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For two-stage sampling, equal probability sampling method (epsem) by πps-SRS is

commonly used in practice. It also provides practical means for controlling cost and

fieldwork allocation. In two-stage epsem, same number of elements are selected by SRS

from each sampled PSU. As an alternative to this convention for two-stage epsem, one

can also select same number of equal-sized sub-clusters by SRS from each sampled PSU.

Furthermore, although HT-estimator is design unbiased, when a set of auxiliary variables

is known, generalized regression (or GREG) estimator is also commonly used in practice.

A comparison of sampling strategies involving two-stage epsem by πps-SRS may provide

a useful insights from practical viewpoint. Therefore, four sampling strategies involving

two-stage epsem are compared under a two-level regression model which is a intuitive

choice for two-stage sampling. A simulation study is also conducted to support theoretical

comparison of the sampling strategies.

Cube method for balanced sampling was proposed for selection of PSU’s. In two-stage

sampling design, cube method can be used when auxiliary variables are know at either

PSU-level or at element level. Cube method aims to selected balanced samples with fixed

first-order inclusion probabilities. It consists of two-phases: flight- and landing-phase.

When its landing-phase is invoked, samples are not exactly balanced. A sampling pro-

cedure is proposed which aims to improve landing-phase of the cube method when it is

not exactly balanced. In addition, a methodology for the estimation of sampling variance

under balanced sampling is also proposed which found to be better than a variance esti-

mator in literature. Simulation studies are conducted to investigate the performance of

proposed sampling procedure and variance estimators.

i

https://www.southampton.ac.uk/


When location data of sampling units is available, it is emphasized in literature to

select spatially balanced samples as study variables are expected to have positive spatial

autocorrelation. Since there are many spatially balanced sampling methods available, a

comparative study of different spatially balanced sampling methods is conducted under

a spatial super-population model with varying level of spatial autocorrelation. When

both auxiliary and spatial variables are known, doubly balanced sampling is advocated

in literature. Spatial or doubly balanced sampling can be used in two-stage sampling

depending on availability of spatial and auxiliary variables. Some variables of the study

population may have negative spatial autocorrelation, as two-stage designs are often used

for socio-economic surveys which include a variety of study variables. Four spatial sam-

pling schemes are suggested to select spatially balanced samples when there are also some

variables with negative spatial autocorrelation in the population. A variance estimation

methodology is also suggested under the spatially balanced and doubly balanced sampling

methods. Simulation studies are conducted to investigate the performance of proposed

spatial sampling schemes and variance estimators.
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Chapter 1

General introduction and literature

review

Sample surveys are conducted to collect data about the finite population, a set of elements

under study. In a sample survey, a subset of elements from the finite population is

selected and required data is collected from the selected elements. The sample survey

is planned such that maximum information about the finite population is elicited using

limited resources. A sample survey is deemed to be cheaper than complete enumeration

of the finite population (or a census) in terms of cost, time and manpower; and it may

even be more accurate. The data collected from the sample surveys are used to estimate

unknown quantities of the finite population, for example: totals, averages and proportions

etc. Sample surveys are widely used by national statistics offices for data collection about

human population, businesses, agriculture, forestry, natural resources, environment and

many other fields of study in academic research to produce statistics at local and national

levels. These statistics play a vital role in policy and decision making for the related

departments which ultimately contribute in addressing problems of the society at local,

national and global levels.

According to Hansen and Hurwitz (1943), the history of random sampling dates back to

early eighteenth century when Daniel Bernoulli (1700-1782) presented theory of random

sampling from a population; a century later, Siméon Denis Poisson (1781-1840) inves-

tigated gain of using stratification in sampling; Wilhelm Lexis (1837-1914) introduced

sampling of clusters of elements. According to Brewer and Gregoire (2009), the idea of

sampling from finite population is reckon to be first presented by Anders Nicolai Kiaer

(1838-1919) in 1890s; Kiær (1896) argued that ‘partial investigation’ (or sampling) in-
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1.1. BASIC CONCEPTS AND NOTATIONS

stead of complete enumeration of the population can be useful for data collection, and

proposed a purposive sampling method, named as ‘representative method’, which could

not get enough support from other statisticians at that time. Supporting Kiaer’s work,

Bowley (1926) presented a report in ISI (International Statistical Institute) commission

which summarized the adaptation of work from Bernoulli and Poisson to the theory of

sampling from a finite population (Hansen and Hurwitz, 1943). Neyman (1934) published

the key article in survey sampling theory. Neyman was later invited to give lectures in

Bureau of the Census (U.S.A) (Brewer and Gregoire, 2009). In 1940s, survey sampling

had become popular in a wider community of statisticians. Among many others, some

key text books about survey sampling theory are given by Hansen et al. (1953a,b), Kish

(1965), Cochran (1977) and Särndal et al. (1992).

This chapter describes some basic concepts in survey sampling and presents a review of

literature related to problems considered in this thesis. The arrangement of this chapter is

as follow. Section 1.1 describes some basic concepts and notations commonly used in sur-

vey sampling. Section 1.2 describes cluster sampling, single-stage and two-stage designs

in particular. Sections 1.3 and 1.4 describe use of known auxiliary data in generalized

regression estimation and in balanced sampling respectively. Section 1.5 describes spa-

tial dependence in the finite populations and spatially balanced sampling, it also reviews

related random sampling methods from literature. Section 1.6 describes problem of vari-

ance estimation and reviews some variance approximations under balanced and spatially

balanced sampling designs. Section 1.7 describes role of super-population model in the

theory of survey sampling where the finite population is considered as a realization of an

infinite super-population. Finally, Section 1.8 gives an outline of the problems considered

in this thesis.

1.1 Basic concepts and notations

In survey sampling, a finite population (or target population) is a set of elements under

study about which data is required; for example, people, households or agricultural farms

in a city or country, or business enterprises in an industry etc. A sample is a subset of

the finite population which can be categorised as random sample or non-random sample.

A study variable (or survey variable) is a characteristic or value associated with each el-

ement of the finite population; for example, status of persons belonging to labour force,

weekly expenditure of households, wheat production of farms, annual revenue of busi-

ness. In a sample survey, often data about many study variables are collected. A finite

2



1.1. BASIC CONCEPTS AND NOTATIONS

population parameter (or finite population quantity) is a function of study variable; it

represents characteristic of the finite population which is required to be estimated; for

example, proportion of persons in the labour force, total weekly household expenditures,

total wheat production, or total revenue of businesses etc.

A sampling frame is any material or device which delimit, identify and provide obser-

vational access to or establishes contact with elements of the finite population (Särndal

et al., 1992, p. 9). Usually, a sampling frame contains list of elements of the finite popu-

lation or clusters of elements, called sampling units ; it may also contain additional data

such as auxiliary data to be used at sampling or estimation stages. The sample is selected

from the sampling frame.

1.1.1 Probability sampling

Sampling is the process of selecting a sample. In probability sampling (or random sam-

pling), a sample is selected following the fundamentals of probability mechanism in which

each element of the finite population has a non-zero probability of being selected in the

sample. In non-probability sampling (or non-random sampling), a sample is selected by

a subjective approach. Some common non-probability sampling method are convenient

sampling, quota sampling, judgemental sampling etc. Probability sampling eliminates se-

lection biases and it is acceptable to the public due to its objectivity (Särndal et al., 1992,

p. 9). In practice, probability sampling is widely preferred because it provides probabilis-

tic properties of the sample estimates such as measures of validity and reliability. Some

basic and common probability sampling methods are simple random sampling, systematic

random sampling, stratified random sampling and cluster sampling. In a sample survey,

random sampling can range from simple to a complex one which might be mixture of

more than one basic probability sampling methods.

For selection of a random sample, two types of selection schemes are draw sequential and

list sequential. Draw sequential scheme consists of a series of randomised experiments,

called draws ; each draw selects a sampling units for the sample. List sequential scheme

is applied to the list of sampling units; it carries out a randomised experiment for each

sampling unit in the list which results into selection or rejection of the sampling units; the

sample selection may complete before the end of the list. A random sample can be selected

by with-replacement (WR) or without-replacement (WOR) sampling. In with-replacement

sampling, one sampling unit can be selected more than once in the sample, because when

a sampling unit is selected in the sample it is replace back in the sampling frame before
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the next selection is performed. In without-replacement sampling, one sampling unit can

be selected in the sample only once, because when a sampling unit is selected in the

sample it is not replaced back in the sampling frame. Usually, with-replacement sampling

is considered to be less efficient between these two; however, it has simpler formulas for

sampling variance of sample estimates (see Section 1.6) which sometimes makes it useful

for more complex sampling designs (Cochran, 1977, p. 18).

Suppose that the finite population consists of N elements and U = {1, 2, 3, ..., N} is set of

labels associated with the population elements. Let y be the survey variable and y1, ..., yN

denote unknown values of the survey variable associated with the N population elements.

Let finite population total of the survey variable is required to be estimated, which is

defined as

Y =
∑
i∈U

yi

where yi denotes value of the survey variable associated with the ith population element.

Let a random sample of n elements, denoted by s, is selected from the finite population U .

Let Ω denotes set of all possible samples of size n, called sample space. Let p(s) denotes set

of selection probabilities associated with each sample in the sample space Ω, where p(s)

is called sampling distribution. Let I(i∈s) denotes an indicator (or binary) variable which

take value 1 if ith element is in the sample s, otherwise 0, where I(i∈s) is a random variable

called sample membership indicator. The probability of being included (or selected) in

the sample for ith element is called first-order inclusion probability, defined as

πi =
∑
s∈Ω

I(i∈s)p(s)

In the same way, the probability of being included (or selected) in the sample for (i, j)th

pair of elements is called second-order inclusion probability, defined as

πij =
∑
s∈Ω

I(i∈s)I(j∈s)p(s)

where i ̸= j ∈ U .

1.1.2 Sampling design and sampling strategy

Sampling design assigns selection probability to each sample s in the sample space Ω under

a specified sampling method; it consists of sample space and probability distribution,
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denoted by ∆p = {Ω, p(s)|s ∈ Ω}. In modern literature, it is also common to call the

probability distribution p(s) the sampling design (Särndal et al., 1992, p. 29). There are

only few sampling methods for which the sampling designs are completely known, for

example, simple random sampling and equal probability systematic sampling (see Section

1.1.4). For many advance sampling methods, the implied sampling design is not known,

for example, sampling methods for probability proportional to size sampling (see Section

1.1.5). Even when the sampling design is not completely known, knowledge about first-

and second-order inclusion probabilities plays the most important role in the estimation

of finite population parameters. When first- and second-order inclusion probabilities are

strictly positive, i.e. πi > 0 and πij > 0 for all i ̸= j ∈ U , the sampling design is called

measurable (Särndal et al., 1992, p. 33). A sampling design is fixed-sized, when the sample

size n is fixed for all the samples under the sampling design (Särndal et al., 1992, p. 38).

For some sampling methods, the sample size is not same for all the samples, for example,

Bernoulli sampling (Särndal et al., 1992, p. 26) and Poisson sampling (see Section 1.1.4).

After the sample has been selected and observed, the estimate of the required finite

population parameter is calculated based on the sample values using an estimator, which

is a function of the study variable. Statistical properties of an estimator are studied under

the sampling design (or sampling distribution), for example, expectation and variance of

the estimator. Let Ŷ denotes an arbitrary estimator for the finite population total Y ; some

specific estimators for the finite population total will be described later in this chapter.

A sampling strategy is combination of a sampling design and an estimator {∆p, Ŷ }
(Särndal et al., 1992, p. 30). Relative efficiency of the sampling strategy (with respect

to another sampling strategy) is derived based on properties of the estimator under the

sampling design in the strategy, for example, expectation or mean squared error (MSE)

of the estimator. An estimator is unbiased or design-unbiased if its expectation under the

sampling design is equal to the finite population parameter being estimated, that is, Ŷ is

unbiased estimator of Y if Ep(Ŷ ) = Y , where Ep denotes expectation with respect to sam-

pling distribution p(s). The MSE of the estimator is defined as MSE(Ŷ ) = Ep(Ŷ − Y )2.

When an estimator is unbiased the MSE and variance of the estimator are equivalent,

that is, Vp(Ŷ ) = Ep

(
Ŷ − Ep(Ŷ )

)2
= Ep(Ŷ − Y )2 = MSE(Ŷ ), where Vp denotes variance

with respect to sampling distribution p(s). The square root of the sampling variance

[V (Ŷ )]1/2 is called standard error of the estimator Ŷ . An estimator with smaller MSE

is preferred. An estimator is consistent when it converge to its parameter in probability.

According to Chebyshev Inequality, it holds when variance of estimator tends to zero

(Arnab, 2017, p. 78). These criteria are used in order to investigate multiple sampling

strategies for estimation of the required finite population parameters. All these properties
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assumes selection of all possible samples under the given sampling design and calculation

of the estimates for all the samples which is a hypothetical process. It is not performed in

practice rather the values of MSE or variance are also estimated based on one sample.

In addition to a point estimate, often confidence interval (C.I.) is also constructed for

a population parameter; it gives a range of two values which expect to contain finite

population parameter with some fixed confidence level, as it is often done in standard

statistical inference. The C.I.’s are constructed using normal distribution approximation

for the estimator based on central limit theorem where it is is assumed that estimators of

the finite population quantities follow a normal distribution for medium and large sample

sizes, see (Cochran, 1977, p. 11), (Kish, 1965, p. 14) and (Särndal et al., 1992, p. 56).

The (1− α)100 percent confidence limits for the estimator Ŷ can be computed as follows

(1− α)100% C.I. =
(
Ŷ −mse(Ŷ )z(α

2
), Ŷ +mse(Ŷ )z(α

2
)

)
where mse(Ŷ ) is sample estimate of MSE(Ŷ ) since it is also an unknown population

quantity and z(α
2
) is value of standard normal variate at tail probability α

2
. Sometimes,

approximation to the normal distribution is weak due to small sample size, then confi-

dence limits are computed based on the assumption that estimator follows a Student’s

t-distribution with (n− 1) degrees of freedom, given by

(1− α)100% C.I. =
(
Ŷ −mse(Ŷ )t(α

2
,n−1), Ŷ +mse(Ŷ )tα

2
,(n−1)

)
where t(α

2
,n−1) value of variable under t-distribution at probability α

2
with degree of freedom

(n− 1).

1.1.3 Horvitz-Thompson (HT) estimator

Horvitz and Thompson (1952) proposed HT-estimator for population total Y , which is

sum of the values for units in the sample weighted by inverse of corresponding inclusion

probabilities of the units. Let HT-estimator of Y is denoted by ŶHT , the mathematical

expression for the HT-estimator is given by

ŶHT =
∑
i∈s

yi
πi

(1.1)

where s is random sample of size n. Provided that first-order inclusion probabilities πi’s
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are known or can be calculated exactly, the HT-estimator is design-unbiased, i.e.,

Ep(ŶHT ) =
∑
s∈Ω

ŶHT (s)p(s) = Y

where Ep denotes expectation with respect to sampling distribution p(s) and ŶHT (s) is the

HT-estimator based on sample s. From Horvitz and Thompson (1952), sampling variance

of the HT-estimator in Eq. (1.1) is given by

Vp(ŶHT ) =
∑
i,j∈U

(πij − πiπi)
yi
πi

yj
πj

(1.2)

where Vp denotes sampling variance with respect to sampling distribution p(s). When the

sample size is fixed, (Sen, 1953; Yates and Grundy, 1953) gave an alternative mathematical

expression for the sampling variance Vp(ŶHT ), given by

Vp(ŶHT ) = −1

2

∑
i,j∈U

(πij − πiπi)

(
yi
πi

− yj
πj

)2

(1.3)

The estimation of sampling variance of the HT-estimator will be described later in Section

1.6 of this chapter.

1.1.4 Some basic sampling designs

Simple random sampling (SRS)

In SRS, all the sampling units have equal probability of being included in the sample,

and all samples of fixed size n has the equal probability of being selected from the sam-

ple space. SRS is one of the basic and simplest methods of random sampling. SRS

without-replacement is usually considered as reference point when discussing other sam-

pling designs. In many complex survey designs, SRS is often involved at some stage.

For example, SRS can be used in some or all the strata under stratified sampling; it is

often used in the second-stage of two-stage sampling (see Section 1.2.2), while probability

proportion to size sampling (see Section 1.1.5) is often used at the first-stage.

Sampling design for the SRS without-replacement is known. The sample space consists of(
N
n

)
distinct samples of fixed sample size n; each sample has equal probability of selection,

given by p(s) =
(
N
n

)−1
for all s of size n (Särndal et al., 1992, p. 27). When the sampling

design is know, one can compute inclusion probabilities of order one, two, up to order n
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(in fact, n-order inclusion probability is probability of selection of the sample of size n).

In this case, first- and second-order inclusion probabilities are given by

πi ≡
n

N
and πij ≡

n(n− 1)

N(N − 1)

respectively (Särndal et al., 1992, p. 31). The HT-estimator of population total Y under

SRS is given by

Ŷ SRS
HT =

N

n

∑
i∈s

yi

which is equivalent to expansion estimator Ŷ = Nȳ, where ȳ = n−1
∑

i∈s yi is sample

mean of y. The sampling variance of Ŷ SRS
HT is given by

VWOR(Ŷ
SRS
HT ) = N2

(
1− f

n

)
S2
y ,

where f = n
N

which is known as sampling fraction, S2
y = 1

N−1

∑
i∈U(yi− Ȳ )2 is population

variance and Ȳ = 1
N

∑
i∈U yi is population mean of variable y (Särndal et al., 1992, p. 46).

The factor (1−f)/n in the sampling variance above is known as finite population correction

(fpc) factor. The fpc factor is ignored when sampling fraction f is small; according to

(Cochran, 1977, p. 25), fpc factor is ignored when f is less than 5 percent.

In case of with-replacement sampling, sample containing n sampling units (including

multiple selections of sampling units) is referred as ordered sample; and it is distinguished

from distinct set of sampling units in the ordered sample, which referred as set-sample

(Särndal et al., 1992, p. 49). The sample space consists of Nn different ordered samples

and the sampling distribution is given by p(s) = 1/Nn for all s (ordered sample) of size

n. The selection probability of a sampling unit i (i ∈ U) at each draw (or experiment)

is pi ≡ 1/N . Following Hansen and Hurwitz (1943), when πi = npi = n/N , the HT-

estimator of Y (using the ordered sample s) becomes Hansen-Hurwitz (HH) estimator

and has same expression as under SRS without-replacement; though its sampling sampling

variance is different, given by

VWR(Ŷ
SRS
HT ) = N2

(
N − 1

Nn

)
S2
y =

(
N − 1

N − n

)
× VWOR(Ŷ

SRS
HT )

where (N − 1)(N − n)−1 > 1 (for n > 1), which suggest that SRS with-replacement has

(N − 1)(N − n)−1 times larger variance than SRS without-replacement (Cochran, 1977,

p. 30). When sampling fraction f is very small, the two sampling variances (under SRS

WR and WOR) are roughly same (Särndal et al., 1992, p. 73).
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Systematic sampling (SYS)

In equal probability SYS, a sample of size n is selected such that first sampling unit is

selected at random with equal probability from the first k units, where k = N/n, and

every kth unit thereafter. In this way first unit determines the whole sample. This type of

systematic sampling is also called an every kth systematic sampling (Cochran, 1946, 1977,

p. 205). For this sampling method, sampling design is also known; there are k possible

samples of size n in the sample space with uniform sampling distribution p(s) ≡ 1/k.

First order inclusion probabilities are equal for all sampling units, given by πi ≡ 1/k.

Second order inclusion probability for pairs of sampling units (i, j) which belongs to the

same sample is πij = 1/k, rest of the pairs have null joint inclusion probabilities. Under

equal probability SYS, the HT-estimator for population total Y is given by

Ŷ SY S
HT = k

∑
i∈s

yi

and its sampling variance is given by

V (Ŷ SY S
HT ) = k

k∑
r=1

(Ŷr − Ȳk)
2

where Ŷr is total of y-values based on rth sample (r = 1, ..., k), and Ȳk = Y/k (Särndal

et al., 1992, p. 76). When k is not an integer, it is rounded off to an integer, and

some samples may vary in size by one unit. For such situations, different modifications

have been proposed in literature including circular systematic sampling (Lahiri, 1951) and

fractional interval method, see (Cochran, 1977, p. 206) and (Särndal et al., 1992, p. 77) for

more details. Unbiased estimation of sampling variance is not possible under systematic

sampling, because some second-order inclusion probabilities are zero.

1.1.5 Sampling with probability proportional to size

In probability proportional to size sampling, sampling units are selected with unequal

inclusion probabilities which are proportional to a known size variable. The size variable

often represents actual sizes of the sampling units, for instance, number of population

elements in the clusters in cluster sampling (see Section 1.2); it may also be a measure

of size which is highly correlated with the study variable (Cochran, 1977, p. 252). If z

denotes a size variable which is known for each sampling unit, probability proportional to

size sampling is expected to be more efficient than equal probability sampling when values
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of yi
zi

are tend to be constant for i ∈ U (Särndal et al., 1992, p. 87). Usually, probability

proportional to size samplings with-replacement and without-replacement are termed as

‘pps sampling’ and ‘πps sampling’ respectively.

Originally, Hansen and Hurwitz (1943) introduced the idea of probability proportional to

size sampling for pps sampling of clusters with unequal sizes (see Section 1.2). For given

size variable zi (i ∈ U), the probability of selection for a sampling unit i is given by

pi =
zi
Z

where Z =
∑

i∈U zi. Under pps sampling, Hansen and Hurwitz (1943) also proposed HH-

estimator ŶHH for finite population total Y , which becomes HT-estimator when πi = npi,

given by

ŶHT =
1

n

∑
i∈s

yi
pi

= ŶHH

where pi is probability of selection for ith sampling unit at each selection. Sampling

variance of HT-estimator under pps sampling (or HH-estimator) is given by

Vpps(ŶHT ) =
1

n

∑
i∈U

pi

(
yi
pi

− Y

)2

(1.4)

and its unbiased estimator is given in Eq. (1.14).

Under πps sampling with size variable zi (i ∈ U), inclusion probability of a sampling unit

i is calculated as

πi =
nzi
Z

such that 0 < πi ≤ 1. If πi > 1 for a value of zi, its value is fixed to unity (i.e. πi = 1)

and πi’s are calculated again for rest of the sampling units, this process continues until

0 < πi ≤ 1 for all sampling units, see (Särndal et al., 1992, p. 89). Horvitz and Thompson

(1952) proposed a design-unbiased HT-estimator under πps sampling. Sampling variance

of HT-estimator for Y under πps sampling is given earlier in Eq. (1.2) and in Eq. (1.3)

when sampling design has fixed sample size; the problem of variance estimation under

πps sampling is reviewed later in Section 1.6.

Since the sampling with probability proportional to size has been proposed, a large body

of literature is associated with sampling methods to achieve this sampling design, πps

sampling design in particular; a brief review of some sampling methods follows. Madow

(1949) extended equal probability SYS for πps sampling; but absence of unbiased estima-

tor for sampling variance is a typical issue associated with systematic sampling. In the
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early stage, πps sampling methods were proposed which could only select samples of size

one (n = 1), for example, cumulative sum method and a method given by (Lahiri, 1951),

see (Cochran, 1977, p. 251) and (Särndal et al., 1992, p. 91). To select πps samples of size

larger than one (n > 1), Rao et al. (1962) proposed to divide population into n randomly

formed groups, and then select one unit from each group, see (Cochran, 1977, p. 266).

Brewer (1963) proposed πps sampling method to select sample of size n = 2; second-order

inclusion probabilities can be computed for this method which makes possible the unbi-

ased variance estimation, see (Cochran, 1977, p. 261) and (Särndal et al., 1992, p. 92).

Hájek (1964) proposed Poisson sampling which can select πps samples but with random

sample size; a rejective sampling method was also discussed which only accepts samples of

fixed sample size; this rejective sampling is also known as conditional Poisson sampling.

Rao-Sampford method (Rao, 1965; Sampford, 1967) selected πps samples of fixed size n

and allows calculation of exact second-order inclusion probabilities using a recursive for-

mulae. Chao (1982) propose a πps sampling procedure for πps sampling which also allows

calculation of second-order inclusion probabilities. Hanif and Brewer (1980) and Brewer

and Hanif (1983) reviewed many πps sampling methods and discussed their properties.

Deville and Tillé (1998) proposed a class of πps sampling methods including well-known

pivotal method for πps sampling with fixed sample size. In the text book by Tillé (2006),

more advanced equal and unequal probability sampling methods are reviewed with their

different implementations through algorithms. Poisson sampling and pivotal method for

πps sampling methods are described bellow which are used later in this chapters to de-

scribe a variance estimator (see Section 1.6) and a spatially balanced sampling method

(see local pivotal method in Section 1.5.3) respectively.

Poisson sampling (PS)

In Poisson sampling by Hájek (1964), each sampling unit is selected independently with

inclusion probability πi, i.e. P (I(i∈s) = 1) = πi and P (I(i∈s) = 0) = 1−πi and its sampling

distribution is given by

p(s) =
∏
i∈s

πi

∏
i∈U−s

(1− πi)

where sample s belongs to the sample space which contains all 2N subsets of U , see

(Särndal et al., 1992, p. 85). In Poisson sampling, sample size, denoted by ns, is random

with mean EPS(ns) =
∑

i∈U πi and variance VPS(ns) =
∑

i∈U πi(1 − πi). Since sampling

units are selected independently under Poisson sampling, therefore second-order inclusion

probabilities are simply product of corresponding first-order inclusion probabilities, given
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by πij = πiπj for all i ̸= j ∈ U . Sampling variance of HT-estimator for Y is given by

VPS(ŶHT ) =
∑
i∈U

πi(1− πi)
y2i
π2
i

In rejective Poisson sampling or conditional Poisson sampling (CPS) (Hájek, 1964), πps

samples are selected by Poisson sampling and samples with fixed sample size are accepted

only. Therefore, inclusion probabilities induced by CPS are not exactly same as fixed πi’s.

Pivotal method

In pivotal method for πps sampling (Deville and Tillé, 1998), two inclusion probabilities

πi and πj are selected randomly from the set of N inclusion probabilities and updated

according to the following updating rule: if πi + πj < 1

(π′
i, π

′
j) =

(0, πi + πj) with probability πi/(πi + πj)

(πi + πj, 0) with probability πj/(πi + πj)

and if πi + πj ≥ 1

(π′
i, π

′
j) =

(1, πi + πj − 1) with probability (1− πi)/(2− πi − πj)

(πi + πj − 1, 1) with probability (1− πj)/(2− πi − πj)

where π′
i, π

′
j denoted updated inclusion probabilities. The process of updating of inclusion

probabilities is repeated until all the sampling units are finished. At each step, sampling

outcome is decided for at least one sampling unit and sample is obtained in at most N

steps. Sampling design implied by the pivotal method is not known, therefore πij’s cannot

be computed exactly, see Deville and Tillé (1998) for details.

1.2 Cluster sampling

In sample surveys, situations occurs when list of population elements (or element level

sampling frame) is not available and it is prohibitively expensive to construct such a list.

In such cases, list of larger sampling units containing more than one population elements

is used for sampling. In some situations even when the list of population elements is
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available, sample of larger sampling units is selected in order to meet the economic and

workload limitations. It is also common to use cluster sampling when population elements

are scattered over a vast geographical area, for example, in national level surveys of people

or households, because sampling of population elements may result into very high travel

expenses if personal interviews are required and inefficient supervision of field work.

In cluster sampling, population elements are grouped into clusters, called primary sam-

pling units (PSU’s) (Särndal et al., 1992, p. 125), and a random sample of PSU’s is

selected. Usually, the clusters are constructed based on some predefined geographical

boundaries known from other sources, for example, administrative boundaries or census

tracts. Therefore, clusters constitute of nearby population elements. Often, nearby popu-

lation elements tend to have similar values of study variables; this similarity is represented

by a measure of homogeneity (Särndal et al., 1992, p. 130) or intra-cluster correlation

when PSU’s have equal sizes (Cochran, 1977, p. 241). Since there is loss of information

in cluster sampling due to selection of nearby population element in the form of clusters

(or PSU’s). Therefore, SRS of population elements is considered to be more efficient than

cluster sampling and its efficiency increases with positive value of intra-cluster correla-

tion. However, when efficiency is balanced against the survey cost then cluster sampling

may have advantages over the SRS of elements in the situations mentioned in the previ-

ous paragraph. Cluster sampling design may consist of one, two or multi stages, called

multi-stage sampling. When sampling design has more than one stages, PSU’s are further

divided into smaller sampling units (or clusters) depending on the stages of the sampling

design, and population elements or clusters of population elements are selected in the final

stage. Singe-stage cluster sampling and two-stage sampling designs are described bellow.

