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UNIVERSITY OF SOUTHAMPTON

Abstract

FACULTY OF SOCIAL SCIENCES
SOUTHAMPTON BUSINESS SCHOOL

Doctor of Philosophy

by Ahmad Maaitah

This thesis sheds new light on the exogenous and endogenous determinants of volatility
in Bitcoin prices across many major countries around the globe. Different empirical
strategies are proposed to investigate and understand the complex behaviour of volatility,
its movements and significant persistence. Chapter Two identifies and characterises the
‘givers and receivers’ of volatility in cross-market Bitcoin prices and discusses interna-
tional diversification strategies in this context. Using both time and frequency domain
mechanisms, we provide estimates of outward and inward spillover effects. These have
implications for (weak-form) cross-market inefficiency. In our setting, we treat a high
degree of spillover as an indicator of weak-form inefficiency, because investors can utilise
information on the dynamic spillover effects to produce best long-run predictions of
the market. Our results show that Bitcoin prices depict strong (dynamic) spillover in
volatility, especially during episodes of high uncertainty. The Bitcoin-USD exchange rate
possesses net predictive power, mirrored by the tendency of the Bitcoin-EURO market as
a net receiver relative to other markets. Robustness exercise generally supports our claim.
The overall implication is that during episodes of high uncertainty, Bitcoin markets depict
greater dynamic inefficiency, instrumenting the role of asymmetric information in the

path-dependence and predictive power of Bitcoin prices in an interdependent market.

Chapter Three investigates the endogenous growth mechanisms of Bitcoin prices aligned
with empirical tests designed to show whether persistence is a product of such a model.
However, characterising learning in the Bitcoin market is exceedingly complex, as it is
frequently affected by news and/or economic/financial dynamics. Sudden arrival of a
shock (for instance, Brexit) can break the cycle of endogenous persistence generating
mechanisms. We propose a variant of ARFIMA Markov Switching, with endogenous
switch governing the internal dynamics of Bitcoin prices or volatility system. This MS-
ARFIMA (endogenous) is synchronised with different mechanisms and shows the credible
role of policy on containing volatility persistence. Our model and empirical strategies are
new, and our results show the significance of true memory under episodes of structural
breaks.
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Chapter Four studies Bitcoin prices/volatility during cyber attacks and identifies how
they can be seriously manipulated in some markets. In the meantime, exchange rate
differentials across markets offer investors the opportunity to enhance portfolio returns.
Under these scenarios, it is expected that price volatility on one particular Bitcoin-to-
currency exchange market (e.g. Bitcoin-USD) can flow to other markets and can also be
acquired from others. Any quantitative information on the centrality or relative isolation
of some Bitcoin-to-currency markets can actually help investors to better anticipate their
complex dynamic behaviour and exploit potential for forecast-able gain. These premises
are rigorously tested in the current paper, using daily price data on six major Bitcoin-
to-currency exchange rates. We show the net predictive power and the net receiver of
volatility during different cyber attacks. Eventually, such tendencies could help investors
design trending strategies to systematically beat the market, hedging and diversifying
their investment to maximise profit with the lowest associated risk, and speculating on

the behaviour of the market in future attacks.
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1.1 Research context

During the last century, the move towards a digital world began to increase rapidly,
particularly in the financial industry. The arrival of the global financial crisis in 2008 was
the straw that broke the camel’s back and the starting spark of a new financial era. The
first state-of-the-art, well-developed digital currency was introduced on 31 Oct 2008 by
the pseudonymous "Satoshi Nakamoto" to tackle all the restrictions and disadvantages
of fiat currencies, and facilitate movement and exchange around the world at very low
cost, and highly secure system (Nakamoto, 2008). Indeed, trading and transferring of
cryptocurrencies (Bitcoin) does not need a central authority or financial institution to

verify and transfer the transaction among users 12 .

"You will not find a solution to political problems in cryptography. Yes, but we can win
a magor battle in the arms race and gain a new territory of freedom for several years.
Governments are good at cutting off the heads of a centrally controlled networks like

Napster, but pure P2P networks like Gnutella and Tor seem to be holding their own."
SatoshiNakamoto 3.

The peer-to-peer electronic cash system is completely decentralised, which enables users
to totally control the ownership of currency and prevent double spending (reversal)
transactions. Thus, on the one hand, the Bitcoin has bypassed the financial turmoil
of 2008 by decentralising the system and becoming an unrestricted and independent
digital currency, unlike others. On the other hand, the novelty of Bitcoin and block-chain
technology has created a status of uncertainty and ambiguity around the globe in the

absence of strict monetary and financial regulations.

After the white paper of Bitcoin was introduced at the end of 2008, Satoshi Nakamoto
released the first block (the Genesis block) on Jan 3, 2009, as the first transaction in
the history of Bitcoin, under the following title, "The Times 03/Jan/2009 Chancellor
on brink of second bailout for banks". To date, that is until midnight, Feb 12, 2020,
the number of blocks that have been generated over the last 11 years is 616,996 blocks
with market capitalisation exceeding $ 185 billion and circulating supply around BTC 18
million. However, the circulating supply should approach BTC 21 million by the end of
2140 4:5:6.7,

In spite of the market capitalisation of the cryptocurrencies market (more than 2000

digital currencies) exceeding $ 290 billion, the Bitcoin market still the most important one;

!To review the history of digital currency before 2008, see (Chuen, 2015)

*1 Satoshi = 0.00000001 BTC

3Metzdowd.com

4Thetimes.co.uk

*Btc.com

5Coinmarketcap (Feb 11, 2020)

"Mining the rest of Bitcoins will be progressively slower because the block reward is halving every
210,000 blocks (approximately each four years) and reduce new bitcoin supply by 50 percent.


https://www.metzdowd.com/pipermail/cryptography/2008-November/014823.html
https://www.thetimes.co.uk/articlechancellor-alistair-darling-on-brink-of-second-bailout-for-banks-n9l382mn62h
https://btc.com/block?date=2020-0211
https://coinmarketcap.com/currencies/bitcoin/
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hence its market share is around 63%. Therefore, huge contributions from this market
are participating directly and indirectly through different channels in the global financial
markets. Consequently, investigating and studying the Bitcoin markets furnishes us
with a deeper understanding of market behaviour and connectedness with other markets,
providing insights for investors and policy makers. Broadly, we can divide the research into
three main areas, allowing us to scrutinise the Bitcoin market critically and systematically,
and providing valuable information to interested agents by: firstly, studying the static and
dynamics of Bitcoin prices in both the short and long-run domains; secondly, studying
the endogenous dynamics of Bitcoin prices and assessing the volatility persistence in such
a system; thirdly, studying the technological aspects of Bitcoin, such as cyber securities,

and identifying their major impact on the Bitcoin markets.

The issue of spillover effects is very important nowadays as globalisation strengthens
the connectedness between the markets around the globe. Thus, volatility spillover is
more profound when market interdependence is high, especially during financial crisis and
episodes of economy-wide uncertainty. Information on a within-market transmission of
shocks possesses high policy value because viable policy interventions can limit the possible
proliferation of shocks beyond certain acceptable bounds. Some studies such as Corbet et
al. (2018) shed light on the spillover effects of volatility from a ‘cryptocurrency market’
to ‘other asset markets’ (such as stock and gold), Cheah et al. (2018) demonstrating the
importance of cross-market dynamic interdependence of Bitcoin prices by estimating a

system-wide long-memory.

However, memory is logically imperishable during the lifespan of a boundedly rational
agent. The only characteristic one can note about the existence of memory is whether it
is small or big, and concerns the long or short ‘trail’ of associations it inherently defines
over a period of time - just as Louis L’Amour (an American author) has famously quoted.
In the case of cryptocurrency, a similar strand of research has begun to emerge (see for
instance, (Bariviera, 2017)) barring some exceptions (viz. Cheah et al., 2018) where some

directions of the source of long-memory are discussed.

From a technical point of view, cyber criminality in the cryptocurrency market is a
very serious matter, and extensive efforts from legislators and decision-makers are being
made to create an efficient environment with flexible boundaries to restrict or frustrate
manipulation across cryptocurrency markets(Bohme, Christin, Edelman, & Moore, 2015;
Dwyer, 2015; Gandal, Hamrick, Moore, & Oberman, 2018). The impact of cyber attacks
on the return of cryptocurrencies has caused the system to be highly volatile, and the

increasing number of attacks appearing to have a major impact on the volatility market.
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1.2 Research aims

The aim of this thesis is to study and investigate the cross-market dynamics of Bitcoin
prices by employing a spillover effects index, long-memory measures and network topology
from an empirical perspective. The thesis sheds light on a new alternative investment,
proposing credible empirical strategies to help investors, policy makers and researchers to

make crucial decisions and build coherent future investment plans.
The aims of each chapter are as follows:

Chapter Two provides a comprehensive study of the cross-market spillovers of volatility
in Bitcoin prices and the predictive power each market possesses relative to others.
Essentially, the chapter sheds light on the net receivers and prime givers of volatility
across markets to help investors design trending strategies to systematically beat the

market.

Chapter Three aims to detect the volatility persistence in the Bitcoin cross-market and
identify the true long memory within the market, so as to have a deeper understanding
of the endogenous dynamics in the system, and how the market frequently reacts to news
and economic events. Indeed, the presence of true long memory could enable investors to
capture speculative profits via market timing, and policy makers could introduce circuit
breakers to stop trading in Bitcoin cross-markets when the market switches abruptly to a

high-volatility regime.

The aim of Chapter Four is to study the reaction of Bitcoin prices during cyber attack
episodes, and how volatility can seriously flow across markets. Indeed, quantitative
information on the centrality or relative isolation of some Bitcoin-to-currency markets
could actually help investors to better anticipate their complex dynamic behaviour and

exploit potential of forecastable gains.
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1.3 Research objectives

The research objectives for each chapter of the thesis are as follows:
The research objectives in Chapter Two are:
e To empirically quantify the volatility spillover effects in cross-market Bitcoin prices
through generalised variance decomposition process.

e To identify the net receiver and prime giver of volatility across Bitcoin markets and

manage the shocks within a dynamic/static system.

e To examine the co-movement of uncertainty index and total directional volatility

spillover across Bitcoin markets.

e To detect the volatility spillover in the short-run and long-run horizon.
The research objectives in Chapter Three are:
e To detect the true long memory properties within Bitcoin markets and distinguish

between structural breaks and long-range dependence.

e To empirically estimate an endogenous switch led ARFIMA model, which allows
‘'memory’ co-moves with 'switches’ endogenously to detect the true persistence

pattern across markets.
e To quantify and detect the speed of adjustment behaviour of long-memory proprieties
within the markets.

The research objectives in Chapter Four are:

e To empirically examine the impact of cyber attacks on the Bitcoin financial system.

e To design weighted directed networks of Bitcoin prices volatilities during episodes

of hacking events.

e To detect the connectedness between Bitcoin markets statistically and dynamically

under a series of cyber attacks.
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1.4 General Literature Review and Contributions

Cryptocurrency literature has been subject to an astounding amount of research over the
last five years. The explosion of work focuses primarily on several aspects, such as the
connectedness among cryptocurrencies and other assets in a financial market, volatility

persistence within the market, and the risk generated by cybercrime and hacking events.

Several studies have attempted to study the spillover phenomenon in cryptocurrency
markets. Kurka (2017) investigated the interconnectedness between the cryptocurrency
market and a bundle of traditional assets. Different spillover index approaches were
applied to a group of financial assets, including Bitcoin, to detect the linkages between
them. Interestingly, they found a very low level of linkage between Bitcoin and other assets,
except for gold, which received several shocks from Bitcoin during that period. Corbet et
al. (2018) employed a generalised variance decomposition method in time and frequency
domains to investigate the connectedness amongst several financial assets, and three
major cryptocurrencies. They found high levels of linkage among the cryptocurrencies,
and very low connectedness between the cryptocurrencies and other financial assets. Their
analysis suggested that the cryptocurrencies market contains its own risk which is hard

to hedge against.

Bouri et al. (2018) studied the level of linkage between particular cryptocurrencies and four
major financial assets® in both bear and bull market conditions through VAR-asymmetric
GARCH method. The model suggested that Bitcoin and the commodities markets are
not completely isolated from one another. In addition, the results clearly showed that

Bitcoin was receiving shocks more than transmitting them to other markets.

Consequently, Chapter Two contributes to the literature in the following two significant

ways.

e Previous studies have investigated the spillover effects between a cryptocurrency
market and a conventional asset market. Hence a major contribution of the second
chapter is to quantify (dynamic) spillover effects in cross-market Bitcoin prices, and
to shed light on the net receiver and prime giver of volatility across markets for a

single cryptocurrency (Bitcoin).

e As a further contribution, we employ Parkinson’s (1980) high-low volatility measure,
as well as Garman-Klass type of volatility estimates to capture dynamic movements

between high and low Bitcoin prices.

8Equities, bonds, currencies and commodities
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A wide range of empirical research also focuses on long-range persistence, cointegration
and structural breaks to explain the complex behaviour and non-linear dynamics of
Bitcoin prices (Alvarez-Ramirez et al., 2018; Caporale, Gil-Alana, & Plastun, 2018; Cheah
et al., 2018).

Neglecting the time series properties during the analysis process could generate misleading
information. Several studies have analysed the time varying behaviour of long-range
dependence through different tests, such as Hurst exponent and detrended fluctuation
analysis DF' A and exact local whittle estimation with rolling windows (Alvarez-Ramirez
et al., 2018; Bariviera, 2017; Bariviera, Basgall, Hasperué, & Naiouf, 2017; Caporale et
al., 2018; Cheah et al., 2018). Statistical properties may be subject to sudden changes
over time, especially in the Bitcoin markets, which may leave some distortion shocks
permanency; hence, structural breaks testing is crucial to validate the long-range stability
process (Al-Yahyaee et al., 2018; Bouri et al., 2019; Charfeddine & Maouchi, 2019; Mensi
et al., 2018, 2019). A long debate in the literature suggests that the presence of structural
breaks in a time series could appear as high long-range persistence; thus, level shifts and

long memory are easily confused, as Diebold and Inoue (2001) suggested.

All the aforementioned studies ignore the fact that diagnosing structural breaks and
long memory individually does not clarify the problem, and provides unstable results.
On the contrary, Diebold and Inoue (2001) suggested that long-range dependence and
turning points should be modelled in a conquer unified framework, allowing the system to
distinguish between the latter phenomena simultaneously and endogenously. The focus on
a cross-market rather than a single market has significance in our context: by employing
ARFIM A Markov Switching with endogenous switches governing the internal dynamics
of Bitcoin prices or volatility system, we will be able to distinguish between the true and
spurious long memory with higher accuracy. Accordingly, Chapter Three contributes to
the nascent literature on the source and implications of ‘memory’ in Bitcoin markets in

the following three significant ways:

e The chapter puts forward an identification strategy to demonstrate the source and
implications of long memory in Bitcoin markets. It also proposes a demand-driven
long memory channel for Bitcoin, showing that there are waves of Buyer initiated
transactions (given a fixed supply of Bitcoin) which follow a Beta distribution with

memory, by following a linear algorithm of aggregation and power distribution.

e We model the (non-)existence of long memory to an endogenous market system
mechanism which might give rise to persistent shock, with or without a mean
reversion. We discuss this in the light of an endogenous switch in the memory and

mean of the Bitcoin price process.

e Using daily Bitcoin data for five different markets, we study the nature of persistence

in Bitcoin volatility, while considering an endogenous switch in volatility. From
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this, we shed light on the nature of the true long memory, and quantify to what

extent true 'memory’ governs the internal dynamics of the system.

Regulations, information systems and cyber criminality are very important corners in
cryptocurrency markets, allowing legislators and decision-makers to design appropriate
regulations and create an efficient environment with flexible boundaries to restrict the
frustration and manipulation across these markets (Bohme et al., 2015; Dwyer, 2015;
Gandal et al., 2018).

Abhishta et al. (2019) found that DDoS attacks have a direct negative impact on Bitcoin
prices, and induce the network to be more volatile and vulnerable over time. Moreover,
cyber attacks on Bitcoin (e.g. DDoS, code bugs or user errors) and the common response
from users (e.g. code revision, computer security measures or temporary suspension) could
diminish the value of Bitcoin and leave a serious distortion in the network. Caporale et al.
(2019) investigated the impact of cyber attacks on the returns of four cryptocurrencies (e.g.
Bitcoin, Stellar, Litecoin and Ethernam). The Markov switching analysis and cumulative
measures suggested that cyber attacks induce the system to be highly volatile, the number
of cyber attacks being positively correlated with the level of volatility. (Corbet et al., 2020)
studied the relationship between cybercriminal events and cross-cryptocurrency markets.
Results show very high episodes of volatility and broad co-movement in cryptocurrency

markets when hijackers attempted to penetrate the network.

Consequently, Chapter Four contributes to the literature in the following two significant

ways.

o We study the network topology of Bitcoin prices volatilities by designing several
weighted directed networks during 19 major cyber attacks. Although economic
and political events can generate volatilities within financial markets, cyber attacks
could have a more significant impact on the cryptocurrencies market, being fully
electronic and vulnerable to cyber attack. Each cryptocurrency has a unique and
distinct infrastructure (network); thus focusing on the Bitcoin market rather than
cryptocurrencies markets allows us to investigate the network more thoroughly and

efficiently.

e We examine the impact of 19 cyber attacks on Bitcoin markets through variance
decomposition method. To the best of our knowledge, there is no available financial
theoretical model to justify conditioning the predictive power of an asset market
on volatility in a cryptocurrency market. In this sense, a major contribution of
the current chapter is to measure and identify the network connectedness between
Bitcoin markets under several cyber attacks. In so doing, we aim to shed light on
six Bitcoin markets under different security breaches to identify their magnitude

and direction statically, dynamically and graphically.
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1.5 A schematic representation of the thesis

Chapter One gives a general introduction and background on the Bitcoin markets,
followed by the research aims and objectives which systematically cover the purpose of
this thesis.

Chapter Two sheds light on the ‘givers and receivers’ of volatility in cross-market Bitcoin
prices and discusses international diversification strategies in this context. In this chapter,
the spillover index method is used to analyse and identify the magnitude and direction of
volatility movement under a time domain and frequency domain process. A battery of

robustness checks are applied to validate the conducted results.

Chapter Three focuses on the endogenous dynamics in cross-market Bitcoin prices.
The chapter introduce a first-hand strategy to detect and identify long memory properties
while quantifying the structural breaks simultaneously. An endogenous Markov switching
ARFIMA mechanism with Shimotsu long memory test and Bai & Perron estimation are
used to create an empirical strategy for investors and policy makers to provide a credible

role of policy on containing volatility persistence across Bitcoin markets.

Chapter Four sheds light on the technological aspect of Bitcoin, and shows how cyber
attacks can severely affect the network and leave a lengthy distorted footprint. Generalised
variance decomposition approach is applied to confirm the movement of volatility across
markets, then network theory with the help of rolling windows to identify the depth of

impact from different types of cyber attacks.

Chapter Five provides a detailed conclusion, and presents the main implications of the

thesis.






Chapter 2

(Giver and the Recelver:
Understanding Spillover Effects and
Predictive Power in Cross-market

Bitcoin Prices

Abstract

We identify and characterise the ‘givers and the receivers’ of volatility in cross-market
Bitcoin prices and discuss international diversification strategies in this context. Using
both time and frequency domain mechanisms, we provide estimates of outward and inward
spillover effects. These have implications for (weak-form) cross-market inefficiency. In
our setting, we treat high-degree of spillover as an indicator of weak-form inefficiency
because investors can utilise information on the dynamic spillover effects to produce
a best long-run prediction of the market. Our results show that Bitcoin prices depict
strong (dynamic) spillover in volatility, especially during episodes of high uncertainty.
The Bitcoin-USD exchange rate possesses net predictive power, mirrored by the tendency
of the Bitcoin-EURO market as a net receiver relative to other markets. Robustness
exercise generally supports our claim. The overall implication is that during episodes of
high uncertainty, Bitcoin markets depict greater dynamic inefficiency, instrumenting the
role of asymmetric information in the path-dependence and predictive power of Bitcoin

prices in an interdependent market.

Keywords: Cross-market Bitcoin prices; Return and volatility spillovers;
Uncertainty; Inefficiency; Prediction
JEL Classification: C1; E4; D5
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2.1 Introduction

Since it was actively traded in 2013, Bitcoin — the biggest and most active cryptocurrency
with a market capitalization over $110" billion — has struck investors’ expectations of
a quick and sizeable return, like none other. In the absence of strict monetary and
financial regulations, cryptocurrency investors seem to be fully exploiting this opportunity
and are quickly moving from a state of despondency (due to recurrent losses from their
investments in regulated financial markets) to one of hope (because, Bitcoin prices are
fundamentally driven by the ‘feeling and the memory’ of investors at a point of time.? To
investigate the nature of such type of investment decisions and help governments design
adequate regulations for limiting cross-market movement of shocks, a remarkable growth

of research has sprung lately.

A helicopter survey? reveals that the literature has focused on two main aspects of
cryptocurrency price movements. First, conceptual designs aiming to depict potential
weaknesses of this market show how the latter can subject investors to insurmountable
unsystematic risks (see for instance, Cheah & Fry, 2015; Cheah et al., 2018; Gandal et
al., 2018). Second, a plethora of empirical research has systematically presented state-of-
the-art estimation techniques to identify, among others, informational inefficiency (viz.
Urquhart, 2016), long-range persistence behavior and cointegration (viz. Alvarez-Ramirez
et al., 2018; Caporale et al., 2018; Cheah et al., 2018), volatility spillovers and dynamic
interactions with other financial assets (viz. Corbet et al., 2018). Thus far, the extant
research has laregely focused on a cross-section of cryptocurrencies and sparsely on a
cross-market dynamics of a single cryptocurrency (except for the leading work of Cheah et
al., 2018). This chapter aims to contribute to this nascent literature by studying volatility

spillover across Bitcoin markets, exchanged in various currencies.

The issue of cross-market volatility has been studied in a macroeconomic context (for
instance, Diebold & Yilmaz, 2012), where it is shown that volatility spillover is more
profound when market interdependence is high, especially during financial crisis and
episodes of economy-wide uncertainty (Cheah et al., 2018). Information on a within-market
transmission of shocks possesses high policy value because viable policy interventions
can limit possible proliferation of shocks beyond certain acceptable bounds. Moreover,
managing shocks within a system is relatively easier as one can exploit the system dynamic
features of shocks so as to monitor their movements and generate better predictive power

for an asset. Although Bitcoin is traded electronically, like a huge number of assets

!coinmarketcap.com (Oct 2018)

2See Cheah et al. (2018) for details.

3Theoretical and empirical research in cryptocurrencies can be broadly divided into three important
interdependent areas; viz., regulations and information system research, financial market and monetary
theoretical formulation of cryptocurrency demand/supply, and development (and applications) of state-of-
the-art econometric and/or statistical mechanics to understand (predictive patterns of) price movements.
To minimise space and repetition of a succinct literature review, interested readers are encouraged to
refer to Corbet et al. (2019) for an excellent survey.


http:1coinmarketcap.com
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globally, cross-economy differentials in the trading of Bitcoin reflects not only the role of
macroeconomic and financial market regulations, but also represent investors’ sentiment
concerning an investment in a risky asset. While former studies (such as Corbet et al.
(2018)) shed light on spillover effects of volatility from a ‘cryptocurrency market’ to ‘other
asset markets’ (such as stock and gold), Cheah et al. (2018) demonstrated the importance
of cross-market dynamic interdependence of Bitcoin prices by estimating a system-wide
long-memory. The focus on a cross-market rather than a single market cryptocurrency
market in the latter study holds significance in our context: by modelling directional
spillover effects one creates a stock of information for investors who decide on an arbitrage
value of Bitcoin traded in various markets. The investors exploit information on the
predictive power of each market, such as the net receiver and net giver of volatility. Such
a study is helpful in shaping robust investment strategy of a single cryptocurrency traded

in various markets.

Broadly speaking, the current chapter’s main aim is to improve our limited understanding
of the cross-market spillovers of volatility in Bitcoin prices and the predictive power each
market possesses relative to others. Since Gandal et al. (2018) showed that Bitcoin prices
can be seriously manipulated, a thorough understanding of volatility movements across
Bitcoin markets is important to gauge net predictive power of each market. Accordingly,
this chapter contributes to the literature in two significant ways. First, differing from the
convention, we study spillover effects of return and volatility across markets for a single
cryptocurrency. Although study of spillover effects between a cryptocurrency market
and a conventional asset market offers important insights on if and whether shocks from
cryptocurrency market impact volatility in an asset market, it lacks in a directional
predictive power. This is because these two markets are distinct with respect to the
modes of operandi. Moreover, to the best of our knowledge there is no available financial
theoretic model to justify conditioning predictive power of an asset market on the volatility
in a cryptocurrency market. In this light, a major contribution of the current chapter is
to quantify (dynamic) spillover effects in cross-market Bitcoin prices. By doing so, we
aim to shed light on the net receiver and prime giver of volatility across markets. As a
further contribution, we employ Parkinson’s (1980) high-low volatility measure as well as
Garman-Klass type of volatility estimates to capture dynamic movements between high
and low Bitcoin. Using these volatility measure (details of which will be presented in
Section 2), we show that the Bitcoin-USD exchange rate possesses net predictive power
and that the Bitcoin-EURO market appears to be a net receiver of volatility relative to
other markets. Eventually, such tendencies could help investors design trending strategies

to systematically beat the market.

To investigate further, the rest of the chapter is planned as follows.Section 2 review the
literature. Section 3 discusses data and summary statistics. section 4 discusses estimation

method. Section 5 presents empirical results and robustness analyses. Section 6 concludes
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and presents the main implications of our research. Section 7 displays all the necessary

estimations in appendix A.

2.2 Literature review

Extensive research has been done on volatility spillover, because of the importance of
volatility connectedness across global financial markets. Portfolio managers, traders,
investors, policy makers and many others are interested in analysing the spillover of
volatility across financial assets and markets. The current body of literature has identified
significant contributions from the indirect effect of volatility on financial securities and
Bitcoin. This section introduces the theoretical framework of volatility spillover across
foreign exchange markets. Firstly, definitions and the roots of volatility connectedness will
be introduced. Secondly, the theories most related to financial contagion literature will
be revised. Thirdly, focusing on one stream of the literature, the exchange rate volatility
spillover domain will be reviewed from 1990 until the present. Finally, the most adopted

methodologies in the latter stream of the literature will be discussed.

2.2.1 The volatility Spillover definition

The rapid technological development in global financial markets has increased the inte-
gration and connectedness amongst economies around the world. The financial linkages
have induced scholars and practitioners to investigate the effect of a particular event (e.g.
economic, political, catastrophic) on a group of economies around the world and how
the shocks generated flow across these economies. Different methodologies have been
introduced to examine how a particular shock in a certain market could transmit the risk

to another market or group of markets.

Prior to the definition of volatility spillover, the term ‘financial contagion’, was the first
terminology appearing in the literature. The word ‘contagion’ is derived from medicine
and describes how a particular contagious disease can spread across a patient’s surrounding
environment. Similarly, financial contagion can be defined as a series of shocks which
affect a range of economies at varying levels, due to the extent of their connectedness
(Claessens & Forbes, 2013)*. However, among the different types of volatility, this study
adopts unconditional volatility (Parkinson 1980). Volatility is a statistical measure used
to study the behaviour of economic variables over time (Enders, 2008). In addition, it
is considered to be an unpredictable parameter in the econometric system. Mixing all
the latter terms, volatility spillover effects can be defined as a measurement tool for a

particular shock(s) generated in a certain financial asset (market) with full regard to the

“This chapter uses the broader definition of contagion, see (Claessens & Forbes, 2013) for more
definitions (e.g. the shift-contagion, etc)
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linkages between the affected financial asset (market) and other assets (markets) across
the world (Bollerslev & Hodrick, 2017; Engle & Susmel, 1993).

2.2.2 Volatility Spillover theories

The above definitions and explanation provide a clear concept of volatility linkage across
financial markets. This section will revise the two main, well-known grounded theories in

the volatility spillover effect literature:

2.2.2.1 Heat waves and Meteor showers

The first spark of financial contagion began after a long debate in the literature of efficient
market hypotheses (EMH). The essence of this theory discussed how financial markets
across the world react to the arrival of new information at different levels 5. Based on
the EMH concept, a new stream of literature started to focus on the factors that could
transmit the risk from market to market, and on how to identify the direction of risk flow

among economies.

Consequently, the seminal work by (Ito & Roley, 1987) was the first attempt to explore
the idea of volatility spillover effect across financial markets. Their research question
was: "News from the U. S. and Japan: which moves the Yen/Dollar exchange rate?".
For the sake of analysis, the series of yen/dollar exchange rates from 1980 to 1985 was
divided into four segments to scrutinize the behaviour of the series in each segment. Their

analysis found a significant linkage in the fluctuations of the Japanese and U.S. markets.

On the same ground, a seminal study by (Engle et al., 1990) introduced two distinguishable
hypotheses: "Heat Waves & Meteor Showers ". They investigated the volatility clustering
of the yen/dollar series across the U.S. and Japanese markets. The results indicated
that the null hypothesis of Heat Waves was significantly rejected, while the hypothesis
relating to Meteor Showers was not rejected, which implies that there was significant
evidence of the transmission of volatility from one market to another. To understand the
general conceptual framework of both hypotheses, a small example has been provided
by (Engle et al., 1990)’s paper. Firstly, the Heat Waves, or own spillover hypothesis
can be explained by imagining how a hot day in London might keep the weather hot
there in the following few days, but this does not necessarily make it hot in Dublin. In
other words, if a particular shock increases volatility in a specific economy, this does not
cause the volatility to increase in another related economy. Secondly, and in contrast,
Meteor Shower, or cross spillover, implies that if meteors start falling down to Earth,

London, Dublin and other cities will certainly experience some effects. Econometrically,

®(Fama, 1970, 1976, 1991)
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if a particular shock increases the volatility of a specific market, the same shock might

also increase the volatility of other markets 6.

The Heat Waves and Meteor Shower hypothesis is a controversial issue in the body of
literature. The location-specific auto-correlation phenomenon, or Heat Wave hypothesis,
has been found to exist in almost all financial markets. The own-spillover effect might be
generated by a local political or economic event and, interestingly, the shock will affect
only the local economy, without any transmission to other economies. An interesting
debate about the two hypotheses started after (Baillie & Bollerslev, 1991) proved that
own-specific volatility is more reliable and significant than cross market volatility. For
example, in 2006, Hassan et al. investigated the volatility linkages among Asian developing
and developed financial markets between 1991 and 2000. Surprisingly, the null hypothesis,
"Heat Waves", failed to be rejected between 1991 and 1993 in the developed markets
of the Philippines, Korea and Indonesia. The latter results implied that a weak linkage
existed between the developed and developing markets in Asia, and that was due to
the adopted contradictory policies between both markets (Andersen & Bollerslev, 1997;
Dacorogna et al., 1993; Hogan Jr & Melvin, 1994, for more details see). To illustrate the
seasonality in FX volatility, (Cai et al., 2008; Engle & Susmel, 1993; Fleming & Lopez,
1999; Hassan et al., 2006; Melvin & Melvin, 2003; Melvin & Yin, 2000).

By contrast, a remarkable and growing body of literature has investigated the cross-
spillover volatility or Meteor Shower hypothesis. Market interdependence is the funda-
mental key here, whereby a particular set of financial markets can be dominated by a
specific shock, such as a monetary policy, or a political decision. By revising the volatility
spillover literature it appears that the Meteor Shower hypothesis has conquered the
opposite hypothesis, by introducing more empirical methodologies to prove the existence
of cross-spillover volatility across financial markets (Engle et al., 1990; Fleming & Lopez,
1999; Hamao et al., 1991; Ito et al., 1992; King & Wadhwani, 1990; Lahaye & Neely,
2018; Reyes, 2001). For example, (Glosten et al., 1993; Nelson & Foster, 1994; Reyes,
2001) investigated both hypotheses with respect to the asymmetric volatility spillover in
financial markets. Their results suggested that asymmetric models could generate the best
forecast of volatility (Engle & Susmel, 1993) Moreover,(Lahaye & Neely, 2018) claimed

that the cross-spillover hypothesis is more effective than the own-spillover hypothesis.

However, a significant stream of the literature is consistent with the seminal work of
(Engle et al., 1990). The importance of this has grown gradually because of the remarkable
connectedness among global financial markets around the world. The following subsection

reviews the major empirical research that has investigated the volatility spillover effect.

SFor more details see (Engle et al., 1990)
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2.2.3 Empirical review

Volatility spillover literature has expanded gradually to cover different areas, as volatility
spillover varies from country to country, market to market, and from financial asset to
financial asset. Consequently, this subsection focuses chronologically on the exchange
rate volatility spillover literature and endeavours to discuss the most important papers in

this area.

Engle et al. (1990) investigated the volatility clustering of two exchange rates to defend
their claim about financial markets linkages. Consequently, they applied a multivariate
general autoregressive conditional heteroscedasticity (MGARCH) model with regard to
(Bollerslev, 1986; Ito & Roley, 1987)’s empirical methodologies. They investigated whether
the yen/dollar exchange rate between 1985 and 1986 actually transmitted any shocks
(information) among the Tokyo and New York exchange markets. The null hypothesis
Meteor Shower failed to be rejected, at a 5% significance level. Failing to reject the null
hypothesis clarified that the flow of information between both international markets was
significant and did exist. Econometrically, they tried to trace any possible shock in the
system by dividing the volatility component into many different segments. The results of
the robustness test validated the strength of their analysis and outcomes. Following this
seminal work, many researchers started to scrutinize volatility spillover across financial

markets.

A quick response to (Engle et al., 1990)’s research came from (Baillie & Bollerslev, 1991),
who built a seasonal GARCH model to detect the volatility over time in each series
and ran an LM test to capture the leptokurtosis phenomenon amongst the data set.
The Japanese yen, the German deutschmark, the Swiss franc and the British pound
were regressed against the U.S. dollar between Jan 1986 and July 1986 to find any
cross-spillover volatility. Their results confirmed that the meteor shower phenomenon
significantly existed. By contrast, interestingly, the seasonal ARCH system suggested
some significant own-spillover information (local shocks) across the data. Additionally,
running the robust test did not capture enough evidence in the system to support the
cross-spillover hypothesis across the exchange rates. Also, in 1993, Baillie, Bollerslev, and
Redfearn analysed a major group of global exchange rates against the U.S. dollar. They
chose a distinguishable event, called the “Bear Squeeze”, which occurred in the 1920s, to
find any evidence of volatility transmission among six currencies. Indeed, they found
that the Belgian and French exchange rates were transmitting volatility over the Swiss
and Italian exchange rates. Their robustness check suggested a similar conclusion as the
previous research. In Asia, Alba (1999) examined the period following the East Asian
crisis (1990) to find some evidence of the volatility that flowed among the Asian markets.
The applied model” suggested that the volatility spillover effect across the six exchange

rates was only statistically significant for two exchange rates. Volatility transmission was

"proposed by (R. F. Engle & Gau, 1997).
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detected in the Chinese and “Philippines and Thailand” markets. Further, a causality
test concluded that the Chinese exchange rate was dominating the other two exchange

rates in the sample span period.

Hereafter, scholars started to pay more attention to volatility spillover and began de-
veloping different methodologies to detect the meteor shower phenomenon in financial
markets. A study by Huang and Yang (2002) investigated the extent to which the London,

Tokyo and New York financial markets were linked. A causality-in-variance analysis ®

was
applied to trace the volatility spillover between the currencies of those markets against
the U.S dollar. Huang and Yang (2002) stated confidently that a causality- in- variance
test was more accurate and reliable than the GARCH family models. However, many
studies have supported the body of literature by fruitful analysis of the volatility spillover
effect across financial markets. For more details see(Hong, 2001; Kearney & Patton, 2000;

Speight & McMillan, 2001).

On the other hand, Melvin and Melvin (2003) studied the deutschemark and Japanese
yen against the U.S. dollar across five regional markets? were recognized by quoting
patterns analysis to find the level of interdependence between the different markets.
Regional volatility models were built to find the own-region and cross-region spillover.
After analysing the high frequency data, they found that the volatility spillover in both
own-region and cross-region was statistically significant. By contrast, they claimed that
the own-region (Heat Wave hypothesis) was economically significant and more important
than the Meteor Shower hypothesis. Finally, Melvin and Melvin (2003) claimed that
(Engle et al., 1990)’s research used normal daily exchange rates for the New York and
Tokyo markets, and found that this data did not reflect the actual behaviour of both
markets. Consequently, they based their analysis on high frequency data, simply to

achieve more accurate results than(Engle et al., 1990).

In Europe, Nikkinen et al. (2006) investigated the level of linkages among the most active
financial markets in Europe. The performance of the Swiss franc, the Sterling pound and
the Euro exchange rates against the U.S. dollar were chosen for the period from Oct 2001 to
Sep 2004 to find any inter-dependency among the three markets. A vector autoregressive
(VAR) model and Granger causality were used to trace the volatility spillover across the
markets. A significant volatility spillover was identified between the three exchange rates
and, interestingly, the Euro was found to dominate the other exchange rates. Further,
the franc and the pound did not have a remarkable impact on the Euro during the
sample period. Econometrically, they stated that employing Granger causality could help
researchers in detecting the number of possible lags among the direction of causalities
and volatilities. Further, impulse response shock can easily trace more than one variable
of volatility over time to identify the evolution after any particular shock. What is more,

applying variance decomposition generated all the information that describes the amount

8The test was proposed by (Cheung & Ng, 1996)
9The distinct regions (Asia, Asia & Europe, Europe, Europe & America and America)
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of contribution of each variable across the VAR system. Consequently, Nikkinen et al.
(2006) claimed that adopting a VAR model provides simple and clear estimations, and
has great power to forecast the volatility spillover. By contrast, the VAR model still has
a controversial issue, in that reordering the variables within the system could lead to
wide changes in the coefficients and residuals value and, hence, spurious results (Stock &
Watson, 2001).

However, Inagaki (2007) applied a residual cross-correlation function (CCF) model'? to
examine the linkages between the Euro and the British pound against the U.S. dollar
between Jan 1999 and Dec 2004. The results suggested that the Euro dominated the
pound over the sample period, and that the pound simply received the volatility without
any significant volatility transmission. Inagaki (2007) stated that applying the Granger
causality test, which relies on multivariate (GARCH), could be complicated, due to
the possible uncertainty in the test. By contrast, he claimed that applying residual
cross-correlation function has many advantages. For instance, the model does not have

simultaneous equations, as in the multivariate GARCH models, and is simple to apply.

In the same field, Kitamura (2010) and Zhang et al. (2008) studied the level of inter-
dependency among different global exchange rates. The latter research investigated
the volatility spillover in the Asian context. Both studies claimed with confidence that
volatility spillover across financial markets is statistically significant and considered to be

a good indicator for decision makers.

