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We propose a technique for modeling erbium-doped fiber amplifiers (EDFAs) in optical fiber networks,
where the amplifier unit is located at a distant node outside the lab. We collect data on an optical point-
to-point link with the amplifier as the only amplification stage. Different amplifier operating points are
modeled using probe signals and by adjusting the settings of the amplifier through a control network.
The data are used to train a machine learning algorithm integrated within a physical EDFA model. The
obtained mathematical model for the amplifier is used to model all amplifiers of a network and links
with multiple amplification stages. In order to confirm the modeling accuracy, we thereafter predict and
optimize launch power profiles of two selected links in the network of 439.4 km and 592.4 km length. A
maximum/average channel optical signal to noise ratio prediction error of 1.41/0.68 dB and 1.62/0.83 dB
is achieved for the 2 multi-span systems, respectively, using the EDFA model trained on the single span
system with margin-optimized launch power profiles. Up to 2.2 dB of margin improvements are obtained
w.r.t. unoptimized transmission. © 2023 Optica Publishing Group

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Availability and reliability of optical networks require a design
margin due to aging effects of system components and model un-
certainties [1]. The performance of different wavelength-division
multiplexing (WDM) channels for a link and across the network
is not uniform and the effective margin is based on the worst per-
forming channel, leaving potential for improved performance
and resource allocation by methods allowing a system to oper-
ate at lower margin [2–5]. The disaggregation trend requires a
new tier of flexible and elastic networks with finer and dynamic
control over provided spectral bands and data rates [6–8], fur-
ther enabling systems with low margin design [9–11]. For new
networks planned with low margin and existing networks oper-
ated at lower margin an accurate quality of transmission (QoT)
indicator, such as the signal-to-noise ratio (SNR), guaranteeing
reliable operation is imperative. Further, such a QoT model is
used to optimize system components during planning or opera-
tion parameters towards a system operating with lower margin.
Several methods have been proposed for QoT estimation, rely-
ing on physical models of network components [12], data driven
machine learning (ML) models [13–23], and integration of the
two [24]. More recently, also partially loaded systems have
been addressed [25, 26]. The uncertainty in component param-

eters and the effect on the QoT estimate has been investigated
in [27, 28]. Also methods addressing the uncertainty in compo-
nent parameters have been proposed [29], e.g. by estimating
the fiber type and fiber parameters of a deployed network [30].
If available, components can also be characterized in the lab
before deployment by fitting a physical model or learning a
model from data, as shown for erbium-doped fiber amplifiers
(EDFAs) by [25, 31–35] and also in our previous work [36, 37].
For operational networks, methods leveraging monitoring data
have been proposed in [38, 39]. With an accurate QoT estimate
in place, techniques to optimize the channel input powers to
a link are of interest. In [40], system optimization of the chan-
nel input powers is demonstrated using a Gaussian noise (GN)
model including stimulated Raman scattering (SRS) effects with
step-wise convex properties, leading to minimum margin im-
provement in SNR. In [41], it is shown that including optical
amplification effects such as the wavelength dependent gain and
noise contributions are critical for optimization of wide-band
systems. Joint optimization of input power and amplifier gain is
shown in [42]. In [43, 44] an heuristic algorithm is used to opti-
mize SNR via the channel powers in a testbed with commercial,
real-time equipment. Optimization of inline amplifier settings
for a S+C+L multi-band system is demonstrated in [45]. A se-
quentially loaded and re-optimized system is experimentally
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Fig. 1. Remote modeling of EDFA device.

investigated in [46].
The work we present here is an extension of our conference

contribution [47], and based on our previous work in [36, 37],
where an ML algorithm is trained to learn the channel input and
output power relation of EDFA devices from data acquired in
the lab with direct access to the EDFA input and output ports.
The devices are then placed in a multi span system setup and a
corresponding model is built with a cascade of fiber and EDFA
ML models. A set of channel input powers are obtained via
optimization of the system margin in SNR and validated on the
physical system. In contrast to our previous work, in this work
we show how to train a novel EDFA ML model on a system
without direct access to the EDFA device itself and thus taking
a further step towards practical systems. The proposed EDFA
ML model is enhanced by data aided ML but guided by phys-
ical properties as proposed in Meseguer et al. [35] and Saleh
et al. [48]. We show that such hybrid composition allows the
EDFA model to be trained while the device is placed in the field,
Fig. 1. Further, assuming sufficient similarity between the differ-
ent EDFAs deployed in the network, we only train on a single
EDFA device and use it to model all other EDFA devices in the
network. With an analytical fiber model and a trained EDFA
model, we compose a differentiable mathematical model for a
subset of links in the network. The subsequent optimization of
the launch power profiles shows improvement in optical signal-
to-noise ratio (OSNR)/SNR margin in a field deployed system
compared to a flat launch power profile. As the system model is
fully trained before the system optimization, our method does
not require any feedback from the system as in [43], nor long
system shutdown periods for characterization. The structure of
this paper is as follows: Section II describes the models used
to model fiber and EDFA devices, in particular we propose a
novel hybrid EDFA model combining physical properties with
an ML algorithm. Section III describes the optical network on
which the data acquisition and experiments are carried out on.
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Fig. 2. Network topology. All edges are comprised of 4 indi-
vidual fiber links.

