptual framework of both hypotheses, a small example has been provided 
by (Engle et al., 1990)’s paper. Firstly, the Heat Waves, or own spillover hypothesis 
can be explained by imagining how a hot day in London might keep the weather hot 
there in the following few days, but this does not necessarily make it hot in Dublin. In 
other words, if a particular shock increases volatility in a specific economy, this does not 
cause the volatility to increase in another related economy. Secondly, and in contrast, 
Meteor Shower, or cross spillover, implies that if meteors start falling down to Earth, 
London, Dublin and other cities will certainly experience some effects. Econometrically, 

5(Fama, 1970, 1976, 1991) 
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if a particular shock increases the volatility of a specific market, the same shock might 
also increase the volatility of other markets 6 . 

The Heat Waves and Meteor Shower hypothesis is a controversial issue in the body of 
literature. The location-specific auto-correlation phenomenon, or Heat Wave hypothesis, 
has been found to exist in almost all financial markets. The own-spillover effect might be 
generated by a local political or economic event and, interestingly, the shock will affect 
only the local economy, without any transmission to other economies. An interesting 
debate about the two hypotheses started after (Baillie & Bollerslev, 1991) proved that 
own-specific volatility is more reliable and significant than cross market volatility. For 
example, in 2006, Hassan et al. investigated the volatility linkages among Asian developing 
and developed financial markets between 1991 and 2000. Surprisingly, the null hypothesis, 
"Heat Waves", failed to be rejected between 1991 and 1993 in the developed markets 
of the Philippines, Korea and Indonesia. The latter results implied that a weak linkage 
existed between the developed and developing markets in Asia, and that was due to 
the adopted contradictory policies between both markets (Andersen & Bollerslev, 1997; 
Dacorogna et al., 1993; Hogan Jr & Melvin, 1994, for more details see). To illustrate the 
seasonality in FX volatility, (Cai et al., 2008; Engle & Susmel, 1993; Fleming & Lopez, 
1999; Hassan et al., 2006; Melvin & Melvin, 2003; Melvin & Yin, 2000). 

By contrast, a remarkable and growing body of literature has investigated the cross-
spillover volatility or Meteor Shower hypothesis. Market interdependence is the funda­
mental key here, whereby a particular set of financial markets can be dominated by a 
specific shock, such as a monetary policy, or a political decision. By revising the volatility 
spillover literature it appears that the Meteor Shower hypothesis has conquered the 
opposite hypothesis, by introducing more empirical methodologies to prove the existence 
of cross-spillover volatility across financial markets (Engle et al., 1990; Fleming & Lopez, 
1999; Hamao et al., 1991; Ito et al., 1992; King & Wadhwani, 1990; Lahaye & Neely, 
2018; Reyes, 2001). For example, (Glosten et al., 1993; Nelson & Foster, 1994; Reyes, 
2001) investigated both hypotheses with respect to the asymmetric volatility spillover in 
financial markets. Their results suggested that asymmetric models could generate the best 
forecast of volatility (Engle & Susmel, 1993) Moreover,(Lahaye & Neely, 2018) claimed 
that the cross-spillover hypothesis is more effective than the own-spillover hypothesis. 

However, a significant stream of the literature is consistent with the seminal work of 
(Engle et al., 1990). The importance of this has grown gradually because of the remarkable 
connectedness among global financial markets around the world. The following subsection 
reviews the major empirical research that has investigated the volatility spillover effect. 

6For more details see (Engle et al., 1990) 
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2.2.3 Empirical review 

Volatility spillover literature has expanded gradually to cover different areas, as volatility 
spillover varies from country to country, market to market, and from financial asset to 
financial asset. Consequently, this subsection focuses chronologically on the exchange 
rate volatility spillover literature and endeavours to discuss the most important papers in 
this area. 

Engle et al. (1990) investigated the volatility clustering of two exchange rates to defend 
their claim about financial markets linkages. Consequently, they applied a multivariate 
general autoregressive conditional heteroscedasticity (MGARCH) model with regard to 
(Bollerslev, 1986; Ito & Roley, 1987)’s empirical methodologies. They investigated whether 
the yen/dollar exchange rate between 1985 and 1986 actually transmitted any shocks 
(information) among the Tokyo and New York exchange markets. The null hypothesis 
Meteor Shower failed to be rejected, at a 5% significance level. Failing to reject the null 
hypothesis clarified that the flow of information between both international markets was 
significant and did exist. Econometrically, they tried to trace any possible shock in the 
system by dividing the volatility component into many different segments. The results of 
the robustness test validated the strength of their analysis and outcomes. Following this 
seminal work, many researchers started to scrutinize volatility spillover across financial 
markets. 

A quick response to (Engle et al., 1990)’s research came from (Baillie & Bollerslev, 1991), 
who built a seasonal GARCH model to detect the volatility over time in each series 
and ran an LM test to capture the leptokurtosis phenomenon amongst the data set. 
The Japanese yen, the German deutschmark, the Swiss franc and the British pound 
were regressed against the U.S. dollar between Jan 1986 and July 1986 to find any 
cross-spillover volatility. Their results confirmed that the meteor shower phenomenon 
significantly existed. By contrast, interestingly, the seasonal ARCH system suggested 
some significant own-spillover information (local shocks) across the data. Additionally, 
running the robust test did not capture enough evidence in the system to support the 
cross-spillover hypothesis across the exchange rates. Also, in 1993, Baillie, Bollerslev, and 
Redfearn analysed a major group of global exchange rates against the U.S. dollar. They 
chose a distinguishable event, called the “Bear Squeeze”, which occurred in the 1920s, to 
find any evidence of volatility transmission among six currencies. Indeed, they found 
that the Belgian and French exchange rates were transmitting volatility over the Swiss 
and Italian exchange rates. Their robustness check suggested a similar conclusion as the 
previous research. In Asia, Alba (1999) examined the period following the East Asian 
crisis (1990) to find some evidence of the volatility that flowed among the Asian markets. 
The applied model7 suggested that the volatility spillover effect across the six exchange 
rates was only statistically significant for two exchange rates. Volatility transmission was 

7proposed by (R. F. Engle & Gau, 1997). 
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detected in the Chinese and “Philippines and Thailand” markets. Further, a causality 
test concluded that the Chinese exchange rate was dominating the other two exchange 
rates in the sample span period. 

Hereafter, scholars started to pay more attention to volatility spillover and began de­
veloping different methodologies to detect the meteor shower phenomenon in financial 
markets. A study by Huang and Yang (2002) investigated the extent to which the London, 
Tokyo and New York financial markets were linked. A causality-in-variance analysis 8 was 
applied to trace the volatility spillover between the currencies of those markets against 
the U.S dollar. Huang and Yang (2002) stated confidently that a causality- in- variance 
test was more accurate and reliable than the GARCH family models. However, many 
studies have supported the body of literature by fruitful analysis of the volatility spillover 
effect across financial markets. For more details see(Hong, 2001; Kearney & Patton, 2000; 
Speight & McMillan, 2001). 

On the other hand, Melvin and Melvin (2003) studied the deutschemark and Japanese 
yen against the U.S. dollar across five regional markets9 were recognized by quoting 
patterns analysis to find the level of interdependence between the different markets. 
Regional volatility models were built to find the own-region and cross-region spillover. 
After analysing the high frequency data, they found that the volatility spillover in both 
own-region and cross-region was statistically significant. By contrast, they claimed that 
the own-region (Heat Wave hypothesis) was economically significant and more important 
than the Meteor Shower hypothesis. Finally, Melvin and Melvin (2003) claimed that 
(Engle et al., 1990)’s research used normal daily exchange rates for the New York and 
Tokyo markets, and found that this data did not reflect the actual behaviour of both 
markets. Consequently, they based their analysis on high frequency data, simply to 
achieve more accurate results than(Engle et al., 1990). 

In Europe, Nikkinen et al. (2006) investigated the level of linkages among the most active 
financial markets in Europe. The performance of the Swiss franc, the Sterling pound and 
the Euro exchange rates against the U.S. dollar were chosen for the period from Oct 2001 to 
Sep 2004 to find any inter-dependency among the three markets. A vector autoregressive 
(VAR) model and Granger causality were used to trace the volatility spillover across the 
markets. A significant volatility spillover was identified between the three exchange rates 
and, interestingly, the Euro was found to dominate the other exchange rates. Further, 
the franc and the pound did not have a remarkable impact on the Euro during the 
sample period. Econometrically, they stated that employing Granger causality could help 
researchers in detecting the number of possible lags among the direction of causalities 
and volatilities. Further, impulse response shock can easily trace more than one variable 
of volatility over time to identify the evolution after any particular shock. What is more, 
applying variance decomposition generated all the information that describes the amount 

8The test was proposed by (Cheung & Ng, 1996)
 
9The distinct regions (Asia, Asia & Europe, Europe, Europe & America and America)
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of contribution of each variable across the VAR system. Consequently, Nikkinen et al. 
(2006) claimed that adopting a VAR model provides simple and clear estimations, and 
has great power to forecast the volatility spillover. By contrast, the VAR model still has 
a controversial issue, in that reordering the variables within the system could lead to 
wide changes in the coefficients and residuals value and, hence, spurious results (Stock & 
Watson, 2001). 

However, Inagaki (2007) applied a residual cross-correlation function (CCF) model10 to 
examine the linkages between the Euro and the British pound against the U.S. dollar 
between Jan 1999 and Dec 2004. The results suggested that the Euro dominated the 
pound over the sample period, and that the pound simply received the volatility without 
any significant volatility transmission. Inagaki (2007) stated that applying the Granger 
causality test, which relies on multivariate (GARCH), could be complicated, due to 
the possible uncertainty in the test. By contrast, he claimed that applying residual 
cross-correlation function has many advantages. For instance, the model does not have 
simultaneous equations, as in the multivariate GARCH models, and is simple to apply. 

In the same field, Kitamura (2010) and Zhang et al. (2008) studied the level of inter­
dependency among different global exchange rates. The latter research investigated 
the volatility spillover in the Asian context. Both studies claimed with confidence that 
volatility spillover across financial markets is statistically significant and considered to be 
a good indicator for decision makers. 

However, a seminal work by (Diebold & Yilmaz, 2009) was introduced to measure the 
return and volatility spillover across global equity markets. They built a simple and 
intuitive test to measure the level of interdependence among asset returns or volatilities. 
Their approach was based on the VAR model, but they used a very different method 
to analyse the data. A variance decomposition method associated with N-variable VAR 
model was employed to build "the spillover index". They analysed seven developed stock 
markets (France, Hong Kong, UK, Germany, Australia, U.S. and Japan) and twelve 
developing markets (Turkey, Chile, Argentina, Taiwan, Philippines, South Korea, Mexico, 
Brazil, Thailand, Singapore, Malaysia and Indonesia) between Jan 1992 and Nov 2007. 
Two types of results were analysed (i) static, and (ii) dynamic return/volatility spillover. 
Their model suggested that return/volatility spillover is statistically significant in both 
crisis and non-crisis episodes. Their framework is easy to apply and use and, hence, to 
interpret. By contrast, a remarkable limitation existed in their empirical methodology, 
in that the VAR model is sensitive for reordering the financial variables, which suggests 
possible spurious results if the variables are reordered inappropriately. Thankfully, Klößner 
and Wagner (2014) solved this problem by building a coherent conquering strategy to 
calculate all the possible orders in the VAR model. They claimed that calculating all the 
possible orderings for large models could take hundreds or thousands of years on modern 
computers, but fortunately with their algorithm, the model can be calculated in a short 

10This model was proposed by (Cheung & Ng, 1996). 
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time. Unfortunately however, despite all the positive attributes of the algorithm, it still 
has some drawbacks as it is difficult to apply and needs high quality computers to run. 

In the same research area, McMillan and Speight (2010) investigated the Euro against 
three currencies (the pound, yen and U.S. dollar) from Jan 2002 to April 2006 through 
Diebold and Yilmaz’s methodology. Their results suggested a significant interdependence 
among the exchange returns and volatilities across the data set. The spillover index 
indicated that the euro-dollar was dominating the other two exchange rates, while the 
euro-pound and the euro-yen had a slight impact on the euro-dollar exchange rate. 
Nevertheless, McMillan and Speight (2010) claimed that univariate and multivariate 
GARCH were not fully efficient as a spillover index. For instance, the GARCH family 
models have several forms to detect many different characteristics in financial data, but 
there is no particular model that can capture most of these characteristics. Further, 
multivariate GARCH, for example, have a large number of parameters in the system. By 
contrast, McMillan and Speight (2010) stated that the spillover index approach is easy to 
apply and simple to interpret. Also, the VAR model and variance decomposition method 
allowed for gathering spillover effects across markets into a single spillover measure. Since 
Diebold and Yilmaz introduced their own method, many researchers have supported their 
approach in the literature. For more details about studying the exchange rate volatility 
spillover through Diebold and Yilmaz methodology, see (Antonakakis, 2012; Bubák et 
al., 2011; Liow, 2015; Louzis, 2015). The data sets of the latter studies have covered 
various regions around the world, such as Asia and Europe, Europe and the G7 countries 
11, America and South Africa and central Europe. All the results support the volatility 
spillover index, particularly, and the linkages between markets, generally. 

Diebold and Yilmaz (2012) developed a further version of their 2009 published work. The 
main limitation in their 2009 approach was the variable ordering in the VAR system. 
Fortunately, the gap was bridged by generalising the vector auto regressive framework. 
Now, forecast-error variance decompositions are invariant to the ordering problem in the 
VAR system. They employed the new approach to analyse the volatility spillover between 
four U.S. financial assets: commodities, bonds, stocks and foreign exchange. Positively, 
their model found significant volatility transmission across markets, and the results were 
more accurate and reliable than the previous research12. More details will be discussed in 
the methodology section. 

In 2018, Baruník and Křehlík introduced a model for analysing the frequency dynamics 
of connectedness in financial markets, which was slightly similar to (Diebold & Yilmaz, 
2012)’s approach. The main difference was that this model relied on a spectral represen­
tation of variance decomposition which calculated the model based on frequency analysis, 
not on impulse response shocks as Diebold and Yilmaz had done. The frequency domain 
enabled study of the connectedness across markets in the short-run, medium-run or 

11G-7 countries are: Japan, USA, Germany, Italy, UK, France and Canada.
 
12(Diebold & Yilmaz, 2009)
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long-run. They studied the intra-market linkages of seven U.S. stocks and, interestingly, 
the results indicated that volatility transmission was detected by the model at different 
levels of frequencies. 

Turning to the cryptocurrencies market, Kurka (2017) investigated the interconnectedness 
among the cryptocurrency market and a bundle of traditional assets. (Diebold & Yilmaz, 
2009, 2012) and (Baruník et al., 2016) methodologies were applied to a group of assets 
(Bitcoin, foreign exchange rate, commodities, stock indices and bonds) to detect the 
linkage between Bitcoin and other assets from Jun 2011 to Dec 2015. Interestingly, they 
found a very low level of linkage between Bitcoin and other assets, except gold, which 
received several shocks from Bitcoin during that period. They claimed that the results 
provided useful information to assist portfolio managers to make their diversification 
decisions. 

In the same field, Corbet et al. (2018) investigated the linkage amongst three major 
cryptocurrencies and other financial assets to find a relationship between cryptocurrency 
and other markets. A generalised variance decomposition method (Diebold & Yilmaz, 
2012) and a time domain approach (Baruník & Křehlík, 2018) were employed to investigate 
the connectedness amongst the assets, either through one period along the sample span 
or at different frequencies, respectively. Interestingly, although they found high levels 
of linkages among the cryptocurrencies, there was very low connectedness between 
the cryptocurrencies and the other financial assets. Their analysis suggested that the 
cryptocurrencies market contains its own risk which is hard to hedge against. In addition, 
Bouri et al. (2018) studied the level of linkage between particular cryptocurrencies and four 
major financial assets13 in both bear and bull market conditions to identify the relations 
between Bitcoin and conventional investments. They employed a VAR-asymmetric 
GARCH model to analyse daily data from July 2010 to Oct 2017 in order to capture the 
linkages among the financial assets. Surprisingly, their analysis suggested that Bitcoin 
and the commodities markets were not completely isolated from one another. Also, the 
results clearly showed that Bitcoin was receiving shocks more than transmitting them to 
other markets. 

Moving to energy and technology companies, Symitsi and Chalvatzis (2018) applied an 
asymmetric multivariate VAR-GARCH model to daily data between Aug 2011 and Feb 
2018, to identify the interdependence between Bitcoin and technology companies14. Their 
results indicated remarkable volatility spillover in the short-run from the energy and 
technology markets to the Bitcoin market. By contrast, volatility spillover from the 
Bitcoin market to other markets was found to be significant in the long run. Consequently, 
they admitted that the low correlation of Bitcoin with the other assets indicated that a 

13equities, bonds, currencies and commodities 
14S&P Global Clean Energy Index (SPGCE), the MSCI World Information Technology Index 

(MSCIWIT), and the MSCI World Energy Index (MSCIWE) 
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portfolio could gain higher returns and lower risk, compared with a portfolio that did not 
invest in Bitcoin. 

This section has shown most of literature concerned with the volatility spillover of foreign 
exchange rates across different regions around the world. The next section will discuss 
the most applied methodologies in the literature. 

2.2.4 Critical evaluation of research strategies 

This section contains a critical evaluation of the main methodologies and approaches that 
have been applied in the research field. Previous studies have indicated that the VAR 
model and GARCH family models are the most applied methodologies with regard to 
volatility spillover analysis (Soriano & Climent, 2005). 

2.2.4.1 GARCH model 

An auto-regressive conditional heteroskedastic (ARCH) model has provided a huge 
advantage in forecasting financial time series. The two main characteristics of the model 
are that it detects “volatility clustering” easily and that the error term is assumed to be 
non-constant over time (Engle, 1982). A later model was developed by Taylor (1986) and 
Bollerslev (1986) independently to cover the shortcomings of the ARCH model. Thus, the 
GARCH model has been extensively employed to study volatility connectedness across 
markets, assets or/and countries. The main approaches are Univariate GARCH, and 
Multivariate GARCH. 

The univariate GARCH method can be defined as a class of specifications which analyse 
past and current information (error term) to forecast the behaviour of financial variables 
(Brooks, 2014). A huge number of extensions have been developed to deal with the 
complexity of financial data. Specifically, spill-over volatility has been studied intensively 
through GARCH. For instance, T-GARCH, E-GARCH and GJR-GARCH have been 
employed to study the volatility connectedness across financial markets, for example, 
(Cheung & Ng, 1996; Hamao et al., 1991; Inagaki, 2007; Lin et al., 1994). The univariate 
GARCH process is claimed to be easy and simple. Moreover, the model is less complicated 
than multivariate models, and the computation process is more robust (Inagaki, 2007). 
By contrast, the main disadvantage of the univariate model is that ignoring the covariance 
between the series will lose lots of important information. Consequently, researchers have 
inclined towards multivariate GARCH to analyse the correlation among time series. The 
later model has proven its success in forecasting the interdependence between financial 
variables, and that it is better than the univariate GARCH models (Antonakakis, 2008). 

The multivariate GARCH method is an n-variate process that extends from the univariate 
model to permit the n-dimensional conditional covariance matrix depending on the data 
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set (Engle & Kroner, 1995). This model has helped research to grow rapidly after 
solving the difficulties in the previous model. Many extensions have been employed to 
study the volatility interdependence among financial markets, such as (F-ARCH, CCC, 
VECH, DCCC and MGARCH) (Patnaik, 2013; Zhang et al., 2008). Multivariate GARCH 
has proven its success over univariate GARCH because of its power when dealing with 
multi-series and finding the correlations among them. One of the extensions, called 
the dynamic conditional correlation (DCC) model, is as elastic as the univariate model 
with less computation compared with other multivariate models (Antonakakis, 2008). 
By contrast, MGARCH provides some strong inference in analysing co-volatilities cases, 
but the model has different extensions that capture different problems in financial data, 
so that it is becoming more complex to employ all extensions within one case study. 
Moreover, using MGARCH requires a particular level of the correlation existence among 
financial variables; otherwise the results will be false. In this regard, researchers have 
tried to build a more effective and flexible model that can describe the behaviour of 
financial variables in a more flexible way as a vector auto-regressive model. 

2.2.4.2 Vector Auto-regression (VAR) method 

The VAR model is considered to be a combination of models, between simultaneous 
equations and a univariate system that can be compressed into a particular system 
(Brooks, 2014). The VAR model was proposed by (Sims, 1980) to develop the VAR 
system regarding the correlation and interdependence amongst different variables within 
the system. With regard to volatility spillover across markets, the model can be analysed 
via three main approaches: Granger causality, variance decomposition and impulse 
response shock. The VAR model has been applied widely (Bubák et al., 2011; Diebold 
& Yilmaz, 2009; Kavli & Kotzé, 2014; Liow, 2015) and supports the results of (Sims, 
1980) and many others. However, the model suffers from some disadvantages, such as the 
sudden growth of the unknown coefficient when the system analyses large numbers of 
variables (Stock & Watson, 2001). Further, the order of the variables has a huge impact 
on the output results, whereby changing the order of the variables could lead to spurious 
results. For more details see (Diebold & Yilmaz, 2009; Kilian, 1999). The model applied 
in this study was developed by (Diebold & Yilmaz, 2009), who significantly solved some 
of the aforementioned shortcomings of the VAR model. Intuitively, Diebold and Yilmaz 
(2012) modified their approach by generalising the vector auto regressive model to solve 
the variable order problem. 

To summarise, Bitcoin exchange is becoming a fundamental tool in economies worldwide 
and has had a significant impact across financial markets. Thus, finding a coherent 
methodology to study the volatility spillover across financial markets is necessary, and 
essential to support the final decision over investing in Bitcoin or different financial assets. 
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2.2.4.3 Conclusion 

To conclude, financial assets (exchange rates, stocks or bonds) play an important role in 
the world economies, in that they have a remarkable impact on both the hosted economy 
and other related economies. In the first section, the volatility spillover effect was defined, 
and the root of the definition was traced. Then, a brief discussion clarified the most 
important theory "Heat Waves and Meteor Shower" on which volatility spillover is based. 
In the third section, the literature was reviewed chronologically to identify the main 
research into the Bitcoin and exchange markets stream across different areas of the world. 
Finally, the two most applied methodologies in the literature, the GARCH family and 
the VAR model, were addressed and compared briefly. 

2.3 Data and summary statistics 

Bitcoins are traded in a number of currencies in a number of exchanges across different 
countries. For the purpose of our analysis, we limit our sample to 5 Bitcoin/currency 
pairs with less than 26 percent missing values over the sample period . That is, the U.S. 
dollar (USD), Australian dollar (AUD), Canadian dollar (CAD), Euro (EUR), and British 
pound (GBP). Although Bitcoins in USD, AUD, CAD, and EUR have started trading 
before December 1, 2011, Bitcoins in GBP started trading from January 1, 2012. For 
Bitcoin in CAD and EUR there are some missing closing prices during the early years in 
the sample period. Thus, the availability of the daily closing prices varies across different 
currencies.15 Moreover, to lend comparison to the empirical results of Cheah et al. (2018) 
who investigate cross-market long-memory interdependency in Bitcoin prices, we limit 
our observation period span to March 12th 2013 to January 31st 2018. We collect data 
from the aggregation website Bitcoin Charts ( bitcoincharts). Data prior to 25/2/2014 
are collected from Mt.Gox. Subsequent to Mt. Gox closure the remaining observations 
were collected from other exchange platforms such as Bitstamp (the largest European 
Bitcoin exchange) and LocalBitcoins.16 

Daily continuously compounded returns are computed by taking the first difference of 
log-transformed close price series. Our chosen measure of volatility is Parkinson’s High-
Low historical volatility (HL-HV) model.17 The reasons for choosing this approach are 
twofold. First, the HL-HV model deals with sensitivity to trading hours more efficiently 
than the more intuitive close-to-close volatility model (Bennett & Gil, 2012). Second, this 

15Initially, we gained price data in various currencies after considering the length of observation, the 
frequency of non-trading date as well as trading volume. The five exchange markets considered in our 
work still cover more than 80% of market trading, which can fairly represent the whole market. 

16At the time of undertaking the estimation, we gathered data from various sources so as to allow us 
to construct a continuous time series data. It’s possible that different websites report slightly different 
prices. Our estimation showed no significant differences in the estimates. 

17Following an anonymous referee’s suggestions, an alternative measure of volatility, viz., Garman-Klass 
measure - has been used for robustness exercise. The results are discussed in Section 4.3.2. 

www.bitcoincharts.com
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model generates more significant information and improves the efficiency of the volatility 
estimate (Parkinson, 1980). Consequently, Bennett and Gil (2012) claim that Parkinson’s 
volatility measure is more efficient and productive than popular close-to-close volatility 
estimates. 

Formally, V for each of our five Bitcoin to currency exchange rates is calculated as follows. 

V = 100 × 
1 

. ln 

� 
h 
�2 

(2.1)
4 ln(2) l 

where h and l are the highest and lowest exchange rates on a given trading day, respectively. 
The estimator above computes the daily variance, hence, the corresponding estimate of 
the annualised daily percent standard deviation (volatility) is computed as follows: √ 
V ol = 365 ∗ V 

Given their temporal dimension, all return and volatility series are checked for stationarity 
with the help of Augmented Dicky Fuller (ADF) and Philips-Perron (pperron) unit root 
tests (Dickey & Fuller, 1979; Phillips & Perron, 1988). Results are presented in Tables 
A.1 and A.2 (for returns and volatility, respectively) in appendix A. Both tests suggest to 
systematically reject the null of the presence of a unit root with 99% confidence for every 
daily returns series (Table A.1), suggesting the latter are stationary. Similarly, the null is 
rejected at the 1% threshold for all tests carried out on exchange rate volatility series 
(Table A.2), and we conclude that our volatility series are also stable. 

Table 2.1 provides summary statistics of the individual daily returns series (upper panel) 
and volatility (lower panel). The returns series are plotted in Figure 2.1. Average 
daily returns are similar across individual series and range from about 0.3 (BTC/USD, 
BTC/EUR and BTC/GBP) to around 0.34 (BTC/AUD). Median daily returns are 
systematically lower than average ones, hinting at potentially asymmetrically distributed 
series. Indeed, Bitcoin to USD (BTC/USD) and Bitcoin to GBP (BTC/GBP) exchange 
rates returns exhibit a small negative skew, suggesting a slightly larger concentration of 
observations to the right of their central tendency, while all other series are characterised 
by a positive third statistical moment (long right tails), although it is very close to zero 
for BTC/AUD and BTC/CAD returns. 

All returns series display unequivocally leptokurtic behaviours with sample Kurtosis 
above 10 (up to 45 in the case of BTC/EUR), suggesting they have long tails representing 
occurrences of extreme events of highly variable magnitudes with a mass point around 
the central tendency. The latter observation is confirmed by the graphs presented in 
Figure 2.1. Overall, the BTC/USD and BTC/EUR returns series appear to be the most 
stable with maximum values of 30.8 and 77.3 for minima of -34.5 and -61.8, respectively, 
along with sample standard deviations at least twice as small as that of any other series 
under scrutiny. The BTC/CAD exchange rate returns exhibit the most widely spread 
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Table 2.1 Summary statistics, exchange rate returns and volatility
 

Cross-market exchange rate 
(a) Returns Mean St. Dev. Median Max Min Skewness Kurtosis 

BTC/USD 0.307 4.929 0.225 30.83 -34.54 -0.357 11.69 
BTC/AUD 0.344 12.35 0.205 116.7 -110.6 0.0326 22.75 
BTC/CAD 0.321 22.31 0.276 172.5 -157.7 0.0315 14.38 
BTC/EUR 0.308 5.776 0.266 77.29 -61.84 0.763 45.55 
BTC/GBP 0.304 11.30 0.301 104.3 -105.4 -0.149 16.38 

(b) Volatility 
BTC/USD 0.709 1.008 0.455 20.68 0 9.086 139.2 
BTC/AUD 6.091 4.467 4.426 30.67 0.105 1.499 5.329 
BTC/CAD 7.248 4.681 6.284 30.01 0 1.054 4.330 
BTC/EUR 0.740 0.899 0.472 11.29 0.0698 4.899 39.67 
BTC/GBP 9.298 6.378 7.688 69.04 0 2.639 17.65 
Number of observations 1786 

distribution (minimum return of -157.7 for a maximum of 172.5) and are also characterised 
by the largest standard deviation in the sample (over 22). Plots in Figure 2.1 suggest that 
the instability of the BTC/CAD returns series is most notably due to the large number 
of extreme events since early 2017, a feature that is noticeable in the BTC/AUD returns 
too, and also on the BTC/USD market, though to a lesser extent. At a glance, graphs in 
Figure 2.1 reveal frequent bouts of highly volatile returns which seem to be fairly evenly 
distributed on either side of their long run central tendencies, with the BTC/USD and 
BTC/EUR markets being the most stable. 

The summary statistics of cross-market exchange rates volatility (lower panel of Table 
2.1) comfort our previous intuitions. The average volatility of BTC/USD and BTC/EUR 
settles at around 0.7 and is smaller than that of other exchange rates by one order 
of magnitude (from around 6 for BTC/AUD to over 9 for BTC/GBP). Furthermore, 
the two aforementioned series exhibit much larger positive skews and higher Kurtosis 
than their counterparts, and such lepotkurtic and heavily right skewed distributions 
suggest that these markets are less prone to unusually high levels of volatility. That 
is, observations concentrate to the left of the distribution close to the central tendency 
(recall that volatility is always positive). 

While confirming that the BTC/USD and BTC/EUR markets are the most stable over 
the period of study, Table 2.1 strengthens the idea that the BTC/GBP has experienced 
the most extreme occurrences of high uncertainty, as witnessed by the scale of the y-axis 
on the graph presented in Figure 2.2. Interestingly, the series plotted in Figure 2.2 show 
a seemingly upward trend in the volatility of BTC/CAD over time which also appears in 
BTC/AUD volatility from the end 2016 on. An apparent increase in average volatility 
also appears on the three other markets in 2017 and early 2018, although to a lesser 
extent. 
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Figure 2.1 Exchange rate returns
 

Note: Exchange rate returns series, daily. Dates on the x-axis indicate the start of the year, and ticks are 
quarterly. 
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Figure 2.2 Exchange rate volatility
 

Note: Exchange rate volatility series, daily. Dates on the x-axis indicate the start of the year, and ticks 
are quarterly. 
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2.4 Methodology 

We follow the generalized variance decomposition approach developed in Diebold and 
Yilmaz (2012) in order to estimate returns and volatility spillovers across the five markets 
under scrutiny. This methodology provides both static and dynamic measures of spillovers, 
and several papers have used a similar empirical framework analyse the interconnectedness 
of financial markets (e.g. Corbet et al., 2018; Fernández-Rodríguez et al., 2016; Lucey 
et al., 2014; Yarovaya et al., 2016). However, to the best of our knowledge no previous 
research has analysed cross-market returns and volatility spillovers on Bitcoin to currency 
exchange rates. 

The variance decomposition approach to measuring return and volatility spillovers (first 
presented in Diebold and Yilmaz (2009)) exploits Cholesky factorisation methods. This 
produces orthogonal innovations as is typically required for variance decompositions 
in Vector Auto-Regressive (VAR) models, with the main drawback of being sensitive 
to variable ordering (Diebold & Yilmaz, 2009). Diebold and Yilmaz (2012) propose 
a so-called generalised variance decomposition (GVD) that allows them to alleviate 
the orthogonality condition altogether and to account for correlated innovations, hence 
improving on their previous effort by making their measure of spillovers invariant to the 
order of the variables in the system (Diebold & Yilmaz, 2012; Koop et al., 1996; Pesaran 
& Shin, 1998). Considering our case of investigation - the five market Bitcoin price system 
- the estimates of spillover are based on the following covariance-stationary VAR model: 

pp 
yt = µi yt−1 + Et (2.2) 

i=1 

where yt = (y1t, y2t, y3t, y4t, y5t) or is a (1 × 5) random vector of endogenous vari­
ables; µ is a (5 × 5) coefficient matrix; yt−1 is the previous realisation of yt; and 
Et = (E1t, E2t, E3t, E4t, E5t) is an i.i.d. error term with Et ∼ (0, ΣE). 

The VAR model in Equation 2.2 can be re-written as a moving average process as follows: 

∞p 
yt = δiEt−i (2.3) 

i=0 

where (5 × 5) coefficient matrices δi depend on the recursion δi = µ1 δi−1 + µ2 δi−2 + ... + 

µp δi−p with δ0 an identity matrix and δi = 0 if i < 0. 

The heart of the GVD approach is to generate the correlated shocks by using the past 
distribution of errors (Diebold & Yilmaz, 2012). Therefore, the h-step-ahead forecast 
error GVD matrix is given by: 
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hN−1 
σ− �1 (ei δh Σ ej )2 
ii 

τ g h=0 
ij (h) = 

hN−1 
(2.4) 

(e δh Σ δh 
� ej )i 

h=0 

where ei is the selection vector with its ith element equal to one and zeros otherwise; δh 

is the coefficient matrix times the h-lagged shock vector; Σ is the variance matrix of the 
error vector E; and σii is the ith diagonal element of Σ. 

The shocks generated through Equation 2.4 are not required to be orthogonal, so the sum N 
of forecast error variance contributions are not equal to one, i.e. τij

g (h) = 1 . Therefore, 
j 

to utilise the shares available in the variance decomposition matrix with the spillover 
calculation, the authors propose to normalise the above variance shares as follows: 

(h) 
τ̃ g (h) = 

τij
g 

(2.5)ij NN 
τ g (h)ij

j=1 

NN 
where g is the order of the system (such as five market system as in our case), τ̃ij

g (h) = 1 
j=1 

NN 
τ gand ĩj (h) = N . 

i,j=1 

The quantities in equation 2.5 can then be used directly to estimate several measures of 
interest as follows: 

• Total spillover: 

NN NN 
τ g τ g˜ (h) ˜ (h)ij ij 

i,j=1 i,j=1 
i i =j =j

S.Og(h) = × 100 = × 100 (2.6)
NN N 

τ g˜ (h)ij 
i,j=1 

• Directional spillover: 

The following quantity measures the extent to which variable i is influenced by 
volatility shocks received from all other variables: 

NN 
τ g˜ (h)ij 

j=1 
j  =i 

S.Og (h) = × 100 (2.7)i . NN 
τ g˜ (h)ij 

j=1 
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Similarly, the amount of volatility transmitted by variable i to the other variables 
in the system can be gauged as follows: 

NN 
τ g˜ (h)ji

j=1 

S.Og (h) = 
j=i × 100 (2.8). i NN 

τ g˜ (h)ji
j=1 

• Net spillover: 

Finally, subtracting volatility spillovers from other variables from the volatility 
spillovers to other variables gives a measure of net spillovers: 

S.Og(h) = S.Og (h) − S.Og (h) (2.9)i . i i .

In order to refine our empirical study, we also implement the methodology presented 
in Baruník and Křehlík (2018) that builds on a spectral representation of variance 
decompositions to identify connectedness amongst variables at various levels of frequency. 
That way, the authors extend the work of Diebold and Yilmaz (2012) by offering the 
possibility to explore the frequency dynamics in a system of variables and thus to estimate 
spillovers of heterogeneous magnitudes at different frequencies. In other terms, the 
strength of cross-market connectedness can vary across the frequency domain, i.e. the 
influence of idiosyncratic shocks on other variables might be limited to the short run or 
have a long-run impact on connected markets. 
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2.5 Results 

Having discussed thus far various approaches to estimate spillover effects, in this section, 
we discuss results to shed light on the predictive power of each Bitcoin market. The 
basis for our estimation of spillovers are VAR models for daily returns and exchange 
rate volatility. We use Akaike’s Information Criterion (AIC) to decide on the number 
of lags to include, and confirm its adequacy with Lagrange multiplier auto-correlation 
tests after VAR estimation. We chose a VAR order 17 and 7 for returns and volatility 
series, respectively. The Generalised Variance Decomposition is then carried out for 
30-day-ahead forecasts. 

We comment on the results for volatility spillovers and returns spillovers in two distinct 
sub-sections. Indeed, the former provide indications as to which components of the system 
are closely connected to each other given their sensitivity to one another’s uncertainty. 
Returns spillovers, however, reveal more precise information regarding which components 
of the system are most important in predicting future price movements on other markets. 
Each set of results includes a full sample static analysis broken down into directional 
connectedness (from applying the method of Diebold and Yilmaz (2012)) and frequency 
domain connectedness (following Baruník and Křehlík (2018)), the latter allowing to 
refine the former by providing a decomposition of time-frequency dynamics of returns 
and volatility spillovers. However, in a full sample analysis the alternation of positive and 
negative extreme events typical of financial markets – some short-lived and others more 
persistent that can generate important downturns or speculative bubbles – tends to be 
smoothed over time. Therefore, we complement our results by carrying out an analysis 
similar to the former on a sub-sample of the data that is rolled over one day at a time 
to obtain a picture of dynamic spillovers. This methodology suggested by Diebold and 
Yilmaz (2012) allows to gauge how the strength of cross-market connectedness evolves 
over time. We use a 150-day rolling window. Finally, various robustness checks are 
discussed in the third sub-section. 