However, a seminal work by (Diebold & Yilmaz, 2009) was introduced to measure the
return and volatility spillover across global equity markets. They built a simple and
intuitive test to measure the level of interdependence among asset returns or volatilities.
Their approach was based on the VAR model, but they used a very different method
to analyse the data. A variance decomposition method associated with N-variable VAR
model was employed to build "the spillover index". They analysed seven developed stock
markets (France, Hong Kong, UK, Germany, Australia, U.S. and Japan) and twelve
developing markets (Turkey, Chile, Argentina, Taiwan, Philippines, South Korea, Mexico,
Brazil, Thailand, Singapore, Malaysia and Indonesia) between Jan 1992 and Nov 2007.
Two types of results were analysed (i) static, and (ii) dynamic return/volatility spillover.
Their model suggested that return/volatility spillover is statistically significant in both
crisis and non-crisis episodes. Their framework is easy to apply and use and, hence, to
interpret. By contrast, a remarkable limitation existed in their empirical methodology,
in that the VAR model is sensitive for reordering the financial variables, which suggests
possible spurious results if the variables are reordered inappropriately. Thankfully, Kléfner
and Wagner (2014) solved this problem by building a coherent conquering strategy to
calculate all the possible orders in the VAR model. They claimed that calculating all the
possible orderings for large models could take hundreds or thousands of years on modern

computers, but fortunately with their algorithm, the model can be calculated in a short

'0This model was proposed by (Cheung & Ng, 1996).
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time. Unfortunately however, despite all the positive attributes of the algorithm, it still

has some drawbacks as it is difficult to apply and needs high quality computers to run.

In the same research area, McMillan and Speight (2010) investigated the Euro against
three currencies (the pound, yen and U.S. dollar) from Jan 2002 to April 2006 through
Diebold and Yilmaz’s methodology. Their results suggested a significant interdependence
among the exchange returns and volatilities across the data set. The spillover index
indicated that the euro-dollar was dominating the other two exchange rates, while the
euro-pound and the euro-yen had a slight impact on the euro-dollar exchange rate.
Nevertheless, McMillan and Speight (2010) claimed that univariate and multivariate
GARCH were not fully efficient as a spillover index. For instance, the GARCH family
models have several forms to detect many different characteristics in financial data, but
there is no particular model that can capture most of these characteristics. Further,
multivariate GARCH, for example, have a large number of parameters in the system. By
contrast, McMillan and Speight (2010) stated that the spillover index approach is easy to
apply and simple to interpret. Also, the VAR model and variance decomposition method
allowed for gathering spillover effects across markets into a single spillover measure. Since
Diebold and Yilmaz introduced their own method, many researchers have supported their
approach in the literature. For more details about studying the exchange rate volatility
spillover through Diebold and Yilmaz methodology, see (Antonakakis, 2012; Bubak et
al., 2011; Liow, 2015; Louzis, 2015). The data sets of the latter studies have covered
various regions around the world, such as Asia and Europe, Europe and the G7 countries
1 America and South Africa and central Europe. All the results support the volatility

spillover index, particularly, and the linkages between markets, generally.

Diebold and Yilmaz (2012) developed a further version of their 2009 published work. The
main limitation in their 2009 approach was the variable ordering in the VAR system.
Fortunately, the gap was bridged by generalising the vector auto regressive framework.
Now, forecast-error variance decompositions are invariant to the ordering problem in the
VAR system. They employed the new approach to analyse the volatility spillover between
four U.S. financial assets: commodities, bonds, stocks and foreign exchange. Positively,
their model found significant volatility transmission across markets, and the results were
more accurate and reliable than the previous research'?. More details will be discussed in

the methodology section.

In 2018, Barunik and Kiehlik introduced a model for analysing the frequency dynamics
of connectedness in financial markets, which was slightly similar to (Diebold & Yilmaz,
2012)’s approach. The main difference was that this model relied on a spectral represen-
tation of variance decomposition which calculated the model based on frequency analysis,
not on impulse response shocks as Diebold and Yilmaz had done. The frequency domain

enabled study of the connectedness across markets in the short-run, medium-run or

11 G-7 countries are: Japan, USA, Germany, Italy, UK, France and Canada.
!2(Diebold & Yilmaz, 2009)
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long-run. They studied the intra-market linkages of seven U.S. stocks and, interestingly,
the results indicated that volatility transmission was detected by the model at different

levels of frequencies.

Turning to the cryptocurrencies market, Kurka (2017) investigated the interconnectedness
among the cryptocurrency market and a bundle of traditional assets. (Diebold & Yilmaz,
2009, 2012) and (Barunik et al., 2016) methodologies were applied to a group of assets
(Bitcoin, foreign exchange rate, commodities, stock indices and bonds) to detect the
linkage between Bitcoin and other assets from Jun 2011 to Dec 2015. Interestingly, they
found a very low level of linkage between Bitcoin and other assets, except gold, which
received several shocks from Bitcoin during that period. They claimed that the results
provided useful information to assist portfolio managers to make their diversification

decisions.

In the same field, Corbet et al. (2018) investigated the linkage amongst three major
cryptocurrencies and other financial assets to find a relationship between cryptocurrency
and other markets. A generalised variance decomposition method (Diebold & Yilmaz,
2012) and a time domain approach (Barunik & Kiehlik, 2018) were employed to investigate
the connectedness amongst the assets, either through one period along the sample span
or at different frequencies, respectively. Interestingly, although they found high levels
of linkages among the cryptocurrencies, there was very low connectedness between
the cryptocurrencies and the other financial assets. Their analysis suggested that the
cryptocurrencies market contains its own risk which is hard to hedge against. In addition,
Bouri et al. (2018) studied the level of linkage between particular cryptocurrencies and four
major financial assets' in both bear and bull market conditions to identify the relations
between Bitcoin and conventional investments. They employed a VAR-asymmetric
GARCH model to analyse daily data from July 2010 to Oct 2017 in order to capture the
linkages among the financial assets. Surprisingly, their analysis suggested that Bitcoin
and the commodities markets were not completely isolated from one another. Also, the
results clearly showed that Bitcoin was receiving shocks more than transmitting them to

other markets.

Moving to energy and technology companies, Symitsi and Chalvatzis (2018) applied an
asymmetric multivariate VAR-GARCH model to daily data between Aug 2011 and Feb
2018, to identify the interdependence between Bitcoin and technology companies'®. Their
results indicated remarkable volatility spillover in the short-run from the energy and
technology markets to the Bitcoin market. By contrast, volatility spillover from the
Bitcoin market to other markets was found to be significant in the long run. Consequently,

they admitted that the low correlation of Bitcoin with the other assets indicated that a

13equities, bonds, currencies and commodities
143&P Global Clean Energy Index (SPGCE), the MSCI World Information Technology Index
(MSCIWIT), and the MSCI World Energy Index (MSCIWE)
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portfolio could gain higher returns and lower risk, compared with a portfolio that did not

invest in Bitcoin.

This section has shown most of literature concerned with the volatility spillover of foreign
exchange rates across different regions around the world. The next section will discuss

the most applied methodologies in the literature.

2.2.4 Critical evaluation of research strategies

This section contains a critical evaluation of the main methodologies and approaches that
have been applied in the research field. Previous studies have indicated that the VAR
model and GARCH family models are the most applied methodologies with regard to
volatility spillover analysis (Soriano & Climent, 2005).

2.2.4.1 GARCH model

An auto-regressive conditional heteroskedastic (ARCH) model has provided a huge
advantage in forecasting financial time series. The two main characteristics of the model
are that it detects “volatility clustering” easily and that the error term is assumed to be
non-constant over time (Engle, 1982). A later model was developed by Taylor (1986) and
Bollerslev (1986) independently to cover the shortcomings of the ARCH model. Thus, the
GARCH model has been extensively employed to study volatility connectedness across
markets, assets or/and countries. The main approaches are Univariate GARCH, and
Multivariate GARCH.

The univariate GARCH method can be defined as a class of specifications which analyse
past and current information (error term) to forecast the behaviour of financial variables
(Brooks, 2014). A huge number of extensions have been developed to deal with the
complexity of financial data. Specifically, spill-over volatility has been studied intensively
through GARCH. For instance, T-GARCH, E-GARCH and GJR-GARCH have been
employed to study the volatility connectedness across financial markets, for example,
(Cheung & Ng, 1996; Hamao et al., 1991; Inagaki, 2007; Lin et al., 1994). The univariate
GARCH process is claimed to be easy and simple. Moreover, the model is less complicated
than multivariate models, and the computation process is more robust (Inagaki, 2007).
By contrast, the main disadvantage of the univariate model is that ignoring the covariance
between the series will lose lots of important information. Consequently, researchers have
inclined towards multivariate GARCH to analyse the correlation among time series. The
later model has proven its success in forecasting the interdependence between financial
variables, and that it is better than the univariate GARCH models (Antonakakis, 2008).

The multivariate GARCH method is an n-variate process that extends from the univariate

model to permit the n-dimensional conditional covariance matrix depending on the data
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set (Engle & Kroner, 1995). This model has helped research to grow rapidly after
solving the difficulties in the previous model. Many extensions have been employed to
study the volatility interdependence among financial markets, such as (F-ARCH, CCC,
VECH, DCCC and MGARCH) (Patnaik, 2013; Zhang et al., 2008). Multivariate GARCH
has proven its success over univariate GARCH because of its power when dealing with
multi-series and finding the correlations among them. One of the extensions, called
the dynamic conditional correlation (DCC) model, is as elastic as the univariate model
with less computation compared with other multivariate models (Antonakakis, 2008).
By contrast, MGARCH provides some strong inference in analysing co-volatilities cases,
but the model has different extensions that capture different problems in financial data,
so that it is becoming more complex to employ all extensions within one case study.
Moreover, using MGARCH requires a particular level of the correlation existence among
financial variables; otherwise the results will be false. In this regard, researchers have
tried to build a more effective and flexible model that can describe the behaviour of

financial variables in a more flexible way as a vector auto-regressive model.

2.2.4.2 Vector Auto-regression (VAR) method

The VAR model is considered to be a combination of models, between simultaneous
equations and a univariate system that can be compressed into a particular system
(Brooks, 2014). The VAR model was proposed by (Sims, 1980) to develop the VAR
system regarding the correlation and interdependence amongst different variables within
the system. With regard to volatility spillover across markets, the model can be analysed
via three main approaches: Granger causality, variance decomposition and impulse
response shock. The VAR model has been applied widely (Bubék et al., 2011; Diebold
& Yilmaz, 2009; Kavli & Kotzé, 2014; Liow, 2015) and supports the results of (Sims,
1980) and many others. However, the model suffers from some disadvantages, such as the
sudden growth of the unknown coefficient when the system analyses large numbers of
variables (Stock & Watson, 2001). Further, the order of the variables has a huge impact
on the output results, whereby changing the order of the variables could lead to spurious
results. For more details see (Diebold & Yilmaz, 2009; Kilian, 1999). The model applied
in this study was developed by (Diebold & Yilmaz, 2009), who significantly solved some
of the aforementioned shortcomings of the VAR model. Intuitively, Diebold and Yilmaz
(2012) modified their approach by generalising the vector auto regressive model to solve

the variable order problem.

To summarise, Bitcoin exchange is becoming a fundamental tool in economies worldwide
and has had a significant impact across financial markets. Thus, finding a coherent
methodology to study the volatility spillover across financial markets is necessary, and

essential to support the final decision over investing in Bitcoin or different financial assets.
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2.2.4.3 Conclusion

To conclude, financial assets (exchange rates, stocks or bonds) play an important role in
the world economies, in that they have a remarkable impact on both the hosted economy
and other related economies. In the first section, the volatility spillover effect was defined,
and the root of the definition was traced. Then, a brief discussion clarified the most
important theory "Heat Waves and Meteor Shower" on which volatility spillover is based.
In the third section, the literature was reviewed chronologically to identify the main
research into the Bitcoin and exchange markets stream across different areas of the world.
Finally, the two most applied methodologies in the literature, the GARCH family and
the VAR model, were addressed and compared briefly.

2.3 Data and summary statistics

Bitcoins are traded in a number of currencies in a number of exchanges across different
countries. For the purpose of our analysis, we limit our sample to 5 Bitcoin/currency
pairs with less than 26 percent missing values over the sample period . That is, the U.S.
dollar (USD), Australian dollar (AUD), Canadian dollar (CAD), Euro (EUR), and British
pound (GBP). Although Bitcoins in USD, AUD, CAD, and EUR have started trading
before December 1, 2011, Bitcoins in GBP started trading from January 1, 2012. For
Bitcoin in CAD and EUR there are some missing closing prices during the early years in
the sample period. Thus, the availability of the daily closing prices varies across different
currencies.!®> Moreover, to lend comparison to the empirical results of Cheah et al. (2018)
who investigate cross-market long-memory interdependency in Bitcoin prices, we limit
our observation period span to March 12th 2013 to January 31st 2018. We collect data
from the aggregation website Bitcoin Charts ( bitcoincharts). Data prior to 25/2/2014
are collected from Mt.Gox. Subsequent to Mt. Gox closure the remaining observations
were collected from other exchange platforms such as Bitstamp (the largest European

Bitcoin exchange) and LocalBitcoins.!

Daily continuously compounded returns are computed by taking the first difference of
log-transformed close price series. Our chosen measure of volatility is Parkinson’s High-
Low historical volatility (HL-HV) model.!” The reasons for choosing this approach are
twofold. First, the HL-HV model deals with sensitivity to trading hours more efficiently
than the more intuitive close-to-close volatility model (Bennett & Gil, 2012). Second, this

15Tnitially, we gained price data in various currencies after considering the length of observation, the
frequency of non-trading date as well as trading volume. The five exchange markets considered in our
work still cover more than 80% of market trading, which can fairly represent the whole market.

16 At the time of undertaking the estimation, we gathered data from various sources so as to allow us
to construct a continuous time series data. It’s possible that different websites report slightly different
prices. Our estimation showed no significant differences in the estimates.

"Following an anonymous referee’s suggestions, an alternative measure of volatility, viz., Garman-Klass
measure - has been used for robustness exercise. The results are discussed in Section 4.3.2.
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model generates more significant information and improves the efficiency of the volatility
estimate (Parkinson, 1980). Consequently, Bennett and Gil (2012) claim that Parkinson’s
volatility measure is more efficient and productive than popular close-to-close volatility

estimates.

Formally, V' for each of our five Bitcoin to currency exchange rates is calculated as follows.

1 R\ 2
V =100 x (4111(2).111 <z> ) (2.1)

where h and [ are the highest and lowest exchange rates on a given trading day, respectively.

The estimator above computes the daily variance, hence, the corresponding estimate of

the annualised daily percent standard deviation (volatility) is computed as follows:

Vol =365V

Given their temporal dimension, all return and volatility series are checked for stationarity
with the help of Augmented Dicky Fuller (ADF) and Philips-Perron (pperron) unit root
tests (Dickey & Fuller, 1979; Phillips & Perron, 1988). Results are presented in Tables
A.1 and A.2 (for returns and volatility, respectively) in appendix A. Both tests suggest to
systematically reject the null of the presence of a unit root with 99% confidence for every
daily returns series (Table A.1), suggesting the latter are stationary. Similarly, the null is
rejected at the 1% threshold for all tests carried out on exchange rate volatility series

(Table A.2), and we conclude that our volatility series are also stable.

Table 2.1 provides summary statistics of the individual daily returns series (upper panel)
and volatility (lower panel). The returns series are plotted in Figure 2.1. Average
daily returns are similar across individual series and range from about 0.3 (BTC/USD,
BTC/EUR and BTC/GBP) to around 0.34 (BTC/AUD). Median daily returns are
systematically lower than average ones, hinting at potentially asymmetrically distributed
series. Indeed, Bitcoin to USD (BTC/USD) and Bitcoin to GBP (BTC/GBP) exchange
rates returns exhibit a small negative skew, suggesting a slightly larger concentration of
observations to the right of their central tendency, while all other series are characterised

by a positive third statistical moment (long right tails), although it is very close to zero

for BTC/AUD and BTC/CAD returns.

All returns series display unequivocally leptokurtic behaviours with sample Kurtosis
above 10 (up to 45 in the case of BTC/EUR), suggesting they have long tails representing
occurrences of extreme events of highly variable magnitudes with a mass point around
the central tendency. The latter observation is confirmed by the graphs presented in
Figure 2.1. Overall, the BTC/USD and BTC/EUR returns series appear to be the most
stable with maximum values of 30.8 and 77.3 for minima of -34.5 and -61.8, respectively,
along with sample standard deviations at least twice as small as that of any other series

under scrutiny. The BTC/CAD exchange rate returns exhibit the most widely spread
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Table 2.1 Summary statistics, exchange rate returns and volatility

Cross-market exchange rate

(a) Returns Mean St. Dev. Median Max Min Skewness Kurtosis
BTC/USD 0.307 4.929 0.225 30.83 -34.54 -0.357 11.69
BTC/AUD 0.344 12.35 0.205 116.7 -110.6 0.0326 22.75
BTC/CAD 0.321 22.31 0.276 172.5 -157.7 0.0315 14.38
BTC/EUR 0.308 5.776 0.266 77.29 -61.84 0.763 45.55
BTC/GBP 0.304 11.30 0.301 104.3 -105.4 -0.149 16.38
(b) Volatility

BTC/USD 0.709 1.008 0.455 20.68 0 9.086 139.2
BTC/AUD 6.091 4.467 4.426 30.67 0.105 1.499 5.329
BTC/CAD 7.248 4.681 6.284 30.01 0 1.054 4.330
BTC/EUR 0.740 0.899 0.472  11.29 0.0698 4.899 39.67
BTC/GBP 9.298 6.378 7.688  69.04 0 2.639 17.65
Number of observations 1786

distribution (minimum return of -157.7 for a maximum of 172.5) and are also characterised
by the largest standard deviation in the sample (over 22). Plots in Figure 2.1 suggest that
the instability of the BTC/CAD returns series is most notably due to the large number
of extreme events since early 2017, a feature that is noticeable in the BTC/AUD returns
too, and also on the BTC/USD market, though to a lesser extent. At a glance, graphs in
Figure 2.1 reveal frequent bouts of highly volatile returns which seem to be fairly evenly
distributed on either side of their long run central tendencies, with the BTC/USD and
BTC/EUR markets being the most stable.

The summary statistics of cross-market exchange rates volatility (lower panel of Table
2.1) comfort our previous intuitions. The average volatility of BTC/USD and BTC/EUR
settles at around 0.7 and is smaller than that of other exchange rates by one order
of magnitude (from around 6 for BTC/AUD to over 9 for BTC/GBP). Furthermore,
the two aforementioned series exhibit much larger positive skews and higher Kurtosis
than their counterparts, and such lepotkurtic and heavily right skewed distributions
suggest that these markets are less prone to unusually high levels of volatility. That
is, observations concentrate to the left of the distribution close to the central tendency

(recall that volatility is always positive).

While confirming that the BTC/USD and BTC/EUR markets are the most stable over
the period of study, Table 2.1 strengthens the idea that the BTC/GBP has experienced
the most extreme occurrences of high uncertainty, as witnessed by the scale of the y-axis
on the graph presented in Figure 2.2. Interestingly, the series plotted in Figure 2.2 show
a seemingly upward trend in the volatility of BTC/CAD over time which also appears in
BTC/AUD volatility from the end 2016 on. An apparent increase in average volatility
also appears on the three other markets in 2017 and early 2018, although to a lesser

extent.
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Figure 2.1 Exchange rate returns
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Figure 2.2 Exchange rate volatility
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2.4 Methodology

We follow the generalized variance decomposition approach developed in Diebold and
Yilmaz (2012) in order to estimate returns and volatility spillovers across the five markets
under scrutiny. This methodology provides both static and dynamic measures of spillovers,
and several papers have used a similar empirical framework analyse the interconnectedness
of financial markets (e.g. Corbet et al., 2018; Fernandez-Rodriguez et al., 2016; Lucey
et al., 2014; Yarovaya et al., 2016). However, to the best of our knowledge no previous
research has analysed cross-market returns and volatility spillovers on Bitcoin to currency

exchange rates.

The variance decomposition approach to measuring return and volatility spillovers (first
presented in Diebold and Yilmaz (2009)) exploits Cholesky factorisation methods. This
produces orthogonal innovations as is typically required for variance decompositions
in Vector Auto-Regressive (VAR) models, with the main drawback of being sensitive
to variable ordering (Diebold & Yilmaz, 2009). Diebold and Yilmaz (2012) propose
a so-called generalised variance decomposition (GVD) that allows them to alleviate
the orthogonality condition altogether and to account for correlated innovations, hence
improving on their previous effort by making their measure of spillovers invariant to the
order of the variables in the system (Diebold & Yilmaz, 2012; Koop et al., 1996; Pesaran
& Shin, 1998). Considering our case of investigation - the five market Bitcoin price system

- the estimates of spillover are based on the following covariance-stationary VAR model:

p
Y= miy-1te (2.2)

i=1
where v = (Y11, Yats Yst, Yat, Ys¢) or is a (1 x 5) random vector of endogenous vari-

ables; p is a (5 x 5) coefficient matrix; y;—1 is the previous realisation of y;; and

€t = (€14, €2ty €3¢, €41, €5¢) Is an i.i.d. error term with e, ~ (0, X¢).

The VAR model in Equation 2.2 can be re-written as a moving average process as follows:

Y = Z5i6t—i (2.3)
i=0

where (5 x 5) coefficient matrices §; depend on the recursion §; = pq §;—1 + p2 0;—2 + ... +
p 0;—p With dg an identity matrix and §; = 0 if 7 < 0.

The heart of the GVD approach is to generate the correlated shocks by using the past
distribution of errors (Diebold & Yilmaz, 2012). Therefore, the h-step-ahead forecast

error GVD matrix is given by:
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h—1
Ui_il hz;() (6; 5h by ej)2
Ti(h) = == (24)
hZO (€76 X6}, €5)

where e; is the selection vector with its it" element equal to one and zeros otherwise; &y,
is the coeflicient matrix times the h-lagged shock vector; ¥ is the variance matrix of the

error vector €; and oy; is the i*" diagonal element of ¥.

The shocks generated through Equation 2.4 are not required to be orthogonal, so the sum

of forecast error variance contributions are not equal to one, i.e. » Tfj(h) # 1. Therefore,
J

to utilise the shares available in the variance decomposition matrix with the spillover
calculation, the authors propose to normalise the above variance shares as follows:
g
- Tij(h)
Tfj(h) =~ (2.5)
> 7ij(h)

Jj=1

N
where g is the order of the system (such as five market system as in our case), > %igj(h) =1

J=1

N
and Y 77(h) = N.

ij=1
The quantities in equation 2.5 can then be used directly to estimate several measures of

interest as follows:

e Total spillover:

N N
> 75(h) > 75(h)
t,j=1 t,j=1
S.09(h) = 71— x100= #T % 100 (2.6)
> 75(h)
ig=1

e Directional spillover:

The following quantity measures the extent to which variable i is influenced by

volatility shocks received from all other variables:
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Similarly, the amount of volatility transmitted by variable i to the other variables

in the system can be gauged as follows:

S.0%h) =

e Net spillover:
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Finally, subtracting volatility spillovers from other variables from the volatility

spillovers to other variables gives a measure of net spillovers:

S.09(h) = S.0%(h) — 8.0 (h)

(2.9)

In order to refine our empirical study, we also implement the methodology presented

in Barunik and Kfehlik (2018) that builds on a spectral representation of variance

decompositions to identify connectedness amongst variables at various levels of frequency.
That way, the authors extend the work of Diebold and Yilmaz (2012) by offering the

possibility to explore the frequency dynamics in a system of variables and thus to estimate

spillovers of heterogeneous magnitudes at different frequencies.

In other terms, the

strength of cross-market connectedness can vary across the frequency domain, i.e. the

influence of idiosyncratic shocks on other variables might be limited to the short run or

have a long-run impact on connected markets.
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2.5 Results

Having discussed thus far various approaches to estimate spillover effects, in this section,
we discuss results to shed light on the predictive power of each Bitcoin market. The
basis for our estimation of spillovers are VAR models for daily returns and exchange
rate volatility. We use Akaike’s Information Criterion (AIC) to decide on the number
of lags to include, and confirm its adequacy with Lagrange multiplier auto-correlation
tests after VAR estimation. We chose a VAR order 17 and 7 for returns and volatility
series, respectively. The Generalised Variance Decomposition is then carried out for

30-day-ahead forecasts.

We comment on the results for volatility spillovers and returns spillovers in two distinct
sub-sections. Indeed, the former provide indications as to which components of the system
are closely connected to each other given their sensitivity to one another’s uncertainty.
Returns spillovers, however, reveal more precise information regarding which components
of the system are most important in predicting future price movements on other markets.
Each set of results includes a full sample static analysis broken down into directional
connectedness (from applying the method of Diebold and Yilmaz (2012)) and frequency
domain connectedness (following Barunik and Krehlik (2018)), the latter allowing to
refine the former by providing a decomposition of time-frequency dynamics of returns
and volatility spillovers. However, in a full sample analysis the alternation of positive and
negative extreme events typical of financial markets — some short-lived and others more
persistent that can generate important downturns or speculative bubbles — tends to be
smoothed over time. Therefore, we complement our results by carrying out an analysis
similar to the former on a sub-sample of the data that is rolled over one day at a time
to obtain a picture of dynamic spillovers. This methodology suggested by Diebold and
Yilmaz (2012) allows to gauge how the strength of cross-market connectedness evolves
over time. We use a 150-day rolling window. Finally, various robustness checks are

discussed in the third sub-section.

2.5.1 Volatility spillovers

Table 2.2 displays results of the full sample analysis on directional, net and total spillovers
for exchange rate volatility. The markets under consideration exhibit a non-trivial degree
of interconnectedness with a total spillover index (TSI) of 15.78%. It appears that
volatility shocks to the BTC/EUR and BTC/USD markets are the most influential in
their contribution ‘T'O other’ markets’ volatility (24.8% and 25.9%, respectively), with
BTC/AUD in third position (around 17%).
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Table 2.2 Volatility spillovers across five selected exchange rates in time domain

Directional

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP o o
BTC/USD 79.16 4.15 0.45 15.32 0.92 20.84
BTC/AUD 4.26 84.40 3.87 6.67 0.79 15.60
BTC/CAD 0.30 6.63 89.99 1.82 1.26 10.01
BTC/EUR 20.74 4.75 0.88 72.17 1.47 27.83
BTC/GBP 0.63 1.39 1.62 0.98 95.37 4.63
Directional TSI:
TO ot 25.93 16.92 6.82 24.79 4.45 75,00 /*?5 00—
Net spillovers 5.09 1.32 -3.19 -3.04 0.18 15.78%

Note: Exchange rates volatility spillovers following Diebold and Yilmaz (2012). Numbers are percentages.
“T'SI” stands for Total Spillover Index.

2.5.1.1 Directional connectedness (static spillovers): Time domain analysis

Interestingly, the BTC/EUR market is also the most sensitive to uncertainty in other
exchange rates (highest estimate in contribution ‘FROM others’), and the BTC/USD
market the second most sensitive. In contrast, the BTC/GBP is by far the least influenced
and least influential market in terms of volatility spillovers. BTC/CAD is also only loosely
connected to the system, and is a bit more sensitive to other markets’ volatility than it is
influential on others. Negative net volatility spillovers for the BTC/CAD and BTC/EUR
exchange rates show that, overall, these markets tend to be net recipients of volatility.
On the other hand, BTC/USD appears to be a net provider of volatility to the system,

with net spillovers around 5%.

A closer look at pairwise spillovers reveals that the strongest bilateral relationship is to
be found between the BTC/EUR and BTC/USD exchange rates, with volatility spillovers
of about 15% from the former to the latter and little above 20% in the other direction.
Both markets also display a non-trivial relationship with BTC/AUD - albeit of lesser
intensity — which is almost symmetric in the case of BTC/USD (spillovers little above 4%
in either direction) and slightly asymmetric in the case of BTC/EUR with its influence
on BTC/AUD (around 6.7%) exceeding its sensitivity (little below 5%). Note that
BTC/AUD is also a net provider of volatility to BTC/CAD — for which it is the main
partner — and to BTC/GBP, although pairwise spillovers involving the latter never even
reach 2%.

In sum, among the five markets under consideration BTC/EUR is the “most” connected
one, with BTC/USD close second, while BTC/GBP appears to be the most isolated
market. The pair BTC/EUR - BTC/USD are the most closely interlinked exchange
rates, with about 15% to 20% of the forecast error variance in either variable’s volatility

being explained by innovations in the other. Results also suggest that BTC/AUD might
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work as an intermediary allowing volatility to circulate between the main components
of the system, i.e. BTC/USD and BTC/EUR, and the more isolated markets, namely
BTC/CAD and BTC/GBP.

2.5.1.2 Frequency domain analysis of static spillovers

Table 2.3 refines the previous empirical results by providing a decomposition of time-
frequency dynamics of volatility spillovers. The top panel considers short horizons (less

than 4 days), while the bottom panel is concerned with long horizons (4 days or more).

Table 2.3 Volatility spillovers across five selected exchange rates in frequency
domain

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 35.09 0.38 0.08 3.91 0.16 4.52

BTC/AUD 0.19 23.94 0.23 0.39 0.08 0.88

BTC/CAD 0.07 0.43 42.71 0.35 0.12 0.96

BTC/EUR 2.64 0.39 0.09 22.93 0.11 3.24

BTC/GBP 0.15 0.22 0.14 0.22 58.48 0.74

TO others 3.05 1.42 0.54 4.87 0.47 TSI: 10.54/195.49 =
5.34%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others
BTC/USD 44.07 3.77 0.37 11.41 0.77 16.32
BTC/AUD 4.08 60.46 3.64 6.28 0.71 14.71
BTC/CAD 0.23 6.20 47.28 1.47 1.14 9.05
BTC/EUR | 18.09 4.36 0.79 49.25 1.35 24.59
BTC/GBP 0.48 1.17 1.48 0.75 36.89 3.89
TSI: 68.55/306.51 =
TO others 22.88 15.50 6.27 19.92 3.98 00 70

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik (2018). Short and
Long horizons refer to ‘4 days or less’ and ‘more than 4 days’, respectively. Numbers are percentages.

The top panel of Table 2.3 shows that overall volatility spillovers in the system are around
5.3% when considering a short time horizon. In line with previous results, BTC/USD
and BTC/EUR are the main providers and recipients of short-lived volatility shocks in
the system, as well as each other’s most influential counterpart, although in this instance
BTC/EUR (BTC/USD) is a net provider (recipient) of volatility to BTC/USD (from
BTC/EUR) and to (from) the system as a whole.

The bottom panel of Table 2.3 suggests that interconnectedness in the system is much
stronger in the long run, with overall volatility spillovers above 22% for volatility. The
earlier pattern of results is once again repeated, and BTC/EUR and BTC/USD are by far


http:68.55/306.51
http:10.34/193.49
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the most influential components of the system and each other’s privileged partner, with
the former a net recipient and the latter a net provider of volatility. BTC/AUD remains
the second favorite counterpart for each of the two main markets — albeit spillovers are
of a much smaller magnitude (well below 5%) — and the most important partner of
BTC/CAD. As expected, results confirm that BTC/GBP is rather isolated from the

system regarding transmissions of either short-run or long-run volatility shocks.

2.5.1.3 Dynamic spillover effects: Rolling window estimates
(a) Overall spillovers

To study how volatility spillovers co-move with fluctuations in uncertainty, we plot overall
volatility spillovers in the system in Figure 2.3 along with a monthly index measuring
global Economic Policy Uncertainty (EPU)!®. The TSI ranges between 20% and 40%
throughout most of the sample period. We observe a sharp drop from above 50% to
below 20% between the first and third quarters of 2014, mirroring with a few months
lag the sharp decline in EPU between the summer of 2013 and the spring of 2014. The
slow upward trend in TSI from late 2014 until mid-2016 also mimics the overall rise in
uncertainty over the same period. The highest values of EPU are found around mid- and
late 2016 and early 2017, with an extremely volatile TSI between late 2016 and early
2018.

(b) Spillovers FROM and TO others

Volatility spillovers transmitted to other exchange rates, received from others, and net
spillovers for each of the five markets under scrutiny are plotted in Figures 2.4, 2.5 and
2.6, respectively. The top left plot of Figure 2.4 confirms the role of BTC/USD as a big
provider of volatility to the system over time, with spillovers to others routinely above
10%. Spillovers from BTC/EUR typically oscillate between 2% and 10% except for a
6-month period (2013Q4 and 2014Q1) where they often reach above 15%. Volatility
spillovers from BTC/AUD also range between 0 and 10% and often exceed 5%, while
those from BTC/CAD typically stay between 0% and slightly above 10%. Volatility
shocks to BTC/GBP explain around approximately 5% or less of volatility shocks on
other markets during the sample period, except for short periods of time (in 2013Q3 and
between 2016Q2 and 2016Q4) where they greatly exceed 10%.

As displayed in Figure 2.5, the sensitivity of the BTC/USD market to uncertainty shocks
on other markets is highly volatile between 2013Q3 and 2014Q1 (spillovers ranging from

10% up to 20%) and more stable afterwards, with spillovers from others slowly declining

8Data gathered from hitp : //www.policyuncertainty.com/.
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Figure 2.3 Overall volatility spillovers (dynamic plot) and Economic Policy
Uncertainty Index
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Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2012) with a 150-day
rolling window, right scale (percentages). Monthly Global Economic Policy Uncertainty (EPU) index,
left scale. The dashed line shows the median value of EPU over the sample period. Dates on the x-axis
indicate the start of the year, and ticks are quarterly.

down to 2.5% in 2014Q4 and remaining between that level and approximately 7% for most
of the sample period. The evolution over time of spillovers from others to BTC/AUD
resembles that observed for BTC/USD but is more stable, with spillovers from others
to BTC/AUD concentrating between 4% and up 6% (approximately). Spillovers to
BTC/EUR, however, remain volatile throughout the period under scrutiny and routinely
exceed 10% while seldom going below 6%, albeit stabilising between approximately 4%
and 7% starting in 2017Q1 until the end of the sample period. Spillovers to BTC/GBP
from other markets oscillate between approximately 4% and 10% throughout the sample
period, ranging most often between 5% and 10%. The sensitivity of BTC/CAD to
volatility shocks on other markets features a similar profile to that of BTC/GBP albeit

more unstable, with spillovers seldom below 5% and reaching more often above 10%.

(c) Net spillovers

The previously described patterns come together in Figure 2.6 to give a picture of the
temporal evolution of net spillovers for each exchange rate considered in the present study.

We see at a glance that net spillovers tend to oscillate around zero over time, for all
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Figure 2.4 Volatility spillovers to others: Dynamic plot
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Note: Dynamic volatility spillovers to others computed following Diebold and Yilmaz (2012) with a
150-day rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and
ticks are quarterly.

markets. Nonetheless, BTC/USD displays mostly positive net spillovers for the sample
period, with a long period of exclusively positive values (from 2015Q1 to mid-2016) often
around and above 15%. It tends to confirm the role of BTC/USD as a net provider of
volatility to the system. Additionally, we identify three brief bouts of extremely high
positive net spillovers for BTC/USD in early 2014Q3, early 2015Q4 and late 2016Q4.
Interestingly, all other markets feature largely negative net spillovers during these events,
making them net receivers of volatility. This observation strengthens the idea that
BTC/USD is central in the system as the prime source of uncertainty, with volatility

shocks on that market strongly destabilising other exchange rates.
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Figure 2.5 Volatility spillovers from others: Dynamic plot
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150-day rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and
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The middle right plot of Figure 2.6 clearly shows that BTC/EUR net spillovers are
typically negative over the sample period and closely mirror those observed for BTC/USD,
especially so during the period identified earlier ( from 2015Q1 to mid-2016 ) when
BTC/USD (BTC/EUR) net spillovers are consistently positive (negative) and large. This
dynamic spillovers plot ascertains the persistence over time of the role of BTC/EUR as a
net recipient of volatility in the system, and also corroborates the “privileged” relationship
between BTC/EUR and BTC/USD.

Net volatility spillovers from BTC/AUD are mostly negative between 2013, Q3 and 2014,
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Figure 2.6 Net volatility spillovers: Dynamic plot

BTC/USD BTC/AUD
(=T =
@ o~
(=2
© o |
(=1
=
o -
o
I
o
o T
[=] o
a7 o
L L L L O L O B | L, L L L L N A |
2014 2015 2016 2017 2018 2014 2015 2016 2017 2018
BTC/CAD BTC/EUR
=
W — = 7
[=p
o |
0 | o~
o —
v o -
0 —
o o
& — o~
' LIS N N Y B S B Y B N B B | ' LS L Y B B B D B Y B B |
2014 2015 2016 2017 2018 2014 2015 2016 2017 2018
BTC/GBP
(=T
0
o _|
I
(=
[=p
o —
[=
S

2014 2015 2016 2017 2018

Note: Dynamic net volatility spillovers computed following Diebold and Yilmaz (2012) with a 150-day
rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are
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Q2, but this market is typically a net provider of volatility throughout the rest of the
sample period. In contrast, net spillovers for BTC/CAD are mostly negative over time,
with a pattern mirroring that of BTC/AUD and reminding us of the close relationship
between both markets uncovered from the full sample (static) analysis. The BTC/GBP
market is characterised by surprisingly high positive net spillovers at the start of the
sample period, for a brief amount of time, before experiencing small negative net spillovers
most of the time with the exception of the period 2016Q2 - 2016Q4 when net spillovers are
again large and positive (with one brief event of extreme negative values corresponding
to a bout of high volatility transmission from BTC/USD).
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To summarise findings so far, it appears that connectedness between Bitcoin-to-currency
exchange markets reflects overall uncertainty. Trading on Bitcoin markets depends largely
on investor sentiment, and a lack of confidence eventually heightens volatility on these
markets which become more intensely interlinked as investors diversify to mitigate risks
pertaining to a particular market. In that respect, BTC/USD is likely a prime source
of volatility for the system. Indeed, volatility to BTC/USD and BTC/EUR are the
most influential in predicting the volatility of other exchange rates (Figure 2.4), and
the BTC/EUR volatility tends to be the most sensitive to innovations on other markets
(Figure 2.5). Additionally, the BTC/USD exchange rate is typically a net provider of
volatility, which is mirrored by the tendency of the BTC/EUR market to be a net receiver
in its connection to other markets, while the influences to and from others for the other
three exchange rate volatility series tend to even out (Figure 2.6). Note that Figure
2.6 displays net spillovers that get notably closer to zero over 2017 and in early 2018,
especially so for BTC/USD and BTC/EUR.

As was previously stated, we interpret volatility spillovers as being indicative of the
intensity of cross-market connectedness in the system. In the next section we turn to
the results pertaining to exchange rates returns spillovers that contain information on
the predictive power of price movements on a given market in influencing prices on other

markets.

2.5.2 Returns spillovers
2.5.2.1 Directional connectedness (static spillovers): Time domain analysis

Table 2.4 presents returns spillovers obtained from the full sample analysis using the
method of Diebold and Yilmaz (2012). Returns on the markets under scrutiny feature a
significant degree of interdependence reflected by an estimated TSI of 17.4%. Results
confirm the predominance of BTC/USD and BTC/EUR in the system, with returns
spillovers to other markets of almost 23% and above 24%, respectively. Unexpected
changes in returns on the BTC/AUD and BTC/GBP markets contribute roughly the
same share of explanatory power in determining forecast error variance in other markets’
returns (14.2% and 16.2%, respectively). In the meantime, returns to BTC/EUR are
by far the most sensitive to innovations in other markets’ returns (31% spillovers from
others), while returns on the BTC/USD, BTC/AUD and BTC/GBP markets exhibit

about twice as little sensitivity (spillovers from others around 16%).