Section IV describes the data acquisition and remote training
technique for modeling an offsite EDFA device. For compactness
of this paper and limiting the required experimental measure-
ments, the results in Section V and Section VI are described with
a progression from shorter to longer links and increasing system
complexity from OSNR to SNR measurements, where the latter
includes a full transceiver (TRX) setup. In Section V we show
experimentally the accuracy of the trained EDFA model by opti-
mizing the OSNR. In Section VI we show experimentally how
the SNR margin is improved using the proposed EDFA model.
In Section VII we conclude our findings.

2. SYSTEM COMPONENT MODELS

In this Section the models of the optical system components are
described. The overall goal is to predict the signal power and
the accumulated noise power for all WDM channels of a link as
a function of its input power profile. For this, a cascade of WDM
system component models are used: A fiber model, an EDFA
model and a TRX penalty model. As this work is an extension
of our previous work, we refer the reader to [37], for the descrip-
tion of the fiber model. In short, the fiber model is comprised of
a GN model including attenuation and SRS effects. The EDFA
model is novel and described in the sub-section below. The TRX
penalty model is data aided and described in Appendix B. With
an arbitrary configuration of these models and with resulting
accurate predictions of the signal output power and the accumu-
lated noise output power, the wavelength dependent OSNR and
SNR of the WDM system is obtained as follows:

OSNRk =
Pout

S,k

Pout
N,k

,

[SNRk]dB =

[
Pout

S,k

Pout
N,k + PGN,k

]
dB

− [∆SNR([Pout
S,tot]dBm, λk)]dB,

Pout
S,tot =

Nch

∑
i=1

Pout
S,i ,

(1)

where here Pout
S,k and Pout

N,k refer to the channel signal and am-
plified spontaneous emission (ASE) noise power of the system
output, PGN,k is the nonlinear interference noise term modeled
by the GN model, ∆SNR(Pout

S,tot, λk) is the total channel power
dependent TRX penalty term at WDM channel k with center
wavelength λk which is described in Appendix B Eq. (12) . All
variables are in linear units and the [·]dBm/dB is used for the
corresponding versions in dBm/dB.

A. EDFA Model
The EDFA model described in this Section is from Meseguer et
al. [35] which is based on Saleh et al. [48] A short and compre-
hensive description of the model in Saleh et al. can be found in
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Fig. 3. Experimental setup of EDFAs, wavelength selective
switches (WSSs) and an optical spectrum analyzer (OSA) for
data acquisition and OSNR optimization measurements.
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(a) Example input spectra.
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(b) Example output spectra.
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(c) Examples of input power profiles.
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(d) Examples of output power profiles.

Fig. 4. Measurement examples of link scenario STN-RDG*-STN with the EDFA APC setting set to 18 dBm. (a) Shaped ASE input
spectra with extracted power and noise profiles (black dots), and (b) its corresponding system output. The left inlets in (a) and
(b) are zoomed in versions of the power profile of the first four channels, and the right inlets are zoomed in versions of the noise
profile of the last four channels, here the noise profile at the respective channel center (black dots) is interpolated from the noise
floor (red dots). (c) and (d) show in black the input and output power profile from the corresponding example spectra in (a) and (b).
In color 24 additional power profile samples of the data set.

the Appendix of Perin et al. [41] The model by Saleh provides
the wavelength dependent gain profile of an EDFA given an
arbitrary input power profile. The EDFA model channel output
powers of signal and noise are given by:

Pout
S,k = Pin

S,kGk(P
in
S ),

Pout
N,k = Pin

N,kGk(P
in
S ) + PASE,k,

Pin
S = [Pin

S,1, . . . , Pin
S,Nch

]T,

(2)

where Pin
S,k, Pout

S,k , Pin
N,k and Pout

N,k refer to the channel input/output
powers for signal and noise of the EDFA, respectively, G(·)k is
the gain profile function, and PASE,k is the channel dependent
ASE noise power at WDM channel k with channel center wave-
length λk. In order to determine the gain profile function, an
EDFA property is used that relates the gain profile for an arbi-
trary input power profile to the gain profile for an equivalent flat
input power profile, where equivalent refers to the flat power pro-
file having an equal total power to the arbitrary power profile.
Assuming a gain function for flat input power profiles exists
with dependence on the total input power, such as GEF(Pin

S,tot):
R → RNch , then the gain profile for an arbitrary input power

profile is given by:

Gk(P
in
S ) = GEF,k(Pin

S,tot + Nch∆PS,EF),

∆PS,EF =
∑Nch

i=1 λi∆PS,i(GEF,k(Pin
S,tot)− 1)