1.2.1 Single-stage cluster sampling

Let elements in the finite population U can be grouped into G clusters of unequal sizes,

denoted by N1, ..., NG, which are considered as PSUs. Let the population of PSU’s is

denoted by UI = {U1, ..., UG}. In single-stage cluster sampling (SCS), a random sample of

PSU’s is selected and all the population elements are observed in the selected PSU’s. Let

a random sample of nI PSU’s, denoted by sI, is selected from the population of clusters

UI. When the sample sI is selected by SRS without-replacement, the HT-estimator of

finite population total Y and its sampling variance are given by

Ŷ SCS
HT = (NI/nI)

∑
g∈sI

Yg and V (Ŷ SCS
HT ) = N2

I

1− fI
nI

∑
g∈UI

(Yg − Ȳc)
2

NI − 1

13
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respectively, where Yg =
∑

i∈Ug
ygi is total of y variable for gth cluster, fI = nI/NI is

sampling fraction of PSU’s and Ȳc =
∑

i∈U yi/G is mean per cluster, see (Särndal et al.,

1992, p. 129). Sampling variance V (Ŷ SCS
HT ) can also be written as follows

V (Ŷ SCS
HT ) =

(
1 +

N −NI

NI − 1
δ

)
VWOR(Ŷ

SRS
HT ) +N2

I

1− fI
n

Cov

where VWOR(Ŷ
SRS
HT ) is sampling variance of HT-estimator under without-replacement SRS

of population elements, Cov=
∑

g∈UI
(Ng − N̄)NgȲ

2
g /(Ng − 1) represents covariance be-

tween Ng and NgȲ
2
g , and δ denotes the measure of homogeneity of population elements

within PSU’s (or clusters) with respect to study variable.

From (Särndal et al., 1992, p. 130), δ is defined as δ = 1 − S2
w/S

2
y , where S2

w is pooled

within-cluster variance, given by S2
w = (N − NI)

−1
∑

g∈UI

∑
i∈Ug

(ygi − Ȳg)
2, where Ȳg =∑

i∈Ug
ygi/Ng population mean of the gth cluster. The range of values for δ is given

by [−(NI − 1)/(N − NI), 1]. Small and large values of δ indicate low and high levels

of homogeneity of the population elements within clusters with respect to the survey

variable. At the extreme values: δ = −(NI − 1)(N −NI) means all the cluster means are

equal, δ = 1 means variance is zero within all the clusters and δ = 0 means total variance

is equal to average of within cluster variances, that is, S2
y = S2

w.

The variance formula suggests that SCS is better than SRS only if δ < 0 provided that

all the PSU’s are of same size which is quite unusual in practice when clusters consists

of nearby elements. This means SRS is usually better than SCS. When PSU’s are of

unequal sizes, the relative efficiency also depends on ‘Cov’ term, in addition to δ. This

means positive value of the term ‘Cov’ even worsen the efficiency of SCS given that the

value of δ is positive. When δ = 0 then variance of SCS increases with ‘Cov’ term in

addition to the factor involving variance of SRS. When δ attains its minimum value,

which is −(NI − 1)/(N −NI), then variance of SCS is function of variance of PSU sizes.

In summary, homogeneity of elements within PSU’s makes SCS inefficient and variation

in the PSU sizes makes it worse.

1.2.2 Two-stage sampling

In two-stage sampling, PSU’s are further divided into smaller sampling units, called sec-

ondary sampling units (SSU’s), and a random sample of SSU’s is selected from each

PSU selected in the first-stage. When SSU’s are population elements, it is called two-

stage element sampling and when SSU’s are again clusters of elements then it is called
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two-stage cluster sampling. These terms are taken from (Särndal et al., 1992, p. 125).

From Cochran (1939), two-stage sampling is also known as subsampling and Mahalanobis

and Fisher (1944) called it two-stage sampling while discussing area sampling from the

agricultural populations.

Two-stage sampling design is an alternative to SCS which provides better flexibility to

balance between efficiency and cost. Increasing sample size of PSU’s increases the effi-

ciency of SCS which is usually unacceptable due to cost limitations. Two-stage design

allows to select larger sample of PSU’s and then selecting a random sample of SSU’s in-

stead of observing all the SSU’s in the selected PSU’s. Subsampling of SSU’s also requires

estimation of PSU level totals Yg. If within PSU variation is small, estimator of Yg have

small variance even for modest sample size of elements within selected PSU’s (Särndal

et al., 1992, p. 134).

For two-stage element sampling, equal probability selection method (epsem) by πps-SRS

is common in practice, in which PSU’s are selected by πps sampling and equal number

of elements is selected by SRS from the PSU’s selected in the first-stage sample. This

design was first introduced by Hansen and Hurwitz (1943) as pps-SRS design. One can

achieve a fixed sample size of population elements using this design. Another two-stage

epsem is SRS-SRS, where SRS of PSU’s is selected and a sample of elements is selected

with constant sampling fraction from the PSU sampled in first-stage sample. In practice,

PSUs often has unequal sizes, therefore, πps sampling of is preferred because it is more

efficient than SRS. Two-stage epsem by πps-SRS is also known as self-weighted design as

it assign uniform weights to y-values in the sample. It also has administrative advantage;

since there are equal number of elements to be observed in each sampled PSU, therefore,

field work is roughly equal in each PSU (Särndal et al., 1992, p. 141).

1.3 Generalized regression estimator

When population totals are known for a set of auxiliary variable related with the study

variable y, generalized regression estimator (GREG) estimator is commonly used in prac-

tice. This estimator lies under the umbrella of model assisted approach (see Section 1.7),

which is motivated by general linear regression model and the properties are derived under

the sampling distribution. The GREG-estimator was given by Cassel et al. (1976) and

further discussed by Särndal et al. (1992). It is also considered as a calibration estimator

discussed by Deville and Särndal (1992) where sample weights are calculated such that

known auxiliary totals are equal to their corresponding GREG-estimates.
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1.3. GENERALIZED REGRESSION ESTIMATOR

Let x1, ..., xq denote q number of auxiliary variables and xi = (x1i, ..., xqi)
⊤ denotes column

vector of ith elements of qth auxiliary variable. Let X̂HT =
∑

i∈s xi/πi is vector of HT-

estimators which estimates vector of auxiliary totals given by X =
∑

i∈U xi. Let the

relationship of auxiliary variables with the study variable y can be expressed by a general

linear regression model, given by

yi = µi + ϵi (1.5)

where µi = x⊤
i β is linear predictor of the model with β representing vector of q regression

coefficients, and ϵi is random error term which is normally distributed with mean 0 and

variance σ2
i . Let the vector X is known, the GREG-estimator, denoted by ŶGR, for the

population total Y is given by

ŶGR = ŶHT + (X̂HT −X)⊤B̂ (1.6)

from (Särndal et al., 1992, p. 232), where B̂ is sample estimate of the vector β, given by

B̂ =

(∑
i∈s

xix
⊤
i

σ2
i πi

)−1∑
i∈s

xiyi
σ2
i πi

(1.7)

from (Särndal et al., 1992, p. 225), where superscript ⊤ denotes transpose of a vector (or

matrix). The GREG-estimator can also be written in terms of calibration weights wi’s,

given by

ŶGR =
∑
i∈s

wiyi,

with calibration weights given by

wi =
1

πi

1 + (X̂HT −X)⊤

(∑
i∈s

xix
⊤
i

πiσ2
i

)−1
xi

σ2
i


from (Särndal et al., 1992, p. 232). The GREG-estimator is approximately design unbiased

and usually have smaller sampling variance as compared to HT-estimator, because GREG-

estimator accounts for the variation in y explained by auxiliary variables. Approximate

sampling variance of the GREG-estimator is given by

V (ŶGR) ≈
∑
i∈U

e2i
πi

+ 2
∑

i<j∈U

(πij − πiπj)
eiej
πiπj

from (Särndal et al., 1992, p. 235), where ei = yi − x⊤
i B is ith finite population residual
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and B is vector of finite population regression coefficients given by

B =

(∑
i∈U

xix
⊤
i

σ2
i

)−1∑
i∈U

xiyi
σ2
i

(1.8)

from (Särndal et al., 1992, p. 227).

The main problem associated with GREG-estimation is unusual calibration weights, in-

cluding negative and very large positive values, which can potentially reduce the efficiency

of GREG-estimator. It happens when number of auxiliary variables is large.

1.4 Balanced sampling

When a set of auxiliary variables correlated with study variables is known before selection

of the sample, then samples balanced with respect to known auxiliary variables are tend

to be more efficient than unbalanced samples. A sampling design is said to be balanced

if population totals of auxiliary variables are equal to their respective HT-estimators.

In other words, any sample s selected under the balanced sampling design satisfies the

following equations:

X̂HT (s) =
∑
i∈s

xi

πi

=
∑
i∈U

xi = X (1.9)

where X̂HT (s) denotes vector of HT-estimators based on sample s. In the context of

balanced sampling, auxiliary variables are sometimes called balancing variables and set of

equations in (1.9) are referred as balancing equations. SRS design is balanced with respect

to population size, that is, for xi ≡ 1, X̂HT =
∑

i∈s xi/πi = (N/n)
∑

i∈s xi = N . For πps

sampling designs, HT-estimator for population size is given by X̂HT =
∑

i∈s xi/πi =∑
i∈s 1/πi is random, where xi ≡ 1.

According to Deville and Tillé (2004), the history of balanced sampling dates back to

early developments of finite population sampling in the beginning of twentieth century.

An early concept of balanced sampling named as ‘representative method’ was given by

Kiær (1896). It was to select a sample such that it matches a know quantity. In the early

work for balanced sampling, some purposive sampling methods were proposed. Yates

(1946); Thionet (1953) also advocated balanced sampling. Some partial solutions for

balanced sampling were given by Ardilly (1991); Deville (1992); Hedayat and Majumdar

(1995); Deville et al. (1988). Deville and Tillé (2004) proposed cube method for bal-
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1.4. BALANCED SAMPLING

anced sampling which is widely used in practice. Chauvet and Tillé (2006) gave a faster

implementation of the cube sampling method. Fuller (2009b) studied properties of rejec-

tive method (Hájek, 1964, 1981) for balanced sampling. Chauvet et al. (2017) studied

some sampling strategies involving the cube method and rejective method for balanced

sampling. In recent developments, Benedetti et al. (2022) proposed a balanced sampling

method based on a global optimisation algorithm called simulated annealing and Leuen-

berger et al. (2022) suggested a modification which aims to improve efficiency of the fast

implementation of the cube method.

1.4.1 The cube method

Deville and Tillé (2004) gave a random sampling method, called cube method, which aims

to select samples with fixed first-order inclusion probabilities and balanced with respect

to a set of known auxiliary variables. The name of this sampling method is motivated

by geometric representation of the sampling design using N -dimensional cube (or N -

cube), where N denotes number of sampling units in the population and 2N vertices

of the N -cube represent all possible samples (of any size) from the population. In the

geometrical representation of sampling design, vector of first-order inclusion probabilities

π = (π1, ..., πN) is expressed as a convex combination of the vertices of the N -cube.

Sampling design under the cube method assigns selection probability p(s) to each vertex

of the N -cube such that E(s) = π, that is, fixed first-order inclusion probabilities are

achieved. The set of balancing equations in Eq. (1.9) can be defined as a hyperplane

which intersects the N -cube. Selecting a balanced sample is to choose a vertex of the

N -cube that remains in the hyperplane. The balanced sampling algorithm in the cube

method, randomly reaches a vertex of the N -cube from the vector π in such a way that

the balancing equations are satisfied, or approximately so.

Algorithm for the cube method randomly transforms elements of the vector π into sample

membership indicators {0, 1}. It consists of two phases: flight-phase and landing-phase. In

the flight-phase, a discrete time stochastic process, called balancing martingale, transforms

the first-order inclusion probabilities into {0, 1} indicator one-by-one such that balancing

equations and fixed inclusion probabilities are achieved. It starts with the vector π(0) =

π, at time t = 1, ..., T , three steps are repeated as follow:

1. Generate any vector u(t), such that u(t) is kernel of the matrix A = (x1/π1, ...,xN/πN),

and ui(t) = 0 if πi(t− 1) is an integer.
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2. Compute λ∗
1(t) and λ∗

2(t), the largest values of λ1(t) and λ2(t) such that 0 ≤ π(t−
1) + λ1(t)u(t) ≤ 1, 0 ≤ π(t− 1)− λ2(t)u(t) ≤ 1.

3. Select

π(t) =

 π(t) + λ∗
1(t)u(t) with probability q(t)

π(t)− λ∗
1(t)u(t) with probabiilty 1− q(t)

where q(t) = λ∗
2(t)/[λ

∗
1(t) + λ∗

2(t)].

Above steps are repeated until it is no longer possible to carry out step 1. At the end of

flight-phase, vector π(T ) is obtained, if all the inclusion probabilities are transformed into

{0, 1} indicators, then the algorithm completes. Otherwise landing-phase is required to

achieve the sample. In the landing-phase, balancing equations are compromised in order

to get sample of fixed size such that fixed inclusion probabilities are respected. When

balancing equations are not exactly satisfied, it is referred as rounding problem (Deville

and Tillé, 2004; Tillé, 2011).

Let π(T ) = π∗, and sampling design for the remaining units is formulated as optimization

problem which minimizes the conditional sampling variance V ar(X̂|π∗). The landing-

phase can be implemented in two way as follow:

• Linear programming: The conditional variance V ar(X̂|π∗) is minimized using linear

programming,

• Dropping balancing equations: At the end of flight-phase if sample is not achieved,

last variable from the set of auxiliary (or balancing) variables is dropped and flight-

phase is implemented again. This process continue unit a sample is achieve. There-

fore it is advised to put the auxiliary variables in the order of their importance in

the algorithm with this version of landing-phase.

(Deville and Tillé, 2004) advocated sampling strategy of balanced sampling by cube

method and GREG-estimator as balanced sampling helps avoiding extreme weights for the

GREG-estimator. In their simulation study, it was reported that percentage of samples

with negative calibration weights reduced from 32% to 0.1%.

In the implementation of above algorithm for cube method, number of computational

operations increase with square of the population size N2. Chauvet and Tillé (2006)

proposed a fast implementation of cube method for which number of computational oper-

ations increases with size of the population N . In the fast implementation, flight-phase of
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the cube method was applied to a subset of population which consisted of q+1 sampling

units instead of whole population. Application of flight-phase continues until it provides

a vector with at most q components which are not rounded to zero or one. Landing-phase

of the cube method is implemented in usual way. An important aspect of fast imple-

mentation is that order of population units may have an effect on efficiency of the cube

method. Therefore, it was suggested to randomly mix the sampling units in order to

maximise randomness of the design or rearrange the sampling units such that rounding

problem in the landing-phase is reduced.

Leuenberger et al. (2022) proposed to rearrange the sampling units in the population with

respect to their distances from centre of the auxiliary space. This rearrangement aims

to reduce the rounding problem of fast implementation of the cube method. The idea

was to deal with distant or atypical units first in the flight-phase as much as possible and

typical or central units in the landing-phase. At each step of the flight-phase of fast cube

method, at least one inclusion probability is rounded to 0 or 1 among the first q+1 units

with non-integer inclusion probabilities. Rearrangement of the population sampling units

such that atypical units are in the beginning of file provides more chance to the atypical

units to be submitted in the flight-phase. Therefore, most of the typical units left to be

processed in the landing-phase which is expected to reduce the rounding problem.

1.5 Spatially balanced sampling

When a study population can be mapped over a geographical area using some location

data, e.g. geographic coordinates or maps, it is referred as spatial population, which can

be categorised as discrete or continuous. In discrete spatial populations, response variable

is measured at discrete points while in continuous spatial population, response variable

can be measured at infinite points (Stevens Jr and Olsen, 2004). A random sample from

the finite spatial population is said to be spatially balanced when it is well-spread over

the population area (Grafström et al., 2012). Spatially balanced sampling methods aim

to select well-spread samples using location data of the spatial population. This implies,

location data for all the sampling units in the population are supposed to be known in

advance of sample selection. Most spatial populations are not homogeneous (Stevens Jr

and Olsen, 2004), so that SRS fails to provide a spatially balanced sample. This has

become an established fact that spatially balanced samples tend to be more efficient than

SRS when there exist some spatial dependence in the spatial population under study

(Stevens Jr and Olsen, 2004; Grafström et al., 2012; Benedetti et al., 2017c).
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Almost all the spatially balanced sampling methods achieve spatial balance in the sample

by manipulating second-order inclusion probabilities. Some basic methods do this directly

by assigning zero joint probabilities to adjacent pairs of sampling units and more advanced

methods do this implicitly by using other criteria, for example, spatial stratification of

the population area, or using pairwise distances of the sampling units (e.g. euclidean

distance). A typical problem associated with spatially balanced sampling methods is

that they often produce zero or close to zero second-order inclusion probabilities which

precludes unbiased estimation of sampling variance of HT-estimator.

In the following subsections, spatial dependence in finite populations and spatial balance of

the sample are briefly described followed by the subsection which describes some spatially

balanced sampling methods which are commonly used in practice or often appeared in

the literature.

1.5.1 Spatial dependence

Spatial dependence or autocorrelation referred as the relationship among values of variable

that is a result of geographical arrangement of their locations (Benedetti et al., 2015,

p 17). A measure of spatial autocorrelation quantifies the dependence of variable values

on the relative positioning of the population units in the space. There is positive spatial

autocorrelation, if similar values of the variable are nearby in the space. There is negative

spatial autocorrelation, if larger values are surrounded by small values (or small values

surrounded by large values) in the space. There is zero spatial autocorrelation if similar

values are randomly scattered in the space. Some commonly used measures for quantify

the spatial dependence are described bellow.

Spatial weight (or connectivity) matrix

Spatial weight matrix (SWM) or connectivity matrix, denoted by W, describes the ob-

servations which are neighbours of each location (Benedetti et al., 2015, p. 18). It is a

square matrix with dimension equal to number of observations; if it is computed for a

spatial population of size N , it would have dimension N ×N . Each entry of the matrix

corresponds to (i, j) pair, denoted by wij, which represents proximity of the locations i, j

and it is often measured by a distance measure, for instance, euclidean distance. It can

also take binary (0, 1) values, where wij = 1 if (i, j) location are neighbours, wij = 0

otherwise. Diagonal elements of the matrix W are set to zero, because they represents
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distance (or proximity) of a location to itself.

Moran’s I index for spatial autocorrelation

Moran’s I index given by Moran (1948, 1950) is commonly used measure of spatial auto-

correlation for quantitative (interval and ratio measurement scale) study variables. Cliff

and Ord (1973, 1981) presented a comprehensive work on spatial autocorrelation and sug-

gested a formula to calculate the Moran’s I index and joint count statistics for qualitative

(nominal measurement scale) variables.

Let xi denotes a study variable and wij is measure of connectivity between units i and

j, where wij = d−1
ij for i ̸= j, wij = 0 else, and dij denotes euclidean distance between

locations of units i and j. The formula for Moran’s I index is given by

I =
N

W

∑
i∈U
∑

j∈U wij(xi − x̄)(xj − x̄)∑
i∈U(xi − x̄)2

(1.10)

where W =
∑

i∈U
∑

j∈U wij and x̄ is mean of variable xi. A value of index I = −(N −
1)−1 means no spatial autocorrelation, and the values less and greater than −(N − 1)−1

represent negative and positive spatial autocorrelation respectively. Significance of an

observed value of index I can be tested based on normal approximation.

Semi-variogram

Semi-variogram measures variability between pair of units at different lags of distance,

given by

γ(h) =
1

2N(h)

∑
i,j∈N(h)

(yi − yj)
2 (1.11)

where N(h) is number of pairs separated by distance d(i, j) = h, where i, j ∈ U . For

spatially correlation variable, as the distance between pair of units increase, values of

sami-variogram are expected to increase.
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1.5.2 Spatial balance of samples

Voronoi polygons for spatial balance

Stevens Jr and Olsen (2004) introduced a measure of spatial balance based on Voronio

polygons. It also called Thiessen polygons method (Lister and Scott, 2009). In the sample

s, the Voronoi polygon αi for the unit i ∈ s includes all population units closer to i than

to any other sample unit k ∈ s. Let νi be the sum of inclusion probabilities in the ith

Voronoi polygon. If a population unit has equal distance to two or more sample units,

then it is included in more than one polygons. The inclusion probability of that unit is

then divided equally to each polygon, that is, νi =
∑

j∈αi
πj/mj, where mj =

∑
i∈s I(j∈αi).

It follows that
∑

i∈s νi = n. A sample is spatially balanced if νi = 1 for all i ∈ s. Thus,

the variance

SB =
1

n

∑
i∈s

(vi − 1)2 (1.12)

can be used as measure of spatial balance for a sample; spatial balance under a sampling

design can be computed as average of spatial balances over many samples (Grafström

et al., 2012).

Moran’s I index for spatial balance

Tillé et al. (2018) proposed to calculate Moran’s index for the sample indicator variable,

I(i∈s), as measure of spatial balance. Two measures of spatial balance were given, one

based on usual Moran’s index and other based on its normalized version along with

modified spatial weights. The normalization was introduced to restrict the values in

range of [−1, 1]. Let I be the vector denoting I(i∈s) variable, 1N×1 be a vector of ones and

Ī = 1
N
11⊤I, the measure of spatial balanced based on usual Moran’s I index was given

by

SBI =
(I− Ī)⊤W(I− Ī)

(I− Ī)⊤(I− Ī)1⊤W1

where W is non-negative spatial weight matrix based on a distance measure, e.g. element

wij indicates how close is unit j to i, a large value means j is neighbour of i and wii = 0

for all i ∈ U . The measure of spatial balance based on normalized version of Moran’s
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index was given by

SB∗
I =

(I− Īw)
⊤W̃(I− Īw)√

(I− Īw)⊤D(I− Īw)(I− Īw)⊤B(I− Īw)

where elements of the weight matrix W̃ were defined as

w̃ij =


1 if unit j ∈ N⌊ki⌋,

ki − ⌊ki⌋ if unit j is the ⌈ki⌉th nearest neighbour of i,

0 otherwise.

where ki = (1/πi− 1), ⌊a⌋ and ⌈a⌉ are roof and ceiling functions of a which return largest

integer smaller than a and a+ 1 respectively.

1.5.3 Spatially balanced sampling methods

This subsection describes some spatially balanced sampling methods. The cube method

for balanced sampling (with respect to auxiliary variables), described in Section 1.4.1, can

also be used for spatially balanced sampling by considering spatial variables (or coordi-

nates) as balancing variables (Benedetti et al., 2017b,c).

Two-dimensional systematic sampling and maximal stratification

When sampling from an areal (or two-dimensional) population, two-dimensional system-

atic sampling (2D-SYS) is an extension of the systematic sampling. For rectangular two-

dimensional (or areal) population, Quenouille (1949) proposed 2D-SYS and its different

variants along with other sampling methods including two-dimensional random sampling

and stratified random sampling with one unit per stratum; later discussed by Das (1950),

Bellhouse (1977) and (Cochran, 1977, p. 227). In maximal stratification, population area

is divided into spatial strata and one per stratum is selected. In maximal stratification,

the methodologies for achieving a good spatial stratification are often criticized.

For 2D-SYS, population area is divided into k×k(= n) grid cells and one unit is selection

from each grid cell. The most basic version of 2D-SYS is square grid pattern or aligned

2D-SYS (Cochran, 1977, p. 227) in which a pair of random coordinates determines the

sample. In the central square grid pattern centre of the grid cells is chosen as sample

units. In these basic versions, sampling units are selected equally distant from each other
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which ensure the spread of sampled units in the population area. When the populations

show some kind of cyclic or periodic pattern, these two methods may show potential

bias. Unaligned 2D-SYS sampling method aims to overcome this problem by selecting

the units which are equidistant but random within the rows or columns of grid cells. See

Figure 1.1 for a demonstration of these three variants of 2D-SYS. The 2D-SYS sample

is more efficient than simple random sample of the coordinates when correlation between

two units is monotone decreasing function of distance between two units (Cochran, 1977,

p. 227).

(a) 2D-SYS aligned sample:
“square grid” pattern.

(b) 2D-SYS aligned sample:
“central square grid”.

(c) 2D-SYS unaligned sam-
ple.

Figure 1.1: Variants of two-dimensional systematic sampling – Source: (Cochran, 1977,
p. 228).

Balanced sampling excluding contiguous units (BSEC)

Hedayat et al. (1988) gave a sampling method for list of population units arranged in

particular order, known as balanced sampling excluding contiguous (BSEC) units. This

is an equal probability sampling method. It selects a sample by assigning zero joint

inclusion probabilities to the contiguous sampling units in the list of sampling units and

equal joint inclusion probability to non-contiguous sampling units. Here the aim is same,

to select a sample which consists of the sampling units that are not too close. Efficiency

of this sampling method depends upon the serial correlation in the list of population

elements, like systematic sampling, in comparison with simple random sampling.

Generalized random-tessellation stratified (GRTS) design

Stevens Jr and Olsen (2004) proposed GRTS design, the most granulated among spatially
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balanced sampling methods based on spatial stratification, which selects spatially bal-

anced samples with fixed inclusion probabilities. Assuming that sampling frame consists

of N points located within a geographic region, the GRTS design stratify the region into

small quadrants, each containing at most one population point, and place them in the

line of length N using a random process called hierarchical randomization, for details see

Stevens Jr and Olsen (2004). For equal probability sampling, each quadrant is given unit

length and a systematic random sample of size n is selected with random start between

(0, N/n). For πps systematic sampling, the quadrants are assigned length proportional

to the corresponding inclusion probabilities. The hierarchical randomization process pre-

serves the spatial positioning of the quadrants as much as possible, therefore a systematic

sample is well-spread over the population area. The GRTS design is applicable for both

discrete and continuous spatial populations. It is able to accommodate additional sample

points in case of non-responses while maintaining the spatial balance of the sample. It

also have ability to perform inverse sampling.

Stevens Jr and Olsen (2004) also proposed a measure of spatial balance based on Voronoi

polygons, see Eq. (1.12). Spatial balance of samples under GRTS design was compared

with independent random sampling (IRS) (or pss sampling) and spatially stratified sam-

pling (SSS) under different scenarios of non-responding or denial areas and different sam-

ple sizes. Numerical results showed that, GRTS design was the most spatially balanced

followed by SSS and IRS was the least balanced design.

Stevens Jr and Olsen (2003) gave a variance estimator under GRTS design called lo-

cal mean (or local neighbourhood) variance estimator, see Eq. (1.17). Since spatially

balanced designs have some very small or zero second-order inclusion probabilities, use

of usual unbiased variance estimator may not be possible; if possible in some cases it

can be unstable. Local neighbourhood estimator is perceived to be more stable and ap-

proximately unbiased (Stevens Jr and Olsen, 2004). In 1997, Indiana Department of

Environmental Management (IDEM) implemented GRTS design in a survey for biolog-

ical assessment of streams and rivers in Indiana. For different response variables from

this survey, variance estimates were calculated using IRS variance estimator and local

neighbourhood variance estimator. The results showed that local neighbourhood vari-

ance estimates were smaller than IRS variance estimates.

Spatially balanced sampling using space-filling curves (SFC)

Lister and Scott (2009) proposed a GIS-assisted spatially balanced sampling method which
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transform the two-dimensional space into one-dimensional line using SFC called Peano

curve. The implementation of this method was claimed to be more transparent and

simpler than GRTS design, and similar performance in terms of efficiency and spatial

balance. In this sampling method, the location of population units in two-dimension is

translated into one-dimensional spatial address which are grouped into contiguous groups.

Sampling units are selected from these groups randomly.

Spatially correlated Poisson sampling (SCPS)

Grafström (2012) proposed SCPS method to select spatially balanced samples with fixed

first-order inclusion probabilities. It is a special case of correlated Poisson sampling, a

list sequential sampling method given by Bondesson and Thorburn (2008). Correlated

Poisson sampling method first decides sampling outcome for the first unit in the list, then

for second unit and so on, up to last unit. After each sampling decision, it updates the

inclusion probabilities of the remaining units in list using a set of weights. The weights are

chosen within a specified range to achieve required design properties. In SCPS, spatially

balanced samples are selected by assigning large positive weights to the population units

which are close with respect to distance.

In correlated Poisson sampling method, first unit is selected in the sample with probability

π
(0)
1 = π1. If unit was included then I1 = 1, otherwise I1 = 0. Generally at step j, when

the values for I1, ..., Ij−1 have been recorded, unit j is included with probability π
(j−1)
j .

Then inclusion probabilities are updated for the units i = j + 1, ..., N as follow

π
(j)
i = π

(j−1)
i − (Ij − π

(j−1)
i )w

(i)
j

where w
(i)
j are weights given by unit j to the units i = j + 1, j + 2, ..., N and π

(0)
i = πi.

For 0 ≤ π
(j)
i ≤ 0, the weights can be chosen within the following range:

−min

(
1− π

(j−1)
i

1− π
(j−1)
j

,
π
(j−1)
i

π
(j−1)
j

)
≤ w

(i)
j ≤ min

(
π
(j−1)
i

1− π
(j−1)
j

,
1− π

(j−1)
i

π
(j−1)
j

)
.

A fixed sized sampling design is obtained if weights sum to one, given that inclusion

probabilities sum to an integer. In order to achieve spatially balanced sampling design

under the SCPS, two strategies were proposed to choose the weights, as described in the

following.
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• Maximal Weights: The unit j gives as much weight as possible to the nearest unit

with respect to distance (not in the list) among units i = j +1, j +2, ..., N , then as

much weight as possible to the second nearest unit and so on, such that the weights

sum to 1. If distances are equal for two or more units, then the weight is distributed

equally on those units.

• Gaussian preliminary weights: The weights follows Gaussian distribution centred

at the position of unit j, which were chosen as: w
(i)∗
j ∝ exp{−(d(i, j)/σ)2}, where

i = j + 1, j + 2, ..., N and σ is a parameter which control the spread of the weights.

Average of distance between unit j and its nearest neighbour was proposed as one

option for the choice of σ. Furthermore, weights may not be within the required

range and need to be truncated which may create very small variation in the sample

size.

For both types of weighting strategies, different order of the units gives a different design,

but overall property of the design is same, that is, samples are spatially balanced.