The above observations establish BTC/USD as having the most predictive power in the
system with net spillovers above 6%, and returns to BTC/EUR as experiencing a net
influence from unexpected price movements on other markets (negative net spillovers of
almost 7%). Returns to BTC/GBP are altogether as influential as they are sensitive,
and returns to BTC/AUD are characterised by small negative net spillovers. Note that
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Table 2.4 Returns spillovers across five selected exchange rates

Directional

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP o 0P
BTC,/USD 83.58 2.36 1.69 9.60 2.77 16.42
BTC/AUD 3.17 83.97 2.82 5.73 4.32 16.03
BTC/CAD 1.82 1.87 92.54 2.15 1.63 7.46
BTC/EUR 14.26 6.49 2.89 68.92 7.44 31.08
BTC/GBP 3.73 3.50 2.10 6.72 83.95 16.05
?geﬁiﬁi‘? 22.97 14.22 9.50 24.19 16.17 . 05;;50 _
Net spillovers 6.55 -1.81 2.04 -6.89 0.12 17.41%

Note: Exchange rates returns spillovers following Diebold and Yilmaz (2012). Numbers are
percentages. “T'SI” stands for Total Spillover Index.

BTC/CAD displays small positive net spillovers (around 2%) but its returns are only

loosely connected to the system (spillovers to and from others below 10%).

Pairwise returns spillovers show a pattern in line with volatility spillovers discussed
earlier: BTC/EUR is typically the most influential partner of every other exchange
rate, a fact particularly salient for the BTC/USD and BTC/GBP markets. Additionally,
returns to BTC/EUR are especially sensitive to innovations in returns to BTC/USD,
the latter therefore holding a net predictive power in that relationship. Other noticeable
relationships are BTC/EUR - BTC/GBP - spillovers around 7% in either direction with
a small (below 1%) net positive spillover for the second — and BTC/EUR - BTC/AUD
— spillovers around 6% in either direction, again with a small (below 1%) net positive
spillover for the second. All bilateral relationships involving BTC/CAD display pairwise

spillovers below 3%.

This first glance at returns spillovers comforts the idea that the previously identified
connectedness (through volatility spillovers) between BTC/USD and BTC/EUR matters,
in that the former market holds a net predictive power in determining price movements on
the latter. Actually, shocks to BTC/USD returns are the most influential in the system
as a whole, and BTC/EUR returns are the most sensitive to shocks on other markets.
Note that BTC/GBP is more strongly connected to the system in terms of returns
spillovers that it is in terms of volatility. This is likely due to the range of variations in
the BTC/GBP returns series being consistent with that of other markets (Figure 2.1),

whereas discrepancies are more prominent in the case for volatility series (Figure 2.2).

2.5.2.2 Frequency domain analysis of static spillovers

Table 2.5 provides a decomposition of time-frequency dynamics for the returns spillovers

presented in Table 2.4. The top panel indicates that overall returns spillovers in the
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system are around 14.5% when focussing on short-term components of forecast error
variances. The pattern of results is qualitatively similar to the previous case where
BTC/USD and BTC/EUR are the most important providers of short-lived shocks to
returns in the system, with the latter the most sensitive of such shocks. They are also
each other’s most influential counterpart, BTC/EUR being a net recipient of unexpected
price movements from BTC/USD and from the system as a whole. We find again the
previously observed almost symmetric relationships between BTC/EUR and BTC/GBP
(spillovers around 5%) and between BTC/EUR and BTC/AUD (spillovers between 4%
and 5%).

Table 2.5 Returns spillovers across five selected exchange rates - Frequency
domain analysis

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD |  64.96 1.52 1.35 5.78 1.89 10.54

BTC/AUD 2.07 81.66 2.66 4.29 3.64 12.66

BTC/CAD 1.50 1.59 90.51 1.50 1.39 5.98

BTC/EUR 9.15 4.96 2.51 53.60 5.73 22.35

BTC/GBP 2.40 2.77 1.75 4.68 81.17 11.59

TO others 15.12 10.83 8.26 16.25 12.65  [9F 63.11/455.01 =
14.51%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 18.62 0.84 0.34 3.82 0.88 5.89
BTC/AUD 1.10 2.31 0.16 1.43 0.68 3.38
BTC/CAD 0.32 0.28 2.03 0.65 0.24 1.48
BTC/EUR 5.11 1.53 0.38 15.32 1.71 8.73
BTC/GBP 1.33 0.74 0.35 2.04 2.78 4.46

TSI: 23.94/64.99 =
TO others 7.86 3.39 1.24 7.94 3.51 36.;?%4

Note: Returns spillovers, frequency domain analysis following Barunik and Kiehlik (2018). Short and
Long horizons refer to ‘4 days or less’ and ‘more than 4 days’, respectively.

The bottom panel of Table 2.5 ascertains the interdependence of returns across the five
exchange rates under scrutiny by presenting an estimated TSI of close to 37% in the long
run. There again, net predictive power is held by BTC/USD with regards to BTC/EUR
and to the whole system, with BTC/EUR the largest provider and recipient of returns
shocks to and from other markets. BTC/AUD and BTC/GBP are the other two favourite
counterparts of BTC/EUR after BTC/USD, and BTC/CAD is confirmed to be the least

influenced and least influential market in terms of returns spillovers.


http:23.94/64.99
http:63.11/435.01
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2.5.2.3 Rolling windows analysis (dynamic spillover plots)

(a) Overall spillovers

The total spillover index for exchange rate daily returns is depicted in Figure 2.7 along
with the monthly EPU index. In spite of a certain degree of volatility with values ranging
from below 50% to almost 80%, it appears that the returns TSI in the system fluctuates
around 60% for most of the sample period. We observe a decline in returns connectedness
across markets between 2013Q4 and 2014Q3 (from 70% to little above 50%), before the
TSI stabilises around 60% for the period 2014Q3 to 2016Q2, except for a high variable
TSI in 2015Q3. The dramatic plunge over the second half of 2016 is compensated for in
early 2017 and the TSI again fluctuates between 55% and 65% for the remainder of the
sample period.

Figure 2.7 Overall returns spillovers (dynamic plot) and Economic Policy Un-
certainty Index
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Note: Dynamic overall returns spillovers computed following Diebold and Yilmaz (2012) with a 150-day
rolling window, right scale (percentages). Monthly Global Economic Policy Uncertainty (EPU) index,
left scale. The dashed line shows the median value of EPU over the sample period. Dates on the x-axis
indicate the start of the year, and ticks are quarterly.

The plot confirms the strong interdependence of returns in the system over time (TSI
almost always above 50%), and shows that it is fairly stable for the duration the sample
period with no evident pattern suggesting its link to overall uncertainty. Although

counter-intuitive, it is not incompatible with earlier results on volatility spillovers. Indeed,



Chapter 2 Giver and the Receiver: Understanding Spillover Effects and Predictive
44 Power in Cross-market Bitcoin Prices

the latter were found to reflect the variations of global economic uncertainty, suggesting
more strongly interconnected markets in times of high uncertainty. In spite of volatility
transmitting more or less “easily” across components of the system depending on the
economic climate, the capacity of returns shocks to help predict price movements on

other markets remains stable over time in the system overall.

(b) Spillovers FROM and TO others

In the spirit of Diebold and Yilmaz (2012) dynamic spillovers are broken down into
directional spillovers to other markets, from other markets, and net spillovers depicted in

Figures 2.8, 2.9 and 2.10, respectively.

A quick glance at individual plots in Figure 2.8 reveals that the BTC/USD exchange
rate exerts the biggest influence on other variables of the system, and that this influence
strengthens in 2017 and early 2018. Interestingly, the influence of BTC/EUR returns
shocks on other markets shifts downwards at the end of the sample period (from early
2017 on) after fluctuating around 5% to 7% most of the time. Returns spillovers from
BTC/AUD, BTC/CAD and BTC/GBP to other markets are erratic but overall range
between approximately 8% and 17% throughout the period under scrutiny.

Figure 2.9 indicates that BTC/USD returns are significantly influenced by shocks from
other markets in late 2013 and early 2014 with spillovers between almost 13% and
approximately 16%, while the latter then steady and fluctuate mostly in the range
6% - 14%. Returns spillovers received by BTC/AUD from other exchange rates range
largely between 10% and 15%, as is the case for BTC/CAD and BTC/GBP. The share
of forecasting error variance of BTC/EUR returns explained by innovations in other
variables is almost systematically above 10% and routinely above 15%, and even larger
than 15% between 2014Q2 and mid-2015 and after 2017Q1.

(c) Net spillovers

Dynamic net spillovers plotted in Figure 2.10 confirm the former intuition stemming from
our full sample analysis. The BTC/USD exchange rate returns exhibit almost exclusively
positive net spillovers — reaching above 10% starting in early 2017—, representing the
predictive power of shocks on the BTC/USD market in forecasting returns on other
markets. Conversely, the BTC/EUR market is strongly connected to the system as a net
receiver, i.e. mostly negative net spillovers that seem to mirror the BTC/USD ones over
time with a marked decline starting in 2017Q1. The net connectedness of BTC/GBP

returns is very erratic over time and incessantly crosses the zero line.

A similarly changeable pattern can be discerned for BTC/AUD, although its net spillovers

are typically negative, characterising that market as usually predictable. Net returns
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Figure 2.8 Returns spillovers to others, dynamic plot
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Note: Dynamic returns spillovers to others computed following Diebold and Yilmaz (2012) with a 150-day
rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are
quarterly.

spillovers from BTC/CAD slowly evolve around zero over time in a serpent-like fashion:
negative in late 2013, positive in 2014, mostly negative from 2015Q1 to 2016Q4, and
mostly positive for the remainder of the sample period. Their magnitude remains fairly
small in absolute terms (seldom greater than 25%), reflecting the little influence of said

market in predicting returns in the system.

In sum, results from our analysis of returns spillovers seem to complement nicely those
commented on volatility spillovers. The BTC/USD and BTC/EUR are confirmed in

their central roles in the system. They remain the most closely interlinked markets, and
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Figure 2.9 Returns spillovers from others, dynamic plot
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Note: Dynamic returns spillovers from others computed following Diebold and Yilmaz (2012) with a
150-day rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and
ticks are quarterly.

the former holds a net predictive power with regards to the system as a whole. That
is, unexpected shocks in returns to BTC/USD embed information as to probable future
shocks in prices on other markets, especially so for BTC/EUR. That relationship is the
only one to be so dramatically asymmetric, the one between BTC/EUR and BTC/GBP,

for instance, giving only a marginal advantage to the latter in terms of predictive power.
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Figure 2.10 Net returns spillovers, dynamic plot
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2.5.3 Robustness

How sensitive are our results to the choice of forecast horizon, window size, and alternative
measure of volatility? In this section, we undertake robustness exercise in each aspect

mentioned above.

2.5.3.1 Sensitivity to forecast horizon and window size for static and dy-

namic spillover system

We check the robustness of our full sample analysis results to the choice of the forecast
horizon and the tuning of frequency bands that identify short- and long-run components
of the forecast error GVD. Recall that our results are based on 30-days-ahead forecasts
and that the time-frequency domain analysis consider the short horizon to be 4 days
and the long horizon to be over 4 days. We performed similar estimations with 7-, 10-,
and 60-days-ahead forecasts, and using 16 and 30 days to split frequency domains. The
ensuing results (reported in appendix A) corresponding to Tables 2.2, 2.3, 2.4 and 2.5
presented above produced very similar values for the estimated spillovers and yielded

qualitatively identical conclusions.

Next, Figures 2.11 and 2.12 (Figures 2.13 and 2.14) plot dynamic overall returns (volatility)
spillovers using 15 days and 60 days as the forecast horizon for computing the GVD,
respectively. We observe that the latter graphs are strongly consistent with Figure 2.7
(for return) (and Figure 2.3 for volatility, respectively) not only in the estimated values
of the total spillover index, but also in the shape of the evolution that records the same

extreme events in every case.

2.5.3.2 Alternative measures of volatility

Recall that our empirical analyses are based on Parkinson’s High-Low historical volatility
(HL — HV) measure. This measure provides useful information regarding the future
volatility than a close-to-close estimator. Garman and Klass (GK,1980) proposed a
volatility measure based on open (O), high (H), low (L) and close (C) prices to achieve
better accuracy than previous estimators. Hence, as a robustness check, we use GK class
of estimators and re-estimate spillover effects. The similarity between Parkinson and
GK estimators are that both follow a geometric Brownian motion. However, drift and
opening jumps are not treated in both models (Wiggins, 1991), but both estimators are
5 and 7 times respectively as powerful as the close-to-close measure (Garman & Klass,
1980; Parkinson, 1980). Recent studies have even gone further in extending GK volatility
measure (among them see, for instance, Rogers-Satchell (OH LC) measure (Rogers &
Satchell, 1991), GK — ABD volatility measure (Alizadeh et al., 2002) and GK — Y Z
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Figure 2.11 Overall returns spillovers (dynamic plot — 15-day ahead forecast)
and Economic Policy Uncertainty Index
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Note: Right scale (percentages): Dynamic overall returns spillovers computed following Diebold and
Yilmaz (2012) with a 150-day rolling window, using a 15-day ahead forecast. Left scale: monthly Global
Economic Policy Uncertainty (EPU) index. The dashed line shows the median value of EPU over the
sample period. Dates on the x-axis indicate the start of the year, and ticks are quarterly.

volatility measure (Yang & Zhang, 2000)!”. These measures are summarised below:

GK = {0.5>< (Ht—Lt)Z}—{(2Ln(2)—l) X (ct—ot)2} (2.10)

Rogers—Satchell = {(Hy—Cy)x (Hy—Oy) }4+{ (L—Cy) x (L—Oy) } (2.11)

Yang—Zhang = (Oy—Cy_1)? +0.511 x (Hy— L;)? — (2Ln(2) — 1) x (Cy — Oy)? (2.12)

GK — ABD = 0.511 x (H, — L;)? — 0.019 x {(ct — 0y) x (Hy + Ly — 20;) — 2

X (Hy = 01) x (Li = O)} = 0383 x (Cy = 0))?
(2.13)

Yhttps:/ /www.quantshare.com /itemd-197-trading-indicator-yang-zhang-extension-of or
(Bennett & Gil, 2012)


http:Ht�Ct)�(Ht�Ot)+(Lt�Ct)�(Lt�Ot)(2.11
http:�Ot)2(2.10
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Figure 2.12 Overall returns spillovers (dynamic plot — 60-day ahead forecast)
and Economic Policy Uncertainty Index

=
[
L] [ ]
- oo
=
o -
5 ol
o ==
L ™ =
= [1F]
th =
= ] —
= T
£o E
Lo fr
e=1_21 I ' ! 2 1eé
2 |, =
:ID |E
[ T
=
Ly
D_
Ln T T 1 T T T 1 T 1 1 1 T 1 1 T T 1 1 T
2014 2015 2016 2017 2018
EPL — T3l

Note: Right scale (percentages): Dynamic overall returns spillovers computed following Diebold and
Yilmaz (2012) with a 150-day rolling window, using a 60-day ahead forecast. Left scale: monthly Global
Economic Policy Uncertainty (EPU) index. The dashed line shows the median value of EPU over the
sample period. Dates on the x-axis indicate the start of the year, and ticks are quarterly.

The above measures compute the daily variance, so the corresponding estimate of the

annualised daily percent standard deviation (volatility) is Vol = v/365 * Variance.The

summary statistics for the above measures are presented in Table 2.6.

We compute the static and dynamic volatility spillover based on Garman-Klass (GK)
volatility. To begin with we compare the GK volatility measure with that of Parkinson
(see Figure 2.15). As such, there is no significant differences in peaks and troughs and
the fluctuations appear to co-move. In Tables 2.7 and 2.8 we have presented the overall
spillover estimates from Diebold-Yilmaz and the frequency domain approach of Barunik
and Krehlik, respectively based on this measure of volatility.2® Figures 2.16, 2.17, 2.18,
2.19, we have presented the dynamic volatility spillover effects (overall, from, to, and
net, respectively). The results are consistent with the ones derived from Parkinson’s
measure. Hence, our conclusions on the predictive power (giver and the net receiver)

remain unchanged to the use of an alternative measure of volatility.

29We have also estimated spillover effects from other class of GK measure of volatility, such as GK-YZ,
etc. The results are available with the authors upon request.
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Figure 2.13 Overall volatility spillovers (dynamic plot — 15-day ahead forecast)
and Economic Policy Uncertainty Index
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Note: Right scale (percentages): Dynamic overall volatility spillovers computed following Diebold and
Yilmaz (2012) with a 150-day rolling window, using a 15-day ahead forecast. Left scale: monthly Global
Economic Policy Uncertainty (EPU) index. The dashed line shows the median value of EPU over the
sample period. Dates on the x-axis indicate the start of the year, and ticks are quarterly.

2.5.3.3 VAR model Stability

The spillover index measures the overall connectedness of the system. Therefore, the
dynamic spillover variations (e.g. figures 2.3 and 2.7) explain the flow of information
within the system, but do not clarify the extreme shocks along the dynamic overall
volatility spillover. Claeys and Vasic¢ek (2014) suggested that using (Qu & Perron, 2007)
break test to detect the structural breaks in a VAR system could help to identify these
significant spikes within the transmission mechanism. Following the latter work, we
applied Qu and Perron test on the volatility exchange rates to investigate the potential
structural breaks in the system. Indeed, detecting the sudden changes in the spillover
index within these markets could help us to identify potential events that might induce

the series to change its properties over time.

Table 2.9 shows the results of Qu and Perron analysis. The VAR dataset consists of
the five Bitcoin markets from March 2013 to January 2018. The trimming percentage is
15% of the sample span, and the maximum breaks allowed individually for two and five
respectively. The test statistics for both WD max and sequential tests exceed the critical
values except for the fifth break (Seq test (m = 5) ~ (5| 4)). Thus, the null hypothesis
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Figure 2.14 Overall volatility spillovers (dynamic plot — 60-day ahead forecast)
and Economic Policy Uncertainty Index
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Note: Right scale (percentages): Dynamic overall volatility spillovers computed following Diebold and
Yilmaz (2012) with a 150-day rolling window, using a 60-day ahead forecast. Left scale: monthly Global
Economic Policy Uncertainty (EPU) index. The dashed line shows the median value of EPU over the
sample period. Dates on the x-axis indicate the start of the year, and ticks are quarterly.

of no structural breaks rejected for the WD max and indicates four (out of five) breaks,
based on the sequential test. The confidence interval for the four break dates are as
follows: 1- 09/01/2014. 2- 04/10/2014. 3- 23/09/2015. 4- 10/07/2016. We can link the
latter dates to remarkable events that hit the cryptocurrency market. At the beginning
of 2014, the largest Bitcoin exchange platform, Mt. Gox, started to have security issues;
the platform was then hacked and $ 473 million was stolen. After the middle of 2015, the
administrator of Scrypt platform, Marcelo Santos, posted that the platform had been
breached and hijackers had stolen several Bitcoin hot wallets. Finally, during 2016 and
after the flash crash of Bitfinex platform, the Bitcoin price fell by approximately 14%.
All the latter events appeared along the overall spillover dynamic plot (Figure 2.3), but it
was confirmed by Qu and Perron (2007) test that the spillover spikes actually spread the

volatility to other markets.

To check the VAR stability, we extract the coefficients’ residuals and test their stationarity
to ensure the consistency of the mean and variance of residuals over time. Table 2.10
shows that the test rejects the null of unit root for all exchange rates in both sub-tables.

Further, Figures (A.1 and A.2) show the inverse roots of AR characteristic polynomial
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for return and volatility lie inside the unit circle, which indicates that the VAR process is
stable.

2.6 Conclusions

As long as economies’ core are continually subject to frictions and are driven by incomplete
information, it is nearly impossible to not experience spillover of shocks in some form
or other. Depending on the net receiver or net dispenser of volatility, the magnitude of
spillover effects represents vulnerability of a system to external shocks. The context of
investigation in this chapter, thus, has intermittent link to a broad economic and financial
theory: as long as investors’ choice of investment is governed by relative hedging value of
an asset traded in various markets, they will invariably use estimates of spillover effects
as the guiding information set to predict the next best investment strategy. Moreover,
spillover effects in a market can be used as an indicator of relative market inefficiency.
A weak-form cross-market inefficiency requires high-degree of spillover across markets
where there is a clear indication of net receiver and net giver of volatility. This way, an
investor can exploit arbitrage value by embedding the dynamic features of spillover in
his prediction strategy. In this chapter, we have created a first-hand information set for

cryptocurrency investors by estimating spillover-effects in five markets where Bitcoin is
highly traded.

A unique aspect of our research concerns estimation of volatility spillover effects (with a
better measure of volatility) across Bitcoin markets. We have investigated how spillover
effects are governed by uncertainty episodes. With an aim to capture information
asymmetry through fluctuations in uncertainty, our study sheds important insights on
the dynamic interdependence of spillover effects during high /low uncertainty episodes.
By doing this, we capture the sentimental value, researchers often attach to Bitcoin prices
(in the absence of a dedicated asset pricing theory for cryptocurrency). By studying
cross-market spillover in Bitcoin prices we have also complemented to a sparse body of
literature (such as Cheah et al. (2018)) and have envisaged the importance of studying a
systematic pattern of shocks’” movement by capturing a ’system dynamics’. Because, as
of now, price movements in Bitcoin market possess no (theoretical) policy bound for an
effective control, a perhaps acceptable approach is to exploit ‘system features’ to provide

a net predictive power.

Using the measure of volatility and well-established dynamic spillover methods, we
have found that Bitcoin-USD holds high predictive power and Bitcoin-FEuro acts as the
net receiver. Moreover, higher uncertainty is found to accelerate spillover effects with
larger impacts across markets. The results hold implications for cross-market dynamic
inefficiency and predictive power of one market for tapping in the arbitrage conditions.

Our results have implications for broad macroeconomic theory and investment decisions
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as envisaged by islands with sticky price information: investors of a risky asset like
Bitcoin need a well-defined information set which would determine - at least in part -
their expected return value. In that sense, our research holds significant predictive value

for cryptocurrency investors.
Table 2.6 Different Volatility measures across five selected exchange rates

(a) BTC/USD volatility

Mean St. Dev. Max Min Skewness Kurtosis
Parkinson (H-L) 0.709 1.008 20.68 0.0 9.086 139.2
GK (OC-HL) 0.773 1.140 24.33 0.010 9.389 150.5
GK-ABD 1.323 2.043 24.57 0.004 4.353 30.20
Rogers-Satchell 2.206 2.835 33.42 0.0 3.033 18.10
GK-YZ 1.011 1.294 24.61 0.02 8.209 116.5

(b) BTC/AUD volatility

Parkinson (H-L) 6.091 4.467 30.67 0.105 1.499 5.329
GK (OC-HL) 7.025 5.247 35.96 0.112 1.507 5.391
GK-ABD 5.664 3.371 21.20 0.114 1.150 4.352
Rogers-Satchell 8.023 6.541 44.12 0.0 1.607 5.747
GK-YZ 7.437 5.375 36.71 0.140 1.504 5.317

(¢) BTC/CAD volatility

Parkinson (H-L) 7.248 4.681 30.01 0 1.054 4.330
GK (OC-HL) 8.176 5.449 35.18 0 1.058 4.346
GK-ABD 6.639 3.887 34.73 0 1.082 5.646
Rogers-Satchell 9.369 6.906 47.28 0 1.273 4.994
GK-YZ 9.097 5.792 40.88 0 1.149 4.838
(d) BTC/EUR volatility
Parkinson (H-L) 0.740 0.899 11.29 0.069 4.899 39.67
GK (OC-HL) 0.794 1.043 12.72 0.007 5.001 40.09
GK-ABD 0.874 1.361 26.78 0.015 8.784 126.7
Rogers-Satchell 1.126 1.515 22.60 0.007 5.525 51.66
GK-YZ 1.052 1.266 14.27 0.104 4.561 32.73
(e) BTC/GBP volatility
Parkinson (H-L) 9.298 6.378 69.04 0 2.639 17.65
GK (OC-HL) 10.88 7.507 81.25 0.745 2.649 17.70
GK-ABD 10.85 7.569 80.01 0.753 2.657 17.66
Rogers-Satchell 14.92 10.73 109.1 0.0 2.506 16.32
GK-YZ 11.26 7.52 82.14 1.054 2.683 17.97

Note: GK: Garman-Klass (1980). GK-ABD: Garman-Klass extension, Alizadeh, Brandt and Diebold
(2002). GK-YZ: Garman-Klass Yang-Zhang extinsion, Yang and Zhang, (2000). Rogers-Satchell (1991).
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Figure 2.15 Comparison of GK and Parkinson Volatility Plots
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Table 2.7 Volatility spillovers across five selected exchange rates: Garman-
Klass measure

Directional

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others
BTC/USD 81.25 3.99 0.39 13.62 0.75 18.75
BTC/AUD 3.41 85.94 3.50 6.43 0.72 14.06
BTC/CAD 0.25 5.19 91.61 1.53 1.42 8.39
BTC/EUR 17.25 4.07 0.67 76.48 1.51 23.5
BTC/GBP 0.58 1.56 1.33 0.97 95.55 4.44
Directional TSI:
TO others 21.49 14.81 5.89 22.55 4.4 69.14/500 —
Net spillovers 2.74 0.75 2.5 -0.95 0.04 13.83%

Note: Exchange rates volatility spillovers following Diebold and Yilmaz (2012). Numbers are percentages.
“T'SI” stands for Total Spillover Index.

Table 2.8 Volatility spillovers across five selected exchange rates - Frequency
domain analysis: Garman-Klass Measure of Volatility

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 38.93 0.40 0.05 3.84 0.12 4.41
BTC/AUD 0.13 25.61 0.29 0.22 0.11 0.75
BTC/CAD 0.08 0.36 45.95 0.36 0.11 0.91
BTC/EUR 2.54 0.38 0.13 27.37 0.23 3.28
BTC/GBP 0.19 0.24 0.13 0.35 57.94 0.91
TO others 2.94 1.38 0.6 4.77 0.57 TSt 140.‘;96%206 B

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 42.32 3.59 0.34 9.77 0.62 14.32
BTC/AUD 3.28 60.34 3.22 6.21 0.61 13.32
BTC/CAD 0.17 4.83 45.66 1.17 1.31 7.48
BTC/EUR | 14.71 3.69 0.54 49.11 1.29 20.23
BTC/GBP 0.39 1.32 1.20 0.62 37.61 3.53
TO others 18.55 13.43 5.3 17.77 383 oL 5‘2';802?;3'92 -

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik (2018). Numbers
are percentages. ‘Within’ refers to within system spillovers. Short and Long horizons refer to ‘4 days or
less’ and ‘more than 4 days’, respectively.
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Figure 2.16 Overall volatility spillovers (dynamic plot): Garman-Klass volatil-
ity measure

80

60

40

20

T T T
2015 2017 2018

TSI/ Parkinson

TSI/ Garman-Klass

Note:The black line is the Dynamic overall based on Parkinson (1980) volatility, the red line is calculated
based on GK-YZ (2002) volatility. Dynamic overall volatility spillovers computed following Diebold and
Yilmaz (2012) with a 150-day rolling window, Y-axis in percentages. Dates on the x-axis indicate the
start of the year, and ticks are quarterly.
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Figure 2.17 Volatility spillovers from others, dynamic plot: Garman-Klass
volatility measure
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ticks are quarterly.



Chapter 2 Giver and the Receiver: Understanding Spillover Effects and Predictive
Power in Cross-market Bitcoin Prices 59

Figure 2.18 Volatility spillovers to others, dynamic plot: Garman-Klass volatil-
ity measure
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Note: Dynamic volatility spillovers to others computed following Diebold and Yilmaz (2012) with a
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ticks are quarterly.
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Figure 2.19 Net volatility spillovers, dynamic plot
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Note: Dynamic net volatility spillovers computed following Diebold and Yilmaz (2012) with a 150-day
rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are
quarterly.
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Table 2.9 Multivariate Qu and Perron Test for Structural Changes in VAR
model

Tests ‘ Test statistic Critical Value
WD max test m=2 454.41 17.57
m=>5 581.02 17.57
Seq test (m = 2) (21]1) 583.4 18.38
Seq test (m = 5) (21]1) 583.64 18.38
312 107.98 19.26
(413) 53.79 19.86
(514 0.045 20.33

Note: Exchange rates volatility are used to find the structural breaks. Trimming Percentage is 15% and
the number of observations is 1787. The first test is the WD max test and the second one is the
sequential test.

Table 2.10 ADF Test for the VAR Coefficients’ Residuals

(a) Volatility

Residuals Test Test stat vi{:;f% Conclusion
BTC/USD ADF -29.88 -3.43 Reject
BTC/EUR ADF -42.16 -3.43 Reject
BTC/GBP ADF -42.14 -3.43 Reject
BTC/AUD ADF -42.33 -3.43 Reject
BTC/CAD ADF -42.20 -3.43 Reject

(b) Return

Residuals Test Test stat vgit;f% Conclusion
BTC/USD ADF -41.93 -3.43 Reject
BTC/EUR ADF -42.08 -3.43 Reject
BTC/GBP ADF -42.07 -3.43 Reject
BTC/AUD ADF -42.14 -3.43 Reject
BTC/CAD ADF -42.10 -3.43 Reject







Chapter 3

The Relevance of Memory and
Efficiency in Endogenously
Switching Cross-market Bitcoin

Prices

Abstract

Bitcoin prices are fundamentally driven by the ‘feeling and the memory’ of investors
at a point in time and their reaction could generate persistent endogenous responses.
This chapter investigates the endogenous growth mechanisms and aligning designed
empirical tests to show whether persistence is a product of such a model. The finding of
persistence has relevance to the theory of learning: an agent that learns synchronously is
an agent that will depict less persistence behaviour. However, characterising learning in
the Bitcoin market is exceedingly complex as it is frequently affected by news and/or
economic/financial dynamics. Sudden arrival of a shock (for instance, Brexit) can break
the cycle of endogenous persistence generating mechanisms. We propose a variant of
ARFIMA Markov Switching with endogenous switches governing the internal dynamics
of the Bitcoin price or volatility system. We find that the Bitcoin markets depict true
long memory over time which enables us to create a robust forecasting strategy. The
model and empirical strategies are new and results hold promising information of true

memory under episodes of structural breaks.

Keywords: Bitcoin; Cross-market volatility; Endogenous switch, MS-ARFIMA; struc-

tural breaks; Long memory ; Fractional integration; Persistence mechanism.
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“No memory is ever alone; it’s at the end of a trail of memories, a dozen
trails that each have their own associations”Louis L’Amour (An American
Author)

“The past beats inside me like a second heart.” John Banwville, The Sea

3.1 Introduction

Memory is logically imperishable during the span of life of a boundedly rational agent. The
only characteristic one might observe about the existence of memory is whether it is small
or big, and the long or short ‘trail’ of associations it inherently defines over a period of
time - just as Louis L’Amour (an American author) famously quoted. Following Granger
(1980) and Hosking (1981), who independently defined and characterised the properties of
'memory’ in a time series, its applications to real world data have exceeded its theoretical
development (especially, identifying the source of its existence in economic and financial
variables) in astronomic proportion. Economists and financial theorists have often come
up with approximate theories identifying the possible source of long-memory in financial
and economic data, see for instance (Farmer et al., 2006), (viz. Bouchaud et al., 2004,
among others). However, in the majority of cases, extant research only focuses on the
application of long-memory method for testing its existence in economic/financial data,
without providing the theoretical source of its existence. In the case of cryptocurrency,
a similar strand of research has begun to emerge (see for instance, (Bariviera, 2017)),
barring some exceptions (viz. Cheah et al., 2018), where some directions of the source of

long-memory are discussed.

This chapter contributes to the nascent literature on the source and implications of
‘memory’ in the cryptocurrency market, in particular in Bitcoin markets, in the following
three significant ways. First, The chapter propose an identification strategy to demonstrate
the source and implications of long-memory in Bitcoin markets. The chapter also, propose
a demand-driven long-memory channel for Bitcoin, and show that there are waves of Buyer
initiated transactions (given a fixed supply of Bitcoin), which follow a Beta distribution
with memory, by following a linear algorithm of aggregation and power distribution.
Second, we model the (non-)existence of long-memory to an endogenous market system
mechanism which might give rise to a persistent shock with or without a mean reversion.
We discuss this in the light of an endogenous switch in the memory and mean of the
Bitcoin price process. Third, using daily Bitcoin data for five different markets, we study
the nature of persistence in Bitcoin volatility, while considering an endogenous switch in
volatility. From this, we shed light on the nature of the true long memory and quantify

to what extent a true 'memory’ governs the internal dynamics of the system.
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The choice of Bitcoin for our empirical examination is led by the fact that it is the biggest
and most active cryptocurrency with a market capitalisation over $150! billion. To
investigate the nature of such types of investment decisions and help governments design
adequate regulations for limiting the cross-market movement of shocks, a remarkable

growth of research has lately sprung up.

Volatility is more persistent when market interdependence is high, especially during
financial crisis and episodes of economy-wide uncertainty (market inefficiency) (Cheah
et al., 2018; Gillaizeau et al., 2019). Managing shocks within a system is relatively easy
as one can exploit the system dynamic the features of shocks so as to monitor their
movements and generate better predictive power for an asset (Gillaizeau et al., 2019).
However, neglecting the long memory presence within the system can lead investors to
spurious investment strategies. While former studies such as Bariviera (2017); Bouri
et al. (2019) shed light on volatility persistence in the cryptocurrency market, Cheah
et al. (2018) demonstrated the importance of cross-market dynamic interdependence of
Bitcoin prices by estimating a system-wide long-memory. The focus on a cross-market
rather than a single market cryptocurrency market in the latter study has significance
within the chapter context: by modelling the ARFIMA process with Markov-switching,
the fractional differencing parameter will create a stock of information for investors who
decide on an arbitrage value of Bitcoin traded in various markets. Such a study is helpful
in shaping the robust investment strategy of a single cryptocurrency traded in various

markets.

The objective of this chapter is to study long-range dependence and potential breakpoints
simultaneously and endogenously using the MS-ARFIMA model for Bitcoin cross-markets.
The conclusion of structural break and fractional integration tests clearly show the
presence of ten breaks in (BTC/USD, BTC/EUR and BTC/GBP), and eight breaks in
(BTC/AUD and BTC/CAD), respectively, when Bai and Perron (1998, 2003) structural
break test was used. In addition, the results show the presence of long memory across
all the Bitcoin cross-markets. Therefore, a spurious long memory in volatility could
be attributed to the presence of structural breaks if the standard ARFIMA model was
applied to each of the Bitcoin cross-market respectively. Consequently, we applied the
MS-ARFIMA model instead and find that the fractional integration displays constant
long-memory for both states across all the MS-ARFIMA models. Therefore, having a
constant long memory could confirm that even though the series in this analysis are
subjected to different structural breaks over time, the accounted long-range dependence

is true.

The finding in this chapter has two important implications for investors and policy makers.
First, the presence of long memory could enable investors to capture speculative profits.
This can be achieved through market timing. During a high-volatility regime, investors

could buy and then subsequently sell when the market switches to a low-volatility regime

! coinmarketcap.com (June 2019)
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in all Bitcoin cross-markets. Investors could also hedge during a high-volatility regime by
purchasing Bitcoin futures from the Chicago Board Option Exchange (CBOE). Second,
policy makers and regulators could introduce circuit breakers to stop trading in Bitcoin
cross-markets when the market switches abruptly to a high-volatility regime, as the
impact of a negative downturn would take a relatively long period of time to dissipate,

given the nature of persistence in the price behaviour of Bitcoin in the cross-markets.

To investigate further, the rest of the chapter is planned as follows. Section 2 explores
the literature on modelling long memory in Bitcoin markets. Section 3 discusses the
empirical methodology in both MS-AR and MS-ARFIMA. Section 4 presents the data and
summary statistics, illustrating with two stationarity tests. In Section 5, a discussion of
the results is carried out under three subsections: structural breaks, fractional integration
and MS-ARFIMA, respectively. Section 6 discusses some alternative measures to validate
the robustness of the conducted analysis. Section 7 concludes and presents the main
implications of our research. Finally, it is useful to view the Appendix B in appendices

Section to check the robustness and validation of the empirical tests.
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3.2 Literature review.

The literature on financial markets volatility has been investigated widely through different
econometrics tools. These remarkable and stupendous studies have analysed and modelled
financial market volatility to clarify the ambiguity of the dramatic fluctuation in financial
assets prices. All this significant attention is due to the huge impact of volatilities on
economies’ components and global markets. Thus, a thorough and deep investigation
should tackle this issue to increase the quality of decisions, plans and investments across
financial markets. The following section highlights the main approaches to modelling
volatilities, following which we recall the most relevant studies applied in financial
market volatilities with respect to the structural breaks in financial time series and their

importance in volatility modelling.

Prior to revising the literature, it would be helpful to provide an overview of the most
relevant theories in financial markets volatility. Tracing the source of markets volatility
could lead us to some well-known economic theories on efficient market hypothesis (EMH),
speculative bubbles, overreaction and noise trading (Scott, 1991). These theories explain
the mechanism of valuing or pricing financial assets within dynamic financial markets.
Consequently, they should clarify and justify why and how prices are determined, and
hence fluctuate over time (Scott, 1991). For instance, the concept of the seminal work
of (Fama, 1976) explains that the current asset price should reflect all the available
information in the market. However, newly arrived information (e.g. political news,
monetary policies, fiscal policies) in financial markets will adjust prices randomly and
unpredictably, and hence will generate some sort of different fluctuations over time
(Bauwens et al., 2012)2. From an irrational perspective, speculative bubbles and noise
theories have tried to examine the existence of deviation among the fundamental value of
financial assets and their market prices (Scott, 1991). Based on the latter theories and
the many financial theories, fluctuating prices play a core role in generating volatilities

(systematic and idiosyncratic risk) in global financial assets and markets.

Recently, the augmentation of economic and political events alongside Bitcoin markets
has created a state of uncertainty in the global financial markets. Generously, academics
and practitioners have supported the literature of volatility by a bulk of contributions
from different academic areas. Historical volatility (HV afterwards) is one of these areas
that have been applied, especially by practitioners and traders from disciplines other than
finance. HV is considered an important and principal financial tool for providing a good
benchmark of volatility in a specific sector or market. By contrast, Parkinson claimed
that traditional volatility measures give poor information and sensitive movements (high
noise). Therefore, he endeavoured to provide a more professional technique based on
geometric Brownian motion. The latter technique helps in eliminating undesirable drifts

from the model, which basically solves the problem of jumps and drifts (close & open

*Further information see EMH hypotheses (Fama, 1970, 1976, 1991)
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or weekend events) in the classic volatility equation (HV). Theoretically, Parkinson’s
High-Low historical volatility (HL-HV afterwards) is more efficient than the traditional
volatility (HV) by 2 to 5 times (Bennett & Gil, 2012; Parkinson, 1980) . Many volatility
modelling approaches (HV, HL-HV and others) have been applied in the literature (for
more details see (Alizadeh et al., 2002; Bauwens et al., 2012; Beckers, 1983; Garman &
Klass, 1980; Parkinson, 1980; Rogers & Satchell, 1991; Wiggins, 1992; Yang & Zhang,
2000). Further, exponentially weighted moving average process (EWMA) has been
effectively employed for forecasting the volatility across financial markets, see (Chou,
Chou, & Liu, 2010; Cox, 1961; Holt, 2004). For HV in Bitcoin Market, see (D. Baur &
Dimpfl, 2017).

The performance of HV models was found to be poor in terms of capturing dynamic
volatility (Engle, 1982; Hsieh, 1991; Parkinson, 1980). The latter problem has induced
scholars to find different approaches that could improve the models to be more dynamic
and flexible in capturing the behaviour of assets. Indeed, the development of more efficient
and accurate models is necessary to face the complexity and non-linear behaviours of
financial data (such as Leptokurtosis, volatility clustering, leverage effect, and many
others) (Brooks, 2014). Further, it is well-known that the variance of the residual in
financial time series models is unlikely to be constant (Brooks, 2014). Consequently, a
new class of stochastic models, Auto-regressive conditional heteroscedasticity (ARCH
afterwards) was introduced by (Engle, 1982) to cope with the aforementioned behaviours
of financial data?. Despite the literature on analysing and forecasting volatility in financial
markets having grown extensively after introducing the ARCH model, some weaknesses
have been identified in the model*.