∑Nch
i=1 λi(GEF,k(Pin

S,tot)− 1)
,

Pin
S,tot =

Nch

∑
i=1

Pin
S,i,

∆PS,k = Pin
S,k −

Pin
S,tot
Nch

,

(3)

where GEF,k(·) is the equivalent flat gain function, ∆PS,EF is an
adjustment factor for the equivalent flat power, Pin

S,tot is the total
input power, and ∆PS,k is the channel dependent deviation from
the channel average input power. In Meseguer et al. [35], the
equivalent flat gain function is determined by a look up table
based on measurements of flat input power profiles and their
corresponding gain profiles at the input and output ports of
the EDFA device. Similar to the gain function, assuming that
a noise figure function for flat input power profiles exists with
dependence on the total input power, such as NFEF(Pin

S,tot): R →
RNch , then the ASE channel noise power contribution is given
by:

PASE,k = NFEF,k(Pin
S,tot)Gk(P

in
S )h fk∆ fref , (4)

where NFEF,k(·) is the noise figure function, fk is the frequency at
wavelength λk and ∆ fref the reference bandwidth. In Meseguer
et al. [35], it is reported that the noise figure function is also
determined by a look up table based on measurements.
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Fig. 5. Schematic flow chart of how the data of Eq. (7) is con-
nected. The signal path (red) is independent of the noise path
(purple), yet the noise path depends on the signal path.

B. Hybrid Machine Learning EDFA Model
In this Section, we describe the novel hybrid EDFA ML model.
The EDFA model of the previous Section is enhanced by replac-
ing the look up tables for the total power dependent gain profile
and noise figure functions with neural networks, resulting in
a fully differentiable model. Further, for both functions we in-
troduce the EDFA automatic power control (APC) setting as an
additional input parameter. Assuming the EDFA is in constant
power control mode, this enables the model to include a range
of operational points in terms of the EDFA total output power
level:

GEF(Pin
S,tot) ↔ GEFNN(Pin

S,tot, Papc
tot ),

NFEF(Pin
S,tot) ↔ NFEFNN(Pin

S,tot, Papc
tot ),

G(Pin
S ) ↔ G(Pin

S , Papc
tot )

(5)

where GEFNN(·) and NFEFNN(·) are both modeled as neural net-
works, and for completeness also the gain function for arbitrary
input power profiles, G(·), is adjusted to include the APC setting
as parameters. The neural networks are further defined as:

[GEFNN(Pin
S,tot, Papc

tot )]dB = NN([Pin
S,tot]dBm, [Papc

tot ]dBm),

[NFEFNN(Pin
S,tot, Papc

tot )]dB = NN([Pin
S,tot]dBm, [Papc

tot ]dBm),
(6)

where NN : R2 → RNch and the dBm/dB annotations refer
to that the neural networks are trained in the logarithmic do-
main for both input and output. The training methodologies of
the neural networks and the complete description of the dataset
used for training is provided in Section 4 A. The proposed adjust-
ments to the EDFA model allow to model a range of operation
pump powers and to train the equivalent flat gain function (now
a neural network) as part of the complete EDFA model end to
end, Eq. (2), relieving the requirements for the measurements to
have flat input power profiles. Central to this work, this allows
the remote modeling by embedding the EDFA model within
fiber models, where there is no explicit control over the profile
input to the EDFA. Then, the equivalent flat gain function can be
trained on system measurements end to end. The same applies
to the noise figure function of the EDFA model.

3. NETWORK

The remote training and the following link optimization is car-
ried out on a network of fiber links (the UK’s Dark Fibre Facility)

depicted in Fig. 2. The fiber links are composed of standard, sin-
gle mode fiber with distances and total losses annotated in Fig. 2.
The network is composed of 4 nodes at Southampton (STN),
Reading (RDG), Froxfield (FRX) and Powergate (PGT), with 6
EDFAs in total: 4 in RDG and 2 in PGT. The accessing node is
located at STN. Each line between the nodes in Fig. 2 indicates an
independent fiber connection, allowing us to use the 4-node net-
work to obtain longer links by re-using some of the routes. Four
different link scenarios of the network are used. The link sce-
nario STN-RDG*-STN (where * denotes an amplification stage),
is used for remote training of an EDFA model on a single EDFA
device in RDG, described in Section 4. The obtained model is
then used for all other EDFA devices in the following link sce-
narios. The link scenario STN-RDG*-FRX-RDG*-STN is used
to verify that the EDFA model accurately models the second
amplification stage although it was trained on the first amplifier,
described in Section 5. Finally, we show that the link scenarios
STN-RDG*-PGT*-RDG*-FRX-RDG*-STN and STN-RDG*-PGT*-
RDG*-PGT*-RDG*-FRX-RDG*-STN are accurately modeled and
optimized towards a flat output SNR, described in Section 6. The
EDFAs in the network are of the model CEFA-644-00 from Lea
Photonics with integrated fixed gain flattening filters, aiming
at flattening the gain spectrum for a specific total gain. Due to
the non-uniformity of fiber span lengths in a regional network,
the amplifier must operate at a variety of total gains, leading to
non-flatness across the network. The control network mentioned
in the abstract refers to the infrastructure used to remotely ac-
cess and control the various components within the optical fiber
network, including the EDFA devices, attenuators and switches.
The control network is accessed from our lab via a virtual pri-
vate network (VPN), and the various components are controlled
using hypertext transfer protocol (HTTP) requests. With this
setup, data can be collected remotely and the performance of
the entire network can be optimized from a single access point.
In the control network, we only control and monitor the EDFA
operating point, which is much less complex and less expen-
sive than a full optical management system that includes optical
spectrum analyzers (OSAs). However, this also means that the
methodology might not be applicable for networks with more
complicated requirements.