Local pivotal method (LPM)

Grafström et al. (2012) proposed two local pivotal methods (LPMs) to select spatially

balanced samples with fixed first-order inclusion probabilities. These methods are based

on another sampling method, called pivotal method (Deville and Tillé, 1998) (also see

Section 1.1.5), and pairwise euclidean distance of population units. The algorithm for

pivotal method selects two units randomly and update their inclusion probabilities such

that one of the two units is included in or excluded from the sample. This process

is repeated for all units in the population. In this way, a sample with fixed inclusion

probabilities is obtained. Local pivotal methods update inclusion probability in same way

for two nearby population units, not the randomly selected units. In this way, LPMs

avoids selecting nearby units in the sample. Two criteria for choosing nearby units were

given. First criterion consisted of four steps and is described in the following

1. Randomly choose one unit i;

2. Choose unit j which is nearest neighbour of i. If there are multiple units having the

same distance to i, then randomly choose among them;

3. If j has i as its nearest neighbour, then update the inclusion probabilities using the

algorithm for pivotal method;
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1.5. SPATIALLY BALANCED SAMPLING

4. Repeat step 1 to 3 until all units are finished.

In second criterion, step 1, 2 and 4 of first criterion are used. This allows directly updating

inclusion probabilities instead of searching for nearest neighbour of unit j. Local pivotal

methods based on these two criteria were named as LPM1 and LPM2 respectively. It

was shown analytically that both methods ensure local balance of sample size at least for

clustered populations.

For variance estimation under LPMs, three estimators were mentioned: variance estimator

under independent random sampling or pss sampling (Hansen and Hurwitz, 1943), vari-

ance estimator under conditional Poisson sampling (CPS) (Hájek, 1964) and “local-mean”

variance estimator (Stevens Jr and Olsen, 2003), also see Section 1.6. Local-mean variance

estimator was recommended for LPMs. By simulation studies based on real and artificial

data sets, it was shown that LPMs are more spatially balanced in the sense of Voronoi

polygon measure and more efficient than CPS and GRTS. It was also demonstrated that

“local-mean” variance estimator is generally better than other two competitors for the

LMPs.

Spatially balanced sampling using product of within-sample distances (PWD)

Benedetti and Piersimoni (2017) proposed a spatially balanced sampling method which

aims to minimize within-sample distance using a Markov Chain Monte Carlo (MCMC)

algorithm. It does not consider unequal fixed inclusion probabilities. First and second-

order inclusion probabilities were derived for a simplified case.

This method aims to select a sample s with selection probability proportional to a distance

measure M(Ds) where Ds represents the distance matrix of units in the sample s. In the

sampling algorithm, initial sample s(0) is selected randomly. At iteration t the elements

of sample s(t) are updated according to the following steps:

1. Select two units at random, one from the sample s(t) and other from outside the

sample s(t),

2. In the new sample, denoted by s
(t)
e , two units are exchanged and the new sample

is selected in s(t+1) with probability: min{1, [M(D
s
(t)
e
)/M(Ds(t))]

β}, where β is a

tuning parameter.

3. Repeat first and second steps q × N times, where q is the maximum number of
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iteration each consisting of N attempts. The algorithm stops when no attempt is

accepted within qth iteration.

Two distance measures were proposed given by: M1(Ds) =
∑

i∈s
∑

j∈s dij and M0(Ds) =∏
i∈s
∏

j∈s dij, where dij is euclidean distance between units i and j. The tuning parameter

β controls the proportionally between selection probability of a sample and its distance

measure. A large value of β is required when relation is more than proportional, although

it requires more iterations. The distance measure M0(Ds) =
∏

i∈s
∏

j∈s dij, named PWD

(proportional to within sample distance) was often recommended during the simulation

studies.

Spatially balanced sampling using weakly associated vectors (WAVE)

Jauslin and Tillé (2020) proposed a sampling method which selects spatially balanced

samples with fixed first-order inclusion probabilities. In this method, first, a stratification

matrix of size N×N is constructed where ith row of the matrix represents a stratum which

contains unit i and its nearest neighbours such that sum of the inclusion probabilities is

greater than or equal to one by only one unit. Rows of the matrix sum to one which might

be viewed as spatial constraints to achieve a spatially balanced sample. Second, following

the idea of cube method (Deville and Tillé, 2004), vector of inclusion probabilities is

modified in a random manner and transformed into a selection indicator vector such

that the sample achieves spatial constraints and respects the fixed first-order inclusion

probabilities. The idea of stratification matrix seems to target at the definition of spatial

balance based on Voronoi polygons (Stevens Jr and Olsen, 2004).

A simulation study was conducted using real data set known as Meuse which contained

variables related to metal concentrations. The proposed method was compared with

SRS, GRTS, LPM1, SCPS and HIP under equal probability and with GRTS, LPM1,

SCPS and Maxent under πps sampling. Cadmium and zinc were considered as response

and size variables respectively. Comparison was made based on MSE of HT-estimator

and three measures of spatial balance: SB, SBI and SB∗
I . The WAVE method was more

efficient than others only for small sample sizes considered in the study. For large samples

SCPS was the most efficient under πps sampling. The two measures of spatial balance

based on Moran index showed that WAVE is the most balanced method in all the cases.

The measure based on Voronoi polygon indicated that WAVE or LPM were the most

balanced under equal probability sampling while SPCS was the most balanced under

unequal probability sampling.
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1.5.4 Doubly balanced sampling by local cube method

A sampling design is doubly balance if it achieve the balancing equations, see Eq. (1.9),

with respect to auxiliary variables and at the same time balanced with respect to spa-

tial coordinates. Grafström and Tillé (2013) gave a sampling method, called local cube

method, which aims to select samples with fixed first-order inclusion probabilities which

are balanced with respect to auxiliary variables and are well-spread over the finite space

at the same time. This method is based on cube method for balanced sampling and local

pivotal method for spatially balanced sampling, both are described earlier in this chap-

ter. In the algorithm for local cube method, a cluster of q + 1 nearby units is selected

and flight-phase of cube method is applied (where q is number of auxiliary variables).

Application of flight-phase on a nearby units selects at least one units from the cluster

and reduce the selection chance of other nearby units in the same sample, this is how it

achieves local balance. When undecided units are less than q + 1, landing-phase of the

cube method is applied.

1.6 Variance estimation

The HT-estimator is an unbiased estimator under any sampling design when first-order

inclusion probabilities are known and positive, i.e. πi > 0 for all i ∈ U . An unbiased

estimator for sampling variance of the HT-estimator is always desirable. An unbiased

variance estimator from Horvitz and Thompson (1952) based on variance formula in Eq.

(1.2) is given by

V̂HT (ŶHT ) =
∑
i,j∈s

(
πij − πiπi

πij

)
yi
πi

yj
πj

provided that πij > 0 for all i, j ∈ U (Särndal et al., 1992, p. 43). When sample size

is fixed, an unbiased variance estimator from Sen (1953) and Yates and Grundy (1953)

(SYG) based on variance formula in Eq. (1.3), is given by

V̂SY G(ŶHT ) = −1

2

∑
i∈s

∑
i<j∈s

(
πij − πiπj

πij

)(
yi
πi

− yj
πj

)2

(1.13)

where s is a random sample of fixed size n and πij > 0 for all i, j ∈ U (Särndal et al.,

1992, p. 45). For the calculation of above variance estimators, values of both first- and

second-order inclusion probabilities are required and all of them are required to be strictly

31



1.6. VARIANCE ESTIMATION

positive. In most cases, first-order inclusion probability are prefixed or easy to compute,

whereas second-order inclusion probabilities are unknown under most of the sampling

designs including balanced and spatially balanced sampling designs. Even if calculation

of second-order inclusion probabilities is possible through some recursive methods, it

becomes computationally expensive for large populations. Therefore, sampling variance

of HT-estimator is often estimated through approximations. Since the theory of HT-

estimator under πps sampling is introduced, many approximations have been proposed in

literature to estimate its sampling variance, most of them involve only first-order inclusion

probabilities because they are often known.

Variance estimator under pps sampling (Hansen and Hurwitz, 1943) is often used for

variance estimation under πps sampling, however it usually overestimates the sampling

variance since πps sampling tends to be more efficient that pps sampling. Hartley and Rao

(1962) proposed an approximation for variance estimation under randomized systematic

πps sampling under the assumption of N → ∞ for fixed n. While Hájek (1964) proposed a

variance approximation under conditional Poisson sampling using assumption of N → ∞
and (N − n) → ∞. Rosén (1991) considered variance estimation under pps systematic

sampling. Berger (1998a) extended Hajék’s approximation for some other sampling de-

signs. Berger (1998b) proposed a variance estimator under Chao’s sampling scheme for

πps sampling (Chao, 1982). Deville (1999) proposed a variance approximation based

on maximum entropy. Based on (Hájek, 1964)’s approximation, Berger (2005) proposed

a variance estimator under πps systematic sampling. Haziza et al. (2004) and Haziza

et al. (2008) compared 12 estimators for sampling variance of HT-estimator under Rao-

Sampford πps sampling procedure (Rao, 1965; Sampford, 1967). There are many other

methodologies which are used for variance estimation including jack-knife and bootstrap

methods, see Wolter (2007) for details. Those variance approximations which are used or

discussed in later chapters of this thesis are described bellow.

Variance approximation based on pps sampling

A simple approximation of sampling variance under πps sampling is to use the sampling

variance under pps sampling (Hansen and Hurwitz, 1943), discussed by (Durbin, 1953),

(Cochran, 1977, p. 252), (Särndal et al., 1992, p. 99,422) and (Wolter, 2007, p. 12) among

others. It does not require computation of second-order inclusion probabilities. Variance

estimator based on this approximation often overestimate the sampling variance because

πps sampling tends to have smaller variance than pps sampling. Sampling variance of

HT-estimator under pps sampling is given in Eq. (1.4) and its unbiased estimator is given
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by

V̂pps(ŶHT ) =
1

n(n− 1)

∑
i∈s

(
yi
pi

− 1

n

∑
i∈s

yi
pi

)2

(1.14)

where πi = npi.

(Deville and Tillé, 2005)’s variance approximation under balanced sampling

Deville and Tillé (2005) suggested that sampling variance of the HT-estimator under cube

method can be approximated by the sampling variance of the GREG-estimator under

Poisson sampling design. This approximation based on two arguments: first, sampling

design under Poisson sampling does not requires computation of second order inclusion

probabilities; second, Poisson sampling has maximum entropy and balanced sampling

design is conditional of Poisson sampling design; see Deville and Tillé (2005) for details.

Let π̃i denotes first-order inclusion probabilities under Poisson sampling design, the sam-

pling variance of HT-estimator under poisson sampling (Hájek, 1964) is given by

VPS(ŶHT ) =
∑
i∈U

y2i
π2
i

π̃i(1− π̃i) = zT ∆̃z

where z = (y1/π1, ..., yN/πN)
T and ∆̃ = Diag[π̃i(1 − π̃i)]i∈U is a diagonal matrix. Note

that π̃i’s are unknown and Deville and Tillé (2005) given four approximations for π̃(1−π̃).

Following (Hájek, 1964, 1981)’s residual technique, Deville and Tillé (2005) proposed

variance approximation under balanced sampling, given by

VPS(ŶHT |X̂HT = X) ≈ VPS(ŶHT + (X− X̂HT )
Tβ)

where

β = VPS(X̂HT )
−1CovPS(X̂HT , ŶHT ),

VPS(X̂HT ) =
∑
i∈U

xix
⊤
i

π2
i

π̃i(1− π̃i)

CovPS(X̂HT , ŶHT ) =
∑
i∈U

xiyi
π2
i

π̃i(1− π̃i)
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When the term π̃(1 − π̃) is approximated by Nπi(1 − πi)/(N − q) (Hájek, 1981; Deville

and Tillé, 2005), the variance approximation under balanced sampling can be written as

V (ŶHT ) ≈
N

N − q

∑
i∈U

ẽ2i
π2
i

πi(1− πi) (1.15)

where ẽi = zi−z̃i, z̃i = AT (X∆̃XT )−1X∆̃z,A = (x1/π1, ...,xN/πN) andX = (x1, ...,xN).

The corresponding variance estimator is given by

V̂ (ŶHT )DT =
n

n− q

∑
i∈s

ˆ̃e2i
πi

(1− πi) (1.16)

where ˆ̃ei = zi − ˆ̃zi, ˆ̃zi = AT
s (Xs∆̃sX

T
s )

−1Xs∆̃szs, the subscript s denotes values corre-

sponding to sample s. The subscript DT for variance estimator means (Deville and Tillé,

2005)’s variance estimator.

In (Deville and Tillé, 2005)’s variance approximation, the assumption of exact balancing

may not be always true. Therefore, the variance estimator based on this approximation

can be biased when sampling design is not exactly balanced. For cube method, assuming

exact balancing of the design means that this approximation only aims the flight-phase

of the cube method, the bias can increase as the sampling variance due to flight-phase

decreases (or sampling variance due to landing-phase increases). Breidt and Chauvet

(2011) also proposed simulation-based approximation for balanced sampling using cube

method. In a simulation study, the variance estimator based on the simulation-based

approximation was compared with (Deville and Tillé, 2005)’s variance estimator in Eq.

(1.16). The simulation-based variance estimator was approximately unbiased but less

efficient as compared to (Deville and Tillé, 2005)’s estimator.

Under spatially balance sampling, second-order inclusion probabilities of nearby units

are likely to be zero or very close to zero. For example, in one- and two-dimensional

systematic sampling second-order inclusion probabilities are non-zero only for the units

which belongs to the same sample. Similarly in BSEC, second-order inclusion probabilities

are non-zero only of the non-contiguous units in the list. Therefore, unbiased estimation

of variance using Sen-Yates-Grundy estimation is not possible, as second-order inclusion

probabilities appears in the denominator. According to Stevens Jr (1997), expression for

second-order inclusion probabilities can be produced under GRTS design for continuous

populations, although they are not known for finite (or discrete) populations. Due to near-

zero second order inclusion probability, these expression may not give a stable variance

estimator (Stevens Jr and Olsen, 2004). In another instance, Benedetti et al. (2017a)
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proposed a model-based variance estimator for two-dimensional systematic sampling, one-

per-stratum (or maximal stratification) sampling. This estimator required second-order

inclusion probabilities to be know which is true for the two considered design but not for

more advanced designs, for instance, LPMs and SCPS. Some variance estimators which are

commonly used in practice or often appeared in literature are described in the following.

Grafström and Lundström (2013) also proposed a variance estimator when qualitative

balancing variables are used for spatial or auxiliary balancing.

Local-mean (or local neighbourhood) variance estimator

Stevens Jr and Olsen (2003) proposed a variance estimator based on local neighbourhood

(NBH) for GRTS design, it is also know as local-mean variance estimator (Grafström et al.,

2012; Grafström and Lundström, 2013). The expression for the local-mean estimator is

given by

V̂NBH(ŶHT ) =
∑
i∈s

∑
j∈Di

wij

(
yi
πi

− ȳDi

)2

(1.17)

where Di is a neighbourhood to unit i, containing at least four units, and wij are

weights that decrease as the distance between unit i and j increases. The weights sat-

isfy
∑

j wij = 1 and ȳDi
is a neighbourhood total (Grafström et al., 2012). Local-mean

variance estimator is often recommended for spatially balanced sampling, unless a better

estimator is available (Stevens Jr and Olsen, 2004; Grafström, 2012; Grafström et al.,

2012; Robertson et al., 2013; Benedetti and Piersimoni, 2017).

(Grafström and Tillé, 2013)’s variance estimator under doubly balanced sam-

pling

For doubly balanced sampling by local cube method, Grafström and Tillé (2013) in-

troduced variance estimator by combining local-mean variance estimator (Stevens Jr and

Olsen, 2003) and variance estimator for balanced sampling (Deville and Tillé, 2005), given

by

V̂DBS(ŶHT ) =
n

n− p

p+ 1

p

∑
i∈s

(1− πi)

(
ei
πi

− ēi

)2

(1.18)
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where

ei = yi − x⊤β̂

β̂ =

[∑
i∈s

(1− πi)
xix

⊤
i

π2
i

]−1∑
i∈s

(1− πi)
xiyi
π2
i

ē =
∑
i∈Gi

(1− πi)
ei
π

[∑
i∈Gi

(1− πi)

]−1

and Gi is the set of the p+ 1 closest units of i in the sample (including i itself).

1.7 Supper-population model

Often it is assumed that the given finite population is a realization of an infinite supper-

population which is usually expressed by a probability model. Therefore, variable of

interest are random variables under the super-population model. When the inference

regarding finite population parameters is based on the sampling distribution under the

sampling design (or induced by the sampling method), it is usually known as design-based

(or randomisation) approach. Ordinarily, survey sampling theory is based on design-based

approach. If the inference is based on probability distribution assumed under the super-

population model, it is known as model-based (or prediction) approach, see Valliant et al.

(2000). Whereas, when super-population model is used in order to develop a sampling

design or an estimation scheme but inference is based on sampling distribution, it is known

as model-assisted approach, see Särndal et al. (1992) for model-assisted survey sampling.

There is also some literature regarding controversy between design- and model-based

inference approaches. An objection on the design-based approach is based on the fact that

it disregard the probability distribution under the super-population model of the study

variable rather it is based on probability distribution induced by the sampling design.

Godambe (1955) demonstrated that no unbiased estimator with least variance exist in

the class of linear estimators under the sampling design (or design-based approach). This

article stimulated the work regarding consideration of probability models in the theory of

survey sampling. Godambe and Joshi (1965) extend the theory of non-existence of least

variance for class of non-linear estimators under the design-based approach. Later, the

work related to using probability models in estimation of finite population parameters

resulted into model-based approach.

36



1.7. SUPPER-POPULATION MODEL

In theory, when assessing some sampling strategies for a given finite population, it is useful

to envisage some assumptions about the finite population, i.e specify a super-population

model. Anticipated mean squared error (AMSE) is model expectation of the sampling

variance of an estimator (in a sampling strategy). A general expression for the AMSE of

an estimator Ŷ of Y is given by

AMSE(Ŷ ) = Em{Ep(Ŷ − Y )2|U} = Ep{Em(Ŷ − Y )2|s}

where Em and Ep denote expectation functions with respect to super-population model

and sampling distribution respectively. In most numerical studies of this thesis, AMSE

approach is considered for the comparison of different sampling strategies.

A super-population model with constant mean and homogeneous error variance is given by

yi = µ+ ϵi, where ϵi random error term identically independently distributed (iid) under

normal distribution N(0, σ2). For this model, AMSE of HT-estimator for population total

Y under SRS is minimum, see Fuller (2009a). A linear regression model with independent

errors is given in Eq. (1.5). For this model, AMSE of HT-estimator for Y under a sampling

design p(s) can be written as

AMSE(ŶHT ) = Ep

(∑
i∈s

xi

πi

−
∑
i∈U

xi

)⊤

β

2

+
∑
i∈U

(
1

πi

− 1

)
σ2
i (1.19)

For the above AMSE, Godambe and Joshi (1965) gave a lower bound given by

∑
i∈U

(
1

πi

− 1

)
σ2
i

and suggested that HT-estimator with πps sampling such that πi ∝ µi has minimum

variance in the class of linear estimators. Under the same model, (Särndal et al., 1992,

p. 452) suggest that GREG-estimator with πps sampling such that πi ∝ σi is an optimal

strategy. Isaki and Fuller (1982) has also studied properties of some sampling strategies

under the linear regression super-population model.

Under the linear regression model with correlated errors, Vm(ϵi) = σ2
i and Covm(ϵi, ϵj) =

σij where Vm and Covm denote variance and covariance function under super-population

model, the AMSE of HT-estimator under sampling distribution p(s) and linear regression
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model is given by

AMSE(ŶHT ) = Ep

(∑
i∈s

xi

πi

−
∑
i∈U

xi

)⊤

β

2

+ 2
∑

i<j∈U

(
πij

πiπj

− 1

)
σij (1.20)

from (Grafström and Tillé, 2013). For an optimal sampling strategy, one would like to

minimize the AMSE of the HT-estimator given above, which has two term: first term

represent the lack of auxiliary balance and second term involve second-order inclusion

probabilities. First term vanishes when sampling design is balance with respect to aux-

iliary variables. Second term can be minimized be choosing a set of second-order inclu-

sion probabilities. However, it is a hard problem to find a set of second-order inclusion

probabilities which corresponds to a sampling design (Gabler and Schweigkoffer, 1990).

Spatially balanced sampling methods aims to control second-order inclusion probabilities

implicitly with the aim to minimize the AMSE.

1.8 Thesis outline

For two-stage sampling design, equal probability sampling method (epsem) by πps-SRS

is commonly used in practice. For two-stag epsem, PSU’s are selected by πps sampling

at the first-stage, and usually equal number of elements is selected by SRS from the

sampled PSU’s at the second-stage. Alternatively, a sample of equal-sized clusters can

be selected, at the second-stage. Although HT-estimator is unbiased, GREG-estimator is

commonly used when population total of some auxiliary variables are known. In this, way

four sampling strategies can be formulated based on two-stage epsem and two estimators:

HT- and GREG-estimator. Following problems are considered about two-stage epsem by

πps-SRS:

1. A comparison of four sampling sampling is conducted under a two-level regression

model which aims to provide insights about two-stage epsem from practical view-

point.

2. Some exploration is done about formulating custom sub-cluster for two-stage es-

pem using auxiliary variable. This formulation of sub-clusters aims to improve the

efficiency of two-stage epsem.

As mentioned in earlier sections that balanced sampling with respect to known auxiliary

variables in combination with GREG-estimator is advocated in literature. Cube method
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for balanced sampling is often used in practice. It was originally proposed for selection of

PSU’s. Regarding balanced sampling of PSU’s in two-stag epsem, following two problems

are considered.

1. Cube method is not always exactly balanced. A sampling procedure is proposed

which aims to improve the cube method when it is not exactly balanced.

2. Second order inclusion probabilities are unknown under cube method, therefore

problem of unbiased variance estimation under cube method is not fully addressed.

A methodology of variance estimation under balanced sampling is also proposed

which naturally follows the proposed procedure for balanced sampling.

The introduction of spatially balanced sampling in social surveys is a recent phenomena.

It has mainly been used in natural resource, ecology and environmental surveys. In the

context of two-stage sampling design in social surveys, one can select spatially balanced

samples either at one or both stages depending on availability of location data. When

auxiliary and spatial variables are known, it is also proposed to select doubly balanced

sample with respect to auxiliary and spatial variables (or spatial coordinates). In this

thesis, following aspects of spatially balanced sampling methods are considered.

1. A variety of spatially balanced sampling methods can be found in literature with

varying ability to achieve spatial balanced and efficiency. A comparative study

of spatially balanced sampling methods (whose implementation is available in R

statistical software) is conducted under spatial super-population model.

2. There might be situation when a survey contain some variables with negative spatial

autocorrelation in addition to those with positive spatial autocorrelation. Some

spatial sampling strategies are suggested for such situations.

3. Estimation of sampling variance is a common challenge associated with spatially

balanced sampling. A variance estimation methodology is proposed for spatially

and doubly balanced sampling.
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Chapter 2

Sampling strategies related to

two-stage equal probability sampling

2.1 Introduction

Two-stage sampling is commonly used in large scale surveys, for instance, in national level

household surveys. For two-stage sampling, equal probability sample method (epsem) by

πps-SRS is a common practice in which PSU’s are selected by πps sampling and equal

number of elements are selected by SRS from the sampled PSU’s. This is a two-stage

element sampling design; a shorthand notation for this design 2Se shall be used in this

chapter. An alternative two-stage epsem can be defined as two-stage cluster sampling

design, denoted by 2Sc, in which PSU’s are selected by πps sampling (same as in 2Se)

and a simple random sample of sub-clusters (in stead of elements) is selected from each

sampled PSU, where all the sub-clusters have same size.

The HT-estimator of finite population total is unbiased under the two-stage epsem.

GREG-estimator, an approximately unbiased estimator of finite population total, is also

commonly used in practice when a set of auxiliary totals is known. For socio-economic

surveys, these auxiliary totals are often available from last census data or from a previous

sample survey. Two sampling designs for two-stage epsem and two estimators for finite

population total constitute four sampling strategies given bellow:

1. (2Se, HT)

2. (2Sc, HT)
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3. (2Se, GREG)

4. (2Sc, GREG)

Two-stage epsem is an intuitive choice when survey variable can be expressed by a super-

population model which assumes constant variance of y-values across the finite population.

In this chapter, above four sampling strategies involving two-stage epsem are compared

in a systematic way. The comparison is based on AMSE’s under the two-level regression

model rather than their MSE’s for a given finite population; comparison of these sampling

strategies with respect to AMSE’s is not seen in literature. AMSE represent average

performance of a sampling strategy for the finite population parameters under a give

super-population model. The aim of this comparison is to single out a preferred sampling

strategy which might be useful from practical viewpoint.

Usually cluster sampling is less efficient than element sampling, therefore, two-stage epsem

base on two-stage cluster sampling (i.e. 2Sc) is expected to be less efficient than two-stage

element sampling (i.e. 2Se) when sub-clusters have positive intra-cluster correlation.

Also, equal-sized sub-clusters are rarely found in practice. This may motivate custom

formulation of equal-sized sub-clusters. A simplified case is when equal-sized sub-clusters

are randomly formed within each PSU. When a set of auxiliary variables is available, one

may also look to formulate even better sub-clusters using the known values of auxiliary

variables. In the following, a toy example demonstrates that there exist ways of cluster

sampling by which sampling variance is zero.

Example 2.1. Let response values are yi = 1, ..., 16 and sample size is n = 4. Consider

the following arrangement of yi’s with rows as clusters:
1 8 9 16

2 7 10 15

3 6 11 14

4 5 12 13


where rows of the matrix are four samples which have the same sample mean is 8.5 (and

total 34), but different sample variance. The sampling variance of the row-sample mean

is 0. This particular cluster sampling is the most efficient design for this population,

including compared against SRS of elements.
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To get cluster sampling like in the above example, unknown y-values are required which

is not possible in a sample survey situation. However, auxiliary variables related to

y-variable can be used for this purpose like other model-assisted approaches in survey

sampling. In this chapter, one way of formulating sub-clusters is explored which aims

to obtain sub-clusters such that they are equal-sized and have equal means of auxiliary

variables. Assuming that such sub-clusters exists and can be achieved, a preliminary

analysis indicates that SRS of these sub-clusters is actually same as equal-probability

balanced sampling (with respect to auxiliary variables) of elements in term of AMSE.

Furthermore, these sub-clusters might be more difficult to achieve in practice as compared

to balanced sampling. However, it may have an advantage over balanced sampling, which

is unbiased variance estimation because it is SRS of sub-clusters.

Rest of the chapter is arranged as follows. In Section 2.2, formulation of sub-clusters using

auxiliary variables is briefly described which happen to be same as balanced equal prob-

ability sampling of elements. In Section 2.3, four sampling strategies involving two-stage

epsem are compared with respect to their AMSE’s under a two-level super-population

model. In Section 2.4, a simulation study is conducted which provides further insights of

the comparison. In the last, Section 2.5 gives some conclusions of this chapter. In the fol-

lowing two subsections, formulas of HT-estimator and GREG-estimator under two-stage

sampling designs are given.

2.1.1 HT-estimators under two-stage sampling

Let a random sample sI of nI PSU’s is selected from the population UI (UI is defined in

Section 1.2.1), there are NI PSU’s in the population. Let πg and πgh denotes first- and

second-order inclusion probabilities for the gth and (g, h)th PSU’s respectively, where

g ∈ UI and (g ̸= h) ∈ UI. In two-stage element sampling, a random sample sg of ng

elements is selected from the PSU’s selected in the first-stage sample, i.e. g ∈ sI. Let πi|g

and πij|g denote first- and second-order inclusion probabilities of ith and (i, j)th elements

in the gth PSU, i.e. i ∈ Ug and i ̸= j ∈ Ug. The HT-estimator of population total Y and

its sampling variance under two-stage element sampling are given by

ŶHT =

nI∑
g=1

ŶgHT

πg

(2.1)

V (ŶHT ) =

NI∑
g,h=1

(
πgh

πgπh

− 1

)
YgYh +

NI∑
g=1

1

πg

Ng∑
i,j=1

(
πij|g

πi|gπj|g
− 1

)
ygiygj (2.2)
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where ŶgHT =
∑mg

i=1 yi/πi|g is HT estimator of gth PSU total Yg =
∑

i∈Ug
ygi, see (Särndal

et al., 1992, p. 137).

Under two-stage epsem by πps-SRS (i.e. 2Se), sample size of elements is equal within all

sampled PSU’s, i.e. ng ≡ n0. Sampling variance under 2Se can be written as

V (Ŷ 2Se
HT ) =

NI∑
g,h=1

(
πgh

πgπh

− 1

)
YgYh +

NI∑
g=1

1

πg

(
1− fg
n0

S2
g

)
(2.3)

where fg = n0/Ng, S
2
g =

∑
i∈Ug

(ygi − Ȳg)
2 and Ȳg = Yg/Ng.

For two-stage cluster sampling, let each PSU can be further divided into NIIg sub-clusters

of unequal sizes Ngk where g ∈ UI and k = 1, ..., NIIg. Let Ug1, ..., UNIIg
denote second-stag

clusters in gth PSU. Let a random sample sIIg of nIIg second-stage clusters (or sub-clusters)

is selected from the gth PSU selected in first-stage sample, i.e. g ∈ sI. Let πk|g and πkl|g

denotes first- and second-order inclusion probabilities for kth and (k, l)th sub-clusters in

the gth PSU, respectively. The HT-estimator of population total Y and its sampling

variance under two-stage cluster sampling can be written as

ŶHT =

nI∑
g=1

1

πg

nIIg∑
k=1

Ygk

πk|g
(2.4)

V (ŶHT ) =

NI∑
g,h=1

(
πgh

πgπh

− 1

)
YgYh +

NI∑
g=1

1

πg

NIIg∑
k,l=1

(
πkl|g

πk|gπl|g
− 1

)
YgkYgl (2.5)

where Ygk =
∑

i∈Uk
ygi is population total for kth sub-cluster in gth PSU.