Therefore, introducing the generalised auto-regressive conditional heteroscedasticitiy
(GARCH afterwards) model has helped in avoiding the latter weaknesses in the ARCH
model (Bollerslev, 1986; Taylor, 1986). The new approach with its extensions has allowed
scholars to trace the leverage affect and many characteristics which were not able to be
captured in the ARCH model. Since then, a huge number of extensions to the GARCH
model have been introduced, such as Exponential GARCH (EGARCH), GJR-GARCH,
GARCH in mean (GARCH-M), and many others. For more details see the full survey
(Andersen et al., 2009; Bauwens et al., 2006; Terasvirta, 2009). Turning to cryptocurrencies
markets, the GARCH family has been employed in this stream. For example, Chu et
al. (2017) investigated the volatility of the most popular cryptocurrencies under twelve
different extension of GARCH model. Their results suggest that most cryptocurrencies,
including Bitcoin display extreme volatility, especially in enter-daily prices. The literature
on cryptocurrencies under the GARCH family approaches has started to grow rapidly
recently, see(Charles & Darné, 2018; Dyhrberg, 2016; Katsiampa, 2017).

3for a full survey and more theoretical details see (Bollerslev, Chou, & Kroner, 1992)
“(e.g. the model assumes that both negative and positive shocks have an equal effect on volatility,
hence, the ARCH system is restrictive, especially if the ARCH order become higher)
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However, Hsieh (1991, 1993, 1995) has introduced models through auto-regressive process,
such as the Auto-regressive volatility model (AV afterwards), which is considered to be
an efficient non-linear model compared with the HV and GARCH models. The non-linear
models are able to capture the auto-correlation behaviour of variables and become more
consistent with data fluctuating over time. For example, Hsieh (1995) and H. Li and Hong
(2011) stated that AV approach, efficiently captures the mean-reversion and clustering
volatility in financial data, while HV models are not able to capture these behaviours.
Moreover, H. Li and Hong (2011) reported that estimating financial volatility data through
the AV process gives more accurate and efficient forecasting than the GARCH model.

To draw a conclusion from all the above, financial market volatility has been studied
intensively in the literature through different models, such as historical volatility, implied
volatility or GARCH family. Many advantages and disadvantages are mentioned above,
but one important issue has not received enough attention in forecasting volatility
literature along with the other features of financial data. Researchers have claimed that
neglecting the structural breaks (breakpoints) in exchange rates, cryptocurrencies and
stock market volatility could lead to poor results and corrupted estimations (Bai, 1994;
Hammoudeh & Li, 2008; Hansen, 2001).

Modelling structural breaks has been growing extensively in the literature via many
streams. The focus will be divided into four streams: firstly, modelling the structural
breaks in moving average process; secondly, modelling the breakpoints in auto-regressive
models; thirdly, structural breaks with long memory process; fourthly, modelling ARMA
and detecting the breakpoint simultaneously. Finally, modelling fractional integral process

and structural breaks simultaneously.

3.2.1 Modelling the breakpoints in Moving average process

Based on the Sunspot, Venus and credit cycle theories, a huge amount of literature has
studied the modelling trends and cycles in economic history (Morgan, 1990). Therefore,
in the mid-20th century, researchers started to pay attention to the cyclical and trends
fluctuation during economic events. In order to reduce bias in modelling the fluctuations
and jumps in cycles and trends, researchers resorted to dismantling the economic time
series to fit the data accurately. For more details, see (Aldcroft & Fearon, 1972; Ford,
1981).

Since modelling and analysing the growth trend in business cycles by simple linear models
(Frickey, 1947; Hoffman, 1955), many drawbacks have been found and documented in
the literature. Consequently, scholars have been motivated to find a solution by isolating
the trends in time series and examining them individually in the same system. Aldcroft

and Fearon (1972) and Ford (1981) applied a moving average method to differentiate



Chapter 3 The Relevance of Memory and Efficiency in Endogenously Switching
70 Cross-market Bitcoin Prices

between jumps in the system. They used this moving average model to treat the trend

stochastically and ensure the system did not depend entirely on the cyclical component.

Ford (1969) investigated the impact of exports in the British economy during the years
1870 and 1914. According to him, the nature of data has a cyclical pattern with different
trends. Consequently, in order to study these data, a deviation moving average technique
was applied to extract some trends from the later cycles. By applying the later method,
he answered the question, “What is the impact of export as a source of income and import
as a leakage from the incomes and expenditure on the British economy?", explaining
in precise detail the actual causes of fluctuation by virtue of separating the dynamic

behaviours and distinguishing between them?.

Using moving average technique to study trend behaviour considers misleading, as
providing the model with a small sample will result in losing the model’s trend (Aldcroft
& Fearon, 1972). Therefore, to solve the problem Leser (1961) & Hodrick and Prescott
(1997) developed an unweighted moving average model, allowing the first part of the
model to calculate the goodness of fit and the second part to measure the smoothness
of parameters. Therefore, the later technique will save the sample size from any losses.
Hodrick and Prescott (1997) rebuilt the latter model in a matrix form to obtain a filter
weight (H-P filter) for calculating the trend repeatedly at each time in the series.

Ravn and Uhlig (2002) found that changing the observations frequency affects the results
of the Hoderick-Prescott filter (HP filter). Hence they developed the latter method by
using two different techniques: first, a time domain approach, focusing on calculating
the smoothing parameter; second, a frequency domain approach, focusing on the transfer
function of the HP filter. Thus, the two approaches are now able to adjust the smoothing
parameter with respect to the change of frequency observation. Further, Maravall and del
Rio (2007); Ravn and Uhlig (2002) focused on monthly, quarterly and annual observations
to analyse the HP filter from different angles. They studied both temporal aggregation
and systematic sampling to increase the accuracy of HP filters. However, for more detail

on moving average and structural breaks, see the excellent survey (Mills, 2016).

For recent research, Urquhart et al. (2015) applied a moving average model on the
Japanese, UK and U.S. stock market data to determine how those markets adapted to
the knowledge of the profitability of technical trading. However, M A model showed a
clear structural break around the year 1987, and they found that the model’s predictive
power decreased remarkably after the breakpoint (1987). This suggests that applying
the moving average model in time series could detect any changing point in the series.

However, in the next subsection more advanced and flexible methods will be revised.

For a full survey on modelling trend and cycle see (Mills, 2016).
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3.2.2 Modelling the breakpoints in Auto-regressive model AR

Modelling the moving average and auto-regressive models to extract the trends and
identify the breakpoint from economic time series has been successfully applied in the

6. However, with the rapid development in financial markets and financial

literature
econometrics, more advanced approaches were needed to deal with the cons of modelling
financial data (e.g. structural breaks). The seminal work of (Hamilton, 1989) provided
an effective framework in forecasting and modelling the behaviour of macroeconomic and
financial data’. Hamilton stated that involving multiple structure (models) or moving into
an auto-regressive model, can explain the financial time series behaviour during different
economic events (e.g. low and high interest rates). Thus, allowing the process to switch
between these structures will help the system to capture more complex behaviours. The
gold feature of Markov Switching Model (MSM, SM or MS afterwards) is that switching
among the regimes is controlled by a latent variable with first-order Markov chain (Kuan,

2002)3.

Hamilton (1989) applied his new framework (MSM) to post-war U.S. data on real GNP
between 1951 and 1984. This model attempted to study the U.S. business cycle by
considering two states, a recessionary state and a growth state. So, allowing unobservable
variables to switch between the two states, negative growth rate (recessions) and positive
growth rate (normal time), respectively, will measure and analyse the behaviour of
economic recession more accurately and efficiently. The model suggested that an economic
depression is linked with a 3% permanent increase in the rate of GNP. Empirically speaking,
Hamilton (1989) claimed that the model is flexible and more intuitive by allowing the
value of current state to depend directly on its instant past value. Another extra feature
is that the system permits the properties of the model to be determined by both the
state variable and the innovation terms. The latter approach was provided to cover
the shortcomings of (Quandt, 1972)’s model, which considered that switching between
states is totally independent over time. Consequently, the realisation of the current
state is independent from the past and future states, so the model could become "noisy"

(switching back and forth between the states).

Hamilton’s model regulates the auto-regressive model to include a unit root by assuming
that the time series is the aggregate of a two-state Markovian process and a general
auto-regressive model. This suggests that the series is trendless and not suitable for most
macroeconomic series. The previous sharp criticism was admitted by (Lam, 1990), after
explaining the importance of restricting the unit root in the model. He claimed that the
impact of the error term on long-run forecasting of incomes depends on the existence of
unit root. Therefore, based on the later criticism, he relaxed the auto-regressive model

so as to be not restricted to the assumption of unity (generalising Hamilton’s model).

SFor full survey, see Mills (2016)
"For more information, see (Goldfeld & Quandt, 1973).
8For full survey, see (Andersen et al., 2009; Hamilton & Raj, 2013).
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By applying the same data as Hamilton’s paper (the log of real GNP of the USA), he
proved that his model performed better than Hamilton’s model in the long-run term. By
contrast, he found that Hamilton’s model outperformed his approach and the ARIMA
model in the short-term horizon. From another dimension, Kim (1994) introduced a new
technique to reduce the computation time and increase the filtering power in Hamilton’s
model. Also, Kim stated that relaxing his new approach on Lam’s method was enabling

the system to be more effective and powerful.

From another angle, F. X. Diebold et al. (1994) stated that although the Markov switching
model is useful in capturing the dynamic behaviour of financial data, fixing the transition
probabilities over time will let the switching probabilities from one regime to another
would not depend on the behaviour of the econometric model. Thus, they proposed a
modified Markov switching model in which the probabilities of transition are able to
change with fundamentals. They supported their approach by providing a full simulation
based on EM algorithm to prove that allowing the transition probabilities to vary with

the dynamic model will increase the power of the model.

Since Hamilton (1989) focused on modelling the mean behaviour to allow the model to
be involved in more complex dynamic behaviour (e.g. structural breaks), the literature
started to grow extensively, particularly in financial markets. Garcia and Perron (1996)
went a step further to find a special case in the behaviour of the U.S. real interest rate.
They found three states could explain the behaviour of time series (1961-1973, 1973-1980
and 1980-1986), after employing Hamilton (1989)’s approach. The approach suggested
that some structural events had occurred along the sample span, due to sudden changes
in oil price, monetary policy and federal budget. They concluded that real interest
rate is essentially random with different mean and variance in three segments of time.
Moreover, Schaller and Norden (1997) investigated the behaviour of stock markets in
both mean and variance through (Hamilton, 1989)’s method. They found very strong
evidence for the structural breaks and switching behaviour. The power of their evidence
came from applying different methods (e.g. switching in mean, switching in variance, and
changing the transition probabilities over time). Lastly, they employed (Hansen, 1992b)

and (Garcia, 1998) tests to prove that the switching regime was statistically significant.

In 1998, Kim and Nelson developed an approach based on (Shephard, 1994)’s methodology
and processed it through Bayesian framework to enable the system to measure the regime
probabilities at each point in time. Moreover, they answered the question, " Do the
resulting estimates of regime switches show evidence of duration dependence?" by involving
non-zero probabilities of duration dependence in the switching model. Their findings
supported the literature on the switching model by suggesting that the recession state
indicates a strong positive duration dependence, while the booms state suggests vice versa,
within a uni-variate context (F. Diebold & Rudebusch, 1990; F. X. Diebold et al., 1993).
Multivariate and Bayesian approaches were extended to measure the duration dependence,
and to support the univariate context (F. Diebold & Rudebusch, 1990; Kim & Nelson,
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1998). Since the later contributions and modification to the MS-AR model, extensive
research has employed it with its application to study the dynamic behaviour across
financial markets. Studying the behaviour of exchange markets is extremely important
and useful to support investment decisions. Therefore, employing an advanced method to
treat the complex behaviour of exchange markets and financial markets in general will

help to improve the quality of financial decision making.

Hamilton (1989) introduced the MS-AR model, which has helped researchers and practi-
tioners to trace the dynamic fluctuation with the existence of structural breaks in the
system. (Abiad, 2003; Bazdresch & Werner, 2005; Chen & Lin, 2000; Fiess & Shankar,
2009; Jeanne & Masson, 2000; Kirikos, 2000; Li et al., 2010; Subagyo & Sugiarto, 2016;
Xin, 2013) concluded similarly by supporting the stream of literature in financial markets,

and particularly in exchange markets.

3.2.3 Modelling the long memory (Fractional integration)

Many aspects of real life could convert into time series data. Common examples might
be: stock markets, astrophysics, macroeconomics, speech recognition and many others.
Basically, to study these time series data, an analysis should be employed to extract all
the useful characteristics and convert them into readable information that could add new
knowledge and contribute to the literature. The key concept here, the analysis of time
series, relies entirely on the interdependence among observations. In other words, the
question, "how far do values in time series affect each other?" embodies the concept of

studying the time series.

However, one of many characteristics of the time series is defined as a long memory process
or long-range dependence. In the seminal work of Diebold and Inoue (2001), the long
memory process was defined from two different perspectives: time and frequency domains.
In the time domain, the process focused on the decay level of long-lag auto-correlations;
while, in the frequency domain process, the focus was on the level of burst of low-frequency
spectra. In other words, the long memory process means that the dependence between
observations in the series is relatively strong. Detecting the origin of long memory could
lead us to very significant literature, such as, (Cioczek-Georges & Mandelbrot, 1995;
Granger, 1980). For more details see (Andersen et al., 2001; Diebold & Inoue, 2001).

In 1980, Granger tried to explain the long memory process by aggregating dynamic
equations. He showed that cross-sectional aggregation could have a long-range dependence.
Three possible suggestions were detected in the time series models: firstly, the time series
has a spectrum of small frequencies d > 0. Secondly, the time series had infinite variance
(d > 1/2) or finite variance (d < 1/2). Thirdly, a time series with d=1 needs to be
differenced to approach stationarity. Granger (1980) claimed that in practice, aggregating

dynamic equations could generate a new class of models that have different properties
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(e.g. long memory and integrated process). Consequently, the models should be diagnosed
before analysis, otherwise the estimation will be inefficient or spurious (Granger, 1980).
During the same period of time, Granger and Joyeux (1980) introduced the "fractional
differencing" technique and suggested that the "d" order does not necessarily have to
be an integer, as (Box & Jenkins, 1970)’s method. By allowing for a fractional "d"
(1 > d > 0) the model might provide a higher quality of forecasting in both the short-run
and the long-run, especially in low-frequency modelling. As a result, Granger and Joyeux
(1980) stated that proposing the fractional differencing process provides useful and fruitful

long-dependence forecasting properties, particularly in low-frequency equations.

Long-range dependence models have been employed extensively in financial data (e.g.
inflation rates, interest rates, forward premiums) (Baillie, 1996). Baillie (1996) claimed
that long memory processes have gained significant success in examining the volatility
in financial markets. Slightly wider, indeed the auto-regressive fractional integrated
moving average (ARFIMA afterwards) model (Granger, 1980; Granger & Joyeux, 1980;
Hosking, 1981) has several useful applications in financial markets literature, particularly
in volatility forecasting. An example of the latter claim, F. X. Diebold et al. (1991) applied
ARFIMA process to study the behaviour of 16 real exchange rates. Their conclusion
was that applying ARFIM A models provided powerful long-run forecasts and effects of
shocks. One more example to support ARFIMA process’ literature, Crato and Rothman
(1994) estimated the real exchange rate of nine currencies against the British pound
between 1973 and 1990 to find the long-run purchasing power parity. They claimed that
ARFIMA processes are more flexible and relatively more generalizable than other earlier
studies. Others supported the accuracy and powerl of ARFIM A process. For more
details in the literature, see (Coli et al., 2005; Comte & Renault, 1998; Granger & Ding,
1996; Martens et al., 2004). For full survies, see (Baillie, 1996; Liu, Chen, & Zhang, 2017).

The aforementioned literature claimed that AR, M A, ARM A and ARIM A processes can
only capture short-run dependence (Liu et al., 2017). By contrast, the ARFIM A model
provides a better fit and forecasting when dealing with long memory data (F. Diebold
& Rudebusch, 1990; Liu et al., 2017). Although ARFIMA models perform better than
previously, Hauser et al. (1999) criticised the processes and proved that ARFIMA is
not suitable for the estimation of stability, because of the violation of behaviour in
their spectral densities. For countering literature see, (Reschenhofer, 2000; Sitohang &
Darmawan, 2017). Consequently, the development and building of more appropriate
approaches to forecast macroeconomic and financial data under different circumstances is
required (Gabriel & Martins, 2004; Haldrup & Nielsen, 2006). In the next section, a new
set of approaches is developed within ARFIM A process to increase the accuracy and

capabilities of forecasting.
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3.2.4 Modelling structural breaks with ARFIMA process

Regime switching with long memory models has been employed and studied intensively
in financial markets. However, distinguishing between terms is extremely important,
as structural break and long-range dependence are very different fields for the same
phenomenon (Diebold & Inoue, 2001; Haldrup & Nielsen, 2006). Thus, an active literature
has been explored for these two phenomena to clear up the confusion between the
aforementioned models and provide more understandable and distinct work in this area
(Diebold & Inoue, 2001; Granger & Ding, 1996; Granger & Hyung, 2004; Hidalgo &
Robinson, 1996; Lobato & Savin, 1998). Based on the aforementioned literature, it was
agreed that a certain time series might show spurious long memory with respect to its
fractional order, see (Baillie, 1996; Beran & Terrin, 1994; Diebold & Inoue, 2001).

Empirically, Haldrup and Nielsen (2006) developed a Markov regime switching model
which allows us to divide the long memory into different regime states. They used hourly
spot electricity prices for 4 Scandinavian countries between January 2000 and October
2003. The switching regime model permitted categorisation of the behaviour of electricity
prices over time (long memory) into two states, the congestion and non-congestion
market. Their analysis generated important and fruitful outputs regarding the behaviour
of electricity prices. Analytically, the data (e.g. East Denmark and Sweden data pair)
suggested that the two series were fractionally co-integrated, but applying a switching
regime model reveals that the data were fractionally co-integrated in one state and not
in the other state. Moreover, an important feature claimed by Haldrup and Nielsen is
that the switching model system could have different levels of long memory from regime
to regime in the system. Motivated by the previous advantage, Tsay (2008) applied the
same methodology to discover the impact of oil prices on U.S. inflation between 1947 and
2007. Results suggested that oil price fluctuations play an important role in determining
the paths of U.S. inflation.

On the same grounds, Haldrup et al. (2010) endeavoured to solve a disadvantage found in
(Haldrup & Nielsen, 2006)’s framework by extending it from a univariate to a multivariate
model. Econometrically, the latter limitation is that the model estimates the parameters
separately, when actually the parameters are dominated by the same shock. Thus,
proposing a model that allows for a long memory and regime dependent vector auto-
regression (VAR) adds the advantage of permitting the variables to be incorporated
in the same process, being dominated by the same shock. The proposed model has
proved its effectiveness, particularly in forecasting, by providing a small mean absolute
forecast error (MAFE) compared with the univariate estimation. On the contrary, the
two proposed models above (Haldrup et al., 2010; Haldrup & Nielsen, 2006) consider the
state variable in the regime switching model as an observable state, while the standard
(Hamilton, 1989)’s model assumes the state variable as latent. Moreover, the latter two

models do not satisfy the proposal of (Diebold & Inoue, 2001), who suggested that a



Chapter 3 The Relevance of Memory and Efficiency in Endogenously Switching
76 Cross-market Bitcoin Prices

Markov switching model with latent variable can generate a long memory dependence

process.

Turning from electricity markets to interest rate markets and the Nile river level, Tsay
and Hérdle (2009) proposed a general class of Markov-switching auto-regressive fractional
integral moving average (MS — ARFIMA afterwards) processes, and used Durbin-
Levinson-Viterbi algorithm to easily deal with the complexity of computation®. The
distinguishing feature of the latter processes is that a hidden Markov model was employed.
In other words, in contrast to (Haldrup & Nielsen, 2006)’s approach, Tsay and Hérdle
(2009) modelled M S — ARFIM A by assuming that the variable state is latent. By this
method, the model became consistent with the Markov-switching AR model (Hamilton,
1989) and the puzzle proposed by (Diebold & Inoue, 2001) to build a latent Markov
switching model that can generate long-range dependence. Tsay and Héardle (2009)
applied their proposed model on US ex-post real interest rate and Nile river level data to
prove the stability and consistency of the model. Both applications provided consistent
results with the literature and were found to be useful in detecting structural breaks and

fractional integration simultaneously and endogenously (Tsay & Hérdle, 2009).

From South Africa, Balcilar et al. (2016) applied the latter model to study the duration
of inflation persistence over time and across different monetary policy regimes. Thus,
monthly CPI ' inflation between April, 1923 and April, 2014 was regressed to identify
the structural breaks along the series. Three regimes were identified: 1— a low inflation
regime (1920 — 1960); 2— a high inflation regime (1961 — 2003); 3— a low inflation
regime (2003 — 2014). Results suggest that inflation was persistent in all regimes, but
was significantly more persistent in a high inflation regime. By contrast, considerably
shorter persistence was found during the low inflation regime. Balcilar et al. claimed that
applying M S — ARFIM A model could generate useful and effective results for monetary

policies and macroeconomic applications.

Fofana et al. (2014) developed a regime switching univariate ARFIMA — GARCH
model to examine the problem of confusion between long memory and non-stationarity
in economics and financial time series. They analysed the daily volatility of two exchange
rates between January, 1990 and March, 2014. Their results indicate that the model was
capable of analysing the long-range dependence parameter and identifying non-stationarity.
However, the proposed model could not be estimated by Maximum Likelihood approach
because of the path dependence. Consequently, a Bayesian Markov chain Monte Carlo
(MCMC) method was used to embrace the problem. On the one hand, the authors
claimed that RS — ARFIMA — GARC H model'! was performing very well in modelling
financial time series and structural changes; on the other hand, although the model
considered the state variable to be latent (Tsay & Héardle, 2009), they assumed that

9More details are given in the methodology section
10Consumer price index
1Regime switching-ARFIMA-GARCH
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all regimes have the same probability of occurring (Fofana et al., 2014). Staying in
financial markets volatility, Raggi and Bordignon (2012) proposed a framework in line
with previous models, but the key difference in their framework is that the regime shifts
were modelled via binary non-observable Markov process, which allows the states to stay
dependent. They applied the latter approach to 5 minutes intra-daily data of S&P 500
index from January, 2000 to February, 2005. The results suggest that implied volatility is

important for forecasting realised volatility.

On the same grounds, Shi (2015) raised a question related to the above literature, "Can we
distinguish regime switching from long memory?". On a theoretical base, he proved that
smoothing probability causes long memory in regime switching. Thus, in this regard he
modelled a Markov regime-switching and ARFIMA model to create a two-stage-ARFIMA
(2S-ARFIMA) framework that could dominate the impact of the smoothing probability
series. A simulation study was proposed to show that it can easily and efficiently separate
the ARFIMA process from MRS 2 process. By applying the latter approach in a
financial application, it could easily clear up the confusion between regime switching and
long memory models. Similarly and on the same level, Shi and Ho (2015) proposed a
MRS — ARFIM A model? to alleviate the confusion between long memory and regime
switching. They applied their framework on German-Klass and realised volatility of the
FTSE index between January, 2001 and December, 2012 to explain the usefulness and
advantages of the proposed model. To support their results, a Monte Carlo simulation
showed that the model could easily and effectively identify the pure M RS and the pure
ARFIM A models'.

To sum up, volatility has been a controversial and important tool in financial markets
for decades. Historical volatility was popular for studying the behaviour of financial
instruments before the moving average M A and auto-regressive AR processes became
more effective in forecasting the fluctuations of financial securities. Later on, auto-
regressive conditional heteroscedasticity ARCH family and its extensions become more
popular to deal with financial data behaviour, particularly leverage affect and clustering
data. Although previous models perform very well in investigating volatilities across
markets, a huge gap still exists in studying the dynamic behaviour of volatility. As a
consequence, a strand of literature has started to investigate the dynamic behaviour of
financial assets with regard to the structural breaks along the time series. Many studies
have identified how break- points play an important role in determining the accuracy
and robustness of stochastic models. Thus, researchers and scholars have tried to find
the optimal model to cope with the complex behaviour of financial data. Unfortunately,
the long memory process comes with structural breaks to cause confusion in identifying

the latter terms. As a result, researchers such as (Tsay & Hardle, 2009) introduced a

12Markov-Regime Switching

13Markov regime switching-autorgressive fractional integrated moving average

14To explore more methodologies in investigating structural breaks and long memory see (Charfeddine
& Guégan, 2012).
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state-of-the-art endogenous model that can deal with all the limitations mentioned earlier
in (Fofana et al., 2014; Haldrup et al., 2010; Haldrup & Nielsen, 2006). More empirical

details will be discussed in the methodology section.

3.2.5 Review of the Cryptocurrency literature

Cryptocurrency markets have recently received significant attention due to their important
role in global financial markets. Thus, a significant growth of research has sprung up
recently to help governments and policy makers to design adequate regulations on
controlling cross-market movement shocks, and to discriminate and facilitate the best

investment decisions for financial institutions, investors and portfolio managers.

An excellent systematic survey done recently (Corbet et al., 2019) reveals that the
literature has focused mainly on three theoretical and empirical research areas: first,
regulations and information system research; second, financial market and monetary
theoretical formulation of cryptocurrency; and third, development of econometric and/or
statistical mechanisms to understand price behaviour under different scenarios. Another
systematic review done by (Kyriazis, 2019a) explores the cryptocurrency research under
efficient market hypotheses and long-range dependence, in which the latter provides
us with crucial inferences in determining the best investment strategies for gaining
extraordinary returns. To maintain the flow, and minimise repetition and space of a
succinct literature review, interested readers are encouraged to refer to the latter two

surveys.

Investigating the regulations and information systems of cryptocurrencies allows authori-
ties and legislators to derive suitable laws and regulations with boundaries to increase
the efficiency and decrease frustration and manipulation of the market (Bohme et al.,
2015; Dwyer, 2015; Gandal et al., 2018). A growing body of literature on economics and
financial markets, simultaneously with the latter phase of research has helped individual
investors, investment entities and risk managers to hedge and diversify their investment
to maximise their profits with the lowest associated risk (Baur et al., 2018; Gillaizeau
et al., 2019; Urquhart & Zhang, 2019). Despite the sparse amount of cryptocurrencies
literature on finance and economics, much excellent research in different areas such as
market efficiency, price and/or bubble dynamics, hedging and diversification strategies

has attempted to examine the cryptocurrencies market and Bitcoin in particular.

A plethora of empirical research has systematically presented state-of-the-art estimation
techniques to identify the efficiency of Bitcoin markets (Brauneis & Mestel, 2018; Khuntia
& Pattanayak, 2018; Wei, 2018), adopting different methods to support it and concluding
that the level of efficiency is associated with several factors, such as liquidity and size.
On the contrary, many researchers support the fact that the Bitcoin market shows lack

of efficiency, due to an imbalance between the true value of Bitcoin and its available
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information in the market (Bouri et al., 2019; Urquhart, 2016; Vidal-Toméas & Ibanez,
2018). Investigating the connectedness/spillovers and market dynamics provides a clear
indication of market inefficiency, together with useful information about the net receiver
and net dispenser of Bitcoin volatility (viz. Corbet et al., 2018; Gillaizeau et al., 2019).

A wide range of empirical research also focuses on long-range persistence, cointegration
and structural breaks to explain the complex behaviour and non-linear dynamics of
Bitcoin prices (Alvarez-Ramirez et al., 2018; Caporale et al., 2018; Cheah et al., 2018).
The existence of long-range dependence along the volatility series indicates informational
inefficiency in the market; hence, speculation, forecasting and designing profitable invest-
ment strategies can be exploited to make abnormal profits, but ignoring the stability of
the system during the analysis process could generate misleading information. Others
have analysed the time varying behaviour of long range dependence through different
tests such as Hurst exponent and detrended fluctuation analysis DF A and exact local
whittle estimation with rolling windows (Alvarez-Ramirez et al., 2018; Bariviera, 2017;
Bariviera et al., 2017; Caporale et al., 2018; Cheah et al., 2018). Statistical properties are
subject to sudden change over time, especially in the Bitcoin market, which may leave
some distortion shocks permanency; hence, structural breaks test are crucial to validate
the long range stability process (Al-Yahyaee et al., 2018; Bouri et al., 2019; Charfeddine
& Maouchi, 2019; Mensi et al., 2018, 2019). A long debate in the literature suggests
that the presence of structural breaks in a time series could appear as high long-range
persistence; thus, level shifts and long memory are easily confused as Diebold and Inoue
(2001) suggested.

By contrast, former studies such as Chaim and Laurini (2018) shed light on stochastic
volatility models with shifts in mean and variance for a ‘cryptocurrency market’ and
‘other asset markets’ (such as indices and gold), Cheah et al. (2018) demonstrating the
importance of cross-market dynamic interdependence of Bitcoin prices by estimating
a system-wide long-memory. The focus on a cross-market rather than a single market
cryptocurrency market in the latter study has significance in our context: by employing
ARFIM A Markov Switching with endogenous switch governing the internal dynamics of
Bitcoin prices or volatility system, we will be able to distinguish between the true and

spurious long memory with high accuracy.
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3.3 Empirical Methodology

3.3.1 Markov Switching Auto-regressive Model MS-AR

Hamilton (1989) introduced a discrete shifts in regime process through an auto-regressive
model to trace the dynamic behaviour of a time series. To illustrate that, we should
consider that the mean (intercept) of an auto-regressive model is non-constant overtime.
Thus, different auto-regressive models should be built after each break point to boost the
efficiency of detecting the non-linearity in a time series. Models (3.1) and (3.2) % below,
illustrate how considering two different intercept could help in solving the turning point

problems in time series.

Ty =01 + a1 + &, (3.1)

Ty = ag + Bri_1 + €, (3.2)

Where, ayg2 the constant terms and €, ~ i.i.dN (0, 02). The concept of the latter models
is plausible, but not effective to be processed individually. Econometrically, changing the
behaviour of series in the past and in the future (e.g. changing the intercept) should be
considered in the same model to provide a reliable forecasting. In this regard, the above
models could be compressed in a one framework and then allow the process to switch
among intercepts by an unobserved variable S;, which S; called regime or state variable

(e.g. Sy =1,2,3,..) 16. Consequently, equations (3.1) and (3.2) can be rewritten as:

Ty = Og, + B.I't_l + €, (33)

Where S; = 1 when the the process is in state 1 (a1), in contrast, Sy = 2 when the process
is in state 2 (a2). Equation (3.3) follows a normal distribution with different means and
variances. Hamilton considered latter regimes to be an unobserved random variable or in
other words discrete-valued stochastic variable. Mathematically, Markov chain process is
the simplest and proper model to deal with the travelling processes among regimes within
a system. Before start explaining Markov chain, let us firstly set Sy to be an integer
number as (1,2,3, ..., N). Secondly, Assume that S; equals a specific amount of j and

the probability of obtaining j depends totally on the most recent past value S;_;. Latter

15Some researchers considering these models as zero mean, see (Cochrane, 2005; Hamilton, 1994)

e — o1 = B(xe—1 — 1) + €.

Y6Notice here, if Si,t = 1,2, .. is defined as observable variable (known in advance), then the process is
simply a dummy variable auto-regressive.
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specification can be written mathematically as:
p= {St = j|St_1 = i,St_Q =m, } = p{st = j|St_1 = Z} :pij17 (3.4)

Where p;j,ij—1,2,3,.n -Which p;; is the transition probability, i is the state in time {;—1}
and j is the state in time {;}. By probability law the sum of all p;; must be equal to 1.

Di1 +Dpi2 +pis + .. +pin = 1, (3.5)

Transition probabilities could be compressed into (N x N) matrix, called the transition

probability matrix or P:

P11 P21 ... DPN1
P12 P22 ... DN2

P=|". . . (3.6)
pPiN DP2N ... DPNN

In this transition probabilities matrix the column indicates to i*” and the row indicates
to the j* of pij in equation (3.5). For instance, the column 2, row 1 parameter indicates
to the probability that state 2 will be followed by state 1. In other words, transition
probabilities should give some inference for choosing the current state among the states

in the system:

P{St = 2|St_1 = 2} =p

(3.7)
P{St = 1|St_1 = 1} =q

In case the system has two states, four transition probabilities will be generated: staying
in the same state (p or ¢) or switching from state to state (1 —p or 1 — ¢). In general,
after forecasting the Markov chain a Maximum Likelihood Estimation M LE method can
be employed to analyse the mixture model'®19. Estimating the model can be executed

by the expectation maximisation (ME) algorithm?°.

1"Notice here, Hamilton assumed that the state is just depends on the most recent past value {S¢-1}
and ignore all others {S:—2, St—3, St—4,..}.

18Markov chain can be represent through vector auto-regression frame to calculate all the possible
number of ahead forecasts of the process. Notice here, the matrix P must be irreducible (pi11 <
1 and p22 < 1) otherwise the state will be an absorbing state (the process will stay in this process
forever), to review the full process see (Hamilton, 1989, 1994).

19 After forecasting the probabilities, an inference on the regimes can be build through Bayesian theorem,
by combining the information of current and past data, transition probabilities and distributions. The
latter combination can generate inference for each date ¢ in the sample data, this process called the
smoother recursion, see (Kim, 1994) for more details.

20The first equation displays the normal distribution function:

2
F(Xilsi = :0) = s - exp(“5 ) x P8 = jlai-y)

where, X; is the data set, S; is the number of states, 6 is a vector of population parameter § =
(a1, 2,01, 02,p11, p22). For more information about analysing MS — AR see Kim (1994). See also (Kim
& Nelson, 1999) to explore different calculation methods of Markov switching model. Moreover, the
second equation represents log M LE:

log L(0) = %,_y7 log{Ss,_, f(x¢|St, zt—1; 0) P(St|we—1)}.
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3.3.2 Markov Switching Auto-regressive moving Average MS-ARMA

The latter subsection introduced a general class of MS — AR process (Hamilton, 1989).
In this subsection an M.S — ARM A model will be introduced to build an initial idea
about M'S — ARFIM A model. Chen and Tsay (2011) investigated the problem of "N*
possible routs" when the system contains M A parameters by building a new algorithm
based on (Gray, 1996; Hamilton, 1989) ideas and call it the extended Hamilton-gray
EHG algorithm. However, N — state in M.S — ARM A(p, q) model can be written as
follows with respect to the equations btween (3.4) and (3.7):

Ty = Qgt + E?zlﬁ(l‘tfi — Oéstfi) + € + E?Zléiet,i, € ~ ZZdN(O, O'gt) (3.8)

The model above is identical with equation (3.3) plus the MA term (d;e;—;). Some
restrictions as invertibility and stationarity on AR & M A polynomials among each state
should be identified:

T (L)=1—oq 4L —- - —apsLP, Ee(L)=14016, L+ --+0q5L%  (3.9)

Where, Y5, (L) & =5, (L) are the roots of polynomial and by assumption they should be
all outside the unit root circle. Moreover, both polynomials of AR&M A do not share any
common roots 2'. However, when g = 0, EM algorithm cannot be employed, basically,
because the possible routs of regimes that running from ¢; to ¢; is going to expand
exponentially "N7"22 Consequently, their algorithm is able to trace the past history
of z; up to a particular lag to extract the error terms from z; instead of tracing the
entire past history of x;. Hence, the approach is recursively analysing the conditional
expectation of lagged ¢;_n the M LE can be estimated efficiently. For more approaches
to resolve the same problem see (Billio & Monfort, 1998; Billio, Monfort, & Robert, 1999;
Kim, 1994).

After calculating the population parameters of the switching-regime model based on
FEHG algorithm?? a smooth and efficient process can easily analyse the mixture model in

equation (3.8).

21Gee, (Chen & Tsay, 2011), Assumption 1

22Notice here, this problem arise when the system is going to filter out all the sequence of error terms
(€1, ,€t) to proceed the MLE

23see, (Chen & Tsay, 2011) for the full process.
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3.3.3 Markov-Switching Auto-regressive Fractional Integral Moving
Average MS-ARFIMA

A conquer method developed by (Tsay & Hérdle, 2009) will be adopted to investigate the
persistence of Bitcoin volatility across different markets. In this subsections ARFIM A

process and Markov switching model will be demonstrated in details.

AR, ARMA or ARIMA are formally a special case of the most generalised model
ARFIM A process. The former models functionally are capturing only the short-range
dependence SRD, per contra the latter process was modified to be able to trace the
short-range and long-range LRD dependence. However, combining Markov-switching
model with long memory enable us to study the fractional order of integrations with
the presence of structural breaks simultaneously and endogenously through a unified
framework. This process is known to be more efficient and robust for capturing the
complex behaviour of exchange rates across financial markets, otherwise, neglecting the
both latter phenomenon could generate very deceptive inferences (Diebold & Inoue, 2001;
Haldrup & Nielsen, 2006; Tsay & Hardle, 2009).

Previous subsections explore how an AR and ARM A models with Markov-switching
process can be employed to trace the complex dynamic behaviour of a time series. Tsay
and Hérdle (2009) introduced fractional integration to the above model M.S — ARM A,
thus three main parameters are able to switch within M.S — ARFIM A(p, d, q) processes.

A fractional integral process (n), is defined as follows:

(1 - L) =¢ (3.10)

Where ”L” is the back shift operator, ¢; is identically independently distributed and
0 < d < 1. Long memory process is stationary when d > 0 and non-stationary when
d > 0.5. Fractional integration process "d" features by the slow hyperbolic decaying of

the auto-correlation function:

_T(n+dIr'(1—d)

pln) = T(n—d+ 1)I(d)’

where p(n) ~ (3.11)

Where p(n) is the auto-correlation function of x; at lag n, I'(-) is gamma function, (z;) in
equation 3.10 represents ARFIMA(0,d,0), n is the lag of z.

After introducing M.S — AR between the equations 3.3 and 3.7 the long memory process
in the latter equations can be combine with Markov chain approach to produce MS-
ARFIMA(p,d,q) as follows:

Tt :Oést'l(t Z 1)+(1 —L)_dSt * Ogt wtl(t Z 1) :astf(t Z 1)+yt (312)
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Where, x; is the observed time series, I(-) is the indicator function, 1 is a stationary zero
mean process with spectral density Fyy(A\) ~ Gy as X — 0 at each state. The ARMA
process is stationary and invertiable and y is simple ARFIMA (0,d,0) process.

The fractional differencing (ds;) in the latter process is permitted to be a Markov chain,
but with considering one condition that s; is independent of .- for all ¢ and 7. However,
it is well known that (Hamilton, 1989)’s algorithm cannot be employed to estimate the
latter process and the reason is consist with the problem of estimating MS — ARM A

in the previous subsection??.

Thus, the possible routs of regimes that running from
t1 to t; are expanding exponentially "NT"25 Moreover, because of the fractional
differencing parameter, M.S — ARFIM A process cannot, be build in a state-space form.
As a consequence, Tsay and Hérdle (2009) derived a new algorithm called Durbin-Levinson-
Viterbi (DLV') to cop with the limitation above. Their new algorithm was built based on a
combination of two separate and well known algorithms in the literature; Durbin-Levinson
algorithm and the Viterbi algorithm. DLV algorithm is now solving two major problems:
ARFIM A model with hidden Markov process can be estimated efficiently and the puzzle
proposed by (Diebold & Inoue, 2001) is solved now. DLV algorithm now can capture

the long memory of a time series with the existence of potential structural breaks.