4. REMOTE TRAINING

This Section describes the data acquisition process and the sub-
sequent training of the EDFA model, with an experimental setup
as shown in Fig. 3. If the EDFA unit is not deployed or a similar
unit is available in the lab, as shown in [25, 36, 37], a calibration
in the lab is preferred over the remote training method proposed
in this Section.

A. Data Acquisition
For the data acquisition, the system emulates a C-band, 48-
channel, 12.5 GBd WDM signal on a 100 GHz grid with a setup
of EDFAs and wavelength selective switches (WSSs), and link
scenario STN-RDG*-STN. The bandwidth of the WDM chan-
nels was chosen to align with technical limitations of the WSS,
which can deliver a minimum channel size of 12.5 GHz, and
with the limited bandwidth of the coherent receiver of 10 GHz.
The input to the system is signals with ASE shaped spectra of
1000 random power profiles at total launch power of 20 dBm,
an example is shown in Fig. 4a. The spectra at the output of the
system are measured using an OSA, an example is shown in
Fig. 4b. The power and noise profiles of the input and output
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Fig. 6. Root mean squared error on the test set for power (blue)
and noise (red) profile in respect to (a) the wavelength, (b) the
EDFA input power and (c) the EDFA APC setting.

spectra are extracted (black dots in Fig. 4a and 4b), the noise
profiles at the WDM channel centers are interpolated from the
noise floor (red dots in inlets). Fig. 4c and 4d show the extracted
input and output power profiles, respectively, as obtained from
25 individual profile samples (including those in Fig. 4a and
4b). From the power profiles and the noise profiles the OSNR is
calculated. An attenuator leading into the EDFA device in RDG,
allows to sweep the input power to the EDFA. Every profile
is measured at 7 different EDFA input power levels and at 5
different EDFA APC value settings. The EDFA is in constant
power control mode and the total output power ranges from
12 dBm to 20 dBm. With a total of 1000 power and noise profiles
the resulting dataset is of 35000 samples. The corresponding
system model is shown in Fig. 5, with the dataset defined as:

{(Pin,i
S , Pout,i

S , Pin,i
N , Pout,i

N , αi
Att, Papc,i

tot )}ND
i=1, (7)

where ND=35000 is the number of data samples, Pin,i
S , Pout,i

S , Pin,i
N

and Pout,i
N are the system input power profiles, output power pro-

files, input noise profile and output noise profiles, respectively,
and αi

Att and Papc,i
tot are the attenuation applied to the input of

the EDFA and the EDFA APC value settings, respectively. The
dataset is split 10%, 20% and 70% into training, validation and
test set, respectively. The split is carried out such that a profile
with all its permutations in αAtt and Papc

tot appears only in one
of the sets. This results in 100 training profiles with 3500 data
samples, 200 validation profiles with 7000 data samples, and 700
testing profiles with 24500 data samples. A low percentage of
training data is unusual for ML applications, yet during devel-
opment we realised that the amount of required training data
was lower than expected, which allowed to split the dataset as
shown and thus put more emphasis on the test error and the
generalization capabilities of the model. A similar property was
noted for the look up table version of the equivalent flat EDFA

model in [35]. Further, this increases the training speed as less
data is processed per training step. Finally, this property is im-
portant for obtaining training data in cases, where long periods
of link availability for characterization are infeasible. The fiber
model parameters, such as the lumped loss and effective nonlin-
ear coefficient, were estimated from data acquired skipping the
amplification stage in RDG and a fit of the fiber model including
the SRS effect, a similar technique has been reported in [25].

B. Training
The EDFA model described in Section 2 B includes two neural
networks, GEFNN(·) and NFEFNN(·), which are fully connected
in structure and consist of an input layer with 2 neurons, two
hidden layers with 32 neurons each, and an output layer with
48 neurons equal to the number of channels Nch. The model
and data setup is shown in Fig. 5. During training, the fiber
model and the physical part of the EDFA model are continuously
simulated such that the neural network learns the isolated effects
of the EDFA gain and added noise. First, the signal path of the
model is used to train the neural network on the signal path
of the EDFA model. Thereafter, the noise path of the system
model is used to train the second neural network on the noise
path of the EDFA model. The neural network parameters of the
signal and noise path are denoted as θS and θN , respectively.
The models are trained consecutively via stochastic gradient
descent (SGD). The signal path of the EDFA model is optimized
by minimizing a mean squared error (MSE) loss function as
follows:

lossS(θS) =

1
NB Nch

NB

∑
i=1

Nch

∑
k=1

(
[Mi

S,k(θS)]dBm − [Pout,i
S,k ]dBm

)
,

θ̂S = argmin
θS

lossS(θS),

(8)

where Mi
S,k(θS) is the prediction of the model along the signal

path at the channel wavelength λk for data sample i, and NB=32
is the batch-size of data samples per SGD iteration. After con-
vergence, the signal path parameters are frozen during training
of the noise path, with θS = θ̂S.