Under two-stage epsem by πps-SRS (2Sc), assume that all the sub-clusters are equal sized,

i.e. Ngk ≡ N0, and equal number of sub-clusters are sampled from each selected PSU, i.e.

nIIg ≡ nII0. Sampling variance under 2Sc can be written as

V (Ŷ 2Sc
HT ) =

NI∑
g,h=1

(
πgh

πgπh

− 1

)
YgYh +

NI∑
g=1

1

πg

(
1− fIIg
nII0

S2
IIg

)
(2.6)

where fIIg = nII0/NIIg, S
2
IIg =

∑
k∈Ug

(Ygk − ȲIIg)
2 and ȲIIg = Yg/NIIg is mean per sub-

cluster.
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2.1.2 GREG-estimators under two-stage sampling

For GREG-estimator, (Särndal et al., 1992, p. 304) described three scenarios for avail-

ability of auxiliary data in the two-stage sampling design, given in the following.

Case A: (PSU Auxiliaries). The auxiliary totals are available for all PSU’s in the pop-

ulation.

Case B: (Complete Element Auxiliaries). The auxiliary values are available for all ele-

ments in the entire population.

Case C: (Limited Element Auxiliaries). The auxiliary values are available for all the

elements in selected PSU’s only.

Case A leads to regression model at PSU level, Cases B and C lead to regression modelling

of the element values. Similarly, above three cases of auxiliaries leads to three different

GREG-estimators under two-stage design. Here, we considered the Case B for availability

of complete auxiliary data.

Let xgi denotes a column vector of q-values corresponding to the ith element in the gth

PSU. Let relationship of y and the auxiliary variables is expressed by an element level

general linear model, given by ygi = µgi+ϵgi, where µgi = µ(xgi) = x⊤
giβ is linear predictor,

β is vector of q regression coefficients and ϵgi is random error term associated with the

value of ith element in the gth cluster, which is normally distributed with mean zero and

variance σ2
gi. A population based estimate B of unknown vector β is given in Eq. (1.8)

which also an unknown finite population quantity. Let s = {s1, ..., snI
} denotes all the

elements in the two-stage sample. A sample estimate of B is given in Eq. (1.7) where

πi = πgπi|g under 2Se, under 2Sc πi = πgπk|g for all i ∈ Uk, and it is assumed σ2
i = 1.

GREG-estimator for finite population total Y under two-stage element sampling, from

(Särndal et al., 1992, p. 323), is given by

Ŷ 2Se
GR =

∑
i∈U

ŷi +
∑
i∈s

êi
πi

=

NI∑
g=1

Ng∑
i=1

ŷgi +

nI∑
g=1

1

πg

mg∑
i=1

êgi
πi|g

(2.7)

where ŷgi = x⊤
giB̂ and êgi = ygi − ŷgi. An approximate variance of GREG-estimator in

Eq. (2.7) is given by

V (Ŷ 2Se
GR ) ≈

NI∑
g=1

NI∑
h=1

(
πgh

πgπh

− 1

)
egeh +

NI∑
g=1

1

πg

Ng∑
i,j=1

(
πij|g

πi|gπj|g
− 1

)
egiegj
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where eg =
∑

i∈Ug
egi, and egi = ygi − x⊤

giB, see (Särndal et al., 1992, p. 325). Under

two-stage epsem (2Se), when ng ≡ n0, sampling variance can be written as

V (Ŷ 2Se
GR ) ≈

NI∑
g=1

NI∑
h=1

(
πgh

πgπh

− 1

)
egeh +

NI∑
g=1

1

πg

(
1− fg
n0

S2
eg

)

where S2
eg =

∑
i∈Ug

(egi − ēg)
2 and ēg = eg/Ng. Following the formulation of GREG-

estimator in Eq. (2.7), GREG-estimator of Y under two-stage cluster sampling can be

written as

ŶGR =
∑
i∈U

ŷi +
∑
i∈s

êi
πi

=

NI∑
g=1

NIIg∑
k=1

Ngk∑
i=1

ŷgki +

nI∑
g=1

1

πg

nIIg∑
k=1

1

πk|g

Ngk∑
i=1

êgki (2.8)

where êgki = ygki − x⊤
gkiB̂. Similarly, an approximate variance of GREG-estimator in Eq.

(2.8) can be written as

V (ŶGR) ≈
NI∑
g=1

NI∑
h=1

(
πgh

πgπh

− 1

)
egeh +

NI∑
g=1

1

πg

NIIg∑
k=1

NIIg∑
l=1

(
πkl|g

πk|gπl|g
− 1

)
egkegl

where egk =
∑

i∈Uk
egki, eg =

∑
k∈Ug

egk, and egki = ygki − x⊤
gkiB. Under two-stage epsem

(2Sc), when all the sub-clusters are equal-sized and nIIg ≡ nII0, sampling variance can be

written as

V (Ŷ 2Sc
GR ) ≈

NI∑
g=1

NI∑
h=1

(
πgh

πgπh

− 1

)
egeh +

NI∑
g=1

1

πg

NIIg∑
k=1

NIIg∑
l=1

(
1− fIIg
nII0

S2
eIIg

)

where S2
eIIg =

∑
k∈Ug

(egk − ēIIg)
2 and ēIIg = eg/NIIg is mean per sub-cluster.

2.2 Formulation of sub-clusters using auxiliary vari-

ables

For simplicity, assume that a PSU is the finite population (of size N) from which a random

sample of n elements is required, and values of one auxiliary variable xi are known for all

the population elements. Assume that this finite population can be expressed by a linear

model given by yi = xi+ ϵi where ϵi denotes random error term independently identically

distributed under normal distribution given by N(0, σ2).
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Now, assumed that M clusters of size n/2 can be formed from the population such that

cluster means of the auxiliary variable are equal i.e. X̄g ≡ c for g = 1, ...,M , where c is

constant. These clusters are named as dynamic clusters because they are not based on

fixed geographical boundaries. When a simple random sample of two dynamic clusters is

selected, the sampling design is named as dynamic cluster sampling (DCS).

Consider following four sampling strategies along with their AMSE’s under the super-

population model defined above.

I. (SRS, HT): SRS of n elements and HT-estimator for finite population total Y .

AMSE of HT-estimator under SRS and above population model is given by

AMSESRS(ŶHT ) = ESRS(X̂HT −X)2 +N2

(
1

n
− 1

N

)
σ2 (2.9)

where ESRS is expectation function under SRS of elements.

II. (DCS, HT): DCS (defined earlier) and HT-estimator for finite population total Y .

The HT-estimator and its sampling variance under DCS can be written as

ŶHT =
2∑

g=1

Yg

πg

=
M

2

2∑
g=1

Yg and VDCS(ŶHT ) = M2

(
1

2
− 1

M

)∑M
g=1(Yg − Ȳc)

2

M − 1

respectively, where Ȳc is population mean per cluster. Let EDCS and Em denote expecta-

tion functions under DCS and super-population model defined above, ϵ̂HT is HT-estimator

of finite population total of errors given by ϵ =
∑

i∈U ϵi, the AMSE of HT-estimator under

DCS and super-population model (defined above) is given by

AMSEDCS(ŶHT ) = Em[EDCS(ŶHT − Y )2]

= Em[EDCS(X̂HT −X)2] + Em[EDCS(ϵ̂HT − ϵ)2]

= EDCS(X̂HT −X)2 +M2

(
1

2
− 1

M

)
1

M − 1
Em

[
M∑
g=1

(ϵg − ϵ̄c)
2

]

= EDCS

(
M

2

2∑
g=1

Xg −X

)2

+M2

(
1

2
− 1

M

)
1

M − 1
Em

[
M∑
g=1

(ϵg − ϵ̄c)
2

]

= EDCS

(
M

2

n

2

2∑
g=1

X̄g −NX̄

)2

+M2

(
1

2
− 1

M

)
1

M − 1

n

2
(M − 1)σ2
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AMSEDCS(ŶHT ) = EDCS

(
N

2

2∑
g=1

X̄g −NX̄

)2

+

(
2N

n

)2(
1

2
− n

2N

)
n

2
σ2

= N2EDCS

(
1

2

2∑
g=1

X̄g − X̄

)2

+N2

(
1

n
− 1

N

)
σ2

since x-means X̄g of all clusters are equal under DCS, therefore first term vanishes and

AMSE is given by

AMSEDCS(ŶHT ) = N2

(
1

n
− 1

N

)
σ2

III. (EBS, HT): Equal-probability balanced sampling (EBS) of n elements (with re-

spect to auxiliary variable xi) and HT-estimator for finite population total Y . Since,

X̂HT = X under balanced sampling, therefore, AMSE of HT-estimator is given by

AMSEEBS(ŶHT ) = N2

(
1

n
− 1

N

)
σ2

IV. (SRS, GREG): SRS of n elements and GREG-estimator ŶGR for finite population

total Y .

AMSESRS(ŶGR) = N2

(
1

n
− 1

N

)
σ2

From Godambe and Joshi (1965), lower bound of AMSE under the aforementioned pop-

ulation model is given by

N2

(
1

n
− 1

N

)
σ2

which is achieved by sampling strategy I., II. and III. For general linear regression model,

only approximate expression for variance of GREG-estimator can be obtained, therefore,

it achieve the above lower bound approximately.

For DCS, the lower bound of AMSE is only achieve in the ideal situation when dynamic

clusters exist and can be formulated. In reality, it might be difficult or not possible

to achieve such clusters exactly. Therefore, additional variation is added when cluster

means of auxiliary variables or sizes of clusters are not exactly equal. Balanced sampling

methods already exist which can achieve the same lower bound of AMSE, although exact

balanced sampling is also not always possible. One possible advantage of DCS over

47



2.3. TWO-STAGE EPSEM UNDER TWO-LEVEL REGRESSION MODEL

EBS might be unbiased variance estimation because variance estimators for HT-estimator

under balanced sampling and for GREG-estimator under SRS may involve some bias

which becomes negligible for large sample size. Whereas, in two-stage epsem for large

scale surveys, second-stage sample is often relatively small.

2.3 Two-stage epsem by πps-SRS under two-level re-

gression model

A two-level model for the population under two-stage design is a natural choice. In two-

level model, there is an additional PSU-level (or cluster level) random error term, also

called random effects, therefore it is also known as random effects model. When PSU- and

element-level covariates, also called fixed effects, are present in the model, it is usually

called mixed effect model. A general terminology of linear mixed models (LMM) is used

when random and fixed effects are linearly related with the response variable. A LMM or

random effects model assumes a special kind of intra-cluster (or intra-class) correlation

which only takes positive values, which is commonly observed in practice. When more

levels of random effects are added in the model it is called multi-level regression models.

In this section, first, a two way interaction between multi-stage sampling and multi-level

modelling is described in the following paragraphs. After that, in the following subsection,

four sampling strategies (mentioned in Section 2.1) involving two-stage epsem, HT- and

GREG estimators are compared with respect to their AMSE’s under a homoscedastic

two-level regression model. Under a homoscedastic model, variance of error terms in the

model is constant across the population elements.

Sampling techniques, for instance, generalized regression estimation and balanced sam-

pling are motivated by an underlying super-population model which assume that rela-

tionship of a study variable with a set of auxiliary variables can be expressed by a linear

regression model. There is not much literature regarding use of two-level (or multi-level)

models in sampling design. One particular article which has used LMM at design and

estimation stage is described as follows. Breidt and Chauvet (2012) proposed penalized

balanced sampling which is motivated by LMM, that is, underlying model for the finite

population is LMM. In this sampling methodology, samples are selected using the cube

method (see Section 1.4.1) which are balanced with respect to a penalized set of fixed

effects (or auxiliary variables) and random effects in the model. In addition, expression

for LMM-assisted regression estimator is also given which is calibrated with respect to
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totals of a set of random effects in addition to fixed effects (or auxiliary variables).

There is a large body of literature associated with incorporating characteristics of multi-

stage sample design in the standard estimation techniques for multi-level models. Usually,

multilevel models are used to account for the hierarchical structure which exist in the

data regardless of the sample design used to collect the data (Goldstein, 1991). Multi-

stage sampling design is often motivated by low cost of the sample survey, its stages are

are also based on natural hierarchy of the study population. Therefore, it is often of

interest to the data analysts analysing multi-stage survey data using multi-level models

(Pfeffermann et al., 1998; Jones, 1993). Therefore many estimation methods for multilevel

model are motivated by the multi-stage sampling design, where hierarchy of both model

and sample design is same. For the analysis of data from multi-stage sample, unequal

probability sampling at any stage may induce bias in the model estimates, therefore,

unequal probabilities should be taken into account in the estimation (Pfeffermann et al.,

1998; Rabe-Hesketh and Skrondal, 2006). To address the above problem, Skinner (1989)

gave pseudo likelihood method for single-level models. Pfeffermann et al. (1998) suggested

weighting procedures for the estimation of model parameter for two-level models. Rabe-

Hesketh and Skrondal (2006) address the problem for linear mixed models in the similar

context. Pfeffermann et al. (2006) considered this problem under informative sampling,

where inclusion probabilities are related to the response variable conditioned on model

covariates. Other contributions in this area also include Skinner and de Toledo Vieira

(2007) and Rao et al. (2013).

2.3.1 Comparison of sampling strategies

Let the relationship of response variable y and auxiliary variables (x1, ..., xq) is expressed

by a two-level random effect model, given by

ygi = µgi + vg + egi (2.10)

where µgi = x⊤
giβ is linear predictor, vg is random effect associated with gth PSU such

that vg ∼ N(0, σ2
v) and egi is random error associated with ith response value in gth PSU

such that egi ∼ N(0, σ2
e). This implies, we have V ar(ygi|xgi) = σ2 = σ2

v +σ2
e for all i ∈ Ug

and g ∈ UI; Cov(ygi, ygj|xgixgj) = σ2
v for i ̸= j ∈ Ug and Cov(ygi, ygj|xgixhj) = 0 for

g ̸= h ∈ UI. The intra-cluster correlation is given by ρ = σ2
v/σ

2. AMSE’s of the four

sampling strategies under this two-level regression model are given below.
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1. (2Se, HT): From Eq. (A.2) in Appendix A.1, AMSE of HT-estimator under two-

stage elements sampling by πps-SRS and population model in Eq. (2.10) is given by

AMSE(ŶHT ) = V1

(
nI∑
g=1

µg

πg

)
+
∑
g

1

πg

V2

Ng

ng

∑
i∈sg

µgi


+

NI∑
g=1

(
1

πg

− 1

)
Ng (1 + (Ng − 1)ρ) σ2 +

NI∑
g=1

1

πg

(
Ng

ng

− 1

)
Ng(1− ρ)σ2

where µg =
∑

i∈Ug
µgi, V1 and V2 denotes variance functions under the first- and second-

stage sampling designs respectively. Under two-stage epsem by πps-SRS (2Se), when

ng ≡ n0, above ASME can be written as

AMSE(Ŷ 2Se
HT ) = V1

(
nI∑
g=1

µg

πg

)
+
∑
g

1

πg

V2

Ng

n0

∑
i∈sg

µgi

 (2.11)

+

NI∑
g=1

(
1

πg

− 1

)
Ng (1 + (Ng − 1)ρ) σ2 +

NI∑
g=1

1

πg

(
Ng

n0

− 1

)
Ng(1− ρ)σ2

2. (2Sc, HT): From Eq. (A.4) in Appendix A.1, AMSE of HT-estimator under two-

stage cluster sampling by πps-SRS and population model in Eq. (2.10) is given by

AMSE(ŶHT ) = V1

(
nI∑
g=1

µg

πg

)
+
∑
g

1

πg

V2

(
NIIg

nIIg

nIIg∑
k=1

µgk

)

+

NI∑
g=1

(
1

πg

− 1

)
Ng (1 + (Ng − 1)ρ) σ2 +

NI∑
g=1

1

πg

(
NIIg

nIIg

− 1

)
{Ng(1− ρ)

+

(
NIIg

NIIg − 1

)
S2
Ngk

ρ

}
σ2

where µgk =
∑

i∈Uk
µgki and S2

Ngk
is variance of second-stage cluster sizes within gth PSU.

Under two-stage epsem by πps-SRS (2Sc), when nIIg ≡ nII0 and sub-clusters have same

size Ngk = N0, which implies S2
Ngk

= 0 and NIIgN0 = Ng, above AMSE can be written as

AMSE(Ŷ 2Sc
HT ) = V1

(
nI∑
g=1

µg

πg

)
+
∑
g

1

πg

V2

(
Ng

nII0N0

nII0∑
k=1

µgk

)
(2.12)

+

NI∑
g=1

(
1

πg

− 1

)
Ng (1 + (Ng − 1)ρ) σ2 +

NI∑
g=1

1

πg

(
Ng

nII0N0

− 1

)
Ng(1− ρ)σ2
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3. (2Se, GREG): From Eq. (A.3) in Appendix A.1, approximate AMSE’s of GREG-

estimator under two-stage elements sampling by πps-SRS and two-level population model

is given by

AMSE(ŶGR) ≈
NI∑
g=1

(
1

πg

− 1

)
Ng (1 + (Ng − 1)ρ) σ2 +

NI∑
g=1

1

πg

(
Ng

ng

− 1

)
Ng(1− ρ)σ2

Under two-stage epsem by πps-SRS (2Se), above AMSE can be written as

AMSE(Ŷ 2Se
GR ) ≈

NI∑
g=1

(
1

πg

− 1

)
Ng (1 + (Ng − 1)ρ) σ2 +

NI∑
g=1

1

πg

(
Ng

n0

− 1

)
Ng(1− ρ)σ2

(2.13)

4. (2Sc, GREG): From Eq. (A.5) in Appendix A.1, approximate AMSE’s of GREG-

estimator under two-stage cluster sampling by πps-SRS and two-level population model

is given by

AMSE(ŶGR) ≈
NI∑
g=1

(
1

πg

− 1

)
Ng (1 + (Ng − 1)ρ) σ2 +

NI∑
g=1

1

πg

(
NIIg

nIIg

− 1

)
{Ng(1− ρ)

+

(
NIIg

NIIg − 1

)
V (Ngk)ρ

}
σ2

Under two-stage epsem by πps-SRS (2Sc), above AMSE can be written as

AMSE(Ŷ 2Sc
GR ) ≈

NI∑
g=1

(
1

πg

− 1

)
Ng (1 + (Ng − 1)ρ) σ2 +

NI∑
g=1

1

πg

(
Ng

nII0N0

− 1

)
Ng(1− ρ)σ2

(2.14)

First, let us compare AMSE’s of sampling strategies (2Se, HT) and (2Sc, HT) from Eq.

(2.11) and Eq. (2.12) respectively. Generally, (2Se, HT) has smaller AMSE than that

of (2Sc, HT), because sampling of sub-clusters under 2Sc is generally less efficient than

sampling of elements at the second-stage. When size of sub-clusters is such that N0 is

factor of n0, i.e. nII0N0 = n0, then all the corresponding terms in both AMSE’s are same

except third term; for AMSE under (2Sc, HT), it is given

V2

(
Ng

nII0N0

nII0∑
k=1

µgk

)
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which is expected to be larger than third term under (2Se, HT). It involves variance of

sub-cluster totals µgk (or means µ̄gk = µgk/N0), which is zero when sub-cluster means µ̄gk

are same. In Section 2.2, it is demonstrated that it can be achieved if sub-clusters are

formulated such that sub-cluster means of auxiliary variables are same. In that case, the

sampling strategy (2Sc, HT) would have smaller AMSE than that under (2Se, HT). In

another case, if mean of the super-population model, i.e. µgi, is constant within PSU’s,

then the two sampling strategies would have the same AMSE’s.

Now, let us compare AMSE’s of sampling strategies (2Se, GREG) and (2Sc, GREG)

from Eq. (2.13) and Eq. (2.14). Under the same condition of second-stage sample size

considered, that is nII0N0 = n0, the two strategies have same AMSE’s. Here, the key fact

for this is that mean of the model residuals is constant, which is zero. Therefore, no need

to formulate sub-clusters which has same means of auxiliary variables. If mean of the

residuals is not constant due to some model miss-specification, then the AMSE’s may not

be same any more.

The comparison of sampling strategies (2Se, HT) and (2Se, GREG) is obvious, because

GREG-estimator is generally more efficient than HT-estimator for given sampling design,

provided that auxiliary variables has some correlation with study variable. Same applied

for the comparison of sampling strategies (2Sc, HT) and (2Sc, GREG).

In the comparison of sampling strategies above, two conditions were imposed either on

the sampling design or population model, given by

• Sub-clusters are equal-sized under two-stage epsem by πps-SRS (2Sc).

• Mean of residuals under the population model is constant (which is zero).

The sensitively of these two conditions is explored by a simulation study in the following

section.

2.4 Simulation study

A simulation study is conducted to empirically illustrate the comparison of sampling

strategies in the previous section. There are two assumed conditions: constant second-

stage sub-cluster sizes, constant mean of regression errors. In addition: the presence of

error correlation ρ (or intra-cluster correlation) under the population model may have an

‘interaction’ if any of the two condition fails.
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Finite population: For the simulation study, an example population of households is

simulated for Southampton (a postcode area in England) using UK census data for year

2011. This data is published by Office for National Statistics (2011) and available from the

website www.nomisweb.co.uk. The population consist of N = 276203 households with at

least one resident. Two-stage sampling is used in many household surveys conducted by

ONS (Office for National Statistics), for example, two-stage sample of postal addresses

is selected in Family Resource survey (FRS) and Living Cost and Food (LCF) surveys.

In these household sruveys, usually postcode sectors are considered as PSU’s. Therefore,

same PSU’s are considered in this simulation study. According to UK census data for year

2011, there are NI = 108 postcode sectors (or PSU’s) in the population of households in

Southampton. Five auxiliary variables (hh.compstn, hh.size, hh.tenure, hrp.gender,

hrp.SeC) and two study variables (log.hh.income, hh.IntCon) are considered in this

population. The description for these variables is given in Table 2.1 where NS-SeC stands

for national statistics socio-economic classification.

Table 2.1: Description of variables in the example finite population of Southampton

Notation Variable Type

log.hh.income Natural logarithm of household weekly gross income Continuous
hh.IntCon High-speed internet connection in the household Binary

hh.comp Household composition Categorical
hh.size Household size Discrete
hh.tenure Household tenure type Categorical
hrp.gender Gender of household reference person (HRP) Binary
hrp.SeC NS-SeC of household reference person (HRP) Categorical

Auxiliary variables are generated using marginal and joint distributions at postcode sector

(or PSU) level. The distributions are obtained from UK census 2011 data. Description

of categories of the auxiliary variables and population level proportions are given in Ap-

pendix A.2.

Study variables are generated using a two-level regression model. Generating variable

from the model requires to specify some realistic values of regression coefficients for the

model and variance components for PSU-level (σv) and element-level (σgi) error terms.

For this purpose, sample survey data from LCF 2017-18 is used which contains all the

variables considered in this simulation study. The data set for LCF sample survey 2017-

18 was published by Office for National Statistics (2019), and it is available from UK

Data Service website given by ukdataservice.ac.uk. The categories of covariates in the

LCF survey data were not exactly same as in the census data. Approximately similar
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categories are constructed using the existing categories of the survey data. Regression

coefficients are computed by fitting a linear regression model for log.hh.income and a

logistic regression model for hh.IntCon using LCF survey data set. A summary of both

fitted models is given in Appendix A.3.

To simulate study variables log.hh.income and hh.IntCon in the finite population, two-

level linear and logistic regression models are used respectively. Fixed parts of the models,

µgi, are specified using regression coefficients of the fitted models based on LCF survey

data (as described earlier). The residual variance of the fitted regression models is used

as total error variance for the two-level regression models (which are used to generate

the study variables). Total variance is partitioned into two components: PSU-level and

element-level error variances by a percentage. Different percentages of variance compo-

nents are used such that five different values of intra-cluster correlation are obtained given

by ρ = (0.01, 0.05, 0.10, 0.15, 0.20), see Table 2.3 for values of the total error variance σ2

and PSU-level error variance component σ2
v . The choice of percentages is somehow ar-

bitrary but is not completely unrealistic for the population considered in this simulation

study. The value of intra-cluster correlation very much depend on the survey variable

and sizes of PSU’s. There is not much literature which reports values of intra-cluster

correlation for the variables and PSU sizes considered in this simulation. However, we

found an article by Valliant et al. (2015) which report values of intra-cluster correlation

for some study variables collected in household surveys in United States. The values

of intra-cluster correlation for these variable range from 0.002 to 0.148 for the PSU’s of

average size 4253, and from 0.003 to 0.191 for the PSU’s of average size 1316. In our

simulation, the average size of PSU’s is 2557, not very far from them. Therefore, we

assumed two-level model with intra-cluster correlation ranges from 0.01 to 0.20.

After generating a finite population, we refitted the regression models in order to obtain

coefficient of determination R2. For logistic regression model, R2 was calculated as: 1 −
Deviance of fitted model/Deviance of Null model. The average values of R2 and other

descriptives of the survey variables based on many realized finite populations and refitting

of the models are reported in Table 2.2.

Table 2.2: Descriptives of two survey variables based on many realizations of the finite
populations under the model.

P (y = 1) R2 min(y) Q1 mean(y) Q3 Var(y)

log.hh.income 0.5450 3.2074 5.9488 6.4612 6.9899 0.5656
hh.IntCon 0.9315 0.2428

Now in order to investigate the sensitivity of GREG-estimator against constant mean
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of the errors, we generated two more survey variables in addition to the original one

such that a fixed effect is added to the model with two level of variation. That is,

ygi = µgi + wgi + vg + egi, where wgi is fixed effect with two values of variance σ2
w1 and

σ2
w2, which are 15% and 30% of variance of model mean, i.e V ar(µgi).

Table 2.3: For linear and logistic regression models, values of total error variance σ2 and
PSU-level error variance component σ2

v against different ρ-values; σ2
w1 and σ2

w2 are two
values of variance of fixed effect added in the regression models.

ρ 0.01 0.05 0.10 0.15 0.20
Variables Model σ2 σ2

v σ2
w1 σ2

w2

log.hh.income Linear 0.2577 0.0026 0.0129 0.0258 0.0387 0.0515 0.0462 0.0923
hh.IntCon Logistic 0.4340 0.0044 0.0220 0.0440 0.0660 0.0880 0.9239 1.8478

Two-stage sampling: Samples are selected by two two-stage sampling design: two-

stage element sampling by πps-SRS (2Se) which is epsem, and two-stage cluster sampling

by πps-SRS (2Sc) which is only epsem if sub-clusters have same size. These designs are

described bellow:

• 2Se: For two-stage element sampling, first- and second-stage sample sizes are ap-

proximately same as in FRS survey 2016-17 for England (where, 1417 PSU’s were

selected from over 12000 and 25 addresses were selected per PSU). In this simulation

study, first-stage sampling fraction of PSU’s is fI = 0.10 (nI = 11) and ng ≡ n0 = 30

households are selected from each sampled PSU. Size of the final sample is n = 330

households.

• 2Sc: For two-stage cluster sampling, no natural sub-clusters exit in the population.

Therefore, artificial sub-clusters of same size Ngk ≡ N0 = 5 are generated such that

required sample of 30 households is achieved by selecting nIIg ≡ nII0 = 6 SSU’s

within each sampled PSU. The sizes of 87 PSU’s (out of 108) are not multiple of

5. Therefore, each of these PSU’s contains one sub-cluster of size not equal to 5

households. This formulation of sub-clusters is denoted by 2Sc1, see Table 2.4.

Formulation of the sub-clusters: In order to investigate the sensitivity against un-

equal sizes of sub-clusters, we generate two more clustering variables in addition to 2Sc1,

denoted by 2Sc2 and 2Sc3. These variables are generated such that average size of SSU’s

(or sub-clusters) is approximately 5, i.e. N̄gk ≈ 5, and coefficient of variation, cv(Ngk)

varies from small to large value. In Table 2.4, NII denotes total number of sub-clusters in
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the population and {NII|Ngk ̸= 5} denotes number of sub-clusters whose size is not equal

to 5 households. Sub-clusters are formulated within each PSU as follow:

1. select a random value c from the discrete uniform distribution U(a, b) as sizes of sub-

cluster Ngk , where (a, b) = (5, 5) for 2Sc1, (a, b) = (4, 6) for 2Sc2, and (a, b) = (3, 7)

for 2Sc3,

2. assign SSU indicator to the c number of elements, starting from the first element of

the PSU, subtract the value c from PSU size Ng.

3. repeat steps 1. and 2. until the left over PSU size is less than or equal to 7 (the

maximum size a sub-cluster can have). The remaining number of elements are

assigned to the last sub-cluster within the PSU.

Above formulations of sub-clusters do not take into account the proximity of population

elements. We can say that these are randomly formed clusters, since population data

is randomly generated. In terms of AMSE, we expect sampling sub-clusters to be same

as element sampling at the second-stage. However, variation in the cluster sizes makes

cluster sampling less efficient even when they are randomly formed.