To perform the DLV algorithm mathematically let us consider equation (3.12) in its
simplest case which the long memory parameters are constant among the states (dp). €
is a zero mean and independently and identically distributed. Technically, We can employ
Durbin-Levinson algorithm to execute the latter specification (dy) and the likelihood

function of the process can be written as:

T

a2
£ Xi¢) = [Jm) 0t x-S0 Plsfsir), (313
t=1 -

Where T is the total sample, X7 = (x1,..,2¢)" is the column vector for the whole
observation from time 1 to ¢, Sy = (s1,..,5;)" is the corresponding regimes and ¢ 26 is
column vector of both the transition probabilities p;; and the vector parameter v, which

1

V= (alw'aaN;o-l?“aO-N;Tll)"7Tlp;T217"7TNp;d17"7dN;Ellv"7ENq) : :l:/t is a one-step

ahead predictor of ¥, u; is the corresponding one-step ahead forecasting variance.

Equation (3.13) is appropriate to implement the Viterbi algorithm. Therefore, by com-
bining the latter algorithm to Durbin-Levinson algorithm, dy can shifts among two states
ds,, which DLV now can detect the long memory parameter of a time series with the

presence of a Markov-switching in mean.

24Notice here, if ds;=0, then the process is still M.S — AR model (Hamilton, 1989).

25This problem arise when the process is going to filter out all the sequence of error terms (e1,-+- ,€)
to proceed the MLE

26Notice here, this parameter is representing the conditional density function CDF of X
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As we mentioned earlier that model (3.12) is no longer can be written in a state space
form because of the long memory parameter and identifying the possible states paths

expand exponentially as follows?":

(St—1(st = j), st = j) = (s1(st = ), s2(st = j), -+, st-1(8t = ), st = J), (3.14)

Where (Si—1(st = j), st = j) called the survivor and associated with node (s; = j).

3.4 Data and estimation results

3.4.1 Data

The collected data were daily high and low (H — L) exchange rates of Bitcoin against five
major currencies across the globe — namely the U.S. dollar (USD), the Australian dollar
(AUD), the Canadian dollar (CAD), the Euro (EUR) and the British Pound (GBP).
The sample span ran from Jan 1%, 2015 to March, 13", 2019. All the Bitcoin prices
were obtained from (Bitcoinity.org) 2%, and to check the accuracy of prices we compared
our sample spans with Quandle and bitcoicharts. As mentioned above, a plethora of
literature has claimed that the Bitcoin market is isolated from other conventional markets.
Consequently, we are interested in investigating the cross-market Bitcoin prices. To
choose the ideal Bitcoin prices against each currency, we took into consideration the
trading volume across all the platforms of each currency (e.g. USD, CAD, GBP, AUD
and EUR) in Bitcoin markets. We found that the trading volume of USD in Bitfinex
platform has exceeded 185 Billion over the last five years, which makes the market share
of the latter platform at around 40.98%, overtaking almost half the market in trading
Bitcoin in USD. Kraken platform has executed transactions of BTC/EUR by around
32 Billion over the last five years, and the market share of trading Bitcoin/Eur via this
platform was around 34%%°. GBP, CAD and AUD were traded intensively on Bit-x,
Quadrigacx and Btcmarkets platforms respectively. The market share of trading Bitcoin

in the latter three currencies is 52%, 75% and 85% respectively.

We computed Parkinson’s High-Low historical volatility (HL — HV') model to overcome
the weaknesses in the conventional volatility model. Close-to-close volatility model
neglects the sensitivity of trading hours; hence, lots of valuable information will be
excluded (Bennett & Gil, 2012). Parkinson’s model produces more significant signals
and improves the efficiency of the volatility estimate (Parkinson, 1980). Bennett and Gil
(2012); Parkinson (1980) claim that Parkinson’s volatility measure is more efficient and

productive than conventional close-to-close volatility estimates.

2"For the full process of Viterbi algorithm see(Tsay & Hirdle, 2009)
B http : //data.bitcoinity.org/markets/volume/30d?c = e&t = b
2%rom Jan 1, 2015 to March 13, 2019


http:Bitcoinity.org
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Formally, V' for each of our five Bitcoin to currency exchange rates is calculated as follows.

(3.15)

where h and [ are the highest and lowest exchange rates on a given trading day, respectively.
The estimator above computes the daily variance, hence, the corresponding estimate of

the annualised daily percent standard deviation (volatility) is computed as follows:

Vol =v365*V.

3.4.2 Summary statistics

Table 3.1 displays the descriptive statistics of Bitcoin volatility for the five major currencies.
The number of observations are 1533 for each market®®. The average volatility across
all variables is swinging around 0.6.The highest and lowest mean across the sample are
AUD (0.661) and GBP (0.602) respectively. Observing the second moment, we can notice
that the S.D. across the five variables is fluctuating between CAD (0.515) and AUD
(0.565).Thus, the average of S.D. is approximately 0.5. The five exchange rates display
large positive skewness, suggesting a large concentration of observations to the left of
their central tendency; hence, volatility series are asymmetrically distributed. Bitcoin
prices are sensitive to the major economic and political events, and all extreme shocks
can be explained through the four moments. All series show unequivocally leptokurtic
behaviours, of which Kurtosis is different across individual series, ranging from around
14 on average (BTC/USD, BTC/CAD and BTC/AUD) to about 25 (BTC/EUR and
BTC/GBP).

Figure 3.1 displays the volatility of five Bitcoin markets over time. BTC/EUR and
BTC/GBP show the highest shock across the whole system, recording only around 7 in
both markets. Visually, we can confirm that BTC/USD and BTC/EUR are the most
stable markets, of which both series are fluctuating below 2 most of the time, except
for the period around 2018. Also, extensive fluctuations across the entire system appear
mainly around 2018 and partially between 2015 and 2016, hinting that certain events

such as Brexit and platform breaches lead Bitcoin prices to be remarkably sensitive.

In the next subsection, the series proprieties are diagnosed, including stationarity, long

memory and structural breaks.

30We find the optimal Bitcoin data can be obtained from bitcoinity.org and bitcoincharts.com


http:bitcoincharts.com
http:bitcoinity.org
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Figure 3.1 Bitcoin daily volatility of five markets
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Note: Top left corner BTC/USD, top right BTC/EUR, middle left BTC/GBP, middle right BTC/AUD
and bottom BTC/CAD. Exchange rate volatility, daily. Dates on the x-axis indicate the start of the year
and ticks are quarterly.

Table 3.1 Summary statistics, exchange rate volatility

Exchange rate Mean S.D  Min Max Skewness Kurtosis

BTC/USD 0.631 0.543 0.051 5.364 2.560 13.79

BTC/EUR 0.609 0.554 0.062 6.975 3.082 21.11

BTC/GBP 0.602 0.556 0.045 7.468 3.507 26.63

BTC/AUD 0.661 0.565 0.050 4.866 2.941 15.47

BTC/CAD 0.617 0.515 0.079 4.838 2.731 14.23
Obs. 1533
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3.4.3 Stationarity and the presence of long memory

Diagnosing the stationarity of exchange rates series through Augmented Dicky Fuller
(ADF) and the Kwiatkowski-Phillips—Schmidt—Shin (KPSS) unit root tests is required
(Dickey & Fuller, 1979; Kwaitkowski, Phillips, Schmidt, & Shin, 1992). The latter tests
give an initial evidence on the presence of long memory. If the conclusion of both tests is
different, this means a long memory process may exist in every individual series. Table
3.2 shows both the latter tests, of which ADF and KPSS tests rejected the null hypothesis
at 1% significance level. On the one hand, ADF test admits the stationarity of the five
exchange rates series. On the other hand, KPSS test confirms the rejection of all the
null hypothesis, which indicates that all the series are unity . Consequently, the joined
rejection of both tests hints that both tests provided insufficient representation, either
I(0) or I(1), and a fractional process should be adopted. Thus, to explore the long
memory process, we should employ more advanced techniques to study the long range
dependence in depth, such as "Local, Exact local, Feasible Exact Local and 2-step Exact
local whittle" estimation of fractional integration (Shimotsu, 2010; Shimotsu & Phillips,
2005). However, before moving directly to the fractional integration, we should stop a
while to investigate the potential breakpoints in Bitcoin markets, since the long memory

and turning points phenomenon are easily confused (Diebold & Inoue, 2001).

Although ADF and KPSS tests are efficient in detecting the stationarity of time series,
accounting for multiple structural breaks along with the unit root in a unified framework
is very important for detecting the original source of persistence across the different
markets. Narayan and Popp (2010) developed a test that can diagnose unity and multiple
structural breaks simultaneously. Table 3.3 shows the t-statistics and potential break
dates in each market. Based on the analysis, we reject the null hypothesis of unity across
the five markets. In Table 3.2 the joint rejection of both tests (ADF and KPSS) suggested
that both tests provided insufficient representation, and that a long memory test should
be carried out to clarify and identify the source of persistence. On the contrary, (Narayan
& Popp, 2010)’s test confirms the stationarity of all the series and detects two turning
points in each market. The conflict between the latter two tests raises the following
question: Which phenomena (e.g. structural breaks or stationarity) feed the volatility

persistence?

To answer this question, the next section illustrates the structural breaks separately;
we then combine the latter phenomenon in one framework (MS-ARFIMA) to easily

distinguish between them.
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Table 3.2 ADF and KPSS unit root tests, exchange rate volatility
Model with constant Model without constant
Exchange rate | Test  Test stat Critical Conclusion || Test stat Critical Conclusion
value 1% value 1%
ADF -7.682 -3.4 -4.191 -2. jected
BTC/USD 7.68 343 ected 9 58 Rejecte
KPSS 0.952 0.739 - - -
BTC/EUR ADF -9.254 -3.43 . -4.122 -2.58 Rejected
Rejected
KPSS 1.044 0.739 - - -
ADF -8.714 -3.4 -2.932 -2. j
BTC/GBP 8.7 3.43 Rejected 93 58 Rejected
KPSS 0.991 0.739 - - -
ADF -9.2 -3.4 -4.0917 -2. Rejected
BTC/AUD 9.237 3.43 Rejected 09 58 ejecte
KPSS 0.412 0.347 - - -
ADF -9.291 -3.4 -3. -2. j
BTC/CAD 9.29 3.43 Rejected 3.680 58 Rejected
KPSS 0.625 0.463 - - -
Model with trend Model with drift
Exchange rate Test  Test stat Critical Conclusion || Test stat Critical Conclusion
value 1% value 1%
ADF -7.832 -3. -7. -2.32 j
BTC/USD 783 396 Rejected 7.683 328 Rejected
KPSS 0.402 0.216 - - -
ADF -9.472 -3. -8.4 -2.32 jected
BTC/EUR 9.47 3.96 Rejected 8.489 328 Rejecte
KPSS 0.368 0.216 - - -
BTC/GBP ADF  -8.888 -3.96 Rejected || 571 2328 Rejected
KPSS 0.405 0.216 - - -
ADF -9.2 -3. -9.2 -2.32 jected
BTC/AUD 9.236 3.96 Rejected 9.238 328 Rejecte
KPSS 0.385 0.216 - - -
ADF -9.359 -3. -9.292 -2.328 Rejected
BTC/CAD 935 3.96 Rejected electe
KPSS 0.354 0.216 - - -

Table 3.3 Narayan and Popp (2010) Unit Root Test with Multiple Break Points
for The Five Bitcoin Markets

Exchange rate ‘ Test Test- stat Conclusion Brl Br2

BTC/USD ADF -9.768 Reject 29/04/2017 11/04/2018
BTC/EUR ADF -9.66 Reject 21/11/2017 05/02/2018
BTC/GBP ADF -8.22 Reject 27/11/2017 05/02/2018
BTC/AUD ADF -10.91 Reject 04/12/2017 05/02/2018
BTC/CAD ADF -11.31 Reject 03/12/2017 04/02/2018

Note: The analysis above represent model A (Break in level) propsed by (Narayan & Popp, 2010). Brl
and Br2 are the break dates across the five markets. The critical value at 1% significance level is -4.672.
The sample span is from 01/01/2015 to 13/03/2019. If t-stat is greater than the critical value we reject
the null of constant parameter. All critical values are obtained from (Hansen, 1990), Table 1.

3.5 Discussion of results

In this section, various methods to analyse fractional integration and switching models

are introduced to shed light on the dynamics of Bitcoin prices. The results of the multiple

breakpoint test (Bai & Perron, 1998) and fractional integration test (Shimotsu, 2010)

are initially discussed to allow us explain how MS — ARFIMA process aggregates
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the latter two phenomena and clear up the confusion between turning points and long
memory in a time series3!. Indeed, investigating the dynamics of Bitcoin markets under
MS — ARFIM A will allow us to study simultaneously and endogenously the persistence

of fractional integration and the potential breakpoints.

We comment on the results in three distinct sub-sections. In the first sub-section, the
potential break-points that have been detected through multiple breakpoint test will be
under scrutiny. In the second sub-section, Local Whittle, Exact Local Whittle, Feasible
Exact Local Whittle and Two-step Exact Local Whittle test will be illustrated in detail.
The last sub-section will demonstrate the endogenous shifts of long memory, mean and
variance parameters to clear the confusion between long memory and breakpoints. Then, a
brief illustration of the transition probability among the states will be displayed statically
and dynamically. Finally, we will provide a comparison between the fitted values of
ARFIMA and MS — ARFIM A processes to show the accuracy of the latter process.

3.5.1 Structural Breaks

Detecting potential breaks in a time series is a crucial matter to validate the performance
of an econometric model and control potential bias. Bai and Perron (1998, 2003)’s test is
applied to detect if there are potential turning points over time. The previous section has
confirmed the stationarity across the five series. Basically, by holding the stationarity
assumption, we confirm that the joint statistical probability of the five series does not
change over time (e.g. constant mean, constant variance, and trendless series). The
normal stationary tests such as ADF and K PSS are not powerful enough to detect the
joint statistical distribution among observations and specify the breakpoints. Multiple
breakpoint test is adopted to find if any of the five stationary exchange rate series has any
breaks in the joint probability over the time. Figure 3.2 reveals interesting information
which claims, contrary to stationarity assumption, that mean and variance are constant

along the sample span.

In Figure 3.2 the blue line illustrates the possible turning point in the mean over the
sample span across the five exchange rates. We use global information criterion method
to specify the breaks across the five markets. Ten breaks in (BTC/USD, BTC/EUR,
BTC/GBP) and eight breaks in (BTC/AUD and BTC/CAD) are selected by Bayesian
Information Criteria (BIC). Bai and Perron recommended using the highest trimming
percentage (15%) if the sample span is small. On the contrary, the used sample span
is 1533 observations, and choosing a lower trimming percentage as (5%) to detect the
turning points should be acceptable. By allowing for shifts in the constant, we can see
clearly from Figure 3.2 that the coefficient value during the first break in all series is
swinging between 0.7 and 0.94. Upward shifts appear in all series ranging around 1.5 from

the second quarter of 2017 to approximately the second quarter of 2018, then start to

31see (Diebold & Inoue, 2001)
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shift down again back to the normal shifts. Different upward and downward shifts across
the five exchange rates are recorded, but all conclude that the period from 2017 to the
middle of 2018 experienced waves of turmoil that distorted the distributional propriety

during that time.

Table 3.4 illustrates the number and date of breaks in each Bitcoin market. Three markets
(e.g. BTC/USD, BTC/EUR and BTC/GBP) showed ten breaks, while the rest (e.g.
BTC/AUD and BTC/CAD) had eight turning points over time. To minimise space and
avoid repetition of a similar discussion, interested readers are encouraged to see Table 4.4
and read the discussion in Section (4.5.3), Chapter Four. We mention here two significant
events that caused structural changes to market properties. The flash crash of Bitfinex
platform in August 2016 triggered thousands of investors’ wallets and hackers stole around
$ 72 million. Also, in February 2018, a significant attack disturbed the Bitcoin network

and caused a loss of $ 5 million.

It is worth pointing out that Bai and Perron provide the structural breaks in the mean,
but do we have breaks in the variance and AR terms? To answer this question, we
run (Hansen, 1992b) test to diagnose the parameters stability. Based on Table 3.5, we
cannot reject the consistency of u across the five markets. Also, we fail to reject the null
hypothesis of ¢ parameters across the markets, except for BTC/USD. Finally, BTC/USD
and BTC/AUD markets have constant o2 over time, while the rest of the markets showed

the variance drifting along the sample span.

Table 3.4 Estimated breaks in the volatility of Bitcoin exchange markets, (Bai
and Perron) test

Breaks Order BTC/USD BTC/EUR BTC/GBP BTC/AUD BTC/CAD
1 20 Mar 2015 27 Mar 2015 26 Mar 2015 02 May 2015 21 Mar 2015
2 29 Oct 2015 29 Oct 2015 30 Oct 2015 29 Oct 2015 11 Aug 2016
3 26 Jan 2016 25 Jan 2016 23 Jan 2016 23 Jan 2016 20 Dec 2016
4 27 May 2016 27 May 2016 27 May 2016 04 Jan 2017 07 May 2017
5 11 Aug 2016 11 Aug 2016 11 Aug 2016 22 May 2017 28 Nov 2017
6 21 Dec 2016 22 Dec 2016 21 Dec 2016 29 Nov 2017 12 Feb 2018
7 22 May 2017 02 May 2017 04 May 2017 13 Feb 2018 29 Apr 2018
8 29 Nov 2017 29 Nov 2017 29 Nov 2017 30 Apr 2018 13 Nov2018
9 13 Feb 2018 13 Feb 2018 13 Feb 2018 - -

10 30 Apr 2018 30 Apr 2018 30 Apr 2018 - -

Note: The above dates corresponded to Bai and Perron test in figure 3.2

Based on the above, some structural break models postulate that the shifting mechanism is
deterministic, and the switching is determined exogenously. Alternatively, (Bai & Perron,
2003) developed a model to detect structural breaks endogenously; hence there is no need
to determine the timing of breaks beforehand. However, the trimming percentage, and

allowing for serial correlation and heterogeneity restrict the model efficiency. Detecting
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Table 3.5 Hansen 1992’s Test for Stability of Bitcoin Markets

Exchange rate ‘ Parameters Estimated Test stat Critical value 5% Conclusion
s 0.000 0.002 Fail
BTC/USD ¢ -0.326 0.575 0.47 Reject
o’ 0.213 0.155 Fail
I3 0.000 0.001 Fail
BTC/EUR 1) -0.322 0.071 0.47 Fail
o2 0.216 0.839 Reject
I3 0.000 0.001 Fail
BTC/GBP 10) -0.347 0.018 0.47 Fail
o2 0.229 0.566 Reject
I3 0.000 0.001 Fail
BTC/AUD 1) -0.304 0.031 0.47 Fail
o’ 0.248 0.461 Fail
I3 0.000 0.002 Fail
BTC/CAD 10 -0.344 0.130 0.47 Fail
o2 0.201 1.088 Reject

Note: If t-stat is greater than the critical value we reject the null of constant parameter. All critical
values are obtained from (Hansen, 1990), Table 1.

the structural breaks and identifying the changing points (e.g. mean, variance, AR
and long memory) across a series is very helpful, especially if the series is displaying
a long memory. Why is this important? Because, as we mentioned above, the slow
decaying of auto-correlation function could be accounted from both short memory series
with potential breakpoints (structural breakpoints phenomenon) or strong dependence
among observations within the series (long memory phenomena) Diebold and Inoue
(2001). An important question arises here, to clear up the confusion between the latter
two very similar phenomena: "Should we test both long memory and structural breaks
simultaneously in a unified framework?" or "Should we account for the last two problems

separately?"

3.5.2 Fractional Integration

In the previous section we ran convectional unitroot tests to diagnose the stability of the
statistical properties of Bitcoin volatility series over time, an indication arising that proper
long memory tests should be adopted to discover if the series fell within the co-variance

stationary zone or not.

Thus, the Local Whittle and its extended versions (e.g. ELW, TSELW) with and without
de-trending and de-meaning were employed to detect the long memory across the five
markets. The analysis was implemented in different bandwidths (e.g. m = T%5 m =
106 m = T97 m = T8 m = T99)) to insure that the long memory was not sensitive to
the choice of one particular bandwidth. Moreover, rolling windows of the estimated d

were applied to diagnose the stability of the estimated d parameters over time.
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Figure 3.2 Estimated breaks in the volatility of Bitcoin exchange markets (Bai

and Perron)
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and bottom BTC/CAD. Blue line represents Bai and Perron multiple structural test, red line is the
MS-ARFIMA process. Dates on the X-axis indicate the start of the year, and ticks are quarterly.

Tables 3.6, 3.7 , 3.8 and 3.9 illustrate the degree of fractional integration based on Local
Whittle (LW), Exact Local Whittle (ELW), Feasible Exact Local Whittle (FELW) and
Two-step Exact Local Whittle (TSELW) estimations of the volatility under different
band width respectively. All tests provide 4 bandwidths (e.g. m =T%5 to m =T"8)
to detect the sensitivity of d under different specific bandwidths. Results among the
latter tables show that each exchange rate series has a significant long memory. All the
outcomes display a value higher than zero d > 0, which means the series are strongly
persistent along the sample span. The values of d are bounded in the (0,0.5) interval

for the five markets across almost all the bandwidths, which indicate that all series are
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co-variance stationary except m = T%% across the BTC/USD and BTC/EUR markets.
Generally, we can confirm that the major of d values are co-variance stationary and
mean-reverting, which implies that the shock effects will die out in the long run. A close
look at the series individually shows that the value of d across different bandwidths for
all markets are swinging between ”0.35 and 0.54”. All tests provide approximately
identical results, hinting at stable estimations, which implies that the series contains long

memory and this may have useful implication within this context.

For each d value, the asymptotic standard error can be estimated as [4m]~%5. The
total number of observations in each series is 1533, and the bandwidths are ranging
from 0.5 to 0.8. For example, in Table 3.8, m = T9® the approximate SE is 0.0799.
Similarly, the approximate S.E of m = T%% to m = T%® bandwidths are 0.055, 0.0383,
and 0.026 respectively.

We extended the work in this chapter and took a further step to roll the estimated d by
setting a suitable window of the (T'SELW) estimation in Table 3.9. A window of 360
days with five days increments was used to detect the sensitivity of d within m = 796
bandwidth across all the markets. Figure 3.3 displays the stability of long memory
parameter across the five markets. We can see that the long memory in BT'C/USD
market was stable (d ~ 0.4) during the first half of 2015 and from the second half of
2016 to the end of the sample span. The period between the middle of 2015 and 2016
shows upward and downwards fluctuations, hinting that investors might overreact to their
investment decisions in the BT'C'/USD market. The BTC'/GBP market shows stable
persistence over the first half of the sample span, with stable downwards over the second
half of the period before coming back again to its normal value over the last few days
of the rolled d parameters. The rest of the markets (e.g. BI'C/EUR, BI'C/AUD and
BTC/CAD) display more upward and downward fluctuations over the sample span. All
markets show high persistence through the first year, the persistence starting to decline

gradually before it increases again.

Finally, we obtain the time series of the estimated "d" in each market, then identify a
suitable window for this series and roll it again to find the speed of decaying in the rolling
windows of estimated "d". Figures B.1 to B.5 represent the rolling windows of parameter
d against the rolling windows of the rolled "d" parameter3?. All the figures show upward
trend over time, hinting at a slow decay along the sample span. Moreover, the speed of
decaying is in-stable across the five series which indicates that the dependence among

observations is changing over time.

323ee appendix B



Chapter 3 The Relevance of Memory and Efficiency in Endogenously Switching
Cross-market Bitcoin Prices 95

Table 3.6 Estimates of Local Whittle (LW) for the volatility of the five BTC
markets

drw
m— 705 m — 706 = 707 m— 708
BTC/USD 0.514 0.445 0.410 0.360
BTC/EUR 0.521 0.370 0.389 0.378
BTC/GBP 0.471 0.408 0.340 0.352
BTC/AUD 0.436 0.350 0.362 0.346
BTC/CAD 0.417 0.400 0.334 0.347

Table 3.7 Estimates of Exact Local Whittle (ELW) for the volatility of the five
BTC markets

deLw
m — T05 m — 796 m = T°7 m = 7938
BTC/USD 0.541 0.463 0.428 0.390
BTC/EUR 0.539 0.368 0.400 0.408
BTC/GBP 0.469 0.410 0.345 0.379
BTC/AUD 0.492 0.376 0.388 0.384
BTC/CAD 0.430 0.423 0.352 0.382

Table 3.8 Estimates of Feasible Exact Local Whittle (FELW) for the volatility
of the five BTC markets

dreLw
m — T0-5 m — T0-6 m = 797 m = T°38
BTC/USD 0.520 0.451 0.417 0.380
BTC/EUR 0.524 0.374 0.396 0.400
BTC/GBP 0.479 0.413 0.346 0.374
BTC/AUD 0.454 0.354 0.368 0.367
BTC/CAD 0.439 0.408 0.341 0.368

Table 3.9 Estimates of Two-step Exact Local Whittle (TSELW) for the volatil-
ity of the five BTC markets)

drserw
m — T°5 m — T°6 m = T97 m — T8
BTC/USD 0.532 0.451 0.417 0.380
BTC/EUR 0.537 0.374 0.396 0.400
BTC/GBP 0.479 0.413 0.346 0.374
BTC/AUD 0.454 0.354 0.368 0.367
BTC/CAD 0.439 0.408 0.341 0.368
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Figure 3.3 The rolling windows of estimated "d" in Bitcoin markets.
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3.5.3 MS-ARFIMA model

Berkes et al. (2006); Diebold and Inoue (2001); Granger and Hyung (2004); Kunsch
(1987), and others? claimed that long range dependence and structural breaks are easily
confused. In the above sections, long memory tests and multiple structural break tests
were carried out to prove that each BTC exchange rate series has long range dependence
and turning points over time. Much research has studied the properties of Bitcoin markets
by detecting the fractional integration and structural changes of different approaches as
we have done in the first two subsections above (Bariviera, 2017; Bariviera et al., 2017;
Bouri et al., 2019; Charfeddine & Maouchi, 2019; Jiang et al., 2018; Mensi et al., 2018,
2019).

However, Diebold and Inoue (2001) claimed that a spurious long memory could be
generated due to the presence of structural breaks (persistence along the hyperbolic
decaying). Indeed, ignoring the structural breaks in a long memory time series could
generate unstable results, hence underestimating the long range dependence parameter.
To overcome the puzzle proposed by Diebold and Inoue, many authors have tried to build a
model that aggregates both structural breaks with long memory (Haldrup & Nielsen, 2006;
Ray & Tsay, 2002). Many gaps in the latter approaches were solved in MS — ARFIMA
(Tsay & Hardle, 2009). This model computes the degree of fractional integration and
structural breaks simultaneously and endogenously by shifting the ARFIM A parameters

via Markov switching process into different regimes.

Table 3.11 presents the static results of M.S — ARFIM A process across the five different
Bitcoin markets. Although the results across different specifications are stable3*, Table
3.11 shows the best fit of MS — ARFIM A in which each estimation has been selected
according to the highest log likelihood for each series under different MS — ARFIM A
orders. The best order of each exchange rate is as follows: BT'C/USD ~ MS—ARFIMA
(1,d,1), BTC/EUR~ MS—ARFIMA (1,d,0), BTC/GBP ~ MS—ARFIMA (1,d, 1),
BTC/AUD ~ MS — ARFIMA (1,d,1), BIC/CAD ~ MS — ARFIMA (0,d,1).

To investigate the volatility persistence in Bitcoin markets, we should first distinguish
between low and high volatility waves. Hence, we set up our M.S — ARFIM A model to
switch between two states: State 1 (high volatility regime) and State 2 (low volatility
regime). To confirm the choice of a two-regime switching model, we perform (Hansen,
1992a, 1996)’s test across the five volatility series. Table 3.10 shows the LR statistics and
critical values for each market. The null hypothesis of no regime switching (autoregression)
across the five markets can be rejected at 1% and 5% significance level, results confirming

that all series reveal two state Markov switching model.

33For excellent survey on structural breaks and long memory, see (Baillie, 1996)
34Gee appendix B to explore the different specifications of MS — ARFIM A process across the five
Bitcoin markets.
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Observing Table 3.11 the first column shows the M S — ARFIM A parameters, from
the top left corner (d; and dy) represents the long memory parameters in state 1 and
state 2 respectively. The mean and standard deviation of BTC exchange rate for each
market are (p; and p9) and (o7 and o3) parameters respectively. The (p1; and pog)
are the probability parameters, p1; illustrates the probability that the process will stay
in state 1 and (1 — p11) is the probability that the process will move from state 1 to
state 2. poo infers the probability of the process staying in state 2 and (1 — pog) is
the probability of moving from state 2 to state 1. ¢ and 6 are the auto-regressive and
moving average parameters. BTC/USD in Table 3.11 show that the estimated standard
deviation in regime 1 is higher than the standard deviation in regime 2, (o7 = 0.71) and
(o9 = 0.18), which indicates that state 1 (S7) is a high-volatility regime and state 2 (S2)
is a low-volatility regime. Relatively, if the variation around the mean shows a particular
behaviour, then the associated mean p; > po are displaying the same conclusion with
the volatility, which is g1 = 0.83 "state 1" and po = 0.19 "state 2".

Table 3.10 Hansen Linearity Test

Breaks Order BTC/USD BTC/EUR  BTC/GBP BTC/AUD BTC/CAD
LR stat 11.32 10.57 11.82 12.45 11.22
Critical Value 0.000 0.000 0.000 0.000 0.000

Note: The null hypothesis represents a one-state model against the alternative of two-state mode. 3.2

The memory properties explain the persistence in the BT'C'/USD market, if d > 0 means
that past shocks affect BTC price behaviour in the future. We can see that (d; and
dy) are greater than zero, which d; = 0.422 (S;) and dy = 0.425 (S2). The value of
fractional integration in both regimes is bounding within 0 < d < 0.5 interval, which
means the process is stationary with strong persistence over time. Transition probability
of 571 is p11 = 0.83 and for Sy is pyo = 0.95, which implies the probability of staying
in regime 2 is higher than staying in regime 1 by approximately 12%. Discussing the
static data of BT'C/USD markets is useful, but visualising the switching parameters
is very helpful to explore the structural breaks in fractional integration and the first
two statistical moments (u  and o). Figure 3.4 illustrates the switching in mean of
all Bitcoin markets over time. In the top left corner BT'C'/USD, we can observe that a
cluster of switches appears during some episodes of high shocks. These episodes can be
related to political or economic events that might have happened in Bitcoin market over
time. Switches within the system are treated endogenously, which means the model is
synchronised with growth-theoretic mechanisms that allow the process to generate shifts

based on the internal dynamics of BTC prices.

Moving to the second column in Table 3.11 (BT'C'/EU R market), the analysis displays
almost the same behaviour as the BTC'/USD market. The mean/volatility parameters
switch from 0.9/0.7 in S; to 0.2/0.16 in S3. Based on the transition probabilities, the
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Table 3.11 Estimates of MIS-ARFIMA model of volatility across the five Bitcoin
markets

BTC,/USD BTC/EUR BTC/GBP BTC/AUD BTC/CAD

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA  MS-ARFIMA
(1,d,1) (1,d,0) (1,d,1) (1,d,1) (0,d,1)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E Estimate S.E.
di 0.4224 0.0520 0.3472 0.0314 0.3570 0.0355 0.3427 0.0355 0.2914 0.0445

d2 0.4249 0.0329 0.3488 0.0199 0.3253 0.0240 0.3100 0.0177 0.2899 0.0221
p1 o 0.8314 0.1095 0.9056 0.0873 0.7206 0.1188 0.9596 0.1249 0.8757 0.0828
p2 0.1936 0.0691 0.2350 0.0523 0.1786 0.0541 0.2938 0.0552 0.2997 0.0427
o1 0.7098 0.0291 0.7165 0.0296 0.7981 0.0359 0.7956 0.0358 0.6611 0.0249
o2 0.1856 0.0038 0.1682 0.0034 0.1762 0.0035 0.1847 0.0037 0.1617 0.0034
p11 0.8339 0.0212 0.7662 0.0244 0.7323 0.0273 0.7303 0.0275 0.8410 0.0191
p22 0.9585 0.0057 0.9433 0.0066 0.9450 0.0064 0.9443 0.0064 0.9496 0.0064
¢ 0.3018 0.1022 -0.0328 0.0326 0.4184 0.3289 -0.4565 0.2795 - -

0 -0.4734 0.1025 - - -0.4446 0.3265 0.4948 0.2696 0.0526 0.0362

L -358.38933 -310.734501 -333.830679 -392.023359 -292.341567

Note: d: long memory, pu: mean, o: standard deviation, P: transition probability,¢: Autoregressive
parameter, §: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error

probability to stay in Se within the system is greater than the probability to stay in
S1 by 18%, which indicates that the process is most likely to generate its infer when
the mean /volatility of data is swinging between 1.67/1.44 respectively . As previously
mentioned, the conduct of statistical properties in S7 implies that the BT'C'/ EU R market
has a series of high shocks over time. Regarding fractional integration, the memory
parameters in both regimes indicate that the persistence is strong over the sample span,
and past events will engage in depicting the future price of BT'C'/EUR. We can observe
from Table 3.11 that the "d" parameter of (BT'C//EUR) is greater than zero and less
than 0.5 which indicates that the BT'C/EUR series is stationary and mean reverting.
In addition, di and do almost carry the same persistence value among the regimes,
which indicates that the persistence is running continuously along the whole period from
Jan, 2015 to March, 2019. Dynamically, the top right corner of Figure 3.4 demonstrates
the switching mean of BT C'/EUR volatility and identifies any intervening point that
happened because of abnormal events which may have occurred over time. On the
contrary, the BT C'/USD market (left top corner), BT'C/EU R market (top right corner)
shows a significant switch after 2017 over the same period. Consequently, it is likely these
fast switches happen due to the high speed of unusual events occurring in cryptocurrency

markets.

On the same pattern, in Table 3.11 the BTC/GBP, BTC/AUD and BT'C/C AD markets
display interesting results within the two-regime Markov switching system. If Bitcoin
markets possess episodes of high uncertainty, the markets will react randomly with high

volatilities as in S7 across the latter markets. On the other hand, low volatility state is
identified in Sy within the latter three markets. The mean of BT'C/GBP, BTC/AUD
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Figure 3.4 Bitcoin exchange rates and the path of estimated switching in the
mean of volatility
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and BTC/CAD series in Sy and Sy are 0.72/0.17, 0.95/0.29 and 0.87/0.29 respectively,
whereas the volatility in both regimes is 0.79/0.17, 0.79/0.18 and 0.66/0.16 respectively.
The most important parameter across the tables is the fractional integration, BT'C'/GBP
market, displaying a high persistence stationary behaviour with 0.35 in S; and 0.32 in S,
which refers to stable persistence through time. In the BT'C'/AU D market the fractional
differencing parameter in S7 shows a persistence by 0.34, while in Sy it reveals 0.31. Long
memory parameters di  and dy show almost steady persistence in BT'C/C AD markets
during the chosen period. Further, the transition probability parameters for BT'C'/GBP,
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BTC/AUD and BTC/CAD pos are greater than p;; and the process stays in regime

two much longer.

The transition probability parameters explain the dynamics of Bitcoin prices. We can
see in 3.11 that the transition probability pl1 is always lower than p22 across the five
markets. As discussed in the previous section, some events (e.g. cyber attacks) could
induce the system to be extremely volatile and break the cycle of persistence in the
process. Therefore, transition probability pl1 is always lower than p22 as the calculation
process consumes less time to analyse the peaks and shocks within the high volatility
regime. Further, as the value of both transition probabilities is relatively high, this gives
an indication that the process has spent most of the time calculating the parameter in

States 1 and 2 instead of switching between the two regimes.

In Figure 3.4, the middle row left and right illustrates the BT'C/GBP, BTC/AUD
markets respectively and the BTC'/C'AD market at the bottom. Among the five markets
we can observe that the BT'C'/AU D market (middle row right) has the highest transitions
number in mean, S.D and long memory parameters, albeit that along the year 2016 there
were no significant structural breaks, but the rest of the anterior and posterior years
have remarkable turning points. In all the markets except BT'C/AUD we can aver that
the period from 2015 to 2017 experienced a lower number of structural breaks than the
period 2017 to 2019. Indeed, after 2017 each market shows different breakpoints over the

time, depicting almost the same behaviour across the switching parameters.

Finally, Figure 3.5 shows the BT'C volatility for each market with its fitted ARFIM A
values. For each market we can observe how the estimated value of ARFIM A process
(dotted red line) fitted the original volatility series (black line) for each market. ARFIM A
process performed all the series perfectly in different specifications. It appears that in
Figure 3.5 the process detects the behaviour of each series, but it indicates that most
of the values far from the mean are not detected. By contrast, if we examine the fitted
MS — ARFIM A plots in Figure 3.6, we will notice the difference between the estimated
values of ARFIMA and the estimated value of MS — ARFIMA. The fitted values
(dotted red line) in the latter figures fit the original series exactly and detect the behaviour

of markets perfectly and accurately.
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Figure 3.5 Bitcoin Exchange rates
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Figure 3.6 Bitcoin Exchange rates volatility and the estimated values of MS-
ARFIMA model
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Note:Top left corner BTC/USD, top right BTC/EUR, middle left BTC/GBP, middle right BTC/AUD
and bottom BTC/CAD. Black solid line represents the Bitcoin exchange rate volatility, red dotted line
represents the fitted value from MS-ARFIMA model.
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3.5.4 Robustness

How sensitive are the results to the choice of alternative volatility measure and long

memory bandwidth?

We check the robustness of the full sample analysis results based on the volatility
measure and the bandwidth of the long memory parameter. Recall that the empirical
analysis is based on (Parkinson, 1980)’s High-Low historical volatility measure. This
measure provides more useful information regarding future volatility than a close-to-close
estimator, but following the literature, we can calculate the volatility as the logarithmic
difference between high and low Bitcoin prices Return wolatility = LnPpgn —
LnPy,, (Bariviera, 2017).

As robustness checks, we use the latter estimator to re-estimate the structural breaks, long
memory and MS-ARFIMA model to obtain both static and dynamic data. Comparing
Parkinson’s measure with return volatility measure, we find no significant differences
among the switches especially during the high fluctuation periods. The conclusion for
both measures is the same, as all Bitcoin exchange rates volatility show high persistence
over time (Table 3.14) with significant structural breaks, particularly after 2017 (Figures
3.8 & 3.9). Further, (Shimotsu, 2010)’s long memory measures were applied in different
bandwidths to assess the stability of the analysis. Feasible local Whittle (Table 3.12) and
Two-step Exact local Whittle (Table 3.13) with different bandwidths (0.5 to 0.8) were
employed to assess the value of d. Both Parkinson’s and return volatility measures show

stable and consistent results across the five Bitcoin markets.

Appendix B shows the static estimations of M.S — ARFIMA process of the return
volatility across all the markets and under different specifications (tables B.6 to B.10), all
the results co-moves and have a similar conclusion to the estimations of MS — ARFIM A
of Parkinson’s volatility in section (3.5). Fitted values against the original return volatility
series are displayed in appendix B also, to support the latter claim and show that the
MS — ARFIM A process is mimicking the complex behaviour of return volatility across
the five Bitcoin markets (figures B.11 to B.15)3%.