The noise path of EDFA model is optimized by minimizing a
MSE loss function as follows:

lossN(θN) =

1
NB Nch

NB

∑
i=1

Nch

∑
k=1

(
[Mi

N,k(θ̂S, θN)]dBm − [Pout,i
N,k ]dBm

)
,

θ̂N = argmin
θN

lossN(θN),

(9)

where Mi
N,k(θ̂S, θN) is the prediction of the model along the

noise path at the channel wavelength λk for data sample i and
frozen signal path neural network weights θ̂S. After conver-
gence, the obtained noise path of the EDFA model, with θN = θ̂N ,
completes the EDFA model which can now be used for predic-
tions. We note that the training in Eq. (8) and (9) is carried out
with the Adam optimizer [49] and the automatic differentiation
within the software framework PyTorch [50]. After optimization,
the root mean squared error (RMSE) on the test dataset is 0.34 dB
and 0.29 dB for the predicted signal and noise profiles, respec-
tively. Fig. 6 shows the RMSE at different (a) wavelengths, (b)
EDFA total input power levels and (c) EDFA total output powers
levels, for the predicted signal and noise profiles. The model
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Fig. 8. (a) Minimum OSNR and (b) difference of maximum
and minimum OSNR across wavelength for different total
output powers of the second EDFA. Link configuration going
to FRX and back in solid lines and going to RDG and back in
dashed lines.

prediction shows a larger error at short wavelengths, low EDFA
input powers and large EDFA total output powers. In order to
quantify the errors, we present a study in Appendix A. In this
Appendix, a model as described in Section 2 B is trained on simu-
lated data not in a remote setting. The error at short wavelengths
is reproduced on the simulated data, such that we conclude that
this error, as reported in the remote modeling scenario of this
Section is due to the insufficient accuracy of the equivalent flat
approximation of the EDFA model. We attribute the larger error
at low EDFA input powers and large EDFA total output powers
to artifacts introduced by the transmission system. Instead of
the model proposed in Section 2 B, it is possible to train an EDFA
model comprised exclusively of neural networks as in our pre-
vious work [37], yet, in a remote modeling setup as conducted
here, we found that such a pure ML model would overfit to
residual effects of the fiber and other components. In contrast,
the proposed hybrid EDFA model of Section 2 B is regularized
in its function space by the properties of its integrated physical

Laser

Tx

Rx
DSP

I/Q Mod
Pol. Mux

Add-Delay

DSO

40 GSa/s

Coherent
Front-End

AWG

92 GSa/s
PS-64QAM

RRC

W
S
S

W
S
S

N
E
T
W
O
R
K

ASE
SOURCE

Fig. 9. Experimental system setup.

model. A comparison of different EDFA models, physical and
ML aided, and the effect of the dataset size on the performance
of the modeling is left for future research. We note that, for
such fair comparisons another experiment should be designed
where data are collected for a single EDFA unit in lab and re-
mote scenarios. The lab trained models could then be tested in
the remote setting and compared with the performance of the
remotely trained models. Unfortunately, with the available data
from the presented study, such comparison is not possible.

5. OSNR OPTIMIZATION

In order to verify whether the trained EDFA model can be used
for modeling another EDFA device in the system, we show that
the link STN-RDG*-FRX-RDG*-STN can be modeled and op-
timized for a flat output OSNR with one additional EDFA at
RDG. Similar to our work in [37], we build a cascade of fiber
and EDFA models and optimize the input power profile of the
system, with the cost function Cost=−minλk

(OSNR(λk)), target-
ing a flat OSNR. Once a differentiable EDFA model is available,
input profile optimization is applied using the techniques de-
tailed in [36, 37]. The optimization uses gradient descent to
update the input power profile. The gradients are obtained via
automatic differentiation within the software framework Py-
Torch [50]. As in our previous work [36, 37] the cost function
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Fig. 10. Performance in SNR (top) and OSNR (bottom) of the link scenario STN-RDG*-PGT*-RDG*-FRX-RDG*-STN (439.4 km,
left), and of the link scenario STN-RDG*-PGT*-RDG*-PGT*-RDG*-FRX-RDG*-STN (592.4 km, right). All four figures show mea-
surements (solid lines with markers) and model predictions (dashed lines) of the system performance. Markers differentiate the
SNR and OSNR measurements with a flat (dot marker), optimized (triangle marker), optimized without SRS (diamond marker),
optimized without SRS and TRX (circle marker) input power profiles.