Table 2.4: Descriptives for second-stage clusters in 2Sc design

Formulation cv(Ngk) min(Ngk) max(Ngk) avg(Ngk) NII {NII|Ngk ̸= 5}
2Sc1 0.014 2 6 4.998 55260 87
2Sc2 0.164 1 6 4.995 55290 36697
2Sc3 0.282 1 7 5.002 55211 44127

Computation of AMSE: Under the given two-level population model B1 = 10000

finite populations are generated. From each population B2 = 1 sample is selected by two-

stage element sampling design (2Se) and two-stage cluster sampling designs: 2Sc1, 2Sc2

and 2Sc3. The AMSE’s of HT- and GREG-estimator are calculated as
∑

B1

∑
B2
(Ŷ −

Y )2/B1, where Ŷ represent HT- and GREG-estimator. In principle, B2 should also be a

large value, however one sample from each finite population can also give an approximate

value of the AMSE’s and avoids heavy numeric computations. We treated (2Se, GREG)

as baseline strategy, and calculated percent relative efficiency of this strategy based on

the AMSE. Percent relative efficiencies of baseline strategy with respect other sampling

strategies for different values of ρ and two survey variables log.hh.income and hh.IntCon

are given in Tables 2.5 and 2.6 respectively.
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Table 2.5: Percent relative value of AMSE for the strategy (2Se, GREG) with respect to
other three strategies for five different values of ρ: for survey variable log.hh.income.

ρ 0.01 0.05 0.10 .15 0.20
Design HT GR HT GR HT GR HT GR HT GR

log.hh.income

2Se 373.5 100.0 250.7 100.0 198.0 100.0 174.0 100.0 158.5 100.0
2Sc1 382.5 100.4 259.2 98.4 203.5 100.4 180.4 101.0 160.0 98.1
2Sc2 1952.1 102.3 1153.3 100.4 789.7 99.1 614.0 100.3 495.5 98.8
2Sc3 4998.3 102.5 2865.4 101.2 1902.7 102.1 1450.0 100.9 1137.5 100.9
log.hh.income with σ2

w1

2Se 371.1 100.0 250.5 100.0 197.9 100.0 174.0 100.0 158.4 100.0
2Sc1 379.8 100.0 259.2 98.7 203.4 100.4 180.5 101.0 159.9 98.1
2Sc2 1934.3 102.0 1150.6 100.5 788.2 99.2 613.8 100.6 494.4 98.6
2Sc3 4951.1 102.1 2858.0 101.3 1898.6 102.1 1449.1 101.1 1134.8 100.8
log.hh.income with σ2

w2

2Se 364.9 100.0 248.2 100.0 196.8 100.0 173.3 100.0 158.0 100.0
2Sc1 373.1 100.6 255.9 98.3 202.4 100.8 179.7 101.2 159.6 98.2
2Sc2 1899.7 102.5 1138.4 100.4 783.8 99.1 611.7 101.0 494.1 99.0
2Sc3 4859.4 101.8 2826.3 101.2 1887.7 102.4 1442.8 101.3 1133.3 101.0

Results for study variable log.hh.income, from Table 2.5, shows that baseline sampling

strategy (2Se, GREG) is the most efficient in almost all the scenarios considered in this

simulation study. However, as the value of intra-cluster correlation increases, efficiency

of baseline strategy tend to decrease with respect to all the other sampling strategies.

When size of sub-clusters is equal (i.e. under 2Sc1), there is not much difference between

subsampling of sub-clusters and subsampling of elements i.e. sampling strategy (2Se,

HT) and (2Sc1, HT) are approximation same. Same applies for (2Se, GREG) and (2Sc1,

GREG). As the sizes of sub-clusters differ, subsampling of sub-clusters (i.e. 2Sc2, 2Sc3)

loses its efficiency as compared to subsampling of elements (i.e. 2Se); and loss of efficient

is much more quick when using HT-estimator (i.e. for (2Sc2, HT) and (2Sc3, HT)) as

compared to using GREG-estimator. Adding a fixed wgi in the model (which aims to make

error mean non-constant) has no substantial effect on the efficiency of GREG-estimator.

Results for study variable hh.IntCon, from Table 2.6, shows that efficiency of baseline

sampling strategy (2Se, GREG) with respect to (2Se, HT) is unchanged for different values

of intra-cluster correlation. While, its efficiency with respect to (2Sc1, HT) decrease as

value of ρ increase; and this decrease is quicker when variation in sizes of sub-clusters

increases (i.e. for (2Sc2, HT) and (2Sc3, HT)). Unequal sizes of sub-clusters has not

substantial impact on efficiency of baseline sampling strategy. Adding a fixed wgi in the

model has some effect on the efficiency of baseline strategy for this study variable, this

effect becomes prominent for σw2 and large values of ρ.
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Table 2.6: Percent relative value of AMSE for the strategy (2Se, GREG) with respect to
other three strategies for five different values of ρ: for survey variable hh.IntCon.

ρ 0.01 0.05 0.10 .15 0.20
Design HT GR HT GR HT GR HT GR HT GR

hh.IntCon

2Se 121.4 100.0 122.3 100.0 123.5 100.0 123.6 100.0 121.2 100.0
2Sc1 125.6 99.7 123.1 99.4 122.9 100.7 122.7 100.6 124.0 102.0
2Sc2 307.5 101.3 300.5 99.8 295.9 101.7 288.4 98.3 290.0 98.8
2Sc3 650.5 102.0 628.7 96.8 624.1 99.2 605.4 100.7 601.2 98.9
hh.IntCon with σ2

w1

2Se 113.4 100.0 114.1 100.0 114.2 100.0 111.7 100.0 112.2 100.0
2Sc1 115.8 97.7 115.1 98.3 109.6 94.7 113.4 98.0 112.5 99.8
2Sc2 323.3 98.6 324.9 98.6 321.6 98.5 318.8 100.3 311.0 101.5
2Sc3 725.9 98.1 714.9 99.2 708.9 99.9 702.7 99.5 700.2 103.4
hh.IntCon with σ2

w2

2Se 115.3 100.0 115.2 100.0 113.5 100.0 113.7 100.0 115.4 100.0
2Sc1 117.2 99.8 114.3 98.3 114.7 98.0 112.9 96.1 116.3 98.8
2Sc2 254.7 99.2 248.6 96.8 241.8 96.3 241.1 98.8 246.4 98.2
2Sc3 518.7 98.7 503.7 98.7 499.2 96.4 487.8 99.9 493.7 99.9

Results for the both study variables shows that relative values of AMSE under (2Se,

HT) with respect to AMSE under (2Sc1, HT) is much smaller than that under sampling

strategies (2Sc2, HT) and (2Sc3). Even for some cases, AMSE’s under (2Se, HT) and

(2Sc1, HT) are approximately same. This is because sub-clusters are randomly formed

and they are equal-sized under 2Sc1. Only few PSU’s has one sub-cluster with different

size under 2Sc1. This demonstrate the efficiency of custom formulation of sub-clusters.

2.5 Conclusions

Four sampling strategies involving two-stage epsem by πps-SRS are explored with re-

spect to their AMSE’s. Subsampling of elements in two-stage epsem is commonly used.

Sampling strategy involving two-stage epsem and GREG-estimator is preferred strategy.

Subsampling of equal-sized sub-clusters is also considered as an alternative sampling de-

sign. Some preliminary analysis shows that if one can formulate sub-clusters with certain

properties, i.e. equal size and equal means of auxiliary variable, two-stage espem with

subsampling of sub-clusters may have an advantage. However, further work is required

to achieve such sub-clusters.
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In the preferred strategy, GREG-estimator assumed that study variable and auxiliary vari-

ables are related through a linear regression model. Sensitivity of GREG-estimator for

one type of model miss-specification, that is model errors have non-constant mean, is anal-

ysed by a simulation study. The amount of misspecification considered here has not much

effect on the efficiency of GREG-estimator. In future, more sophisticated study might

be done to find out the threshold of model miss-specification where GREG-estimator

can be inefficient as compared to HT-estimator. Furthermore, other types of model miss-

specifications can also be analysed, for example, finding out pair of values (R2, n) for which

GREG-estimator can go wrong as compared to HT-estimator, where R2 is coefficient of

determination for the underlying regression model and n is sample size.
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Chapter 3

Improving the cube method

3.1 Introduction

When a set of auxiliary variables related to response variables is available before sample

selection, then balanced samples with respect to the known auxiliary variables tend to have

smaller sampling variance than that of unbalanced samples. A sampling design is balanced

with respect to auxiliary variables when HT-estimators of auxiliary totals are equal to

their respective known auxiliary totals for any balanced sample. Cube method, given by

Deville and Tillé (2004), is a well known sampling method which aims to select balanced

samples with fixed first-order inclusion probabilities. The sample selection procedure

under the cube method consists of two phases: flight-phase and landing-phase. In the

flight-phase, a stochastic process called balancing martingale transforms the first-order

inclusion probabilities into 0 or 1 one-by-one in order to get the sample which is balanced

with respect to auxiliary variables. If the flight-phase is able to transform all the inclusion

probabilities into 0 or 1, then the sample selection completes. Otherwise, the landing-

phase is required which compromises the balancing equations in order to achieve the

sample. Invoking the landing-phase of the cube method generally implies that the selected

sample is not exactly balanced.

In this chapter, a practical way of improving the cube method is proposed when it is

not exactly balanced. The proposed procedure, called two-step cube method, is based on

repeated sampling from the cube method and then minimizing the average lack of balance

in the realized cube samples. Solution for one of the technical components of ‘two-step

cube method’ is tentative and has scalability issue which might be improved in future. A
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variance approximation under balanced sampling is also proposed which naturally follows

the proposed sampling procedure.

Consider the problem of estimating finite population total Y of response variable using

HT-estimator ŶHT . For now, usual HT subscript for the HT-estimator is dropped in

order to avoid notational complexity. This will be adopted again from Section 3.5 when

notation for another estimator is introduced. Assuming that the relationship of response

variable and set of auxiliary variables can be expressed using the linear regression model

in Eq. (1.5) which has independent normally distributed random errors with mean 0

and variance σ2
i , the AMSE of HT-estimator Ŷ under this linear model and the sampling

distribution p(s) is given by

AMSE(Ŷ ) = Ep

(∑
i∈s

xi

πi

−
∑
i∈U

xi

)⊤

β

2

+
∑
i∈U

σ2
i

(
1

πi

− 1

)

where Ep denotes expectation with respect to the sampling distribution p(s). In vector

notation, the vector X̂ =
∑

i∈s xi/πi estimates X =
∑

i∈U xi with no bias and AMSE(Ŷ )

can be written as

AMSE(Ŷ ) = β⊤Λpβ +
∑
i∈U

σ2
i

(
1

πi

− 1

)
(3.1)

where

Λp = Ep

{
(X̂−X)⊤(X̂−X)

}
(3.2)

which is variance-covariance matrix of the q-vector X̂ and it represents the imbalance with

respect to the q auxiliary variables under sampling distribution p(s). The lth diagonal

element Λll(p) of the matrix Λp represents the sampling variance of the HT-estimator

X̂l =
∑

i∈s xil/πi of the auxiliary total Xl =
∑

i∈U xil under the sampling distribution

p(s), where l = 1, ..., q.

The quadratic term βTΛpβ represents the contribution of imbalance in the AMSE in

Eq. (3.1) with respect to q auxiliary variables under sampling distribution p(s). As the

coefficient of determination under the linear model increases the contribution of imbalance

in the AMSE becomes more important. When sampling design is exactly balanced the

imbalance matrix Λp is zero and the quadratic term also reduces to zero. The AMSE is

minimum when sampling design is exactly balanced and first-order inclusion probabilities

are proportional to standard deviations of the error term in the linear model, that is,
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πi ∝ σi for all i ∈ U . In practice, error variances under the model are unknown, therefore

inclusion probabilities are usually chosen to be proportional to a known size variable.

To be practical, it is difficult to work with the variance-covariance matrix Λp as mea-

sure of imbalance because of its multidimensionality. Therefore, a scaler measure which

represents the variance-covariance matrix is needed. Chen et al. (2016) discussed three

types of scaler measures for the multidimensional variability, two of them represented a

variance covariance matrix: trace and determinant of the variance-covariance matrix, and

third measure was entropy. Trace and determinant of the variance-covariance matrix are

sum and product of its eigenvalues respectively.

In general, entropy measures are directly related to multivariate data rather than variance-

covariance matrix of the data. They aims to capture higher order variability in the mul-

tivariate data, while variance-covariate matrix is based on only second-order variability.

Entropy can be used for non-normal data. Most of the entropy measures are related to

variance-covariance matrix when data follow multivariate normal distribution. A common

measure of multivariate variability is joint entropy. For a N -dimensional random vector

X = (X1, ..., XN) in real space Rd with probability density function pX(x), Shannon’s

joint entropy of X is defined as H(X) = −
∫
R2 pX(x) log pX(x)dx. If X is jointly normal

H(X) becomes function of determinant of variance-covariance matrix Σ of the normal

distribution (Chen et al., 2016).

In this study, trace of the variance-covariance matrix Λp is used as scalar measure for

imbalance, named as total imbalance, which can be written as

tr(Λp) =

q∑
l=1

Λll(p) =

q∑
l=1

Ep(X̂l −Xl)
2 =

q∑
l=1

∑
s∈Ω

p(s)(X̂l(s)−Xl)
2 (3.3)

where X̂l(s) denotes the HT-estimate for Xl based on the sample s. The trace is preferred

over determinant as scalar measure of the matrix Λp because it has advantages regarding

the problem under study here. Trace is well defined even when the variance-covariance

matrix is singular. That is, when one or more eigenvalues are zero, the determinant is

always zero but trace has a value depending on other non-zero eigenvalues. It also shows

that trace provides better control over the quadratic term in the AMSE as compared

to determinant of the variance-covariance matrix Λp. Since the aim is to minimize the

quadratic term, therefore a better control of the term is helpful.

The basic idea underling the proposed procedure is as follow. When the cube method

is not exactly balanced, the relative squared difference is given by Dl = (X̂l − Xl)
2/N .
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It becomes negligible for large n and fixed value of q (Deville and Tillé, 2004). In the

landing-phase, cube method does not control the total imbalance explicitly. Moreover,

when the observed Dl(s) from a sample s selected by cube method is non-negligible, it is

not clear whether the given sample was selected unluckily or actually the total imbalance

under cube method is large. One can get an empirical estimate of total imbalance by

repeated sampling under the cube method. Having selected many samples by the cube

method, each sample has different observed value of
∑q

l=1 Dl. A sample with the smallest

value of
∑q

l=1 Dl would be a good choice, but it does not achieve a sampling design with

fixed first-order inclusion probabilities. Selecting a random sample out of these samples

shall again result into sampling by cube method. A sensible choice would be to select a

random sample out of the many cube samples with a different sampling distribution such

that the total imbalance is smaller than that of the cube method. Implementation of this

idea is given in the next section.

Rest of the chapter is arranged as follow. In the Section 3.2, the proposed sampling

procedure is given. Its theoretical properties are discussed in Section 3.3. In the Section

3.4, a simulation study is conducted which compares the propose sampling procedure

with the cube method. A methodology for the estimation of sampling variance under

balanced sampling is proposed in Section 3.5. A simulation study in Section 3.6 assesses

the performance of proposed variance estimators and compares with an estimator from

the literature. Section 3.7 gives conclusions and some future work directions.

3.2 Proposed procedure: two-step cube

The proposed procedure consists of two steps: first, a finite number of samples are selected

using cube method and empirical value of total imbalance is computed; second, a sampling

distribution for the selected cube samples is determined by minimizing the empirical total

imbalance. However, for the minimization problem in the second step only a tentative

solution is given. The finite set of samples selected using the cube method is named as

realized cube sample space, and empirical distribution over the realized cube sample space

is calculated. First-order inclusion probabilities under the new sampling distribution,

determined by minimization, are same as those calculated under the empirical distribution

implied by the cube method. When a sample is selected from the realised cube sample

space using the sampling distribution which minimises the empirical total imbalance, then

total imbalance is expected to be equal or smaller than than of cube method.

Let c(s) is set of selection probabilities associated with samples under the cube method,
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and denotes the sampling distribution implied by the cube method. Let Λc and tr(Λc)

denote the variance-covariance matrix of vector X̂ and the total imbalance under the cube

method respectively. Expressions for Λc and tr(Λc) can be obtained by substituting c(s)

for p(s) in Eq. (3.2) and Eq. (3.3) respectively. The two steps for the proposed procedure

are given in the following:

Step 1: Let K samples of fixed size n are selected from U by using cube method and

ΩK = {sk; k = 1, ..., K} denotes the realized cube sample space of size K, ΩK may contain

a sample multiple times, therefore it not a set of distinct samples. The minimum size of

ΩK (or minimum value of K) is such that all the population units are contained in it.

The impact of small and large values of K would become more clear in the next section

where theoretical properties of the proposed procedure are discussed. Let the vector

λ = [λk = 1/K] denotes the empirical distribution over ΩK which assigns a probability

mass of 1/K to each sample sk in ΩK . An empirical estimate for the variance-covariance

matrix Λc based on λ is given by

Λ̂λ = Eλ

{
(X̂−X)⊤(X̂−X)

}
where Eλ denotes expectation with respect to the empirical distribution λ. Similarly, an

empirical estimate of total imbalance under the cube method is given by

tr(Λ̂λ) =

q∑
l=1

Λ̂ll(λ) =

q∑
l=1

K∑
k=1

λk(X̂l(sk)−Xl)
2 =

q∑
l=1

1

K

K∑
k=1

(X̂l(sk)−Xl)
2

where X̂l(sk) is HT-estimate of the auxiliary total Xl based on the sample sk, and Λ̂ll(λ) is

lth diagonal element of Λ̂λ which simply represent empirical estimate of sampling variance

of HT-estimator X̂l under the cube method. First-order inclusion probabilities implied

by the empirical distribution λ are given by

πi(λ) =
K∑
k=1

Ii∈skλk =
1

K

K∑
k=1

Ii∈sk

where Ii∈sk is indicator variable which takes value 1 if i ∈ sk, 0 otherwise, and i ∈ U .

Step 2: Let λ∗( ̸= λ) denotes another sampling distribution (which needs to be deter-

mined here) over the realized cube sample space ΩK such that tr(Λ̂λ∗) ≤ tr(Λ̂λ) and

πi(λ
∗) = πi(λ) for all i ∈ U , where πi(λ

∗)’s are first-order inclusion probabilities and
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tr(Λ̂λ∗) is total imbalance implied by the sampling distribution λ∗ for the given realized

cube sample space ΩK . Expression for tr(Λ̂λ∗) is given by

tr(Λ̂λ∗) =

q∑
l=1

Λ̂ll(λ
∗) =

q∑
l=1

K∑
k=1

λ∗
k(X̂l(sk)−Xl)

2

where matrix Λ̂λ∗ is the variance-covariance matrix of vector X̂ under the sampling dis-

tribution λ∗. In order to obtain the sampling distribution λ∗ over ΩK , an optimization

problem is formulated in the following:

Minimize:

C(λ∗) = tr(Λ̂λ∗) =

q∑
l=1

K∑
k=1

λ∗
k(X̂l(sk)−Xl)

2

Subjected to:

(i). 0 < λ∗
k < 1, ∀k,

(ii).
K∑
k=1

λ∗
k = 1,

(iii). πi(λ
∗) = πi(λ), ∀i ∈ U.

where C(λ∗) denotes cost function for the solution vector λ∗ in the above optimiza-

tion problem. In the optimization problem above, first and second constraints ensure

that λ∗
k is a sampling distribution while third constraint ensures that first-order inclusion

probabilities under the proposed procedure are same as those computed under the cube

method.

For the above optimization problem, a stochastic global optimization algorithm known as

simulated annealing algorithm is used. Mullen (2014) discussed implementations for differ-

ent optimization algorithms including simulated annealing algorithm which are available

in two different packages of R statistical software (R Core Team, 2022). First, R-function

optim(method="SANN") in R-package stats; second, R-function and package GenSA (Xi-

ang et al., 2013). These implementations for the simulated annealing algorithm rarely

produce a sensible solution for this particular problem because of its complexity. Simu-

lated annealing algorithm is easy to program and manipulate manually in R. An R-code

is created for the simulated annealing algorithm which is giving a reasonable solution,

but has scalability problem as the population size becomes large. If a better algorithm

is available, one can plug-in but the idea of the proposed procedure does not change. A
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brief description of simulated annealing and algorithm used for this problem are given in

Appendix A.4.

3.3 Theoretical properties of the proposed procedure

In this section, it is shown that the proposed sampling procedure achieves the same what

cube achieves in terms of first-order inclusion probabilities, but has smaller or equal total

imbalance. The two-step cube method achieve these results for any value of K. For a

given application of the two-step cube method, an empirical estimate of total imbalance

is minimised and empirical estimates of fixed inclusion probabilities are achieved base

on K samples. Therefore, relative gain with respect to cube method is just an empirical

estimate of the true gain. As value of K increases it brings more confidence in the achieved

gain. Furthermore, one can assess the potential gain in terms of realised total imbalance

under the two-step cube method for a given application.

3.3.1 First-order properties

The first-order inclusion probability implied by the empirical distribution λ can be written

as

πi(λ) = Eλ(I(i∈s)|ΩK) =
1

K

∑
s∈ΩK

I(i∈s) =
1

K

K∑
k=1

I(i∈sk)

which is expectation of I(i∈s) with respect to λ. It may, therefore, be referred to as

an empirical estimator of the sample inclusion probability induced by the cube method,

denoted by

πi(c) = Ec(I(i∈s)) = πi

see Deville and Tillé (2004), where Ec denotes expectation with respect to sampling

distribution c(s) and πi is ith design inclusion probability. Under the two-step cube

method λ∗ is probability mass function over ΩK such that πi(λ
∗) = πi(λ). It can also be

written as

πi(λ
∗) = Eλ∗(I(i∈s)|ΩK) =

∑
s∈ΩK

Ii∈sλ
∗(s) =

1

K

∑
s∈ΩK

I(i∈s) = Eλ(I(i∈s)|ΩK) = πi(λ) (3.4)
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for all i ∈ U , where Eq. (3.4) holds by definition under two-step cube method. It also

implies that

Eλ∗ [X̂l(s)|ΩK ] = Eλ∗

(∑
i∈U

xil

πi

Ii∈s|ΩK

)
=
∑
i∈U

xil

πi

Eλ∗ (Ii∈s|ΩK)

=
∑
i∈U

xil

πi

Eλ (Ii∈s|ΩK) = Eλ[X̂l(s)|ΩK ] =
ˆ̄Xl (3.5)

where
ˆ̄Xl =

1

K

∑
s∈ΩK

X̂l(s)

Result 3.1. The two-step cube sample inclusion probability is πi, for i ∈ U .

Proof: Let c∗(s) denotes the sampling distribution implied by the proposed two-step cube

method. Denote by Ec∗ the expectation with respect to the sampling distribution c∗(s)

under the two-step cube method. Expectation of I(i∈s) random variable under two-step

cube is given by

Ec∗(I(i∈s)) = EΩK
[Eλ∗(I(i∈s)|ΩK)]

Using Eq. (3.4)

Ec∗(I(i∈s)) = EΩK
[Eλ(I(i∈s)|ΩK)] = EΩK

(
1

K

∑
s∈ΩK

I(i∈sk)

)
=

1

K

K∑
k=1

EΩK
(I(i∈sk))

where EΩK
is expectation over many ΩK ’s under the cube method. Theoretically, an

infinite number of ΩK ’s can be selected which results into an infinite number of cube

samples of size n . Computation of expectation based on infinite number of cube samples

results into true expectation under the cube method, that is, EΩK
is equivalent to Ec.

This does not depend on the value of K. For example, when K = 1, selecting an infinite

number of EΩK
’s is same as selecting an infinite number of cube samples. Therefore, it

follows

Ec∗(I(i∈s)) =
1

K

K∑
k=1

Ec(I(i∈sk)) =
1

K

K∑
k=1

πi = πi

Result 3.2. Under the two-step cube method Ec∗(X̂l) = Xl, where l = 1, ..., q.

Proof. Expectation of X̂l under two-step cube is given by

Ec∗(X̂l) = EΩK
[Eλ∗(X̂l|ΩK)]
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Using result from Eq. (3.5)

Ec∗(X̂l) = EΩK
( ˆ̄Xl)

= EΩK

(
1

K

∑
s∈ΩK

X̂l(s)

)
=

1

K

∑
s∈ΩK

EΩK

(
X̂l(s)

)
=

1

K

∑
s∈ΩK

Ec(X̂l) =
1

K

∑
s∈ΩK

Xl = Xl

3.3.2 Second-order properties

The conditional imbalance Λ̂l(λ
∗)|ΩK is the mean squared error (MSE) of X̂l under the

empirical distribution λ∗ over ΩK , whereas the conditional imbalance Λ̂l(λ)|ΩK is that

with respect to λ, i.e.

Λ̂l(λ
∗) =

K∑
k=1

λ∗
k(X̂lk −Xl)

2 = MSEλ∗(X̂l|ΩK) = Vλ∗(X̂l|ΩK) + E2
λ∗(X̂l −Xl|ΩK)

Λ̂l(λ) =
K∑
k=1

λk(X̂lk −Xl)
2 = MSEλ(X̂l|ΩK) = Vλ(X̂l|ΩK) + E2

λ(X̂l −Xl|ΩK)

The two-step cube method minimizes the total conditional imbalance, which implies the

following

tr(Λ̂λ∗) =

q∑
l=1

Λ̂l(λ
∗) ≤

q∑
l=1

Λ̂l(λ) = tr(Λ̂λ) (3.6)

From Eq. (3.4), πi(λ
∗) = πi(λ) for all i ∈ U , which implies

Eλ∗(X̂l|ΩK) = Eλ(X̂l|ΩK)

E2
λ∗(X̂l −Xl|ΩK) = E2

λ(X̂l −Xl|ΩK)

Therefore, Eq. (3.6) becomes

q∑
l=1

Vλ∗(X̂l|ΩK) ≤
q∑

l=1

Vλ(X̂l|ΩK) (3.7)
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Now consider unconditional imbalance (or MSE of X̂l). Since E(X̂l) = Xl under the both

cube and two-step cube methods, therefore MSE and variance are equivalent under both

methods, given by

MSEc∗(X̂l) = Vc∗(X̂l) = V [Eλ∗(X̂l|ΩK)] + E[Vλ∗(X̂l|ΩK)]

MSEc(X̂l) = Vc(X̂l) = V [Eλ(X̂l|ΩK)] + E[Vλ(X̂l|ΩK)]

By minimising the total condition imbalance, the two-step cube method aims to reduce

the unconditional total imbalance (or combined unconditional MSE of X̂l’s), i.e.

q∑
l=1

MSEc∗(X̂l) ≤
q∑

l=1

MSEc(X̂l) (3.8)

which will be proved in Result 3.4 later in this section.

The inequality (3.7) represents the estimated gain of the two-step cube regarding (3.8).

The two-step cube is expected to have total imbalanced equal or smaller than cube re-

gardless of the value of K. Whereas, with larger K, the gain is estimated more precisely,

because of smaller V (Vλ∗(X̂l|ΩK)); indeed, if K → ∞, then the gain is evaluated exactly.

Result 3.3. The expectation of K
K−1

Vλ(X̂l|ΩK) over repetitions of ΩK is equal to Λl(c),

that is,

EΩK

(
K

K − 1
Vλ(X̂l|ΩK)

)
= Λl(c)

Proof: Given any l = 1, ..., q, let Zl,k = X̂l(sk), for k = 1, ..., K. By construction,

Zl,1, ..., Zl,K is an IID sample of Zl, where Zl = X̂l is the HT-estimator of Xl based on a

cube sample, such that by definition

Vc(Zl) = Λl(c)

is the corresponding cube sampling variance of X̂l. It follows that

EΩK

(
1

K − 1

K∑
k=1

(Zl,k − Z̄l)
2

)
= Λl(c) where Z̄l =

K∑
k=1

Zl,k

K
= ˆ̄Xl

Hence,

EΩK
[Vλ(X̂l|ΩK)] =

K − 1

K
EΩK

(
1

K − 1

K∑
k=1

[X̂l(sk)− ˆ̄Xl]
2

)
=

K − 1

K
Λl(c)
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Result 3.4. The total imbalance under the two-step cube sampling is smaller or equal

to that under the cube method, that is,

tr(Λc∗) ≤ tr(Λc)

Proof: Let the Λc∗ and tr(Λc∗) be the variance-covariance matrix and total imbalance of

vector X̂ under the two-step cube method respectively. Given any ΩK , by construction

of the two-step cube we have Eq. (3.7) so that

EΩK

(
q∑

l=1

Vλ∗(X̂l|ΩK)

)
≤ EΩK

(
q∑

l=1

Vλ(X̂l|ΩK)

)
=

K − 1

K

q∑
l=1

Λl(c)

where the right-hand side follows from Result 3.3. For the left hand side, we notice that

lth diagonal element of the imbalance matrix under two-step cube sampling can be written

as

Vc∗(X̂l) = EΩK
[Vλ∗(X̂l|ΩK)] + VΩK

[Eλ∗(X̂l|ΩK)] = EΩK
[Vλ∗(X̂l|ΩK)] + VΩK

( ˆ̄Xl)

= EΩK
[Vλ∗(X̂l|ΩK)] +

1

K
Vc(X̂l) = EΩK

[Vλ∗(X̂l|ΩK)] +
1

K
Λl(c)

It follows that

EΩK

(
q∑

l=1

Vλ∗(X̂l|ΩK)

)
=

q∑
l=1

Vc∗(X̂l)−
1

K

q∑
l=1

Λl(c) =

q∑
l=1

Λl(c
∗)− 1

K

q∑
l=1

Λl(c)

q∑
l=1

Λl(c
∗)− 1

K

q∑
l=1

Λl(c) ≤
K − 1

K

q∑
l=1

Λl(c)

q∑
l=1

Λl(c
∗) ≤

q∑
l=1

Λl(c)

tr(Λc∗) ≤ tr(Λc)
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3.3.3 Assessment of potential gains in practice

When it is assumed that response variables and auxiliary variables are related under

a linear model with independent errors, response variable can be expressed as a linear

function of auxiliary variables and finite population residuals, given by yi = x⊤
i B + ei,

where i ∈ U . Sampling variance of HT-estimator can be partitioned into two terms as

follows

Vp(Ŷ ) = B⊤ΛpB + Vp(ê)

whereB is vector of finite population regression coefficients and ê is HT-estimator of finite

population total of population residuals. In the above equation, first term is a quadratic

form which represent sampling variance explained by auxiliary variables, and second term

is sampling variance of HT-estimator for finite population residual total. Before selection

of the sample, total imbalance can be estimated empirically under both two-step cube

and cube methods. Under the two-step cube, reducing total imbalance aims to reduce

the first term. However, the second term under two-step cube method might be different

from that under the cube method because this term can vary from one finite population

to other under the same model. It is hard to compare second term under two methods

unless some historic or proxy values of the residuals are available.