2.5.1 Volatility spillovers 

Table 2.2 displays results of the full sample analysis on directional, net and total spillovers 
for exchange rate volatility. The markets under consideration exhibit a non-trivial degree 
of interconnectedness with a total spillover index (TSI) of 15.78%. It appears that 
volatility shocks to the BTC/EUR and BTC/USD markets are the most influential in 
their contribution ‘TO other’ markets’ volatility (24.8% and 25.9%, respectively), with 
BTC/AUD in third position (around 17%). 
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Table 2.2 Volatility spillovers across five selected exchange rates in time domain
 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP Directional 
FROM others 

BTC/USD 79.16 4.15 0.45 15.32 0.92 20.84 
BTC/AUD 4.26 84.40 3.87 6.67 0.79 15.60 
BTC/CAD 0.30 6.63 89.99 1.82 1.26 10.01 
BTC/EUR 20.74 4.75 0.88 72.17 1.47 27.83 
BTC/GBP 0.63 1.39 1.62 0.98 95.37 4.63 
Directional 
TO others 25.93 16.92 6.82 24.79 4.45 TSI: 

78.90/500 = 

Net spillovers 5.09 1.32 -3.19 -3.04 -0.18 15.78% 

Note: Exchange rates volatility spillovers following Diebold and Yilmaz (2012). Numbers are percentages. 
“TSI” stands for Total Spillover Index. 

2.5.1.1 Directional connectedness (static spillovers): Time domain analysis 

Interestingly, the BTC/EUR market is also the most sensitive to uncertainty in other 
exchange rates (highest estimate in contribution ‘FROM others’), and the BTC/USD 
market the second most sensitive. In contrast, the BTC/GBP is by far the least influenced 
and least influential market in terms of volatility spillovers. BTC/CAD is also only loosely 
connected to the system, and is a bit more sensitive to other markets’ volatility than it is 
influential on others. Negative net volatility spillovers for the BTC/CAD and BTC/EUR 
exchange rates show that, overall, these markets tend to be net recipients of volatility. 
On the other hand, BTC/USD appears to be a net provider of volatility to the system, 
with net spillovers around 5%. 

A closer look at pairwise spillovers reveals that the strongest bilateral relationship is to 
be found between the BTC/EUR and BTC/USD exchange rates, with volatility spillovers 
of about 15% from the former to the latter and little above 20% in the other direction. 
Both markets also display a non-trivial relationship with BTC/AUD – albeit of lesser 
intensity – which is almost symmetric in the case of BTC/USD (spillovers little above 4% 
in either direction) and slightly asymmetric in the case of BTC/EUR with its influence 
on BTC/AUD (around 6.7%) exceeding its sensitivity (little below 5%). Note that 
BTC/AUD is also a net provider of volatility to BTC/CAD – for which it is the main 
partner – and to BTC/GBP, although pairwise spillovers involving the latter never even 
reach 2%. 

In sum, among the five markets under consideration BTC/EUR is the “most” connected 
one, with BTC/USD close second, while BTC/GBP appears to be the most isolated 
market. The pair BTC/EUR - BTC/USD are the most closely interlinked exchange 
rates, with about 15% to 20% of the forecast error variance in either variable’s volatility 
being explained by innovations in the other. Results also suggest that BTC/AUD might 
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work as an intermediary allowing volatility to circulate between the main components 
of the system, i.e. BTC/USD and BTC/EUR, and the more isolated markets, namely 
BTC/CAD and BTC/GBP. 

2.5.1.2 Frequency domain analysis of static spillovers 

Table 2.3 refines the previous empirical results by providing a decomposition of time-
frequency dynamics of volatility spillovers. The top panel considers short horizons (less 
than 4 days), while the bottom panel is concerned with long horizons (4 days or more). 

Table 2.3 Volatility spillovers across five selected exchange rates in frequency 
domain 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 35.09 0.38 0.08 3.91 0.16 4.52 
BTC/AUD 0.19 23.94 0.23 0.39 0.08 0.88 
BTC/CAD 0.07 0.43 42.71 0.35 0.12 0.96 
BTC/EUR 2.64 0.39 0.09 22.93 0.11 3.24 
BTC/GBP 0.15 0.22 0.14 0.22 58.48 0.74 

TSI: 10.34/193.49 = TO others 3.05 1.42 0.54 4.87 0.47 5.34% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 44.07 3.77 0.37 11.41 0.77 16.32 
BTC/AUD 4.08 60.46 3.64 6.28 0.71 14.71 
BTC/CAD 0.23 6.20 47.28 1.47 1.14 9.05 
BTC/EUR 18.09 4.36 0.79 49.25 1.35 24.59 
BTC/GBP 0.48 1.17 1.48 0.75 36.89 3.89 

TSI: 68.55/306.51 = TO others 22.88 15.50 6.27 19.92 3.98 22.37% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík (2018). Short and 
Long horizons refer to ‘4 days or less’ and ‘more than 4 days’, respectively. Numbers are percentages. 

The top panel of Table 2.3 shows that overall volatility spillovers in the system are around 
5.3% when considering a short time horizon. In line with previous results, BTC/USD 
and BTC/EUR are the main providers and recipients of short-lived volatility shocks in 
the system, as well as each other’s most influential counterpart, although in this instance 
BTC/EUR (BTC/USD) is a net provider (recipient) of volatility to BTC/USD (from 
BTC/EUR) and to (from) the system as a whole. 

The bottom panel of Table 2.3 suggests that interconnectedness in the system is much 
stronger in the long run, with overall volatility spillovers above 22% for volatility. The 
earlier pattern of results is once again repeated, and BTC/EUR and BTC/USD are by far 

http:68.55/306.51
http:10.34/193.49
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the most influential components of the system and each other’s privileged partner, with 
the former a net recipient and the latter a net provider of volatility. BTC/AUD remains 
the second favorite counterpart for each of the two main markets – albeit spillovers are 
of a much smaller magnitude (well below 5%) – and the most important partner of 
BTC/CAD. As expected, results confirm that BTC/GBP is rather isolated from the 
system regarding transmissions of either short-run or long-run volatility shocks. 

2.5.1.3 Dynamic spillover effects: Rolling window estimates 

(a) Overall spillovers 

To study how volatility spillovers co-move with fluctuations in uncertainty, we plot overall 
volatility spillovers in the system in Figure 2.3 along with a monthly index measuring 
global Economic Policy Uncertainty (EPU)18. The TSI ranges between 20% and 40% 
throughout most of the sample period. We observe a sharp drop from above 50% to 
below 20% between the first and third quarters of 2014, mirroring with a few months 
lag the sharp decline in EPU between the summer of 2013 and the spring of 2014. The 
slow upward trend in TSI from late 2014 until mid-2016 also mimics the overall rise in 
uncertainty over the same period. The highest values of EPU are found around mid- and 
late 2016 and early 2017, with an extremely volatile TSI between late 2016 and early 
2018. 

(b) Spillovers FROM and TO others 

Volatility spillovers transmitted to other exchange rates, received from others, and net 
spillovers for each of the five markets under scrutiny are plotted in Figures 2.4, 2.5 and 
2.6, respectively. The top left plot of Figure 2.4 confirms the role of BTC/USD as a big 
provider of volatility to the system over time, with spillovers to others routinely above 
10%. Spillovers from BTC/EUR typically oscillate between 2% and 10% except for a 
6-month period (2013Q4 and 2014Q1) where they often reach above 15%. Volatility 
spillovers from BTC/AUD also range between 0 and 10% and often exceed 5%, while 
those from BTC/CAD typically stay between 0% and slightly above 10%. Volatility 
shocks to BTC/GBP explain around approximately 5% or less of volatility shocks on 
other markets during the sample period, except for short periods of time (in 2013Q3 and 
between 2016Q2 and 2016Q4) where they greatly exceed 10%. 

As displayed in Figure 2.5, the sensitivity of the BTC/USD market to uncertainty shocks 
on other markets is highly volatile between 2013Q3 and 2014Q1 (spillovers ranging from 
10% up to 20%) and more stable afterwards, with spillovers from others slowly declining 

18Data gathered from http : //www.policyuncertainty.com/. 

http:www.policyuncertainty.com
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Figure 2.3 Overall volatility spillovers (dynamic plot) and Economic Policy 
Uncertainty Index 

Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2012) with a 150-day 
rolling window, right scale (percentages). Monthly Global Economic Policy Uncertainty (EPU) index, 
left scale. The dashed line shows the median value of EPU over the sample period. Dates on the x-axis 
indicate the start of the year, and ticks are quarterly. 

down to 2.5% in 2014Q4 and remaining between that level and approximately 7% for most 
of the sample period. The evolution over time of spillovers from others to BTC/AUD 
resembles that observed for BTC/USD but is more stable, with spillovers from others 
to BTC/AUD concentrating between 4% and up 6% (approximately). Spillovers to 
BTC/EUR, however, remain volatile throughout the period under scrutiny and routinely 
exceed 10% while seldom going below 6%, albeit stabilising between approximately 4% 
and 7% starting in 2017Q1 until the end of the sample period. Spillovers to BTC/GBP 
from other markets oscillate between approximately 4% and 10% throughout the sample 
period, ranging most often between 5% and 10%. The sensitivity of BTC/CAD to 
volatility shocks on other markets features a similar profile to that of BTC/GBP albeit 
more unstable, with spillovers seldom below 5% and reaching more often above 10%. 

(c) Net spillovers 

The previously described patterns come together in Figure 2.6 to give a picture of the 
temporal evolution of net spillovers for each exchange rate considered in the present study. 
We see at a glance that net spillovers tend to oscillate around zero over time, for all 
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Figure 2.4 Volatility spillovers to others: Dynamic plot
 

Note: Dynamic volatility spillovers to others computed following Diebold and Yilmaz (2012) with a 
150-day rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 

markets. Nonetheless, BTC/USD displays mostly positive net spillovers for the sample 
period, with a long period of exclusively positive values (from 2015Q1 to mid-2016) often 
around and above 15%. It tends to confirm the role of BTC/USD as a net provider of 
volatility to the system. Additionally, we identify three brief bouts of extremely high 
positive net spillovers for BTC/USD in early 2014Q3, early 2015Q4 and late 2016Q4. 
Interestingly, all other markets feature largely negative net spillovers during these events, 
making them net receivers of volatility. This observation strengthens the idea that 
BTC/USD is central in the system as the prime source of uncertainty, with volatility 
shocks on that market strongly destabilising other exchange rates. 
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Figure 2.5 Volatility spillovers from others: Dynamic plot
 

Note: Dynamic volatility spillovers from others computed following Diebold and Yilmaz (2012) with a 
150-day rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 

The middle right plot of Figure 2.6 clearly shows that BTC/EUR net spillovers are 
typically negative over the sample period and closely mirror those observed for BTC/USD, 
especially so during the period identified earlier ( from 2015Q1 to mid-2016 ) when 
BTC/USD (BTC/EUR) net spillovers are consistently positive (negative) and large. This 
dynamic spillovers plot ascertains the persistence over time of the role of BTC/EUR as a 
net recipient of volatility in the system, and also corroborates the “privileged” relationship 
between BTC/EUR and BTC/USD. 

Net volatility spillovers from BTC/AUD are mostly negative between 2013, Q3 and 2014, 
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Figure 2.6 Net volatility spillovers: Dynamic plot
 

Note: Dynamic net volatility spillovers computed following Diebold and Yilmaz (2012) with a 150-day 
rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are 
quarterly. 

Q2, but this market is typically a net provider of volatility throughout the rest of the 
sample period. In contrast, net spillovers for BTC/CAD are mostly negative over time, 
with a pattern mirroring that of BTC/AUD and reminding us of the close relationship 
between both markets uncovered from the full sample (static) analysis. The BTC/GBP 
market is characterised by surprisingly high positive net spillovers at the start of the 
sample period, for a brief amount of time, before experiencing small negative net spillovers 
most of the time with the exception of the period 2016Q2 - 2016Q4 when net spillovers are 
again large and positive (with one brief event of extreme negative values corresponding 
to a bout of high volatility transmission from BTC/USD). 
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To summarise findings so far, it appears that connectedness between Bitcoin-to-currency 
exchange markets reflects overall uncertainty. Trading on Bitcoin markets depends largely 
on investor sentiment, and a lack of confidence eventually heightens volatility on these 
markets which become more intensely interlinked as investors diversify to mitigate risks 
pertaining to a particular market. In that respect, BTC/USD is likely a prime source 
of volatility for the system. Indeed, volatility to BTC/USD and BTC/EUR are the 
most influential in predicting the volatility of other exchange rates (Figure 2.4), and 
the BTC/EUR volatility tends to be the most sensitive to innovations on other markets 
(Figure 2.5). Additionally, the BTC/USD exchange rate is typically a net provider of 
volatility, which is mirrored by the tendency of the BTC/EUR market to be a net receiver 
in its connection to other markets, while the influences to and from others for the other 
three exchange rate volatility series tend to even out (Figure 2.6). Note that Figure 
2.6 displays net spillovers that get notably closer to zero over 2017 and in early 2018, 
especially so for BTC/USD and BTC/EUR. 

As was previously stated, we interpret volatility spillovers as being indicative of the 
intensity of cross-market connectedness in the system. In the next section we turn to 
the results pertaining to exchange rates returns spillovers that contain information on 
the predictive power of price movements on a given market in influencing prices on other 
markets. 

2.5.2 Returns spillovers 

2.5.2.1 Directional connectedness (static spillovers): Time domain analysis 

Table 2.4 presents returns spillovers obtained from the full sample analysis using the 
method of Diebold and Yilmaz (2012). Returns on the markets under scrutiny feature a 
significant degree of interdependence reflected by an estimated TSI of 17.4%. Results 
confirm the predominance of BTC/USD and BTC/EUR in the system, with returns 
spillovers to other markets of almost 23% and above 24%, respectively. Unexpected 
changes in returns on the BTC/AUD and BTC/GBP markets contribute roughly the 
same share of explanatory power in determining forecast error variance in other markets’ 
returns (14.2% and 16.2%, respectively). In the meantime, returns to BTC/EUR are 
by far the most sensitive to innovations in other markets’ returns (31% spillovers from 
others), while returns on the BTC/USD, BTC/AUD and BTC/GBP markets exhibit 
about twice as little sensitivity (spillovers from others around 16%). 

The above observations establish BTC/USD as having the most predictive power in the 
system with net spillovers above 6%, and returns to BTC/EUR as experiencing a net 
influence from unexpected price movements on other markets (negative net spillovers of 
almost 7%). Returns to BTC/GBP are altogether as influential as they are sensitive, 
and returns to BTC/AUD are characterised by small negative net spillovers. Note that 
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Table 2.4 Returns spillovers across five selected exchange rates
 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP Directional 
FROM others 

BTC/USD 83.58 2.36 1.69 9.60 2.77 16.42 
BTC/AUD 3.17 83.97 2.82 5.73 4.32 16.03 
BTC/CAD 1.82 1.87 92.54 2.15 1.63 7.46 
BTC/EUR 14.26 6.49 2.89 68.92 7.44 31.08 
BTC/GBP 3.73 3.50 2.10 6.72 83.95 16.05 
Directional 
TO others 22.97 14.22 9.50 24.19 16.17 TSI: 

87.05/500 = 

Net spillovers 6.55 -1.81 2.04 -6.89 0.12 17.41% 

Note: Exchange rates returns spillovers following Diebold and Yilmaz (2012). Numbers are 
percentages. “TSI” stands for Total Spillover Index. 

BTC/CAD displays small positive net spillovers (around 2%) but its returns are only 
loosely connected to the system (spillovers to and from others below 10%). 

Pairwise returns spillovers show a pattern in line with volatility spillovers discussed 
earlier: BTC/EUR is typically the most influential partner of every other exchange 
rate, a fact particularly salient for the BTC/USD and BTC/GBP markets. Additionally, 
returns to BTC/EUR are especially sensitive to innovations in returns to BTC/USD, 
the latter therefore holding a net predictive power in that relationship. Other noticeable 
relationships are BTC/EUR - BTC/GBP – spillovers around 7% in either direction with 
a small (below 1%) net positive spillover for the second – and BTC/EUR - BTC/AUD 
– spillovers around 6% in either direction, again with a small (below 1%) net positive 
spillover for the second. All bilateral relationships involving BTC/CAD display pairwise 
spillovers below 3%. 

This first glance at returns spillovers comforts the idea that the previously identified 
connectedness (through volatility spillovers) between BTC/USD and BTC/EUR matters, 
in that the former market holds a net predictive power in determining price movements on 
the latter. Actually, shocks to BTC/USD returns are the most influential in the system 
as a whole, and BTC/EUR returns are the most sensitive to shocks on other markets. 
Note that BTC/GBP is more strongly connected to the system in terms of returns 
spillovers that it is in terms of volatility. This is likely due to the range of variations in 
the BTC/GBP returns series being consistent with that of other markets (Figure 2.1), 
whereas discrepancies are more prominent in the case for volatility series (Figure 2.2). 

2.5.2.2 Frequency domain analysis of static spillovers 

Table 2.5 provides a decomposition of time-frequency dynamics for the returns spillovers 
presented in Table 2.4. The top panel indicates that overall returns spillovers in the 
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system are around 14.5% when focussing on short-term components of forecast error 
variances. The pattern of results is qualitatively similar to the previous case where 
BTC/USD and BTC/EUR are the most important providers of short-lived shocks to 
returns in the system, with the latter the most sensitive of such shocks. They are also 
each other’s most influential counterpart, BTC/EUR being a net recipient of unexpected 
price movements from BTC/USD and from the system as a whole. We find again the 
previously observed almost symmetric relationships between BTC/EUR and BTC/GBP 
(spillovers around 5%) and between BTC/EUR and BTC/AUD (spillovers between 4% 
and 5%). 

Table 2.5 Returns spillovers across five selected exchange rates - Frequency 
domain analysis 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 64.96 1.52 1.35 5.78 1.89 10.54 
BTC/AUD 2.07 81.66 2.66 4.29 3.64 12.66 
BTC/CAD 1.50 1.59 90.51 1.50 1.39 5.98 
BTC/EUR 9.15 4.96 2.51 53.60 5.73 22.35 
BTC/GBP 2.40 2.77 1.75 4.68 81.17 11.59 

TSI: 63.11/435.01 = TO others 15.12 10.83 8.26 16.25 12.65 14.51% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 18.62 0.84 0.34 3.82 0.88 5.89 
BTC/AUD 1.10 2.31 0.16 1.43 0.68 3.38 
BTC/CAD 0.32 0.28 2.03 0.65 0.24 1.48 
BTC/EUR 5.11 1.53 0.38 15.32 1.71 8.73 
BTC/GBP 1.33 0.74 0.35 2.04 2.78 4.46 

TSI: 23.94/64.99 = TO others 7.86 3.39 1.24 7.94 3.51 36.83% 

Note: Returns spillovers, frequency domain analysis following Baruník and Křehlík (2018). Short and 
Long horizons refer to ‘4 days or less’ and ‘more than 4 days’, respectively. 

The bottom panel of Table 2.5 ascertains the interdependence of returns across the five 
exchange rates under scrutiny by presenting an estimated TSI of close to 37% in the long 
run. There again, net predictive power is held by BTC/USD with regards to BTC/EUR 
and to the whole system, with BTC/EUR the largest provider and recipient of returns 
shocks to and from other markets. BTC/AUD and BTC/GBP are the other two favourite 
counterparts of BTC/EUR after BTC/USD, and BTC/CAD is confirmed to be the least 
influenced and least influential market in terms of returns spillovers. 

http:23.94/64.99
http:63.11/435.01
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2.5.2.3 Rolling windows analysis (dynamic spillover plots) 

(a) Overall spillovers 

The total spillover index for exchange rate daily returns is depicted in Figure 2.7 along 
with the monthly EPU index. In spite of a certain degree of volatility with values ranging 
from below 50% to almost 80%, it appears that the returns TSI in the system fluctuates 
around 60% for most of the sample period. We observe a decline in returns connectedness 
across markets between 2013Q4 and 2014Q3 (from 70% to little above 50%), before the 
TSI stabilises around 60% for the period 2014Q3 to 2016Q2, except for a high variable 
TSI in 2015Q3. The dramatic plunge over the second half of 2016 is compensated for in 
early 2017 and the TSI again fluctuates between 55% and 65% for the remainder of the 
sample period. 

Figure 2.7 Overall returns spillovers (dynamic plot) and Economic Policy Un­
certainty Index 

Note: Dynamic overall returns spillovers computed following Diebold and Yilmaz (2012) with a 150-day 
rolling window, right scale (percentages). Monthly Global Economic Policy Uncertainty (EPU) index, 
left scale. The dashed line shows the median value of EPU over the sample period. Dates on the x-axis 
indicate the start of the year, and ticks are quarterly. 

The plot confirms the strong interdependence of returns in the system over time (TSI 
almost always above 50%), and shows that it is fairly stable for the duration the sample 
period with no evident pattern suggesting its link to overall uncertainty. Although 
counter-intuitive, it is not incompatible with earlier results on volatility spillovers. Indeed, 
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the latter were found to reflect the variations of global economic uncertainty, suggesting 
more strongly interconnected markets in times of high uncertainty. In spite of volatility 
transmitting more or less “easily” across components of the system depending on the 
economic climate, the capacity of returns shocks to help predict price movements on 
other markets remains stable over time in the system overall. 

(b) Spillovers FROM and TO others 

In the spirit of Diebold and Yilmaz (2012) dynamic spillovers are broken down into 
directional spillovers to other markets, from other markets, and net spillovers depicted in 
Figures 2.8, 2.9 and 2.10, respectively. 

A quick glance at individual plots in Figure 2.8 reveals that the BTC/USD exchange 
rate exerts the biggest influence on other variables of the system, and that this influence 
strengthens in 2017 and early 2018. Interestingly, the influence of BTC/EUR returns 
shocks on other markets shifts downwards at the end of the sample period (from early 
2017 on) after fluctuating around 5% to 7% most of the time. Returns spillovers from 
BTC/AUD, BTC/CAD and BTC/GBP to other markets are erratic but overall range 
between approximately 8% and 17% throughout the period under scrutiny. 

Figure 2.9 indicates that BTC/USD returns are significantly influenced by shocks from 
other markets in late 2013 and early 2014 with spillovers between almost 13% and 
approximately 16%, while the latter then steady and fluctuate mostly in the range 
6% - 14%. Returns spillovers received by BTC/AUD from other exchange rates range 
largely between 10% and 15%, as is the case for BTC/CAD and BTC/GBP. The share 
of forecasting error variance of BTC/EUR returns explained by innovations in other 
variables is almost systematically above 10% and routinely above 15%, and even larger 
than 15% between 2014Q2 and mid-2015 and after 2017Q1. 

(c) Net spillovers 

Dynamic net spillovers plotted in Figure 2.10 confirm the former intuition stemming from 
our full sample analysis. The BTC/USD exchange rate returns exhibit almost exclusively 
positive net spillovers – reaching above 10% starting in early 2017–, representing the 
predictive power of shocks on the BTC/USD market in forecasting returns on other 
markets. Conversely, the BTC/EUR market is strongly connected to the system as a net 
receiver, i.e. mostly negative net spillovers that seem to mirror the BTC/USD ones over 
time with a marked decline starting in 2017Q1. The net connectedness of BTC/GBP 
returns is very erratic over time and incessantly crosses the zero line. 

A similarly changeable pattern can be discerned for BTC/AUD, although its net spillovers 
are typically negative, characterising that market as usually predictable. Net returns 
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Figure 2.8 Returns spillovers to others, dynamic plot
 

Note: Dynamic returns spillovers to others computed following Diebold and Yilmaz (2012) with a 150-day 
rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are 
quarterly. 

spillovers from BTC/CAD slowly evolve around zero over time in a serpent-like fashion: 
negative in late 2013, positive in 2014, mostly negative from 2015Q1 to 2016Q4, and 
mostly positive for the remainder of the sample period. Their magnitude remains fairly 
small in absolute terms (seldom greater than 25%), reflecting the little influence of said 
market in predicting returns in the system. 

In sum, results from our analysis of returns spillovers seem to complement nicely those 
commented on volatility spillovers. The BTC/USD and BTC/EUR are confirmed in 
their central roles in the system. They remain the most closely interlinked markets, and 
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Figure 2.9 Returns spillovers from others, dynamic plot
 

Note: Dynamic returns spillovers from others computed following Diebold and Yilmaz (2012) with a 
150-day rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 

the former holds a net predictive power with regards to the system as a whole. That 
is, unexpected shocks in returns to BTC/USD embed information as to probable future 
shocks in prices on other markets, especially so for BTC/EUR. That relationship is the 
only one to be so dramatically asymmetric, the one between BTC/EUR and BTC/GBP, 
for instance, giving only a marginal advantage to the latter in terms of predictive power. 
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Figure 2.10 Net returns spillovers, dynamic plot
 

Note: Dynamic net returns spillovers computed following Diebold and Yilmaz (2012) with a 150-day 
rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are 
quarterly. 
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2.5.3 Robustness 

How sensitive are our results to the choice of forecast horizon, window size, and alternative 
measure of volatility? In this section, we undertake robustness exercise in each aspect 
mentioned above. 

2.5.3.1	 Sensitivity to forecast horizon and window size for static and dy­
namic spillover system 

We check the robustness of our full sample analysis results to the choice of the forecast 
horizon and the tuning of frequency bands that identify short- and long-run components 
of the forecast error GVD. Recall that our results are based on 30-days-ahead forecasts 
and that the time-frequency domain analysis consider the short horizon to be 4 days 
and the long horizon to be over 4 days. We performed similar estimations with 7-, 10-, 
and 60-days-ahead forecasts, and using 16 and 30 days to split frequency domains. The 
ensuing results (reported in appendix A) corresponding to Tables 2.2, 2.3, 2.4 and 2.5 
presented above produced very similar values for the estimated spillovers and yielded 
qualitatively identical conclusions. 

Next, Figures 2.11 and 2.12 (Figures 2.13 and 2.14) plot dynamic overall returns (volatility) 
spillovers using 15 days and 60 days as the forecast horizon for computing the GVD, 
respectively. We observe that the latter graphs are strongly consistent with Figure 2.7 
(for return) (and Figure 2.3 for volatility, respectively) not only in the estimated values 
of the total spillover index, but also in the shape of the evolution that records the same 
extreme events in every case. 

2.5.3.2	 Alternative measures of volatility 

Recall that our empirical analyses are based on Parkinson’s High-Low historical volatility 
(HL − HV ) measure. This measure provides useful information regarding the future 
volatility than a close-to-close estimator. Garman and Klass (GK, 1980) proposed a 
volatility measure based on open (O), high (H), low (L) and close (C) prices to achieve 
better accuracy than previous estimators. Hence, as a robustness check, we use GK class 
of estimators and re-estimate spillover effects. The similarity between Parkinson and 
GK estimators are that both follow a geometric Brownian motion. However, drift and 
opening jumps are not treated in both models (Wiggins, 1991), but both estimators are 
5 and 7 times respectively as powerful as the close-to-close measure (Garman & Klass, 
1980; Parkinson, 1980). Recent studies have even gone further in extending GK volatility 
measure (among them see, for instance, Rogers-Satchell (OHLC) measure (Rogers & 
Satchell, 1991), GK − ABD volatility measure (Alizadeh et al., 2002) and GK − Y Z 
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Figure 2.11 Overall returns spillovers (dynamic plot – 15-day ahead forecast) 
and Economic Policy Uncertainty Index 

Note: Right scale (percentages): Dynamic overall returns spillovers computed following Diebold and 
Yilmaz (2012) with a 150-day rolling window, using a 15-day ahead forecast. Left scale: monthly Global 
Economic Policy Uncertainty (EPU) index. The dashed line shows the median value of EPU over the 
sample period. Dates on the x-axis indicate the start of the year, and ticks are quarterly. 

volatility measure (Yang & Zhang, 2000)19. These measures are summarised below:     
GK = 0.5×(Ht −Lt)2 − (2Ln(2)−1)×(Ct −Ot)2 (2.10) 

    
Rogers−Satchell = (Ht−Ct)×(Ht−Ot) + (Lt−Ct)×(Lt−Ot) (2.11) 

Y ang−Zhang = (Ot −Ct−1)2 +0.511×(Ht −Li)2 −(2Ln(2)−1)×(Ct −Ot)2 (2.12) 

 
GK − ABD = 0.511 × (Ht − Lt)

2 − 0.019 × (Ct − Ot) × (Ht + Lt − 2Ot) − 2  
×(Ht − Ot) × (Lt − Ot) − 0.383 × (Ct − Ot)

2 

(2.13) 
19https://www.quantshare.com/itemd-197-trading-indicator-yang-zhang-extension-of or
 
(Bennett & Gil, 2012)
 

http:Ht�Ct)�(Ht�Ot)+(Lt�Ct)�(Lt�Ot)(2.11
http:�Ot)2(2.10
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Figure 2.12 Overall returns spillovers (dynamic plot – 60-day ahead forecast) 
and Economic Policy Uncertainty Index 

Note: Right scale (percentages): Dynamic overall returns spillovers computed following Diebold and 
Yilmaz (2012) with a 150-day rolling window, using a 60-day ahead forecast. Left scale: monthly Global 
Economic Policy Uncertainty (EPU) index. The dashed line shows the median value of EPU over the 
sample period. Dates on the x-axis indicate the start of the year, and ticks are quarterly. 

The above measures compute the daily variance, so the corresponding estimate of the √ 
annualised daily percent standard deviation (volatility) is V ol = 365 ∗ V ariance.The 
summary statistics for the above measures are presented in Table 2.6. 

We compute the static and dynamic volatility spillover based on Garman-Klass (GK) 
volatility. To begin with we compare the GK volatility measure with that of Parkinson 
(see Figure 2.15). As such, there is no significant differences in peaks and troughs and 
the fluctuations appear to co-move. In Tables 2.7 and 2.8 we have presented the overall 
spillover estimates from Diebold-Yilmaz and the frequency domain approach of Barunik 
and Krehlik, respectively based on this measure of volatility.20 Figures 2.16, 2.17, 2.18, 
2.19, we have presented the dynamic volatility spillover effects (overall, from, to, and 
net, respectively). The results are consistent with the ones derived from Parkinson’s 
measure. Hence, our conclusions on the predictive power (giver and the net receiver) 
remain unchanged to the use of an alternative measure of volatility. 

20We have also estimated spillover effects from other class of GK measure of volatility, such as GK-YZ, 
etc. The results are available with the authors upon request. 
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Figure 2.13 Overall volatility spillovers (dynamic plot – 15-day ahead forecast) 
and Economic Policy Uncertainty Index 

Note: Right scale (percentages): Dynamic overall volatility spillovers computed following Diebold and 
Yilmaz (2012) with a 150-day rolling window, using a 15-day ahead forecast. Left scale: monthly Global 
Economic Policy Uncertainty (EPU) index. The dashed line shows the median value of EPU over the 
sample period. Dates on the x-axis indicate the start of the year, and ticks are quarterly. 

2.5.3.3 VAR model Stability 

The spillover index measures the overall connectedness of the system. Therefore, the 
dynamic spillover variations (e.g. figures 2.3 and 2.7) explain the flow of information 
within the system, but do not clarify the extreme shocks along the dynamic overall 
volatility spillover. Claeys and Vašíček (2014) suggested that using (Qu & Perron, 2007) 
break test to detect the structural breaks in a VAR system could help to identify these 
significant spikes within the transmission mechanism. Following the latter work, we 
applied Qu and Perron test on the volatility exchange rates to investigate the potential 
structural breaks in the system. Indeed, detecting the sudden changes in the spillover 
index within these markets could help us to identify potential events that might induce 
the series to change its properties over time. 

Table 2.9 shows the results of Qu and Perron analysis. The VAR dataset consists of 
the five Bitcoin markets from March 2013 to January 2018. The trimming percentage is 
15% of the sample span, and the maximum breaks allowed individually for two and five 
respectively. The test statistics for both WD max and sequential tests exceed the critical 
values except for the fifth break (Seq test (m = 5) ∼ (5 | 4)). Thus, the null hypothesis 
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Figure 2.14 Overall volatility spillovers (dynamic plot – 60-day ahead forecast) 
and Economic Policy Uncertainty Index 

Note: Right scale (percentages): Dynamic overall volatility spillovers computed following Diebold and 
Yilmaz (2012) with a 150-day rolling window, using a 60-day ahead forecast. Left scale: monthly Global 
Economic Policy Uncertainty (EPU) index. The dashed line shows the median value of EPU over the 
sample period. Dates on the x-axis indicate the start of the year, and ticks are quarterly. 

of no structural breaks rejected for the WD max and indicates four (out of five) breaks, 
based on the sequential test. The confidence interval for the four break dates are as 
follows: 1- 09/01/2014. 2- 04/10/2014. 3- 23/09/2015. 4- 10/07/2016. We can link the 
latter dates to remarkable events that hit the cryptocurrency market. At the beginning 
of 2014, the largest Bitcoin exchange platform, Mt. Gox, started to have security issues; 
the platform was then hacked and $ 473 million was stolen. After the middle of 2015, the 
administrator of Scrypt platform, Marcelo Santos, posted that the platform had been 
breached and hijackers had stolen several Bitcoin hot wallets. Finally, during 2016 and 
after the flash crash of Bitfinex platform, the Bitcoin price fell by approximately 14%. 
All the latter events appeared along the overall spillover dynamic plot (Figure 2.3), but it 
was confirmed by Qu and Perron (2007) test that the spillover spikes actually spread the 
volatility to other markets. 

To check the VAR stability, we extract the coefficients’ residuals and test their stationarity 
to ensure the consistency of the mean and variance of residuals over time. Table 2.10 
shows that the test rejects the null of unit root for all exchange rates in both sub-tables. 
Further, Figures (A.1 and A.2) show the inverse roots of AR characteristic polynomial 
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for return and volatility lie inside the unit circle, which indicates that the VAR process is 
stable. 

2.6 Conclusions 

As long as economies’ core are continually subject to frictions and are driven by incomplete 
information, it is nearly impossible to not experience spillover of shocks in some form 
or other. Depending on the net receiver or net dispenser of volatility, the magnitude of 
spillover effects represents vulnerability of a system to external shocks. The context of 
investigation in this chapter, thus, has intermittent link to a broad economic and financial 
theory: as long as investors’ choice of investment is governed by relative hedging value of 
an asset traded in various markets, they will invariably use estimates of spillover effects 
as the guiding information set to predict the next best investment strategy. Moreover, 
spillover effects in a market can be used as an indicator of relative market inefficiency. 
A weak-form cross-market inefficiency requires high-degree of spillover across markets 
where there is a clear indication of net receiver and net giver of volatility. This way, an 
investor can exploit arbitrage value by embedding the dynamic features of spillover in 
his prediction strategy. In this chapter, we have created a first-hand information set for 
cryptocurrency investors by estimating spillover-effects in five markets where Bitcoin is 
highly traded. 

A unique aspect of our research concerns estimation of volatility spillover effects (with a 
better measure of volatility) across Bitcoin markets. We have investigated how spillover 
effects are governed by uncertainty episodes. With an aim to capture information 
asymmetry through fluctuations in uncertainty, our study sheds important insights on 
the dynamic interdependence of spillover effects during high/low uncertainty episodes. 
By doing this, we capture the sentimental value, researchers often attach to Bitcoin prices 
(in the absence of a dedicated asset pricing theory for cryptocurrency). By studying 
cross-market spillover in Bitcoin prices we have also complemented to a sparse body of 
literature (such as Cheah et al. (2018)) and have envisaged the importance of studying a 
systematic pattern of shocks’ movement by capturing a ’system dynamics’. Because, as 
of now, price movements in Bitcoin market possess no (theoretical) policy bound for an 
effective control, a perhaps acceptable approach is to exploit ‘system features’ to provide 
a net predictive power. 

Using the measure of volatility and well-established dynamic spillover methods, we 
have found that Bitcoin-USD holds high predictive power and Bitcoin-Euro acts as the 
net receiver. Moreover, higher uncertainty is found to accelerate spillover effects with 
larger impacts across markets. The results hold implications for cross-market dynamic 
inefficiency and predictive power of one market for tapping in the arbitrage conditions. 
Our results have implications for broad macroeconomic theory and investment decisions 
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as envisaged by islands with sticky price information: investors of a risky asset like 
Bitcoin need a well-defined information set which would determine - at least in part ­
their expected return value. In that sense, our research holds significant predictive value 
for cryptocurrency investors. 