is motivated by a combination of factors. For a fixed launch
power and due to the EDFA gain competition and nonlinear
fiber effects, the OSNR/SNR must be upper bounded. Then,
an increase in OSNR/SNR in one channel leads to a decrease
in OSNR/SNR in another. Assuming the optimization is not
getting stuck in a local optimum, the optimizer should iterate
towards a constant value across channels. In contrast to the
training system setup, no artificial attenuation is applied before
any EDFA device and the noise power profile at the input to the
model is chosen to be the average of the noise power profiles
of the dataset in Eq. (7). The WSSs are used to apply a flat or
optimized power profile across the WDM channels. The signal is
launched into the link at 20 dBm total power, the APC setting of
the first APC device is fixed and set to 20 dBm, whereas the APC
setting of the second EDFA device is swept from 12 to 20 dBm
in steps of 2 dB. For each APC setting (second EDFA device)
the input power profiles are optimized in a separate process re-
sulting in 5 optimized input power profiles. After optimization,
the obtained input power profiles are transmitted through the
system with corresponding APC settings and the output OSNR
is extracted from an OSA. The OSNR is calculated from the
power profiles and the interpolated noise profiles as described
in Section 4 A. For comparison, also flat input power profiles
are transmitted through the link with corresponding OSNR mea-
surements. Fig. 7a shows in dashed and solid lines the flat and
optimized input power profiles, respectively, at different APC
settings of the second EDFA device. Fig. 7b shows in dashed and
solid lines the OSNR for flat and optimized input power profiles,
respectively, at different APC settings of the second EDFA de-
vice. Additionally, Fig. 7b shows the model prediction in dotted
lines for the optimized input power profiles. The overall RMSE
of the 5 predicted and measured OSNR values for optimized
input power profiles is 0.23 dB. Besides the low error on these
predictions, the fact that the model was used to optimize the

input power profiles towards a flat output OSNR given a range
of system settings verifies our assumption that the trained EDFA
model can also be used to model other devices within the system.
The results further show that the EDFA gain flatness is depen-
dent on the APC setting. The EDFA is in constant power control
mode and the APC setting ranges from 12 dBm and 20 dBm. For
decreasing APC setting the slope of the OSNR plots increases
for a flat input profile. Next, we compare the performance of
the optimized input profiles compared to their flat counterparts
in terms of the minimum OSNR and the difference between
the maximum OSNR and minimum OSNR across wavelength.
The former metric shows the worst performing channel and the
latter describes the flatness of the OSNR with 0 being all flat.
Two link scenarios are investigated, STN-RDG*-STN and STN-
RDG*-FRX-RDG*-STN. Fig. 8a shows the minimum OSNR and
Fig. 8b shows difference of maximum and minimum OSNR in
respect to the EDFA to total output power levels. For the longer
link scenario the optimized profile outperforms the flat profile
in terms of worst performing channel and flatness of OSNR. For
the shorter link scenario there is no such benefit, which is ex-
plained by the limited amount of tilt the spectra undergo during
propagation through the link. We conclude that for longer links
and a larger number of amplification stages, larger benefits are
expected from the optimized profiles and our method.

6. SNR OPTIMIZATION

For the SNR optimization, the setup from the OSNR optimiza-
tion is adjusted and a data signal is introduced, as shown in
Fig. 9. The data channel uses 64QAM with probabilistic ampli-
tude shaping (PAS) [51], low-density parity check forward error
correction (FEC) with overhead of 33%, root-raised-cosine pulse
shaping with 0.3 roll-off at a baud rate of 15.33 GBd. Due to the
limited bandwidth of the coherent receiver of 10 GHz, without
loss of generality, a relatively small symbol rate of 15.33 GBd



Research Article Journal of Optical Communications and Networking 8

1530 1535 1540 1545 1550 1555 1560 1565

Wavelength [nm]

0

0.05

0.1

0.15

0.2

R
M

S
E

 [
d
B

]
Signal Profile
Noise Profile

(a)

-12 -10 -8 -6 -4 -2

Input Power [dBm]

0

0.05

0.1

0.15

0.2

R
M

S
E

 [
d
B

]

(b)

12 14 16 18 20

Output Power [dBm]

0

0.05

0.1

0.15

0.2

R
M

S
E

 [
d

B
]

(c)

Fig. 11. RMSE on the test set for power (blue) and noise (red)
profile in respect to (a) the wavelength, (b) the EDFA input
power and (c) the EDFA APC setting on simulated data.