35Figures (B.6 to B.10) in appendix B show the fitted value of ARFIM A process against the five
return volatility markets. Clearly we can identify that M.S — ARFIM A process (figures B.11 to B.15) is
detecting the complex behaviour more efficiently and accurately.
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Figure 3.7 The Bitcoin daily return-volatility of the five markets
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and bottom BTC/CAD. Exchange rate volatility, daily. Dates on the x-axis indicate the start of the year
and ticks are quarterly.

Table 3.12 Estimates of Feasible Exact Local Whittle (FELW) for the return
volatility of the five BTC markets

dreLw
m — 795 m — T96 m = T97 m — 798
BTC/USD 0.516 0.451 0.418 0.381
BTC/EUR 0.524 0.375 0.396 0.401
BTC/GBP 0.479 0.412 0.346 0.374
BTC/AUD 0.454 0.354 0.368 0.368
BTC/CAD 0.440 0.407 0.341 0.369




Chapter 3

106

The Relevance of Memory and Efficiency in Endogenously Switching

Cross-market Bitcoin Prices

Figure 3.8 Estimated breaks in the daily return volatility of Bitcoin exchange
markets (Bai and Perron)
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Table 3.13 Estimates of Two-step Exact Local Whittle (TSELW) for the return
volatility of the five BTC markets

drseLw
m — 795 m — 796 m = T97 m — 798
BTC/USD 0.533 0.451 0.418 0.381
BTC/EUR 0.538 0.375 0.396 0.401
BTC/GBP 0.479 0.412 0.346 0.374
BTC/AUD 0.454 0.354 0.368 0.368
BTC/CAD 0.440 0.407 0.341 0.369
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Figure 3.9 Bitcoin exchange rates and the path of estimated switching in the
mean of return volatility
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Table 3.14 Estimates of MS-ARFIMA model of volatility return across the five
Bitcoin markets

BTC/USD BTC/EUR BTC/GBP BTC/AUD BTC/CAD

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA  MS-ARFIMA
(1,d,1) (0,d,1) (1,d,0) (0,d,1) (1,d,1)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E Estimate S.E.
dy 04772 0.0486 0.3563 0.0322 0.3407 0.029 0.3561 0.0316 0.2756 0.0837

d 0.4423 0.0336 0.3485 0.0209 0.3117 0.0174 0.2982 0.0194 0.2663 0.0526
p1 o 6.2306 1.3547 7.1305 0.9302 6.4464 1.0258 6.7589 1.1148 6.2231 0.9982
p2 1.482 0.767 1.6703 0.5471 1.7022 0.461 2.3365 0.4484 2.1388 0.4621
o1 6.1884 0.2546 6.1937 0.2491 6.9928 0.3163 6.4412 0.255 5.4306 0.1790
o2 1.6003 0.0324 1.4403 0.0232 1.5378 0.0307 1.4006 0.0289 1.2759 0.0283
p11 0.8224 0.0218 0.7818 0.0232 0.7341 0.0274 0.7406 0.0239 0.8961 0.0138
p22 0.9553 0.0059 0.9425 0.0067 0.9451 0.0064 0.9265 0.0075 0.9516 0.0066
¢ 0.2769 0.0896 - - -0.0015 0.0194 - - -0.0902 0.0919
0 -0474 0.0898 -0.0436 0.036 - - 0.0549 0.0356 0.1382 0.0838

L -3672.7555 -3628.32752 -3647.5388 -3708.4664 -3612.41

Note: d: long memory, u: mean, o: standard deviation, P: transition probability,¢: Auto-regressive
parameter, §: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error
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3.6 Conclusions

The presence of structural breaks could create the impression of long memory in the
volatility of Bitcoin cross-markets. However, one of the benefits of using a Markov-
switching approach to the ARFIM A model is to overcome the possibility of spurious
long memory due to the presence of structural breaks. The objective of this chapter
is to investigate the persistence of fractional integration and potential break- points
simultaneously and endogenously using the MS — ARFIM A model for Bitcoin cross-

markets.

When structural break and fractional integration were tested separately, results show
clearly the presence of ten breaks in (BT'C/USD, BI'C/EUR and BTC/GBP) and
eight breaks in (BT C'/AUD and BTC/CAD), respectively, when Bai and Perron (1998)
test was used. In addition, the results show the presence of long memory across all the
Bitcoin cross-markets. Therefore, a spurious long memory in volatility could be attributed
to the presence of structural breaks if the standard ARFIM A model was applied to each
of the Bitcoin cross-markets respectively. Consequently, we applied the MS — ARFIM A
model instead. We find that the fractional integration displayed long-memory for all the
MS — ARFIM A models.

The finding in this chapter has two important implications for investors and policy makers.
First, the presence of long memory could enable investors to capture speculative profits.
This can be achieved through market timing. During a high-volatility regime, investors
can buy and then subsequently sell when the market switches to low-volatility regime
in all Bitcoin cross-markets. Investors could also hedge during high-volatility regime by
purchasing Bitcoin futures from the Chicago Board Option Exchange (CBOE). Second,
policy makers and regulators could introduce circuit breakers to stop trading in Bitcoin
cross-markets when the market switches abruptly to high-volatility regime, as the impact
of a negative downturn would take a relatively long period of time to dissipate, given the

nature of persistence in the price behaviour of Bitcoin in the cross-markets.

Apart from purchasing Bitcoin futures from the CBOE, the ability of portfolio investment
managers can be further enhanced if speculative and hedging activities between Bitcoin
cross-markets can be carried out as well. Therefore, we would extend the investigation
by employing the same approach to study the Bitcoin market and other financial assets.
Indeed, by examining a wide range of financial assets, including cryptocurrencies, we will
be able to develop a dynamic hedge ratio to enable both users and investors in Bitcoin
to formulate the appropriate hedging strategies between these cross-financial markets to

protect their respective portfolios from abrupt structural changes.
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Abstract

We investigate and detect the flow of volatility across the major Bitcoin markets under
episodes of cyber attacks and discuss several diversification strategies in this context.
Adopting both variance decomposition and weighted, directed networks analysis, allows
us to estimate the magnitude and direction of spillover effects among the six markets.
Security breaches have a significant impact on the Bitcoin prices and weaknesses in the
infrastructure of the Bitcoin network. We found that cyber attacks over the years create a
high degree of spillover because investors’ reaction to negative information depreciates the
price and creates a turmoil status across the markets. Our results show a strong volatility
spillover between the markets with upward spillover trending over time. Network analysis
helps us to zoom in on the propriety of spillover index to examine the direction and
magnitude of spillover effects over time. We studied 19 major cyber attacks between
2015 and 2019, scrutinising the connectedness among the six major Bitcoin markets. We
find that cyber attacks leave some distortion in the network depending on the size and
connectedness. On average BTC/USD and BTC/EUR and BTC/JPY possess stronger
predictive power, and transmit the volatility to the rest of the markets. A robustness
exercise generally supports our claim. Different hedging and investment strategies are

provided to help investors and policy makers.

Keywords: Keywords: Variance Decomposotion, volatility spillover, Network

analysis, Cyberattacks, Cross-market Bitcoin prices.
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4.1 Introduction

The popularity and interest in Bitcoin markets is growing rapidly. Indeed, Bitcoin is the
most active cryptocurrency with market capitalisation exceeding $ 145 billion', which
can be traded or exchanged, anonymously and instantaneously around the world. Bitcoin
is an application (digital currency) that can be transacted through anonymous, public
and open disrupted ledger without any central authority. To build the latter system,
Nakamoto (2008) rely on the block chain method 2 to build a safe, secure distributed
ledger needed to complete a state-of-the-art mathematical puzzle called proof of work
(PoW), to firstly verify transactions and secondly, build new blocks and add them to the
chain. These Bitcoins can be stored in secure software called a ‘wallet’, for which a private
key is provided to be able to access the Bitcoin addresses and all related information.
Bitcoin investors and others interested in the cryptocurrency market are seriously cautious
and alert to network safety and security, as a cyber attack or any other security breach is
going to affect and threaten the Bitcoin price substantially, and hence, their investment.
As Bitcoin prices are fundamentally driven by the feeling and memory of investors, cyber
crime events in Bitcoin markets should be controlled and the network security increased
to provide a safe environment for investors. To investigate the nature of such types of
investment decisions, and to help governments design adequate regulations for limiting

cross-market movement of shocks, a remarkable growth of research has lately sprung up.

Literature has focused on two main aspects of cryptocurrency price movements. First,
conceptual designs aiming to depict potential weaknesses of this market and show how
the latter can subject investors to insurmountable unsystematic risks (see for instance,
Cheah & Fry, 2015; Cheah et al., 2018). Second, a plethora of empirical research has
systematically presented state-of-the-art estimation techniques to identify, among others,
informational inefficiency (viz. Urquhart, 2016), long-range persistence behaviour and
cointegration (viz. Alvarez-Ramirez et al., 2018; Caporale et al., 2018; Cheah et al., 2018),
volatility spillovers and dynamic interactions with other financial assets (viz. Gillaizeau
et al., 2019), cyber criminality and market regulation (viz. Caporale et al., 2019; Corbet
et al., 2020; Gandal et al., 2018). Thus far, the extant research has largely focused on a
cross-section of cryptocurrencies and sparsely on the cross-market dynamics of a single
cryptocurrency. The current chapter aims to contribute to the nascent literature by
studying the issue of cyber crimes and identifying their affects across Bitcoin markets

exchanged in various currencies based on the network topology of variance decomposition.

The issue of networks has been studied everywhere in modern life, such as social sci-
ences, physics, biology and many others. Regarding the finance literature, F. Diebold
and Yilmaz (2014) designed a network connectedness framework in conjunction with

variance decomposition to understand and analyse the interdependence between network

! Coinmarketcap(Jan, 2020)
2Remember that the block chain is a one type of distributed ledger, so a block chain can be a
distributed ledger but not the reverse


https://coinmarketcap.com/
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components. Indeed, the latter framework simplifies and demonstrates volatility spillover
through the distance of diameters and degree of nodes in the network. Monitoring and
characterising the evolution of interdependence, especially during financial crisis and
episodes of economy-wide uncertainty help us to understand the flow and direction of
information within markets. Further, detecting shocks within a network is relatively
easy as one can exploit the different network features to monitor the movements and
generate better predictive power for an asset. Although the Bitcoin market is regulated
to some extent, it is still less safe than other conventional regulated markets around the
globe and cross-economies, which may increase the risk generated by investor sentiment
concerning the security of the network infrastructure. While former studies, such as
Corbet et al. (2020) shed light on the financial market effects of recent cyber criminality
in cryptocurrency markets, Caporale et al. (2019) investigated the effects of a wide range
of cyber attacks on cryptocurrency returns. The focus on a single market, rather than a
cross market cryptocurrency market in the latter study holds significance in our context:
designing a weighted directed network can create a stock of information for investors
seeking arbitrage value of Bitcoin traded in various markets. Further, regulators could
introduce circuit breakers to stop trading in Bitcoin cross-markets when the market
receives a severe shock that might impact negative down. This study provides a helpful

and robust investment strategy for a single cryptocurrency traded in various markets.

The main aim of the current chapter is to improve our limited understanding of the
serious damage and risk that could be generated from cyber attacks. Corbet et al. (2020)
find that the degree of risk within cryptocurrency markets is heavily dependent on the
stability and security of the market with the co-movement of extreme events. Thus, a
thorough understanding of network variance decomposition across Bitcoin markets is
important to gauge the level and magnitude of threat received by a security breach or
cyber attack. Therefore, this chapter contributes to the literature in two significant ways.
First, we study the network topology of Bitcoin prices volatilities by designing several
weighted directed networks during nineteen major cyber attacks. Although economic and
political events could generate volatilities within financial markets, but cyber attacks could
leave more significant impacts on cryptocurrencies market, hence, the markets are fully
electronic and vulnerable to cyberattacks. Each cryptocurrency has unique and distinct
infrastructure (network), thus, focusing on Bitcoin market rather than cryptocurrencies
markets allows us investigating the network more thoroughly and efficiently. Second, we
examine the impact of a series of cyber attacks across Bitcoin markets through variance
decomposition method. To the best of our knowledge there is no available financial
theoretical model to justify conditioning the predictive power of an asset market on
volatility in a cryptocurrency market. In this sense, a major contribution of the current
chapter is to measure and identify the network connectedness between Bitcoin markets
under several cyber attacks. By doing so, we aim to shed light on six Bitcoin markets

under different security breaches to identify their magnitudes and directions, statically,
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dynamically and graphically. Eventually, such tendencies could help investors and policy

makers to design useful strategies to systematically hedge and save the market.

To investigate further, the rest of the chapter is planned as follows: Section 2 revises
the cryptocurrency literature; Section 3 discusses data and summary statistics; Section 4
discusses estimation methods; Section 5 presents empirical results and robustness analyses;

Section 6 concludes and presents the main implications of our research.

4.2 Literature review

Although the Bitcoin system is based on the proof-of-work method to securely and
confidentially record users’ details on the distributed ledger, because of the decentrali-
sation and undetectable characteristics of the system, attackers and hackers exploit the
opportunity to commit fraudulent transactions, control the network and access sensitive
details. Attackers mainly target the users (investors), merchants (platform owners),
Bitcoin system (the network) and miners (builders of the chain) to hijack private keys,
sensitive details and control the network to gain more rewards (Conti et al., 2018). For
example, DDoS attacks can target a platform website or network and disturb the normal
traffic by flooding the target with loads of internet traffic, Wallet theft which mainly
targets users and individuals or businesses, and Double spending attacks which target
both platforms and sellers®. Some excellent surveys have been performed recently (Conti
et al., 2018; Ghimire & Selvaraj, 2018; Shalini & Santhi, 2019) in the computer science
and network security field to characterise, facilitate and clarify all the technical aspects
of the network, protocols (e.g. payment system), blocks and blockchain, proof-of-work

and mining processes in cryptocurrencies/Bitcoin.

A wide range of attacks on the Bitcoin system (e.g. Sybil attack, Eclipse attack, Block
withholding attack and many others) are revised in the literature and addressed to identify
the most hidden, vulnerable points in Bitcoin, and several solutions have been found to
improve the level of security(Conti et al., 2018). Pachal and Ruj (2019) introduced a
new mining approach that boosts the computational power to maximise the individual
miner’s gain against Selfish mining, Stubborn mining and others. A novel approach called
ByzCoin was proposed to leverage the security of Bitcoin and protect the mining and
consensus system (Kogias et al., 2016). Almukaynizi et al. (2018) proposed an approach
that can detect and identify cyber breaches and illegal activities in the Dark Web
targeting cryptocurrency platforms and traders. Another famous way of attacking Bitcoin
is via the internet routing infrastructure (IP hijacking), in which hackers manipulate the
Bitcoin traffic to hijack BGP prefixes? to slow down the network and partially occupy

the processing power to generate more rewards. Almukaynizi et al. (2018) proposed

3This could happen via a 51% attack; when one hacker or miner manages to occupy more than 51%
of a network, the double spending method will be possible to apply
“Border Gateway Protocol
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comprehensive short and long-term measures to limit attackers’ ability to redirect miners
IP addresses to their servers. To explore more of the technological and technical literature
see (Ahamad et al., 2013; Chyzhmar et al., 2019; Mukhopadhyay et al., 2016).

All the above technology and security challenges are associated with the significant risk
generated by the hijackers or attackers. However, the Bitcoin market is significantly
integrated with the global economy; thus, the associated risk could leak to economies,
social networks and many financial entities, and result in a remarkable distortion to the
system, users, markets and even the global economy. To identify and understand this in
cryptocurrency and the Bitcoin market, a systematic survey undertaken recently (Corbet
et al., 2019) reveals that the theoretical and empirical research in the cryptomarket
investigates mainly the regulations and information system, the financial market, the
monetary theoretical formulation of cryptocurrency, and finally the development of
empirical methods and mechanisms to study the complex interaction of prices under

different scenarios.

Other systematic surveys (Kyriazis, 2019a, 2019b) explore the empirical literature to clarify
and investigate market efficiency, connectedness and spillovers across the cryptocurrency
markets. The latter empirical results allow us to make decisive inferences and draw on
efficient and accurate investment strategies with lowest associated risk. Several pieces
of research have systematically proposed and investigated a plethora of techniques to
measure the level of efficiency in Bitcoin markets. Brauneis and Mestel (2018); Khuntia
and Pattanayak (2018); Wei (2018) applied several approaches and found that the Bitcoin
market is mostly efficient, and the level of market efficiency relatively impacted by
liquidity and size. By contrast, a plethora of research has supported the inefficiency of
Bitcoin markets, due to the imbalance between the true value of Bitcoin and its available
information in the market (Bouri et al., 2019; Urquhart, 2016). Empirical studies on
spillover volatility and price dynamics could be a good measurement for identifying
the level of efficiency in Bitcoin market and providing rich information about the net
receiver and net dispenser of Bitcoin volatility (Corbet et al., 2018; Gillaizeau et al.,
2019; Koutmos, 2018; Symitsi & Chalvatzis, 2018; Zieba et al., 2019, viz.). A stream of
literature has investigated structural breaks, co-integration and fractional integration to
detect and investigate the complex behaviour of cryptocurrency prices. Indeed, studying
the long memory in Bitcoin prices could determine the level of inefficiency in the market
and help investors to speculate and design several investment strategies that can generate
abnormal returns (Alvarez-Ramirez et al., 2018; Al-Yahyaee et al., 2018; Bouri et al.,
2019; Caporale et al., 2018; Charfeddine & Maouchi, 2019; Cheah et al., 2018; Mensi et
al., 2019). However, ignoring the stability of the system during the analysis process could

generate misleading information and bias investment strategies.

The third main strand of the literature focuses on the regulations, information systems and
cyber criminality of cryptocurrency markets that allow legislators and decision makers to

design appropriate regulations and create an efficient environment with flexible boundaries
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to restrict the frustration and manipulation across the cryptocurrency market (Bohme et
al., 2015; Dwyer, 2015; Gandal et al., 2018). Abhishta et al. (2019) investigated one of
the most important DDoS attacks mentioned earlier and its economic impact on Bitcoin.
They showed that DDoS attacks have a direct negative impact on the daily volume of
Bitcoin, most generating a one day shock, followed by recovery, although some react after
two to five days before recovering again. Marella et al. (2017) classified the cyber attacks
on Bitcoin (e.g. DDoS, code bugs or user errors) and the common response from users
(e.g. code revision, computer security measures or temporary suspension). They conclude
that cyber attacks can diminish the value of Bitcoin and leave a serious impact for its
users, exchange and different aspects. Caporale et al. (2019) investigated the impact of
cyber attacks on the return of four cryptocurrencies (e.g. Bitcoin, Stellar, Litecoin and
Ethernam) through Markov switching analysis and cumulative measures. Their results
suggest that cyber attacks induce the system to be highly volatile, and when the number
of cyber attacks increases dramatically, the probability of volatility to stay mostly stable
is low. Another interesting piece of research studied the influence of cyber criminal events
on price volatility and cross-cryptocurrency correlation. Significant results suggest that
during cyber attacks, there are very high episodes of volatility and broad co-movement
in cryptocurrency markets. They also found that there is a chance of abnormal returns
(which vary depending on the cyber attack event) just before the cyber attack occurs,
and zero returns during the time and announcement of the cyber attack (Corbet et al.,
2020) .

It is evident in the literature that Bitcoin prices are typically volatile during cyber attacks
and can be seriously manipulated in some markets (Gandal et al., 2018). In the meantime,
exchange rate differentials across markets offer investors the opportunity to enhance
their portfolio returns. Under these scenarios, it is expected that price volatility on one
particular Bitcoin-to-currency exchange market (e.g. Bitcoin-USD) can flow to other
markets, and can also be acquired from others. Any quantitative information on the
centrality or relative isolation of some Bitcoin-to-currency markets can actually help
investors to better anticipate their complex dynamic behaviour and exploit the potential
for forecastable gains. These premises are rigorously tested in the current chapter by using
daily price data on six major Bitcoin-to-currency exchange rates. In the next section, we
design the net predictive power and the net receiver of volatility during different cyber

attacks.
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4.3 Data and summary statistics

Table 4.1 Summary statistics, exchange rate volatility

Mean St. Dev. Median Max Min Skewness Kurtosis
BTC/USD 0.033 0.028 0.025 0.281 0.003 2.559 13.820
BTC/EUR 0.032 0.029 0.023 0.365 0.003 3.058 20.907
BTC/GBP 0.031 0.029 0.022 0.391 0.002 3.478 26.439
BTC/JPY 0.031 0.032 0.021 0.345 0.003 3.539 22.559
BTC/AUD 0.041 0.118 0.025 2.419 0.003 16.646 310.221
BTC/CAD 0.035 0.081 0.024 2.864 0.004 28.622 962.340

As mentioned above, a plethora of literature has claimed that the Bitcoin market is isolated
from other conventional markets. Consequently, we were interested in investigating the
cross-market Bitcoin prices system, as studying the dynamics of Bitcoin will provide rich
information about the factors affecting price developments and help us to devise efficient

investment strategies.

Bitcoin is traded across different countries in diverse exchanges. This chapter considers
daily high and low (H-L) exchange rates data against Bitcoin for six major currencies
across the world, namely the U.S. dollar (USD), Australian dollar (AUD), Canadian
dollar (CAD), Euro (EUR), British pound (GBP) and Japanese yen (JPY). The data
span from Jan 1%¢, 2015 to May, 315, 2019.

Bitcoin prices are publicly available and provided by several electronic platforms (Alexan-
der & Dakos, 2020). However, selecting the ideal Bitcoin prices against each currency
is crucial and depends on the selected platform. Thus, we take into consideration the
traded prices, ranking and trading volume for each market (e.g. BTC/USD, BTC/AUD,
BTC/CAD, BTC/EUR, BTC/GBP, and BTC/JPY) to cover the optimal Bitcoin prices
across the markets. We found that the highest rank of the market and trading volume of
USD in Bitfinex platform exceeded 211 Billion over the last five years, which makes the
market share of the latter platform around 37.35%, overtaking more than a third of the
market trading in Bitcoin/USD. Kraken platform has executed transactions of BTC/EUR
of around 43 Billion Eur over the last five years, the market share of BTC/Eur via this
platform being around 36.5%. The highest trading volume of JAP yen against BTC is on
Bitflyer platform with 9.61 Trillion JPY volume and 99.72% market share. GBP, CAD
and AUD were traded intensively on Bit-x, Quadrigacx and Btcmarkets platforms with
trading volumes approaching 11.7 Billion GBP, 2.65 Billion CAD and 3.95 Billion AUD
respectively. The market share of trading Bitcoin on the latter three currencies is 67.4%,
77.32% and 91.11% respectively. We obtained our data directly from these platforms to

reflect the actual traded behaviour for each fiat currency, and neglect all the platforms
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showing suspicious trading activities ° or low rank and trading volumes. To borrow more

comparisons, we compared all the Bitcoin prices with Bitcoinity.org and Bitcoincharts®7.

We study the daily volatilities of exchange rate returns of bitcoins. The daily variance is
computed using daily high and low prices and the high-Low volatility (HL-HV) measure
by Parkinson (1980):8

(4.1)

where V' denotes the volatility of price, h and [ are the highest and lowest exchange rates
on a given trading day, respectively. All volatility series are checked for stationarity with
the help of Augmented Dicky Fuller (ADF) unit root tests (Dickey & Fuller, 1979). Both
tests suggest to systematically reject the null of the presence of a unit root with 95%

confidence for every daily volatility series, suggesting the latter are co-variance stationary.

The dynamics of Bitcoin price volatility are illustrated in Figure 4.1, while Table 4.1
summarises the descriptive statistics. The number of observations is 1612 across all
variables. The average volatility across markets is bouncing around 0.032. The highest
and lowest mean across the sample are AUD (0.035) and GBP (0.031) respectively, while
the standard deviation across the 6 markets is fluctuating between CAD (0.027) and JPY
(0.032). Thus, the average of S.D. is approximately 0.029. The six exchange rates display
large positive skewness, suggesting a large concentration of observations to the left of their
central tendency, hence, volatility series are asymmetrically distributed. Bitcoin prices are
sensitive to major economic and political events, and all extreme shocks can be explained
through the four moments. All series show unequivocally leptokurtic behaviours, of
which Kurtosis is different across individual series, ranging from around 14.6 on average
(BTC/USD, BTC/AUD and BTC/CAD) to about 23.3 (BTC/ JPY, BTC/GBP and
BTC/EUR).

Figure 4.1 displays the volatility of six Bitcoin markets over time. BTC/GBP and
BTC/EUR show the highest shock across the whole system, recording only around 0.37
in both markets. Visually, we can confirm that BTC/USD and BTC/EUR are the most
stable markets with both series fluctuating below 0.1 most of the time, except for the
period around 2018. Also, extensive fluctuations across the entire system appear mainly
around 2018, and partially between 2015 and 2016, hinting that events such as platform

breaches lead Bitcoin prices to be remarkably sensitive.

S All the trading volumes and Ranking information obtained from Bitcoinity.org

SBitcoinity.

"Bitcoincharts API.

8Bennett and Gil (2012) argue that Parkinson’s volatility model is more efficient than other conventional
measure of volatility, such as that of close-to-close.


http://data.bitcoinity.org/markets/volume/30d?c=e&t=b
https://bitcoincharts.com /about/markets-api/
http:Bitcoinity.org
http:Bitcoinity.org
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Figure 4.1 Volatility Exchange Rates
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4.4 Methodology

Let us consider the following N-dimensional covariance-stationary data generating process
with orthogonal shocks (see F. Diebold & Yilmaz, 2014):

yr = O(L)uy (4.2)

where O(L) = ©g+01 L+02L2+..., with E(utu;) = I, and y; contains the series of Bitcoin
exchange rate returns volatility under investigation in our analysis. In particular, ©g
summarises the contemporaneous aspects of connectedness and {©1, O, ...} the dynamic
aspects. The understanding of the connectedness trough the matrices of coefficients
{60, 01,02, ...} can be problematic if many parameters are to be estimated. Therefore,
one can transform {Og, 01,0, ...} by using variance decomposition technique to resolve
the issue (F. Diebold & Yilmaz, 2014).

In order to understand the measures of connectedness, F. Diebold and Yilmaz (2014)
provide the so-called connectedness table, which is illustrated in Table 4.2. The N x N
upper-left block matrix contains the variance decompositions, which are denoted by
DH = [dg | and indicate the fraction of variable ¢ s H-step forecast error variance due to

shocks in variablej. This matrix is called “variance decomposition matrix”.

Table 4.2 Connectedness table

Y1t Yot ce YNt From others
Y it dt i S dil =1
Y2t i kb il S di =2
YNt iy Ny S AN Zj’vzl dy;, j=N
Toothers Yo dff YL df - LLidy ¥ 2L 25\21 dff
i=1  i=2 .. i=N i=j

Notes: éij(H ) represents the contribution of variable j to variable i’s h-step-ahead generalized forecast
error variance. FO (From Others) and TO (To Others) denote the magnitude of the contribution from
others and to the rest of the systme, respectively. The bottom-right element of the table is the total
connectedness and represents a system-wide measure of interdependence. H is the forecasting horizon.
N is the total number of variables.

The connectedness table augments DH with a rightmost column (From others) containing
row sums, a bottom row containing column sums (To others), and a bottom-right element
containing the grand average, in all cases for i = j. The off-diagonal elements of D¥

measure the pairwise directional connectedness from j to 4, which is defined as

it =4l (4.3)

In general, Cﬁ_j = C’]If_z In addition to the gross pairwise directional connectedness is

possible to define the net pairwise directional connectedness which is given by Cg =
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Cﬁ_i — Cﬁ_ ;- When considering the off-diagonal row or column sums of D we have

the total directional connectedness from others to i:

N
cl,=> dll. (4.4)
j=1

j=i

and the total directional connectedness to others from j:

N
cil, =Y "dfl. (4.5)
=1

=7

Likewise the net pairwise directional connectedness, one can define the net total directional

H _ (H H
connectedness as C;* = C,_; — C;_,.

Lastly, grand total of the off-diagonal entries in

DH defines the total connectedness:

CH—l NdH 4.6
_NZZ‘J" (4.6)

1,7=1
i=J

In order to obtain the variance decomposition, the general variance decomposition (GVD)
framework is used (see Koop et al., 1996; Pesaran & Shin, 1998). The H-step-ahead

generalized variance decomposition matrix DI = [dfj | is as follows:

_ H—
gH Ujjl h:ol(f%'ehzej)2
L= T (4.7)
h—o (€;0n20,¢€;)

where e; is the selection vector with its i*" element equal to one and zeros otherwise Oy, is
the coefficient matrix times the h-lagged shock vector in the moving-average representation
of the non-orthogonalized VAR, ¥ is the covariance matrix of the shock vector in the
non-orthogonalized VAR, and o;; is the ith diagonal element of ¥ (see F. Diebold &
Yilmaz, 2014). Since the shocks in the GVD framework are not necessarily equal to one,

F. Diebold and Yilmaz (2014) base their generalized connectedness indexes on D9 = [dfj],

T di; N N
with dfj = Z;-V:fdi’j (22521 dgj =land > dfj = N).

The connectedness measures examined so far are linked to the network connectedness:
the variance decompositions are networks (F. Diebold & Yilmaz, 2014). A network N
consists of IV nodes and L links between the nodes, and the distance between two nodes
© and j, denoted by Sj;, is the smallest number of links that must be crossed to move
from i to j. N is connected if S;; < N — 1, Vi, j. Put another way, a network is a N x N

adjacency matrix A of zeros and ones,A = [A;;], where A;; = 1 if nodes i and j are
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connected, and A;; = 0 elsewhere. The variance decomposition matrix D is a network
adjacency matrix A (F. Diebold & Yilmaz, 2014).

Figure 4.2 illustrates the mechanism of the network with an example. The network
involves a set of nodes (bitcoins markets) and edges which represent connectedness among
nodes. The largest node is B, which implies that this node gives the highest contribution
(the highest contribution is from B to C). C is the smallest node, and its contribution
to the other nodes is the smallest. B is a net contributor to A and C, while C is a net
receiver from A to B (the direction of the arrow among two nodes reveals the net receiver).

Lastly, node A is a net receiver from B and a net contributor to C.

Figure 4.2 Net pairwise directional networks.

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.

The full-sample connectedness releases “average” information on aspects of each of the
connectedness measures, but by construction it does not relate to connectedness dynamics
(F. Diebold & Yilmaz, 2014). A dynamic analysis of connectedness can be accomplished
by rolling estimation. To this end, the total (global) connectedness (TC) (see the bottom-
right element of Table 4.2) can be evaluated dynamically using a rolling scheme based on

the following formula

1 N N
i=1 j=1

where s is the sequence of the rolling estimates of TC in equation (4.8). With a total
sample size of T observations and a rolling window size of R observations, the sequence of

estimates of TC is always generated from a sample of size R: the first estimates of TC(s)
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is obtained with a sample running from 1 to R, the next one with a sample running from
2 to to R+1, and the final one with a sample running from T-R+1 to T.

4.5 Results

In this section, we examine the exchange rate return volatilities of Bitcoin for six currencies,
namely the U.S. dollar (USD), Australian dollar (AUD), Canadian dollar (CAD), Euro
(EUR), British pound (GBP) and Japanese yen (JPY). The analysis proceeds in three
steps. First, a static analysis of connectedness is carried out using the connectedness
table and the network framework. Second, a rolling estimation scheme is applied for
the connectedness dynamics. In particular, this step involves an examination of total
connectedness, along with total directional spillover effects. Third, the network framework
is used to ascertain whether, and to what extent cyber attacks impacted on Bitcoins
during the period under investigation. Lastly, a robustness exercise is carried out to

validate the spillover index analysis.

4.5.1 Static connectedness

Table 4.3 reports the full-sample total connectedness results. The horizon is H=30 days.
The following main findings emerge: first, the total connectedness is a very high 77%
(see the bottom-right element in boldface). Second, the elements on the main diagonal
of the table (own connectedness) display the highest values. Third, looking at the off-
diagonal elements of the upper 6 x 6 submatrix, the largest value of pairwise directional
connectedness is recorded from GBP to USD, 17.14%, while for the lower 6 x 6 submatrix
the highest value is from USD to GBP, almost 18%. Fourth, the total connectedness from
others to each Bitcoin market (see last column FROM) ranges from 75.49% to 77.66%,
while the total connectedness to others (see the second last row TO) varies from 65.50%
to 82.12%.

BTC/JPY and BTC/AUD markets inject almost symmetric shocks across the system
(see columns BTC/JPY and BTC/ AUD) and absorb the shocks in different magnitudes.
The BTC/AUD market transmits just below 14% to each market, which makes this the
most vulnerable market in the system. Looking into the power of influence within the
system, we can categorise the table into three sections: first, the Giver group (e.g. the
markets which generate the risk), which consists of BTC/USD and BTC/EUR markets.
Secondly, the Receiver group, which can be easily identified from the table as BTC/AUD
and BTC/JPY. However, the Alleviate group (e.g. the mitigator group) indicates that
both markets BTC/GBP and BTC/CAD could act as intermediary, allowing volatility to

circulate between the main components of the system.
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In sum, among the six markets, BTC/USD and BTC/EUR are “strongly” connected, while
BTC/AUD appears to be the most isolated market. The pairs BTC/USD - BTC/EUR,
BTC/GBP - BTC/CAD and BTC/JPY - BTC/AUD are the most closely interlinked
markets. However, static information is inefficient for explaining economic and financial
events; hence, to study market behaviour during episodes of financial shocks, we should

study the dynamic spillover across the selected markets.

4.5.2 Dynamic connectedness

Globalisation and technology have a huge impact on the high level of connectedness we
see between financial markets nowadays. In particular, the cryptocurrenices market is a
fully electronic platform in which trading through the Internet is essential; hence, the
market plays a tremendous role in connecting and transmitting risk all over the world.
Thus, to investigate the continuous interdependence between the six Bitcoin markets, we
should take a closer look and trace the important financial events that could be related to
the cryptocurrencies market. Corbet et al. (2018); Damianov and Elsayed (2020); Wang,
Zhao, and Li (2019) and many others claim that the cryptocurrencies market is moreorless
isolated from the conventional financial markets, which makes it reasonable to trace
financial events that might affect or connect to the cryptocurrencies market. Regarding
Bitcoin markets, the Bitcoin was created to be an independent currency that remains
unaffected by economic situations (e.g. inflation or recession), as Satoshi Nakamoto
included in his first Bitcoin transaction, "The Times 03-Jan-2009 Chancellor on brink of
second bailout for banks". Hence, it is unreliable to claim that economic events might
affect Bitcoin price, but rather that such prices are fundamentally driven by the ‘feeling

and the memory’ of investors at a point in time (Cheah et al., 2018) .

The full-sample connectedness in Table 4.3 gives ‘average’ results on connectedness
(F. Diebold & Yilmaz, 2014). Figure 4.3 illustrates the dynamic of total volatility
connectedness over 120-day rolling-sample windows in which the volatility spillover
between the six markets (Table 4.3) is compressed in a one dynamic series, as shown in
Figure 4.3. From the Figure, the overall behaviour of connectedness is clearly increasing
dramatically over time. Observing the first half of the sample span, we can clearly identify
wide and deep fluctuations along 2015 and 2016, while on the contrary, the second half
shows relatively smooth and upward shifting with high interdependence along 2017 to
2019. The latter upward shifting can be linked to the increasing popularity of Bitcoin,
when the price started to rocket and hit a peak, recording almost 20000$ around December
2017. Since then, investors, regulators and hijackers have started to pay more attention to
this digital currency which has been creating this magnitude of connectedness since 2017.
The dynamic connectedness among the six markets reveals important information about
several key events that occurred between 2015 and2019, and shows how those events have

induced the system to generate such behaviour.
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The major events that might affect Bitcoin prices can be categorised as cyber criminality,
halvings, exchange or hijacking events. The first and worst crash in the Bitcoin Market
was when Mt.Gox in 2014 claimed that around 100,000 BTC had been stolen, affecting
around 750,000 customers . Later, in August 2015, the Japanese police arrested the
CEO of Mt.Gox platform, Mark Karpelés, claiming that he manipulated the platform
system and its financial reports'®. Moreover, Bitfinx platform had a ‘flash crash’ on 19
August in the same year, in which the Bitcoin price in this exchange declined by 29%"!.
Thus, the latter two events generated enough uncertainty to negatively depreciate the
Bitcoin price during the last third of 2015, and created a volatility spillover spike among
the second and third quarter of 2015, to record above 70% and 82% shocks, respectively,

as shown in Figure 4.3.

In late 2015 and during the first half of 2016, volatility spillover increased dramatically
to record two significant shocks (in Nov 2015 and Aug 2016) that might have been
generated from several important events, including the announcement of hacking in the
Bitfinx platform and stolen Bitcoins worth around 72$ million, and the announcement
of the Bitcoin Investment Trust (GBTC) that the Bitcoin price was going to appreciate

dramatically during 2016 12 13,

The total connectedness has become more constant and intensive since the beginning
of 2017, the high linkage being explained by the dramatic increase in Bitcoin price,
exceeding 1000$. Indeed, the high price has encouraged lots of new users and investors to
participate and invest in Bitcoin, as well as several projects being established to support
the market. As a result, the network has started to grow rapidly, the infrastructure of
Bitcoin becoming stronger and more consistent, with Bitcoin wallets, Bitcoin applications,

Bitcoin miners and many others.

In this chapter, we focus on cyber attacks to investigate the distortion left in the network
infrastructure because of the various different fraudulent transactions and attempts to
hijack users’ accounts. In the next section, we will zoom in and scrutinise the total
connectedness under episodes of cyber attack, and identify the net dispensers and net

givers among the markets.

9Mtgox.com

10 Japanese police arrest Mark Karpeles
1 Coindesk.com

12Reuters.com

13 Coindesk.com


https://web.archive.org/web/20140217113525/https://www.mtgox.com/img/pdf/20140217-Announcement.pdf
https://www.wsj.com/articles/japanese-police-arrest-mark-karpeles-of-collapsed-bitcoin-exchange-mt-gox-1438393669
https://www.coindesk.com/bitcoin-price-falls-14-following-bitfinex-flash-crash
https://www.reuters.com/article/us-bitfinex-hacked-hongkong-idUSKCN10E0KP
https://www.coindesk.com/wedbush-revises-12-month-bitcoin-price-target-to-600-
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Table 4.3 Volatility spillovers across six selected exchange rates in time domain

— 30-day ahead forecast

Directional

BTC/USD BTC/EUR BTC/GBP BTC/JPY BTC/AUD BTC/CAD FROM others
BTC/USD 22.34 16.81 17.14 14.57 12.88 16.27 77.66
BTC/EUR 16.82 23.25 16.19 14.73 12.86 16.15 76.75
BTC/GBP 17.69 16.49 22.28 14.71 12.82 16.01 77.72
BTC/JPY 15.88 16.35 15.44 23.08 13.64 15.61 76.92
BTC/AUD 15.10 15.62 14.80 14.96 24.51 15.00 75.49
BTC/CAD 16.63 16.48 15.83 14.90 13.30 22.86 77.14
Directional
TO others 82.12 81.75 79.41 73.88 65.50 79.03 TSI: 76.95%

Note:Data cover the period from January 1, 2015 to May 31, 2019. The rightmost (FROM) column
gives total directional connectedness (from). The bottom (TO) row gives total directional connectedness
(to). Numbers are in percentage. The bottom-right element (in boldface) is total connectedness (see also

F. Diebold & Yilmaz, 2014).

Figure 4.3 Overall volatility spillovers (dynamic plot)
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Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 30-120-
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and

ticks are quarterly.
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4.5.3 Network Analysis of variance decomposition

Figure 4.3 provides us with the total connectedness of the six markets over time, in
which is difficult to distinguish between the dominant and non-dominant markets, or the
direction of spillover among the dynamic connectedness. In this regard, we diffuse the
rolling window estimation in the previous section and extract the spillover index at every
point in time from 2015 to 2019, in order to study the impact of cyber attacks on the
Bitcoin network infrastructure. Table 4.4 shows the most important cyber attacks taking

place during the sample span.