Table 2.6 Different Volatility measures across five selected exchange rates 

(a) BTC/USD volatility 

Mean St. Dev. Max Min Skewness Kurtosis 
Parkinson (H-L) 0.709 1.008 20.68 0.0 9.086 139.2 
GK (OC-HL) 0.773 1.140 24.33 0.010 9.389 150.5 
GK-ABD 1.323 2.043 24.57 0.004 4.353 30.20 
Rogers-Satchell 2.206 2.835 33.42 0.0 3.033 18.10 
GK-YZ 1.011 1.294 24.61 0.02 8.209 116.5 

(b) BTC/AUD volatility 

Parkinson (H-L) 6.091 4.467 30.67 0.105 1.499 5.329 
GK (OC-HL) 7.025 5.247 35.96 0.112 1.507 5.391 
GK-ABD 5.664 3.371 21.20 0.114 1.150 4.352 
Rogers-Satchell 8.023 6.541 44.12 0.0 1.607 5.747 
GK-YZ 7.437 5.375 36.71 0.140 1.504 5.317 

(c) BTC/CAD volatility 

Parkinson (H-L) 7.248 4.681 30.01 0 1.054 4.330 
GK (OC-HL) 8.176 5.449 35.18 0 1.058 4.346 
GK-ABD 6.639 3.887 34.73 0 1.082 5.646 
Rogers-Satchell 9.369 6.906 47.28 0 1.273 4.994 
GK-YZ 9.097 5.792 40.88 0 1.149 4.838 

(d) BTC/EUR volatility 

Parkinson (H-L) 0.740 0.899 11.29 0.069 4.899 39.67 
GK (OC-HL) 0.794 1.043 12.72 0.007 5.001 40.09 
GK-ABD 0.874 1.361 26.78 0.015 8.784 126.7 
Rogers-Satchell 1.126 1.515 22.60 0.007 5.525 51.66 
GK-YZ 1.052 1.266 14.27 0.104 4.561 32.73 

(e) BTC/GBP volatility 

Parkinson (H-L) 9.298 6.378 69.04 0 2.639 17.65 
GK (OC-HL) 10.88 7.507 81.25 0.745 2.649 17.70 
GK-ABD 10.85 7.569 80.01 0.753 2.657 17.66 
Rogers-Satchell 14.92 10.73 109.1 0.0 2.506 16.32 
GK-YZ 11.26 7.52 82.14 1.054 2.683 17.97 

Note: GK: Garman-Klass (1980). GK-ABD: Garman-Klass extension, Alizadeh, Brandt and Diebold 
(2002). GK-YZ: Garman-Klass Yang-Zhang extinsion, Yang and Zhang, (2000). Rogers-Satchell (1991). 
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Figure 2.15 Comparison of GK and Parkinson Volatility Plots
 

Note: Exchange rate volatility series, daily. Dates on the x-axis indicate the start of the year, and ticks 
are quarterly. 
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Table 2.7 Volatility spillovers across five selected exchange rates: Garman-
Klass measure 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP Directional 
FROM others 

BTC/USD 81.25 3.99 0.39 13.62 0.75 18.75 
BTC/AUD 3.41 85.94 3.50 6.43 0.72 14.06 
BTC/CAD 0.25 5.19 91.61 1.53 1.42 8.39 
BTC/EUR 17.25 4.07 0.67 76.48 1.51 23.5 
BTC/GBP 0.58 1.56 1.33 0.97 95.55 4.44 
Directional 
TO others 21.49 14.81 5.89 22.55 4.4 TSI: 

69.14/500 = 

Net spillovers 2.74 0.75 -2.5 -0.95 -0.04 13.83% 

Note: Exchange rates volatility spillovers following Diebold and Yilmaz (2012). Numbers are percentages. 
“TSI” stands for Total Spillover Index. 

Table 2.8 Volatility spillovers across five selected exchange rates - Frequency 
domain analysis: Garman-Klass Measure of Volatility 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 38.93 0.40 0.05 3.84 0.12 4.41 
BTC/AUD 0.13 25.61 0.29 0.22 0.11 0.75 
BTC/CAD 0.08 0.36 45.95 0.36 0.11 0.91 
BTC/EUR 2.54 0.38 0.13 27.37 0.23 3.28 
BTC/GBP 0.19 0.24 0.13 0.35 57.94 0.91 

TSI: 10.26/206 = TO others 2.94 1.38 0.6 4.77 0.57 4.99% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 42.32 3.59 0.34 9.77 0.62 14.32 
BTC/AUD 3.28 60.34 3.22 6.21 0.61 13.32 
BTC/CAD 0.17 4.83 45.66 1.17 1.31 7.48 
BTC/EUR 14.71 3.69 0.54 49.11 1.29 20.23 
BTC/GBP 0.39 1.32 1.20 0.62 37.61 3.53 

TSI: 58.88/293.92 = TO others 18.55 13.43 5.3 17.77 3.83 20.04% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík (2018). Numbers 
are percentages. ‘Within’ refers to within system spillovers. Short and Long horizons refer to ‘4 days or 
less’ and ‘more than 4 days’, respectively. 

http:58.88/293.92
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Figure 2.16 Overall volatility spillovers (dynamic plot): Garman-Klass volatil­
ity measure 

Note:The black line is the Dynamic overall based on Parkinson (1980) volatility, the red line is calculated 
based on GK-YZ (2002) volatility. Dynamic overall volatility spillovers computed following Diebold and 
Yilmaz (2012) with a 150-day rolling window, Y-axis in percentages. Dates on the x-axis indicate the 
start of the year, and ticks are quarterly. 
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Figure 2.17 Volatility spillovers from others, dynamic plot: Garman-Klass 
volatility measure 

Note: Dynamic volatility spillovers from others computed following Diebold and Yilmaz (2012) with a 
150-day rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 
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Figure 2.18 Volatility spillovers to others, dynamic plot: Garman-Klass volatil­
ity measure 

Note: Dynamic volatility spillovers to others computed following Diebold and Yilmaz (2012) with a 
150-day rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 
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Figure 2.19 Net volatility spillovers, dynamic plot
 

Note: Dynamic net volatility spillovers computed following Diebold and Yilmaz (2012) with a 150-day 
rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are 
quarterly. 
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Table 2.9 Multivariate Qu and Perron Test for Structural Changes in VAR 
model 

Tests Test statistic Critical Value 

WD max test m=2 454.41 17.57 

m=5 581.02 17.57 

Seq test (m = 2) (2 | 1) 583.4 18.38 

Seq test (m = 5) (2 | 1) 

(3 | 2) 

(4 | 3) 

(5 | 4) 

583.64 

107.98 

53.79 

0.045 

18.38 

19.26 

19.86 

20.33 

Note: Exchange rates volatility are used to find the structural breaks. Trimming Percentage is 15% and 
the number of observations is 1787. The first test is the WD max test and the second one is the 

sequential test. 

Table 2.10 ADF Test for the VAR Coefficients’ Residuals 

(a) Volatility 

Residuals 

BTC/USD ADF -29.88 -3.43 Reject 
BTC/EUR ADF -42.16 -3.43 Reject 
BTC/GBP ADF -42.14 -3.43 Reject 
BTC/AUD ADF -42.33 -3.43 Reject 
BTC/CAD ADF -42.20 -3.43 Reject 

(b) Return 

Test CriticalTest stat ConclusionValue 1% 

Residuals 

BTC/USD 
BTC/EUR 
BTC/GBP 
BTC/AUD 
BTC/CAD 

Test 

ADF 
ADF 
ADF 
ADF 
ADF 

Test stat 

-41.93 
-42.08 
-42.07 
-42.14 
-42.10 

Critical ConclusionValue 1% 

-3.43 Reject 
-3.43 Reject 
-3.43 Reject 
-3.43 Reject 
-3.43 Reject 





Chapter 3 

The Relevance of Memory and 
Efficiency in Endogenously 
Switching Cross-market Bitcoin 
Prices 

Abstract 

Bitcoin prices are fundamentally driven by the ‘feeling and the memory’ of investors 
at a point in time and their reaction could generate persistent endogenous responses. 
This chapter investigates the endogenous growth mechanisms and aligning designed 
empirical tests to show whether persistence is a product of such a model. The finding of 
persistence has relevance to the theory of learning: an agent that learns synchronously is 
an agent that will depict less persistence behaviour. However, characterising learning in 
the Bitcoin market is exceedingly complex as it is frequently affected by news and/or 
economic/financial dynamics. Sudden arrival of a shock (for instance, Brexit) can break 
the cycle of endogenous persistence generating mechanisms. We propose a variant of 
ARFIMA Markov Switching with endogenous switches governing the internal dynamics 
of the Bitcoin price or volatility system. We find that the Bitcoin markets depict true 
long memory over time which enables us to create a robust forecasting strategy. The 
model and empirical strategies are new and results hold promising information of true 
memory under episodes of structural breaks. 

Keywords: Bitcoin; Cross-market volatility; Endogenous switch, MS-ARFIMA; struc­
tural breaks; Long memory ; Fractional integration; Persistence mechanism. 
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“No memory is ever alone; it’s at the end of a trail of memories, a dozen 
trails that each have their own associations”Louis L’Amour (An American 

Author) 

“The past beats inside me like a second heart.” John Banville, The Sea 

3.1 Introduction 

Memory is logically imperishable during the span of life of a boundedly rational agent. The 
only characteristic one might observe about the existence of memory is whether it is small 
or big, and the long or short ‘trail’ of associations it inherently defines over a period of 
time - just as Louis L’Amour (an American author) famously quoted. Following Granger 
(1980) and Hosking (1981), who independently defined and characterised the properties of 
’memory’ in a time series, its applications to real world data have exceeded its theoretical 
development (especially, identifying the source of its existence in economic and financial 
variables) in astronomic proportion. Economists and financial theorists have often come 
up with approximate theories identifying the possible source of long-memory in financial 
and economic data, see for instance (Farmer et al., 2006), (viz. Bouchaud et al., 2004, 
among others). However, in the majority of cases, extant research only focuses on the 
application of long-memory method for testing its existence in economic/financial data, 
without providing the theoretical source of its existence. In the case of cryptocurrency, 
a similar strand of research has begun to emerge (see for instance, (Bariviera, 2017)), 
barring some exceptions (viz. Cheah et al., 2018), where some directions of the source of 
long-memory are discussed. 

This chapter contributes to the nascent literature on the source and implications of 
‘memory’ in the cryptocurrency market, in particular in Bitcoin markets, in the following 
three significant ways. First, The chapter propose an identification strategy to demonstrate 
the source and implications of long-memory in Bitcoin markets. The chapter also, propose 
a demand-driven long-memory channel for Bitcoin, and show that there are waves of Buyer 
initiated transactions (given a fixed supply of Bitcoin), which follow a Beta distribution 
with memory, by following a linear algorithm of aggregation and power distribution. 
Second, we model the (non-)existence of long-memory to an endogenous market system 
mechanism which might give rise to a persistent shock with or without a mean reversion. 
We discuss this in the light of an endogenous switch in the memory and mean of the 
Bitcoin price process. Third, using daily Bitcoin data for five different markets, we study 
the nature of persistence in Bitcoin volatility, while considering an endogenous switch in 
volatility. From this, we shed light on the nature of the true long memory and quantify 
to what extent a true ’memory’ governs the internal dynamics of the system. 
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The choice of Bitcoin for our empirical examination is led by the fact that it is the biggest 
and most active cryptocurrency with a market capitalisation over $1501 billion. To 
investigate the nature of such types of investment decisions and help governments design 
adequate regulations for limiting the cross-market movement of shocks, a remarkable 
growth of research has lately sprung up. 

Volatility is more persistent when market interdependence is high, especially during 
financial crisis and episodes of economy-wide uncertainty (market inefficiency) (Cheah 
et al., 2018; Gillaizeau et al., 2019). Managing shocks within a system is relatively easy 
as one can exploit the system dynamic the features of shocks so as to monitor their 
movements and generate better predictive power for an asset (Gillaizeau et al., 2019). 
However, neglecting the long memory presence within the system can lead investors to 
spurious investment strategies. While former studies such as Bariviera (2017); Bouri 
et al. (2019) shed light on volatility persistence in the cryptocurrency market, Cheah 
et al. (2018) demonstrated the importance of cross-market dynamic interdependence of 
Bitcoin prices by estimating a system-wide long-memory. The focus on a cross-market 
rather than a single market cryptocurrency market in the latter study has significance 
within the chapter context: by modelling the ARFIMA process with Markov-switching, 
the fractional differencing parameter will create a stock of information for investors who 
decide on an arbitrage value of Bitcoin traded in various markets. Such a study is helpful 
in shaping the robust investment strategy of a single cryptocurrency traded in various 
markets. 

The objective of this chapter is to study long-range dependence and potential breakpoints 
simultaneously and endogenously using the MS-ARFIMA model for Bitcoin cross-markets. 
The conclusion of structural break and fractional integration tests clearly show the 
presence of ten breaks in (BTC/USD, BTC/EUR and BTC/GBP), and eight breaks in 
(BTC/AUD and BTC/CAD), respectively, when Bai and Perron (1998, 2003) structural 
break test was used. In addition, the results show the presence of long memory across 
all the Bitcoin cross-markets. Therefore, a spurious long memory in volatility could 
be attributed to the presence of structural breaks if the standard ARFIMA model was 
applied to each of the Bitcoin cross-market respectively. Consequently, we applied the 
MS-ARFIMA model instead and find that the fractional integration displays constant 
long-memory for both states across all the MS-ARFIMA models. Therefore, having a 
constant long memory could confirm that even though the series in this analysis are 
subjected to different structural breaks over time, the accounted long-range dependence 
is true. 

The finding in this chapter has two important implications for investors and policy makers. 
First, the presence of long memory could enable investors to capture speculative profits. 
This can be achieved through market timing. During a high-volatility regime, investors 
could buy and then subsequently sell when the market switches to a low-volatility regime 

1coinmarketcap.com (June 2019) 

http:1coinmarketcap.com
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in all Bitcoin cross-markets. Investors could also hedge during a high-volatility regime by 
purchasing Bitcoin futures from the Chicago Board Option Exchange (CBOE). Second, 
policy makers and regulators could introduce circuit breakers to stop trading in Bitcoin 
cross-markets when the market switches abruptly to a high-volatility regime, as the 
impact of a negative downturn would take a relatively long period of time to dissipate, 
given the nature of persistence in the price behaviour of Bitcoin in the cross-markets. 

To investigate further, the rest of the chapter is planned as follows. Section 2 explores 
the literature on modelling long memory in Bitcoin markets. Section 3 discusses the 
empirical methodology in both MS-AR and MS-ARFIMA. Section 4 presents the data and 
summary statistics, illustrating with two stationarity tests. In Section 5, a discussion of 
the results is carried out under three subsections: structural breaks, fractional integration 
and MS-ARFIMA, respectively. Section 6 discusses some alternative measures to validate 
the robustness of the conducted analysis. Section 7 concludes and presents the main 
implications of our research. Finally, it is useful to view the Appendix B in appendices 
Section to check the robustness and validation of the empirical tests. 
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3.2 Literature review. 

The literature on financial markets volatility has been investigated widely through different 
econometrics tools. These remarkable and stupendous studies have analysed and modelled 
financial market volatility to clarify the ambiguity of the dramatic fluctuation in financial 
assets prices. All this significant attention is due to the huge impact of volatilities on 
economies’ components and global markets. Thus, a thorough and deep investigation 
should tackle this issue to increase the quality of decisions, plans and investments across 
financial markets. The following section highlights the main approaches to modelling 
volatilities, following which we recall the most relevant studies applied in financial 
market volatilities with respect to the structural breaks in financial time series and their 
importance in volatility modelling. 

Prior to revising the literature, it would be helpful to provide an overview of the most 
relevant theories in financial markets volatility. Tracing the source of markets volatility 
could lead us to some well-known economic theories on efficient market hypothesis (EMH), 
speculative bubbles, overreaction and noise trading (Scott, 1991). These theories explain 
the mechanism of valuing or pricing financial assets within dynamic financial markets. 
Consequently, they should clarify and justify why and how prices are determined, and 
hence fluctuate over time (Scott, 1991). For instance, the concept of the seminal work 
of (Fama, 1976) explains that the current asset price should reflect all the available 
information in the market. However, newly arrived information (e.g. political news, 
monetary policies, fiscal policies) in financial markets will adjust prices randomly and 
unpredictably, and hence will generate some sort of different fluctuations over time 
(Bauwens et al., 2012)2. From an irrational perspective, speculative bubbles and noise 
theories have tried to examine the existence of deviation among the fundamental value of 
financial assets and their market prices (Scott, 1991). Based on the latter theories and 
the many financial theories, fluctuating prices play a core role in generating volatilities 
(systematic and idiosyncratic risk) in global financial assets and markets. 

Recently, the augmentation of economic and political events alongside Bitcoin markets 
has created a state of uncertainty in the global financial markets. Generously, academics 
and practitioners have supported the literature of volatility by a bulk of contributions 
from different academic areas. Historical volatility (HV afterwards) is one of these areas 
that have been applied, especially by practitioners and traders from disciplines other than 
finance. HV is considered an important and principal financial tool for providing a good 
benchmark of volatility in a specific sector or market. By contrast, Parkinson claimed 
that traditional volatility measures give poor information and sensitive movements (high 
noise). Therefore, he endeavoured to provide a more professional technique based on 
geometric Brownian motion. The latter technique helps in eliminating undesirable drifts 
from the model, which basically solves the problem of jumps and drifts (close & open 

2Further information see EMH hypotheses (Fama, 1970, 1976, 1991) 
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or weekend events) in the classic volatility equation (HV). Theoretically, Parkinson’s 
High-Low historical volatility (HL-HV afterwards) is more efficient than the traditional 
volatility (HV) by 2 to 5 times (Bennett & Gil, 2012; Parkinson, 1980) . Many volatility 
modelling approaches (HV, HL-HV and others) have been applied in the literature (for 
more details see (Alizadeh et al., 2002; Bauwens et al., 2012; Beckers, 1983; Garman & 
Klass, 1980; Parkinson, 1980; Rogers & Satchell, 1991; Wiggins, 1992; Yang & Zhang, 
2000). Further, exponentially weighted moving average process (EWMA) has been 
effectively employed for forecasting the volatility across financial markets, see (Chou, 
Chou, & Liu, 2010; Cox, 1961; Holt, 2004). For HV in Bitcoin Market, see (D. Baur & 
Dimpfl, 2017). 

The performance of HV models was found to be poor in terms of capturing dynamic 
volatility (Engle, 1982; Hsieh, 1991; Parkinson, 1980). The latter problem has induced 
scholars to find different approaches that could improve the models to be more dynamic 
and flexible in capturing the behaviour of assets. Indeed, the development of more efficient 
and accurate models is necessary to face the complexity and non-linear behaviours of 
financial data (such as Leptokurtosis, volatility clustering, leverage effect, and many 
others) (Brooks, 2014). Further, it is well-known that the variance of the residual in 
financial time series models is unlikely to be constant (Brooks, 2014). Consequently, a 
new class of stochastic models, Auto-regressive conditional heteroscedasticity (ARCH 
afterwards) was introduced by (Engle, 1982) to cope with the aforementioned behaviours 
of financial data3. Despite the literature on analysing and forecasting volatility in financial 
markets having grown extensively after introducing the ARCH model, some weaknesses 
have been identified in the model4 . 

Therefore, introducing the generalised auto-regressive conditional heteroscedasticitiy 
(GARCH afterwards) model has helped in avoiding the latter weaknesses in the ARCH 
model (Bollerslev, 1986; Taylor, 1986). The new approach with its extensions has allowed 
scholars to trace the leverage affect and many characteristics which were not able to be 
captured in the ARCH model. Since then, a huge number of extensions to the GARCH 
model have been introduced, such as Exponential GARCH (EGARCH), GJR-GARCH, 
GARCH in mean (GARCH-M), and many others. For more details see the full survey 
(Andersen et al., 2009; Bauwens et al., 2006; Teräsvirta, 2009). Turning to cryptocurrencies 
markets, the GARCH family has been employed in this stream. For example, Chu et 
al. (2017) investigated the volatility of the most popular cryptocurrencies under twelve 
different extension of GARCH model. Their results suggest that most cryptocurrencies, 
including Bitcoin display extreme volatility, especially in enter-daily prices. The literature 
on cryptocurrencies under the GARCH family approaches has started to grow rapidly 
recently, see(Charles & Darné, 2018; Dyhrberg, 2016; Katsiampa, 2017). 

3for a full survey and more theoretical details see (Bollerslev, Chou, & Kroner, 1992) 
4(e.g. the model assumes that both negative and positive shocks have an equal effect on volatility, 

hence, the ARCH system is restrictive, especially if the ARCH order become higher) 



69 
Chapter 3 The Relevance of Memory and Efficiency in Endogenously Switching 
Cross-market Bitcoin Prices 

However, Hsieh (1991, 1993, 1995) has introduced models through auto-regressive process, 
such as the Auto-regressive volatility model (AV afterwards), which is considered to be 
an efficient non-linear model compared with the HV and GARCH models. The non-linear 
models are able to capture the auto-correlation behaviour of variables and become more 
consistent with data fluctuating over time. For example, Hsieh (1995) and H. Li and Hong 
(2011) stated that AV approach, efficiently captures the mean-reversion and clustering 
volatility in financial data, while HV models are not able to capture these behaviours. 
Moreover, H. Li and Hong (2011) reported that estimating financial volatility data through 
the AV process gives more accurate and efficient forecasting than the GARCH model. 

To draw a conclusion from all the above, financial market volatility has been studied 
intensively in the literature through different models, such as historical volatility, implied 
volatility or GARCH family. Many advantages and disadvantages are mentioned above, 
but one important issue has not received enough attention in forecasting volatility 
literature along with the other features of financial data. Researchers have claimed that 
neglecting the structural breaks (breakpoints) in exchange rates, cryptocurrencies and 
stock market volatility could lead to poor results and corrupted estimations (Bai, 1994; 
Hammoudeh & Li, 2008; Hansen, 2001). 

Modelling structural breaks has been growing extensively in the literature via many 
streams. The focus will be divided into four streams: firstly, modelling the structural 
breaks in moving average process; secondly, modelling the breakpoints in auto-regressive 
models; thirdly, structural breaks with long memory process; fourthly, modelling ARMA 
and detecting the breakpoint simultaneously. Finally, modelling fractional integral process 
and structural breaks simultaneously. 

3.2.1 Modelling the breakpoints in Moving average process 

Based on the Sunspot, Venus and credit cycle theories, a huge amount of literature has 
studied the modelling trends and cycles in economic history (Morgan, 1990). Therefore, 
in the mid-20th century, researchers started to pay attention to the cyclical and trends 
fluctuation during economic events. In order to reduce bias in modelling the fluctuations 
and jumps in cycles and trends, researchers resorted to dismantling the economic time 
series to fit the data accurately. For more details, see (Aldcroft & Fearon, 1972; Ford, 
1981). 

Since modelling and analysing the growth trend in business cycles by simple linear models 
(Frickey, 1947; Hoffman, 1955), many drawbacks have been found and documented in 
the literature. Consequently, scholars have been motivated to find a solution by isolating 
the trends in time series and examining them individually in the same system. Aldcroft 
and Fearon (1972) and Ford (1981) applied a moving average method to differentiate 
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between jumps in the system. They used this moving average model to treat the trend 
stochastically and ensure the system did not depend entirely on the cyclical component. 

Ford (1969) investigated the impact of exports in the British economy during the years 
1870 and 1914. According to him, the nature of data has a cyclical pattern with different 
trends. Consequently, in order to study these data, a deviation moving average technique 
was applied to extract some trends from the later cycles. By applying the later method, 
he answered the question, “What is the impact of export as a source of income and import 
as a leakage from the incomes and expenditure on the British economy?", explaining 
in precise detail the actual causes of fluctuation by virtue of separating the dynamic 
behaviours and distinguishing between them5 . 

Using moving average technique to study trend behaviour considers misleading, as 
providing the model with a small sample will result in losing the model’s trend (Aldcroft 
& Fearon, 1972). Therefore, to solve the problem Leser (1961) & Hodrick and Prescott 
(1997) developed an unweighted moving average model, allowing the first part of the 
model to calculate the goodness of fit and the second part to measure the smoothness 
of parameters. Therefore, the later technique will save the sample size from any losses. 
Hodrick and Prescott (1997) rebuilt the latter model in a matrix form to obtain a filter 
weight (H-P filter) for calculating the trend repeatedly at each time in the series. 

Ravn and Uhlig (2002) found that changing the observations frequency affects the results 
of the Hoderick-Prescott filter (HP filter). Hence they developed the latter method by 
using two different techniques: first, a time domain approach, focusing on calculating 
the smoothing parameter; second, a frequency domain approach, focusing on the transfer 
function of the HP filter. Thus, the two approaches are now able to adjust the smoothing 
parameter with respect to the change of frequency observation. Further, Maravall and del 
Río (2007); Ravn and Uhlig (2002) focused on monthly, quarterly and annual observations 
to analyse the HP filter from different angles. They studied both temporal aggregation 
and systematic sampling to increase the accuracy of HP filters. However, for more detail 
on moving average and structural breaks, see the excellent survey (Mills, 2016). 

For recent research, Urquhart et al. (2015) applied a moving average model on the 
Japanese, UK and U.S. stock market data to determine how those markets adapted to 
the knowledge of the profitability of technical trading. However, MA model showed a 
clear structural break around the year 1987, and they found that the model’s predictive 
power decreased remarkably after the breakpoint (1987). This suggests that applying 
the moving average model in time series could detect any changing point in the series. 
However, in the next subsection more advanced and flexible methods will be revised. 

5For a full survey on modelling trend and cycle see (Mills, 2016). 
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3.2.2 Modelling the breakpoints in Auto-regressive model AR 

Modelling the moving average and auto-regressive models to extract the trends and 
identify the breakpoint from economic time series has been successfully applied in the 
literature6 . However, with the rapid development in financial markets and financial 
econometrics, more advanced approaches were needed to deal with the cons of modelling 
financial data (e.g. structural breaks). The seminal work of (Hamilton, 1989) provided 
an effective framework in forecasting and modelling the behaviour of macroeconomic and 
financial data7. Hamilton stated that involving multiple structure (models) or moving into 
an auto-regressive model, can explain the financial time series behaviour during different 
economic events (e.g. low and high interest rates). Thus, allowing the process to switch 
between these structures will help the system to capture more complex behaviours. The 
gold feature of Markov Switching Model (MSM, SM or MS afterwards) is that switching 
among the regimes is controlled by a latent variable with first-order Markov chain (Kuan, 
2002)8 . 

Hamilton (1989) applied his new framework (MSM) to post-war U.S. data on real GNP 
between 1951 and 1984. This model attempted to study the U.S. business cycle by 
considering two states, a recessionary state and a growth state. So, allowing unobservable 
variables to switch between the two states, negative growth rate (recessions) and positive 
growth rate (normal time), respectively, will measure and analyse the behaviour of 
economic recession more accurately and efficiently. The model suggested that an economic 
depression is linked with a 3% permanent increase in the rate of GNP. Empirically speaking, 
Hamilton (1989) claimed that the model is flexible and more intuitive by allowing the 
value of current state to depend directly on its instant past value. Another extra feature 
is that the system permits the properties of the model to be determined by both the 
state variable and the innovation terms. The latter approach was provided to cover 
the shortcomings of (Quandt, 1972)’s model, which considered that switching between 
states is totally independent over time. Consequently, the realisation of the current 
state is independent from the past and future states, so the model could become "noisy" 
(switching back and forth between the states). 

Hamilton’s model regulates the auto-regressive model to include a unit root by assuming 
that the time series is the aggregate of a two-state Markovian process and a general 
auto-regressive model. This suggests that the series is trendless and not suitable for most 
macroeconomic series. The previous sharp criticism was admitted by (Lam, 1990), after 
explaining the importance of restricting the unit root in the model. He claimed that the 
impact of the error term on long-run forecasting of incomes depends on the existence of 
unit root. Therefore, based on the later criticism, he relaxed the auto-regressive model 
so as to be not restricted to the assumption of unity (generalising Hamilton’s model). 

6For full survey, see Mills (2016)
 
7For more information, see (Goldfeld & Quandt, 1973).
 
8For full survey, see (Andersen et al., 2009; Hamilton & Raj, 2013).
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By applying the same data as Hamilton’s paper (the log of real GNP of the USA), he 
proved that his model performed better than Hamilton’s model in the long-run term. By 
contrast, he found that Hamilton’s model outperformed his approach and the ARIMA 
model in the short-term horizon. From another dimension, Kim (1994) introduced a new 
technique to reduce the computation time and increase the filtering power in Hamilton’s 
model. Also, Kim stated that relaxing his new approach on Lam’s method was enabling 
the system to be more effective and powerful. 

From another angle, F. X. Diebold et al. (1994) stated that although the Markov switching 
model is useful in capturing the dynamic behaviour of financial data, fixing the transition 
probabilities over time will let the switching probabilities from one regime to another 
would not depend on the behaviour of the econometric model. Thus, they proposed a 
modified Markov switching model in which the probabilities of transition are able to 
change with fundamentals. They supported their approach by providing a full simulation 
based on EM algorithm to prove that allowing the transition probabilities to vary with 
the dynamic model will increase the power of the model. 

Since Hamilton (1989) focused on modelling the mean behaviour to allow the model to 
be involved in more complex dynamic behaviour (e.g. structural breaks), the literature 
started to grow extensively, particularly in financial markets. Garcia and Perron (1996) 
went a step further to find a special case in the behaviour of the U.S. real interest rate. 
They found three states could explain the behaviour of time series (1961-1973, 1973-1980 
and 1980-1986), after employing Hamilton (1989)’s approach. The approach suggested 
that some structural events had occurred along the sample span, due to sudden changes 
in oil price, monetary policy and federal budget. They concluded that real interest 
rate is essentially random with different mean and variance in three segments of time. 
Moreover, Schaller and Norden (1997) investigated the behaviour of stock markets in 
both mean and variance through (Hamilton, 1989)’s method. They found very strong 
evidence for the structural breaks and switching behaviour. The power of their evidence 
came from applying different methods (e.g. switching in mean, switching in variance, and 
changing the transition probabilities over time). Lastly, they employed (Hansen, 1992b) 
and (Garcia, 1998) tests to prove that the switching regime was statistically significant. 

In 1998, Kim and Nelson developed an approach based on (Shephard, 1994)’s methodology 
and processed it through Bayesian framework to enable the system to measure the regime 
probabilities at each point in time. Moreover, they answered the question, " Do the 
resulting estimates of regime switches show evidence of duration dependence?" by involving 
non-zero probabilities of duration dependence in the switching model. Their findings 
supported the literature on the switching model by suggesting that the recession state 
indicates a strong positive duration dependence, while the booms state suggests vice versa, 
within a uni-variate context (F. Diebold & Rudebusch, 1990; F. X. Diebold et al., 1993). 
Multivariate and Bayesian approaches were extended to measure the duration dependence, 
and to support the univariate context (F. Diebold & Rudebusch, 1990; Kim & Nelson, 
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1998). Since the later contributions and modification to the MS-AR model, extensive 
research has employed it with its application to study the dynamic behaviour across 
financial markets. Studying the behaviour of exchange markets is extremely important 
and useful to support investment decisions. Therefore, employing an advanced method to 
treat the complex behaviour of exchange markets and financial markets in general will 
help to improve the quality of financial decision making. 

Hamilton (1989) introduced the MS-AR model, which has helped researchers and practi­
tioners to trace the dynamic fluctuation with the existence of structural breaks in the 
system. (Abiad, 2003; Bazdresch & Werner, 2005; Chen & Lin, 2000; Fiess & Shankar, 
2009; Jeanne & Masson, 2000; Kirikos, 2000; Li et al., 2010; Subagyo & Sugiarto, 2016; 
Xin, 2013) concluded similarly by supporting the stream of literature in financial markets, 
and particularly in exchange markets. 

3.2.3 Modelling the long memory (Fractional integration) 

Many aspects of real life could convert into time series data. Common examples might 
be: stock markets, astrophysics, macroeconomics, speech recognition and many others. 
Basically, to study these time series data, an analysis should be employed to extract all 
the useful characteristics and convert them into readable information that could add new 
knowledge and contribute to the literature. The key concept here, the analysis of time 
series, relies entirely on the interdependence among observations. In other words, the 
question, "how far do values in time series affect each other?" embodies the concept of 
studying the time series. 

However, one of many characteristics of the time series is defined as a long memory process 
or long-range dependence. In the seminal work of Diebold and Inoue (2001), the long 
memory process was defined from two different perspectives: time and frequency domains. 
In the time domain, the process focused on the decay level of long-lag auto-correlations; 
while, in the frequency domain process, the focus was on the level of burst of low-frequency 
spectra. In other words, the long memory process means that the dependence between 
observations in the series is relatively strong. Detecting the origin of long memory could 
lead us to very significant literature, such as, (Cioczek-Georges & Mandelbrot, 1995; 
Granger, 1980). For more details see (Andersen et al., 2001; Diebold & Inoue, 2001). 

In 1980, Granger tried to explain the long memory process by aggregating dynamic 
equations. He showed that cross-sectional aggregation could have a long-range dependence. 
Three possible suggestions were detected in the time series models: firstly, the time series 
has a spectrum of small frequencies d > 0. Secondly, the time series had infinite variance 
(d ≥ 1/2) or finite variance (d < 1/2). Thirdly, a time series with d=1 needs to be 
differenced to approach stationarity. Granger (1980) claimed that in practice, aggregating 
dynamic equations could generate a new class of models that have different properties 
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(e.g. long memory and integrated process). Consequently, the models should be diagnosed 
before analysis, otherwise the estimation will be inefficient or spurious (Granger, 1980). 
During the same period of time, Granger and Joyeux (1980) introduced the "fractional 
differencing" technique and suggested that the "d" order does not necessarily have to 
be an integer, as (Box & Jenkins, 1970)’s method. By allowing for a fractional "d" 
(1 > d > 0) the model might provide a higher quality of forecasting in both the short-run 
and the long-run, especially in low-frequency modelling. As a result, Granger and Joyeux 
(1980) stated that proposing the fractional differencing process provides useful and fruitful 
long-dependence forecasting properties, particularly in low-frequency equations. 

Long-range dependence models have been employed extensively in financial data (e.g. 
inflation rates, interest rates, forward premiums) (Baillie, 1996). Baillie (1996) claimed 
that long memory processes have gained significant success in examining the volatility 
in financial markets. Slightly wider, indeed the auto-regressive fractional integrated 
moving average (ARFIMA afterwards) model (Granger, 1980; Granger & Joyeux, 1980; 
Hosking, 1981) has several useful applications in financial markets literature, particularly 
in volatility forecasting. An example of the latter claim, F. X. Diebold et al. (1991) applied 
ARFIMA process to study the behaviour of 16 real exchange rates. Their conclusion 
was that applying ARF IMA models provided powerful long-run forecasts and effects of 
shocks. One more example to support ARFIMA process’ literature, Crato and Rothman 
(1994) estimated the real exchange rate of nine currencies against the British pound 
between 1973 and 1990 to find the long-run purchasing power parity. They claimed that 
ARFIMA processes are more flexible and relatively more generalizable than other earlier 
studies. Others supported the accuracy and powerl of ARF IMA process. For more 
details in the literature, see (Coli et al., 2005; Comte & Renault, 1998; Granger & Ding, 
1996; Martens et al., 2004). For full survies, see (Baillie, 1996; Liu, Chen, & Zhang, 2017). 

The aforementioned literature claimed that AR, MA, ARMA and ARIMA processes can 
only capture short-run dependence (Liu et al., 2017). By contrast, the ARF IMA model 
provides a better fit and forecasting when dealing with long memory data (F. Diebold 
& Rudebusch, 1990; Liu et al., 2017). Although ARFIMA models perform better than 
previously, Hauser et al. (1999) criticised the processes and proved that ARF IMA is 
not suitable for the estimation of stability, because of the violation of behaviour in 
their spectral densities. For countering literature see, (Reschenhofer, 2000; Sitohang & 
Darmawan, 2017). Consequently, the development and building of more appropriate 
approaches to forecast macroeconomic and financial data under different circumstances is 
required (Gabriel & Martins, 2004; Haldrup & Nielsen, 2006). In the next section, a new 
set of approaches is developed within ARF IMA process to increase the accuracy and 
capabilities of forecasting. 
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3.2.4 Modelling structural breaks with ARFIMA process 

Regime switching with long memory models has been employed and studied intensively 
in financial markets. However, distinguishing between terms is extremely important, 
as structural break and long-range dependence are very different fields for the same 
phenomenon (Diebold & Inoue, 2001; Haldrup & Nielsen, 2006). Thus, an active literature 
has been explored for these two phenomena to clear up the confusion between the 
aforementioned models and provide more understandable and distinct work in this area 
(Diebold & Inoue, 2001; Granger & Ding, 1996; Granger & Hyung, 2004; Hidalgo & 
Robinson, 1996; Lobato & Savin, 1998). Based on the aforementioned literature, it was 
agreed that a certain time series might show spurious long memory with respect to its 
fractional order, see (Baillie, 1996; Beran & Terrin, 1994; Diebold & Inoue, 2001). 

Empirically, Haldrup and Nielsen (2006) developed a Markov regime switching model 
which allows us to divide the long memory into different regime states. They used hourly 
spot electricity prices for 4 Scandinavian countries between January 2000 and October 
2003. The switching regime model permitted categorisation of the behaviour of electricity 
prices over time (long memory) into two states, the congestion and non-congestion 
market. Their analysis generated important and fruitful outputs regarding the behaviour 
of electricity prices. Analytically, the data (e.g. East Denmark and Sweden data pair) 
suggested that the two series were fractionally co-integrated, but applying a switching 
regime model reveals that the data were fractionally co-integrated in one state and not 
in the other state. Moreover, an important feature claimed by Haldrup and Nielsen is 
that the switching model system could have different levels of long memory from regime 
to regime in the system. Motivated by the previous advantage, Tsay (2008) applied the 
same methodology to discover the impact of oil prices on U.S. inflation between 1947 and 
2007. Results suggested that oil price fluctuations play an important role in determining 
the paths of U.S. inflation. 

On the same grounds, Haldrup et al. (2010) endeavoured to solve a disadvantage found in 
(Haldrup & Nielsen, 2006)’s framework by extending it from a univariate to a multivariate 
model. Econometrically, the latter limitation is that the model estimates the parameters 
separately, when actually the parameters are dominated by the same shock. Thus, 
proposing a model that allows for a long memory and regime dependent vector auto-
regression (V AR) adds the advantage of permitting the variables to be incorporated 
in the same process, being dominated by the same shock. The proposed model has 
proved its effectiveness, particularly in forecasting, by providing a small mean absolute 
forecast error (MAFE) compared with the univariate estimation. On the contrary, the 
two proposed models above (Haldrup et al., 2010; Haldrup & Nielsen, 2006) consider the 
state variable in the regime switching model as an observable state, while the standard 
(Hamilton, 1989)’s model assumes the state variable as latent. Moreover, the latter two 
models do not satisfy the proposal of (Diebold & Inoue, 2001), who suggested that a 
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Markov switching model with latent variable can generate a long memory dependence 
process. 