is chosen, which also allows an integer oversampling of the
arbitrary waveform generator (AWG) and thus lower implemen-
tation complexity. Polarization multiplexing is emulated with
a standard delay-and-add technique. The entropy of the con-
stellation is chosen to 5.5 bits/symbol, which is near-optimal
for the range of expected link SNRs below 18 dB. The decoding
threshold for this coding and modulation scheme was measured
in back-to-back (B2B) to be 12.5 dB of SNR. The data signal is
multiplexed into the system on the wavelength under test. Af-
ter the WSSs apply the flat or optimized power profile across
the WDM channels, the signal is launched into the network
at a total power of 18 dBm. Similarly, all EDFAs are set to an
APC setting of 18 dBm. This was found optimal for the sce-
narios under consideration. At the receiver, the data channels
are extracted with two optical filters and an EDFA, followed by
a coherent front-end and a digital storage oscilloscope (DSO).
The digital signal processing (DSP) is pilot-based as reported
in our previous work [37]. In this work, the ASE interfereres
follow a Gaussian distribution, resulting in cross-channel non-
linearities accurately described by the standard GN model. Fur-
thermore, the PAS-based constellation exhibit similar high-order
moments as a Gaussian [52], allowing to apply the standard GN
model for the fiber with sufficient accuracy. Two links of the
network are chosen, for the demonstration of SNR optimiza-
tion. The shorter link of 439.4 km length and the longer link of
592.4 km length, denoted as STN-RDG*-PGT*-RDG*-FRX-RDG*-
STN and STN-RDG*-PGT*-RDG*-PGT*-RDG*-FRX-RDG*-STN,
respectively. Overall, in the shorter and longer link the signal is
amplified 4 and 6 times, respectively, by independent EDFAs. In
contrast to Section 5, a TRX penalty model is added to the math-
ematical model of the relevant link scenario, allowing prediction
and optimization of the input power profile launched into the
link in regards to the SNR. The cost function changes accordingly
to Cost=−minλk

(SNR(λk)), targeting a flat SNR. The optimiza-

-35 -30 -25 -20 -15 -10 -5 0

Rx Channel Power [dBm]

8

10

12

14

16

18

20

22

24

B
2

B
 S

N
R

 [
d

B
]

TRX model fit at 1566 nm

TRX model fit at 1556 nm

TRX model fit at 1540 nm

TRX model fit at 1529 nm

Measurements

Fig. 12. Receiver channel power in respect to B2B SNR at four
different channels, model fit (solid lines) and system measure-
ments (cross markers).

tion algorithm is equivalent to the OSNR optimization, but the
model also includes the differentiable TRX penalty model. Op-
timization is performed for mathematical models of varying
levels of complexity: 1) including all impairments; 2) excluding
SRS and Kerr fiber nonlinearities; 3) excluding nonlinearities
and the TRX penalties. Together with the flat input profile, this
leads to 4 different candidate power profiles. The received SNR
of up to 24 out of the 48 WDM channels is measured. In Fig. 10,
the SNR and OSNR measurements and model predictions of
both link scenarios are shown. Solid lines with blue dot, orange
triangle, green diamond and red circle markers show the SNR
(top) and OSNR (bottom) measurements, for a flat, optimized,
optimized excluding nonlinear (NL) and optimized excluding
NL/TRX power profile. On the left for the shorter link and
on the right for the longer link. Dashed lines show the model
predictions in the corresponding colors. Our method shows an
improvement in both SNR and OSNR, especially in the shorter
and longer wavelength regions. When the system is optimized
on the mathematical model including all impairments, the mini-
mum SNR values (around 1532.5 nm) are improved by < 0.1 dB
and ≈ 0.8 dB, for the short and long link, respectively. In addi-
tion to the minimum SNR, we also note the improvement of the
margin in the long wavelength region by ≈ 0.8 dB and ≈ 2.2 dB
for the short and long link, respectively. The minimum OSNR
values are improved by ≈ 2.1 dB and ≈ 4.8 dB, for the short
and long link, respectively. The large improvements in OSNR
are not translated to SNR which suggests that the TRX setup is
not fully accounted for by the TRX penalty model. The results
further show that exclusion of the NL and TRX effects from the
mathematical model does not translate to improvement in the
minimum SNR and OSNR in these optimized input profiles. In
particular, the SRS effects are important, as shown by the tilt
of the OSNR curve, the conversion of optical energy from the
low to the high wavelengths is not modeled and is not compen-
sated for during the optimization of the input power profile. For
more accurate predictions and improved optimization perfor-
mance, the impact of additional effects should be considered to
be modeled, such as polarization dependent loss and filtering
effects. The accuracy of our remote modeling approach is lim-



Research Article Journal of Optical Communications and Networking 9

1530 1535 1540 1545 1550 1555 1560 1565

Wavelength [nm]

-5

0

5

10

15

20

B
2

B
 S

N
R

 [
d

B
]

Rx Channel Power 0.0 dBm

Rx Channel Power -15.2 dBm

Rx Channel Power -25.7 dBm

Rx Channel Power -31.0 dBm

Rx Channel Power -36.2 dBm

Rx Channel Power -41.5 dBm

Rx Channel Power -46.7 dBm

Fig. 13. Wavelength in respect to B2B SNR at seven different
received channel powers interpolated from the per channel
model fits.

ited by the assumption of similarity between different EDFAs
in the network. As the number of devices in a point-to-point
link increases, the accuracy decreases, potentially leading to de-
creased downstream QoT prediction and thus reduced system
performance optimization. Our methodology can be improved
by applying the remote training procedure sequentially for other
devices in the network, although this will increase the modeling
time. Additionally, unknown devices or defects in the system
can also impact the accuracy of the EDFA modeling, as an accu-
rate model of all components surrounding the EDFA is required
for the methodology to be effective.