Table 4.4 shows 25 cyber attacks that targeted several Bitcoin platforms in this section.
We identify the most important attacks that took place during the five years, and present
the rest of the network figures in Appendix C, from Figure C.12 to Figure C.25. In
the second half of 2016, the Bitcoin infrastructure received the second biggest security
breach after the Mt.Gox collapse, in which hijackers stole around 120 000 BTC units from
the Hong Kong-based Bitfinex platform. On the other hand, a small amount of units,
amounting to 8 BTC were stolen in Jan 2019 by hackers from LocalBitcoin platform. The
question here is "Does the amount of stolen Bitcoin determine the magnitude of such a
shock?” Or are there different factors that may induce the system to generate more risk,
such as ‘the feeling and memory’ of investors? Indeed, a small amount of stolen BTC,
with good media coverage, might generate more risk than an unknown large attack (e.g.

a cyber attack in South Africa) within the network.

The network graphs of the cyber attacks in Table 4.4 will be presented in the Appendix C,
and we will discuss the most important cyber security breaches in each year. In June 2015
a cloud mining service, Scrypt, announced a security breach in one of their hot wallets.
Hijackers had managed to steal around 3500 BTC units from the Scrypt account and
other registered users’ accounts. As discussed earlier, while Figure 4.1 does not provide
detailed information about the individual markets in the system, we can clearly see the
total spillover index during the cyber attack, which was high as 61%. However, variance
decomposition network analysis in Figure 4.4 reveals significant information about the
individual Bitcoin markets when a cyber attack took a place during June, 2015. We
can identify the direction and the dominant markets here. BTC/USD appears to be the
net giver here, followed by BTC/EUR, then BTC/JPY. On the contrary, the Australian
market absorbed all the shocks generated within the system, as all the arrows go into
BTC/AUD with no sign of any arrow going out of the Australian market. The second
vulnerable Bitcoin market is the Canadian market, which has received systematic shocks
in different magnitudes including BTC/USD, BTC/EUR, BTC/JPY and BTC/GBP.
Overall, investors and policy makers can take advantage of being able to identify the
most dominant market - here USD Bitcoin market - to base their investment decisions on,

taking into consideration the flow and direction of risk in each market within the system.
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Table 4.4 Cyberattcks in Bitcoin Markets

Attack Date | Amount $ Type Target D&I;;E::t
22/05/2015 329000 BTC Bitfinex USD
22/06/2015 864500 BTC Scrypt.cc USD
15/02/2016 103000 BTC brain wallets EUR
02/08/2016 72000000 BTC Bitfinex EUR
13/10/2016 1500000 BTC Bitcurex EUR
26/04/2017 7600000 BTC Yapizon AUD
17/05/2017 2900000 BTC eBitz EUR
06/12/2017 68000000 BTC NiceHash EUR
18/12/2017 37000000 BTC Youbit’s EUR
26/12/2017 1000000 BTC Exmo EUR
07/01/2018 23000000 BTC Michael Terpin EUR
15/02/2018 50000000 BTC Network attack JPY
04/03/2018 50000000 BTC BTC Global check JPY
12/04/2018 3000000 BTC CoinSecure GBP
20/09/2018 60000000 BTC Zaif AUD
21/12/2018 890000 BTC Electrum Bitcoin wallets AUD
27/12/2018 800000 BTC Electroneum Wallet AUD
26,/01/2019 28000 BTC LocalBitcoin AUD
07/05/2019 41000000 BTC Binance JPY

Note: The table contain a list of nineteen of the largest Bitcoin hacking events between 2015 and 2019.
All hacking events obtained mainly from the aggrgation website hackmageddon.com and Reuters

Figure 4.4 Directional-volatility connectedness network, 22/06/2015

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.


http:hackmageddon.com

Chapter 4 Dynamic Co-movements and Cyberattacks in Cross-market Bitcoin
130 Prices: Spillover and Variance Decomposition of Network Topology

Bitfinex platform lost around 120 000 BTC in a security breach on Aug 2, 2016, considered
to be one of the largest hacks in Bitcoin history. The platform published a statement
that a security breach had been detected and investigation begun to identify the problem
and causes. In Figure 4.1 we can see a clear and high spike on the same date of a breach
recording a very high total spillover of around 83%. Looking at the network Figure 4.5
on the same date provides us with the net dispenser and net receiver within the network.
Interestingly, the BTC/EUR is contributing in each market with remarkable spillover
from BTC/EUR to other markets, of which the thickest/largest arrow hits BTC/USD,
and the thinnest/smallest arrow is received by BTC/JPY. While the BTC/USD is the
net receiver, the network does not show any contribution from BTC/USD, but receives a
modest contribution from BTC/CAD and BTC/JPY.

Figure 4.5 Directional-volatility connectedness network, 02/08,/2016

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.

On Dec 06, 2017 NiceHash platform woke up to a cyber attack which led to a loss of
around 4700 BTC and caused a massive reduction to the BTC price in the following
weeks. Figure 4.1 shows that in Dec, 2017 the total spillover index was around 61%;
then the indicator started to accelerate upward very rapidly, to hit 83% after just a few
days. From Figure 4.6 the dominant markets tend to be BTC/JPY, BTC/EUR and
BTC/AUD respectively, which indicates that the three markets are transmitting volatility
to the other markets in different magnitudes. By contrast, BTC/CAD market is the
net receiver, in which the inflow volatility to the market is very different among the five
channels, BTC/JPY being the largest, and BTC/USD the smallest. Both BTC/GBP
and BTC/AUD act as a moderator by receiving and transmitting volatility between the
other markets. Exploiting the opportunity to invest here is probable by taking advantage
of being able to identify the direction of the volatility wave.
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Figure 4.6 Directional-volatility connectedness network, 06/12/2017

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.

Around Sep 2018, Zaif platform noticed a large amount of outflow funds on the platform,
and after a deep investigation they suspended the platform service until further notice,
later announcing that some hijackers with unauthorised access had stolen 5966 BTC and
other cryptocurrencies worth around $60 million. Over the years, the Bitcoin network has
become more profound and the total spillover index shown more persistence, of which the
total spillover is as high as 80% most of the time . Luckily, the network analysis looked
into the latter percentage to understand and identify the different markets and directions.
Figure 4.7 shows that BTC/AUD and BTC/USD markets, respectively, are dominating
the other markets. We can see from the Figure that all markets except BTC/CAD are
transmitting risk to each other in small magnitude thinarrow. By contrast, BTC/CAD
is the most vulnerable market within the system and interestingly receives a large amount

of volatility from each market thickarrow.

The largest cyber security breach in 2019 hit Binance platform, one of the largest
cryptocurrency exchanges, from which hackers managed to withdraw around 7000 BTC
units in a single transaction. The platform admitted that on May 7, 2019, hijackers used
various techniques such as phishing and viruses to access the secured private data in the
platform’s servers. The total spillover was floating around 80%, the BTC/JPY market
being net dispenser. In Figure 4.8 the same behaviourin appears, where BTC/CAD
market again received systematic large shocks from all the other markets compared with
the others. On the contrary, BTC/JPY disrupted the volatility of the other markets in
different magnitudes. However, BTC/USD and BTC/EUR received and transmitted the



Chapter 4 Dynamic Co-movements and Cyberattacks in Cross-market Bitcoin
132 Prices: Spillover and Variance Decomposition of Network Topology

Figure 4.7 Directional-volatility connectedness network, 20/09/2018

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.

risk interchangeably, and mostly in similar inward and outward channels, which enabled

them to act as a bridge between the net dispenser and net receiver.

Figure 4.8 Directional-volatility connectedness network, 07/05/2019

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.
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4.5.4 Robustness

How sensitive are our results to the choice of forecast horizon, window size and alternative
measure of volatility? In this section, we undertake a robustness exercise in each aspect

mentioned above.

We check the robustness of our full sample analysis results to the choice of the forecast
horizon and the tuning of frequency bands that identify short- and long-run components of
the forecast error GVD. Recall that our results are based on 30-days-ahead forecasts. We
performed similar estimations with 60-, 90-, and 120-days-ahead forecasts. The ensuing
results (reported in the Appendix C) corresponding to Tables C.1, C.2, and C.3 presented
above produced very similar values for the estimated spillovers, and yielded qualitatively

identical conclusions.

Next, Figures C.1 to C.8 plot dynamic overall volatility spillovers using 15, 30 and 60
days forecast horizon with 120-, 150- 180-rolling windows , respectively. We observe that
the latter graphs are strongly consistent with Figure 4.3, not only in the estimated values
of the total spillover index, but also in the shape of the evolution that records the same

extreme events in every case.

4.5.4.1 VAR model Stability

We carried out the same procedure as in the first chapter to clarify the extreme shocks
and potential breaks in the VAR system. (Qu & Perron, 2007) break test could achieve
our goals by detecting the structural breaks in the VAR process, hence identifying the

sudden changes in the spillover index within the six markets.

Table 4.5 presents the results of (Qu & Perron, 2007)’s test. The VAR dataset consists of
the six Bitcoin markets from January 2015 to May 2019. The trimming percentage is
15% of the sample span and the maximum breaks allowed individually for two and five
respectively. The test statistics for both WD max and sequential tests exceed the critical
values except for the fifth break (Seq test (m = 5) ~ (5 | 4)). Thus, the null hypothesis
of no structural breaks is rejected for the WD max and indicates four breaks (out of five
breaks) based on the sequential test. The four break dates suggested by the test are
as follows: 1- 30/08,/2015. 2- 30/07/2016. 3- 27/05/2017. 4- 31/01/2018. The latter
dates can be linked to significant events that impact the cryptocurrency market stability.
As we discussed in the results section, several hacking events could break the cycle of
persistency, and change time series’ properties over time. These structural breaks could
impact the VAR system and induce dynamic spillover analysis to generate significant

spikes over time, see Figure 4.3.

To check the VAR stability, we extract the coefficients’ residuals and test their stationarity

to ensure the consistency of the mean and variance of residuals over time. Table 4.6
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shows that the test rejects the null of unit root for all exchange rates. Further, Figures
C.26 show the inverse roots of AR characteristic polynomial for volatility lie inside the

unit circle, which indicates that the VAR process is stable.

4.6 Conclusions

The presence of cyber attacks could limit and create the volatility in Bitcoin cross-markets.
However, variance decompositions as weighted, directed networks form a superior and
effective approach to detect a shock within a system and identify the future direction of
the volatility flow between markets. The objective of this chapter is to study the reaction
of the major Bitcoin markets under a series of cyber attacks using the weighted, directed

networks approach.

After performing the static and dynamic results, we built a number of networks from
the latter analysis to show the impact of security breaches in Bitcoin cross-markets. Six
major Bitcoin markets were considered, including BTC/USD, BTC/EUR, BTC/GBP,
BTC/JPY, BTC/AUD and BTC/CAD. We focused on five major cyber attacks in each
year from 2015 to 2019, the results showing that in June 2015, BTC/USD was the leading
market, transmitting risk to other markets in different magnitudes. In 2016 and 2017,
BTC/EUR and BTC/JPY were the dominant markets, and those most connected to the
system. However, in the following year, BTC/AUD and BTC/USD made a significant
contribution to affect the Canadian market. Further, in 2019 the BTC/CAD market
became the absorber within the system, to receive major shock from the other five

markets.

This chapter offers many important implications for investors and policy makers. First,
dynamic and static volatility spillover could provide a clear perception on the most
affected market in the context of cyber attacks. Thus investors may be able to capture
speculative profits or draw a systematic investment strategy to beat the market. Indeed,
market timing is very important to build such a strategy, and network analysis is a useful
tool to determine the best next move. Second, policy regulators could introduce some
controlling strategy such as circuit breakers to prevent some speculators taking advantage
when the market suddenly crashes or jumps, which may leave a long impact on the

market.

Hedging activities can also be managed and identified between Bitcoin cross-markets.
For future research, we would extend our investigation by employing dynamic network

analysis to study the Bitcoin market in depth.
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Table 4.5 Multivariate Qu and Perron Test for Structural Changes in VAR
model

Tests ‘ Test statistic Critical Value
WD max test m=2 874.7 23.748
m=>5 892.3 25.81
Seq test (m = 2) (211 692.9 24.63
Seq test (m = 5) (21]1) 692.9 24.63
312 335.4 25.59
(413) 609.1 26.23
(514) 0.121 26.75

Note: Exchange rates volatility are used to find the structural breaks. Trimming Percentage is 15% and
the number of observations is 1612. The first test is the WD max test and the second one is the
sequential test. All the critical values represent the 5% significance level.

Table 4.6 ADF Test for the VAR Coefficients’ Residuals

Residuals Test Test stat Criticla (I%Value Conclusion
BTC/USD ADF -29.88 -3.43 Reject
BTC/EUR ADF -12.13 -3.43 Reject
BTC/GBP ADF -12.71 -3.43 Reject
BTC/JPY ADF -9.056 -3.43 Reject
BTC/AUD ADF -42.02 -3.43 Reject
BTC/CAD ADF -43.16 -3.43 Reject
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5.1 Conclusion and Policy Implications

In conclusion, to insure a successful and coherent investment strategy we should insure
its sustainability, security and validity in global markets based on three important
cornerstones in Bitcoin (internal, external and security factors). The thesis studies in
depth the exogenous determinants (Chapter 1), endogenous determinants (chapter 2),
cyber security determinants (chapter 3) and their impact on the volatility of Bitcoin
prices. The main and core objective of this thesis is to understand the dynamic linkage
between Bitcoin markets and see how the above different factors can majorly contribute
to the price fluctuations over the time . A major outcome that trading on Bitcoin markets
depends largely on investor sentiment, and a lack of confidence eventually heightens
volatility on these markets which become more intensely interlinked as investors diversify

to mitigate risks pertaining to a particular market.

chapter two examine the return and volatility spillover effects across Bitcoin markets and
under episodes of external shocks. Also, We have investigated how spillover effects are
governed by uncertainty episodes. The chapter discuss important insights on the dynamic
interdependence of spillover effects during high /low uncertainty episodes and capturing
the sentimental value of Bitcoin prices. The chapter also complemented to a sparse body
of literature and have envisaged the importance of studying a systematic pattern of shocks’
movement by capturing a ’system dynamics’. Using the latter measure of volatility and
well-established dynamic spillover methods, we have found that Bitcoin-USD holds high
predictive power and Bitcoin-Euro acts as the net receiver. Also, higher uncertainty is

found to accelerate spillover effects with larger impacts across markets.

Chapter three investigate the persistence of fractional integration and potential break
points simultaneously and endogenously using MS-ARFIMA model for Bitcoin cross-
markets. We found that financial and economic events are generated by agents who handle
them, which could generate persistent endogenous responses. Therefore, a spurious long
memory in volatility could be attributed to the presence of structural breaks rather than
true long memory. We found the presence of both long memory and structural breaks
along the different Bitcoin markets. The key issue here is to distinguish between the
long memory and structural breaks as both phenomenon share the same properties and
investors could confuse between them very easily. Consequently, we applied the Markov
switching ARFIMA model to move between the different regimes endogenously. We find
that the fractional integration display true long-memory for all the MS-ARFIMA models.

Chapter four study the reaction of the major Bitcoin markets under series of cyberattacks
using the weighted, directed networks approach. We found that cyberattacks have a
major impact on the Bitcoin network infrastructure, and the sustainability of the market.
After performing the static and dynamic results, we build a number of networks from
the latter analysis and show the impact of security breaches in Bitcoin cross-markets

as asymmetric network. We identify the directions of volatility spillover effects across



Chapter 5 Conclusions 139

Bitcoin markets and show the reaction of a dynamic system with respect to the graphing

theory.

Thus, very valuable and fruitful policy implications are provided to decision makers,
investors and speculators. we have created a first-hand information set for cryptocurrency
investors to predict the next best investment strategy. The investors will be able to exploit
information on the predictive power of each market, such as the net receiver and net giver
of volatility. Studying the long memory could enable investors to capture speculative
profits by controlling market timing. Policy makers and regulators could introduce circuit
breakers to stop trading in Bitcoin cross-markets when the market switches abruptly
to high-volatility regime as the impact of a negative down turn would take a relatively
long period of time to dissipate given the nature of persistence in the price behaviour of
Bitcoin in the cross-markets. Training to the security of network, investors can decide
how to diversify and tap on arbitrage during cyber security attacks. Decision makers can
synchronise the cyber threats with volatility spillover to detect the flow of risk within the

markets.

5.2 Future Research Directions

The thesis has studied and investigated the cross-market dynamic of Bitcoin prices
through different empirical tests. The latter measurements and investigations could be
extended further to provide more in-depth understanding of Bitcoin markets and volatility

behaviours.

First, instead of measuring the volatility spillover index for five Bitcoin markets, future
research could investigate the spillover effects among sets of variables in each market
within a unified framework, such as Panel VAR (Koop & Korobilis, 2016). The latter
model allows us to investigate the spillover of a particular shock across different Bitcoin
markets, as well as the interactive relationship among several variables under each market.
Further, the number of markets could be extended, especially in the Pacific-Asian area to

provide a comprehensive study across the major markets in the world.

Second, the third chapter assesses and identifies the long memory and structural breaks
simultaneously and endogenously using MS-ARFIMA model. Forecasting the volatility
persistence through the aforementioned model in each market could help us to identify
true long-range dependence in the future in order to build coherent investment strategies.
Moreover, investigating the memory within fractional co-integration VAR system (Jo-
hansen & Nielsen, 2012) rather than uni-variate model provides fruitful information about
the co-integrating relationship between Bitcoin markets, and could find the long-run

equilibrium in the system.
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Thirdly, the fourth chapter attempts to design weighted, directed networks to study
the volatility of Bitcoin markets under episodes of cyber attack. However, extending
this research by designing dynamic networks (DNA) allows us to investigate further the
networks’ behaviour and social interactions. Moreover, analysing dynamic networks could

help us to assess the stability of a network.

Finally, as Bitcoin prices are fundamentally driven by the feeling and memory of investors,
finding a complex method such as Machine Learning or Artificial Intelligence is required
to understand the human cognitive and complex behavioural interactions across Bitcoin

markets.
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(A)Stationarity tests

Table A.1 ADF and Phillips-Perron unit root tests, exchange rate returns

Model without constant

Model with constant

Exchange rate Test Test stat Critical Conclusion || Test stat Critical Conclusion
value 1% value 1%
ADF -36. -
BTC/USD 36.866 -2.58 Rejected 37 -3.43 Rejected
pperron -36.97 -37.05
ADF -70.41 -70.42
BTC/AUD 70.413 -2.58 Rejected 0 -3.43 Rejected
pperron  -96.582 -97.128
ADF -67.4 -67.4
BTC/CAD 67.489 -2.58 Rejected 67487 -3.43 Rejected
pperron  -95.544 -95.856
ADF -40.037 -40.153
BTC/EUR -2.58 Rejected -3.43 Rejected
pperron  -40.106 -40.197
ADF -62.83 -62.833
BTC/GBP -2.58 Rejected -3.43 Rejected
pperron  -83.162 -83.449
‘ Model with trend
Exchange rate Test Test stat Critical Conclusion
value 1%
ADF -36.992
BTC/USD -3.96 Rejected
pperron  -37.048
ADF -70.405
BTC/AUD -3.96 Rejected
pperron  -97.103
ADF -67.4
BTC/CAD 67.468 -3.96 Rejected
pperron  -95.822
ADF -40.143
BTC/EUR -3.96 Rejected
pperron  -40.187
ADF -62.81
BTC/GBP 62.816 -3.96 Rejected
pperron  -83.424
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Table A.2 ADF and Phillips-Perron unit root tests, exchange rate volatility

Model without constant

Model with constant

Exchange rate Test Test stat Critical Conclusion || Test stat Critical Conclusion
value 1% value 1%
ADF -18.461 -23.64
BTC/USD 8.46 -2.58 Rejected 3.646 -3.43 Rejected
pperron. -19.199 -25.209
BTC/AUD ADE 7695 -2.58 Rejected -13.456 -3.43 Rejected
pperron -5.083 -12.341
ADF -8.332 -16.1
BTC/CAD 8.33 -2.58 Rejected 6.105 -3.43 Rejected
pperron -5.78 -16.155
ADF -14.42 -19.368
BTC/EUR -2.58 Rejected -3.43 Rejected
pperron -13.88 -20.316
ADF -14.192 -28.
BTC/GBP 9 -2.58 Rejected 8.885 -3.43 Rejected
pperron -13.42 -32.279
\ Model with trend Model with drift
Exchange rate Test Test stat Critical Conclusion || Test stat Critical Conclusion
value 1% value 1%
ADF -23. -23.64
BTC/USD 3737 -3.96 Rejected 3.646 -2.328 Rejected
pperron  -25.302 -
ADF -19.534 -13.456
BTC/AUD -3.96 Rejected -2.328 Rejected
pperron  -21.096 -
ADF -26.65 -16.105
BTC/CAD -3.96 Rejected -2.328 Rejected
pperron  -29.721 -
ADF -19.676 -19.368
BTC/EUR -3.96 Rejected -2.328 Rejected
pperron  -20.692 -
ADF -33.257 -28.885
BTC/GBP -3.96 Rejected -2.328 Rejected
pperron  -35.645 -
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(B) Robustness check

Returns spillover tables with various forecast horizons

Table A.3 Returns spillovers across five selected exchange rates — 7-day ahead
forecast

Directional

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP o 0P
BTC/USD 86.08 1.69 0.63 9.41 2.19 13.92
BTC/AUD 1.80 87.67 1.39 5.51 3.63 12.33
BTC/CAD 1.12 1.25 94.67 1.83 1.13 5.33
BTC/EUR 10.08 6.59 2.57 73.15 7.62 26.85
BTC/GBP 2.14 3.02 1.42 6.60 86.82 13.18
Directional :
e 15.13 12.56 6.00 23.35 14.57 71.6%150 ~
Net spillovers 1.21 0.23 0.67 -3.50 1.39 14.32%

Note: Exchange rates returns spillovers following Diebold and Yilmaz (2012) using a

7-day ahead forecast horizon. Numbers are percentages. “T'SI” stands for Total Spillover
Index.

Table A.4 Returns spillovers across five selected exchange rates — 10-day ahead
forecast

Directional

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others
BTC/USD 84.85 1.95 1.33 9.44 2.43 15.15
BTC/AUD 1.80 87.16 1.79 5.50 3.75 12.84
BTC/CAD 1.21 1.37 94.22 1.87 1.33 5.78
BTC/EUR 10.45 6.57 2.65 72.60 7.72 27.40
BTC/GBP 2.22 3.25 1.48 6.61 86.43 13.57
Directional :
TO others 15.67 13.14 7.26 23.42 15.23 74'7;1/“?5[&0 _
Net spillovers 0.52 0.30 1.48 -3.97 1.67 14.95%

Note: Exchange rates returns spillovers following Diebold and Yilmaz (2012) using a

10-day ahead forecast horizon. Numbers are percentages. “T'SI” stands for Total Spillover
Index.



144

Appendix A Supplement to Chapter 2

Table A.5 Returns spillovers across five selected exchange rates — 60-day ahead

forecast
Directional

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP o P
BTC/USD 83.56 2.37 1.70 9.60 2.78 16.44
BTC/AUD 3.19 83.91 2.83 5.73 4.34 16.09
BTC/CAD 1.82 1.88 92.51 2.15 1.64 7.49
BTC/EUR 14.29 6.51 2.90 68.84 7.46 31.16
BTC/GBP 3.75 3.51 2.12 6.72 83.90 16.10
Directional TSI:
TO others 23.05 14.26 9.55 24.20 16.22 §7.28/500 =
Net spillovers 6.61 -1.83 2.06 -6.96 0.12 17.46%

Note: Exchange rates returns spillovers following Diebold and Yilmaz (2012) using a
60-day ahead forecast horizon. Numbers are percentages. “T'SI” stands for Total Spillover

Index.
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Volatility spillover tables with various forecast horizons

Table A.6 Volatility spillovers across five selected exchange rates — 7-day ahead
forecast

Directional

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP o 6"
BTC/USD 82.99 1.81 0.21 14.49 0.49 17.01
BTC/AUD 2.92 89.54 2.37 4.90 0.27 10.46
BTC/CAD 0.16 3.77 94.09 1.42 0.55 5.91
BTC/EUR 19.22 2.43 0.32 77.48 0.56 22.52
BTC/GBP 0.55 0.55 0.70 0.95 97.25 2.75
Directional :
TO othom 22.86 8.56 3.60 21.76 1.87 o 6%50 _
Net spillovers 5.85 -1.89 2.31 -0.76 -0.89 11.78%

Note: Exchange rates volatility spillovers following Diebold and Yilmaz (2012) using a

7-day ahead forecast horizon. Numbers are percentages. “T'SI” stands for Total Spillover
Index.

Table A.7 Volatility spillovers across five selected exchange rates — 10-day
ahead forecast

Directional

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP oo’
BTC/USD 81.69 2.36 0.27 15.01 0.67 18.31
BTC/AUD 3.31 88.11 2.74 5.47 0.37 11.89
BTC/CAD 0.17 4.57 92.99 1.54 0.74 7.01
BTC/EUR 20.00 2.86 0.42 75.85 0.87 24.15
BTC/GBP 0.57 0.66 0.92 0.94 96.90 3.10
Directional TSI:
TO othore 24.04 10.44 4.36 22.96 2.65 64_45/5500 i
Net spillovers 5.73 -1.44 -2.65 -1.18 -0.45 12.89%

Note: Exchange rates volatility spillovers following Diebold and Yilmaz (2012) using a
10-day ahead forecast horizon. Numbers are percentages. “T'SI” stands for Total Spillover
Index.
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Table A.8 Volatility spillovers across five selected exchange rates — 60-day
ahead forecast

Directional

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP poor
BTC/USD 78.23 4.97 0.57 15.27 0.96 21.77
BTC/AUD 4.52 83.09 4.43 6.98 0.98 16.91
BTC/CAD 0.37 7.56 88.81 1.93 1.33 11.19
BTC/EUR 20.55 5.69 1.07 71.17 1.52 28.83
BTC/GBP 0.65 1.68 1.72 1.01 94.94 5.06
Directional TSI:
R 26.10 19.91 7.79 25.18 478 570 /i -
Net spillovers 4.33 3.00 -3.40 -3.65 -0.28 16.75%

Note: Exchange rates volatility spillovers following Diebold and Yilmaz (2012) using a
60-day ahead forecast horizon. Numbers are percentages. “T'SI” stands for Total Spillover

Index.
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Returns spillover tables — Frequency domain analysis with various forecast

horizons and frequency bands

Table A.9 Returns spillovers across five selected exchange rates — Frequency
domain analysis with 4-day frequency band and 7-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

74.66
0.75
0.85
6.51
1.23

9.34

1.20
87.03
1.07
5.58
2.61

10.46

0.62

1.34
94.48
2.39

1.25

5.60

6.91
4.50
1.52
64.54
5.18

18.10

1.72
2.86
0.98
6.11
85.64

11.67

10.46
9.45
4.42

20.59
10.27

TSI: 55.18/461.58 =
11.96%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC,/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

11.42
1.05
0.27
3.57
0.90

5.79

0.49
0.64
0.18
1.01
0.42

2.09

0.01
0.05
0.19
0.18
0.17

0.40

2.51
1.01
0.32
8.60
1.42

5.25

0.46
0.78
0.15
1.50
1.18

2.89

3.46
2.88
0.91
6.26
291
TSI: 16.42/38.47 =
42.69%

Note: Returns spillovers, frequency domain analysis following Barunik and Kfehlik (2018)
using 7-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within
system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than 4

days’, respectively.


http:16.42/38.47
http:55.18/461.53
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Table A.10 Returns spillovers across five selected exchange rates — Frequency
domain analysis with 16-day frequency band and 7-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

74.66
0.75
0.85
6.51
1.23

9.34

1.20
87.03
1.07
5.58
2.61

10.46

0.62
1.34
94.48
2.39
1.25

5.60

6.91
4.50
1.52
64.54
5.18

18.10

1.72
2.86
0.98
6.11
85.64

11.67

10.46
9.45
4.42

20.59

10.27

TSI: 55.18/461.58 =
11.96%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

11.42
1.05
0.27
3.57
0.90

5.79

0.49
0.64
0.18
1.01
0.42

2.09

0.01
0.05
0.19
0.18
0.17

0.40

2.51
1.01
0.32
8.60
1.42

5.25

0.46
0.78
0.15
1.50
1.18

2.89

3.46
2.88
0.91
6.26
291
TSI: 16.42/38.47 =
42.69%

Note: Returns spillovers, frequency domain analysis following Barunik and Kiehlik (2018)
using 7-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within
system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more than 16
days’, respectively.


http:16.42/38.47
http:55.18/461.53
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Table A.11 Returns spillovers across five selected exchange rates — Frequency
domain analysis with 30-day frequency band and 7-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

74.66
0.75
0.85
6.51
1.23

9.34

1.20
87.03
1.07
5.58
2.61

10.46

0.62

1.34
94.48
2.39

1.25

5.60

6.91
4.50
1.52
64.54
5.18

18.10

1.72
2.86
0.98
6.11
85.64

11.67

10.46
9.45
4.42

20.59
10.27

TSI: 55.18/461.58 =
11.96%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

11.42
1.05
0.27
3.57
0.90

5.79

0.49
0.64
0.18
1.01
0.42

2.09

0.01
0.05
0.19
0.18
0.17

0.40

2.51
1.01
0.32
8.60
1.42

5.25

0.46
0.78
0.15
1.50
1.18

2.89

3.46
2.88
0.91
6.26
291
TSI: 16.42/38.47 =
42.69%

Note: Returns spillovers, frequency domain analysis following Barunik and Kiehlik (2018)
using 7-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within
system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more than 30

days’, respectively.


http:16.42/38.47
http:55.18/461.53
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Table A.12 Returns spillovers across five selected exchange rates — Frequency
domain analysis with 4-day frequency band and 10-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others
BTC/USD 62.05 1.36 0.63 5.36 1.09 8.43
BTC/AUD 0.69 82.38 1.43 3.65 3.10 8.88
BTC/CAD 0.95 0.97 91.18 1.29 1.10 4.31
BTC/EUR 4.43 4.82 2.25 55.17 5.38 16.88
BTC/GBP 0.59 2.14 1.03 4.22 82.50 7.98
TSI: 46.48/419.775 =
TO others 6.66 9.29 5.34 14.51 10.67 11.07%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 22.81 0.60 0.70 4.08 1.33 6.72
BTC/AUD 1.11 4.78 0.36 1.85 0.65 3.96
BTC/CAD 0.25 0.40 3.04 0.58 0.23 1.46
BTC/EUR 6.01 1.75 0.40 17.43 2.35 10.51
BTC/GBP 1.63 1.11 0.45 2.40 3.94 5.59

TSI: 28.25/80.25 =
TO others 9.01 3.85 1.92 8.91 4.56 35.25%

Note: Returns spillovers, frequency domain analysis following Barunik and Kiehlik (2018)
using 10-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within
system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than 4
days’, respectively.


http:28.25/80.25
http:46.48/419.75
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Table A.13 Returns spillovers across five selected exchange rates — Frequency
domain analysis with 16-day frequency band and 10-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

76.35
1.14
1.02
7.78
1.41

11.35

1.83
86.30
1.19
5.82
2.86

11.71

1.26
1.65
94.08
2.52
1.39

6.83

7.98
4.55
1.65
66.43
5.55

19.74

1.90
3.39
1.26
6.38
85.60

12.92

12.97
10.73
5.13
22.50
11.21

TSI: 62.55/471.81 =
13.27%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

8.50
0.67
0.19
2.66
0.81

4.32

0.13
0.86
0.17
0.75
0.39

1.43

0.06
0.14
0.14
0.13
0.09

0.43

1.46
0.94
0.22
6.17
1.06

3.68

0.52
0.36
0.07
1.35
0.84

2.31

2.18
2.11
0.65
4.89
2.35
TSI: 12.18/28.69 =
42.44%

Note: Returns spillovers, frequency domain analysis following Barunik and Kiehlik (2018)
using 10-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within
system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more than 16
days’, respectively.


http:12.18/28.69
http:62.55/471.31
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Table A.14 Returns spillovers across five selected exchange rates — Frequency
domain analysis with 30-day frequency band and 10-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others
BTC/USD 76.35 1.83 1.26 7.98 1.90 12.97
BTC/AUD 1.14 86.30 1.65 4.55 3.39 10.73
BTC/CAD 1.02 1.19 94.08 1.65 1.26 5.13
BTC/EUR 7.78 5.82 2.52 66.43 6.38 22.50
BTC/GBP 1.41 2.86 1.39 5.55 85.60 11.21
TSI: 62.55/471.81 =
TO others 11.35 11.71 6.83 19.74 12.92 13.97%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 8.50 0.13 0.06 1.46 0.52 2.18
BTC/AUD 0.67 0.86 0.14 0.94 0.36 2.11
BTC/CAD 0.19 0.17 0.14 0.22 0.07 0.65
BTC/EUR 2.66 0.75 0.13 6.17 1.35 4.89
BTC/GBP 0.81 0.39 0.09 1.06 0.84 2.35

TSI: 12.18/28.69 =
TO others 4.32 1.43 0.43 3.68 2.31 42.44/%

Note: Returns spillovers, frequency domain analysis following Barunik and Kiehlik (2018)
using 10-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within
system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more than 30
days’, respectively.


http:12.18/28.69
http:62.55/471.31
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Table A.15 Returns spillovers across five selected exchange rates — Frequency
domain analysis with 4-day frequency band and 30-day ahead forecast

(baseline estimates)

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

64.96
2.07
1.50
9.15
2.40

15.12

1.52
81.66
1.59
4.96
2.77

10.83

1.35
2.66
90.51
2.51
1.75

8.26

5.78
4.29
1.50
53.60
4.68

16.25

1.89
3.64
1.39
5.73
81.17

12.65

10.54
12.66
5.98
22.35
11.59

TSI: 63.11/435.01 =
14.51%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

18.62
1.10
0.32
5.11
1.33

7.86

0.84
2.31
0.28
1.53
0.74

3.39

0.34
0.16
2.03
0.38
0.35

1.24

3.82
1.43
0.65
15.32
2.04

7.94

0.88
0.68
0.24
1.71
2.78

3.51

5.89
3.38
1.48
8.73
4.46

TSI: 28.94/64.99 =
36.85%

Note: Returns spillovers, frequency domain analysis following Barunik and Ktehlik (2018)
using 30-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within
system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than 4
days’, respectively.


http:23.94/64.99
http:63.11/435.01
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Table A.16 Returns spillovers across five selected exchange rates — Frequency
domain analysis with 16-day frequency band and 30-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others
BTC/USD 79.62 2.28 1.67 8.78 2.50 15.24
BTC/AUD 2.72 83.78 2.79 5.38 4.14 15.03
BTC/CAD 1.67 1.83 92.47 2.03 1.58 7.11
BTC/EUR 12.44 6.27 2.83 66.69 6.94 28.49
BTC/GBP 3.20 3.40 2.06 6.27 83.61 14.93
TSI: 80.81/486.98 =
TO others 20.04 13.78 9.36 22.46 15.17 16.59%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 3.96 0.08 0.02 0.82 0.27 1.19
BTC/AUD 0.45 0.19 0.03 0.35 0.18 1.00
BTC/CAD 0.15 0.04 0.07 0.12 0.05 0.35
BTC/EUR 1.82 0.22 0.06 2.22 0.50 2.60
BTC/GBP 0.53 0.10 0.03 0.44 0.35 1.11
TO others 2.94 0.44 0.13 1.73 1.00 TSI i.’%ézg.og -

Note: Returns spillovers, frequency domain analysis following Barunik and Kiehlik (2018)
using 30-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within
system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more than 16
days’, respectively.


http:6.24/13.02
http:80.81/486.98
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Table A.17 Returns spillovers across five selected exchange rates — Frequency
domain analysis with 30-day frequency band and 30-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others
BTC/USD 79.62 2.28 1.67 8.78 2.50 15.24
BTC/AUD 2.72 83.78 2.79 5.38 4.14 15.03
BTC/CAD 1.67 1.83 92.47 2.03 1.58 7.11
BTC/EUR 12.44 6.27 2.83 66.69 6.94 28.49
BTC/GBP 3.20 3.40 2.06 6.27 83.61 14.93
TSI: 80.81/486.98 =
TO others 20.04 13.78 9.36 22.46 15.17 16.59%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 3.96 0.08 0.02 0.82 0.27 1.19
BTC/AUD 0.45 0.19 0.03 0.35 0.18 1.00
BTC/CAD 0.15 0.04 0.07 0.12 0.05 0.35
BTC/EUR 1.82 0.22 0.06 2.22 0.50 2.60
BTC/GBP 0.53 0.10 0.03 0.44 0.35 1.11
TO others 2.94 0.44 0.13 1.73 1.00 TSI i.’%ézg.og -

Note: Returns spillovers, frequency domain analysis following Barunik and Kiehlik (2018)
using 30-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within
system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more than 30
days’, respectively.


http:6.24/13.02
http:80.81/486.98
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Table A.18 Returns spillovers across five selected exchange rates — Frequency
domain analysis with 4-day frequency band and 60-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 63.65 1.50 1.32 5.64 1.83 10.30

BTC/AUD 1.99 81.09 2.66 4.21 3.64 12.50

BTC/CAD 1.42 1.56 90.08 1.48 1.39 5.85

BTC/EUR 8.50 4.88 2.52 53.09 5.67 21.57

BTC/GBP 2.28 2.63 1.74 4.62 80.67 11.26

TO others 14.18 10.57 8.24 15.95 12.53 T'ST: 61.48/430.06 =
14.30%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 19.91 0.87 0.37 3.96 0.94 6.14
BTC/AUD 1.20 2.82 0.18 1.52 0.70 3.59
BTC/CAD 0.41 0.32 2.43 0.67 0.25 1.64
BTC/EUR 5.79 1.62 0.38 15.76 1.79 9.58
BTC/GBP 1.47 0.88 0.38 2.10 3.23 4.83

TSI: 25.79/69.94 =
TO others 8.87 3.69 1.31 8.24 3.68 36.88/% 4

Note: Returns spillovers, frequency domain analysis following Barunik and Kiehlik (2018)
using 60-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within
system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than 4
days’, respectively.


http:25.79/69.94
http:61.48/430.06
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Table A.19 Returns spillovers across five selected exchange rates — Frequency
domain analysis with 16-day frequency band and 60-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

78.77

2.69

1.67
12.28

3.19

19.84

2.26

83.62

1.82
6.14
3.34

13.57

1.68
2.80
92.42
2.84
2.07

9.39

8.63
5.29
2.01
65.91
6.17

22.10

2.48
4.11
1.58
6.84
83.45

15.02

15.06
14.89
7.09
28.10
14.77

TSI: 79.91/484.08 =
16.51%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

4.79
0.50
0.15
2.00
0.56

3.21

0.11
0.29
0.05
0.36
0.17

0.69

0.02
0.03
0.10
0.06
0.05

0.16

0.97
0.44
0.14
2.93
0.55

2.10

0.30
0.22
0.06
0.63
0.45

1.20

1.39
1.20
0.40
3.06
1.33

TSI: 7.837/15.92 =
46.28%

Note: Returns spillovers, frequency domain analysis following Barunik and Kiehlik (2018)
using 60-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within
system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more than 16
days’, respectively.