In order to say something about gain in terms of sampling variance of Ŷ , the magnitude

of gain in terms of estimated total imbalance is important for a given application of the

two-step cube. When gain in terms of total imbalance is large, the difference of first terms

under two sampling methods is much larger than difference of the second terms, therefore,

comparison of second terms under the two methods becomes relatively unimportant. In

that case, it is worth making an assessment for potential gain in terms of total imbalance.

For a given population, one can make a comparison of the following quantities.

• Cube: An empirical distribution of estimated total imbalance can be obtained

under the cube method. It is easy to obtain many realized cube sample spaces ΩK ’s

and calculate total imbalance for each of them. In this way, an empirical distribution

of total imbalance under the cube method is obtained.

• Two-step cube: In practice, it is hard to replicate two-step cube method due to

time limitation, since the algorithm is time consuming. Therefore, total imbalance

can be calculated for one realization of two-step cube method. In this way, we have

only one estimate of the total imbalance under the two-step cube.

• Comparison: Compare the one estimated value under two-step cube against the
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empirical distribution under cube. Intersection of the left tail area of the empirical

distribution (under cube method) and the point estimate (under two-step cube

method) gives an idea about how likely the two-step cube is better than the cube

method. This will be demonstrated in simulation study for two-step cube. For this

comparison, a large value of K brings more confidence in terms of gain under the

two-step cube.

3.4 Simulation study for two-step cube method

A simulation study is conducted in order to compare the efficiency of cube method and

proposed procedure, the two-step cube method. Four types of comparison are made as

described bellow

• First, following the simulation study from (Deville and Tillé, 2004), cube and two-

step methods are compared based mean squared errors (MSE) relative to that under

unbalanced sampling;

• Second, a comparison is drawn between two-step cube and cube sampling from

ordered population (Leuenberger et al., 2022);

• Third, potential gain of two-step cube method with respect to total imbalance is

analysed;

• Fourth, cube and two-step cube methods are compared with respect to AMSE of

HT-estimator.

3.4.1 Comparison based on mean squared errors

Deville and Tillé (2004) conducted a simulation study to compare cube method with πps

sampling based on values of MSE of HT- and GREG-estimators under the cube method

relative to those under πps sampling. Same criteria is followed in this simulation study.

Therefore, samples are selected under three sampling designs give by

• unbalanced sampling by probability proportion to size sampling without replace-

ment (πps sampling),

• balanced sampling by cube method, and
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• balanced sampling by two-step cube method.

In this simulation study, a data set MU284 is used from (Särndal et al., 1992, p. 652-9)

which is related to 284 municipalities in Sweden. Description of variables and a correlation

matrix for the data set are given in Tables A.6 and A.7 of Appendix A.5 respectively.

The data set MU284 is available from the R-package sampling (Tillé and Matei, 2021).

Four largest municipalities are removed from the data set because these municipalities

have one inclusion probability when selecting sample with probability proportion to size

variable. The remaining 280 municipalities are grouped into N = 50 clusters based on

clustering variable CL already given in the data set. This becomes a modified version of the

‘Clustered MU284’ from (Särndal et al., 1992, p. 600-1). This modification comes from

the simulation study in Deville and Tillé (2004) that was carried out with two additional

variables SOC82 and R85 which are not available in the current version of data set MU284.

The sample size is n = 20 and first-order inclusion probabilities are proportion to the

variable P75, total population in 1975, for all the three sampling design mentioned above.

The simulation study is based on B = 5000 repeated samples and is performed as follow:

πps sampling: Select B samples under unbalanced sampling which is performed us-

ing cube algorithm with inclusion probabilities as the only balancing variable which is

equivalent to πps sampling.

Cube sampling: Select B samples using the cube method with three balancing vari-

ables P75, RMT85 and ME84. (Note: there were four balancing variables in (Deville and

Tillé, 2004)’s simulation, P75, RMT85, SOC82 and ME84). Cube samples are selected using

fast implementation of cube method available in R-package BalancedSampling (Grafström

and Lisic, 2019).

Two-step cube sampling: To select B samples under the two-step cube method,

following three steps are repeated B times:

(i). Select K = 1000 samples using cube method which are considered as realized cube

sample space ΩK .

(ii). Obtain a sampling distribution λ∗ over ΩK under two-step cube method using

simulated annealing algorithm.
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(iii). Select a sample from ΩK based on λ∗ sampling distribution.

An explanation for above three step is as follow. Theoretically the sampling distribution

λ∗ for a given ΩK is one realization of the two-step cube method. In order to make a

fair comparison, B realizations of two-step cube are required. Therefore, we obtained

B realized cube sample spaces ΩK,1, ...,ΩK,B each of size K. For each ΩK,b, we obtain

a sampling distribution λ∗
b under the two-step cube method using simulated annealing

algorithm, where b = 1, ..., B. From each ΩK,b, a sample is selected based on its respective

sampling distribution λ∗
b, where b = 1, ..., B. In this way, we get B samples under the

two-step cube method.

Based on the B samples selected above using three sampling methods, following quantities

are computed:

• Empirical MSE of HT- and GREG-estimators of the finite population totals of all

the variables (both response and auxiliary). The values of empirical MSE’s under

the cube method (Cube) and two-step cube (2Cube) method relative to those under

πps sampling are given in Table 3.1.

• For a convenient comparison of cube and two-step cube methods, percent relative

efficiency (PRE) of two-step cube method is also calculated, see Table 3.1.

• Furthermore, estimates of Monte Carlo errors (MCE) for empirically estimated

MSE’s are also calculated. Relative values of MCE’s are given in Table 3.2. Val-

ues for MCE are calculate as follow. Let g = (X̂HT − X)2 which can be calcu-

lated for each of B samples selected independently under the three designs men-

tioned above. As an Mote Carlo estimate we calculated expectation of g, given

by ḡ =
∑B

b=1(X̂HT − X)2 which is MSE(X̂HT ). A standard error of ḡ is given by

σḡ = σg/
√
B which represents the Monte Carlo error of MSE(X̂HT ). This quantity

can be estimated by

σ̂ḡ =
SD(g)√

B
=

1√
B(B − 1)

B∑
b=1

(gb − ḡ)2 = MCE

and Relative MCE is computed as

MCE

Empirical MSE
.
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Table 3.1: Empirical MSE’s under cube (Cube) and two-step cube (2Cube) relative to the
values under πps sampling; Percent relative efficiency (PRE) of two-step cube compared
to the cube method.

HT-estimator GREG-estimator
πps Cube 2Cube PRE πps Cube 2Cube PRE

Auxiliary variables:
P75 - - - - - - - -
RMT85 1.00 0.12 0.05 245.49 0.00 0.00 0.00 175.35
ME84 1.00 0.12 0.03 397.51 0.00 0.00 0.00 183.65

Survey variables:
P85 1.00 0.71 0.68 105.08 0.79 0.67 0.65 101.84
CS82 1.00 0.91 0.89 102.57 1.05 0.91 0.89 102.39
S82 1.00 0.79 0.75 105.72 0.81 0.76 0.74 103.34
REV84 1.00 1.09 1.08 101.63 0.95 1.07 1.05 101.30
SIZE 1.00 0.85 0.81 105.02 0.85 0.82 0.80 103.22
S82-CS82-SS82 1.00 0.76 0.72 106.11 0.76 0.73 0.71 103.05
CS82-SS82 1.00 0.89 0.83 106.69 0.84 0.86 0.82 105.29

In Table 3.1, first row is omitted because values of MSE’s of two estimators (HT and

GREG) are zero (or near zero) as P75 is size variable under the three designs and is

exactly balanced. While comparing the relative values of the MSE’s for other variables,

the two-step cube method with GREG-estimator has the smallest MSE’s among all the

six strategies. For HT-estimator, the imbalance (or MSE) with respect two auxiliary

variables under two-step cube is smaller than that under the cube method, it is reduced

by 245% for RMT85 and by 397% for ME84.

As expected, MSE’s of the GREG-estimators for three auxiliary totals are approximately

zero because GREG-estimators are calibrated for auxiliary totals. PRE reported in the

table shows that two-step cube have smaller imbalances with respect to auxiliary variables

as compared to cube method, although in this case, values of imbalances are very small and

of less importance to compare. Similarly, MSE’s of GREG-estimators for totals of survey

variables under two-step cube method are smaller than that of cube method. Therefore,

results of this simulation study clearly suggest that two-step cube have ability to improve

efficiency of cube method.

Since values reported in Table 3.1 are empirical estimates of the true MSE’s, therefore,

an estimate of Monte Carlo error is also computed for each empirical estimate of MSE.

In Table 3.2, values of relative MCE are not very different for cube and two-step cube

methods, however GREG-estimator tends to have larger error values as compared to HT-
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estimator. It might be due to additional variation of calibration weights in the GREG-

estimator. Furthermore, small values of relative MCE (ranging from 2% to 4.6%) indicate

that choice of value for K = 1000 is good enough. A smaller value of K would have shown

larger variability in the empirically estimated MSE’s and resulted into reduced confidence

in the estimated gain under the two-step cube.

Table 3.2: Relative Monte Carlo error (MCE) of empirically estimated MSE’s of HT- and
GREG-estimators under πps sampling, cube and two-step cube methods.

HT-estimator GREG-estimator
πps Cube 2Cube πps Cube 2Cube

Auxiliary variables:
P75 0.00 0.00 0.00 0.00 0.00 0.00
RMT85 0.019 0.021 0.025 0.041 0.041 0.040
ME84 0.020 0.020 0.032 0.045 0.046 0.036
Survey variables:
P85 0.020 0.020 0.020 0.020 0.020 0.020
CS82 0.022 0.022 0.021 0.020 0.022 0.021
S82 020 0.021 0.021 0.019 0.021 0.021
REV84 0.022 0.022 0.022 0.020 0.022 0.022
SIZE 0.021 0.022 0.021 0.020 0.021 0.021
S82-CS82-SS82 0.021 0.022 0.022 0.019 0.022 0.021
CS82-SS82 0.020 0.021 0.020 0.020 0.021 0.020

3.4.2 Comparison with cube sampling from ordered finite pop-

ulation

Leuenberger et al. (2022) suggested to rearrange the population units in decreasing order

with respect a multivariate distance measure from centre of the auxiliary space. This

aims to improve the landing-phase of fast implementation of the cube method. Centre

of the auxiliary space is computed as mean of expanded values of the auxiliary variables

given by

Z̄ =
1

N

∑
i∈U

zi

where zi = xi/πi. Three different measures of multivariate distance from the centre are

computed including Mahalanobis distance, Projection depth and Tukey depth. First was

computed using R-function mahalanobis() and other two were computed using R-package

DepthProc (Kosiorowski and Zawadzki, 2022). Population was rearranged in four ways:

randomly ordered and decreasing order of three different measures of distance.
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Again, B = 5000 samples of size n = 20 are selected by πps sampling and cube method

from the population without any rearrangement, and cube sampling from the populations

with four different rearrangements which are denoted as follow

• Cube-R: cube sampling from randomly ordered population,

• Cube-M: cube sampling from population rearranged with respect to Mahalanobis

distance,

• Cube-P: cube sampling from population rearranged with respect to Projection

depth,

• Cube-T: cube sampling from population rearranged with respect to Tukey depth.

Using B samples, MSE’s of HT-estimators of totals are computed under all six designs.

Relative values of MSE’s with respect to that under πps sampling are given in Table 3.3.

Relative values of MSE’s for cube method (Cube) are slightly different as compared to

those in Table 3.1 because a different set of B = 5000 sample is used in this simulation.

Furthermore, values are shown up to three digits after the decimal point as most values

are same up to second digit.

Table 3.3: Relative MSE’s of HT-estimators under cube sampling from order populations.

πps Cube Cube-R Cube-M Cube-P Cube-T

Auxiliary variables:
P75 - - - - - -
RMT85 1.000 0.114 0.113 0.112 0.115 0.109
ME84 1.000 0.116 0.114 0.115 0.116 0.110
Survey variables:
P85 1.000 0.714 0.674 0.694 0.689 0.698
CS82 1.000 0.925 0.855 0.925 0.918 0.930
S82 1.000 0.759 0.725 0.746 0.769 0.769
REV84 1.000 1.041 1.048 0.981 1.065 1.061
SIZE 1.000 0.811 0.780 0.811 0.832 0.821
S82-CS82-SS82 1.000 0.725 0.689 0.710 0.748 0.731
CS82-SS82 1.000 0.844 0.813 0.833 0.814 0.844

In Table 3.3, first thing to look at is reduction in terms of imbalance with respect to

auxiliary variables. Rearrangement of the given population slightly reduce the imbalance,

particularly for the case of Tukey depth. In comparison with two-step cube method, this

reduction is far less which suggest that the two-step cube method is not much affect by the
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rearrangement of the population. One reason could be that the two-step cube explicitly

targets the imbalance with respect to auxiliary variables.

3.4.3 Assessment of potential gain in terms of total imbalance

Empirically estimated total imbalanced under the three designs and estimated percent

gain (in terms of PRE) of two-step cube over cube are given in Table 3.4. Empirical

distribution of total imbalance under cube and two-step cube are computed based B =

5000 ΩK ’s. These densities are plotted in Figure 3.1. Vertical lines in the middle of each

of two densities denotes averages based on B = 5000 values.

Figure 3.1: Empirical density of MSE of HT-estimator under cube and two-step cube.

It can be seen from Figure 3.1 that there is big distance between two densities and no

common area between them. This suggests that the two-step cube is expected to be
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Table 3.4: Total Imbalance = tr(Λ̂); Percent relative efficiency (PRE) of two-step cube
as compared to cube method.

πps Cube 2Cube PRE

tr(Λ̂) 56828867.05 6851831.59 1739187.58 393.97

always better than the cube method in terms of total imbalance with respect to auxiliary

variables in the given finite population. If there was some common area between the

two densities which would have indicated likelihood of the two-step cub method being

less or equally efficient as compared to cube method in terms of total imbalance. Since

two-step cube minimises the total imbalance, therefore it not expected to be less efficient

than the cube method in terms of total imbalance. As mentioned earlier in Section 3.3.3

when computation of empirical density of total imbalance under two-step cube is time

consuming, one can compare one value of empirical total imbalance under the two-step

cube with the density of total imbalance under cube method.

3.4.4 Comparison of cube and two-step cube methods based on

AMSE

In this part of the simulation, two-step cube is compared with cube method based on

empirically computed AMSE’s of HT- and GREG-estimators. In order to calculate em-

pirical AMSE’s, the data set modified ‘Clustered MU284’ described earlier is used as

follows. First, population based regression coefficients are computed by fitting linear re-

gression models for each response variable using the three auxiliary variables. A summary

of these fitted models is given Table 3.5.

Table 3.5: Summary of regression models fitted for seven survey variables given three
auxiliary variables using modified ‘Clustered MU284’ data set.

B0 P75(B1) RMT85(B2) ME84(B3) σ̂ Adj.R2

P85 3.93 0.67 0.03 0.00 6.42 0.99
CS82 24.57 0.15 0.01 -0.00 16.44 0.43
S82 147.14 2.49 -0.24 0.00 40.35 0.74
REV84 2059.31 45.56 0.33 0.84 2991.16 0.87
SIZE 4.15 0.04 -0.00 0.00 0.87 0.50
S82-CS82-SS82 59.70 1.20 -0.15 0.00 19.29 0.54
CS82-SS82 -38.31 -0.98 0.10 -0.00 36.49 0.22

Then coefficients (B0, B1, B2, B3) are used in place of true model coefficients and response
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variables are regenerated by adding a an error term to the linear predictor as follows

yi = B0 +B1P75+B2RMT85+B3ME84+ ϵi

where ϵi is generate from normal distribution with mean zero and variance σ2. Three

different values of σ2 = (1, 10, 20) are used, averaged values of coefficient of determination

based on 5000 realisations for each value of σ2 are shown in Table 3.6.

Table 3.6: Values of coefficient of determination (averaged over 5000 realisations) for
regenerated populations from linear regression models using B0, B1, B2, B3 coefficients
and different values of σ2.

σ2 = 1 σ2 = 10 σ2 = 20
P85 1.000 0.998 0.997
CS82 0.996 0.957 0.917
S82 1.000 0.998 0.996
REV84 1.000 1.000 1.000
SIZE 0.439 0.071 0.036
S82-CS82-SS82 0.998 0.978 0.957
CS82-SS82 0.998 0.979 0.957

From each of the seven regression models, M = 5000 finite populations are generated.

From each finite population, B = 5000 samples are selected using πps sampling, cube and

two-step cube method. Empirical AMSE’s of HT- and GREG-estimators are computed

based on M × B samples under the three sampling methods. Percent relative efficiency

of cube and two-step cube methods with respect to πps sampling is calculated using

empirical AMSE’s of HT- and GREG estimators which are given Table 3.7.

Table 3.7: Percent relative efficiency of two-step cube method (2Cube) and cube method
(Cube) with respect to πps sampling based on empirical AMSE’s of HT- and GREG-
estimators.

σ2 = 1 σ2 = 10 σ2 = 20
HT-estimator GREG-estimator HT-estimator GREG-estimator HT-estimator GREG-estimator
Cube 2Cube Cube 2Cube Cube 2Cube Cube 2Cube Cube 2Cube Cube 2Cube

SIZE 119.34 126.79 122.28 128.30 106.46 110.42 107.87 111.19 102.97 106.18 104.04 106.82
P85 172.16 193.93 194.16 203.61 127.76 135.55 134.34 138.37 115.68 120.91 119.51 122.63
CS82 110.94 117.70 112.29 118.51 110.33 116.81 111.64 117.60 109.63 115.86 110.90 116.62
S82 129.98 139.85 134.76 142.25 129.95 139.81 134.72 142.20 129.88 139.72 134.64 142.10
REV84 92.78 97.94 92.95 98.12 92.78 97.94 92.95 98.12 92.78 97.94 92.95 98.12
S82-CS82-SS82 140.01 151.75 147.15 155.32 139.70 151.32 146.77 154.87 139.26 150.75 146.23 154.25
CS82-SS82 145.84 158.76 154.34 162.90 144.81 157.44 153.07 161.46 143.86 156.19 151.92 160.11

In Table 3.7, results show that two-step cube method has smallest AMSE’s for all the

cases. The efficiency of both cube and two-step cube decreases as value of error variance
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increase (i.e. coefficient of determination decreases). This indicates that choice of auxil-

iary variables have great impact on the efficiency of balanced sampling designs. Relative

efficiency for survey variable REV84 is less than 100 which means that balance sampling

design used in this simulation is not useful for this variable as compared to πps sampling.

By looking at intercept term of the fitted model for this variable in Table 3.5, which is

very large, one can imagine that balancing with respect to intercept (or population size)

is more important than other variables. This fact is also evident from Table 3.1.

3.5 Variance estimation

In this section, a methodology for variance estimation under balanced sampling is pro-

posed which is motivated by natural decomposition of sampling variance of HT-estimator.

When relationship of response variable and auxiliary variables can be expressed using a lin-

ear regression model, then response variable can be written as linear function of auxiliary

variables and population residuals for a given finite population. The sampling variance

of HT-estimator can be partitioned into two terms: first term is quadratic term which

captures the effect of imbalance on the sampling variance, and second term is sampling

variance of HT-estimator when sampling design is exactly balanced which can be approx-

imated by the sampling variance of GREG-estimator. Berger (2005) also used similar

kind of partition for variance estimation under πps systematic sampling, although it was

motivated by (Hájek, 1964)’s residual technique for variance estimation. In this case, the

quadratic term was known because second-order inclusion probabilities under systematic

sampling were known and second term was approximated by (Hájek, 1964)’s variance

approximation. Later, Berger et al. (2009) used this estimator for variance estimation of

GREG-estimator.

Let yi = x⊤
i B+ei, where ei is finite population residual associated with ith element andB

is vector of finite population regression coefficients. The HT-estimator of population total

can be written as ŶHT = X̂⊤
HTB + êHT , where êHT is HT-estimator for finite population

total of residuals given by e =
∑

i∈U ei. The sampling variance of the HT-estimator ŶHT

under the sampling distribution p(s) can be written as

Vp(ŶHT ) = Vp

(
X̂⊤

HTB
)
+ Vp(êHT ) = B⊤ΛpB + Vp(êHT )

where Λp is defined in Eq. (3.2). Second term in the right side of above equation

denotes sampling variance of HT-estimator under exactly balanced sampling design which

is approximated by the sampling variance of GREG-estimator. Therefore, the proposed
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approximation for the sampling variance of HT-estimator is given by

Vp(ŶHT ) ≈ B⊤ΛpB + Vp(ŶGR)

where ŶGR is GREG-estimator of the population total given in Eq. (1.6). Above approx-

imation under two-step cube method can be written as

Vc∗(ŶHT ) ≈ B⊤Λc∗B + Vc∗(ŶGR) (3.9)

where vector of regression coefficients B in the first term is estimated by its corresponding

sample estimate B̂ given in Eq. (1.7), and matrix Λc∗ is estimated using its empirical

estimator given by

Λ̂c∗ = Eλ∗

{
(X̂HT −X)⊤(X̂HT −X)

}
where Eλ∗ is expectation with respect to sampling distribution λ∗ over ΩK . Based on

the proposed approximation in Eq. (3.9), a variance estimator for HT-estimator of finite

population total under two-step cube method is given by

V̂c∗(ŶHT ) = B̂
⊤
Λ̂c∗B̂ + V̂c∗(ŶGR) (3.10)

where V̂c∗(ŶGR) is estimator for the sampling variance of GREG-estimator under the two-

step cube method.

Like HT-estimator, sampling variance of the GREG-estimator and its variance estimator

also involve second order inclusion probabilities. To avoid the calculation of second-order

probabilities, a couple of approximations for the sampling variance of GREG-estimator are

adopted from literature. Using these approximations, two proposed variance estimators

for HT-estimator under two-step cube method are given bellow.

1. First, approximation based on pps sampling is used which is already described in

Section 1.6. Sampling variance of HT-estimator under pps is stated again as follows

VWR(ŶHT ) =
1

n

∑
i∈U

pi

(
yi
pi

−
∑
i∈U

yi

)2
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where npi = πi. Corresponding estimator for the sampling variance based on above

approximation is given by

V̂WR(ŶHT ) =
1

n(n− 1)

∑
i∈s

(
ŷi
pi

−
∑
i∈s

ŷi
πi

)2

An estimator for sampling variance of GREG-estimator based on above approximation

can be written as

V̂WR(ŶGR) =
1

n(n− 1)

∑
i∈s

(
êi
pi

−
∑
i∈s

êi
πi

)2

where êi = yi − xiB̂. By substituting V̂WR(ŶGR) in the second term of the proposed

variance estimator in Eq. (3.10), it gives the following

V̂c∗(ŶHT )WR = B̂
⊤
Λ̂c∗B̂ +

1

n

∑
i∈U

pi

(
ei
pi

−
∑
i∈U

ei

)2

(3.11)

2. Second, Deville and Tillé (2005) suggested that sampling variance of HT-estimator

under exactly balanced sampling design can be approximated by sampling variance of

GREG-estimator under Poisson sampling design based on (Hájek, 1964)’s residual tech-

nique for variance approximation, also see Section 1.6. This variance approximation suf-

fers from bias because an exactly balanced sampling design is not always achieved (Breidt

and Chauvet, 2011). In the proposed variance approximation, (Deville and Tillé, 2005)’s

variance approximation is used for sampling variance of GREG-estimator.

Using Eq. (1.16), (Deville and Tillé, 2005)’s variance estimator of GREG-estimator can

be written as

V̂ (ŶGR)DT =
n

n− q

∑
i∈s

ˆ̃e2i
πi

(1− πi) (3.12)

where ˆ̃ei is defined with Eq. (1.16) and q is number of auxiliary variables. By substituting

V̂ (ŶGR)DT in the second term of proposed variance estimator under two-step cube method

in Eq. (3.10), it gives the following

V̂c∗(ŶHT )PS = B̂Λ̂λ∗B̂ +
n

n− q

∑
i∈s

ˆ̃e2i
πi

(1− πi) (3.13)
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where subscript PS denotes variance estimator based on approximation under Poisson

sampling (Hájek, 1964).

The proposed methodology for variance estimation can also be used for the cube method,

and proposed variance approximation for HT-estimator under cube method is given by

Vc(ŶHT ) ≈ B⊤ΛcB + Vc(ŶGR) (3.14)

where Λc is variance-covariance matrix of XHT under cube method and Vc(ŶGR) is sam-

pling variance of GREG estimator under cube method. Similarly, two proposed variance

estimators under cube method can be written as

V̂c(ŶHT )WR = B̂Λ̂λB̂ +
1

n(n− 1)

∑
i∈s

(
êi
pi

−
∑
i∈s

êi
πi

)2

(3.15)

and

V̂c(ŶHT )PS = B̂Λ̂λB̂ +
n

n− q

∑
i∈s

ˆ̃e2i
πi

(1− πi) (3.16)

respectively, where Λ̂λ is empirical estimate of Λc.

In the following section, performance of the two proposed variance estimators is assessed

under two-step cube method, they are compared with (Deville and Tillé, 2005)’s variance

estimator under the cube method. It would also be useful to make a comparison with

(Breidt and Chauvet, 2011)’s variance estimator. It might not be possible at the moment

because algorithm used to compute the results for this variance estimator is not available

for R statistical package.

3.6 Simulation study for variance estimation

A simulation study is carried out in order to explore the performance of two proposed

variance estimators under cube method and two-step cube method. The two proposed

variance estimator are also compared with one existing estimator from Deville and Tillé

(2005) under the cube method. The simulation set up is adapted from Breidt and Chauvet

(2011) where different variance estimators were compared under the cube method. In the
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simulation study, there are three sampling designs, each design has a finite population

consisting of a response variable and three auxiliary variables which are related under a

linear regression model. In the first and second sampling designs, samples are selected

with probabilities proportional to a size variable generated form the uniform distribution,

while in the third sampling design samples are selected with equal probabilities. The

three sampling designs are further described in the following.

Sampling design 1: The population U1 is of size N = 40. The sample size is n = 15 and

samples are selected with probability proportional to a variable generated from uniform

distribution. For i ∈ U1, define zi2 = i, zi3 = 1/i, zi4 = 1/i2 and let z̄j = N−1
∑

i∈U zij and

s2zj = (N−1)−1
∑

i∈U(zij−z̄j)
2 denotes the usual empirical mean and variance respectively,

for j = 2, 3, 4. Then xT
i = (x1i, x2i, x3i, x4i), where x1i = πi and xij = (zij − z̄j)/sj for

j = 2, 3, 4.

Sampling design 2: The population U2 is of size N = 30. The sample size is n = 10 and

samples are selected with probability proportional to a variable generated from uniform

distribution. Define x1i = 1, x2i = 1 if i ∈ {1, ..., 15} and 0 otherwise, x3i = 1 if

i ∈ {11, ..., 25} and 0 otherwise, and x4i = 1 if i ∈ {1, ..., 5}∪{21, ..., 30} and 0 otherwise.

Sampling design 3: The population U3 is of size N = 45. The sample size is n = 15

and samples are selected with equal probability sampling. Define x1i = 1, x2i = 1 if

i ∈ {1, ..., 15} and 0 otherwise, x3i = 1 if i ∈ {16, ..., 30} and 0 otherwise, and x4i = 1 if

i ∈ {1, ..., 9} ∪ {16, ..., 21} ∪ {31, ..., 39} and 0 otherwise.

In each population, response variable y is generated according to the linear regression

model, given by

yi = β1 + x2iβ2 + x3iβ3 + x4iβ4 + σϵi

where ϵi are generated from the standard normal distribution. For the populations U1

and U3, β1 = β2 = β3 = β4 = 1. For population U2, β1 = 0, β2 = β3 = β4 = 1.

In each population, the coefficient σ is chosen such that the model R2 (coefficient of

determination) is approximately equal to 0.5. Pairwise correlations between variables in

the three populations are given in Table 3.8.

In the simulation study, biases and variances of five variance estimators are computed by

Monte Carlo simulation method based on 5000 samples from each population. The five

estimators are as follows:

• under two-step cube method, two proposed estimators given by V̂c∗(ŶHT )WR and

V̂c∗(ŶHT )PS from Eq. (3.11) and Eq. (3.13) respectively,
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• under cube method, two proposed estimators given by V̂c(ŶHT )WR and V̂c(ŶHT )PS

from Eq. (3.15) and Eq. (3.16) respectively, and one estimator from literature

(Deville and Tillé, 2005) given by V̂c(ŶHT )DT from Eq. (1.16).