7. CONCLUSION

We have shown a method that allows for modeling of an EDFA
device without requiring direct access to its network node. A
novel ML aided EDFA model is trained on data obtained from
signals transmitted on a point-to-point link with the amplifier
as the only amplification stage. Assuming sufficient similarity
between the different EDFA devices deployed in the network,
only a single EDFA device is characterized and used to model
all other EDFA devices in the network. We verify our assump-
tion by using the obtained model to optimize the launch power
spectral profiles into links including up to 6 amplified spans
and up to 592.4 km of length. The EDFA model allowed for a
prediction error below 1.62 dB in OSNR and 1.85 dB in SNR
when transmitting the optimized profiles over the longest link,
supporting up to 2.2 dB of margin improvements.

APPENDIX

A. EDFA MODEL PERFORMANCE

The EDFA model by Meseguer et al. [35] and the ML extension
described in Section 2 B is an approximation of the analytical
EDFA model presented by Saleh et al. [48] In this Appendix, a
short study is presented on how the EDFA ML model performs
on simulated data obtained from the analytical EDFA model.
The analytical EDFA model is parameterised as presented in the
appendix of Perin et al. [41] Similar to Section 4 A, we acquired
through simulation 1000 data samples per profile, at 7 different

EDFA total input power levels and at 5 different EDFA APC
power settings. With the same training, validation and test split
(10%/20%/70%), the EDFA ML model from Section 4 B is trained
and tested. The obtained test RMSE is 0.16 and 0.02 dB for signal
and noise profiles, respectively, and Fig. 11 shows the RMSE
with respect to wavelength, EDFA total input power levels and
EDFA APC power settings. We note that the presented simula-
tion study is free of measurement noise, which explains that the
observed error is of a different magnitude than in Section 4 B.
Qualitatively, the results show that the approximation by the
EDFA model presented in this paper cause modeling errors for
shorter wavelengths. In the simulation, low EDFA input powers
and high EDFA APC power settings do not contribute to model-
ing errors. We conclude that the equivalent flat approximation by
Meseguer et al. leads to errors at short wavelengths, which also
explains the error at short wavelength for the remote modeling
case in Section 4 B and the error in OSNR/SNR prediction at
short wavelengths throughout this work.

B. TRANSCEIVER PENALTY MODEL

This Section describes the TRX penalties model which is required
to model the SNR of the system including limitations of the
optical front-end and DSP. We assume that the TRX penalties
are dependent on the received channel power and can be fully
characterized by B2B measurements. We carried out B2B SNR
measurements of the 48 WDM channel system described in
Section 6 and depicted in Fig. 9. For the measurements, a subset
of 11 of the 48 WDM channels is chosen and the received channel
power is swept by using an attenuator. We propose the following
parameterized softplus expression that agrees well with the
measurements in Fig. 12. We note that it can be expected that
for commercially available pluggable transceivers, the penalty
is lower and a good model of the penalties may be simpler.
The measurements for each channel m, m = 1...11, are fit to a
reflected softplus function:

softplus(x, β) =
1
β

log(1.0 + exp(βx)),

TRX(x) = −softplus(−(x + x0), β) + y0,
(10)

where softplus(·) is the softplus function with a β roll off param-
eter, and TRX(·) is the softplus function point reflected in the
origin with two additional shift parameters x0, y0 along the ab-
scissa and ordinate, respectively. For every set of measurements
at wavelength λm the parameters β, x0 and y0 are fit such that:

TRXm(Pi
S,m) ≈ SNRi

m, (11)

where Pi
S,m and SNRi

m are the received B2B channel power and

SNR from 5 independent measurements {(Pi
S,m, SNRi

m)}5
i=1. The

fit is in logarithmic domain meaning power and SNR terms are
in dBm and dB, respectively. Fig. 12 depicts measurements and
corresponding fits for 4 out of the 11 measured WDM channels.
For a wavelength not part of the measured 11 channel subset,
an interpolation across wavelength results in a fully continuous
TRX model across power and wavelength, TRX(PS, λ). Exam-
ples of the subsequent interpolation are shown in Fig. 13. As
shown, the SNR decreases with decreasing per-channel received
power, and it saturates at large per-channel received power
Psat > −7 dBm. Then, the SNR penalty in dB is defined as:

∆SNR(PS, λ) =

TRX(Psat, λ)− TRX(PS, λ).
(12)
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As mentioned in Section 6, the system accuracy is highly-
dependent on the TRX penalty model. The TRX model pre-
sented is only dependent on the received channel signal power.
In practice, the TRX penalties also depend on the received OSNR
and received channel noise power, and they should ideally be
included in the penalty model. This is left for future research.
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