http:7.37/15.92
http:79.91/484.08
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Table A.20 Returns spillovers across five selected exchange rates — Frequency
domain analysis with 30-day frequency band and 60-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 81.43 2.32 1.69 9.16 2.64 15.80

BTC/AUD 2.94 83.81 2.82 5.54 4.24 15.54

BTC/CAD 1.75 1.86 92.48 2.09 1.61 7.31

BTC/EUR 13.27 6.37 2.87 67.70 7.20 29.72

BTC/GBP 3.46 3.45 2.10 6.49 83.72 15.50

TO others 21.42 14.00 9.49 23.27 15.69 T'SI: 85.88/495.01 =
17.01%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 2.13 0.05 0.01 0.44 0.14 0.64
BTC/AUD 0.25 0.10 0.01 0.19 0.09 0.55
BTC/CAD 0.08 0.02 0.03 0.06 0.03 0.18
BTC/EUR 1.01 0.13 0.03 1.14 0.27 1.44
BTC/GBP 0.28 0.06 0.02 0.23 0.18 0.59
TO others 1.63 0.26 0.07 0.92 0.53 TSk ‘j‘é% g' 99 =

Note: Returns spillovers, frequency domain analysis following Barunik and Kiehlik (2018)
using 60-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to within
system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more than 30
days’, respectively.


http:83.88/493.01
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Volatility spillover tables — Frequency domain analysis with various forecast

horizons and frequency bands

Table A.21 Volatility spillovers across five selected exchange rates — Frequency
domain analysis with 4-day frequency band and 7-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 39.53 0.44 0.11 4.68 0.15 5.38

BTC/AUD 0.29 34.80 0.39 0.61 0.13 1.41

BTC/CAD 0.07 0.55 47.33 0.46 0.16 1.23

BTC/EUR 2.71 0.58 0.12 26.89 0.14 3.56

BTC/GBP 0.22 0.23 0.16 0.24 62.30 0.85

TO others 3.29 1.80 0.78 5.98 058 81 12.43/225.28 =
5.57%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 43.46 1.37 0.10 9.82 0.34 11.63
BTC/AUD 2.63 54.74 1.98 4.29 0.14 9.04
BTC/CAD 0.10 3.22 46.77 0.96 0.39 4.68
BTC/EUR 16.50 1.85 0.19 50.59 0.42 18.97
BTC/GBP 0.33 0.33 0.54 0.71 34.95 1.90

TSI: 46.21/276.72 =
TO others 19.56 6.77 2.82 15.78 1.29 416. 7{)%

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik
(2018) using 7-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to
within system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than
4 days’, respectively.


http:46.21/276.72
http:12.43/223.28
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Table A.22 Volatility spillovers across five selected exchange rates — Frequency
domain analysis with 16-day frequency band and 7-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

39.53
0.29
0.07
2.71
0.22

3.29

0.44
34.80
0.55
0.58
0.23

1.80

0.11
0.39
47.33
0.12
0.16

0.78

4.68
0.61
0.46
26.89
0.24

5.98

0.15
0.13
0.16
0.14
62.30

0.58

5.38
1.41
1.23
3.56
0.85

TSI: 12.43/223.28 =
5.57%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

43.46
2.63
0.10

16.50
0.33

19.56

1.37
54.74
3.22
1.85
0.33

6.77

0.10
1.98
46.77
0.19
0.54

2.82

9.82
4.29
0.96
50.59
0.71

15.78

0.34
0.14
0.39
0.42
34.95

1.29

11.63
9.04
4.68

18.97
1.90

TSI: 46.21/276.72 =
16.70%

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik
(2018) using 7-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to
within system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more
than 16 days’, respectively.


http:46.21/276.72
http:12.43/223.28
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Table A.23 Volatility spillovers across five selected exchange rates — Frequency
domain analysis with 30-day frequency band and 7-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

39.53
0.29
0.07
2.71
0.22

3.29

0.44
34.80
0.55
0.58
0.23

1.80

0.11
0.39
47.33
0.12
0.16

0.78

4.68
0.61
0.46
26.89
0.24

5.98

0.15
0.13
0.16
0.14
62.30

0.58

5.38
1.41
1.23
3.56
0.85

TSI: 12.43/223.28 =
5.57%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

43.46
2.63
0.10

16.50
0.33

19.56

1.37
54.74
3.22
1.85
0.33

6.77

0.10
1.98
46.77
0.19
0.54

2.82

9.82
4.29
0.96
50.59
0.71

15.78

0.34
0.14
0.39
0.42
34.95

1.29

11.63
9.04
4.68

18.97
1.90

TSI: 46.21/276.72 =
16.70%

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik
(2018) using 7-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to
within system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more
than 30 days’, respectively.


http:46.21/276.72
http:12.43/223.28
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Table A.24 Volatility spillovers across five selected exchange rates — Frequency
domain analysis with 4-day frequency band and 10-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC,/USD 29.75 0.23 0.04 2.38 0.14 2.78

BTC/AUD 0.16 27.30 0.16 0.26 0.10 0.68

BTC/CAD 0.07 0.21 39.70 0.27 0.1 0.67

BTC/EUR 1.47 0.21 0.07 18.22 0.08 1.84

BTC/GBP 0.12 0.21 0.14 0.22 53.46 0.70

TO others 1.82 0.86 0.42 3.13 0.43 TSI: 6.66/175.10 =
3.81%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 51.94 2.13 0.23 12.63 0.53 15.52
BTC/AUD 3.15 60.81 2.58 5.21 0.27 11.20
BTC/CAD 0.10 4.35 53.29 1.27 0.63 6.35
BTC/EUR 18.53 2.65 0.35 57.63 0.78 22.31
BTC/GBP 0.45 0.45 0.78 0.72 43.44 2.40

TSI: 57.78/324.90 =
TO others 22.22 9.58 3.94 19.83 2.21 1 7§%4

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik
(2018) using 10-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to
within system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than
4 days’, respectively.


http:57.78/324.90
http:6.66/175.10
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Table A.25 Volatility spillovers across five selected exchange rates — Frequency
domain analysis with 16-day frequency band and 10-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 42.60 0.43 0.11 5.04 0.15 5.73

BTC/AUD 0.27 33.23 0.36 0.59 0.13 1.35

BTC/CAD 0.07 0.53 48.83 0.46 0.16 1.21

BTC/EUR 3.31 0.55 0.12 29.67 0.16 4.15

BTC/GBP 0.26 0.23 0.16 0.39 67.11 1.04

TO others 3.91 1.75 0.75 6.48 0.60 TSI 15.48/234.95 =
5.7 %

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 39.09 1.93 0.16 9.97 0.52 12.57
BTC/AUD 3.03 54.89 2.39 4.88 0.24 10.54
BTC/CAD 0.10 4.03 44.15 1.09 0.58 5.80
BTC/EUR 16.69 2.30 0.30 46.18 0.70 20.00
BTC/GBP 0.31 0.43 0.76 0.55 29.79 2.06

TSI: 50.96/265.07 =
TO others 20.13 8.70 3.61 16.49 2.04 ]9.2{?%

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik
(2018) using 10-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to
within system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more
than 16 days’, respectively.


http:50.96/265.07
http:13.48/234.93
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Table A.26 Volatility spillovers across five selected exchange rates — Frequency
domain analysis with 30-day frequency band and 10-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 42.60 0.43 0.11 5.04 0.15 5.73

BTC/AUD 0.27 33.23 0.36 0.59 0.13 1.35

BTC/CAD 0.07 0.53 48.83 0.46 0.16 1.21

BTC/EUR 3.31 0.55 0.12 29.67 0.16 4.15

BTC/GBP 0.26 0.23 0.16 0.39 67.11 1.04

TO others 3.91 1.75 0.75 6.48 0.60 TSI 15.48/234.95 =
5.7 %

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 39.09 1.93 0.16 9.97 0.52 12.57
BTC/AUD 3.03 54.89 2.39 4.88 0.24 10.54
BTC/CAD 0.10 4.03 44.15 1.09 0.58 5.80
BTC/EUR 16.69 2.30 0.30 46.18 0.70 20.00
BTC/GBP 0.31 0.43 0.76 0.55 29.79 2.06

TSI: 50.96/265.07 =
TO others 20.13 8.70 3.61 16.49 2.04 ]9.2?3%

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik
(2018) using 10-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to
within system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more
than 30 days’, respectively.


http:50.96/265.07
http:13.48/234.93
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Table A.27 Volatility spillovers across five selected exchange rates — Fre-
quency domain analysis with 4-day frequency band and 30-day ahead forecast
(baseline estimates)

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC,/USD 35.09 0.38 0.08 3.91 0.16 4.52
BTC/AUD 0.19 23.94 0.23 0.39 0.08 0.88
BTC/CAD 0.07 0.43 42.71 0.35 0.12 0.96
BTC/EUR 2.64 0.39 0.09 22.93 0.1 3.24
BTC/GBP 0.15 0.22 0.14 0.22 58.48 0.74
TO others 3.05 1.42 0.54 4.87 047 DSI10.34/193.49 =

5.3)%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 44.07 3.77 0.37 11.41 0.77 16.32
BTC/AUD 4.08 60.46 3.64 6.28 0.71 14.71
BTC/CAD 0.23 6.20 47.28 1.47 1.14 9.05
BTC/EUR 18.09 4.36 0.79 49.25 1.35 24.59
BTC/GBP 0.48 1.17 1.48 0.75 36.89 3.89

TSI: 68.55/306.51 =
TO others 22.88 15.50 6.27 19.92 3.98 22.3/7%

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik
(2018) using 30-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to
within system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than
4 days’, respectively.


http:68.55/306.51
http:10.34/193.49
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Table A.28 Volatility spillovers across five selected exchange rates — Frequency
domain analysis with 16-day frequency band and 30-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD | 57.41 0.50 0.11 8.34 0.23 9.19

BTC/AUD 0.39 30.95 0.34 0.80 0.11 1.64

BTC/CAD 0.07 0.88 58.79 0.60 0.20 1.76

BTC/EUR 8.72 0.62 0.12 46.50 0.25 9.71

BTC/GBP 0.35 0.24 0.26 0.60 81.50 1.45

TO others 9.53 2.24 0.82 10.35 o9 TSI 23.74/298.89 =
7.94%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 21.76 3.65 0.34 6.98 0.69 11.65
BTC/AUD 3.87 53.46 3.53 5.87 0.69 13.95
BTC/CAD 0.23 5.75 31.20 1.22 1.06 8.25
BTC/EUR 12.01 4.13 0.76 25.68 1.21 18.12
BTC/GBP 0.29 1.15 1.36 0.37 13.87 3.17

TSI: 55.15/201.11 =
TO others 16.40 14.67 5.99 14.43 3.65 27’4/2%

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik
(2018) using 30-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to
within system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more
than 16 days’, respectively.


http:55.15/201.11
http:23.74/298.89
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Table A.29 Volatility spillovers across five selected exchange rates — Frequency
domain analysis with 30-day frequency band and 30-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD
BTC/AUD
BTC/CAD
BTC/EUR
BTC/GBP

TO others

57.41
0.39
0.07
8.72
0.35

9.53

0.50
30.95
0.88
0.62
0.24

2.24

0.11
0.34

58.79

0.12
0.26

0.82

8.34
0.80
0.60
46.50
0.60

10.35

0.23
0.11
0.20
0.25
81.50

0.79

9.19
1.64
1.76
9.71
1.45

TSI: 25.74/298.89 =
7.94%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP

FROM others

BTC/USD 21.76

BTC/AUD 3.87
BTC/CAD 0.23
BTC/EUR 12.01
BTC/GBP 0.29
TO others 16.40

3.65

53.46

5.75
4.13
1.15

14.67

0.34
3.53
31.20
0.76
1.36

5.99

6.98
5.87
1.22
25.68
0.37

14.43

0.69
0.69
1.06
1.21
13.87

3.65

11.65
13.95
8.25
18.12
3.17

TSI: 55.15/201.11 =

27.42%

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik
(2018) using 30-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to
within system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more
than 30 days’, respectively.


http:55.15/201.11
http:23.74/298.89
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Table A.30 Volatility spillovers across five selected exchange rates — Frequency
domain analysis with 4-day frequency band and 60-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 33.46 0.39 0.07 3.63 0.15 4.24

BTC/AUD 0.19 22.89 0.24 0.40 0.07 0.91

BTC/CAD 0.07 0.45 41.82 0.33 0.13 0.98

BTC/EUR 2.51 0.43 0.10 21.75 0.12 3.16

BTC/GBP 0.13 0.22 0.15 0.22 56.80 0.73

TO others 2.91 1.49 0.57 4.58 047  [SI10.02/186.74 =
5.97%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 44.77 4.58 0.50 11.64 0.81 17.53
BTC/AUD 4.33 60.20 4.19 6.58 0.90 15.99
BTC/CAD 0.30 7.10 46.99 1.60 1.21 10.21
BTC/EUR 18.04 5.26 0.98 49.42 1.40 25.68
BTC/GBP 0.52 1.46 1.57 0.78 38.14 4.33
TO others 23.19 18.41 7.23 20.60 4.32 TSE: 72;@2%326 -

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik
(2018) using 60-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to
within system spillovers. Short and Long horizons refer to ‘4 days or less’ and ‘more than
4 days’, respectively.


http:73.74/313.26
http:10.02/186.74
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Table A.31 Volatility spillovers across five selected exchange rates — Frequency
domain analysis with 16-day frequency band and 60-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 54.06 0.65 0.12 7.94 0.23 8.95

BTC/AUD 0.51 30.67 0.45 0.98 0.09 2.02

BTC/CAD 0.07 1.13 57.30 0.64 0.20 2.04

BTC/EUR 7.91 0.82 0.13 42.71 0.22 9.09

BTC/GBP 0.32 0.26 0.26 0.57 77.88 1.41

TO others 8.82 2.86 0.97 10.13 0.74 TSI: 25.51/286.13 =
8.22%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 24.17 4.32 0.45 7.32 0.73 12.82
BTC/AUD 4.01 52.42 3.98 6.00 0.89 14.88
BTC/CAD 0.30 6.43 31.50 1.29 1.14 9.15
BTC/EUR 12.64 4.87 0.94 28.45 1.29 19.75
BTC/GBP 0.33 1.43 1.46 0.44 17.06 3.65

TSI: 60.26/213.87 =
TO others 17.28 17.05 6.83 15.05 4.05 28, ]/7%

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik
(2018) using 60-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to
within system spillovers. Short and Long horizons refer to ‘16 days or less’ and ‘more
than 16 days’, respectively.


http:60.26/213.87
http:23.51/286.13
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Table A.32 Volatility spillovers across five selected exchange rates — Frequency
domain analysis with 30-day frequency band and 60-day ahead forecast

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others
BTC/USD 65.69 1.01 0.14 10.72 0.42 12.29
BTC/AUD 0.97 38.14 0.69 1.69 0.15 3.50
BTC/CAD 0.09 1.83 69.26 0.85 0.47 3.24
BTC/EUR 13.18 1.17 0.21 56.14 0.60 15.16
BTC/GBP 0.42 0.40 0.63 0.69 87.41 2.14
TSI: 36.33/852.98 =
TO others 14.66 4.41 1.68 13.95 1.64 10.29%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP  FROM others

BTC/USD 12.54 3.96 0.43 4.55 0.54 9.48
BTC/AUD 3.55 44.95 3.74 5.29 0.82 13.41
BTC/CAD 0.29 5.73 19.55 1.07 0.86 7.95
BTC/EUR 7.37 4.53 0.86 15.03 0.92 13.67
BTC/GBP 0.23 1.28 1.09 0.32 7.52 2.92

TSI: 47.43/147.02 =
TO others 11.44 15.50 6.12 11.23 3.15 4324.2/6%

Note: Volatility spillovers, frequency domain analysis following Barunik and Kiehlik
(2018) using 60-day ahead forecast horizon. Numbers are percentages. ‘Within’ refers to
within system spillovers. Short and Long horizons refer to ‘30 days or less’ and ‘more
than 30 days’, respectively.


http:47.43/147.02
http:36.33/352.98
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Figure A.1

Inverse Roots of AR Characteristic Polynomial
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Figure A.2

Inverse Roots of AR Characteristic Polynomial
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Supplement to Chapter 3

A, Rolling windows of the rolling windows series for each market

Figure B.1 The Rolling Windows of the estimated "d" parameter and the
rolling windows of "rolled d " in BTC/USD market

BTC/USD

N
o
2
@ v
£
)
s
§or
£
g
g©
el
5
i)
w
2 <
©
£

(o

" e AR AL AR AR AR AL RRARARARLALELEALAL RARARALALAALLLERE T I
0 200 400 600 800 1000 1200
Days

Note:Black line is the rolling windows of the estimated "d". Red line is the rolling windows of the latter
rolling windows. X-axis indicate daily data which the first day is 1 and ticks are 10 days each.
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Figure B.2 The Rolling Windows of the estimated "d" parameter and the
rolling windows of "rolled d " in BTC/EUR market
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rolling windows. X-axis indicate daily data which the first day is 1 and ticks are 10 days each.
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Figure B.3 The Rolling Windows of the estimated "d" parameter and the
rolling windows of "rolled d " in BTC/GBP market
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Figure B.4 The Rolling Windows of the estimated "d" parameter and the
rolling windows of "rolled d " in BTC/AUD market
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Figure B.5 The Rolling Windows of the estimated "d" parameter and the
rolling windows of "rolled d " in BTC/CAD market
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B, Different specification for the estimated MS-ARFIMA process
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Table B.1 Estimates of BTC/USD market volatility under different specifica-
tions of MS-ARFIMA process

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA

(0,d,0) (0,d,1) (1,d,0) (1,d,1)
Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E

di  0.2615 0.0332 0.3838 0.0447 0.3313 0.0391 0.4224 0.0520
d2  0.3202 0.0156 0.3880 0.0272 0.3630 0.0219 0.4249 0.0329
p1 o 0.9745 0.0697 0.7869 0.1035 0.8872 0.0870 0.8314 0.1095
p2  0.2576 0.0490 0.2008 0.0644 0.2184 0.0584 0.1936 0.0691
o1 0.7046 0.0296 0.7193 0.0287 0.7148 0.0295 0.7098 0.0291
o2 0.1870 0.0038 0.1851 0.0038 0.1857 0.0038 0.1856 0.0038
p11 0.8189 0.0222 0.8544 0.0196 0.8295 0.0215 0.8339 0.0212
p22  0.9564 0.0058 0.9613 0.0055 0.9577 0.0057 0.9585 0.0057
10} - - - - -0.0914 0.0331 0.3018 0.1022
0 - - -0.1418 0.0435 - - -0.4734 0.1025
L -365.67568 -363.261213 -362.471718 -358.38933

Note: d: long memory, u: mean, o: standard deviation, P: transition probability,¢: Autoregressive
parameter, 0: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error

Table B.2 Estimates of BTC/EUR market volatility under different specifica-
tions of MS-ARFIMA process

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA

(0,d,0) (0,d,1) (1,d,0) (1,d,1)
Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E

di  0.3306 0.0263 0.3529 0.0321 0.3472 0.0314 0.2874 0.0284
da  0.3382 0.0155 0.3474 0.0211 0.3488 0.0199 0.3171 0.0177
pn1 o 0.9113 0.0820 0.8362 0.0956 0.9056 0.0873 0.7674 0.0676
p2  0.2376 0.0498 0.2004 0.0556 0.2350 0.0523 0.1905 0.0466
o1 0.7132 0.0293 0.7090 0.0034 0.7165 0.0296 0.6562 0.0217
o2 0.1665 0.0034 0.1653 0.0285 0.1682 0.0034 0.1513 0.0033
p11 0.7627 0.0244 0.7787 0.0233 0.7662 0.0244 0.8919 0.0144
p22  0.9415 0.0067 0.9425 0.0067 0.9433 0.0066 0.9534 0.0064
10) - - - - -0.0328 0.0326 -0.5040 0.2178
0 - - -0.0413 0.0376 - - 0.5469 0.2077
L -311.252655 -313.96913 -310.734501 -324.6173

Note: d: long memory, p: mean, o: standard deviation, P: transition probability,¢: Autoregressive
parameter, §: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error
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Table B.3 Estimates of BTC/GBP market volatility under different specifica-
tions of MS-ARFIMA process

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA

(0,d,0) (0,d,1) (1,d,0) (1,d,1)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E
di  0.3391 0.0272 0.3267 0.0359 0.3250 0.0303 0.3570 0.0355
d2  0.3121 0.0159 0.3086 0.0213 0.3027 0.0182 0.3253 0.0240
pu1r o 0.7375 0.1130 0.7479 0.1107 0.7535 0.1099 0.7206 0.1188
p2  0.1885 0.0501 0.1925 0.0510 0.1948 0.0485 0.1786 0.0541
o1 0.8013 0.0363 0.7840 0.0339 0.8017 0.0365 0.7981 0.0359
o2 0.1765 0.0035 0.1739 0.0035 0.1769 0.0035 0.1762 0.0035
p11 0.7303 0.0275 0.7628 0.0253 0.7293 0.0276 0.7323 0.0273
p22 0.9451 0.0064 0.9465 0.0064 0.9451 0.0064 0.9450 0.0064
10} - - - - 0.0106 0.0288 0.4184 0.3289
0 - - 0.0197 0.0359 - - -0.4446 0.3265
L -333.95178 -336.939603 -334.518996 -333.830679

Note: d: long memory, pu: mean, o: standard deviation, P: transition probability,¢: Autoregressive
parameter, : Moving average parameter, L: Log-likelihood of switching model, S.E: standard error

Table B.4 Estimates of BTC/AUD market volatility under different specifica-
tions of MS-ARFIMA process

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA

(0,d,0) (0,d,1) (1,d,0) (1,d,1)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E
di  0.3670 0.0322 0.2820 0.0316 0.3446 0.0385 0.3427 0.0355
da  0.3235 0.0159 0.2627 0.0174 0.3098 0.0200 0.3100 0.0177
p1 o 0.9242 0.1343 0.8686 0.0898 0.9503 0.1290 0.9596 0.1249
p2  0.2865 0.0587 0.2841 0.0419 0.2919 0.0561 0.2938 0.0552
o1 0.8008 0.0360 0.7210 0.0273 0.7978 0.0360 0.7956 0.0358
o2 0.1855 0.0037 0.1631 0.0034 0.1855 0.0037 0.1847 0.0037
p11 0.7331 0.0275 0.8006 0.0208 0.7331 0.0275 0.7303 0.0275
p22 0.9451 0.0064 0.9367 0.0071 0.9451 0.0064 0.9443 0.0064
10) - - - - 0.0283 0.0336 -0.4565 0.2795
0 - - 0.1119 0.0328 - - 0.4948 0.2696
L -393.729588 -400.962282 -393.212967 -392.023359

Note: d: long memory, p: mean, o: standard deviation, P: transition probability,¢: Autoregressive
parameter, §: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error
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Table B.5 Estimates of BTC/CAD market volatility under different specifica-
tions of MS-ARFIMA process

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA

(O,d7 0) (l,d7 0) (0,d,1) (1,d,1)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E
di  0.3192 0.0292 0.2757 0.0381 0.2914 0.0445 0.2692 0.0429
d2  0.2961 0.0001 0.2684 0.0225 0.2899 0.0221 0.2761 0.0234
pn1 o 0.6522 0.0848 0.7072 0.0783 0.8757 0.0828 0.8865 0.0765
p2  0.2183 0.0416 0.2434 0.0409 0.2997 0.0427 0.3057 0.0394
o1 0.6235 0.0201 0.6209 0.0201 0.6611 0.0249 0.6560 0.0244
o2 0.1459 0.0032 0.1461 0.1461 0.1617 0.0034 0.1602 0.0034
p11 0.9012 0.0135 0.9024 0.0133 0.8410 0.0191 0.8452 0.0186
p22  0.9522 0.0067 0.9530 0.0066 0.9496 0.0064 0.9492 0.0065
10) - - - - 0.0526 0.0362 -0.0591 0.2372
0 - - 0.0476 0.0355 - - 0.1216 0.2297
L -300.4434 -299.755155 -292.341567 -293.877633

Note: d: long memory, p: mean, o: standard deviation, P: transition probability,¢: Autoregressive
parameter, 0: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error
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Robustness check for MS-ARFIMA

Table B.6 Estimates of BTC/USD market return volatility under different
specifications of MS-ARFIMA process

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA
(0,d,0) (0,d,1) (1,d,0) (1,d,1)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E
di 0.289 0.0373  0.4052 0.0434  0.3414 0.0404 0.4772 0.0486
da 0.3312 0.0165 0.3948 0.0277  0.3645 0.0224  0.4423 0.0336
1 8.0361 0.7577  7.0224 1.0794  7.6371 0.851 6.2306 1.3547
M2 2.2246 0.4887 1.6597 0.6382 1.9668 0.5559 1.482 0.767
o1 6.2061 0.0296  6.2362 0.2624  6.2388 0.257 6.1884 0.2546
o2 1.6228 0.033 1.6014 0.0323  1.6103 0.0327  1.6003 0.0324
p11 0.8378 0.0208  0.8015 0.0233  0.8301 0.0214 0.8224 0.0218
p22 0.9586 0.0056  0.9525 0.0060  0.9569 0.0058  0.9553 0.0059
1] - - - - -0.0901 0.0336  0.2769 0.0896
0 - - -0.1534 0.0427 - - -0.474 0.0898
L -3680.41552 -3675.6816 -3676.6468 -3672.7555

Note: d: long memory, y: mean, o: standard deviation, P: transition probability,¢: Autoregressive
parameter, §: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error

Table B.7 Estimates of BTC/EUR market return volatility under different
specifications of MS-ARFIMA process

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA
(0,d,0) (0,d,1) (1,d,0) (1,d,1)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E
di 0.3313 0.0242  0.3563 0.0322  0.3252 0.0263  0.3982 0.0349
da 0.3275 0.0151  0.3485 0.0209  0.3252 0.0162  0.3767 0.0249
H1 6.117 0.8061  7.1305 0.9302 6.6828 0.7578  6.6038 1.1054
2 1.299 0.4677  1.6703 0.5471  1.5626 0.4358 1.4191 0.6199
o1 5.9374 0.2136  6.1937 0.2491  6.0102 0.2239  6.2007 0.2505
o2 1.3257 0.028 1.4403 0.0293  1.3436 0.028 1.4453 0.0294
p11 0.8303 0.0188  0.7818 0.0232  0.8043 0.0206  0.7924 0.0224
p22  0.9403 0.007 0.9425 0.0067  0.9374 0.0071  0.9391 0.007
¢ - - - - 0.0048 0.0175  0.4308 0.1468
0 - - -0.0436 0.036 - - -0.5108 0.1393
L -3636.3705 -3628.32752 -3633.4137 -3629.0322

Note: d: long memory, pu: mean, o: standard deviation, P: transition probability,¢: Autoregressive
parameter, 0: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error
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Table B.8 Estimates of BTC/GBP market return volatility under different
specifications of MS-ARFIMA process

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA
(0,d,0) (0,d,1) (1,d,0) (1,d,1)
Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E

d1 0.3368 0.0283  0.3243 0.0294  0.3407 0.029 0.3586 0.035
da 0.31 0.0163  0.301 0.0174  0.3117 0.0174 0.319 0.0239
1 6.2948 0.975 6.6595 0.9924  6.4464 1.0258  5.9658 1.0984
2 1.6881 0.4473  1.7871 0.4468 1.7022 0.461 1.5756 0.4916
o1 6.7525 0.2869 1.9465 0.0456  6.9928 0.3163 6.8499 0.301
o2 1.496 0.0303  0.4362 0.02 1.5378 0.0307  1.5117 0.0304
P11 0.7708 0.0245 1.025 0.1413  0.7341 0.0274 0.745 0.0263
p22  0.9452 0.0065 2.8618 0.1238  0.9451 0.0064  0.9436 0.0065
¢ - - - - -0.0015 0.0194  0.448 0.3721
0 - - 0.0131 0.0276 - - -0.4745 0.3681
L -3652.7169 -3648.0290 -3647.5388 -3650.6794

Note: d: long memory, u: mean, o: standard deviation, P: transition probability,¢: Autoregressive
parameter, 0: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error

Table B.9 Estimates of BTC/AUD market return volatility under different
specifications of MS-ARFIMA process

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA
(0,d,0) (0,d,1) (1,d,0) (1,d,1)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E
di 0.3943 0.0261  0.3561 0.0316  0.2679 0.0405 0.3616 0.0297
da 0.3273 0.0153  0.2982 0.0194  0.1984 0.017 0.3056 0.018
H1 6.1178 1.2219  6.7589 1.1148  7.7231 0.8654  6.7486 1.1279
2 2.0657 0.4971  2.3365 0.4484  2.9966 0.2636  2.2934 0.4553
o1 6.6483 0.2719  6.4412 0.255 6.0819 0.2282  6.6111 0.2699
o2 1.4496 0.0296  1.4006 0.0289  1.4277 0.0301  1.4451 0.0295
p11 0.732 0.025 0.7406 0.0239  0.8121 0.02 0.7337 0.0248
p22  0.9303 0.0073  0.9265 0.0075  0.9377 0.0071  0.9302 0.0073
¢ - - - - 0.1833 0.0346  -0.3809 0.2002
0 - - 0.0549 0.0356 - - 0.4433 0.1905
L -3710.7950 -3708.4664 -3720.1556 -3708.7575

Note: d: long memory, pu: mean, o: standard deviation, P: transition probability,¢: Autoregressive
parameter, 0: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error
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Table B.10 Estimates of BTC/CAD market return volatility under different
specifications of MS-ARFIMA process

MS-ARFIMA MS-ARFIMA MS-ARFIMA MS-ARFIMA
(0,d,0) (0,d,1) (1,d,0) (1,d,1)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E
d1 0.3332 0.0351  0.2734 0.0365  0.2729 0.0391  0.2756 0.0837
da 0.3194 0.0174  0.2646 0.0225  0.2642 0.0246 0.2663 0.0526
1 7.3241 0.7584  6.2463 0.6632 6.2514 0.6875  6.2231 0.9982
U2 2.5028 0.4152 2.1525 0.3469  2.1559 0.3604  2.1388 0.4621
o1 5.7882 0.2169  5.4286 0.1778  5.4282 0.1782  5.4306 0.179
o2 1.407 0.0293 1.2761 0.0281 1.2762 0.0282 1.2759 0.0283
pir 0.8446 0.0189  0.8961 0.0138  0.8961 0.0138  0.8961 0.0138
p22  0.9503 0.0064 0.9516 0.0066  0.9516 0.0066  0.9516 0.0066
¢ - - - - 0.0499 0.0417  -0.0902 1.9193
0 - - 0.0502 0.0359 - - 0.1382 1.8389
L -3605.945 -3612.4253 -3612.456 3612.4100

Note: d: long memory, u: mean, o: standard deviation, P: transition probability,¢: Auto-regressive
parameter, 0: Moving average parameter, L: Log-likelihood of switching model, S.E: standard error



184 Appendix B Supplement to Chapter 3

Figure B.6 BTC/USD Exchange rates return volatility and the estimated val-
ues of ARFIMA model
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Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted
value from ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly.
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Figure B.7 BTC/EUR Exchange rates return volatility and the estimated val-
ues of ARFIMA model
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Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted
value from ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly.
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Figure B.8 BTC/GBP Exchange rates return volatility and the estimated val-
ues of ARFIMA model
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Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted
value from ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly.
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Figure B.9 BTC/AUD Exchange rates return volatility and the estimated val-
ues of ARFIMA model
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Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted
value from ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly.
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Figure B.10 BTC/CAD Exchange rates return volatility and the estimated
values of ARFIMA model
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Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted
value from ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly.

Figure B.11 BTC/USD Exchange rates return volatility and the estimated
values of MS-ARFIMA model
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Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted
value from MS-ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly.
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Figure B.12 BTC/EUR Exchange rates return volatility and the estimated
values of MS-ARFIMA model
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Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted
value from MS-ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly.

Figure B.13 BTC/GBP Exchange rates return volatility and the estimated
values of MS-ARFIMA model
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Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted
value from MS-ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly.
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Figure B.14 BTC/AUDExchange rates return volatility and the estimated val-
ues of MS-ARFIMA model
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Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted
value from MS-ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly.

Figure B.15 BTC/CAD Exchange rates return volatility and the estimated
values of MS-ARFIMA model
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Note: Black solid line represents the Bitcoin exchange rate volatility, red dotted line represents the fitted
value from MS-ARFIMA model. X-axis represents a daily data from 2015 to 2019, ticks are quarterly.
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Table C.1 Volatility spillovers across six selected exchange rates in time domain
— 60-day ahead forecast

Directional

BTC/USD BTC/EUR BTC/GBP BTC/JPY BTC/AUD BTC/CAD FROM others
BTC/USD 22.34 16.81 17.14 14.57 12.88 16.27 77.66
BTC/EUR 16.82 23.25 16.19 14.73 12.86 16.15 76.75
BTC/GBP 17.69 16.49 22.28 14.71 12.82 16.01 77.72
BTC/JPY 15.88 16.35 15.44 23.08 13.64 15.61 76.92
BTC/AUD 15.10 15.62 14.80 14.96 24.51 15.00 75.49
BTC/CAD 16.63 16.48 15.83 14.90 13.30 22.86 77.14
Directional
TO others 82.12 81.75 79.41 73.88 65.50 79.03 TSI 76.95%

Note: Data cover the period from January 1, 2015 to May 31, 2019. The rightmost (FROM) column
gives total directional connectedness (from). The bottom (TO) row gives total directional connectedness

(to). Numbers are in percentage. The bottom-right element (in boldface) is total connectedness (see also
F. Diebold & Yilmaz, 2014).
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Table C.2 Volatility spillovers across six selected exchange rates in time domain
— 90-day ahead forecast

Directional

BTC/USD BTC/EUR BTC/GBP BTC/JPY BTC/AUD BTC/CAD FROM others
BTC/USD 22.34 16.81 17.14 14.57 12.88 16.27 77.66
BTC/EUR 16.82 23.25 16.19 14.73 12.86 16.15 76.75
BTC/GBP 17.69 16.49 22.28 14.71 12.82 16.01 77.72
BTC/JPY 15.88 16.35 15.44 23.08 13.64 15.61 76.92
BTC/AUD 15.10 15.62 14.80 14.96 24.51 15.00 75.49
BTC/CAD 16.63 16.48 15.83 14.90 13.30 22.86 77.14
Directional
TO others 82.12 81.75 79.41 73.88 65.50 79.03 TSI: 76.95%

Note: Data cover the period from January 1, 2015 to May 31, 2019. The rightmost (FROM) column
gives total directional connectedness (from). The bottom (TO) row gives total directional connectedness

(to). Numbers are in percentage. The bottom-right element (in boldface) is total connectedness (see also
F. Diebold & Yilmaz, 2014).

Table C.3 Volatility spillovers across six selected exchange rates in time domain
— 120-day ahead forecast

Directional

BTC/USD BTC/EUR BTC/GBP BTC/JPY BTC/AUD BTC/CAD FROM others
BTC/USD 22.34 16.81 17.14 14.57 12.88 16.27 77.66
BTC/EUR 16.82 23.25 16.19 14.73 12.86 16.15 76.75
BTC/GBP 17.69 16.49 22.28 14.71 12.82 16.01 77.72
BTC/JPY 15.88 16.35 15.44 23.08 13.64 15.61 76.92
BTC/AUD 15.10 15.62 14.80 14.96 24.51 15.00 75.49
BTC/CAD 16.63 16.48 15.83 14.90 13.30 22.86 77.14
Directional
TO others 82.12 81.75 79.41 73.88 65.50 79.03 TSI: 76.95%

Note: Data cover the period from January 1, 2015 to May 31, 2019. The rightmost (FROM) column
gives total directional connectedness (from). The bottom (TO) row gives total directional connectedness
(to). Numbers are in percentage. The bottom-right element (in boldface) is total connectedness (see also
F. Diebold & Yilmaz, 2014).
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Figure C.1 Overall volatility spillovers (dynamic plot), 15-120-Day Rolling Win-
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Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 15-120-
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and

ticks are quarterly.
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Figure C.2 Overall volatility spillovers (dynamic plot), 15-150-Day Rolling Win-
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Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 15-150-
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and

ticks are quarterly.
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Figure C.3 Overall volatility spillovers (dynamic plot), 15-180-Day Rolling Win-
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Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 15-180-
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and

ticks are quarterly.
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Figure C.4 Overall volatility spillovers (dynamic plot), 30-150-Day Rolling Win-
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Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 30-150-
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and

ticks are quarterly.
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Figure C.5 Overall volatility spillovers (dynamic plot), 30-180-Day Rolling Win-
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Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 30-180-
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and

ticks are quarterly.
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Figure C.6 Overall volatility spillovers (dynamic plot), 60-120-Day Rolling Win-
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Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 60-120-
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and

ticks are quarterly.
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Figure C.7 Overall volatility spillovers (dynamic plot), 60-150-Day Rolling Win-
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Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 60-150-
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and

ticks are quarterly.
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Figure C.8 Overall volatility spillovers (dynamic plot), 60-180-Day Rolling Win-
dow

wn
[+0]

75

60

w _|
[Te]

I | 1 I
2016 2017 2018 2019
Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2014) with a 60-180-
day rolling window, y-axis scale is in percentages. Dates on the x-axis indicate the start of the year, and

ticks are quarterly.
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Figure C.9 Volatility spillovers to others, dynamic plot
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Note: series, daily. Dates on the x-axis indicate the start of the year, and ticks are quarterly.
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Figure C.10 Volatility spillovers from others, dynamic plot
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Figure C.11 Net Volatility spillovers, dynamic plot
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Figure C.12 Directional-volatility connectedness network, 22/05/2015

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.

Figure C.13 Directional-volatility connectedness network, 15/02/2016

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.
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Figure C.14 Directional-volatility connectedness network, 13/10/2016

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise

directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.

Figure C.15 Directional-volatility connectedness network, 26,/04/2017

a

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise

directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.
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Figure C.16 Directional-volatility connectedness network, 17/05/2017

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.

Figure C.17 Directional-volatility connectedness network, 18/12/2017

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.
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Figure C.18 Directional-volatility connectedness network, 26,/12/2017

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise

directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.

Figure C.19 Directional-volatility connectedness network, 07,/01/2018

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise

directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.
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Figure C.20 Directional-volatility connectedness network,15/02/2018

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.

Figure C.21 Directional-volatility connectedness network, 04/03/2018

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.
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Figure C.22 Directional-volatility connectedness network, 12/04/2018

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise

directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.

Figure C.23 Directional-volatility connectedness network, 21,/12/2018

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise

directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.
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Figure C.24 Directional-volatility connectedness network, 27/12/2018

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.

Figure C.25 Directional-volatility connectedness network, 26,/01/2019

Note: The Nodes are the bitcoin markets and the link between two nodes (edge) is given by net pairwise
directional connectedness. The edge size shows the magnitude of the net contribution of bitcoin markets
in terms of net pairwise directional connectedness.
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Figure C.26

Inverse Roots of AR Characteristic Polynomial
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