Turning from electricity markets to interest rate markets and the Nile river level, Tsay 
and Härdle (2009) proposed a general class of Markov-switching auto-regressive fractional 
integral moving average (MS − ARF IMA afterwards) processes, and used Durbin­
Levinson-Viterbi algorithm to easily deal with the complexity of computation9. The 
distinguishing feature of the latter processes is that a hidden Markov model was employed. 
In other words, in contrast to (Haldrup & Nielsen, 2006)’s approach, Tsay and Härdle 
(2009) modelled MS − ARF IMA by assuming that the variable state is latent. By this 
method, the model became consistent with the Markov-switching AR model (Hamilton, 
1989) and the puzzle proposed by (Diebold & Inoue, 2001) to build a latent Markov 
switching model that can generate long-range dependence. Tsay and Härdle (2009) 
applied their proposed model on US ex-post real interest rate and Nile river level data to 
prove the stability and consistency of the model. Both applications provided consistent 
results with the literature and were found to be useful in detecting structural breaks and 
fractional integration simultaneously and endogenously (Tsay & Härdle, 2009). 

From South Africa, Balcilar et al. (2016) applied the latter model to study the duration 
of inflation persistence over time and across different monetary policy regimes. Thus, 
monthly CPI 10 inflation between April, 1923 and April, 2014 was regressed to identify 
the structural breaks along the series. Three regimes were identified: 1− a low inflation 
regime (1920 − 1960); 2− a high inflation regime (1961 − 2003); 3− a low inflation 
regime (2003 − 2014). Results suggest that inflation was persistent in all regimes, but 
was significantly more persistent in a high inflation regime. By contrast, considerably 
shorter persistence was found during the low inflation regime. Balcilar et al. claimed that 
applying MS − ARF IMA model could generate useful and effective results for monetary 
policies and macroeconomic applications. 

Fofana et al. (2014) developed a regime switching univariate ARF IMA − GARCH 

model to examine the problem of confusion between long memory and non-stationarity 
in economics and financial time series. They analysed the daily volatility of two exchange 
rates between January, 1990 and March, 2014. Their results indicate that the model was 
capable of analysing the long-range dependence parameter and identifying non-stationarity. 
However, the proposed model could not be estimated by Maximum Likelihood approach 
because of the path dependence. Consequently, a Bayesian Markov chain Monte Carlo 
(MCMC) method was used to embrace the problem. On the one hand, the authors 
claimed that RS − ARF IMA − GARCH model11 was performing very well in modelling 
financial time series and structural changes; on the other hand, although the model 
considered the state variable to be latent (Tsay & Härdle, 2009), they assumed that 

9More details are given in the methodology section
 
10Consumer price index
 
11Regime switching-ARFIMA-GARCH
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all regimes have the same probability of occurring (Fofana et al., 2014). Staying in 
financial markets volatility, Raggi and Bordignon (2012) proposed a framework in line 
with previous models, but the key difference in their framework is that the regime shifts 
were modelled via binary non-observable Markov process, which allows the states to stay 
dependent. They applied the latter approach to 5 minutes intra-daily data of S&P 500 

index from January, 2000 to February, 2005. The results suggest that implied volatility is 
important for forecasting realised volatility. 

On the same grounds, Shi (2015) raised a question related to the above literature, "Can we 
distinguish regime switching from long memory?". On a theoretical base, he proved that 
smoothing probability causes long memory in regime switching. Thus, in this regard he 
modelled a Markov regime-switching and ARFIMA model to create a two-stage-ARFIMA 
(2S-ARFIMA) framework that could dominate the impact of the smoothing probability 
series. A simulation study was proposed to show that it can easily and efficiently separate 
the ARF IMA process from MRS 12 process. By applying the latter approach in a 
financial application, it could easily clear up the confusion between regime switching and 
long memory models. Similarly and on the same level, Shi and Ho (2015) proposed a 
MRS − ARF IMA model13 to alleviate the confusion between long memory and regime 
switching. They applied their framework on German-Klass and realised volatility of the 
FTSE index between January, 2001 and December, 2012 to explain the usefulness and 
advantages of the proposed model. To support their results, a Monte Carlo simulation 
showed that the model could easily and effectively identify the pure MRS and the pure 
ARF IMA models14 . 

To sum up, volatility has been a controversial and important tool in financial markets 
for decades. Historical volatility was popular for studying the behaviour of financial 
instruments before the moving average MA and auto-regressive AR processes became 
more effective in forecasting the fluctuations of financial securities. Later on, auto­
regressive conditional heteroscedasticity ARCH family and its extensions become more 
popular to deal with financial data behaviour, particularly leverage affect and clustering 
data. Although previous models perform very well in investigating volatilities across 
markets, a huge gap still exists in studying the dynamic behaviour of volatility. As a 
consequence, a strand of literature has started to investigate the dynamic behaviour of 
financial assets with regard to the structural breaks along the time series. Many studies 
have identified how break- points play an important role in determining the accuracy 
and robustness of stochastic models. Thus, researchers and scholars have tried to find 
the optimal model to cope with the complex behaviour of financial data. Unfortunately, 
the long memory process comes with structural breaks to cause confusion in identifying 
the latter terms. As a result, researchers such as (Tsay & Härdle, 2009) introduced a 

12Markov-Regime Switching 
13Markov regime switching-autorgressive fractional integrated moving average 
14To explore more methodologies in investigating structural breaks and long memory see (Charfeddine 

& Guégan, 2012). 
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state-of-the-art endogenous model that can deal with all the limitations mentioned earlier 
in (Fofana et al., 2014; Haldrup et al., 2010; Haldrup & Nielsen, 2006). More empirical 
details will be discussed in the methodology section. 

3.2.5 Review of the Cryptocurrency literature 

Cryptocurrency markets have recently received significant attention due to their important 
role in global financial markets. Thus, a significant growth of research has sprung up 
recently to help governments and policy makers to design adequate regulations on 
controlling cross-market movement shocks, and to discriminate and facilitate the best 
investment decisions for financial institutions, investors and portfolio managers. 

An excellent systematic survey done recently (Corbet et al., 2019) reveals that the 
literature has focused mainly on three theoretical and empirical research areas: first, 
regulations and information system research; second, financial market and monetary 
theoretical formulation of cryptocurrency; and third, development of econometric and/or 
statistical mechanisms to understand price behaviour under different scenarios. Another 
systematic review done by (Kyriazis, 2019a) explores the cryptocurrency research under 
efficient market hypotheses and long-range dependence, in which the latter provides 
us with crucial inferences in determining the best investment strategies for gaining 
extraordinary returns. To maintain the flow, and minimise repetition and space of a 
succinct literature review, interested readers are encouraged to refer to the latter two 
surveys. 

Investigating the regulations and information systems of cryptocurrencies allows authori­
ties and legislators to derive suitable laws and regulations with boundaries to increase 
the efficiency and decrease frustration and manipulation of the market (Böhme et al., 
2015; Dwyer, 2015; Gandal et al., 2018). A growing body of literature on economics and 
financial markets, simultaneously with the latter phase of research has helped individual 
investors, investment entities and risk managers to hedge and diversify their investment 
to maximise their profits with the lowest associated risk (Baur et al., 2018; Gillaizeau 
et al., 2019; Urquhart & Zhang, 2019). Despite the sparse amount of cryptocurrencies 
literature on finance and economics, much excellent research in different areas such as 
market efficiency, price and/or bubble dynamics, hedging and diversification strategies 
has attempted to examine the cryptocurrencies market and Bitcoin in particular. 

A plethora of empirical research has systematically presented state-of-the-art estimation 
techniques to identify the efficiency of Bitcoin markets (Brauneis & Mestel, 2018; Khuntia 
& Pattanayak, 2018; Wei, 2018), adopting different methods to support it and concluding 
that the level of efficiency is associated with several factors, such as liquidity and size. 
On the contrary, many researchers support the fact that the Bitcoin market shows lack 
of efficiency, due to an imbalance between the true value of Bitcoin and its available 
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information in the market (Bouri et al., 2019; Urquhart, 2016; Vidal-Tomás & Ibañez, 
2018). Investigating the connectedness/spillovers and market dynamics provides a clear 
indication of market inefficiency, together with useful information about the net receiver 
and net dispenser of Bitcoin volatility (viz. Corbet et al., 2018; Gillaizeau et al., 2019). 

A wide range of empirical research also focuses on long-range persistence, cointegration 
and structural breaks to explain the complex behaviour and non-linear dynamics of 
Bitcoin prices (Alvarez-Ramirez et al., 2018; Caporale et al., 2018; Cheah et al., 2018). 
The existence of long-range dependence along the volatility series indicates informational 
inefficiency in the market; hence, speculation, forecasting and designing profitable invest­
ment strategies can be exploited to make abnormal profits, but ignoring the stability of 
the system during the analysis process could generate misleading information. Others 
have analysed the time varying behaviour of long range dependence through different 
tests such as Hurst exponent and detrended fluctuation analysis DF A and exact local 
whittle estimation with rolling windows (Alvarez-Ramirez et al., 2018; Bariviera, 2017; 
Bariviera et al., 2017; Caporale et al., 2018; Cheah et al., 2018). Statistical properties are 
subject to sudden change over time, especially in the Bitcoin market, which may leave 
some distortion shocks permanency; hence, structural breaks test are crucial to validate 
the long range stability process (Al-Yahyaee et al., 2018; Bouri et al., 2019; Charfeddine 
& Maouchi, 2019; Mensi et al., 2018, 2019). A long debate in the literature suggests 
that the presence of structural breaks in a time series could appear as high long-range 
persistence; thus, level shifts and long memory are easily confused as Diebold and Inoue 
(2001) suggested. 

By contrast, former studies such as Chaim and Laurini (2018) shed light on stochastic 
volatility models with shifts in mean and variance for a ‘cryptocurrency market’ and 
‘other asset markets’ (such as indices and gold), Cheah et al. (2018) demonstrating the 
importance of cross-market dynamic interdependence of Bitcoin prices by estimating 
a system-wide long-memory. The focus on a cross-market rather than a single market 
cryptocurrency market in the latter study has significance in our context: by employing 
ARF IMA Markov Switching with endogenous switch governing the internal dynamics of 
Bitcoin prices or volatility system, we will be able to distinguish between the true and 
spurious long memory with high accuracy. 



80 
Chapter 3 The Relevance of Memory and Efficiency in Endogenously Switching 

Cross-market Bitcoin Prices 

3.3 Empirical Methodology 

3.3.1 Markov Switching Auto-regressive Model MS-AR 

Hamilton (1989) introduced a discrete shifts in regime process through an auto-regressive 
model to trace the dynamic behaviour of a time series. To illustrate that, we should 
consider that the mean (intercept) of an auto-regressive model is non-constant overtime. 
Thus, different auto-regressive models should be built after each break point to boost the 
efficiency of detecting the non-linearity in a time series. Models (3.1) and (3.2) 15,below, 
illustrate how considering two different intercept could help in solving the turning point 
problems in time series. 

xt = α1 + βxt−1 + Et, (3.1) 

xt = α2 + βxt−1 + Et, (3.2) 

Where, α1&2 the constant terms and Et ∼ i.i.dN(0, σ2). The concept of the latter models 
is plausible, but not effective to be processed individually. Econometrically, changing the 
behaviour of series in the past and in the future (e.g. changing the intercept) should be 
considered in the same model to provide a reliable forecasting. In this regard, the above 
models could be compressed in a one framework and then allow the process to switch 
among intercepts by an unobserved variable St, which St called regime or state variable 
(e.g. St = 1, 2, 3, ..) 16. Consequently, equations (3.1) and (3.2) can be rewritten as: 

xt = αSt + βxt−1 + Et, (3.3) 

Where St = 1 when the the process is in state 1 (α1), in contrast, St = 2 when the process 
is in state 2 (α2). Equation (3.3) follows a normal distribution with different means and 
variances. Hamilton considered latter regimes to be an unobserved random variable or in 
other words discrete-valued stochastic variable. Mathematically, Markov chain process is 
the simplest and proper model to deal with the travelling processes among regimes within 
a system. Before start explaining Markov chain, let us firstly set St to be an integer 
number as (1, 2, 3, ..., N). Secondly, Assume that St equals a specific amount of j and 
the probability of obtaining j depends totally on the most recent past value St−1. Latter 

15Some researchers considering these models as zero mean, see (Cochrane, 2005; Hamilton, 1994) 

xt − α1 = β(xt−1 − α1) + �t. 

16Notice here, if St, t = 1, 2, .. is defined as observable variable (known in advance), then the process is 
simply a dummy variable auto-regressive. 
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specification can be written mathematically as: 

17p = {St = j|St−1 = i, St−2 = m, ..} = p{St = j|St−1 = i} = pij (3.4) 

Where pij ,ij=1,2,3,..N .Which pij is the transition probability, i is the state in time {t−1} 
and j is the state in time {t}. By probability law the sum of all pij must be equal to 1. 

pi1 + pi2 + pi3 + .. + piN = 1, (3.5) 

Transition probabilities could be compressed into (N × N) matrix, called the transition 
probability matrix or P :
 ⎞⎛ ⎜⎜⎜⎜⎝
 

p11 p21 . . . pN 1 

p12 p22 . . . pN 2 
. . . . . . . . . . . . 

p1N p2N . . . pNN 

⎟⎟⎟⎟⎠
 
P =
 (3.6)
 

In this transition probabilities matrix the column indicates to ith and the row indicates 
to the jth of pij in equation (3.5). For instance, the column 2, row 1 parameter indicates 
to the probability that state 2 will be followed by state 1. In other words, transition 
probabilities should give some inference for choosing the current state among the states 
in the system: 

P {St = 2|St−1 = 2} = p 
(3.7) 

P {St = 1|St−1 = 1} = q 

In case the system has two states, four transition probabilities will be generated: staying 
in the same state (p or q) or switching from state to state (1 − p or 1 − q). In general, 
after forecasting the Markov chain a Maximum Likelihood Estimation MLE method can 
be employed to analyse the mixture model18,19. Estimating the model can be executed 
by the expectation maximisation (ME) algorithm20 . 

17Notice here, Hamilton assumed that the state is just depends on the most recent past value {St−1} 
and ignore all others {St−2, St−3, St−4,..}. 

18Markov chain can be represent through vector auto-regression frame to calculate all the possible 
number of ahead forecasts of the process. Notice here, the matrix P must be irreducible (p11 < 
1 and p22 < 1) otherwise the state will be an absorbing state (the process will stay in this process 
forever), to review the full process see (Hamilton, 1989, 1994). 

19After forecasting the probabilities, an inference on the regimes can be build through Bayesian theorem, 
by combining the information of current and past data, transition probabilities and distributions. The 
latter combination can generate inference for each date t in the sample data, this process called the 
smoother recursion, see (Kim, 1994) for more details. 

20The first equation displays the normal distribution function: 
−(xt−αj )

2 

f(Xt|st = j; θ) = √ 1 ) × P (St = j|xt−1)2 · exp( 
2σ2 

where, Xt is the data set, St is the number of states, θ is a vector of population parameter θ = 
(α1, α2, σ1, σ2, p11, p22). For more information about analysing MS − AR see Kim (1994). See also (Kim 
& Nelson, 1999) to explore different calculation methods of Markov switching model. Moreover, the 
second equation represents log MLE: 
log L(θ) = Σt=1T log{Σ1 f(xt|St, xt−1; θ)P (St|xt−1)}. 

2πσ2 
j 

St=0 
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3.3.2 Markov Switching Auto-regressive moving Average MS-ARMA 

The latter subsection introduced a general class of MS − AR process (Hamilton, 1989). 
In this subsection an MS − ARMA model will be introduced to build an initial idea 
about MS − ARF IMA model. Chen and Tsay (2011) investigated the problem of "N t 

possible routs" when the system contains MA parameters by building a new algorithm 
based on (Gray, 1996; Hamilton, 1989) ideas and call it the extended Hamilton-gray 
EHG algorithm. However, N − state in MS − ARMA(p, q) model can be written as 
follows with respect to the equations btween (3.4) and (3.7): 

xt = αst +Σp β(xt−i − αst−i) + Et +Σq δiEt−i, st) (3.8)Et ∼ i.i.d.N(0, σ2 
i=1 i=1

The model above is identical with equation (3.3) plus the MA term (δiEt−i). Some 
restrictions as invertibility and stationarity on AR & MA polynomials among each state 
should be identified: 

Υst (L) = 1 − α1,st L − · · · − αp,st L
p, Ξst (L) = 1 + δ1,st L + · · · + δq,st L

q. (3.9) 

Where, Υst (L) & Ξst (L) are the roots of polynomial and by assumption they should be 
all outside the unit root circle. Moreover, both polynomials of AR&MA do not share any 
common roots 21. However, when q = 0, EM algorithm cannot be employed, basically, 
because the possible routs of regimes that running from t1 to ti is going to expand 
exponentially "NT "22. Consequently, their algorithm is able to trace the past history 
of xt up to a particular lag to extract the error terms from xt instead of tracing the 
entire past history of xt. Hence, the approach is recursively analysing the conditional 
expectation of lagged Et−N the MLE can be estimated efficiently. For more approaches 
to resolve the same problem see (Billio & Monfort, 1998; Billio, Monfort, & Robert, 1999; 
Kim, 1994). 

After calculating the population parameters of the switching-regime model based on 
EHG algorithm23 a smooth and efficient process can easily analyse the mixture model in 
equation (3.8). 

21See, (Chen & Tsay, 2011), Assumption 1 
22Notice here, this problem arise when the system is going to filter out all the sequence of error terms 

(�1, · · · , �t) to proceed the MLE 
23see, (Chen & Tsay, 2011) for the full process. 
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3.3.3	 Markov-Switching Auto-regressive Fractional Integral Moving 
Average MS-ARFIMA 

A conquer method developed by (Tsay & Härdle, 2009) will be adopted to investigate the 
persistence of Bitcoin volatility across different markets. In this subsections ARF IMA 

process and Markov switching model will be demonstrated in details. 

AR, ARMA or ARIMA are formally a special case of the most generalised model 
ARF IMA process. The former models functionally are capturing only the short-range 
dependence SRD, per contra the latter process was modified to be able to trace the 
short-range and long-range LRD dependence. However, combining Markov-switching 
model with long memory enable us to study the fractional order of integrations with 
the presence of structural breaks simultaneously and endogenously through a unified 
framework. This process is known to be more efficient and robust for capturing the 
complex behaviour of exchange rates across financial markets, otherwise, neglecting the 
both latter phenomenon could generate very deceptive inferences (Diebold & Inoue, 2001; 
Haldrup & Nielsen, 2006; Tsay & Härdle, 2009). 

Previous subsections explore how an AR and ARMA models with Markov-switching 
process can be employed to trace the complex dynamic behaviour of a time series. Tsay 
and Härdle (2009) introduced fractional integration to the above model MS − ARMA, 
thus three main parameters are able to switch within MS − ARF IMA(p, d, q) processes. 
A fractional integral process (η), is defined as follows: 

(1 − L)d xt = Et	 (3.10) 

Where ”L” is the back shift operator, Et is identically independently distributed and 
0 < d < 1. Long memory process is stationary when d > 0 and non-stationary when 
d ≥ 0.5. Fractional integration process "d" features by the slow hyperbolic decaying of 
the auto-correlation function: 

Γ(η + d)Γ(1 − d)	 Γ(1 − d)
η2d−1ρ(η) = , where ρ(η) ∼	 (3.11)

Γ(η − d + 1)Γ(d)	 Γ(d) 

Where ρ(η) is the auto-correlation function of xt at lag η, Γ(·) is gamma function, (xt) in 
equation 3.10 represents ARF IMA(0, d, 0), η is the lag of xt. 

After introducing MS − AR between the equations 3.3 and 3.7 the long memory process 
in the latter equations can be combine with Markov chain approach to produce MS­
ARFIMA(p,d,q) as follows: 

xt = αst · I(t ≥ 1) + (1 − L)−dst · σst · ψt · I(t ≥ 1) = αstI(t ≥ 1) + yt (3.12) 
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Where, xt is the observed time series, I(·) is the indicator function, ψt is a stationary zero 
mean process with spectral density Fψ(λ) ∼ G0 as λ → 0 at each state. The ARMA 
process is stationary and invertiable and y is simple ARF IMA (0, d, 0) process. 

The fractional differencing (dst) in the latter process is permitted to be a Markov chain, 
but with considering one condition that st is independent of ψτ for all t and τ . However, 
it is well known that (Hamilton, 1989)’s algorithm cannot be employed to estimate the 
latter process and the reason is consist with the problem of estimating MS − ARMA 

in the previous subsection24 . Thus, the possible routs of regimes that running from 
t1 to ti are expanding exponentially "NT "25 . Moreover, because of the fractional 
differencing parameter, MS − ARF IMA process cannot be build in a state-space form. 
As a consequence, Tsay and Härdle (2009) derived a new algorithm called Durbin-Levinson-
Viterbi (DLV ) to cop with the limitation above. Their new algorithm was built based on a 
combination of two separate and well known algorithms in the literature; Durbin-Levinson 
algorithm and the Viterbi algorithm. DLV algorithm is now solving two major problems: 
ARF IMA model with hidden Markov process can be estimated efficiently and the puzzle 
proposed by (Diebold & Inoue, 2001) is solved now. DLV algorithm now can capture 
the long memory of a time series with the existence of potential structural breaks. 

To perform the DLV algorithm mathematically let us consider equation (3.12) in its 
simplest case which the long memory parameters are constant among the states (d0). Et 
is a zero mean and independently and identically distributed. Technically, We can employ 
Durbin-Levinson algorithm to execute the latter specification (d0) and the likelihood 
function of the process can be written as: 

T� (yt − ŷt)2 
−0.5L(ST , XT ; ζ) = (2π)−0.5 · u · exp(− ).P (st|st−1), (3.13)t−1 2ut−1 t=1 

Where T is the total sample, XT = (x1, .., xt)⊥ is the column vector for the whole 
observation from time 1 to t, St = (s1, .., st)⊥ is the corresponding regimes and ζ 26 is 
column vector of both the transition probabilities pij and the vector parameter ν, which 
ν = (α1, .., αN ; σ1, .., σN ; Υ11, .., Υ1p; Υ21, .., ΥNp; d1, .., dN ; Ξ11, .., ΞNq)⊥ . ŷt is a one-step 
ahead predictor of yt, ut is the corresponding one-step ahead forecasting variance. 

Equation (3.13) is appropriate to implement the Viterbi algorithm. Therefore, by com­
bining the latter algorithm to Durbin-Levinson algorithm, d0 can shifts among two states 
dst , which DLV now can detect the long memory parameter of a time series with the 
presence of a Markov-switching in mean. 

24Notice here, if dst=0, then the process is still MS − AR model (Hamilton, 1989). 
25This problem arise when the process is going to filter out all the sequence of error terms (�1, · · · , �t) 

to proceed the MLE 
26Notice here, this parameter is representing the conditional density function CDF of Xt 
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As we mentioned earlier that model (3.12) is no longer can be written in a state space 
form because of the long memory parameter and identifying the possible states paths 
expand exponentially as follows27: 

(St−1(st = j), st = j) = (s1(st = j), s2(st = j), · · · , st−1(st = j), st = j), (3.14) 

Where (St−1(st = j), st = j) called the survivor and associated with node (st = j). 

3.4 Data and estimation results 

3.4.1 Data 

The collected data were daily high and low (H − L) exchange rates of Bitcoin against five 
major currencies across the globe – namely the U.S. dollar (USD), the Australian dollar 
(AUD), the Canadian dollar (CAD), the Euro (EUR) and the British Pound (GBP ). 
The sample span ran from Jan 1st , 2015 to March, 13th , 2019. All the Bitcoin prices 
were obtained from (Bitcoinity.org) 28, and to check the accuracy of prices we compared 
our sample spans with Quandle and bitcoicharts. As mentioned above, a plethora of 
literature has claimed that the Bitcoin market is isolated from other conventional markets. 
Consequently, we are interested in investigating the cross-market Bitcoin prices. To 
choose the ideal Bitcoin prices against each currency, we took into consideration the 
trading volume across all the platforms of each currency (e.g. USD, CAD, GBP, AUD 
and EUR) in Bitcoin markets. We found that the trading volume of USD in Bitfinex 
platform has exceeded 185 Billion over the last five years, which makes the market share 
of the latter platform at around 40.98%, overtaking almost half the market in trading 
Bitcoin in USD. Kraken platform has executed transactions of BTC/EUR by around 
32 Billion over the last five years, and the market share of trading Bitcoin/Eur via this 
platform was around 34%29. GBP, CAD and AUD were traded intensively on Bit-x, 
Quadrigacx and Btcmarkets platforms respectively. The market share of trading Bitcoin 
in the latter three currencies is 52%, 75% and 85% respectively. 

We computed Parkinson’s High-Low historical volatility (HL − HV ) model to overcome 
the weaknesses in the conventional volatility model. Close-to-close volatility model 
neglects the sensitivity of trading hours; hence, lots of valuable information will be 
excluded (Bennett & Gil, 2012). Parkinson’s model produces more significant signals 
and improves the efficiency of the volatility estimate (Parkinson, 1980). Bennett and Gil 
(2012); Parkinson (1980) claim that Parkinson’s volatility measure is more efficient and 
productive than conventional close-to-close volatility estimates. 

27For the full process of Viterbi algorithm see(Tsay & Härdle, 2009)
 
28http : //data.bitcoinity.org/markets/volume/30d?c = e&t = b
 
29from Jan 1, 2015 to March 13, 2019
 

http:Bitcoinity.org
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Formally, V for each of our five Bitcoin to currency exchange rates is calculated as follows.
 

2 

V =
1 

. ln 
h 

(3.15)
4 ln(2) l 

where h and l are the highest and lowest exchange rates on a given trading day, respectively. 
The estimator above computes the daily variance, hence, the corresponding estimate of 
the annualised daily percent standard deviation (volatility) is computed as follows: √ 
V ol = 365 ∗ V . 

3.4.2 Summary statistics 

Table 3.1 displays the descriptive statistics of Bitcoin volatility for the five major currencies. 
The number of observations are 1533 for each market30.The average volatility across 
all variables is swinging around 0.6.The highest and lowest mean across the sample are 
AUD (0.661) and GBP (0.602) respectively. Observing the second moment, we can notice 
that the S.D. across the five variables is fluctuating between CAD (0.515) and AUD 
(0.565).Thus, the average of S.D. is approximately 0.5. The five exchange rates display 
large positive skewness, suggesting a large concentration of observations to the left of 
their central tendency; hence, volatility series are asymmetrically distributed. Bitcoin 
prices are sensitive to the major economic and political events, and all extreme shocks 
can be explained through the four moments. All series show unequivocally leptokurtic 
behaviours, of which Kurtosis is different across individual series, ranging from around 
14 on average (BTC/USD, BTC/CAD and BTC/AUD) to about 25 (BTC/EUR and 
BTC/GBP). 

Figure 3.1 displays the volatility of five Bitcoin markets over time. BTC/EUR and 
BTC/GBP show the highest shock across the whole system, recording only around 7 in 
both markets. Visually, we can confirm that BTC/USD and BTC/EUR are the most 
stable markets, of which both series are fluctuating below 2 most of the time, except 
for the period around 2018. Also, extensive fluctuations across the entire system appear 
mainly around 2018 and partially between 2015 and 2016, hinting that certain events 
such as Brexit and platform breaches lead Bitcoin prices to be remarkably sensitive. 

In the next subsection, the series proprieties are diagnosed, including stationarity, long 
memory and structural breaks. 

30We find the optimal Bitcoin data can be obtained from bitcoinity.org and bitcoincharts.com 

http:bitcoincharts.com
http:bitcoinity.org
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Figure 3.1 Bitcoin daily volatility of five markets
 

Note: Top left corner BTC/USD, top right BTC/EUR, middle left BTC/GBP, middle right BTC/AUD 
and bottom BTC/CAD. Exchange rate volatility, daily. Dates on the x-axis indicate the start of the year 
and ticks are quarterly. 

Table 3.1 Summary statistics, exchange rate volatility 

Exchange rate Mean S.D Min Max Skewness Kurtosis 
BTC/USD 0.631 0.543 0.051 5.364 2.560 13.79 
BTC/EUR 0.609 0.554 0.062 6.975 3.082 21.11 
BTC/GBP 0.602 0.556 0.045 7.468 3.507 26.63 
BTC/AUD 0.661 0.565 0.050 4.866 2.941 15.47 
BTC/CAD 0.617 0.515 0.079 4.838 2.731 14.23 

Obs. 1533 
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3.4.3 Stationarity and the presence of long memory 

Diagnosing the stationarity of exchange rates series through Augmented Dicky Fuller 
(ADF) and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit root tests is required 
(Dickey & Fuller, 1979; Kwaitkowski, Phillips, Schmidt, & Shin, 1992). The latter tests 
give an initial evidence on the presence of long memory. If the conclusion of both tests is 
different, this means a long memory process may exist in every individual series. Table 
3.2 shows both the latter tests, of which ADF and KPSS tests rejected the null hypothesis 
at 1% significance level. On the one hand, ADF test admits the stationarity of the five 
exchange rates series. On the other hand, KPSS test confirms the rejection of all the 
null hypothesis, which indicates that all the series are unity . Consequently, the joined 
rejection of both tests hints that both tests provided insufficient representation, either 
I(0) or I(1), and a fractional process should be adopted. Thus, to explore the long 
memory process, we should employ more advanced techniques to study the long range 
dependence in depth, such as "Local, Exact local, Feasible Exact Local and 2-step Exact 
local whittle" estimation of fractional integration (Shimotsu, 2010; Shimotsu & Phillips, 
2005). However, before moving directly to the fractional integration, we should stop a 
while to investigate the potential breakpoints in Bitcoin markets, since the long memory 
and turning points phenomenon are easily confused (Diebold & Inoue, 2001). 

Although ADF and KPSS tests are efficient in detecting the stationarity of time series, 
accounting for multiple structural breaks along with the unit root in a unified framework 
is very important for detecting the original source of persistence across the different 
markets. Narayan and Popp (2010) developed a test that can diagnose unity and multiple 
structural breaks simultaneously. Table 3.3 shows the t-statistics and potential break 
dates in each market. Based on the analysis, we reject the null hypothesis of unity across 
the five markets. In Table 3.2 the joint rejection of both tests (ADF and KPSS) suggested 
that both tests provided insufficient representation, and that a long memory test should 
be carried out to clarify and identify the source of persistence. On the contrary, (Narayan 
& Popp, 2010)’s test confirms the stationarity of all the series and detects two turning 
points in each market. The conflict between the latter two tests raises the following 
question: Which phenomena (e.g. structural breaks or stationarity) feed the volatility 
persistence? 

To answer this question, the next section illustrates the structural breaks separately; 
we then combine the latter phenomenon in one framework (MS-ARFIMA) to easily 
distinguish between them. 
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Table 3.2 ADF and KPSS unit root tests, exchange rate volatility
 

Model with constant Model without constant 

Exchange rate Test Test stat Critical 
value 1% Conclusion Test stat Critical 

value 1% Conclusion 

BTC/USD 
ADF -7.682 -3.43 

Rejected
KPSS 0.952 0.739 

-4.191 -2.58 Rejected 
- - -

BTC/EUR ADF -9.254 -3.43 
Rejected

KPSS 1.044 0.739 
-4.122 -2.58 Rejected 

- - -

BTC/GBP 
ADF -8.714 -3.43 

Rejected
KPSS 0.991 0.739 

-2.932 -2.58 Rejected 
- - -

BTC/AUD 
ADF -9.237 -3.43 

Rejected
KPSS 0.412 0.347 

-4.0917 -2.58 Rejected 
- - -

BTC/CAD 
ADF -9.291 -3.43 

Rejected
KPSS 0.625 0.463 

-3.680 -2.58 Rejected 
- - -

Model with trend Model with drift 

Exchange rate Test Test stat Critical 
value 1% Conclusion Test stat Critical 

value 1% Conclusion 

BTC/USD 
ADF -7.832 -3.96 

Rejected
KPSS 0.402 0.216 

-7.683 -2.328 Rejected 
- - -

BTC/EUR 
ADF -9.472 -3.96 

Rejected
KPSS 0.368 0.216 

-8.489 -2.328 Rejected 
- - -

BTC/GBP 
ADF -8.888 -3.96 

Rejected
KPSS 0.405 0.216 

-8.715 -2.328 Rejected 
- - -

BTC/AUD 
ADF -9.236 -3.96 

Rejected
KPSS 0.385 0.216 

-9.238 -2.328 Rejected 
- - -

BTC/CAD 
ADF -9.359 -3.96 

Rejected
KPSS 0.354 0.216 

-9.292 -2.328 Rejected 
- - -

Table 3.3 Narayan and Popp (2010) Unit Root Test with Multiple Break Points 
for The Five Bitcoin Markets 

Exchange rate 

BTC/USD ADF -9.768 Reject 29/04/2017 11/04/2018 
BTC/EUR ADF -9.66 Reject 21/11/2017 05/02/2018 
BTC/GBP ADF -8.22 Reject 27/11/2017 05/02/2018 
BTC/AUD ADF -10.91 Reject 04/12/2017 05/02/2018 
BTC/CAD ADF -11.31 Reject 03/12/2017 04/02/2018 

Test Test- stat Conclusion Br1 Br2 

Note: The analysis above represent model A (Break in level) propsed by (Narayan & Popp, 2010). Br1 
and Br2 are the break dates across the five markets. The critical value at 1% significance level is -4.672. 
The sample span is from 01/01/2015 to 13/03/2019. If t-stat is greater than the critical value we reject 
the null of constant parameter. All critical values are obtained from (Hansen, 1990), Table 1. 

3.5 Discussion of results 

In this section, various methods to analyse fractional integration and switching models 
are introduced to shed light on the dynamics of Bitcoin prices. The results of the multiple 
breakpoint test (Bai & Perron, 1998) and fractional integration test (Shimotsu, 2010) 
are initially discussed to allow us explain how MS − ARF IMA process aggregates 
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the latter two phenomena and clear up the confusion between turning points and long 
memory in a time series31. Indeed, investigating the dynamics of Bitcoin markets under 
MS − ARF IMA will allow us to study simultaneously and endogenously the persistence 
of fractional integration and the potential breakpoints. 

We comment on the results in three distinct sub-sections. In the first sub-section, the 
potential break-points that have been detected through multiple breakpoint test will be 
under scrutiny. In the second sub-section, Local Whittle, Exact Local Whittle, Feasible 
Exact Local Whittle and Two-step Exact Local Whittle test will be illustrated in detail. 
The last sub-section will demonstrate the endogenous shifts of long memory, mean and 
variance parameters to clear the confusion between long memory and breakpoints. Then, a 
brief illustration of the transition probability among the states will be displayed statically 
and dynamically. Finally, we will provide a comparison between the fitted values of 
ARF IMA and MS − ARF IMA processes to show the accuracy of the latter process. 

3.5.1 Structural Breaks 

Detecting potential breaks in a time series is a crucial matter to validate the performance 
of an econometric model and control potential bias. Bai and Perron (1998, 2003)’s test is 
applied to detect if there are potential turning points over time. The previous section has 
confirmed the stationarity across the five series. Basically, by holding the stationarity 
assumption, we confirm that the joint statistical probability of the five series does not 
change over time (e.g. constant mean, constant variance, and trendless series). The 
normal stationary tests such as ADF and KP SS are not powerful enough to detect the 
joint statistical distribution among observations and specify the breakpoints. Multiple 
breakpoint test is adopted to find if any of the five stationary exchange rate series has any 
breaks in the joint probability over the time. Figure 3.2 reveals interesting information 
which claims, contrary to stationarity assumption, that mean and variance are constant 
along the sample span. 

In Figure 3.2 the blue line illustrates the possible turning point in the mean over the 
sample span across the five exchange rates. We use global information criterion method 
to specify the breaks across the five markets. Ten breaks in (BTC/USD, BTC/EUR, 
BTC/GBP) and eight breaks in (BTC/AUD and BTC/CAD) are selected by Bayesian 
Information Criteria (BIC). Bai and Perron recommended using the highest trimming 
percentage (15%) if the sample span is small. On the contrary, the used sample span 
is 1533 observations, and choosing a lower trimming percentage as (5%) to detect the 
turning points should be acceptable. By allowing for shifts in the constant, we can see 
clearly from Figure 3.2 that the coefficient value during the first break in all series is 
swinging between 0.7 and 0.94. Upward shifts appear in all series ranging around 1.5 from 
the second quarter of 2017 to approximately the second quarter of 2018, then start to 

31see (Diebold & Inoue, 2001) 



91 
Chapter 3 The Relevance of Memory and Efficiency in Endogenously Switching 
Cross-market Bitcoin Prices 

shift down again back to the normal shifts. Different upward and downward shifts across 
the five exchange rates are recorded, but all conclude that the period from 2017 to the 
middle of 2018 experienced waves of turmoil that distorted the distributional propriety 
during that time. 

Table 3.4 illustrates the number and date of breaks in each Bitcoin market. Three markets 
(e.g. BTC/USD, BTC/EUR and BTC/GBP) showed ten breaks, while the rest (e.g. 
BTC/AUD and BTC/CAD) had eight turning points over time. To minimise space and 
avoid repetition of a similar discussion, interested readers are encouraged to see Table 4.4 
and read the discussion in Section (4.5.3), Chapter Four. We mention here two significant 
events that caused structural changes to market properties. The flash crash of Bitfinex 
platform in August 2016 triggered thousands of investors’ wallets and hackers stole around 
$ 72 million. Also, in February 2018, a significant attack disturbed the Bitcoin network 
and caused a loss of $ 5 million. 