Table 3.8: Pairwise correlations between variables in the populations of three sampling
designs in the simulation for variance estimation.

Sampling design 1. Sampling design 2. Sampling design 3.
y x2 x3 x4 y x2 x3 x4 y x2 x3 x4

y 1.00 -0.24 0.56 0.65 1.00 0.16 0.38 0.16 1.00 0.19 0.18 0.55
x2 -0.24 1.00 -0.61 -0.39 0.16 1.00 -0.33 -0.33 0.19 1.00 -0.50 0.09
x3 0.56 -0.61 1.00 0.95 0.38 -0.33 1.00 -0.33 0.18 -0.50 1.00 -0.19
x4 0.65 -0.39 0.95 1.00 0.16 -0.33 -0.33 1.00 0.55 0.09 -0.19 1.00

As a measure of bias and variance of a point estimator θ̂ of a parameter θ, Monte Carlo

(MC) precent relative bias (RB) and percent relative stability (RS) are calculated, given

by

RBMC(θ̂) = 100× 1

θ

(
1

B

B∑
b=1

θ̂b − θ

)
and RSMC(θ̂) = 100× 1

θ

(
1

B

B∑
b=1

(θ̂b − θ)2

) 1
2

(3.17)

respectively, where B = 5000 are number of samples in the Monte Carlo simulation.

For the computation of these measures, simulations for cube and two-step methods are

performed as follow.

(i) Empirical true sampling variance under the cube method: Select C =

100000 samples using the cube method. Empirical true sampling variance is calcu-

lated as

EVc(Ŷ ) =
1

C

C∑
m=1

(Ŷ (sm)− Y )2 (3.18)

where m = 1, ..., C and EVc(Ŷ ) will be used in Eq. (3.17) as θ in order to calculate

RBMC(θ̂) and RSMC(θ̂), when θ̂ =
(
V̂c(Ŷ )WR, V̂c(Ŷ )PS, V̂c(Ŷ )DT

)
. Using C cube

samples, percentage relative flight-phase efficiency (FE) of the cube method is also

computed which is given by

FE =
EVF (ŶHT )

EVc(ŶHT )
× 100
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where EVF (ŶHT ) is empirical true variance due to flight-phase of the cube method.

As value of FE increases negative bias of the variance estimator V̂c(Ŷ )DT decreases

(Breidt and Chauvet, 2011).

(ii) (Deville and Tillé, 2005)’s estimator under the cube method: Select B =

5000 samples using the cube method, and calculate RBMC(θ̂) and RSMC(θ̂) for

V̂c(Ŷ )DT .

(iii) Two proposed estimators under the cube method: First, calculate B = 5000

estimates of regression coefficient vector B̂ based on samples selected in (ii). Then,

select B realized cube samples spaces of size K = 1000 independently, denoted by

ΩK1 , ...,ΩKB
. Calculate B matrices Λ̂λ1 , ..., Λ̂λB

, where B = 5000. Compute 5000

values of V̂c(Ŷ )WR and V̂c(Ŷ )PS. Now RBMC(θ̂) and RSMC(θ̂) can be calculated for

V̂c(Ŷ )WR and V̂c(Ŷ )PS.

(iv) Empirical true sampling variance under the two-step cube method: In

(iii), B realised cube sample spaces ΩK1 , ...,ΩKB
are already obtained. For all these

realised cube sample space, sampling distributions λ∗
1, ...,λ

∗
B under two-step cube

method are obtained using simulated annealing algorithm, as described in Step 2 of

the proposed sampling procedure. In this way, B estimates Λλ∗
1 , ...,Λλ∗

B
can be

obtained. Now, select B samples under two-step cube, i.e. one sample from each of

ΩKb
using λ∗

b sampling distribution, where b = 1, ..., B.

In principal a larger number of samples should have been used to calculated empirical

true variance, for example C = 100000 samples are used for the cube method. This

amount of sampling from two-step cube is computationally expensive. Therefore,

bootstrap method is used which avoids additional iterations of two-step cube method.

Calculate Ŷ (HT-estimator of Y ) estimate for each of B samples under two-step

cube. Select 1000 bootstrap samples of size B from the initial vector of Ŷ -estimates

of size B. For each of bootstrap samples, variance of Ŷ is computed. Then an

average of 1000 bootstrap sampling variances is computed which is considered as

empirical true sampling variance under two-step cube method.

(v) Two proposed variance estimators under the two-step cube method: In

(iv), B samples under two-step cube method are already selected. Based on these

samples under two-step cube method, compute B estimates of B̂. Now B values

for V̂c∗(Ŷ )WR and V̂c∗(Ŷ )PS can be calculated. Based on these B values, computed

RBMC(θ̂) and RSMC(θ̂) for V̂c∗(Ŷ )WR and V̂c∗(Ŷ )PS.

Table 3.9 shows measures of relative bias and stability for two proposed variance esti-
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mators under the two-step cube method (2Cube), two proposed and an existing variance

estimators under the cube method (Cube). It also shows measures of relative bias and

stability for the estimates of regression coefficients used in the computation of variance es-

timators. Smaller values of these measures indicate better performance of the estimators.

Furthermore, Table 3.11 shows confidence intervals and percent coverage rates (PCR) for

HT-estimator of population total using two proposed and an existing variance estimators

under both cube and two-step cube methods.

From Table 3.9, results show that the two proposed estimators are highly biased and

unstable for Sampling design 1 under both cube and two-step cube methods. Estimates

of regression coefficients also have the same issue. One possible reason which can be

noticed from Table 3.8 that two auxiliary variables x3 and x4 are highly correlated with

correlation coefficient r2 = 0.95. The problem of multicollinearity resulted into the highly

biased regression coefficients with high stand error. Consequently, the proposed variance

estimators are also highly biased and inefficient.

As a simple measure of avoiding the problem of multicollinearity, variable x4 is excluded

from the process of variance estimation. Results are shown in Table 3.10. This modifi-

cation seems to reduce the problem. Bias and variability of the two proposed variance

estimators have reduced under both cube and two-step cube methods, even it has im-

proved the performance of the existing estimator under the cube method. Now, proposed

estimator based on Poisson approximation is less biased and more stable than the existing

estimator under the cube method.

For Sampling design 2, both proposed variance estimators V̂c(Ŷ )WR and V̂c(Ŷ )PS have

smaller percent bias than that of the existing estimator V̂c(Ŷ )DT under the cube method.

While, the proposed estimator V̂c(Ŷ )PS has the smallest percent of bias and highest

stability among these three estimators. Under the two-step cube method, the estimator

based on Poisson approximation V̂c∗(Ŷ )PS performs way better than the estimator based

on pps sampling approximation V̂c∗(Ŷ )WR in terms of both bias and stability.

For Sampling design 3, the proposed variance estimator based on Poisson approximation

V̂c(Ŷ )PS performs slightly better than the existing estimator in terms of bias and stability

under the cube method. Under the two-step cube method, again the estimator based

on Poisson approximation V̂c∗(Ŷ )PS is better than the estimator based on pps sampling

approximation in terms of both bias and stability.

Base on the results from Table 3.11, the two proposed estimators always have higher

coverage rate than the existing estimator under cube method. The propose estimator
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Table 3.9: Measures of relative bias (RB) and relative stability (RS), from Eq. (3.17),
for the variance estimators and estimates of regression coefficients under cube (Cube) and
two-step cube (2Cube) methods.

Sampling design 1 Sampling design 2 Sampling design 3
FE 44.8 69.0 86.8

Estimators RBMC(θ̂) RSMC(θ̂) RBMC(θ̂) RSMC(θ̂) RBMC(θ̂) RSMC(θ̂)

2Cube

V̂c∗(Ŷ )WR 122.77 1380.59 12.86 63.73 15.82 41.39

V̂c∗(Ŷ )PS 49.85 1113.42 4.45 60.71 -0.69 32.40

B̂0 -25.11 146.52 - - 0.39 51.20

B̂2 88.19 -149.22 -9.63 25.95 -0.97 43.00

B̂3 47.38 -146.03 -2.75 14.39 -0.25 44.85

B̂4 9.40 221.60 2.56 28.12 0.03 31.67

Cube

V̂c(Ŷ )WR 605.25 7130.64 8.96 55.53 20.71 44.12

V̂c(Ŷ )PS 531.84 7110.24 1.60 53.33 4.07 33.27

V̂c(Ŷ )DT -64.71 68.56 -14.51 55.20 -6.81 34.38

B̂0 -51.68 330.75 - - 0.55 51.30

B̂2 83.74 -152.28 -9.09 25.63 -1.41 44.29

B̂3 34.09 -196.29 -2.87 14.88 0.04 44.48

B̂4 -25.63 438.54 2.71 28.49 0.29 31.91

Table 3.10: Excluding variable x4, measures of relative bias (RB) and relative stability
(RS) for the variance estimators and estimates of regression coefficients under cube (Cube)
and two-step cube (2Cube) methods.

Sampling design 1

Estimators RBMC(θ̂) RSMC(θ̂)

2Cube

V̂c∗(Ŷ )WR 53.25 234.54

V̂c∗(Ŷ )PS -36.07 47.05

B̂0 -25.33 61.18

B̂2 -99.70 -145.25

B̂3 -123.71 -138.96

Cube

V̂c(Ŷ )WR 74.69 242.59

V̂c(Ŷ )PS -17.74 50.64

V̂c(Ŷ )DT -51.87 61.97

B̂0 -29.12 64.67

B̂2 -96.04 -148.49

B̂3 -120.03 -138.94

based on Poisson approximation has highest coverage rate in all case. As expected, the

proposed estimator based on with-replacement approximation overestimate the sampling

variance under the cube and two-step cube method. In summary, the proposed estimator

based on Poisson approximation performs better than existing estimator and other com-
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petitive estimator based on with-replacement sampling approximation, provided that the

regression model is not misspecified.

Table 3.11: Average of 95 percent confidence limits (L=lower, U=upper) of HT-estimator
based on 5000 samples, and percent coverage rate (PCR).

Sampling design 1 Sampling design 2 Sampling design 3
Estimators L U PCR L U PCR U L PCR

2Cube
V̂c∗(Ŷ )WR -33.42 113.66 97.86 35.53 54.02 94.40 81.45 116.67 92.78

V̂c∗(Ŷ )PS -20.41 100.65 92.26 35.91 53.65 93.56 82.74 115.37 91.12

V̂c(Ŷ )DT 9.30 70.94 78.50 36.34 53.07 88.46 83.85 114.72 90.70

Cube
V̂c(Ŷ )WR -42.52 122.98 98.06 35.03 54.37 93.64 81.63 116.94 94.32

V̂c(Ŷ )PS -29.32 109.78 92.48 35.38 54.01 92.52 82.88 115.69 92.92

V̂c(Ŷ )DT 9.38 71.08 77.70 36.27 53.13 88.62 83.85 114.72 90.70

Generally, the proposed estimator based on Poisson approximation is better than estima-

tor based on pps sampling approximation. As the imbalance (or rounding problem) of the

cube method increases bias and instability of the existing estimator V̂c(Ŷ )DT increases.

Therefore, performance of the proposed estimator (based on Poisson approximation) in

terms of bias and stability increases as compared ot the existing estimator. The proposed

estimators are more sensitive to the fitness of the model, therefore, an assessment of model

fitness might be useful before using the proposed estimators.

3.7 Conclusions and future work

Balanced sampling with respect to known auxiliary variables tends to improve the effi-

ciency of estimates when response variable is linearly related with known auxiliary vari-

ables. Cube method aims to select balanced samples using an algorithm consisting of

two phases, flight-phase and landing-phase. Whenever landing-phase is invoked, auxil-

iary balance of the samples is compromised in order to achieve a sampling design with

fixed first-order inclusion probabilities. In this chapter, a practical way of improving the

landing-phase of cube method is proposed. The proposed procedure, named two-step

cube, aims to minimises total imbalance of the implied sampling design while respecting

fixed first-order inclusion probabilities. Minimising total imbalance also aims to reduce

the AMSE of HT-estimator under a linear super-population model. The cube method

is surely exactly balanced when there is only one balancing variable. When there are

multiple auxiliary variables, landing-phase is often invoked in order to select a sample.

This means, there is often scope to improve the cube method by using two-step cube
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methodology. It is shown theoretically that total imbalance under two-step cube is equal

to or less than that of the cube method.

The proposed two-step cube method depends on an optimisation algorithm in order to

minimise realised total imbalance. In the optimization problem, calibration based on an

N ×K matrix is used in order to achieve fixed inclusion probabilities, where K is a finite

number of samples under the cube method and N is population size. Computational cost

of the optimisation algorithm increases with both N and K. For a given application of

two-step cube, an estimate of gain in terms of total imbalance can be obtained and a larger

value of K brings more confidence in the estimated gain. A global optimisation algorithm

known as ‘simulated annealing’ is used here, which suffers from scalability problem as the

size of either quantity N orK becomes large. A further investigation is required to explore

the relation of these two quantities and time required for the optimisation algorithm to

terminate. In future, further explore of optimisation algorithms may also help to find

an optimisation algorithm with no or reduced scalability problem. Whereas, proposed

procedure of the two-step cube method does not change.

The proposed methodology for the variance estimation is naturally followed by the pro-

posed sampling procedure. Two variance estimators are proposed under any balanced

sampling design. Results from the simulation study suggest that the proposed variance

estimator which uses variance approximation based on Poisson sampling from literature

(Hájek, 1964; Deville and Tillé, 2005) tend to be better than the other estimator (based

on pps sampling) under both cube and two-step cube methods. Also, proposed variance

estimator tends to perform better than an existing variance variance from Deville and

Tillé (2005) under the cube method. From the simulation study, it is also noticed that

the proposed variance estimation methodology is sensitive to model miss-specification as

it depends on sample estimates of the regression coefficients. Whenever an underlying

assumption of the model is violated which effects the estimation of regression coefficients,

performance of the proposed variance estimators is expected to be affected too. For exam-

ple, problem of multicollinearity was seen in the simulation study for variance estimation.

The proposed variance approximation can also be seen as bias correction for the existing

variance approximation from Deville and Tillé (2005). When correction term goes wrong

due to model miss-specification, the bias correction term can be dropped and proposed

estimator shall be reduced to the Deville and Tillé (2005)’s estimator. Alternatively, there

is possibility to use estimators of regression coefficients which are robust against problem

of multicollinearity. This requires further exploration in this area.
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Chapter 4

Spatially balanced two-stage equal

probability sampling

4.1 Introduction

When study population exhibit positive spatial autocorrelation, spatially balanced sam-

pling tends to improve the efficiency of sample estimates. It aims to select samples which

are well-spread over the finite population area. It is widely used in environmental, ecology,

forestry, agriculture and natural resource surveys (Stevens Jr and Olsen, 2004; Grafström

et al., 2012; Benedetti et al., 2015; Robertson et al., 2018). National statistics institutes

are increasingly geo-referencing the usual list sampling frames, and application of spa-

tially balanced sampling in other areas including socio-economic and business surveys is

being considered (Dickson et al., 2014, 2019; Abi, 2019; Filipponi et al., 2019). Two-stage

sampling design is commonly used in socio-economic surveys, specifically in large scale

(e.g. national level) household surveys. In this chapter, some aspects of spatially balanced

sampling are investigated which have been overlooked or not completely addressed in the

past, while focusing on use of spatially balanced sampling in two-stage equal probability

sampling method (epsem) for socio-economic surveys.

It is now an establish fact that spatially balanced sampling designs are more efficient than

those designs which do not account for spatial location data, provided that there exist

spatial dependence in the study population, that is, near population units are tend to

be similar (Stevens Jr and Olsen, 2004; Grafström et al., 2012; Benedetti et al., 2017c).

In the last few years, an increasing number of sampling methods are proposed which has
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used spatial location data in different ways to select spatially balanced samples. Most

of these sampling methods are described in Section 1.5.3. From practical point of view,

choosing an appropriate spatially balanced sampling method for the given spatial popu-

lation is important. Some comparative studies for different such methods are also found

in the literature, which compared them with respect to their efficiency (i.e. MSE of the

HT-estimator) and a measure of spatial balance from Stevens Jr and Olsen (2004) de-

scribed in Section 1.5.2. Certainly, these studies supported the fact that spreading the

sample over the population area improved the efficiency of estimates, but also indicated

that different methods behave differently with respect to spatial structure of the study

population (i.e. distribution of population units in the geographic space and nature of the

spatial autocorrelation) and other parameters of sampling design (i.e. sampling fraction).

In this chapter, some simulation studies are reviewed from literature; a comparative study

of spatially balanced sampling methods is also conducted which has extended the compar-

ison to another criterion of assessment, which is AMSE of the HT-estimator. The AMSE

assesses performance of a sampling strategy averaged over many spatial populations under

a given spatial super-population model.

In practice, GREG-estimator is commonly used in socio-economic studies, since popula-

tion totals of some auxiliary variables are often known from previous surveys or adminis-

trative data sources. In addition to auxiliary population totals, when values of auxiliary

variables are known for sampling units, balanced sampling by cube method can be used

either at first, second or both stages depending on the availability of variables. Balanced

sampling by cube method in combination with GREG-estimator reduces the problem of

negative calibration weights (Deville and Tillé, 2004). Similarly, doubly balanced sampling

can be used in two-stage sampling when location data of sampling units is also available.

Grafström and Lundström (2013) argued that spatially balanced samples are also bal-

anced with respect to auxiliary variable under certain conditions on auxiliary variables.

However, two types of balanced designs are not same in general. It would be interesting

to investigate how much auxiliary balance is achieved by a spatially balanced designs.

Moreover, how both types of balances (auxiliary and spatial) interact under doubly bal-

anced sampling design at varying levels of variation explained by auxiliary variables, and

if there are situations when one type of balance is more important than the other.

In contrast with environmental and natural resources surveys, socio-economic survey are

considered to be multi-objective and may contain a variety of study variables. Although

presence of spatial autocorrelation is assumed, there might be situations when some vari-

ables exhibit complete randomness or negative spatial autocorrelation. Negative spatial

autocorrelation is more likely to materialise for aggregated data, therefore, population
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of PSU’s may exhibit negative spatial autocorrelation. Furthermore, such surveys often

contains variables measured at variety of measurement scales, for example, quantitative

and categorical variables. For such situations, it is also important to investigate that how

bad spatially balanced samples are for those variables which are not spatially correlated.

Altieri and Cocchi (2021) conducted a simulation study to investigate performance of

some spatially balanced sampling methods when the study population exhibit negative

spatial autocorrelation, and proposed an alternative spatial sampling design. This study

suggested that spatially balanced sampling method can under-perform in comparison to

SRS. In this chapter, some sampling schemes are proposed based on cube and local cube

methods. Simulation studies are also conducted to investigate performance of the pro-

posed sampling schemes.

Estimation of sampling variance with no bias under spatially balanced sampling designs

is often a challenge. Because, most of these designs induce zero or near-zero second-

order inclusion probabilities which preclude unbiased estimation of the sampling variance.

Local-mean variance estimator from Stevens Jr and Olsen (2003) is often used in prac-

tice and recommended for many spatially balanced sampling methods. It was originally

proposed for GRTS design. An extension of this estimator for doubly balanced sampling

design by local cube method was given by Grafström and Tillé (2013). Both estimators

are described in Section 1.6. In this chapter, proposed variance estimation methodology

for balanced sampling in Section 3.5 is extended for both spatially and doubly balanced

sampling designs. This extension uses the idea of eigenvector spatial filtering from spatial

modelling literature Griffith (2003).

This chapter is arranged as follow. In Section 4.2, a simulation study is conducted for

comparison of spatially balanced sampling methods based on AMSE of HT-estimator un-

der equal probability sampling, assuming different spatial structure of population units

and study variables under a spatial super-population model with positive spatial auto-

correlation. In Section 4.3, the simulation study is extend for the comparison of balanced

sampling by cube method, spatially balanced sampling methods and doubly balanced

sampling by local cube method, under a simple common mean model and a linear re-

gression model with one auxiliary variable and spatially correlated random errors. In

Section 4.4, problem of sampling from populations with negative spatial autocorrelation

is considered and some spatial sampling schemes are proposed. In Section 4.5, variance

estimation methodology for balanced sampling in Section 3.5 is extended for spatially

balanced and doubly balanced sampling designs. In the last, Section 4.6 presents some

conclusions from this chapter.
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4.2 Comparative study of spatially balanced sampling

methods under the spatial super-population model

A variety of sampling methods have been proposed in literature to select spatially bal-

anced samples (see Section 1.5.3). For these sampling methods, numerical studies based

on real and artificial spatial populations were also conducted to make comparison of them

with respect to their efficiency (based on MSE) and ability to achieve spatial balance

in the samples. In most of these studies, measure of spatial balance based on Voronoi

polygons, given by Stevens Jr and Olsen (2004), was used. Recently, other measures of

spatial balance based on Moran’s I index are also introduced by Tillé et al. (2018), also

see Jauslin and Tillé (2020). From these numerical studies, it can be noticed that the

most spatially balanced method may not be the most efficient for a given population;

relative efficiency of a spatially balanced sampling method with respect to others might

be different for different spatial populations, it may also change with the sampling frac-

tion. It is important from the practical perspective to choose a suitable spatially balanced

sampling method for given spatial population when there are multiple sampling methods

available to select a spatially balanced sample. One may make a choice based on measure

of spatial balance, but the commonly used measure of spatial balance may not lead to

most efficient sampling method. Other criteria might be to make an assessment based

on average performance of spatially balanced sampling methods over many spatial popu-

lations. Therefore, comparison of spatially balanced sampling methods based on AMSE

under super-population model is done in this section.

In the following, some comparative simulation studies for spatially balanced sampling

methods are reviewed from the literature and facts mentioned in previous paragraph are

highlighted. Thereafter, a simulation study is conducted which compares spatially bal-

anced sampling methods with respect to AMSE of HT-estimator under super-populations

with different spatial structures.

4.2.1 A review of comparative simulation studies from literature

With the aim to individualise the most proper spatial sampling design for a sample sur-

vey of businesses, Dickson et al. (2014) conducted simulation experiments and compared

spatially balanced sampling methods including BSS (“balanced spatial sampling” using

cube method where spatial coordinates are used as balancing variables), local pivotal

methods (LPM1, LPM2), SCPS and DBSS (“doubly balanced spatial sampling” using
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local cube method where spatial coordinates are used as balancing variables) with SRS

under equal probability sampling and with random pivotal method (RPM) under πps

sampling. A geo-referenced data set of (N = 822) retail stores located in the province

of Trento (Italy), for the year of 2009, was used as finite spatial population and prob-

lem of estimating total sales of stores was considered. An empirical semi-variogram of

the response variable was presented which suggested a short-term spatial trend in the

population. Equal probability and πps samples were selected with respect to sampling

fractions f = (0.06, 0.09, 0.12). For πps sampling, number of employees was used as size

variable. For LPM1, LPM2 and SCPS, calibration weights were also used in the HT-

estimator based on linear and quadratic forms of spatial coordinates. In the linear form,

horizontal and vertical coordinates were used while in the quadratic form, square and

cross products of spatial coordinates were used. For BSS and DBSS, linear and quadratic

forms of spatial coordinates were used as balancing variables.

Under equal probability sampling, DBSS was the most spatially balanced design, though

there was not big difference as compared to LPM1. If the measure of spatial balance

was rounded up to two decimal points, they were equally spatially balanced. DBSS was

the most efficient design using balancing variables in linear form for f = (0.06, 0.09)

and in quadratic form for f = 0.12 under equal probability. LPMs and SCPS gained

their maximum efficiency using calibration weights based on quadratic form of spatial

coordinates. Under πps sampling, LPM2 was the most spatially balanced design, whereas

all the spatially balanced sampling methods were approximately equally efficient (with

difference of less than 1% in terms of efficiency gain); they attained their maximum

efficiency using no calibration weights and linear form of spatial coordinates as balancing

variables. While comparing LPMs and SCPS methods only, LPMs were more spatially

balanced than SCPS across all scenarios and they tend to be more efficient than SCPS.

In this study, spatial population has spatial trend; DBSS is the most spatially balanced

and efficient under equal probability sampling; under πps sampling, LPMs are the most

spatially balanced but not more efficient than others.

In another simulation study, Dickson et al. (2019) used a larger data set of (N = 4592)

businesses located in Torento (Italy), for year 2009, to demonstrate that using LPMs

(LPM1, LPM2) and SCPS for balanced sampling with respect to non-spatial (auxil-

iary) variables is better than stratified sampling (with proportional allocation) and cube

method. Problem of estimating total turnover of businesses was considered. Two non-

geographical variables, “sector of activity” and “number of employees” were used as bal-

ancing variables in LPMs, SCPS and cube method; the population was stratified with

respect to these two variables (by converting them in categorical variables) for stratified
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sampling. Equal probability samples were selected with respect to sampling fractions

f = (0.11, 0.22, 0.33). LPM1 and SCPS were more spatially balanced and efficient than

stratified sampling and the cube method. LPM1 was the most spatially balanced, but

SPCS was the most efficient method. Furthermore, the relative efficiency of SCPS with

respect to LPM1 was increasing with the sample size.

Benedetti et al. (2017b) conducted a simulation study to compare spatially balanced

sampling methods GRTS, LPM1, SCPS, BSS, DBSS, and some alternative approaches

based on spatial stratification. Here, this study is used to draw a comparison of spatially

balanced sampling methods only, as authors have also concluded against the spatial strat-

ification in terms of efficiency. In this study, artificial spatial populations were generated

with three spatial frames of the population units: highly clustered, clustered and sparse.

For each spatial frame, six response variables (or spatial populations) were simulated:

without and with a linear spatial trend, and three levels of spatial dependence: low,

medium and high. Equal probability samples of different sizes were selected with respect

to sampling fractions given by f = (0.01, 0.05). The comparison was made in terms of

root mean squared error (RMSE) and spatial balance measure.

The most spatially balanced design were LPM1 for highly clustered and clustered spatial

frames when f = 0.01, while it was BDSS for rest of the cases. First consider the

populations with linear trend. DBSS and BSS were often the most efficient designs, DBSS

for medium and high spatial correlation and BSS for low spatial correlation across all the

spatial frames and sampling fractions. LPM1 and SCPS were approximately equally

efficient for all the scenarios with one exception when LPM1 was 3% more efficient than

SCPS for highly clustered spatial frame when f = 0.01. Now consider populations with

no spatial trend. For the sparse spatial frame, all the five sampling methods tended to be

approximately equally efficient with low and medium spatial correlation for both sampling

fractions, while LPM1, SCPS and DBSS were approximately same and more efficient than

GRTS and BSS for high spatial correlation. For highly clustered and clustered spatial

frames, the results were same as those for sparse spatial frame for low and medium

spatial correlations; for high spatial correlation, LPM1 and SCPS were approximately

same and more efficient than DBSS when f = 0.01, while they were less efficient than

DBSS when f = 0.05. In this study, doubly balancing with respect to spatial coordinates

was beneficial when there was spatial linear trend with at least medium spatial correlation

in the population. It was also beneficial for populations with no spatial trend and clustered

spatial frame but only for larger sample size, this supports previously reviewed study

from Dickson et al. (2014). However, it tends to loose efficiency as compared to spatial

balancing (e.g. LPM1 and SCPS) when sample size is small, e.g. f = 0.01 in this study.
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For the same comparison above, Benedetti et al. (2017b) also used two data sets as finite

spatial populations, known as Mercer-Hall and Baltimore, which are available from R-

packages spData (Bivand et al., 2021) and agridat (Wright, 2021) respectively. The first

data set is 20 × 25 regular grid with N = 500 observations, and grain yield in pounds

was considered as the response variable. The second data set consists of spatial points

with N = 211 observations, and the sales price of the houses in Baltimore (Maryland,

USA) was considered as response variable. Both the variables are known to have spatial

trend (Benedetti et al., 2017b), and Moran indices for ‘gain yield’ and ‘houses price’

are also calculated, given by 0.0666 and 0.1198 respectively. Equal probability samples

of two different sizes were selected with respect to sampling fractions f = (0.02, 0.10)

for Mercer-Hall and f = (0.05, 0.24) for Baltimore data sets. For the population based

on Mercer-Hall data set, LPM1, SCPS and DBSS were approximately equal efficient for

both sampling fractions, but SCPS and DBSS were slightly more spatially balanced than

LPM1. For the population base on Baltimore data set, DBSS was the most efficient

sampling design, and LPM1 and SCPS were approximately equally efficient for f = 0.05.

Whereas, SCPS was the most efficient design for f = 0.24, but less spatially balance than

BDSS and LPM1. In this study, doubly balanced spatial sampling has not added much

to the efficiency except one (Baltimore, f = 0.05) out of four cases; SCPS achieved higher

efficient (despite being less spatially balanced) as compared to LPM1 for larger sampling

fraction f = 0.24.

Benedetti et al. (2017c) used the same two data sets for the comparison of spatially bal-

anced sampling methods DUST, GRTS, BSS, LPMs, SCPS, DBSS under equal probability

sampling. An additional feature of this study was to select spatially balanced samples

with respect to squared values of the spatial coordinates, which added nothing to the

efficiency of designs.

Using same simulation design as in Benedetti et al. (2017b), Benedetti and Piersimoni

(2017) compared a newly proposed sampling method, called PWD (see Section 1.5.3),

with GRTS, BSS, SCPS and LPM with respect to both efficiency and spatial balance.