It is worth pointing out that Bai and Perron provide the structural breaks in the mean, 
but do we have breaks in the variance and AR terms? To answer this question, we 
run (Hansen, 1992b) test to diagnose the parameters stability. Based on Table 3.5, we 
cannot reject the consistency of µ across the five markets. Also, we fail to reject the null 
hypothesis of φ parameters across the markets, except for BTC/USD. Finally, BTC/USD 
and BTC/AUD markets have constant σ2 over time, while the rest of the markets showed 
the variance drifting along the sample span. 

Table 3.4 Estimated breaks in the volatility of Bitcoin exchange markets, (Bai 
and Perron) test 

Breaks Order BTC/USD BTC/EUR BTC/GBP BTC/AUD BTC/CAD 
1 20 Mar 2015 27 Mar 2015 26 Mar 2015 02 May 2015 21 Mar 2015 
2 29 Oct 2015 29 Oct 2015 30 Oct 2015 29 Oct 2015 11 Aug 2016 
3 26 Jan 2016 25 Jan 2016 23 Jan 2016 23 Jan 2016 20 Dec 2016 
4 27 May 2016 27 May 2016 27 May 2016 04 Jan 2017 07 May 2017 
5 11 Aug 2016 11 Aug 2016 11 Aug 2016 22 May 2017 28 Nov 2017 
6 21 Dec 2016 22 Dec 2016 21 Dec 2016 29 Nov 2017 12 Feb 2018 
7 22 May 2017 02 May 2017 04 May 2017 13 Feb 2018 29 Apr 2018 
8 29 Nov 2017 29 Nov 2017 29 Nov 2017 30 Apr 2018 13 Nov2018 
9 13 Feb 2018 13 Feb 2018 13 Feb 2018 - -
10 30 Apr 2018 30 Apr 2018 30 Apr 2018 - -

Note: The above dates corresponded to Bai and Perron test in figure 3.2 

Based on the above, some structural break models postulate that the shifting mechanism is 
deterministic, and the switching is determined exogenously. Alternatively, (Bai & Perron, 
2003) developed a model to detect structural breaks endogenously; hence there is no need 
to determine the timing of breaks beforehand. However, the trimming percentage, and 
allowing for serial correlation and heterogeneity restrict the model efficiency. Detecting 
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Table 3.5 Hansen 1992’s Test for Stability of Bitcoin Markets
 

Exchange rate Parameters Estimated Test stat Critical value 5% Conclusion 

BTC/USD 
µ 

φ 

σ2 

0.000 
-0.326 
0.213 

0.002 
0.575 
0.155 

0.47 
Fail 

Reject 
Fail 

BTC/EUR 
µ 

φ 

σ2 

0.000 
-0.322 
0.216 

0.001 
0.071 
0.839 

0.47 
Fail 
Fail 

Reject 

BTC/GBP 
µ 

φ 

σ2 

0.000 
-0.347 
0.229 

0.001 
0.018 
0.566 

0.47 
Fail 
Fail 

Reject 

BTC/AUD 
µ 

φ 

σ2 

0.000 
-0.304 
0.248 

0.001 
0.031 
0.461 

0.47 
Fail 
Fail 
Fail 

BTC/CAD 
µ 

φ 

σ2 

0.000 
-0.344 
0.201 

0.002 
0.130 
1.088 

0.47 
Fail 
Fail 

Reject 
Note: If t-stat is greater than the critical value we reject the null of constant parameter. All critical 
values are obtained from (Hansen, 1990), Table 1. 

the structural breaks and identifying the changing points (e.g. mean, variance, AR 
and long memory) across a series is very helpful, especially if the series is displaying 
a long memory. Why is this important? Because, as we mentioned above, the slow 
decaying of auto-correlation function could be accounted from both short memory series 
with potential breakpoints (structural breakpoints phenomenon) or strong dependence 
among observations within the series (long memory phenomena) Diebold and Inoue 
(2001). An important question arises here, to clear up the confusion between the latter 
two very similar phenomena: "Should we test both long memory and structural breaks 
simultaneously in a unified framework?" or "Should we account for the last two problems 
separately?" 

3.5.2 Fractional Integration 

In the previous section we ran convectional unitroot tests to diagnose the stability of the 
statistical properties of Bitcoin volatility series over time, an indication arising that proper 
long memory tests should be adopted to discover if the series fell within the co-variance 
stationary zone or not. 

Thus, the Local Whittle and its extended versions (e.g. ELW, TSELW) with and without 
de-trending and de-meaning were employed to detect the long memory across the five 

T 0.5markets. The analysis was implemented in different bandwidths (e.g. m = ,m = 

T 0.6,m = T 0.7,m = T 0.8,m = T 0.9 ,) to insure that the long memory was not sensitive to 
the choice of one particular bandwidth. Moreover, rolling windows of the estimated d 

were applied to diagnose the stability of the estimated d parameters over time. 
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Figure 3.2 Estimated breaks in the volatility of Bitcoin exchange markets (Bai 
and Perron) 

Note:Top left corner BTC/USD, top right BTC/EUR, middle left BTC/GBP, middle right BTC/AUD 
and bottom BTC/CAD. Blue line represents Bai and Perron multiple structural test, red line is the 
MS-ARFIMA process. Dates on the X-axis indicate the start of the year, and ticks are quarterly. 

Tables 3.6, 3.7 , 3.8 and 3.9 illustrate the degree of fractional integration based on Local 
Whittle (LW), Exact Local Whittle (ELW), Feasible Exact Local Whittle (FELW) and 
Two-step Exact Local Whittle (TSELW) estimations of the volatility under different 
band width respectively. All tests provide 4 bandwidths (e.g. m = T 0.5 to m = T 0.8) 

to detect the sensitivity of d under different specific bandwidths. Results among the 
latter tables show that each exchange rate series has a significant long memory. All the 
outcomes display a value higher than zero d > 0, which means the series are strongly 
persistent along the sample span. The values of d are bounded in the (0, 0.5) interval 
for the five markets across almost all the bandwidths, which indicate that all series are 
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co-variance stationary except m = T 0.5 across the BTC/USD and BTC/EUR markets. 
Generally, we can confirm that the major of d values are co-variance stationary and 
mean-reverting, which implies that the shock effects will die out in the long run. A close 
look at the series individually shows that the value of d across different bandwidths for 
all markets are swinging between ”0.35 and 0.54”. All tests provide approximately 
identical results, hinting at stable estimations, which implies that the series contains long 
memory and this may have useful implication within this context. 

For each d value, the asymptotic standard error can be estimated as [4m]−0.5 . The 
total number of observations in each series is 1533, and the bandwidths are ranging 
from 0.5 to 0.8. For example, in Table 3.8, m = T 0.5 the approximate SE is 0.0799. 
Similarly, the approximate S.E of m = T 0.6 to m = T 0.8 bandwidths are 0.055, 0.0383, 
and 0.026 respectively. 

We extended the work in this chapter and took a further step to roll the estimated d by 
setting a suitable window of the (T SELW ) estimation in Table 3.9. A window of 360 
days with five days increments was used to detect the sensitivity of d within m = T 0.6 

bandwidth across all the markets. Figure 3.3 displays the stability of long memory 
parameter across the five markets. We can see that the long memory in BT C/USD 

market was stable (d ≈ 0.4) during the first half of 2015 and from the second half of 
2016 to the end of the sample span. The period between the middle of 2015 and 2016 

shows upward and downwards fluctuations, hinting that investors might overreact to their 
investment decisions in the BT C/USD market. The BT C/GBP market shows stable 
persistence over the first half of the sample span, with stable downwards over the second 
half of the period before coming back again to its normal value over the last few days 
of the rolled d parameters. The rest of the markets (e.g. BT C/EUR, BT C/AUD and 
BT C/CAD) display more upward and downward fluctuations over the sample span. All 
markets show high persistence through the first year, the persistence starting to decline 
gradually before it increases again. 

Finally, we obtain the time series of the estimated "d" in each market, then identify a 
suitable window for this series and roll it again to find the speed of decaying in the rolling 
windows of estimated "d". Figures B.1 to B.5 represent the rolling windows of parameter 
d against the rolling windows of the rolled "d" parameter32. All the figures show upward 
trend over time, hinting at a slow decay along the sample span. Moreover, the speed of 
decaying is in-stable across the five series which indicates that the dependence among 
observations is changing over time. 

32See appendix B 
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Table 3.6 Estimates of Local Whittle (LW) for the volatility of the five BTC 
markets 

d̂LW 

m = T 0.5 m = T 0.6 m = T 0.7 m = T 0.8 

BTC/USD 0.514 0.445 0.410 0.360 
BTC/EUR 0.521 0.370 0.389 0.378 
BTC/GBP 0.471 0.408 0.340 0.352 
BTC/AUD 0.436 0.350 0.362 0.346 
BTC/CAD 0.417 0.400 0.334 0.347 

Table 3.7 Estimates of Exact Local Whittle (ELW) for the volatility of the five 
BTC markets 

d̂ELW 

m = T 0.5 m = T 0.6 m = T 0.7 m = T 0.8 

BTC/USD 0.541 0.463 0.428 0.390 
BTC/EUR 0.539 0.368 0.400 0.408 
BTC/GBP 0.469 0.410 0.345 0.379 
BTC/AUD 0.492 0.376 0.388 0.384 
BTC/CAD 0.430 0.423 0.352 0.382 

Table 3.8 Estimates of Feasible Exact Local Whittle (FELW) for the volatility 
of the five BTC markets 

d̂F ELW 

m = T 0.5 m = T 0.6 m = T 0.7 m = T 0.8 

BTC/USD 0.520 0.451 0.417 0.380 
BTC/EUR 0.524 0.374 0.396 0.400 
BTC/GBP 0.479 0.413 0.346 0.374 
BTC/AUD 0.454 0.354 0.368 0.367 
BTC/CAD 0.439 0.408 0.341 0.368 

Table 3.9 Estimates of Two-step Exact Local Whittle (TSELW) for the volatil­
ity of the five BTC markets) 

d̂T SELW 

m = T 0.5 m = T 0.6 m = T 0.7 m = T 0.8 

BTC/USD 0.532 0.451 0.417 0.380 
BTC/EUR 0.537 0.374 0.396 0.400 
BTC/GBP 0.479 0.413 0.346 0.374 
BTC/AUD 0.454 0.354 0.368 0.367 
BTC/CAD 0.439 0.408 0.341 0.368 



96 
Chapter 3 The Relevance of Memory and Efficiency in Endogenously Switching 

Cross-market Bitcoin Prices 

Figure 3.3 The rolling windows of estimated "d" in Bitcoin markets.
 

Note: top left corner BTC/USD, top right BTC/EUR, middle left BTC/GBP, middle right BTC/AUD 
and bottom BTC/CAD. Rolling windows, daily. Dates on the x-axis indicate the start date by 1 and 
ticks are 10 days each. 
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3.5.3 MS-ARFIMA model 

Berkes et al. (2006); Diebold and Inoue (2001); Granger and Hyung (2004); Kunsch 
(1987), and others33 claimed that long range dependence and structural breaks are easily 
confused. In the above sections, long memory tests and multiple structural break tests 
were carried out to prove that each BTC exchange rate series has long range dependence 
and turning points over time. Much research has studied the properties of Bitcoin markets 
by detecting the fractional integration and structural changes of different approaches as 
we have done in the first two subsections above (Bariviera, 2017; Bariviera et al., 2017; 
Bouri et al., 2019; Charfeddine & Maouchi, 2019; Jiang et al., 2018; Mensi et al., 2018, 
2019). 

However, Diebold and Inoue (2001) claimed that a spurious long memory could be 
generated due to the presence of structural breaks (persistence along the hyperbolic 
decaying). Indeed, ignoring the structural breaks in a long memory time series could 
generate unstable results, hence underestimating the long range dependence parameter. 
To overcome the puzzle proposed by Diebold and Inoue, many authors have tried to build a 
model that aggregates both structural breaks with long memory (Haldrup & Nielsen, 2006; 
Ray & Tsay, 2002). Many gaps in the latter approaches were solved in MS − ARF IMA 

(Tsay & Härdle, 2009). This model computes the degree of fractional integration and 
structural breaks simultaneously and endogenously by shifting the ARF IMA parameters 
via Markov switching process into different regimes. 

Table 3.11 presents the static results of MS − ARF IMA process across the five different 
Bitcoin markets. Although the results across different specifications are stable34, Table 
3.11 shows the best fit of MS − ARF IMA in which each estimation has been selected 
according to the highest log likelihood for each series under different MS − ARF IMA 

orders. The best order of each exchange rate is as follows: BT C/USD ∼ MS −ARF IMA 

(1, d, 1), BT C/EUR ∼ MS−ARF IMA (1, d, 0), BT C/GBP ∼ MS−ARF IMA (1, d, 1), 
BT C/AUD ∼ MS − ARF IMA (1, d, 1), BT C/CAD ∼ MS − ARF IMA (0, d, 1). 

To investigate the volatility persistence in Bitcoin markets, we should first distinguish 
between low and high volatility waves. Hence, we set up our MS − ARF IMA model to 
switch between two states: State 1 (high volatility regime) and State 2 (low volatility 
regime). To confirm the choice of a two-regime switching model, we perform (Hansen, 
1992a, 1996)’s test across the five volatility series. Table 3.10 shows the LR statistics and 
critical values for each market. The null hypothesis of no regime switching (autoregression) 
across the five markets can be rejected at 1% and 5% significance level, results confirming 
that all series reveal two state Markov switching model. 

33For excellent survey on structural breaks and long memory, see (Baillie, 1996) 
34See appendix B to explore the different specifications of MS − ARF IMA process across the five 

Bitcoin markets. 
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Observing Table 3.11 the first column shows the MS − ARF IMA parameters, from 
the top left corner (d1 and d2) represents the long memory parameters in state 1 and 
state 2 respectively. The mean and standard deviation of BTC exchange rate for each 
market are (µ1 and µ2) and (σ1 and σ2) parameters respectively. The (p11 and p22) 
are the probability parameters, p11 illustrates the probability that the process will stay 
in state 1 and (1 − p11) is the probability that the process will move from state 1 to 
state 2. p22 infers the probability of the process staying in state 2 and (1 − p22) is 
the probability of moving from state 2 to state 1. φ and θ are the auto-regressive and 
moving average parameters. BT C/USD in Table 3.11 show that the estimated standard 
deviation in regime 1 is higher than the standard deviation in regime 2, (σ1 = 0.71) and 
(σ2 = 0.18), which indicates that state 1 (S1) is a high-volatility regime and state 2 (S2) 

is a low-volatility regime. Relatively, if the variation around the mean shows a particular 
behaviour, then the associated mean µ1 > µ2 are displaying the same conclusion with 
the volatility, which is µ1 = 0.83 "state 1" and µ2 = 0.19 "state 2". 

Table 3.10 Hansen Linearity Test 

Breaks Order BTC/USD BTC/EUR BTC/GBP BTC/AUD BTC/CAD 
LR stat 11.32 10.57 11.82 12.45 11.22 

Critical Value 0.000 0.000 0.000 0.000 0.000 

Note: The null hypothesis represents a one-state model against the alternative of two-state mode. 3.2 

The memory properties explain the persistence in the BT C/USD market, if d > 0 means 
that past shocks affect BTC price behaviour in the future. We can see that (d1 and 
d2) are greater than zero, which d1 = 0.422 (S1) and d2 = 0.425 (S2). The value of 
fractional integration in both regimes is bounding within 0 < d < 0.5 interval, which 
means the process is stationary with strong persistence over time. Transition probability 
of S1 is p11 = 0.83 and for S2 is p22 = 0.95, which implies the probability of staying 
in regime 2 is higher than staying in regime 1 by approximately 12%. Discussing the 
static data of BT C/USD markets is useful, but visualising the switching parameters 
is very helpful to explore the structural breaks in fractional integration and the first 
two statistical moments (µ and σ). Figure 3.4 illustrates the switching in mean of 
all Bitcoin markets over time. In the top left corner BT C/USD, we can observe that a 
cluster of switches appears during some episodes of high shocks. These episodes can be 
related to political or economic events that might have happened in Bitcoin market over 
time. Switches within the system are treated endogenously, which means the model is 
synchronised with growth-theoretic mechanisms that allow the process to generate shifts 
based on the internal dynamics of BTC prices. 

Moving to the second column in Table 3.11 (BT C/EUR market), the analysis displays 
almost the same behaviour as the BT C/USD market. The mean/volatility parameters 
switch from 0.9/0.7 in S1 to 0.2/0.16 in S2. Based on the transition probabilities, the 

http:0.2/0.16
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Table 3.11 Estimates of MS-ARFIMA model of volatility across the five Bitcoin 
markets 

BTC/USD BTC/EUR BTC/GBP BTC/AUD BTC/CAD 

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA 
(1, d, 1) (1, d, 0) (1, d, 1) (1, d, 1) (0, d, 1) 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E Estimate S.E. 
d1 0.4224 0.0520 0.3472 0.0314 0.3570 0.0355 0.3427 0.0355 0.2914 0.0445 
d2 0.4249 0.0329 0.3488 0.0199 0.3253 0.0240 0.3100 0.0177 0.2899 0.0221 
µ1 0.8314 0.1095 0.9056 0.0873 0.7206 0.1188 0.9596 0.1249 0.8757 0.0828 
µ2 0.1936 0.0691 0.2350 0.0523 0.1786 0.0541 0.2938 0.0552 0.2997 0.0427 
σ1 0.7098 0.0291 0.7165 0.0296 0.7981 0.0359 0.7956 0.0358 0.6611 0.0249 
σ2 0.1856 0.0038 0.1682 0.0034 0.1762 0.0035 0.1847 0.0037 0.1617 0.0034 
p11 0.8339 0.0212 0.7662 0.0244 0.7323 0.0273 0.7303 0.0275 0.8410 0.0191 
p22 0.9585 0.0057 0.9433 0.0066 0.9450 0.0064 0.9443 0.0064 0.9496 0.0064 
φ 0.3018 0.1022 -0.0328 0.0326 0.4184 0.3289 -0.4565 0.2795 - ­
θ -0.4734 0.1025 - - -0.4446 0.3265 0.4948 0.2696 0.0526 0.0362 

-358.38933 -310.734501 -333.830679 -392.023359 -292.341567 

Note: d: long memory, µ: mean, σ: standard deviation, P : transition probability,φ: Autoregressive 
parameter, θ: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error 

probability to stay in S2 within the system is greater than the probability to stay in 
S1 by 18%, which indicates that the process is most likely to generate its infer when 
the mean/volatility of data is swinging between 1.67/1.44 respectively . As previously 
mentioned, the conduct of statistical properties in S1 implies that the BT C/EUR market 
has a series of high shocks over time. Regarding fractional integration, the memory 
parameters in both regimes indicate that the persistence is strong over the sample span, 
and past events will engage in depicting the future price of BT C/EUR. We can observe 
from Table 3.11 that the "d" parameter of (BT C/EUR) is greater than zero and less 
than 0.5 which indicates that the BT C/EUR series is stationary and mean reverting. 
In addition, d1 and d2 almost carry the same persistence value among the regimes, 
which indicates that the persistence is running continuously along the whole period from 
Jan, 2015 to March, 2019. Dynamically, the top right corner of Figure 3.4 demonstrates 
the switching mean of BT C/EUR volatility and identifies any intervening point that 
happened because of abnormal events which may have occurred over time. On the 
contrary, the BT C/USD market (left top corner), BT C/EUR market (top right corner) 
shows a significant switch after 2017 over the same period. Consequently, it is likely these 
fast switches happen due to the high speed of unusual events occurring in cryptocurrency 
markets. 

On the same pattern, in Table 3.11 the BT C/GBP , BT C/AUD and BT C/CAD markets 
display interesting results within the two-regime Markov switching system. If Bitcoin 
markets possess episodes of high uncertainty, the markets will react randomly with high 
volatilities as in S1 across the latter markets. On the other hand, low volatility state is 
identified in S2 within the latter three markets. The mean of BT C/GBP , BT C/AUD 

http:1.67/1.44
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Figure 3.4 Bitcoin exchange rates and the path of estimated switching in the 
mean of volatility 

Note:Top left corner BTC/USD, top right BTC/EUR, middle left BTC/GBP, middle right BTC/AUD 
and bottom BTC/CAD. Red line represents estimated µst from MS-ARFIMA model. Dates on the 
X-axis indicate the start of the year, and ticks are quarterly. 

and BT C/CAD series in S1 and S2 are 0.72/0.17, 0.95/0.29 and 0.87/0.29 respectively, 
whereas the volatility in both regimes is 0.79/0.17, 0.79/0.18 and 0.66/0.16 respectively. 
The most important parameter across the tables is the fractional integration, BT C/GBP 

market, displaying a high persistence stationary behaviour with 0.35 in S1 and 0.32 in S1, 
which refers to stable persistence through time. In the BT C/AUD market the fractional 
differencing parameter in S1 shows a persistence by 0.34, while in S2 it reveals 0.31. Long 
memory parameters d1 and d2 show almost steady persistence in BT C/CAD markets 
during the chosen period. Further, the transition probability parameters for BT C/GBP , 

http:0.66/0.16
http:0.79/0.18
http:0.79/0.17
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BT C/AUD and BTC/CAD p22 are greater than p11 and the process stays in regime 
two much longer. 

The transition probability parameters explain the dynamics of Bitcoin prices. We can 
see in 3.11 that the transition probability p11 is always lower than p22 across the five 
markets. As discussed in the previous section, some events (e.g. cyber attacks) could 
induce the system to be extremely volatile and break the cycle of persistence in the 
process. Therefore, transition probability p11 is always lower than p22 as the calculation 
process consumes less time to analyse the peaks and shocks within the high volatility 
regime. Further, as the value of both transition probabilities is relatively high, this gives 
an indication that the process has spent most of the time calculating the parameter in 
States 1 and 2 instead of switching between the two regimes. 

In Figure 3.4, the middle row left and right illustrates the BT C/GBP , BT C/AUD 

markets respectively and the BT C/CAD market at the bottom. Among the five markets 
we can observe that the BT C/AUD market (middle row right) has the highest transitions 
number in mean, S.D and long memory parameters, albeit that along the year 2016 there 
were no significant structural breaks, but the rest of the anterior and posterior years 
have remarkable turning points. In all the markets except BT C/AUD we can aver that 
the period from 2015 to 2017 experienced a lower number of structural breaks than the 
period 2017 to 2019. Indeed, after 2017 each market shows different breakpoints over the 
time, depicting almost the same behaviour across the switching parameters. 

Finally, Figure 3.5 shows the BT C volatility for each market with its fitted ARF IMA 

values. For each market we can observe how the estimated value of ARF IMA process 
(dotted red line) fitted the original volatility series (black line) for each market. ARF IMA 

process performed all the series perfectly in different specifications. It appears that in 
Figure 3.5 the process detects the behaviour of each series, but it indicates that most 
of the values far from the mean are not detected. By contrast, if we examine the fitted 
MS − ARF IMA plots in Figure 3.6, we will notice the difference between the estimated 
values of ARF IMA and the estimated value of MS − ARF IMA. The fitted values 
(dotted red line) in the latter figures fit the original series exactly and detect the behaviour 
of markets perfectly and accurately. 
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Figure 3.5 Bitcoin Exchange rates volatility and the estimated value of 
ARFIMA process 

Note: Top left corner BTC/USD, top right BTC/EUR, middle left BTC/GBP, middle right BTC/AUD 
and bottom BTC/CAD. Black solid line represents the Bitcoin exchange rate volatility, red dotted line 
represents the fitted value from ARFIMA model. 
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Figure 3.6 Bitcoin Exchange rates volatility and the estimated values of MS­
ARFIMA model 

Note:Top left corner BTC/USD, top right BTC/EUR, middle left BTC/GBP, middle right BTC/AUD 
and bottom BTC/CAD. Black solid line represents the Bitcoin exchange rate volatility, red dotted line 
represents the fitted value from MS-ARFIMA model. 
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3.5.4 Robustness 

How sensitive are the results to the choice of alternative volatility measure and long 
memory bandwidth? 

We check the robustness of the full sample analysis results based on the volatility 
measure and the bandwidth of the long memory parameter. Recall that the empirical 
analysis is based on (Parkinson, 1980)’s High-Low historical volatility measure. This 
measure provides more useful information regarding future volatility than a close-to-close 
estimator, but following the literature, we can calculate the volatility as the logarithmic 
difference between high and low Bitcoin prices Return volatility = LnPhigh − 

LnPlow (Bariviera, 2017). 

As robustness checks, we use the latter estimator to re-estimate the structural breaks, long 
memory and MS-ARFIMA model to obtain both static and dynamic data. Comparing 
Parkinson’s measure with return volatility measure, we find no significant differences 
among the switches especially during the high fluctuation periods. The conclusion for 
both measures is the same, as all Bitcoin exchange rates volatility show high persistence 
over time (Table 3.14) with significant structural breaks, particularly after 2017 (Figures 
3.8 & 3.9). Further, (Shimotsu, 2010)’s long memory measures were applied in different 
bandwidths to assess the stability of the analysis. Feasible local Whittle (Table 3.12) and 
Two-step Exact local Whittle (Table 3.13) with different bandwidths (0.5 to 0.8) were 
employed to assess the value of d. Both Parkinson’s and return volatility measures show 
stable and consistent results across the five Bitcoin markets. 

Appendix B shows the static estimations of MS − ARF IMA process of the return 
volatility across all the markets and under different specifications (tables B.6 to B.10), all 
the results co-moves and have a similar conclusion to the estimations of MS − ARF IMA 

of Parkinson’s volatility in section (3.5). Fitted values against the original return volatility 
series are displayed in appendix B also, to support the latter claim and show that the 
MS − ARF IMA process is mimicking the complex behaviour of return volatility across 
the five Bitcoin markets (figures B.11 to B.15)35 . 

35Figures (B.6 to B.10) in appendix B show the fitted value of ARF IMA process against the five 
return volatility markets. Clearly we can identify that MS − ARF IMA process (figures B.11 to B.15) is 
detecting the complex behaviour more efficiently and accurately. 
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Figure 3.7 The Bitcoin daily return-volatility of the five markets
 

Note: Top left corner BTC/USD, top right BTC/EUR, middle left BTC/GBP, middle right BTC/AUD 
and bottom BTC/CAD. Exchange rate volatility, daily. Dates on the x-axis indicate the start of the year 
and ticks are quarterly. 

Table 3.12 Estimates of Feasible Exact Local Whittle (FELW) for the return 
volatility of the five BTC markets 

d̂F ELW 

m = T 0.5 m = T 0.6 m = T 0.7 m = T 0.8 

BTC/USD 0.516 0.451 0.418 0.381 
BTC/EUR 0.524 0.375 0.396 0.401 
BTC/GBP 0.479 0.412 0.346 0.374 
BTC/AUD 0.454 0.354 0.368 0.368 
BTC/CAD 0.440 0.407 0.341 0.369 
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Figure 3.8 Estimated breaks in the daily return volatility of Bitcoin exchange 
markets (Bai and Perron) 

Note: Top left corner BTC/USD, top right BTC/EUR, middle left BTC/GBP, middle right BTC/AUD 
and bottom BTC/CAD. Blue line represents Bai and Perron multiple structural test, red line is the 
MS-ARFIMA process.Dates on the X-axis indicate the start of the year, and ticks are quarterly. 

Table 3.13 Estimates of Two-step Exact Local Whittle (TSELW) for the return 
volatility of the five BTC markets 

d̂T SELW 

m = T 0.5 m = T 0.6 m = T 0.7 m = T 0.8 

BTC/USD 0.533 0.451 0.418 0.381 
BTC/EUR 0.538 0.375 0.396 0.401 
BTC/GBP 0.479 0.412 0.346 0.374 
BTC/AUD 0.454 0.354 0.368 0.368 
BTC/CAD 0.440 0.407 0.341 0.369 
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Figure 3.9 Bitcoin exchange rates and the path of estimated switching in the 
mean of return volatility 

Note:Top left corner BTC/USD, top right BTC/EUR, middle left BTC/GBP, middle right BTC/AUD 
and bottom BTC/CAD. Red line represents estimated µst from MS-ARFIMA model. Dates on the 
X-axis indicate the start of the year, and ticks are quarterly. 
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Table 3.14 Estimates of MS-ARFIMA model of volatility return across the five 
Bitcoin markets 

BTC/USD BTC/EUR BTC/GBP BTC/AUD BTC/CAD 

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA 
(1, d, 1) (0, d, 1) (1, d, 0) (0, d, 1) (1, d, 1) 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E Estimate S.E. 
d1 0.4772 0.0486 0.3563 0.0322 0.3407 0.029 0.3561 0.0316 0.2756 0.0837 
d2 0.4423 0.0336 0.3485 0.0209 0.3117 0.0174 0.2982 0.0194 0.2663 0.0526 
µ1 6.2306 1.3547 7.1305 0.9302 6.4464 1.0258 6.7589 1.1148 6.2231 0.9982 
µ2 1.482 0.767 1.6703 0.5471 1.7022 0.461 2.3365 0.4484 2.1388 0.4621 
σ1 6.1884 0.2546 6.1937 0.2491 6.9928 0.3163 6.4412 0.255 5.4306 0.1790 
σ2 1.6003 0.0324 1.4403 0.0232 1.5378 0.0307 1.4006 0.0289 1.2759 0.0283 
p11 0.8224 0.0218 0.7818 0.0232 0.7341 0.0274 0.7406 0.0239 0.8961 0.0138 
p22 0.9553 0.0059 0.9425 0.0067 0.9451 0.0064 0.9265 0.0075 0.9516 0.0066 
φ 0.2769 0.0896 - - -0.0015 0.0194 - - -0.0902 0.0919 
θ -0.474 0.0898 -0.0436 0.036 - - 0.0549 0.0356 0.1382 0.0838 

L -3672.7555 -3628.32752 -3647.5388 -3708.4664 -3612.41 

Note: d: long memory, µ: mean, σ: standard deviation, P : transition probability,φ: Auto-regressive 
parameter, θ: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error 
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3.6 Conclusions 

The presence of structural breaks could create the impression of long memory in the 
volatility of Bitcoin cross-markets. However, one of the benefits of using a Markov-
switching approach to the ARF IMA model is to overcome the possibility of spurious 
long memory due to the presence of structural breaks. The objective of this chapter 
is to investigate the persistence of fractional integration and potential break- points 
simultaneously and endogenously using the MS − ARF IMA model for Bitcoin cross-
markets. 

When structural break and fractional integration were tested separately, results show 
clearly the presence of ten breaks in (BT C/USD, BT C/EUR and BT C/GBP ) and 
eight breaks in (BT C/AUD and BT C/CAD), respectively, when Bai and Perron (1998) 
test was used. In addition, the results show the presence of long memory across all the 
Bitcoin cross-markets. Therefore, a spurious long memory in volatility could be attributed 
to the presence of structural breaks if the standard ARF IMA model was applied to each 
of the Bitcoin cross-markets respectively. Consequently, we applied the MS − ARF IMA 

model instead. We find that the fractional integration displayed long-memory for all the 
MS − ARF IMA models. 

The finding in this chapter has two important implications for investors and policy makers. 
First, the presence of long memory could enable investors to capture speculative profits. 
This can be achieved through market timing. During a high-volatility regime, investors 
can buy and then subsequently sell when the market switches to low-volatility regime 
in all Bitcoin cross-markets. Investors could also hedge during high-volatility regime by 
purchasing Bitcoin futures from the Chicago Board Option Exchange (CBOE). Second, 
policy makers and regulators could introduce circuit breakers to stop trading in Bitcoin 
cross-markets when the market switches abruptly to high-volatility regime, as the impact 
of a negative downturn would take a relatively long period of time to dissipate, given the 
nature of persistence in the price behaviour of Bitcoin in the cross-markets. 

Apart from purchasing Bitcoin futures from the CBOE, the ability of portfolio investment 
managers can be further enhanced if speculative and hedging activities between Bitcoin 
cross-markets can be carried out as well. Therefore, we would extend the investigation 
by employing the same approach to study the Bitcoin market and other financial assets. 
Indeed, by examining a wide range of financial assets, including cryptocurrencies, we will 
be able to develop a dynamic hedge ratio to enable both users and investors in Bitcoin 
to formulate the appropriate hedging strategies between these cross-financial markets to 
protect their respective portfolios from abrupt structural changes. 
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Abstract
 

We investigate and detect the flow of volatility across the major Bitcoin markets under 
episodes of cyber attacks and discuss several diversification strategies in this context. 
Adopting both variance decomposition and weighted, directed networks analysis, allows 
us to estimate the magnitude and direction of spillover effects among the six markets. 
Security breaches have a significant impact on the Bitcoin prices and weaknesses in the 
infrastructure of the Bitcoin network. We found that cyber attacks over the years create a 
high degree of spillover because investors’ reaction to negative information depreciates the 
price and creates a turmoil status across the markets. Our results show a strong volatility 
spillover between the markets with upward spillover trending over time. Network analysis 
helps us to zoom in on the propriety of spillover index to examine the direction and 
magnitude of spillover effects over time. We studied 19 major cyber attacks between 
2015 and 2019, scrutinising the connectedness among the six major Bitcoin markets. We 
find that cyber attacks leave some distortion in the network depending on the size and 
connectedness. On average BTC/USD and BTC/EUR and BTC/JPY possess stronger 
predictive power, and transmit the volatility to the rest of the markets. A robustness 
exercise generally supports our claim. Different hedging and investment strategies are 
provided to help investors and policy makers. 

Keywords: Keywords: Variance Decomposotion, volatility spillover, Network 
analysis, Cyberattacks, Cross-market Bitcoin prices. 
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4.1 Introduction 

The popularity and interest in Bitcoin markets is growing rapidly. Indeed, Bitcoin is the 
most active cryptocurrency with market capitalisation exceeding $ 145 billion1, which 
can be traded or exchanged, anonymously and instantaneously around the world. Bitcoin 
is an application (digital currency) that can be transacted through anonymous, public 
and open disrupted ledger without any central authority. To build the latter system, 
Nakamoto (2008) rely on the block chain method 2 to build a safe, secure distributed 
ledger needed to complete a state-of-the-art mathematical puzzle called proof of work 
(PoW), to firstly verify transactions and secondly, build new blocks and add them to the 
chain. These Bitcoins can be stored in secure software called a ‘wallet’, for which a private 
key is provided to be able to access the Bitcoin addresses and all related information. 
Bitcoin investors and others interested in the cryptocurrency market are seriously cautious 
and alert to network safety and security, as a cyber attack or any other security breach is 
going to affect and threaten the Bitcoin price substantially, and hence, their investment. 
As Bitcoin prices are fundamentally driven by the feeling and memory of investors, cyber 
crime events in Bitcoin markets should be controlled and the network security increased 
to provide a safe environment for investors. To investigate the nature of such types of 
investment decisions, and to help governments design adequate regulations for limiting 
cross-market movement of shocks, a remarkable growth of research has lately sprung up. 

Literature has focused on two main aspects of cryptocurrency price movements. First, 
conceptual designs aiming to depict potential weaknesses of this market and show how 
the latter can subject investors to insurmountable unsystematic risks (see for instance, 
Cheah & Fry, 2015; Cheah et al., 2018). Second, a plethora of empirical research has 
systematically presented state-of-the-art estimation techniques to identify, among others, 
informational inefficiency (viz. Urquhart, 2016), long-range persistence behaviour and 
cointegration (viz. Alvarez-Ramirez et al., 2018; Caporale et al., 2018; Cheah et al., 2018), 
volatility spillovers and dynamic interactions with other financial assets (viz. Gillaizeau 
et al., 2019), cyber criminality and market regulation (viz. Caporale et al., 2019; Corbet 
et al., 2020; Gandal et al., 2018). Thus far, the extant research has largely focused on a 
cross-section of cryptocurrencies and sparsely on the cross-market dynamics of a single 
cryptocurrency. The current chapter aims to contribute to the nascent literature by 
studying the issue of cyber crimes and identifying their affects across Bitcoin markets 
exchanged in various currencies based on the network topology of variance decomposition. 

The issue of networks has been studied everywhere in modern life, such as social sci­
ences, physics, biology and many others. Regarding the finance literature, F. Diebold 
and Yılmaz (2014) designed a network connectedness framework in conjunction with 
variance decomposition to understand and analyse the interdependence between network 

1Coinmarketcap(Jan, 2020) 
2Remember that the block chain is a one type of distributed ledger, so a block chain can be a 
distributed ledger but not the reverse 

https://coinmarketcap.com/
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components. Indeed, the latter framework simplifies and demonstrates volatility spillover 
through the distance of diameters and degree of nodes in the network. Monitoring and 
characterising the evolution of interdependence, especially during financial crisis and 
episodes of economy-wide uncertainty help us to understand the flow and direction of 
information within markets. Further, detecting shocks within a network is relatively 
easy as one can exploit the different network features to monitor the movements and 
generate better predictive power for an asset. Although the Bitcoin market is regulated 
to some extent, it is still less safe than other conventional regulated markets around the 
globe and cross-economies, which may increase the risk generated by investor sentiment 
concerning the security of the network infrastructure. While former studies, such as 
Corbet et al. (2020) shed light on the financial market effects of recent cyber criminality 
in cryptocurrency markets, Caporale et al. (2019) investigated the effects of a wide range 
of cyber attacks on cryptocurrency returns. The focus on a single market, rather than a 
cross market cryptocurrency market in the latter study holds significance in our context: 
designing a weighted directed network can create a stock of information for investors 
seeking arbitrage value of Bitcoin traded in various markets. Further, regulators could 
introduce circuit breakers to stop trading in Bitcoin cross-markets when the market 
receives a severe shock that might impact negative down. This study provides a helpful 
and robust investment strategy for a single cryptocurrency traded in various markets. 

The main aim of the current chapter is to improve our limited understanding of the 
serious damage and risk that could be generated from cyber attacks. Corbet et al. (2020) 
find that the degree of risk within cryptocurrency markets is heavily dependent on the 
stability and security of the market with the co-movement of extreme events. Thus, a 
thorough understanding of network variance decomposition across Bitcoin markets is 
important to gauge the level and magnitude of threat received by a security breach or 
cyber attack. Therefore, this chapter contributes to the literature in two significant ways. 
First, we study the network topology of Bitcoin prices volatilities by designing several 
weighted directed networks during nineteen major cyber attacks. Although economic and 
political events could generate volatilities within financial markets, but cyber attacks could 
leave more significant impacts on cryptocurrencies market, hence, the markets are fully 
electronic and vulnerable to cyberattacks. Each cryptocurrency has unique and distinct 
infrastructure (network), thus, focusing on Bitcoin market rather than cryptocurrencies 
markets allows us investigating the network more thoroughly and efficiently. Second, we 
examine the impact of a series of cyber attacks across Bitcoin markets through variance 
decomposition method. To the best of our knowledge there is no available financial 
theoretical model to justify conditioning the predictive power of an asset market on 
volatility in a cryptocurrency market. In this sense, a major contribution of the current 
chapter is to measure and identify the network connectedness between Bitcoin markets 
under several cyber attacks. By doing so, we aim to shed light on six Bitcoin markets 
under different security breaches to identify their magnitudes and directions, statically, 
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dynamically and graphically. Eventually, such tendencies could help investors and policy 
makers to design useful strategies to systematically hedge and save the market. 

To investigate further, the rest of the chapter is planned as follows: Section 2 revises 
the cryptocurrency literature; Section 3 discusses data and summary statistics; Section 4 
discusses estimation methods; Section 5 presents empirical results and robustness analyses; 
Section 6 concludes and presents the main implications of our research. 

4.2 Literature review 

Although the Bitcoin system is based on the proof-of-work method to securely and 
confidentially record users’ details on the distributed ledger, because of the decentrali­
sation and undetectable characteristics of the system, attackers and hackers exploit the 
opportunity to commit fraudulent transactions, control the network and access sensitive 
details. Attackers mainly target the users (investors), merchants (platform owners), 
Bitcoin system (the network) and miners (builders of the chain) to hijack private keys, 
sensitive details and control the network to gain more rewards (Conti et al., 2018). For 
example, DDoS attacks can target a platform website or network and disturb the normal 
traffic by flooding the target with loads of internet traffic, Wallet theft which mainly 
targets users and individuals or businesses, and Double spending attacks which target 
both platforms and sellers3. Some excellent surveys have been performed recently (Conti 
et al., 2018; Ghimire & Selvaraj, 2018; Shalini & Santhi, 2019) in the computer science 
and network security field to characterise, facilitate and clarify all the technical aspects 
of the network, protocols (e.g. payment system), blocks and blockchain, proof-of-work 
and mining processes in cryptocurrencies/Bitcoin. 

A wide range of attacks on the Bitcoin system (e.g. Sybil attack, Eclipse attack, Block 
withholding attack and many others) are revised in the literature and addressed to identify 
the most hidden, vulnerable points in Bitcoin, and several solutions have been found to 
improve the level of security(Conti et al., 2018). Pachal and Ruj (2019) introduced a 
new mining approach that boosts the computational power to maximise the individual 
miner’s gain against Selfish mining, Stubborn mining and others. A novel approach called 
ByzCoin was proposed to leverage the security of Bitcoin and protect the mining and 
consensus system (Kogias et al., 2016). Almukaynizi et al. (2018) proposed an approach 
that can detect and identify cyber breaches and illegal activities in the Dark Web 
targeting cryptocurrency platforms and traders. Another famous way of attacking Bitcoin 
is via the internet routing infrastructure (IP hijacking), in which hackers manipulate the 
Bitcoin traffic to hijack BGP prefixes4 to slow down the network and partially occupy 
the processing power to generate more rewards. Almukaynizi et al. (2018) proposed 

3This could happen via a 51% attack; when one hacker or miner manages to occupy more than 51% 
of a network, the double spending method will be possible to apply 

4Border Gateway Protocol 
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comprehensive short and long-term measures to limit attackers’ ability to redirect miners’ 
IP addresses to their servers. To explore more of the technological and technical literature 
see (Ahamad et al., 2013; Chyzhmar et al., 2019; Mukhopadhyay et al., 2016). 

All the above technology and security challenges are associated with the significant risk 
generated by the hijackers or attackers. However, the Bitcoin market is significantly 
integrated with the global economy; thus, the associated risk could leak to economies, 
social networks and many financial entities, and result in a remarkable distortion to the 
system, users, markets and even the global economy. To identify and understand this in 
cryptocurrency and the Bitcoin market, a systematic survey undertaken recently (Corbet 
et al., 2019) reveals that the theoretical and empirical research in the cryptomarket 
investigates mainly the regulations and information system, the financial market, the 
monetary theoretical formulation of cryptocurrency, and finally the development of 
empirical methods and mechanisms to study the complex interaction of prices under 
different scenarios. 

Other systematic surveys (Kyriazis, 2019a, 2019b) explore the empirical literature to clarify 
and investigate market efficiency, connectedness and spillovers across the cryptocurrency 
markets. The latter empirical results allow us to make decisive inferences and draw on 
efficient and accurate investment strategies with lowest associated risk. Several pieces 
of research have systematically proposed and investigated a plethora of techniques to 
measure the level of efficiency in Bitcoin markets. Brauneis and Mestel (2018); Khuntia 
and Pattanayak (2018); Wei (2018) applied several approaches and found that the Bitcoin 
market is mostly efficient, and the level of market efficiency relatively impacted by 
liquidity and size. By contrast, a plethora of research has supported the inefficiency of 
Bitcoin markets, due to the imbalance between the true value of Bitcoin and its available 
information in the market (Bouri et al., 2019; Urquhart, 2016). Empirical studies on 
spillover volatility and price dynamics could be a good measurement for identifying 
the level of efficiency in Bitcoin market and providing rich information about the net 
receiver and net dispenser of Bitcoin volatility (Corbet et al., 2018; Gillaizeau et al., 
2019; Koutmos, 2018; Symitsi & Chalvatzis, 2018; Zięba et al., 2019, viz.). A stream of 
literature has investigated structural breaks, co-integration and fractional integration to 
detect and investigate the complex behaviour of cryptocurrency prices. Indeed, studying 
the long memory in Bitcoin prices could determine the level of inefficiency in the market 
and help investors to speculate and design several investment strategies that can generate 
abnormal returns (Alvarez-Ramirez et al., 2018; Al-Yahyaee et al., 2018; Bouri et al., 
2019; Caporale et al., 2018; Charfeddine & Maouchi, 2019; Cheah et al., 2018; Mensi et 
al., 2019). However, ignoring the stability of the system during the analysis process could 
generate misleading information and bias investment strategies. 

The third main strand of the literature focuses on the regulations, information systems and 
cyber criminality of cryptocurrency markets that allow legislators and decision makers to 
design appropriate regulations and create an efficient environment with flexible boundaries 
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to restrict the frustration and manipulation across the cryptocurrency market (Böhme et 
al., 2015; Dwyer, 2015; Gandal et al., 2018). Abhishta et al. (2019) investigated one of 
the most important DDoS attacks mentioned earlier and its economic impact on Bitcoin. 
They showed that DDoS attacks have a direct negative impact on the daily volume of 
Bitcoin, most generating a one day shock, followed by recovery, although some react after 
two to five days before recovering again. Marella et al. (2017) classified the cyber attacks 
on Bitcoin (e.g. DDoS, code bugs or user errors) and the common response from users 
(e.g. code revision, computer security measures or temporary suspension). They conclude 
that cyber attacks can diminish the value of Bitcoin and leave a serious impact for its 
users, exchange and different aspects. Caporale et al. (2019) investigated the impact of 
cyber attacks on the return of four cryptocurrencies (e.g. Bitcoin, Stellar, Litecoin and 
Ethernam) through Markov switching analysis and cumulative measures. Their results 
suggest that cyber attacks induce the system to be highly volatile, and when the number 
of cyber attacks increases dramatically, the probability of volatility to stay mostly stable 
is low. Another interesting piece of research studied the influence of cyber criminal events 
on price volatility and cross-cryptocurrency correlation. Significant results suggest that 
during cyber attacks, there are very high episodes of volatility and broad co-movement 
in cryptocurrency markets. They also found that there is a chance of abnormal returns 
(which vary depending on the cyber attack event) just before the cyber attack occurs, 
and zero returns during the time and announcement of the cyber attack (Corbet et al., 
2020) . 

It is evident in the literature that Bitcoin prices are typically volatile during cyber attacks 
and can be seriously manipulated in some markets (Gandal et al., 2018). In the meantime, 
exchange rate differentials across markets offer investors the opportunity to enhance 
their portfolio returns. Under these scenarios, it is expected that price volatility on one 
particular Bitcoin-to-currency exchange market (e.g. Bitcoin-USD) can flow to other 
markets, and can also be acquired from others. Any quantitative information on the 
centrality or relative isolation of some Bitcoin-to-currency markets can actually help 
investors to better anticipate their complex dynamic behaviour and exploit the potential 
for forecastable gains. These premises are rigorously tested in the current chapter by using 
daily price data on six major Bitcoin-to-currency exchange rates. In the next section, we 
design the net predictive power and the net receiver of volatility during different cyber 
attacks. 
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4.3 Data and summary statistics 

Table 4.1 Summary statistics, exchange rate volatility 

Mean St. Dev. Median Max Min Skewness Kurtosis 

BTC/USD 0.033 0.028 0.025 0.281 0.003 2.559 13.820 
BTC/EUR 0.032 0.029 0.023 0.365 0.003 3.058 20.907 
BTC/GBP 0.031 0.029 0.022 0.391 0.002 3.478 26.439 
BTC/JPY 0.031 0.032 0.021 0.345 0.003 3.539 22.559 
BTC/AUD 0.041 0.118 0.025 2.419 0.003 16.646 310.221 
BTC/CAD 0.035 0.081 0.024 2.864 0.004 28.622 962.340 

As mentioned above, a plethora of literature has claimed that the Bitcoin market is isolated 
from other conventional markets. Consequently, we were interested in investigating the 
cross-market Bitcoin prices system, as studying the dynamics of Bitcoin will provide rich 
information about the factors affecting price developments and help us to devise efficient 
investment strategies. 

Bitcoin is traded across different countries in diverse exchanges. This chapter considers 
daily high and low (H-L) exchange rates data against Bitcoin for six major currencies 
across the world, namely the U.S. dollar (USD), Australian dollar (AUD), Canadian 
dollar (CAD), Euro (EUR), British pound (GBP) and Japanese yen (JPY). The data 
span from Jan 1st , 2015 to May, 31st , 2019. 

Bitcoin prices are publicly available and provided by several electronic platforms (Alexan­
der & Dakos, 2020). However, selecting the ideal Bitcoin prices against each currency 
is crucial and depends on the selected platform. Thus, we take into consideration the 
traded prices, ranking and trading volume for each market (e.g. BTC/USD, BTC/AUD, 
BTC/CAD, BTC/EUR, BTC/GBP, and BTC/JPY) to cover the optimal Bitcoin prices 
across the markets. We found that the highest rank of the market and trading volume of 
USD in Bitfinex platform exceeded 211 Billion over the last five years, which makes the 
market share of the latter platform around 37.35%, overtaking more than a third of the 
market trading in Bitcoin/USD. Kraken platform has executed transactions of BTC/EUR 
of around 43 Billion Eur over the last five years, the market share of BTC/Eur via this 
platform being around 36.5%. The highest trading volume of JAP yen against BTC is on 
Bitflyer platform with 9.61 Trillion JPY volume and 99.72% market share. GBP, CAD 
and AUD were traded intensively on Bit-x, Quadrigacx and Btcmarkets platforms with 
trading volumes approaching 11.7 Billion GBP, 2.65 Billion CAD and 3.95 Billion AUD 
respectively. The market share of trading Bitcoin on the latter three currencies is 67.4%, 
77.32% and 91.11% respectively. We obtained our data directly from these platforms to 
reflect the actual traded behaviour for each fiat currency, and neglect all the platforms 
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showing suspicious trading activities 5 or low rank and trading volumes. To borrow more 
comparisons, we compared all the Bitcoin prices with Bitcoinity.org and Bitcoincharts6,7 . 

We study the daily volatilities of exchange rate returns of bitcoins. The daily variance is 
computed using daily high and low prices and the high-Low volatility (HL-HV) measure 
by Parkinson (1980):8 

    

21 h 

ln (4.1)V
 =

4 ln(2) l
 

where V denotes the volatility of price, h and l are the highest and lowest exchange rates 
on a given trading day, respectively. All volatility series are checked for stationarity with 
the help of Augmented Dicky Fuller (ADF) unit root tests (Dickey & Fuller, 1979). Both 
tests suggest to systematically reject the null of the presence of a unit root with 95% 
confidence for every daily volatility series, suggesting the latter are co-variance stationary. 

The dynamics of Bitcoin price volatility are illustrated in Figure 4.1, while Table 4.1 
summarises the descriptive statistics. The number of observations is 1612 across all 
variables. The average volatility across markets is bouncing around 0.032. The highest 
and lowest mean across the sample are AUD (0.035) and GBP (0.031) respectively, while 
the standard deviation across the 6 markets is fluctuating between CAD (0.027) and JPY 
(0.032). Thus, the average of S.D. is approximately 0.029. The six exchange rates display 
large positive skewness, suggesting a large concentration of observations to the left of their 
central tendency, hence, volatility series are asymmetrically distributed. Bitcoin prices are 
sensitive to major economic and political events, and all extreme shocks can be explained 
through the four moments. All series show unequivocally leptokurtic behaviours, of 
which Kurtosis is different across individual series, ranging from around 14.6 on average 
(BTC/USD, BTC/AUD and BTC/CAD) to about 23.3 (BTC/ JPY, BTC/GBP and 
BTC/EUR). 

Figure 4.1 displays the volatility of six Bitcoin markets over time. BTC/GBP and 
BTC/EUR show the highest shock across the whole system, recording only around 0.37 

in both markets. Visually, we can confirm that BTC/USD and BTC/EUR are the most 
stable markets with both series fluctuating below 0.1 most of the time, except for the 
period around 2018. Also, extensive fluctuations across the entire system appear mainly 
around 2018, and partially between 2015 and 2016, hinting that events such as platform 
breaches lead Bitcoin prices to be remarkably sensitive. 

5All the trading volumes and Ranking information obtained from Bitcoinity.org 
6Bitcoinity. 
7Bitcoincharts API. 
8Bennett and Gil (2012) argue that Parkinson’s volatility model is more efficient than other conventional 
measure of volatility, such as that of close-to-close. 

http://data.bitcoinity.org/markets/volume/30d?c=e&t=b
https://bitcoincharts.com /about/markets-api/
http:Bitcoinity.org
http:Bitcoinity.org
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Figure 4.1 Volatility Exchange Rates
 

Note: Exchange rate volatility series, daily. Dates on the x-axis indicate the start of the year, and ticks 
are quarterly. 
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4.4 Methodology 

Let us consider the following N-dimensional covariance-stationary data generating process 
with orthogonal shocks (see F. Diebold & Yılmaz, 2014): 

yt = Θ(L)ut (4.2) 

where Θ(L) = Θ0+Θ1L+Θ2L
2+..., with E(utu 

� 
) = I, and yt contains the series of Bitcoin t

exchange rate returns volatility under investigation in our analysis. In particular, Θ0 

summarises the contemporaneous aspects of connectedness and {Θ1, Θ2, ...} the dynamic 
aspects. The understanding of the connectedness trough the matrices of coefficients 
{Θ0, Θ1, Θ2, ...} can be problematic if many parameters are to be estimated. Therefore, 
one can transform {Θ0, Θ1, Θ2, ...} by using variance decomposition technique to resolve 
the issue (F. Diebold & Yılmaz, 2014). 

In order to understand the measures of connectedness, F. Diebold and Yılmaz (2014) 
provide the so-called connectedness table, which is illustrated in Table 4.2. The N × N 

upper-left block matrix contains the variance decompositions, which are denoted by 
DH = [dH ] and indicate the fraction of variable i s H-step forecast error variance due to ij 

shocks in variablej. This matrix is called “variance decomposition matrix”. 

Table 4.2 Connectedness table 

y1t 
y2t 

y1t 
dH 
11 

dH 
21 

y2t 
dH 
12 

dH 
22 

· · · 
· · · 
· · · 

yNt 
dH 
1N 

dH 
2N 

From others NN 
j=1 d

H 
1j , j = 1 NN 

j=1 d
H 
2j , j = 2 

. . . 
yNt 

To others 

. . . 
dH 
N 1NN 

i=1 d
H 
i1 

. . . 
dH 
N2NN 

i=1 d
H 
i2 

. . . 
· · · 
· · · 

. . . 
dH 
NN NN 

i=1 d
H 
iN 

. . .NN 
j=1 d

H 
Nj , j = N 

1 
N 

NN 
i=1 

NN 
j=1 d

H 
ij 

i = 1 i = 2 · · · i = N i = j 
Notes: θ̃ij (H) represents the contribution of variable j to variable i’s h-step-ahead generalized forecast 
error variance. FO (From Others) and TO (To Others) denote the magnitude of the contribution from 
others and to the rest of the systme, respectively. The bottom-right element of the table is the total 
connectedness and represents a system-wide measure of interdependence. H is the forecasting horizon. 

N is the total number of variables. 

The connectedness table augments DH with a rightmost column (From others) containing 
row sums, a bottom row containing column sums (To others), and a bottom-right element 
containing the grand average, in all cases for i = j. The off-diagonal elements of DH 

measure the pairwise directional connectedness from j to i, which is defined as 

CH = dH 
i←j ij . (4.3) 

In general, CH = CH . In addition to the gross pairwise directional connectedness isi←j j←i
possible to define the net pairwise directional connectedness which is given by Cij

H = 



 

 

 

�

� �
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Cj
H 
←i − Ci

H 
←j . When considering the off-diagonal row or column sums of DH , we have 

the total directional connectedness from others to i : 

Np
CH = dH (4.4)i←• ij . 

j=1 
j=i 

and the total directional connectedness to others from j : 

Np
CH dH 
•←j = ij . (4.5) 

i=1 
i=j 

Likewise the net pairwise directional connectedness, one can define the net total directional 
connectedness as CH = CH − CH . Lastly, grand total of the off-diagonal entries in i •←i i←•
DH defines the total connectedness: 

Np1 
CH = dH (4.6)ij . N 

i,j=1 
i=j 

In order to obtain the variance decomposition, the general variance decomposition (GVD) 
framework is used (see Koop et al., 1996; Pesaran & Shin, 1998). The H-step-ahead 

gH generalized variance decomposition matrix DgH = [dij ] is as follows: 

σ−1 NH−1 ΘhΣej )
2 

gH jj h=0 (ei
d = (4.7)ij NH−1 

h=0 (eiΘhΣΘhej ) 

where ei is the selection vector with its ith element equal to one and zeros otherwise Θh is 
the coefficient matrix times the h-lagged shock vector in the moving-average representation 
of the non-orthogonalized VAR, Σ is the covariance matrix of the shock vector in the 
non-orthogonalized VAR, and σjj is the ith diagonal element of Σ (see F. Diebold & 
Yılmaz, 2014). Since the shocks in the GVD framework are not necessarily equal to one, 
F. Diebold and Yılmaz (2014) base their generalized connectedness indexes on D̃g = [ d̃g ],ij 

dg 
ij 

NN NNwith d̃g = �N ( d̃g = 1 and d̃g = N).ij dg j=1 ij i,j=1 ij
j=1 ij 

The connectedness measures examined so far are linked to the network connectedness: 
the variance decompositions are networks (F. Diebold & Yılmaz, 2014). A network N 

consists of N nodes and L links between the nodes, and the distance between two nodes 
i and j, denoted by Sij , is the smallest number of links that must be crossed to move 
from i to j. N is connected if Sij ≤ N − 1, ∀i, j. Put another way, a network is a N × N 

adjacency matrix A of zeros and ones,A = [Aij ], where Aij = 1 if nodes i and j are 
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connected, and Aij = 0 elsewhere. The variance decomposition matrix D is a network 
adjacency matrix A (F. Diebold & Yılmaz, 2014). 

Figure 4.2 illustrates the mechanism of the network with an example. The network 
involves a set of nodes (bitcoins markets) and edges which represent connectedness among 
nodes. The largest node is B, which implies that this node gives the highest contribution 
(the highest contribution is from B to C). C is the smallest node, and its contribution 
to the other nodes is the smallest. B is a net contributor to A and C, while C is a net 
receiver from A to B (the direction of the arrow among two nodes reveals the net receiver). 
Lastly, node A is a net receiver from B and a net contributor to C. 

Figure 4.2 Net pairwise directional networks. 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 

in terms of net pairwise directional connectedness. 

The full-sample connectedness releases “average” information on aspects of each of the 
connectedness measures, but by construction it does not relate to connectedness dynamics 
(F. Diebold & Yılmaz, 2014). A dynamic analysis of connectedness can be accomplished 
by rolling estimation. To this end, the total (global) connectedness (TC) (see the bottom-
right element of Table 4.2) can be evaluated dynamically using a rolling scheme based on 
the following formula 

N Npp1 
TC(s) = dH (4.8)

N ij,s, i = j,
 
i=1 j=1
 

where s is the sequence of the rolling estimates of TC in equation (4.8). With a total
 
sample size of T observations and a rolling window size of R observations, the sequence of
 
estimates of TC is always generated from a sample of size R: the first estimates of TC(s)
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is obtained with a sample running from 1 to R, the next one with a sample running from 
2 to to R+1, and the final one with a sample running from T-R+1 to T. 

4.5 Results 

In this section, we examine the exchange rate return volatilities of Bitcoin for six currencies, 
namely the U.S. dollar (USD), Australian dollar (AUD), Canadian dollar (CAD), Euro 
(EUR), British pound (GBP) and Japanese yen (JPY). The analysis proceeds in three 
steps. First, a static analysis of connectedness is carried out using the connectedness 
table and the network framework. Second, a rolling estimation scheme is applied for 
the connectedness dynamics. In particular, this step involves an examination of total 
connectedness, along with total directional spillover effects. Third, the network framework 
is used to ascertain whether, and to what extent cyber attacks impacted on Bitcoins 
during the period under investigation. Lastly, a robustness exercise is carried out to 
validate the spillover index analysis. 

4.5.1 Static connectedness 

Table 4.3 reports the full-sample total connectedness results. The horizon is H=30 days. 
The following main findings emerge: first, the total connectedness is a very high 77% 
(see the bottom-right element in boldface). Second, the elements on the main diagonal 
of the table (own connectedness) display the highest values. Third, looking at the off-
diagonal elements of the upper 6 × 6 submatrix, the largest value of pairwise directional 
connectedness is recorded from GBP to USD, 17.14%, while for the lower 6 × 6 submatrix 
the highest value is from USD to GBP, almost 18%. Fourth, the total connectedness from 
others to each Bitcoin market (see last column FROM) ranges from 75.49% to 77.66%, 
while the total connectedness to others (see the second last row TO) varies from 65.50% 
to 82.12%. 

BTC/JPY and BTC/AUD markets inject almost symmetric shocks across the system 
(see columns BTC/JPY and BTC/ AUD) and absorb the shocks in different magnitudes. 
The BTC/AUD market transmits just below 14% to each market, which makes this the 
most vulnerable market in the system. Looking into the power of influence within the 
system, we can categorise the table into three sections: first, the Giver group (e.g. the 
markets which generate the risk), which consists of BTC/USD and BTC/EUR markets. 
Secondly, the Receiver group, which can be easily identified from the table as BTC/AUD 
and BTC/JPY. However, the Alleviate group (e.g. the mitigator group) indicates that 
both markets BTC/GBP and BTC/CAD could act as intermediary, allowing volatility to 
circulate between the main components of the system. 
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In sum, among the six markets, BTC/USD and BTC/EUR are “strongly” connected, while 
BTC/AUD appears to be the most isolated market. The pairs BTC/USD - BTC/EUR, 
BTC/GBP - BTC/CAD and BTC/JPY - BTC/AUD are the most closely interlinked 
markets. However, static information is inefficient for explaining economic and financial 
events; hence, to study market behaviour during episodes of financial shocks, we should 
study the dynamic spillover across the selected markets. 

4.5.2 Dynamic connectedness 

Globalisation and technology have a huge impact on the high level of connectedness we 
see between financial markets nowadays. In particular, the cryptocurrenices market is a 
fully electronic platform in which trading through the Internet is essential; hence, the 
market plays a tremendous role in connecting and transmitting risk all over the world. 
Thus, to investigate the continuous interdependence between the six Bitcoin markets, we 
should take a closer look and trace the important financial events that could be related to 
the cryptocurrencies market. Corbet et al. (2018); Damianov and Elsayed (2020); Wang, 
Zhao, and Li (2019) and many others claim that the cryptocurrencies market is moreorless 
isolated from the conventional financial markets, which makes it reasonable to trace 
financial events that might affect or connect to the cryptocurrencies market. Regarding 
Bitcoin markets, the Bitcoin was created to be an independent currency that remains 
unaffected by economic situations (e.g. inflation or recession), as Satoshi Nakamoto 
included in his first Bitcoin transaction, "The Times 03-Jan-2009 Chancellor on brink of 
second bailout for banks". Hence, it is unreliable to claim that economic events might 
affect Bitcoin price, but rather that such prices are fundamentally driven by the ‘feeling 
and the memory’ of investors at a point in time (Cheah et al., 2018) . 

The full-sample connectedness in Table 4.3 gives ‘average’ results on connectedness 
(F. Diebold & Yılmaz, 2014). Figure 4.3 illustrates the dynamic of total volatility 
connectedness over 120-day rolling-sample windows in which the volatility spillover 
between the six markets (Table 4.3) is compressed in a one dynamic series, as shown in 
Figure 4.3. From the Figure, the overall behaviour of connectedness is clearly increasing 
dramatically over time. Observing the first half of the sample span, we can clearly identify 
wide and deep fluctuations along 2015 and 2016, while on the contrary, the second half 
shows relatively smooth and upward shifting with high interdependence along 2017 to 
2019. The latter upward shifting can be linked to the increasing popularity of Bitcoin, 
when the price started to rocket and hit a peak, recording almost 20000$ around December 
2017. Since then, investors, regulators and hijackers have started to pay more attention to 
this digital currency which has been creating this magnitude of connectedness since 2017. 
The dynamic connectedness among the six markets reveals important information about 
several key events that occurred between 2015 and2019, and shows how those events have 
induced the system to generate such behaviour. 
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The major events that might affect Bitcoin prices can be categorised as cyber criminality, 
halvings, exchange or hijacking events. The first and worst crash in the Bitcoin Market 
was when Mt.Gox in 2014 claimed that around 100,000 BTC had been stolen, affecting 
around 750,000 customers 9. Later, in August 2015, the Japanese police arrested the 
CEO of Mt.Gox platform, Mark Karpelès, claiming that he manipulated the platform 
system and its financial reports10. Moreover, Bitfinx platform had a ‘flash crash’ on 19 
August in the same year, in which the Bitcoin price in this exchange declined by 29%11 . 
Thus, the latter two events generated enough uncertainty to negatively depreciate the 
Bitcoin price during the last third of 2015, and created a volatility spillover spike among 
the second and third quarter of 2015, to record above 70% and 82% shocks, respectively, 
as shown in Figure 4.3. 

In late 2015 and during the first half of 2016, volatility spillover increased dramatically 
to record two significant shocks (in Nov 2015 and Aug 2016) that might have been 
generated from several important events, including the announcement of hacking in the 
Bitfinx platform and stolen Bitcoins worth around 72$ million, and the announcement 
of the Bitcoin Investment Trust (GBTC) that the Bitcoin price was going to appreciate 
dramatically during 2016 12 13 . 

The total connectedness has become more constant and intensive since the beginning 
of 2017, the high linkage being explained by the dramatic increase in Bitcoin price, 
exceeding 1000$. Indeed, the high price has encouraged lots of new users and investors to 
participate and invest in Bitcoin, as well as several projects being established to support 
the market. As a result, the network has started to grow rapidly, the infrastructure of 
Bitcoin becoming stronger and more consistent, with Bitcoin wallets, Bitcoin applications, 
Bitcoin miners and many others. 

In this chapter, we focus on cyber attacks to investigate the distortion left in the network 
infrastructure because of the various different fraudulent transactions and attempts to 
hijack users’ accounts. In the next section, we will zoom in and scrutinise the total 
connectedness under episodes of cyber attack, and identify the net dispensers and net 
givers among the markets. 

9Mtgox.com 
10Japanese police arrest Mark Karpeles 
11Coindesk.com 
12Reuters.com 
13Coindesk.com 

https://web.archive.org/web/20140217113525/https://www.mtgox.com/img/pdf/20140217-Announcement.pdf
https://www.wsj.com/articles/japanese-police-arrest-mark-karpeles-of-collapsed-bitcoin-exchange-mt-gox-1438393669
https://www.coindesk.com/bitcoin-price-falls-14-following-bitfinex-flash-crash
https://www.reuters.com/article/us-bitfinex-hacked-hongkong-idUSKCN10E0KP
https://www.coindesk.com/wedbush-revises-12-month-bitcoin-price-target-to-600-
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Table 4.3 Volatility spillovers across six selected exchange rates in time domain 
– 30-day ahead forecast 

BTC/USD BTC/EUR BTC/GBP BTC/JPY BTC/AUD BTC/CAD Directional 
FROM others 

BTC/USD 22.34 16.81 17.14 14.57 12.88 16.27 77.66 
BTC/EUR 16.82 23.25 16.19 14.73 12.86 16.15 76.75 
BTC/GBP 17.69 16.49 22.28 14.71 12.82 16.01 77.72 
BTC/JPY 15.88 16.35 15.44 23.08 13.64 15.61 76.92 
BTC/AUD 15.10 15.62 14.80 14.96 24.51 15.00 75.49 
BTC/CAD 16.63 16.48 15.83 14.90 13.30 22.86 77.14 
Directional 
TO others 82.12 81.75 79.41 73.88 65.50 79.03 TSI: 76.95% 

Note:Data cover the period from January 1, 2015 to May 31, 2019. The rightmost (FROM) column 
gives total directional connectedness (from). The bottom (TO) row gives total directional connectedness 
(to). Numbers are in percentage. The bottom-right element (in boldface) is total connectedness (see also 
F. Diebold & Yılmaz, 2014). 

Figure 4.3 Overall volatility spillovers (dynamic plot) 

Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 30-120­
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 
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4.5.3 Network Analysis of variance decomposition 

Figure 4.3 provides us with the total connectedness of the six markets over time, in 
which is difficult to distinguish between the dominant and non-dominant markets, or the 
direction of spillover among the dynamic connectedness. In this regard, we diffuse the 
rolling window estimation in the previous section and extract the spillover index at every 
point in time from 2015 to 2019, in order to study the impact of cyber attacks on the 
Bitcoin network infrastructure. Table 4.4 shows the most important cyber attacks taking 
place during the sample span. 

Table 4.4 shows 25 cyber attacks that targeted several Bitcoin platforms in this section. 
We identify the most important attacks that took place during the five years, and present 
the rest of the network figures in Appendix C, from Figure C.12 to Figure C.25. In 
the second half of 2016, the Bitcoin infrastructure received the second biggest security 
breach after the Mt.Gox collapse, in which hijackers stole around 120 000 BTC units from 
the Hong Kong-based Bitfinex platform. On the other hand, a small amount of units, 
amounting to 8 BTC were stolen in Jan 2019 by hackers from LocalBitcoin platform. The 
question here is "Does the amount of stolen Bitcoin determine the magnitude of such a 
shock?” Or are there different factors that may induce the system to generate more risk, 
such as ‘the feeling and memory’ of investors? Indeed, a small amount of stolen BTC, 
with good media coverage, might generate more risk than an unknown large attack (e.g. 
a cyber attack in South Africa) within the network. 

The network graphs of the cyber attacks in Table 4.4 will be presented in the Appendix C, 
and we will discuss the most important cyber security breaches in each year. In June 2015 
a cloud mining service, Scrypt, announced a security breach in one of their hot wallets. 
Hijackers had managed to steal around 3500 BTC units from the Scrypt account and 
other registered users’ accounts. As discussed earlier, while Figure 4.1 does not provide 
detailed information about the individual markets in the system, we can clearly see the 
total spillover index during the cyber attack, which was high as 61%. However, variance 
decomposition network analysis in Figure 4.4 reveals significant information about the 
individual Bitcoin markets when a cyber attack took a place during June, 2015. We 
can identify the direction and the dominant markets here. BTC/USD appears to be the 
net giver here, followed by BTC/EUR, then BTC/JPY. On the contrary, the Australian 
market absorbed all the shocks generated within the system, as all the arrows go into 
BTC/AUD with no sign of any arrow going out of the Australian market. The second 
vulnerable Bitcoin market is the Canadian market, which has received systematic shocks 
in different magnitudes including BTC/USD, BTC/EUR, BTC/JPY and BTC/GBP. 
Overall, investors and policy makers can take advantage of being able to identify the 
most dominant market - here USD Bitcoin market - to base their investment decisions on, 
taking into consideration the flow and direction of risk in each market within the system. 
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Table 4.4 Cyberattcks in Bitcoin Markets
 

Attack Date 

22/05/2015 
22/06/2015 
15/02/2016 
02/08/2016 
13/10/2016 
26/04/2017 
17/05/2017 
06/12/2017 
18/12/2017 
26/12/2017 
07/01/2018 
15/02/2018 
04/03/2018 
12/04/2018 
20/09/2018 
21/12/2018 
27/12/2018 
26/01/2019 
07/05/2019 

Amount $ Type Target Dominant 
Market 

329000 BTC Bitfinex USD 
864500 BTC Scrypt.cc USD 
103000 BTC brain wallets EUR 

72000000 BTC Bitfinex EUR 
1500000 BTC Bitcurex EUR 
7600000 BTC Yapizon AUD 
2900000 BTC eBitz EUR 
68000000 BTC NiceHash EUR 
37000000 BTC Youbit’s EUR 
1000000 BTC Exmo EUR 
23000000 BTC Michael Terpin EUR 
50000000 BTC Network attack JPY 
50000000 BTC BTC Global check JPY 
3000000 BTC CoinSecure GBP 
60000000 BTC Zaif AUD 
890000 BTC Electrum Bitcoin wallets AUD 
800000 BTC Electroneum Wallet AUD 
28000 BTC LocalBitcoin AUD 

41000000 BTC Binance JPY 

Note: The table contain a list of nineteen of the largest Bitcoin hacking events between 2015 and 2019. 
All hacking events obtained mainly from the aggrgation website hackmageddon.com and Reuters 

Figure 4.4 Directional-volatility connectedness network, 22/06/2015 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 

http:hackmageddon.com
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Bitfinex platform lost around 120 000 BTC in a security breach on Aug 2, 2016, considered 
to be one of the largest hacks in Bitcoin history. The platform published a statement 
that a security breach had been detected and investigation begun to identify the problem 
and causes. In Figure 4.1 we can see a clear and high spike on the same date of a breach 
recording a very high total spillover of around 83%. Looking at the network Figure 4.5 
on the same date provides us with the net dispenser and net receiver within the network. 
Interestingly, the BTC/EUR is contributing in each market with remarkable spillover 
from BTC/EUR to other markets, of which the thickest/largest arrow hits BTC/USD, 
and the thinnest/smallest arrow is received by BTC/JPY. While the BTC/USD is the 
net receiver, the network does not show any contribution from BTC/USD, but receives a 
modest contribution from BTC/CAD and BTC/JPY. 

Figure 4.5 Directional-volatility connectedness network, 02/08/2016 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 

On Dec 06, 2017 NiceHash platform woke up to a cyber attack which led to a loss of 
around 4700 BTC and caused a massive reduction to the BTC price in the following 
weeks. Figure 4.1 shows that in Dec, 2017 the total spillover index was around 61%; 
then the indicator started to accelerate upward very rapidly, to hit 83% after just a few 
days. From Figure 4.6 the dominant markets tend to be BTC/JPY, BTC/EUR and 
BTC/AUD respectively, which indicates that the three markets are transmitting volatility 
to the other markets in different magnitudes. By contrast, BTC/CAD market is the 
net receiver, in which the inflow volatility to the market is very different among the five 
channels, BTC/JPY being the largest, and BTC/USD the smallest. Both BTC/GBP 
and BTC/AUD act as a moderator by receiving and transmitting volatility between the 
other markets. Exploiting the opportunity to invest here is probable by taking advantage 
of being able to identify the direction of the volatility wave. 
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Figure 4.6 Directional-volatility connectedness network, 06/12/2017
 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 

Around Sep 2018, Zaif platform noticed a large amount of outflow funds on the platform, 
and after a deep investigation they suspended the platform service until further notice, 
later announcing that some hijackers with unauthorised access had stolen 5966 BTC and 
other cryptocurrencies worth around $60 million. Over the years, the Bitcoin network has 
become more profound and the total spillover index shown more persistence, of which the 
total spillover is as high as 80% most of the time . Luckily, the network analysis looked 
into the latter percentage to understand and identify the different markets and directions. 
Figure 4.7 shows that BTC/AUD and BTC/USD markets, respectively, are dominating 
the other markets. We can see from the Figure that all markets except BTC/CAD are 
transmitting risk to each other in small magnitude thinarrow. By contrast, BTC/CAD 
is the most vulnerable market within the system and interestingly receives a large amount 
of volatility from each market thickarrow. 

The largest cyber security breach in 2019 hit Binance platform, one of the largest 
cryptocurrency exchanges, from which hackers managed to withdraw around 7000 BTC 
units in a single transaction. The platform admitted that on May 7, 2019, hijackers used 
various techniques such as phishing and viruses to access the secured private data in the 
platform’s servers. The total spillover was floating around 80%, the BTC/JPY market 
being net dispenser. In Figure 4.8 the same behaviourin appears, where BTC/CAD 
market again received systematic large shocks from all the other markets compared with 
the others. On the contrary, BTC/JPY disrupted the volatility of the other markets in 
different magnitudes. However, BTC/USD and BTC/EUR received and transmitted the 
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Figure 4.7 Directional-volatility connectedness network, 20/09/2018
 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 

risk interchangeably, and mostly in similar inward and outward channels, which enabled 
them to act as a bridge between the net dispenser and net receiver. 

Figure 4.8 Directional-volatility connectedness network, 07/05/2019 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 
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4.5.4 Robustness 

How sensitive are our results to the choice of forecast horizon, window size and alternative 
measure of volatility? In this section, we undertake a robustness exercise in each aspect 
mentioned above. 

We check the robustness of our full sample analysis results to the choice of the forecast 
horizon and the tuning of frequency bands that identify short- and long-run components of 
the forecast error GVD. Recall that our results are based on 30-days-ahead forecasts. We 
performed similar estimations with 60-, 90-, and 120-days-ahead forecasts. The ensuing 
results (reported in the Appendix C) corresponding to Tables C.1, C.2, and C.3 presented 
above produced very similar values for the estimated spillovers, and yielded qualitatively 
identical conclusions. 

Next, Figures C.1 to C.8 plot dynamic overall volatility spillovers using 15, 30 and 60 
days forecast horizon with 120-, 150- 180-rolling windows , respectively. We observe that 
the latter graphs are strongly consistent with Figure 4.3, not only in the estimated values 
of the total spillover index, but also in the shape of the evolution that records the same 
extreme events in every case. 

4.5.4.1 VAR model Stability 

We carried out the same procedure as in the first chapter to clarify the extreme shocks 
and potential breaks in the VAR system. (Qu & Perron, 2007) break test could achieve 
our goals by detecting the structural breaks in the VAR process, hence identifying the 
sudden changes in the spillover index within the six markets. 

Table 4.5 presents the results of (Qu & Perron, 2007)’s test. The VAR dataset consists of 
the six Bitcoin markets from January 2015 to May 2019. The trimming percentage is 
15% of the sample span and the maximum breaks allowed individually for two and five 
respectively. The test statistics for both WD max and sequential tests exceed the critical 
values except for the fifth break (Seq test (m = 5) ∼ (5 | 4)). Thus, the null hypothesis 
of no structural breaks is rejected for the WD max and indicates four breaks (out of five 
breaks) based on the sequential test. The four break dates suggested by the test are 
as follows: 1- 30/08/2015. 2- 30/07/2016. 3- 27/05/2017. 4- 31/01/2018. The latter 
dates can be linked to significant events that impact the cryptocurrency market stability. 
As we discussed in the results section, several hacking events could break the cycle of 
persistency, and change time series’ properties over time. These structural breaks could 
impact the VAR system and induce dynamic spillover analysis to generate significant 
spikes over time, see Figure 4.3. 

To check the VAR stability, we extract the coefficients’ residuals and test their stationarity 
to ensure the consistency of the mean and variance of residuals over time. Table 4.6 
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shows that the test rejects the null of unit root for all exchange rates. Further, Figures 
C.26 show the inverse roots of AR characteristic polynomial for volatility lie inside the 
unit circle, which indicates that the VAR process is stable. 

4.6 Conclusions 

The presence of cyber attacks could limit and create the volatility in Bitcoin cross-markets. 
However, variance decompositions as weighted, directed networks form a superior and 
effective approach to detect a shock within a system and identify the future direction of 
the volatility flow between markets. The objective of this chapter is to study the reaction 
of the major Bitcoin markets under a series of cyber attacks using the weighted, directed 
networks approach. 

After performing the static and dynamic results, we built a number of networks from 
the latter analysis to show the impact of security breaches in Bitcoin cross-markets. Six 
major Bitcoin markets were considered, including BTC/USD, BTC/EUR, BTC/GBP, 
BTC/JPY, BTC/AUD and BTC/CAD. We focused on five major cyber attacks in each 
year from 2015 to 2019, the results showing that in June 2015, BTC/USD was the leading 
market, transmitting risk to other markets in different magnitudes. In 2016 and 2017, 
BTC/EUR and BTC/JPY were the dominant markets, and those most connected to the 
system. However, in the following year, BTC/AUD and BTC/USD made a significant 
contribution to affect the Canadian market. Further, in 2019 the BTC/CAD market 
became the absorber within the system, to receive major shock from the other five 
markets. 

This chapter offers many important implications for investors and policy makers. First, 
dynamic and static volatility spillover could provide a clear perception on the most 
affected market in the context of cyber attacks. Thus investors may be able to capture 
speculative profits or draw a systematic investment strategy to beat the market. Indeed, 
market timing is very important to build such a strategy, and network analysis is a useful 
tool to determine the best next move. Second, policy regulators could introduce some 
controlling strategy such as circuit breakers to prevent some speculators taking advantage 
when the market suddenly crashes or jumps, which may leave a long impact on the 
market. 

Hedging activities can also be managed and identified between Bitcoin cross-markets. 
For future research, we would extend our investigation by employing dynamic network 
analysis to study the Bitcoin market in depth. 
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Table 4.5 Multivariate Qu and Perron Test for Structural Changes in VAR 
model 

Tests 

WD max test 

Seq test (m = 2) 

Seq test (m = 5) 

Test statistic Critical Value 

m=2 874.7 23.748 

m=5 892.3 25.81 

(2 | 1) 692.9 24.63 

(2 | 1) 692.9 24.63 

(3 | 2) 335.4 25.59 

(4 | 3) 609.1 26.23 

(5 | 4) 0.121 26.75 

Note: Exchange rates volatility are used to find the structural breaks. Trimming Percentage is 15% and 
the number of observations is 1612. The first test is the WD max test and the second one is the 

sequential test. All the critical values represent the 5% significance level. 

Table 4.6 ADF Test for the VAR Coefficients’ Residuals 

Residuals 

BTC/USD 
BTC/EUR 
BTC/GBP 
BTC/JPY 
BTC/AUD 
BTC/CAD 

Test 

ADF 
ADF 
ADF 
ADF 
ADF 
ADF 

Test stat Critical Value 
1% Conclusion 

-29.88 -3.43 Reject 
-12.13 -3.43 Reject 
-12.71 -3.43 Reject 
-9.056 -3.43 Reject 
-42.02 -3.43 Reject 
-43.16 -3.43 Reject 
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5.1 Conclusion and Policy Implications 

In conclusion, to insure a successful and coherent investment strategy we should insure 
its sustainability, security and validity in global markets based on three important 
cornerstones in Bitcoin (internal, external and security factors). The thesis studies in 
depth the exogenous determinants (Chapter 1), endogenous determinants (chapter 2), 
cyber security determinants (chapter 3) and their impact on the volatility of Bitcoin 
prices. The main and core objective of this thesis is to understand the dynamic linkage 
between Bitcoin markets and see how the above different factors can majorly contribute 
to the price fluctuations over the time . A major outcome that trading on Bitcoin markets 
depends largely on investor sentiment, and a lack of confidence eventually heightens 
volatility on these markets which become more intensely interlinked as investors diversify 
to mitigate risks pertaining to a particular market. 

chapter two examine the return and volatility spillover effects across Bitcoin markets and 
under episodes of external shocks. Also, We have investigated how spillover effects are 
governed by uncertainty episodes. The chapter discuss important insights on the dynamic 
interdependence of spillover effects during high/low uncertainty episodes and capturing 
the sentimental value of Bitcoin prices. The chapter also complemented to a sparse body 
of literature and have envisaged the importance of studying a systematic pattern of shocks’ 
movement by capturing a ’system dynamics’. Using the latter measure of volatility and 
well-established dynamic spillover methods, we have found that Bitcoin-USD holds high 
predictive power and Bitcoin-Euro acts as the net receiver. Also, higher uncertainty is 
found to accelerate spillover effects with larger impacts across markets. 

Chapter three investigate the persistence of fractional integration and potential break 
points simultaneously and endogenously using MS-ARFIMA model for Bitcoin cross-
markets. We found that financial and economic events are generated by agents who handle 
them, which could generate persistent endogenous responses. Therefore, a spurious long 
memory in volatility could be attributed to the presence of structural breaks rather than 
true long memory. We found the presence of both long memory and structural breaks 
along the different Bitcoin markets. The key issue here is to distinguish between the 
long memory and structural breaks as both phenomenon share the same properties and 
investors could confuse between them very easily. Consequently, we applied the Markov 
switching ARFIMA model to move between the different regimes endogenously. We find 
that the fractional integration display true long-memory for all the MS-ARFIMA models. 

Chapter four study the reaction of the major Bitcoin markets under series of cyberattacks 
using the weighted, directed networks approach. We found that cyberattacks have a 
major impact on the Bitcoin network infrastructure, and the sustainability of the market. 
After performing the static and dynamic results, we build a number of networks from 
the latter analysis and show the impact of security breaches in Bitcoin cross-markets 
as asymmetric network. We identify the directions of volatility spillover effects across 
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Bitcoin markets and show the reaction of a dynamic system with respect to the graphing 
theory. 

Thus, very valuable and fruitful policy implications are provided to decision makers, 
investors and speculators. we have created a first-hand information set for cryptocurrency 
investors to predict the next best investment strategy. The investors will be able to exploit 
information on the predictive power of each market, such as the net receiver and net giver 
of volatility. Studying the long memory could enable investors to capture speculative 
profits by controlling market timing. Policy makers and regulators could introduce circuit 
breakers to stop trading in Bitcoin cross-markets when the market switches abruptly 
to high-volatility regime as the impact of a negative down turn would take a relatively 
long period of time to dissipate given the nature of persistence in the price behaviour of 
Bitcoin in the cross-markets. Training to the security of network, investors can decide 
how to diversify and tap on arbitrage during cyber security attacks. Decision makers can 
synchronise the cyber threats with volatility spillover to detect the flow of risk within the 
markets. 

5.2 Future Research Directions 

The thesis has studied and investigated the cross-market dynamic of Bitcoin prices 
through different empirical tests. The latter measurements and investigations could be 
extended further to provide more in-depth understanding of Bitcoin markets and volatility 
behaviours. 

First, instead of measuring the volatility spillover index for five Bitcoin markets, future 
research could investigate the spillover effects among sets of variables in each market 
within a unified framework, such as Panel VAR (Koop & Korobilis, 2016). The latter 
model allows us to investigate the spillover of a particular shock across different Bitcoin 
markets, as well as the interactive relationship among several variables under each market. 
Further, the number of markets could be extended, especially in the Pacific-Asian area to 
provide a comprehensive study across the major markets in the world. 

Second, the third chapter assesses and identifies the long memory and structural breaks 
simultaneously and endogenously using MS-ARFIMA model. Forecasting the volatility 
persistence through the aforementioned model in each market could help us to identify 
true long-range dependence in the future in order to build coherent investment strategies. 
Moreover, investigating the memory within fractional co-integration VAR system (Jo­
hansen & Nielsen, 2012) rather than uni-variate model provides fruitful information about 
the co-integrating relationship between Bitcoin markets, and could find the long-run 
equilibrium in the system. 
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Thirdly, the fourth chapter attempts to design weighted, directed networks to study 
the volatility of Bitcoin markets under episodes of cyber attack. However, extending 
this research by designing dynamic networks (DNA) allows us to investigate further the 
networks’ behaviour and social interactions. Moreover, analysing dynamic networks could 
help us to assess the stability of a network. 

Finally, as Bitcoin prices are fundamentally driven by the feeling and memory of investors, 
finding a complex method such as Machine Learning or Artificial Intelligence is required 
to understand the human cognitive and complex behavioural interactions across Bitcoin 
markets. 
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(A)Stationarity tests 

Table A.1 ADF and Phillips-Perron unit root tests, exchange rate returns 

Model without constant Model with constant 

Critical CriticalExchange rate
 Test Test stat Conclusion
 Test stat Conclusion
value 1% value 1% 

ADF -36.866 -37
BTC/USD -2.58 Rejected -3.43 Rejected 

pperron -36.97 -37.05 
ADF -70.413 -70.42

BTC/AUD -2.58 Rejected -3.43 Rejected 
pperron -96.582 -97.128 
ADF -67.489 -67.487

BTC/CAD -2.58 Rejected -3.43 Rejected 
pperron -95.544 -95.856 
ADF -40.037 -40.153

BTC/EUR -2.58 Rejected -3.43 Rejected 
pperron -40.106 -40.197 
ADF -62.83 -62.833

BTC/GBP -2.58 Rejected -3.43 Rejected 
pperron -83.162 -83.449 

Model with trend 

CriticalExchange rate Test Test stat Conclusionvalue 1%
 

ADF -36.992

BTC/USD -3.96 Rejected 

pperron -37.048
 
ADF -70.405


BTC/AUD -3.96 Rejected 
pperron -97.103
 
ADF -67.468


BTC/CAD -3.96 Rejected 
pperron -95.822
 
ADF -40.143


BTC/EUR -3.96 Rejected 
pperron -40.187
 
ADF -62.816


BTC/GBP -3.96 Rejected 
pperron -83.424 
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Table A.2 ADF and Phillips-Perron unit root tests, exchange rate volatility
 

Model without constant Model with constant 

Exchange rate Test Test stat Critical 
value 1% Conclusion Test stat Critical 

value 1% Conclusion 

BTC/USD 
ADF -18.461 

-2.58 Rejected
pperron -19.199 

-23.646 
-3.43 Rejected

-25.209 

BTC/AUD 
ADF -7.695 

-2.58 Rejected
pperron -5.083 

-13.456 
-3.43 Rejected

-12.341 

BTC/CAD 
ADF -8.332 

-2.58 Rejected
pperron -5.78 

-16.105 
-3.43 Rejected

-16.155 

BTC/EUR 
ADF -14.42 

-2.58 Rejected
pperron -13.88 

-19.368 
-3.43 Rejected

-20.316 

BTC/GBP 
ADF -14.192 

-2.58 Rejected
pperron -13.42 

-28.885 
-3.43 Rejected

-32.279 

Model with trend Model with drift 

Exchange rate Test Test stat Critical 
value 1% Conclusion Test stat Critical 

value 1% Conclusion 

BTC/USD 
ADF -23.737 

-3.96 Rejected
pperron -25.302 

-23.646 
-2.328 Rejected

-

BTC/AUD 
ADF -19.534 

-3.96 Rejected
pperron -21.096 

-13.456 
-2.328 Rejected

-

BTC/CAD 
ADF -26.65 

-3.96 Rejected
pperron -29.721 

-16.105 
-2.328 Rejected

-

BTC/EUR 
ADF -19.676 

-3.96 Rejected
pperron -20.692 

-19.368 
-2.328 Rejected

-

BTC/GBP 
ADF -33.257 

-3.96 Rejected
pperron -35.645 

-28.885 
-2.328 Rejected

-
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(B) Robustness check 

Returns spillover tables with various forecast horizons 

Table A.3 Returns spillovers across five selected exchange rates – 7-day ahead 
forecast 

DirectionalBTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 
BTC/AUD 
BTC/CAD 
BTC/EUR 
BTC/GBP 
Directional 
TO others 

Net spillovers 

86.08 
1.80 
1.12 
10.08 
2.14 

15.13 

1.21 

1.69 
87.67 
1.25 
6.59 
3.02 

12.56 

0.23 

0.63 
1.39 
94.67 
2.57 
1.42 

6.00 

0.67 

9.41 
5.51 
1.83 
73.15 
6.60 

23.35 

-3.50 

2.19 13.92 
3.63 12.33 
1.13 5.33 
7.62 26.85 
86.82 13.18 

TSI:14.57 
71.61/500 = 

14.32%1.39 

Note: Exchange rates returns spillovers following Diebold and Yilmaz (2012) using a 
7-day ahead forecast horizon. Numbers are percentages. “TSI” stands for Total Spillover 
Index. 

Table A.4 Returns spillovers across five selected exchange rates – 10-day ahead 
forecast 

BTC/USD 
BTC/AUD 
BTC/CAD 
BTC/EUR 
BTC/GBP 
Directional 
TO others 

Net spillovers 

BTC/USD 

84.85 
1.80 
1.21 
10.45 
2.22 

15.67 

0.52 

DirectionalBTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

1.95 
87.16 
1.37 
6.57 
3.25 

13.14 

0.30 

1.33 
1.79 
94.22 
2.65 
1.48 

7.26 

1.48 

9.44 
5.50 
1.87 
72.60 
6.61 

23.42 

-3.97 

2.43 15.15 
3.75 12.84 
1.33 5.78 
7.72 27.40 
86.43 13.57 

TSI:15.23 
74.73/500 = 

14.95%1.67 

Note: Exchange rates returns spillovers following Diebold and Yilmaz (2012) using a 
10-day ahead forecast horizon. Numbers are percentages. “TSI” stands for Total Spillover 
Index. 



144 Appendix A Supplement to Chapter 2 

Table A.5 Returns spillovers across five selected exchange rates – 60-day ahead 
forecast 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP Directional 
FROM others 

BTC/USD 83.56 2.37 1.70 9.60 2.78 16.44 
BTC/AUD 3.19 83.91 2.83 5.73 4.34 16.09 
BTC/CAD 1.82 1.88 92.51 2.15 1.64 7.49 
BTC/EUR 14.29 6.51 2.90 68.84 7.46 31.16 
BTC/GBP 3.75 3.51 2.12 6.72 83.90 16.10 
Directional 
TO others 23.05 14.26 9.55 24.20 16.22 TSI: 

87.28/500 = 

Net spillovers 6.61 -1.83 2.06 -6.96 0.12 17.46% 

Note: Exchange rates returns spillovers following Diebold and Yilmaz (2012) using a 
60-day ahead forecast horizon. Numbers are percentages. “TSI” stands for Total Spillover 
Index. 
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Volatility spillover tables with various forecast horizons 

Table A.6 Volatility spillovers across five selected exchange rates – 7-day ahead 
forecast 

DirectionalBTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 
BTC/AUD 
BTC/CAD 
BTC/EUR 
BTC/GBP 
Directional 
TO others 

Net spillovers 

82.99 
2.92 
0.16 
19.22 
0.55 

22.86 

5.85 

1.81 
89.54 
3.77 
2.43 
0.55 

8.56 

-1.89 

0.21 
2.37 
94.09 
0.32 
0.70 

3.60 

-2.31 

14.49 
4.90 
1.42 
77.48 
0.95 

21.76 

-0.76 

0.49 17.01 
0.27 10.46 
0.55 5.91 
0.56 22.52 
97.25 2.75 

TSI:1.87 
58.65/500 = 

11.73%-0.89 

Note: Exchange rates volatility spillovers following Diebold and Yilmaz (2012) using a 
7-day ahead forecast horizon. Numbers are percentages. “TSI” stands for Total Spillover 
Index. 

Table A.7 Volatility spillovers across five selected exchange rates – 10-day 
ahead forecast 

BTC/USD 
BTC/AUD 
BTC/CAD 
BTC/EUR 
BTC/GBP 
Directional 
TO others 

Net spillovers 

BTC/USD 

81.69 
3.31 
0.17 
20.00 
0.57 

24.04 

5.73 

DirectionalBTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

2.36 
88.11 
4.57 
2.86 
0.66 

10.44 

-1.44 

0.27 
2.74 
92.99 
0.42 
0.92 

4.36 

-2.65 

15.01 
5.47 
1.54 
75.85 
0.94 

22.96 

-1.18 

0.67 18.31 
0.37 11.89 
0.74 7.01 
0.87 24.15 
96.90 3.10 

TSI:2.65 
64.45/500 = 

12.89%-0.45 

Note: Exchange rates volatility spillovers following Diebold and Yilmaz (2012) using a 
10-day ahead forecast horizon. Numbers are percentages. “TSI” stands for Total Spillover 
Index. 
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Table A.8 Volatility spillovers across five selected exchange rates – 60-day 
ahead forecast 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP Directional 
FROM others 

BTC/USD 78.23 4.97 0.57 15.27 0.96 21.77 
BTC/AUD 4.52 83.09 4.43 6.98 0.98 16.91 
BTC/CAD 0.37 7.56 88.81 1.93 1.33 11.19 
BTC/EUR 20.55 5.69 1.07 71.17 1.52 28.83 
BTC/GBP 0.65 1.68 1.72 1.01 94.94 5.06 
Directional 
TO others 26.10 19.91 7.79 25.18 4.78 TSI: 

83.76/500 = 

Net spillovers 4.33 3.00 -3.40 -3.65 -0.28 16.75% 

Note: Exchange rates volatility spillovers following Diebold and Yilmaz (2012) using a 
60-day ahead forecast horizon. Numbers are percentages. “TSI” stands for Total Spillover 
Index. 
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Returns spillover tables – Frequency domain analysis with various forecast 
horizons and frequency bands 

Table A.9 Returns spillovers across five selected exchange rates – Frequency 
domain analysis with 4-day frequency band and 7-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 74.66 1.20 0.62 6.91 1.72 10.46 
BTC/AUD 0.75 87.03 1.34 4.50 2.86 9.45 
BTC/CAD 0.85 1.07 94.48 1.52 0.98 4.42 
BTC/EUR 6.51 5.58 2.39 64.54 6.11 20.59 
BTC/GBP 1.23 2.61 1.25 5.18 85.64 10.27 

TSI: 55.18/461.53 = TO others 9.34 10.46 5.60 18.10 11.67 11.96% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 11.42 0.49 0.01 2.51 0.46 3.46 
BTC/AUD 1.05 0.64 0.05 1.01 0.78 2.88 
BTC/CAD 0.27 0.18 0.19 0.32 0.15 0.91 
BTC/EUR 3.57 1.01 0.18 8.60 1.50 6.26 
BTC/GBP 0.90 0.42 0.17 1.42 1.18 2.91 

TSI: 16.42/38.47 = TO others 5.79 2.09 0.40 5.25 2.89 42.69% 

Note: Returns spillovers, frequency domain analysis following Baruník and Křehlík (2018) 
using 7-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within 
system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than 4 
days’, respectively. 

http:16.42/38.47
http:55.18/461.53
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Table A.10 Returns spillovers across five selected exchange rates – Frequency 
domain analysis with 16-day frequency band and 7-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 74.66 1.20 0.62 6.91 1.72 10.46 
BTC/AUD 0.75 87.03 1.34 4.50 2.86 9.45 
BTC/CAD 0.85 1.07 94.48 1.52 0.98 4.42 
BTC/EUR 6.51 5.58 2.39 64.54 6.11 20.59 
BTC/GBP 1.23 2.61 1.25 5.18 85.64 10.27 

TSI: 55.18/461.53 = TO others 9.34 10.46 5.60 18.10 11.67 11.96% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 11.42 0.49 0.01 2.51 0.46 3.46 
BTC/AUD 1.05 0.64 0.05 1.01 0.78 2.88 
BTC/CAD 0.27 0.18 0.19 0.32 0.15 0.91 
BTC/EUR 3.57 1.01 0.18 8.60 1.50 6.26 
BTC/GBP 0.90 0.42 0.17 1.42 1.18 2.91 

TSI: 16.42/38.47 = TO others 5.79 2.09 0.40 5.25 2.89 42.69% 

Note: Returns spillovers, frequency domain analysis following Baruník and Křehlík (2018) 
using 7-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within 
system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more than 16 
days’, respectively. 

http:16.42/38.47
http:55.18/461.53
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Table A.11 Returns spillovers across five selected exchange rates – Frequency 
domain analysis with 30-day frequency band and 7-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 74.66 1.20 0.62 6.91 1.72 10.46 
BTC/AUD 0.75 87.03 1.34 4.50 2.86 9.45 
BTC/CAD 0.85 1.07 94.48 1.52 0.98 4.42 
BTC/EUR 6.51 5.58 2.39 64.54 6.11 20.59 
BTC/GBP 1.23 2.61 1.25 5.18 85.64 10.27 

TSI: 55.18/461.53 = TO others 9.34 10.46 5.60 18.10 11.67 11.96% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 11.42 0.49 0.01 2.51 0.46 3.46 
BTC/AUD 1.05 0.64 0.05 1.01 0.78 2.88 
BTC/CAD 0.27 0.18 0.19 0.32 0.15 0.91 
BTC/EUR 3.57 1.01 0.18 8.60 1.50 6.26 
BTC/GBP 0.90 0.42 0.17 1.42 1.18 2.91 

TSI: 16.42/38.47 = TO others 5.79 2.09 0.40 5.25 2.89 42.69% 

Note: Returns spillovers, frequency domain analysis following Baruník and Křehlík (2018) 
using 7-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within 
system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more than 30 
days’, respectively. 

http:16.42/38.47
http:55.18/461.53
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Table A.12 Returns spillovers across five selected exchange rates – Frequency 
domain analysis with 4-day frequency band and 10-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 62.05 1.36 0.63 5.36 1.09 8.43 
BTC/AUD 0.69 82.38 1.43 3.65 3.10 8.88 
BTC/CAD 0.95 0.97 91.18 1.29 1.10 4.31 
BTC/EUR 4.43 4.82 2.25 55.17 5.38 16.88 
BTC/GBP 0.59 2.14 1.03 4.22 82.50 7.98 

TSI: 46.48/419.75 = TO others 6.66 9.29 5.34 14.51 10.67 11.07% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 22.81 0.60 0.70 4.08 1.33 6.72 
BTC/AUD 1.11 4.78 0.36 1.85 0.65 3.96 
BTC/CAD 0.25 0.40 3.04 0.58 0.23 1.46 
BTC/EUR 6.01 1.75 0.40 17.43 2.35 10.51 
BTC/GBP 1.63 1.11 0.45 2.40 3.94 5.59 

TSI: 28.25/80.25 = TO others 9.01 3.85 1.92 8.91 4.56 35.20% 

Note: Returns spillovers, frequency domain analysis following Baruník and Křehlík (2018) 
using 10-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within 
system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than 4 
days’, respectively. 

http:28.25/80.25
http:46.48/419.75
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Table A.13 Returns spillovers across five selected exchange rates – Frequency 
domain analysis with 16-day frequency band and 10-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 76.35 1.83 1.26 7.98 1.90 12.97 
BTC/AUD 1.14 86.30 1.65 4.55 3.39 10.73 
BTC/CAD 1.02 1.19 94.08 1.65 1.26 5.13 
BTC/EUR 7.78 5.82 2.52 66.43 6.38 22.50 
BTC/GBP 1.41 2.86 1.39 5.55 85.60 11.21 

TSI: 62.55/471.31 = TO others 11.35 11.71 6.83 19.74 12.92 13.27% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 8.50 0.13 0.06 1.46 0.52 2.18 
BTC/AUD 0.67 0.86 0.14 0.94 0.36 2.11 
BTC/CAD 0.19 0.17 0.14 0.22 0.07 0.65 
BTC/EUR 2.66 0.75 0.13 6.17 1.35 4.89 
BTC/GBP 0.81 0.39 0.09 1.06 0.84 2.35 

TSI: 12.18/28.69 = TO others 4.32 1.43 0.43 3.68 2.31 42.44% 

Note: Returns spillovers, frequency domain analysis following Baruník and Křehlík (2018) 
using 10-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within 
system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more than 16 
days’, respectively. 

http:12.18/28.69
http:62.55/471.31
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Table A.14 Returns spillovers across five selected exchange rates – Frequency 
domain analysis with 30-day frequency band and 10-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 76.35 1.83 1.26 7.98 1.90 12.97 
BTC/AUD 1.14 86.30 1.65 4.55 3.39 10.73 
BTC/CAD 1.02 1.19 94.08 1.65 1.26 5.13 
BTC/EUR 7.78 5.82 2.52 66.43 6.38 22.50 
BTC/GBP 1.41 2.86 1.39 5.55 85.60 11.21 

TSI: 62.55/471.31 = TO others 11.35 11.71 6.83 19.74 12.92 13.27% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 8.50 0.13 0.06 1.46 0.52 2.18 
BTC/AUD 0.67 0.86 0.14 0.94 0.36 2.11 
BTC/CAD 0.19 0.17 0.14 0.22 0.07 0.65 
BTC/EUR 2.66 0.75 0.13 6.17 1.35 4.89 
BTC/GBP 0.81 0.39 0.09 1.06 0.84 2.35 

TSI: 12.18/28.69 = TO others 4.32 1.43 0.43 3.68 2.31 42.44% 

Note: Returns spillovers, frequency domain analysis following Baruník and Křehlík (2018) 
using 10-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within 
system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more than 30 
days’, respectively. 

http:12.18/28.69
http:62.55/471.31
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Table A.15 Returns spillovers across five selected exchange rates – Frequency 
domain analysis with 4-day frequency band and 30-day ahead forecast 
(baseline estimates) 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 64.96 1.52 1.35 5.78 1.89 10.54 
BTC/AUD 2.07 81.66 2.66 4.29 3.64 12.66 
BTC/CAD 1.50 1.59 90.51 1.50 1.39 5.98 
BTC/EUR 9.15 4.96 2.51 53.60 5.73 22.35 
BTC/GBP 2.40 2.77 1.75 4.68 81.17 11.59 

TSI: 63.11/435.01 = TO others 15.12 10.83 8.26 16.25 12.65 14.51% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 18.62 0.84 0.34 3.82 0.88 5.89 
BTC/AUD 1.10 2.31 0.16 1.43 0.68 3.38 
BTC/CAD 0.32 0.28 2.03 0.65 0.24 1.48 
BTC/EUR 5.11 1.53 0.38 15.32 1.71 8.73 
BTC/GBP 1.33 0.74 0.35 2.04 2.78 4.46 

TSI: 23.94/64.99 = TO others 7.86 3.39 1.24 7.94 3.51 36.83% 

Note: Returns spillovers, frequency domain analysis following Baruník and Křehlík (2018) 
using 30-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within 
system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than 4 
days’, respectively. 

http:23.94/64.99
http:63.11/435.01
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Table A.16 Returns spillovers across five selected exchange rates – Frequency 
domain analysis with 16-day frequency band and 30-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 79.62 2.28 1.67 8.78 2.50 15.24 
BTC/AUD 2.72 83.78 2.79 5.38 4.14 15.03 
BTC/CAD 1.67 1.83 92.47 2.03 1.58 7.11 
BTC/EUR 12.44 6.27 2.83 66.69 6.94 28.49 
BTC/GBP 3.20 3.40 2.06 6.27 83.61 14.93 

TSI: 80.81/486.98 = TO others 20.04 13.78 9.36 22.46 15.17 16.59% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 3.96 0.08 0.02 0.82 0.27 1.19 
BTC/AUD 0.45 0.19 0.03 0.35 0.18 1.00 
BTC/CAD 0.15 0.04 0.07 0.12 0.05 0.35 
BTC/EUR 1.82 0.22 0.06 2.22 0.50 2.60 
BTC/GBP 0.53 0.10 0.03 0.44 0.35 1.11 

TSI: 6.24/13.02 = TO others 2.94 0.44 0.13 1.73 1.00 47.93% 

Note: Returns spillovers, frequency domain analysis following Baruník and Křehlík (2018) 
using 30-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within 
system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more than 16 
days’, respectively. 

http:6.24/13.02
http:80.81/486.98
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Table A.17 Returns spillovers across five selected exchange rates – Frequency 
domain analysis with 30-day frequency band and 30-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 79.62 2.28 1.67 8.78 2.50 15.24 
BTC/AUD 2.72 83.78 2.79 5.38 4.14 15.03 
BTC/CAD 1.67 1.83 92.47 2.03 1.58 7.11 
BTC/EUR 12.44 6.27 2.83 66.69 6.94 28.49 
BTC/GBP 3.20 3.40 2.06 6.27 83.61 14.93 

TSI: 80.81/486.98 = TO others 20.04 13.78 9.36 22.46 15.17 16.59% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 3.96 0.08 0.02 0.82 0.27 1.19 
BTC/AUD 0.45 0.19 0.03 0.35 0.18 1.00 
BTC/CAD 0.15 0.04 0.07 0.12 0.05 0.35 
BTC/EUR 1.82 0.22 0.06 2.22 0.50 2.60 
BTC/GBP 0.53 0.10 0.03 0.44 0.35 1.11 

TSI: 6.24/13.02 = TO others 2.94 0.44 0.13 1.73 1.00 47.93% 

Note: Returns spillovers, frequency domain analysis following Baruník and Křehlík (2018) 
using 30-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within 
system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more than 30 
days’, respectively. 

http:6.24/13.02
http:80.81/486.98
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Table A.18 Returns spillovers across five selected exchange rates – Frequency 
domain analysis with 4-day frequency band and 60-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 63.65 1.50 1.32 5.64 1.83 10.30 
BTC/AUD 1.99 81.09 2.66 4.21 3.64 12.50 
BTC/CAD 1.42 1.56 90.08 1.48 1.39 5.85 
BTC/EUR 8.50 4.88 2.52 53.09 5.67 21.57 
BTC/GBP 2.28 2.63 1.74 4.62 80.67 11.26 

TSI: 61.48/430.06 = TO others 14.18 10.57 8.24 15.95 12.53 14.30% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 19.91 0.87 0.37 3.96 0.94 6.14 
BTC/AUD 1.20 2.82 0.18 1.52 0.70 3.59 
BTC/CAD 0.41 0.32 2.43 0.67 0.25 1.64 
BTC/EUR 5.79 1.62 0.38 15.76 1.79 9.58 
BTC/GBP 1.47 0.88 0.38 2.10 3.23 4.83 

TSI: 25.79/69.94 = TO others 8.87 3.69 1.31 8.24 3.68 36.88% 

Note: Returns spillovers, frequency domain analysis following Baruník and Křehlík (2018) 
using 60-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within 
system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than 4 
days’, respectively. 

http:25.79/69.94
http:61.48/430.06
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Table A.19 Returns spillovers across five selected exchange rates – Frequency 
domain analysis with 16-day frequency band and 60-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 78.77 2.26 1.68 8.63 2.48 15.06 
BTC/AUD 2.69 83.62 2.80 5.29 4.11 14.89 
BTC/CAD 1.67 1.82 92.42 2.01 1.58 7.09 
BTC/EUR 12.28 6.14 2.84 65.91 6.84 28.10 
BTC/GBP 3.19 3.34 2.07 6.17 83.45 14.77 

TSI: 79.91/484.08 = TO others 19.84 13.57 9.39 22.10 15.02 16.51% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 4.79 0.11 0.02 0.97 0.30 1.39 
BTC/AUD 0.50 0.29 0.03 0.44 0.22 1.20 
BTC/CAD 0.15 0.05 0.10 0.14 0.06 0.40 
BTC/EUR 2.00 0.36 0.06 2.93 0.63 3.06 
BTC/GBP 0.56 0.17 0.05 0.55 0.45 1.33 

TSI: 7.37/15.92 = TO others 3.21 0.69 0.16 2.10 1.20 46.28% 

Note: Returns spillovers, frequency domain analysis following Baruník and Křehlík (2018) 
using 60-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within 
system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more than 16 
days’, respectively. 

http:7.37/15.92
http:79.91/484.08
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Table A.20 Returns spillovers across five selected exchange rates – Frequency 
domain analysis with 30-day frequency band and 60-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 81.43 2.32 1.69 9.16 2.64 15.80 
BTC/AUD 2.94 83.81 2.82 5.54 4.24 15.54 
BTC/CAD 1.75 1.86 92.48 2.09 1.61 7.31 
BTC/EUR 13.27 6.37 2.87 67.70 7.20 29.72 
BTC/GBP 3.46 3.45 2.10 6.49 83.72 15.50 

TSI: 83.88/493.01 = TO others 21.42 14.00 9.49 23.27 15.69 17.01% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 2.13 0.05 0.01 0.44 0.14 0.64 
BTC/AUD 0.25 0.10 0.01 0.19 0.09 0.55 
BTC/CAD 0.08 0.02 0.03 0.06 0.03 0.18 
BTC/EUR 1.01 0.13 0.03 1.14 0.27 1.44 
BTC/GBP 0.28 0.06 0.02 0.23 0.18 0.59 

TSI: 3.40/ 6.99 = TO others 1.63 0.26 0.07 0.92 0.53 48.62% 

Note: Returns spillovers, frequency domain analysis following Baruník and Křehlík (2018) 
using 60-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within 
system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more than 30 
days’, respectively. 

http:83.88/493.01


159 Appendix A Supplement to Chapter 2 

Volatility spillover tables – Frequency domain analysis with various forecast 
horizons and frequency bands 

Table A.21 Volatility spillovers across five selected exchange rates – Frequency 
domain analysis with 4-day frequency band and 7-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 39.53 0.44 0.11 4.68 0.15 5.38 
BTC/AUD 0.29 34.80 0.39 0.61 0.13 1.41 
BTC/CAD 0.07 0.55 47.33 0.46 0.16 1.23 
BTC/EUR 2.71 0.58 0.12 26.89 0.14 3.56 
BTC/GBP 0.22 0.23 0.16 0.24 62.30 0.85 

TSI: 12.43/223.28 = TO others 3.29 1.80 0.78 5.98 0.58 5.57% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 43.46 1.37 0.10 9.82 0.34 11.63 
BTC/AUD 2.63 54.74 1.98 4.29 0.14 9.04 
BTC/CAD 0.10 3.22 46.77 0.96 0.39 4.68 
BTC/EUR 16.50 1.85 0.19 50.59 0.42 18.97 
BTC/GBP 0.33 0.33 0.54 0.71 34.95 1.90 

TSI: 46.21/276.72 = TO others 19.56 6.77 2.82 15.78 1.29 16.70% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík 
(2018) using 7-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to 
within system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than 
4 days’, respectively. 

http:46.21/276.72
http:12.43/223.28
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Table A.22 Volatility spillovers across five selected exchange rates – Frequency 
domain analysis with 16-day frequency band and 7-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 39.53 0.44 0.11 4.68 0.15 5.38 
BTC/AUD 0.29 34.80 0.39 0.61 0.13 1.41 
BTC/CAD 0.07 0.55 47.33 0.46 0.16 1.23 
BTC/EUR 2.71 0.58 0.12 26.89 0.14 3.56 
BTC/GBP 0.22 0.23 0.16 0.24 62.30 0.85 

TSI: 12.43/223.28 = TO others 3.29 1.80 0.78 5.98 0.58 5.57% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 43.46 1.37 0.10 9.82 0.34 11.63 
BTC/AUD 2.63 54.74 1.98 4.29 0.14 9.04 
BTC/CAD 0.10 3.22 46.77 0.96 0.39 4.68 
BTC/EUR 16.50 1.85 0.19 50.59 0.42 18.97 
BTC/GBP 0.33 0.33 0.54 0.71 34.95 1.90 

TSI: 46.21/276.72 = TO others 19.56 6.77 2.82 15.78 1.29 16.70% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík 
(2018) using 7-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to 
within system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more 
than 16 days’, respectively. 

http:46.21/276.72
http:12.43/223.28
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Table A.23 Volatility spillovers across five selected exchange rates – Frequency 
domain analysis with 30-day frequency band and 7-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 39.53 0.44 0.11 4.68 0.15 5.38 
BTC/AUD 0.29 34.80 0.39 0.61 0.13 1.41 
BTC/CAD 0.07 0.55 47.33 0.46 0.16 1.23 
BTC/EUR 2.71 0.58 0.12 26.89 0.14 3.56 
BTC/GBP 0.22 0.23 0.16 0.24 62.30 0.85 

TSI: 12.43/223.28 = TO others 3.29 1.80 0.78 5.98 0.58 5.57% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 43.46 1.37 0.10 9.82 0.34 11.63 
BTC/AUD 2.63 54.74 1.98 4.29 0.14 9.04 
BTC/CAD 0.10 3.22 46.77 0.96 0.39 4.68 
BTC/EUR 16.50 1.85 0.19 50.59 0.42 18.97 
BTC/GBP 0.33 0.33 0.54 0.71 34.95 1.90 

TSI: 46.21/276.72 = TO others 19.56 6.77 2.82 15.78 1.29 16.70% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík 
(2018) using 7-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to 
within system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more 
than 30 days’, respectively. 

http:46.21/276.72
http:12.43/223.28
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Table A.24 Volatility spillovers across five selected exchange rates – Frequency 
domain analysis with 4-day frequency band and 10-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 29.75 0.23 0.04 2.38 0.14 2.78 
BTC/AUD 0.16 27.30 0.16 0.26 0.10 0.68 
BTC/CAD 0.07 0.21 39.70 0.27 0.11 0.67 
BTC/EUR 1.47 0.21 0.07 18.22 0.08 1.84 
BTC/GBP 0.12 0.21 0.14 0.22 53.46 0.70 

TSI: 6.66/175.10 = TO others 1.82 0.86 0.42 3.13 0.43 3.81% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 51.94 2.13 0.23 12.63 0.53 15.52 
BTC/AUD 3.15 60.81 2.58 5.21 0.27 11.20 
BTC/CAD 0.10 4.35 53.29 1.27 0.63 6.35 
BTC/EUR 18.53 2.65 0.35 57.63 0.78 22.31 
BTC/GBP 0.45 0.45 0.78 0.72 43.44 2.40 

TSI: 57.78/324.90 = TO others 22.22 9.58 3.94 19.83 2.21 17.79% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík 
(2018) using 10-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to 
within system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than 
4 days’, respectively. 

http:57.78/324.90
http:6.66/175.10
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Table A.25 Volatility spillovers across five selected exchange rates – Frequency 
domain analysis with 16-day frequency band and 10-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 42.60 0.43 0.11 5.04 0.15 5.73 
BTC/AUD 0.27 33.23 0.36 0.59 0.13 1.35 
BTC/CAD 0.07 0.53 48.83 0.46 0.16 1.21 
BTC/EUR 3.31 0.55 0.12 29.67 0.16 4.15 
BTC/GBP 0.26 0.23 0.16 0.39 67.11 1.04 

TSI: 13.48/234.93 = TO others 3.91 1.75 0.75 6.48 0.60 5.74% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 39.09 1.93 0.16 9.97 0.52 12.57 
BTC/AUD 3.03 54.89 2.39 4.88 0.24 10.54 
BTC/CAD 0.10 4.03 44.15 1.09 0.58 5.80 
BTC/EUR 16.69 2.30 0.30 46.18 0.70 20.00 
BTC/GBP 0.31 0.43 0.76 0.55 29.79 2.06 

TSI: 50.96/265.07 = TO others 20.13 8.70 3.61 16.49 2.04 19.23% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík 
(2018) using 10-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to 
within system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more 
than 16 days’, respectively. 

http:50.96/265.07
http:13.48/234.93
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Table A.26 Volatility spillovers across five selected exchange rates – Frequency 
domain analysis with 30-day frequency band and 10-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 42.60 0.43 0.11 5.04 0.15 5.73 
BTC/AUD 0.27 33.23 0.36 0.59 0.13 1.35 
BTC/CAD 0.07 0.53 48.83 0.46 0.16 1.21 
BTC/EUR 3.31 0.55 0.12 29.67 0.16 4.15 
BTC/GBP 0.26 0.23 0.16 0.39 67.11 1.04 

TSI: 13.48/234.93 = TO others 3.91 1.75 0.75 6.48 0.60 5.74% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 39.09 1.93 0.16 9.97 0.52 12.57 
BTC/AUD 3.03 54.89 2.39 4.88 0.24 10.54 
BTC/CAD 0.10 4.03 44.15 1.09 0.58 5.80 
BTC/EUR 16.69 2.30 0.30 46.18 0.70 20.00 
BTC/GBP 0.31 0.43 0.76 0.55 29.79 2.06 

TSI: 50.96/265.07 = TO others 20.13 8.70 3.61 16.49 2.04 19.23% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík 
(2018) using 10-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to 
within system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more 
than 30 days’, respectively. 

http:50.96/265.07
http:13.48/234.93
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Table A.27 Volatility spillovers across five selected exchange rates – Fre­
quency domain analysis with 4-day frequency band and 30-day ahead forecast 
(baseline estimates) 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 35.09 0.38 0.08 3.91 0.16 4.52 
BTC/AUD 0.19 23.94 0.23 0.39 0.08 0.88 
BTC/CAD 0.07 0.43 42.71 0.35 0.12 0.96 
BTC/EUR 2.64 0.39 0.09 22.93 0.11 3.24 
BTC/GBP 0.15 0.22 0.14 0.22 58.48 0.74 

TSI: 10.34/193.49 = TO others 3.05 1.42 0.54 4.87 0.47 5.34% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 44.07 3.77 0.37 11.41 0.77 16.32 
BTC/AUD 4.08 60.46 3.64 6.28 0.71 14.71 
BTC/CAD 0.23 6.20 47.28 1.47 1.14 9.05 
BTC/EUR 18.09 4.36 0.79 49.25 1.35 24.59 
BTC/GBP 0.48 1.17 1.48 0.75 36.89 3.89 

TSI: 68.55/306.51 = TO others 22.88 15.50 6.27 19.92 3.98 22.37% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík 
(2018) using 30-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to 
within system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than 
4 days’, respectively. 

http:68.55/306.51
http:10.34/193.49
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Table A.28 Volatility spillovers across five selected exchange rates – Frequency 
domain analysis with 16-day frequency band and 30-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 57.41 0.50 0.11 8.34 0.23 9.19 
BTC/AUD 0.39 30.95 0.34 0.80 0.11 1.64 
BTC/CAD 0.07 0.88 58.79 0.60 0.20 1.76 
BTC/EUR 8.72 0.62 0.12 46.50 0.25 9.71 
BTC/GBP 0.35 0.24 0.26 0.60 81.50 1.45 

TSI: 23.74/298.89 = TO others 9.53 2.24 0.82 10.35 0.79 7.94% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 21.76 3.65 0.34 6.98 0.69 11.65 
BTC/AUD 3.87 53.46 3.53 5.87 0.69 13.95 
BTC/CAD 0.23 5.75 31.20 1.22 1.06 8.25 
BTC/EUR 12.01 4.13 0.76 25.68 1.21 18.12 
BTC/GBP 0.29 1.15 1.36 0.37 13.87 3.17 

TSI: 55.15/201.11 = TO others 16.40 14.67 5.99 14.43 3.65 27.42% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík 
(2018) using 30-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to 
within system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more 
than 16 days’, respectively. 

http:55.15/201.11
http:23.74/298.89
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Table A.29 Volatility spillovers across five selected exchange rates – Frequency 
domain analysis with 30-day frequency band and 30-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 57.41 0.50 0.11 8.34 0.23 9.19 
BTC/AUD 0.39 30.95 0.34 0.80 0.11 1.64 
BTC/CAD 0.07 0.88 58.79 0.60 0.20 1.76 
BTC/EUR 8.72 0.62 0.12 46.50 0.25 9.71 
BTC/GBP 0.35 0.24 0.26 0.60 81.50 1.45 

TSI: 23.74/298.89 = TO others 9.53 2.24 0.82 10.35 0.79 7.94% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 21.76 3.65 0.34 6.98 0.69 11.65 
BTC/AUD 3.87 53.46 3.53 5.87 0.69 13.95 
BTC/CAD 0.23 5.75 31.20 1.22 1.06 8.25 
BTC/EUR 12.01 4.13 0.76 25.68 1.21 18.12 
BTC/GBP 0.29 1.15 1.36 0.37 13.87 3.17 

TSI: 55.15/201.11 = TO others 16.40 14.67 5.99 14.43 3.65 27.42% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík 
(2018) using 30-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to 
within system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more 
than 30 days’, respectively. 

http:55.15/201.11
http:23.74/298.89
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Table A.30 Volatility spillovers across five selected exchange rates – Frequency 
domain analysis with 4-day frequency band and 60-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 33.46 0.39 0.07 3.63 0.15 4.24 
BTC/AUD 0.19 22.89 0.24 0.40 0.07 0.91 
BTC/CAD 0.07 0.45 41.82 0.33 0.13 0.98 
BTC/EUR 2.51 0.43 0.10 21.75 0.12 3.16 
BTC/GBP 0.13 0.22 0.15 0.22 56.80 0.73 

TSI: 10.02/186.74 = TO others 2.91 1.49 0.57 4.58 0.47 5.37% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 44.77 4.58 0.50 11.64 0.81 17.53 
BTC/AUD 4.33 60.20 4.19 6.58 0.90 15.99 
BTC/CAD 0.30 7.10 46.99 1.60 1.21 10.21 
BTC/EUR 18.04 5.26 0.98 49.42 1.40 25.68 
BTC/GBP 0.52 1.46 1.57 0.78 38.14 4.33 

TSI: 73.74/313.26 = TO others 23.19 18.41 7.23 20.60 4.32 23.54% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík 
(2018) using 60-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to 
within system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than 
4 days’, respectively. 

http:73.74/313.26
http:10.02/186.74
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Table A.31 Volatility spillovers across five selected exchange rates – Frequency 
domain analysis with 16-day frequency band and 60-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 54.06 0.65 0.12 7.94 0.23 8.95 
BTC/AUD 0.51 30.67 0.45 0.98 0.09 2.02 
BTC/CAD 0.07 1.13 57.30 0.64 0.20 2.04 
BTC/EUR 7.91 0.82 0.13 42.71 0.22 9.09 
BTC/GBP 0.32 0.26 0.26 0.57 77.88 1.41 

TSI: 23.51/286.13 = TO others 8.82 2.86 0.97 10.13 0.74 8.22% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 24.17 4.32 0.45 7.32 0.73 12.82 
BTC/AUD 4.01 52.42 3.98 6.00 0.89 14.88 
BTC/CAD 0.30 6.43 31.50 1.29 1.14 9.15 
BTC/EUR 12.64 4.87 0.94 28.45 1.29 19.75 
BTC/GBP 0.33 1.43 1.46 0.44 17.06 3.65 

TSI: 60.26/213.87 = TO others 17.28 17.05 6.83 15.05 4.05 28.17% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík 
(2018) using 60-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to 
within system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more 
than 16 days’, respectively. 

http:60.26/213.87
http:23.51/286.13
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Table A.32 Volatility spillovers across five selected exchange rates – Frequency 
domain analysis with 30-day frequency band and 60-day ahead forecast 

(a) Short horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 65.69 1.01 0.14 10.72 0.42 12.29 
BTC/AUD 0.97 38.14 0.69 1.69 0.15 3.50 
BTC/CAD 0.09 1.83 69.26 0.85 0.47 3.24 
BTC/EUR 13.18 1.17 0.21 56.14 0.60 15.16 
BTC/GBP 0.42 0.40 0.63 0.69 87.41 2.14 

TSI: 36.33/352.98 = TO others 14.66 4.41 1.68 13.95 1.64 10.29% 

(b) Long horizon 

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others 

BTC/USD 12.54 3.96 0.43 4.55 0.54 9.48 
BTC/AUD 3.55 44.95 3.74 5.29 0.82 13.41 
BTC/CAD 0.29 5.73 19.55 1.07 0.86 7.95 
BTC/EUR 7.37 4.53 0.86 15.03 0.92 13.67 
BTC/GBP 0.23 1.28 1.09 0.32 7.52 2.92 

TSI: 47.43/147.02 = TO others 11.44 15.50 6.12 11.23 3.15 32.26% 

Note: Volatility spillovers, frequency domain analysis following Baruník and Křehlík 
(2018) using 60-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to 
within system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more 
than 30 days’, respectively. 

http:47.43/147.02
http:36.33/352.98
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Figure A.1
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Figure A.2
 



Appendix B 

Supplement to Chapter 3 

A, Rolling windows of the rolling windows series for each market 

Figure B.1 The Rolling Windows of the estimated "d" parameter and the 
rolling windows of "rolled d " in BTC/USD market 

Note:Black line is the rolling windows of the estimated "d". Red line is the rolling windows of the latter 
rolling windows. X-axis indicate daily data which the first day is 1 and ticks are 10 days each. 
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Figure B.2 The Rolling Windows of the estimated "d" parameter and the 
rolling windows of "rolled d " in BTC/EUR market 

Note:Black line is the rolling windows of the estimated "d". Red line is the rolling windows of the latter 
rolling windows. X-axis indicate daily data which the first day is 1 and ticks are 10 days each. 
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Figure B.3 The Rolling Windows of the estimated "d" parameter and the 
rolling windows of "rolled d " in BTC/GBP market 

Note:Black line is the rolling windows of the estimated "d". Red line is the rolling windows of the latter 
rolling windows. X-axis indicate daily data which the first day is 1 and ticks are 10 days each. 
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Figure B.4 The Rolling Windows of the estimated "d" parameter and the 
rolling windows of "rolled d " in BTC/AUD market 

Note:Black line is the rolling windows of the estimated "d". Red line is the rolling windows of the latter 
rolling windows. X-axis indicate daily data which the first day is 1 and ticks are 10 days each. 
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Figure B.5 The Rolling Windows of the estimated "d" parameter and the 
rolling windows of "rolled d " in BTC/CAD market 

Note:Black line is the rolling windows of the estimated "d". Red line is the rolling windows of the latter 
rolling windows. X-axis indicate daily data which the first day is 1 and ticks are 10 days each. 

B, Different specification for the estimated MS-ARFIMA process 
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Table B.1 Estimates of BTC/USD market volatility under different specifica­
tions of MS-ARFIMA process 

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA 
(0, d, 0) (0, d, 1) (1, d, 0) (1, d, 1) 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E 

d1 0.2615 0.0332 0.3838 0.0447 0.3313 0.0391 0.4224 0.0520 

d2 0.3202 0.0156 0.3880 0.0272 0.3630 0.0219 0.4249 0.0329 
µ1 0.9745 0.0697 0.7869 0.1035 0.8872 0.0870 0.8314 0.1095 
µ2 0.2576 0.0490 0.2008 0.0644 0.2184 0.0584 0.1936 0.0691 
σ1 0.7046 0.0296 0.7193 0.0287 0.7148 0.0295 0.7098 0.0291 
σ2 0.1870 0.0038 0.1851 0.0038 0.1857 0.0038 0.1856 0.0038 
p11 0.8189 0.0222 0.8544 0.0196 0.8295 0.0215 0.8339 0.0212 
p22 0.9564 0.0058 0.9613 0.0055 0.9577 0.0057 0.9585 0.0057 
φ - - - - -0.0914 0.0331 0.3018 0.1022 
θ - - -0.1418 0.0435 - - -0.4734 0.1025 

L -365.67568 -363.261213 -362.471718 -358.38933 

Note: d: long memory, µ: mean, σ: standard deviation, P : transition probability,φ: Autoregressive 
parameter, θ: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error 

Table B.2 Estimates of BTC/EUR market volatility under different specifica­
tions of MS-ARFIMA process 

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA 
(0, d, 0) (0, d, 1) (1, d, 0) (1, d, 1) 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E 

d1 0.3306 0.0263 0.3529 0.0321 0.3472 0.0314 0.2874 0.0284 

d2 0.3382 0.0155 0.3474 0.0211 0.3488 0.0199 0.3171 0.0177 
µ1 0.9113 0.0820 0.8362 0.0956 0.9056 0.0873 0.7674 0.0676 
µ2 0.2376 0.0498 0.2004 0.0556 0.2350 0.0523 0.1905 0.0466 
σ1 0.7132 0.0293 0.7090 0.0034 0.7165 0.0296 0.6562 0.0217 
σ2 0.1665 0.0034 0.1653 0.0285 0.1682 0.0034 0.1513 0.0033 
p11 0.7627 0.0244 0.7787 0.0233 0.7662 0.0244 0.8919 0.0144 
p22 0.9415 0.0067 0.9425 0.0067 0.9433 0.0066 0.9534 0.0064 
φ - - - - -0.0328 0.0326 -0.5040 0.2178 
θ - - -0.0413 0.0376 - - 0.5469 0.2077 

L -311.252655 -313.96913 -310.734501 -324.6173 

Note: d: long memory, µ: mean, σ: standard deviation, P : transition probability,φ: Autoregressive 
parameter, θ: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error 
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Table B.3 Estimates of BTC/GBP market volatility under different specifica­
tions of MS-ARFIMA process 

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA 
(0, d, 0) (0, d, 1) (1, d, 0) (1, d, 1) 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E 

d1 0.3391 0.0272 0.3267 0.0359 0.3250 0.0303 0.3570 0.0355 

d2 0.3121 0.0159 0.3086 0.0213 0.3027 0.0182 0.3253 0.0240 
µ1 0.7375 0.1130 0.7479 0.1107 0.7535 0.1099 0.7206 0.1188 
µ2 0.1885 0.0501 0.1925 0.0510 0.1948 0.0485 0.1786 0.0541 
σ1 0.8013 0.0363 0.7840 0.0339 0.8017 0.0365 0.7981 0.0359 
σ2 0.1765 0.0035 0.1739 0.0035 0.1769 0.0035 0.1762 0.0035 
p11 0.7303 0.0275 0.7628 0.0253 0.7293 0.0276 0.7323 0.0273 
p22 0.9451 0.0064 0.9465 0.0064 0.9451 0.0064 0.9450 0.0064 
φ - - - - 0.0106 0.0288 0.4184 0.3289 
θ - - 0.0197 0.0359 - - -0.4446 0.3265 

L -333.95178 -336.939603 -334.518996 -333.830679 

Note: d: long memory, µ: mean, σ: standard deviation, P : transition probability,φ: Autoregressive 
parameter, θ: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error 

Table B.4 Estimates of BTC/AUD market volatility under different specifica­
tions of MS-ARFIMA process 

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA 
(0, d, 0) (0, d, 1) (1, d, 0) (1, d, 1) 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E 

d1 0.3670 0.0322 0.2820 0.0316 0.3446 0.0385 0.3427 0.0355 

d2 0.3235 0.0159 0.2627 0.0174 0.3098 0.0200 0.3100 0.0177 
µ1 0.9242 0.1343 0.8686 0.0898 0.9503 0.1290 0.9596 0.1249 
µ2 0.2865 0.0587 0.2841 0.0419 0.2919 0.0561 0.2938 0.0552 
σ1 0.8008 0.0360 0.7210 0.0273 0.7978 0.0360 0.7956 0.0358 
σ2 0.1855 0.0037 0.1631 0.0034 0.1855 0.0037 0.1847 0.0037 
p11 0.7331 0.0275 0.8006 0.0208 0.7331 0.0275 0.7303 0.0275 
p22 0.9451 0.0064 0.9367 0.0071 0.9451 0.0064 0.9443 0.0064 
φ - - - - 0.0283 0.0336 -0.4565 0.2795 
θ - - 0.1119 0.0328 - - 0.4948 0.2696 

L -393.729588 -400.962282 -393.212967 -392.023359 

Note: d: long memory, µ: mean, σ: standard deviation, P : transition probability,φ: Autoregressive 
parameter, θ: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error 
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Table B.5 Estimates of BTC/CAD market volatility under different specifica­
tions of MS-ARFIMA process 

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA 
(0, d, 0) (1, d, 0) (0, d, 1) (1, d, 1) 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E 

d1 0.3192 0.0292 0.2757 0.0381 0.2914 0.0445 0.2692 0.0429 

d2 0.2961 0.0001 0.2684 0.0225 0.2899 0.0221 0.2761 0.0234 
µ1 0.6522 0.0848 0.7072 0.0783 0.8757 0.0828 0.8865 0.0765 
µ2 0.2183 0.0416 0.2434 0.0409 0.2997 0.0427 0.3057 0.0394 
σ1 0.6235 0.0201 0.6209 0.0201 0.6611 0.0249 0.6560 0.0244 
σ2 0.1459 0.0032 0.1461 0.1461 0.1617 0.0034 0.1602 0.0034 
p11 0.9012 0.0135 0.9024 0.0133 0.8410 0.0191 0.8452 0.0186 
p22 0.9522 0.0067 0.9530 0.0066 0.9496 0.0064 0.9492 0.0065 
φ - - - - 0.0526 0.0362 -0.0591 0.2372 
θ - - 0.0476 0.0355 - - 0.1216 0.2297 

L -300.4434 -299.755155 -292.341567 -293.877633 

Note: d: long memory, µ: mean, σ: standard deviation, P : transition probability,φ: Autoregressive 
parameter, θ: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error 
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Robustness check for MS-ARFIMA 

Table B.6 Estimates of BTC/USD market return volatility under different 
specifications of MS-ARFIMA process 

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA 
(0, d, 0) (0, d, 1) (1, d, 0) (1, d, 1) 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E 

d1 0.289 0.0373 0.4052 0.0434 0.3414 0.0404 0.4772 0.0486 

d2 0.3312 0.0165 0.3948 0.0277 0.3645 0.0224 0.4423 0.0336 
µ1 8.0361 0.7577 7.0224 1.0794 7.6371 0.851 6.2306 1.3547 
µ2 2.2246 0.4887 1.6597 0.6382 1.9668 0.5559 1.482 0.767 
σ1 6.2061 0.0296 6.2362 0.2624 6.2388 0.257 6.1884 0.2546 
σ2 1.6228 0.033 1.6014 0.0323 1.6103 0.0327 1.6003 0.0324 
p11 0.8378 0.0208 0.8015 0.0233 0.8301 0.0214 0.8224 0.0218 
p22 0.9586 0.0056 0.9525 0.0060 0.9569 0.0058 0.9553 0.0059 
φ - - - - -0.0901 0.0336 0.2769 0.0896 
θ - - -0.1534 0.0427 - - -0.474 0.0898 

L -3680.41552 -3675.6816 -3676.6468 -3672.7555 

Note: d: long memory, µ: mean, σ: standard deviation, P : transition probability,φ: Autoregressive 
parameter, θ: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error 

Table B.7 Estimates of BTC/EUR market return volatility under different 
specifications of MS-ARFIMA process 

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA 
(0, d, 0) (0, d, 1) (1, d, 0) (1, d, 1) 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E 

d1 0.3313 0.0242 0.3563 0.0322 0.3252 0.0263 0.3982 0.0349 

d2 0.3275 0.0151 0.3485 0.0209 0.3252 0.0162 0.3767 0.0249 
µ1 6.117 0.8061 7.1305 0.9302 6.6828 0.7578 6.6038 1.1054 
µ2 1.299 0.4677 1.6703 0.5471 1.5626 0.4358 1.4191 0.6199 
σ1 5.9374 0.2136 6.1937 0.2491 6.0102 0.2239 6.2007 0.2505 
σ2 1.3257 0.028 1.4403 0.0293 1.3436 0.028 1.4453 0.0294 
p11 0.8303 0.0188 0.7818 0.0232 0.8043 0.0206 0.7924 0.0224 
p22 0.9403 0.007 0.9425 0.0067 0.9374 0.0071 0.9391 0.007 
φ - - - - 0.0048 0.0175 0.4308 0.1468 
θ - - -0.0436 0.036 - - -0.5108 0.1393 

L -3636.3705 -3628.32752 -3633.4137 -3629.0322 

Note: d: long memory, µ: mean, σ: standard deviation, P : transition probability,φ: Autoregressive 
parameter, θ: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error 
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Table B.8 Estimates of BTC/GBP market return volatility under different 
specifications of MS-ARFIMA process 

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA 
(0, d, 0) (0, d, 1) (1, d, 0) (1, d, 1) 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E 

d1 0.3368 0.0283 0.3243 0.0294 0.3407 0.029 0.3586 0.035 

d2 0.31 0.0163 0.301 0.0174 0.3117 0.0174 0.319 0.0239 
µ1 6.2948 0.975 6.6595 0.9924 6.4464 1.0258 5.9658 1.0984 
µ2 1.6881 0.4473 1.7871 0.4468 1.7022 0.461 1.5756 0.4916 
σ1 6.7525 0.2869 1.9465 0.0456 6.9928 0.3163 6.8499 0.301 
σ2 1.496 0.0303 0.4362 0.02 1.5378 0.0307 1.5117 0.0304 
p11 0.7708 0.0245 1.025 0.1413 0.7341 0.0274 0.745 0.0263 
p22 0.9452 0.0065 2.8618 0.1238 0.9451 0.0064 0.9436 0.0065 
φ - - - - -0.0015 0.0194 0.448 0.3721 
θ - - 0.0131 0.0276 - - -0.4745 0.3681 

L -3652.7169 -3648.0290 -3647.5388 -3650.6794 

Note: d: long memory, µ: mean, σ: standard deviation, P : transition probability,φ: Autoregressive 
parameter, θ: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error 

Table B.9 Estimates of BTC/AUD market return volatility under different 
specifications of MS-ARFIMA process 

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA 
(0, d, 0) (0, d, 1) (1, d, 0) (1, d, 1) 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E 

d1 0.3943 0.0261 0.3561 0.0316 0.2679 0.0405 0.3616 0.0297 

d2 0.3273 0.0153 0.2982 0.0194 0.1984 0.017 0.3056 0.018 
µ1 6.1178 1.2219 6.7589 1.1148 7.7231 0.8654 6.7486 1.1279 
µ2 2.0657 0.4971 2.3365 0.4484 2.9966 0.2636 2.2934 0.4553 
σ1 6.6483 0.2719 6.4412 0.255 6.0819 0.2282 6.6111 0.2699 
σ2 1.4496 0.0296 1.4006 0.0289 1.4277 0.0301 1.4451 0.0295 
p11 0.732 0.025 0.7406 0.0239 0.8121 0.02 0.7337 0.0248 
p22 0.9303 0.0073 0.9265 0.0075 0.9377 0.0071 0.9302 0.0073 
φ - - - - 0.1833 0.0346 -0.3809 0.2002 
θ - - 0.0549 0.0356 - - 0.4433 0.1905 

L -3710.7950 -3708.4664 -3720.1556 -3708.7575 

Note: d: long memory, µ: mean, σ: standard deviation, P : transition probability,φ: Autoregressive 
parameter, θ: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error 
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Table B.10 Estimates of BTC/CAD market return volatility under different 
specifications of MS-ARFIMA process 

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA 
(0, d, 0) (0, d, 1) (1, d, 0) (1, d, 1) 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E 

d1 0.3332 0.0351 0.2734 0.0365 0.2729 0.0391 0.2756 0.0837 

d2 0.3194 0.0174 0.2646 0.0225 0.2642 0.0246 0.2663 0.0526 
µ1 7.3241 0.7584 6.2463 0.6632 6.2514 0.6875 6.2231 0.9982 
µ2 2.5028 0.4152 2.1525 0.3469 2.1559 0.3604 2.1388 0.4621 
σ1 5.7882 0.2169 5.4286 0.1778 5.4282 0.1782 5.4306 0.179 
σ2 1.407 0.0293 1.2761 0.0281 1.2762 0.0282 1.2759 0.0283 
p11 0.8446 0.0189 0.8961 0.0138 0.8961 0.0138 0.8961 0.0138 
p22 0.9503 0.0064 0.9516 0.0066 0.9516 0.0066 0.9516 0.0066 
φ - - - - 0.0499 0.0417 -0.0902 1.9193 
θ - - 0.0502 0.0359 - - 0.1382 1.8389 

L -3605.945 -3612.4253 -3612.456 3612.4100 

Note: d: long memory, µ: mean, σ: standard deviation, P : transition probability,φ: Auto-regressive 
parameter, θ: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error 
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Figure B.6 BTC/USD Exchange rates return volatility and the estimated val­
ues of ARFIMA model 

Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted 
value from ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly. 
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Figure B.7 BTC/EUR Exchange rates return volatility and the estimated val­
ues of ARFIMA model 

Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted 
value from ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly. 
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Figure B.8 BTC/GBP Exchange rates return volatility and the estimated val­
ues of ARFIMA model 

Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted 
value from ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly. 
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Figure B.9 BTC/AUD Exchange rates return volatility and the estimated val­
ues of ARFIMA model 

Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted 
value from ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly. 
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Figure B.10 BTC/CAD Exchange rates return volatility and the estimated 
values of ARFIMA model 

Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted 
value from ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly. 

Figure B.11 BTC/USD Exchange rates return volatility and the estimated 
values of MS-ARFIMA model 

Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted 
value from MS-ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly. 
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Figure B.12 BTC/EUR Exchange rates return volatility and the estimated 
values of MS-ARFIMA model 

Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted 
value from MS-ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly. 

Figure B.13 BTC/GBP Exchange rates return volatility and the estimated 
values of MS-ARFIMA model 

Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted 
value from MS-ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly. 
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Figure B.14 BTC/AUDExchange rates return volatility and the estimated val­
ues of MS-ARFIMA model 

Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted 
value from MS-ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly. 

Figure B.15 BTC/CAD Exchange rates return volatility and the estimated 
values of MS-ARFIMA model 

Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted 
value from MS-ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly. 
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Table C.1 Volatility spillovers across six selected exchange rates in time domain 
– 60-day ahead forecast 

BTC/USD BTC/EUR BTC/GBP BTC/JPY BTC/AUD BTC/CAD Directional 
FROM others 

22.34 16.81 17.14 14.57 12.88 16.27 77.66 
16.82 23.25 16.19 14.73 12.86 16.15 76.75 
17.69 16.49 22.28 14.71 12.82 16.01 77.72 
15.88 16.35 15.44 23.08 13.64 15.61 76.92 
15.10 15.62 14.80 14.96 24.51 15.00 75.49 
16.63 16.48 15.83 14.90 13.30 22.86 77.14 

82.12 81.75 79.41 73.88 65.50 79.03 
TSI: 76.95% 

BTC/USD
 
BTC/EUR
 
BTC/GBP
 
BTC/JPY
 
BTC/AUD
 
BTC/CAD
 
Directional
 
TO others
 

Note: Data cover the period from January 1, 2015 to May 31, 2019. The rightmost (FROM) column 
gives total directional connectedness (from). The bottom (TO) row gives total directional connectedness 
(to). Numbers are in percentage. The bottom-right element (in boldface) is total connectedness (see also 
F. Diebold & Yılmaz, 2014). 
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Table C.2 Volatility spillovers across six selected exchange rates in time domain 
– 90-day ahead forecast 

BTC/USD BTC/EUR BTC/GBP BTC/JPY BTC/AUD BTC/CAD Directional 
FROM others 

22.34 16.81 17.14 14.57 12.88 16.27 77.66 
16.82 23.25 16.19 14.73 12.86 16.15 76.75 
17.69 16.49 22.28 14.71 12.82 16.01 77.72 
15.88 16.35 15.44 23.08 13.64 15.61 76.92 
15.10 15.62 14.80 14.96 24.51 15.00 75.49 
16.63 16.48 15.83 14.90 13.30 22.86 77.14 

82.12 81.75 79.41 73.88 65.50 79.03 
TSI: 76.95% 

BTC/USD
 
BTC/EUR
 
BTC/GBP
 
BTC/JPY
 
BTC/AUD
 
BTC/CAD
 
Directional
 
TO others
 

Note: Data cover the period from January 1, 2015 to May 31, 2019. The rightmost (FROM) column 
gives total directional connectedness (from). The bottom (TO) row gives total directional connectedness 
(to). Numbers are in percentage. The bottom-right element (in boldface) is total connectedness (see also 
F. Diebold & Yılmaz, 2014). 

Table C.3 Volatility spillovers across six selected exchange rates in time domain 
– 120-day ahead forecast 

BTC/USD
 
BTC/EUR
 
BTC/GBP
 
BTC/JPY
 
BTC/AUD
 
BTC/CAD
 
Directional
 
TO others
 

BTC/USD 

22.34 
16.82 
17.69 
15.88 
15.10 
16.63 

82.12 

BTC/EUR BTC/GBP BTC/JPY BTC/AUD BTC/CAD Directional 
FROM others 

16.81 17.14 14.57 12.88 16.27 77.66 
23.25 16.19 14.73 12.86 16.15 76.75 
16.49 22.28 14.71 12.82 16.01 77.72 
16.35 15.44 23.08 13.64 15.61 76.92 
15.62 14.80 14.96 24.51 15.00 75.49 
16.48 15.83 14.90 13.30 22.86 77.14 

81.75 79.41 73.88 65.50 79.03 
TSI: 76.95% 

Note: Data cover the period from January 1, 2015 to May 31, 2019. The rightmost (FROM) column 
gives total directional connectedness (from). The bottom (TO) row gives total directional connectedness 
(to). Numbers are in percentage. The bottom-right element (in boldface) is total connectedness (see also 
F. Diebold & Yılmaz, 2014). 
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Figure C.1 Overall volatility spillovers (dynamic plot), 15-120-Day Rolling Win­
dow 

Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 15-120­
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 
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Figure C.2 Overall volatility spillovers (dynamic plot), 15-150-Day Rolling Win­
dow 

Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 15-150­
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 
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Figure C.3 Overall volatility spillovers (dynamic plot), 15-180-Day Rolling Win­
dow 

Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 15-180­
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 
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Figure C.4 Overall volatility spillovers (dynamic plot), 30-150-Day Rolling Win­
dow 

Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 30-150­
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 
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Figure C.5 Overall volatility spillovers (dynamic plot), 30-180-Day Rolling Win­
dow 

Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 30-180­
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 
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Figure C.6 Overall volatility spillovers (dynamic plot), 60-120-Day Rolling Win­
dow 

Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 60-120­
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 
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Figure C.7 Overall volatility spillovers (dynamic plot), 60-150-Day Rolling Win­
dow 

Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 60-150­
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 
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Figure C.8 Overall volatility spillovers (dynamic plot), 60-180-Day Rolling Win­
dow 

Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 60-180­
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and 
ticks are quarterly. 



201 Appendix C Supplement to Chapter 4
 

Figure C.9 Volatility spillovers to others, dynamic plot
 

Note: series, daily. Dates on the x-axis indicate the start of the year, and ticks are quarterly. 
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Figure C.10 Volatility spillovers from others, dynamic plot
 

Note: series, daily. Dates on the x-axis indicate the start of the year, and ticks are quarterly. 
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Figure C.11 Net Volatility spillovers, dynamic plot
 

Note: series, daily. Dates on the x-axis indicate the start of the year, and ticks are quarterly. 
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Figure C.12 Directional-volatility connectedness network, 22/05/2015
 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 

Figure C.13 Directional-volatility connectedness network, 15/02/2016 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 
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Figure C.14 Directional-volatility connectedness network, 13/10/2016
 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 

Figure C.15 Directional-volatility connectedness network, 26/04/2017 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 
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Figure C.16 Directional-volatility connectedness network, 17/05/2017
 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 

Figure C.17 Directional-volatility connectedness network, 18/12/2017 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 
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Figure C.18 Directional-volatility connectedness network, 26/12/2017
 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 

Figure C.19 Directional-volatility connectedness network, 07/01/2018 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 
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Figure C.20 Directional-volatility connectedness network,15/02/2018
 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 

Figure C.21 Directional-volatility connectedness network, 04/03/2018 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 
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Figure C.22 Directional-volatility connectedness network, 12/04/2018
 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 

Figure C.23 Directional-volatility connectedness network, 21/12/2018 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 
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Figure C.24 Directional-volatility connectedness network, 27/12/2018
 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 

Figure C.25 Directional-volatility connectedness network, 26/01/2019 

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise 
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets 
in terms of net pairwise directional connectedness. 
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Figure C.26
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