In this study, three additional response variables were generated having quadratic spatial

trend (with low, medium and high spatial correlation) for each of three spatial frames for

the populations units (highly clustered, clustered and sparse). Equal probability samples

were selected with respect to sampling fractions f = (0.05, 0.10). PWD was the most

spatially balanced and the most efficient design for all the scenarios considered in this

study. LPM and SCPS were approximately equally efficient and spatially balanced for

almost all the scenarios with an exception that LPM was slightly more spatially balanced

for highly clustered spatial frame.
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Filipponi et al. (2019) conducted a simulation study to compare spatially balanced meth-

ods, DBSS with linear and quadratic spatial coordinates, LPM1, LPM2 for the estimation

of under-coverage rate and population size under capture-recapture set up. The finite

population was consisted of (N = 35585) census tracts in Emilia Romagna region of

Italy. Equal probability and πps samples were selected with different sampling fractions

f = (0.01, 0.05, 0.10). Around 10% gain in efficiency by spatially balanced methods was

observed under equal probability sampling and there was not any considerable efficiency

gain under πps sampling. Same comparison was performed while sampling from nine

smaller regions of Emilia Romagna which produced results with larger efficiencies of spa-

tially balanced sampling methods. DBSS with quadratic spatial coordinates was the most

efficient design followed by LPMs and SCPS respectively.

Jauslin and Tillé (2020) conducted a simulation study using a real data set known as

Meuse. It contained variables about different metal concentrations. A newly proposed

method WAVE was compared with SRS, GRTS, LPM1, SCPS and HIP (an spatially

balanced sampling method considered by Jauslin and Tillé (2020)) under equal probability

sampling; and with GRTS, LPM1, SCPS under πps sampling. Samples were selected with

respect to sampling fractions f = (0.10, 0.19, 0.32). The comparison was made based on

values of MSE of HT-estimator and three measures of spatial balance, here comparison is

made only based on commonly used measure of spatial balanced from Stevens Jr and Olsen

(2004). The VAWE was the most efficient method under equal and πps sampling only

for the f = 0.10 and it was most spatially balanced for f = 0.19 under equal probability

sampling and for f = (0.10, 0.19) under πps sampling. The HIP was the most efficient

under equal probability sampling for f = (0.19, 0.32) while it was not the most spatially

balanced. The SCPS was the most efficient under πps sampling for f = (0.19, 0.32) and

it was the most spatially balanced only for f = 0.19. The LPM was the most spatially

balanced for f = 0.32 under both equal probability and πps sampling but it was not the

most efficient for any of the cases considered in the study.

Based on above numerical studies, PWD design is the most efficient and spatially balanced

design as compared to BSS, GRTS, LPMs, SCPS and DBSS under equal probability

sampling, however it may not perform the same for πps sampling. DBSS tend to be

more efficient than BSS, GRTS, LPMs and SCPS when population has spatial trend and

strong spatial correlation, it may not be beneficial when population has no spatial trend

and sample fraction is small (e.g. f = 0.01). It is seen in most cases that LPM1 and

SCPS are more efficient than GRTS and approximately equally efficient, however for the

cases when sampling fractions are large (e.g. f = 0.24 from Benedetti et al. (2017b)

and f = (0.19, 0.32) from Jauslin and Tillé (2020)) SCPS is more efficient than LPM1.
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There were also cases where measure of spatial balance did not lead to the most efficient

spatially balanced design. In order to investigate these results with respect to another

aspect of sampling design called anticipated mean squared error (AMSE), a simulation

study is conducted in the following section.

4.2.2 Simulation study for comparison of spatially balanced sam-

pling methods

Following the simulation studies from Benedetti et al. (2017b) and Benedetti and Pier-

simoni (2017), three spatial frames (or spatial configurations of population units) are

considered in this simulation study: highly clustered, clustered and sparse, each of size

N = 400. In fact, these spatial frames with 1000 spatial points are available from R-

package Spbsampling (Pantalone et al., 2019) and a random sample of 400 points is used

for this simulation study. The reason of using smaller size of spatial frames is to reduce

the computation time for calculation of AMSE’s. The three spatial frames are shown in

Figure 4.1.

Figure 4.1: Three spatial frames for the spatial populations.

For each spatial frame, nine spatial populations (or response variables) are generated,

six of them are simulated using two-dimensional Gaussian random field as follow. Using

R-package geoR (Ribeiro Jr et al., 2020), three random error terms ϵi1, ϵi2 and ϵi3 are gen-

erated from stationary Gaussian random field with three levels of positive spatial autocor-

relation low, medium and high respectively, where i ∈ U . Exponential covariance function

is used, given by cov(dij) = σ exp(−dij/ϕ), where dij is Euclidean distance between pair

of (i, j) units, and i, j ∈ U . Three different levels of positive spatial autocorrelation are

achieved by choosing three values of the range parameter ϕ = (0.001, 0.01, 0.1) and value
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of scale parameter σ = 2 is fixed for all scenarios. Three variables with no spatial trend,

yij = ϵij, j = 1, 2, 3, and three variables with a linear spatial trend yij = β(cxi+ cyi)+ ϵij,

j = 4, 5, 6, are obtained, where cx and cy denotes spatial x- and y-coordinates respec-

tively, and β = 6.5 is chosen which explain 75% to 85% variation in the response variables.

All the of variables are standardized with mean µ = 5 and standard deviation σ = 1, i.e.

zij = 5 + (yij − ȳj)/sj, j = 1, ..., 6, where ȳj and sj are mean and standard deviation

of variables yj respectively. Three binary variables y(0.1), y(0.3) and y(0.5) are computed

by assign value 1 to 10%, 30% and 50% largest values of responses variables z4, z6 and

z7 respectively. For all the spatial variables, values of Moran’s index averaged of 5000

realisations are reported in Table 4.1.

Table 4.1: Values of Moran’s index I for nine populations and three spatial frames aver-
aged over 5000 realizations of populations.

No spatial trend Linear spatial trend Binary responses
z1 z2 z3 z4 z5 z6 y(0.1) y(0.3) y(0.5)

Highly clustered 0.006 0.079 0.304 0.401 0.420 0.474 0.176 0.225 0.237
Clustered -0.001 0.037 0.210 0.397 0.406 0.445 0.112 0.152 0.161
Sparse -0.002 0.016 0.141 0.299 0.304 0.333 0.073 0.097 0.102

Equal probability samples of different sizes n = (4, 8, 20, 32, 44) are selected which cor-

respond to sampling fractions f = (0.01, 0.03, 0.05, 0.08, 0.11). Random samples are se-

lected using SRS as benchmark method and eight spatially balanced sampling methods:

GRTS, BSS, LPM1, LPM2, SCPS, DBSS and PWD. R-packages spsurvey (Dumelle

et al., 2021), BalancedSampling (Grafström and Lisic, 2019), and Spbsampling (Pan-

talone et al., 2019) are used for the selection of random samples.

For each of the six scenario of spatial super-population model (3 spatial autocorrela-

tions × 2 spatial trends), nrp = 5000 finite spatial populations were generated. From

each realization of the finite spatial population, nrs = 5000 samples are selected under

equal probability; mean squared error (MSE) of HT-estimator for population total was

calculated using 5000 samples, as given in Eq. (4.1). In order to obtain AMSE of the

HT-estimator, MSEs are averaged over 5000 realizations of the spatial populations, as

given in Eq. (4.2).

MSE(ŶHT ) =
1

nrs

nrs∑
s=1

(
ŶHT (s)− Y

)2
(4.1)
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AMSE(ŶHT ) =
1

nrp

nrp∑
p=1

MSE(ŶHT )(p) (4.2)

where MSE(ŶHT )(p) is MSE of HT-estimator for pth spatial population out of 5000. Let

AMSEsrs and AMSEsp denote AMSE’s of HT-estimator under SRS and spatially balanced

sampling designs respectively. Relative values of AMSE’s, given by

AMSEsp

AMSEsrs

are reported in Tables 4.2, 4.3 and 4.4 for highly clustered, clustered and spars spatial

frames respectively. Measure of spatial balance for spatially balanced sampling methods

are not reported here, they are expected be same as in simulation study of Benedetti

et al. (2017b), because it only depends on the spatial configuration of population units

i.e. spatial frame.

From Tables 4.2, 4.3 and 4.4, results show that PWD design is the most efficient design

in terms of AMSE of HT-estimator under all the scenarios of equal probability sampling

considered in this simulation study. For comparison of other sampling methods, let us

consider first the populations with linear spatial trend. GRTS is always least efficient

among GRTS, LPMs, SCPS and DBSS. It gains efficiency with sample size and spatial

correlation and it is more efficient than BSS for some cases with large values of sample

size and spatial correlation in this study. For the highly clustered spatial frame with

populations having medium and high spatial autocorrelation, DBSS is the second most

efficient design (after PWD) followed by SCPS design, while BSS is the second most effi-

cient for low spatial autocorrelation followed by DBSS. LPMs tend to be less efficient than

SCPS, they gain efficiency relative to SCPS as sample size increases. Moving from highly

clustered to clustered spatial frame, BSS takes over the place of DBSS as second most

efficient design for populations with medium (in addition to low) spatial autocorrelation

for smaller sample sizes, and for all the sample sizes when moving further from clustered

to sparse spatial frame. Similarly, when spatial clustering of population units decreases,

LPMs gain efficiency against SCPS more quickly; efficiency of LPM2 against LM1 in-

creases, even LPM2 is more efficient than LPM1 for smaller sample sizes (n = 4, 12, 20)

under sparse spatial frame. Whereas LPM1 and LPM2 tend to be equally efficient for

larger sample size.

Now, let us consider populations with no spatial trend. For highly clustered spatial frame,

LPM1 tend to be the second most efficient design (after PWD) for smaller sample sizes
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(n = 4, 12), whereas DBSS takes over this place as sample size and spatial autocorrelation

become larger. LPM1 tends to be better than SCPS for medium values of spatial auto-

correlation and less efficient for high values. The three designs, LPMs, SCPS and DBSS

tend to be equally efficient for low values of spatial autocorrelation, regardless of samples

size. When moving from highly clustered to clustered and sparse spatial frames, GRTS,

LPMs, SCPS and DBSS are approximately equally efficient for populations with low and

medium spatial autocorrelation, whereas for populations with high spatial autocorrela-

tion SCPS design tend to be second most efficient design (after PWD) and it becomes

approximately equally efficient to DBSS as the sample size increases.

For binary responses, the three methods LPM1, SCPS and DBSS are more efficient than

GRTS and BSS, these three methods are approximately equally efficient. However as

sample size gets larger, SCPS and LPM1 tend to loose their efficiencies as compared to

DBSS for highly clustered and clustered spatial frames and SCPS looses its efficiency

more quickly as compared to LPM1. For sparse spatial frame, only LPM1 tends to loose

its efficiency as compared to both SCPS and DBSS as sample size increases.

To summarise, spatially balanced sampling is better choice against SRS when there is

knowledges about presence of positive spatial autocorrelation in study population. Fur-

ther information about spatial structure of population units and study variable can be

helpful in choosing an appropriate spatially balanced design for the given study popula-

tion. In case of equal probability sampling, PWD is the most efficient design which is not

applicable when πps sampling is required. For very large populations, this design may lead

to computational disadvantage over other designs, see Benedetti and Piersimoni (2017) for

details. Apart from PWD, other spatially balanced sampling methods considered here are

able to select samples with unequal fixed inclusion probabilities. While comparing these

methods under equal probability sampling, DBSS outperforms others when there exists

spatial trend with strong spatial correlation in the population, whereas BSS is better than

DBSS when spatial correlation is weak. For populations with no spatial trend, when there

exist strong spatial correlation and sample size is large (e.g. such that f ≥ 0.05) DBSS

is better than others; when sample size is not large LPM1 and SCPS are more efficient

than DBSS for clustered and sparse popuations respectively.
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Table 4.2: Relative values of AMSE’s of HT-estimator under different sampling designs
with respect to SRS, for different sample sizes (n) from highly clustered populations with
low, medium and high spatial autocorrelations.

No spatial trend Linear spatial trend Binary responses
n z1 z2 z3 z4 z5 z6 y(0.1) y(0.3) y(0.5)

4

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.000 0.990 0.874 0.652 0.650 0.619 0.942 0.915 0.909
BSS 1.000 0.996 0.926 0.412 0.411 0.388 0.964 0.954 0.951
LPM1 1.000 0.988 0.816 0.506 0.504 0.457 0.919 0.876 0.867
LPM2 1.000 0.989 0.829 0.493 0.491 0.447 0.923 0.884 0.876
SCPS 0.999 0.989 0.819 0.446 0.444 0.397 0.920 0.879 0.870
DBSS 1.000 0.988 0.815 0.412 0.409 0.361 0.917 0.877 0.867
PWD 0.999 0.967 0.704 0.322 0.314 0.243 0.858 0.817 0.802

12

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 0.999 0.970 0.706 0.448 0.440 0.372 0.852 0.797 0.786
BSS 1.000 0.996 0.908 0.297 0.296 0.267 0.957 0.940 0.937
LPM1 1.000 0.959 0.555 0.315 0.304 0.201 0.774 0.692 0.677
LPM2 1.000 0.960 0.576 0.317 0.307 0.209 0.785 0.707 0.692
SCPS 1.000 0.961 0.562 0.307 0.297 0.194 0.778 0.698 0.683
DBSS 0.999 0.960 0.562 0.302 0.292 0.190 0.778 0.698 0.683
PWD 0.999 0.883 0.346 0.245 0.217 0.083 0.627 0.539 0.524

20

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.000 0.952 0.611 0.376 0.364 0.275 0.797 0.729 0.715
BSS 1.000 0.994 0.906 0.277 0.276 0.245 0.957 0.939 0.935
LPM1 0.999 0.930 0.467 0.303 0.285 0.167 0.711 0.624 0.608
LPM2 0.999 0.934 0.491 0.302 0.285 0.172 0.726 0.643 0.628
SCPS 0.999 0.936 0.488 0.299 0.284 0.168 0.725 0.641 0.625
DBSS 0.999 0.931 0.466 0.287 0.270 0.151 0.712 0.626 0.609
PWD 0.997 0.847 0.323 0.285 0.247 0.116 0.597 0.512 0.496

32

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 0.999 0.932 0.538 0.325 0.308 0.205 0.749 0.673 0.659
BBS 1.000 0.993 0.895 0.269 0.267 0.235 0.952 0.930 0.927
LPM1 0.998 0.893 0.404 0.287 0.261 0.135 0.659 0.571 0.554
LPM2 0.998 0.903 0.426 0.285 0.261 0.137 0.676 0.589 0.573
SCPS 0.998 0.905 0.419 0.285 0.261 0.136 0.671 0.585 0.569
DBSS 0.998 0.896 0.395 0.274 0.248 0.119 0.655 0.567 0.550
PWD 0.993 0.811 0.282 0.259 0.214 0.079 0.559 0.472 0.456

44

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 0.998 0.915 0.499 0.308 0.288 0.183 0.721 0.642 0.627
BBS 0.999 0.994 0.896 0.255 0.253 0.221 0.953 0.932 0.928
LPM1 0.997 0.865 0.367 0.273 0.241 0.117 0.625 0.539 0.523
LPM2 0.997 0.878 0.388 0.271 0.242 0.120 0.643 0.558 0.541
SCPS 0.997 0.880 0.385 0.268 0.240 0.117 0.641 0.556 0.539
DBSS 0.997 0.869 0.355 0.258 0.227 0.099 0.620 0.532 0.515
PWD 0.992 0.788 0.267 0.247 0.198 0.070 0.539 0.455 0.439
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Table 4.3: Relative values of AMSE’s of HT-estimator under different sampling designs
with respect to SRS, for different sample sizes (n) from clustered populations with low,
medium and high spatial autocorrelation.

No spatial trend Linear spatial trend Binary responses
n z1 z2 z3 z4 z5 z6 y(0.1) y(0.3) y(0.5)

4

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.000 0.994 0.891 0.539 0.538 0.513 0.954 0.927 0.921
BBS 1.000 0.997 0.936 0.382 0.381 0.364 0.974 0.959 0.955
LPM1 1.000 0.994 0.842 0.472 0.471 0.434 0.937 0.896 0.886
LPM2 1.000 0.994 0.853 0.483 0.482 0.448 0.940 0.903 0.893
SCPS 1.000 0.994 0.846 0.444 0.442 0.406 0.939 0.899 0.888
DBSS 1.000 0.994 0.841 0.396 0.395 0.357 0.936 0.895 0.886
PWD 0.998 0.979 0.709 0.304 0.300 0.233 0.864 0.824 0.811

12

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.000 0.982 0.750 0.397 0.393 0.340 0.883 0.831 0.819
BSS 1.000 0.997 0.919 0.275 0.274 0.253 0.967 0.948 0.943
LPM1 1.001 0.979 0.647 0.324 0.320 0.244 0.834 0.761 0.745
LPM2 0.999 0.980 0.667 0.322 0.318 0.246 0.844 0.775 0.760
SCPS 1.000 0.981 0.656 0.306 0.302 0.226 0.839 0.768 0.753
DBSS 1.000 0.979 0.641 0.287 0.283 0.204 0.832 0.758 0.742
PWD 0.999 0.941 0.485 0.248 0.236 0.130 0.731 0.651 0.633

20

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.000 0.973 0.679 0.351 0.345 0.274 0.844 0.781 0.768
BSS 1.000 0.998 0.923 0.264 0.263 0.241 0.969 0.951 0.947
LPM1 1.000 0.964 0.559 0.302 0.293 0.197 0.778 0.697 0.681
LPM2 1.000 0.967 0.583 0.300 0.292 0.200 0.792 0.715 0.699
SCPS 1.000 0.967 0.574 0.291 0.283 0.189 0.788 0.710 0.693
DBSS 0.999 0.965 0.556 0.275 0.268 0.169 0.779 0.697 0.680
PWD 0.999 0.921 0.430 0.246 0.228 0.110 0.685 0.602 0.585

32

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.000 0.962 0.616 0.311 0.303 0.221 0.805 0.735 0.721
BSS 1.001 0.999 0.918 0.248 0.248 0.225 0.967 0.948 0.943
LPM1 1.000 0.945 0.492 0.278 0.265 0.159 0.729 0.645 0.629
LPM2 1.000 0.949 0.511 0.273 0.262 0.159 0.743 0.661 0.645
SCPS 1.000 0.953 0.503 0.271 0.261 0.155 0.740 0.657 0.640
DBSS 1.000 0.946 0.482 0.256 0.244 0.135 0.726 0.641 0.623
PWD 0.998 0.897 0.382 0.239 0.216 0.096 0.644 0.562 0.543

44

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 0.998 0.951 0.567 0.288 0.277 0.186 0.774 0.699 0.683
BSS 0.999 0.998 0.911 0.245 0.245 0.220 0.964 0.943 0.938
LPM1 0.999 0.926 0.443 0.268 0.252 0.138 0.692 0.607 0.590
LPM2 0.998 0.932 0.463 0.266 0.250 0.140 0.707 0.624 0.607
SCPS 0.998 0.938 0.452 0.264 0.250 0.136 0.703 0.617 0.600
DBSS 0.998 0.928 0.432 0.252 0.236 0.119 0.688 0.601 0.584
PWD 0.996 0.876 0.344 0.239 0.211 0.086 0.612 0.529 0.511
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Table 4.4: Relative values of AMSE’s of HT-estimator under different sampling designs
with respect to SRS, for different sample sizes (n) from sparse populations with low,
medium and high spatial autocorrelation.

No spatial trend Linear spatial trend Binary responses
n z1 z2 z3 z4 z5 z6 y(0.1) y(0.3) y(0.5)

4

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.000 0.998 0.915 0.613 0.612 0.593 0.965 0.946 0.942
BSS 1.000 0.999 0.950 0.408 0.407 0.394 0.980 0.969 0.966
LPM1 1.000 0.998 0.879 0.550 0.549 0.520 0.952 0.923 0.916
LPM2 1.000 0.998 0.886 0.527 0.526 0.499 0.954 0.927 0.921
SCPS 1.000 0.999 0.874 0.486 0.486 0.455 0.950 0.920 0.913
DBSS 1.000 0.999 0.881 0.444 0.444 0.415 0.953 0.924 0.917
PWD 1.000 0.996 0.824 0.326 0.325 0.281 0.928 0.893 0.884

12

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.000 0.994 0.814 0.453 0.451 0.408 0.916 0.879 0.871
BSS 1.001 0.999 0.935 0.294 0.293 0.276 0.974 0.959 0.956
LPM1 1.000 0.992 0.714 0.371 0.369 0.301 0.871 0.814 0.803
LPM2 1.000 0.993 0.726 0.359 0.357 0.292 0.877 0.823 0.811
SCPS 1.000 0.994 0.703 0.328 0.326 0.255 0.867 0.808 0.795
DBSS 1.000 0.993 0.709 0.317 0.315 0.246 0.869 0.812 0.800
PWD 1.001 0.988 0.635 0.270 0.266 0.181 0.833 0.764 0.751

20

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.000 0.989 0.754 0.391 0.388 0.331 0.885 0.838 0.829
BSS 1.000 0.999 0.938 0.273 0.273 0.255 0.975 0.961 0.957
LPM1 1.000 0.986 0.631 0.326 0.323 0.236 0.824 0.757 0.744
LPM2 1.001 0.987 0.644 0.319 0.315 0.232 0.831 0.767 0.753
SCPS 1.000 0.987 0.617 0.298 0.295 0.204 0.818 0.750 0.735
DBSS 1.001 0.987 0.623 0.289 0.286 0.197 0.822 0.753 0.739
PWD 1.000 0.972 0.529 0.259 0.252 0.144 0.768 0.690 0.673

32

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.000 0.984 0.689 0.336 0.331 0.260 0.849 0.794 0.783
BSS 0.999 0.999 0.930 0.259 0.258 0.239 0.971 0.955 0.952
LPM1 1.000 0.978 0.552 0.297 0.291 0.188 0.773 0.701 0.687
LPM2 1.000 0.979 0.567 0.294 0.288 0.188 0.782 0.712 0.698
SCPS 1.000 0.979 0.537 0.277 0.271 0.164 0.767 0.692 0.677
DBSS 1.000 0.978 0.541 0.269 0.263 0.157 0.771 0.695 0.680
PWD 0.999 0.952 0.440 0.251 0.240 0.116 0.704 0.623 0.607

44

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.001 0.980 0.648 0.324 0.319 0.238 0.825 0.765 0.753
BSS 1.000 0.998 0.929 0.255 0.254 0.235 0.971 0.955 0.952
LPM1 1.001 0.969 0.501 0.283 0.275 0.162 0.738 0.663 0.648
LPM2 1.001 0.969 0.516 0.281 0.273 0.162 0.748 0.674 0.660
SCPS 1.001 0.970 0.489 0.270 0.263 0.146 0.734 0.657 0.641
DBSS 1.000 0.969 0.488 0.262 0.255 0.138 0.735 0.657 0.641
PWD 0.999 0.937 0.396 0.249 0.234 0.103 0.668 0.586 0.570
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4.3 Epsem by auxiliary and spatial balancing

Definitions of both auxiliary and spatial balance (from Eqs. (1.9) and (1.12) respec-

tively) involve fixed first-order inclusion probabilities only. In order to achieve respective

balance, both designs manipulate second-order inclusion probabilities. Manipulation by

spatial sampling designs is relatively more explicit which aims to assign zero or very

small second-order inclusion probabilities to the nearby units in the space. Grafström

and Lundström (2013) suggested that spatially balanced samples are also balanced (with

respect to auxiliary variables) under certain conditions on auxiliary variables. In general,

spatial and auxiliary balancing may not be the same and simply requiring both equations

to satisfy may not be feasible. Let consider a toy example below:

Example 4.1. Let U = {1, 2, 3}. Let xi = i, for i = 1, 2, 3, and X = 6. Suppose

the sample s is of the size 2. For spatial balancing, let d(xi, xj) = 0 if xi = xj and 1

otherwise. Let s = (1, 3). Based on definition of spatial balance in Eq. (1.12), α1 = {1, 2}
and α3 = {2, 3}, so that m1 = m3 = 1 and m2 = 2. For the sample to be spatially

balanced, we must have ν1 = π1 + π2/2 = ν3 = π3 + π2/2, i.e. π1 = π3. Similarly, for

s = (1, 2) to be spatially balanced, we must have π1 = π2 as well. Therefore, the only

spatially balanced design is Pr(1, 2) = Pr(1, 3) = Pr(2, 3) = 1/3 with πi ≡ 2/3. However,

given πi ≡ 2/3, there is only one auxiliary balanced sample s = (1, 3), so that auxiliary

balance design with πi ≡ 2/3 does not exist.

When both types of balanced designs are feasible, achieving one type of balance may

compromise the other. In the following this aspect of spatial and auxiliary balancing is

investigated under very simple common mean model and a linear regression model (with

spatially correlation errors).

4.3.1 Common mean model

A common mean model with constant error variance is given by, yi = µ+ϵi, where µ is the

common mean and ϵi’s are normally distributed random errors with mean 0 and variance

1. Considering auxiliary variable xi ≡ 1, although epsem is auxiliary balanced, it does

not imply epsem because there exist numerous auxiliary balanced designs. For instance,

let π1 = 1 and πi = (n− 1)/(N − 1) for all i ̸= 1, where the first element is selected with

probability one and epsem of size n− 1 is applied to the rest of the population.

On the other hand, spatial balancing can lead to epsem, given a particular distance metric.
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Let xi = i, for i ∈ U , or the real spatial coordinates. Assume distance d(xi, xj) = 0 if

xi = xj and 1 otherwise. For any s and i ∈ s: αi = {i} ∪ (U \ s), such that mj = 1 for

any j ∈ s, and mj = n for any j ̸∈ s. For s to be spatial balanced, it must be πi = πk for

any i ̸= k ∈ s. For a spatially balanced design, this must hold for any s, and it must be

epsem.

One may argue that epsem is spatially and auxiliary balanced, therefore it is equally

efficient to the SRS in terms of AMSE of HT-estimator under the common mean model

with independent errors. According to (Zhang, 2008), model expectation of the sampling

variance (i.e. AMSE) of the estimator is defined as first-order Bayes risk, and model

variance of the sampling variance is defined as second-order Bayes risk. Any two designs

with the same AMSE may still differ in terms of their second-order Bayes risks. The larger

the second-order Bayes risk, the less one has control over the actual sampling variance

for a given population. In the following it is shown that SRS is the spatial and auxiliary

balanced design with minimum first- and second-order Bayes risk under the common mean

model with independent errors.

Result 4.1. SRS is the spatial and auxiliary balanced design with minimum first- and

second-order Bayes risks under the common mean model with independent errors.

Let p(s) is any spatial and auxiliary balanced design, possibly with unequal πi’s, under

the homogeneous model with independent errors, sampling variance of HT-estimator for

population total can be written as

Vp(ŶHT ) =
∑
k∈U

ake
2
k + 2

∑
i<j∈U

aijeiej

where ak = 1/πk − 1, and aij = πij/πiπj − 1. Let Em and Vm denote expectation and

variance under the model respectively. Second-order Bayes risk of HT-estimator under

design p(s) and model can be written as

Vm

(
Vp(ŶHT )

)
= Em

(
Vp(ŶHT )

2
)
+
[
Em

(
Vp(ŶHT )

)]2
such that

Em

(
Vp(ŶHT )

2
)
=
∑
k∈U

a2kEm(e
4
k) + 2

∑
k<l∈U

akalEm(e
2
ke

2
l ) + 4

∑
i<j∈U

a2ijEm(e
2
i e

2
j)

and

Em

(
Vp(ŶHT )

)
=
∑
k∈U

akEm(e
2
k)
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where all the other cross-product terms vanishes provided uncorrelated regression errors.

When πi ≡ π, it implies
∑

i ̸=j∈U a2ij =
∑

i̸=j∈U π2
ij/π

4−2
∑

i̸=j∈U πij/π
2+N(N−1), where∑

i̸=j∈U πij = n(n− 1) under fixed-size sampling without replacement. Let µ4k = Em(e
4
k)

under the homogeneous model with independent errors. The second-order Bayes risk of

a strategy consisting of ŶHT and epsem is given by

Vm

(
Vp(ŶHT )

)
=
∑
k∈U

(N/n− 1)2(µ4k − σ4) + 4
∑

i<j∈U

(πijN
2/n2 − 1)2σ4

which is minimised at πij = n(n−1)/N(N−1) for fixed-size sampling without replacement.

Previously in Section 4.2.2, different spatially balanced sampling methods are compared

with SRS with respect to AMSE of HT-estimator under the common mean models (µ = 5)

with spatially correlated random errors. The comparison is extended here and these

methods are compared with respect to second-order Bayes risk of HT-estimator under the

same models. Results are shown in Tables 4.5, 4.6 and 4.7 for highly clustered, clustered

and spars spatial frames respectively.

The results shows that SRS has the smallest second-order Bayes risk, this is just a con-

firmation of Result 4.1, as all the populations are simulated under common mean model

with µ = 5 and σ = 1 and with correlated errors. One noticeable result is that PWD

often has much larger values of second-order Bayes risk relative to other methods and it

remains larger for low and medium spatial correlations across all the samples sizes and

spatial frames. Whereas for high spatial correlation, it decreases with sample size and

tend to be same as those for other methods, specially for populations with linear spatial

trend. In general, values of second-order Bayes risk (relative to those under SRS) increases

with values of spatial correlation; as sample size increases, these values tend to increase

for small values of spatial correlation and they tend to decrease for large values of spatial

correlation. Another result which does not go with the general pattern of the results

that relative values of second-order Bayes risk for BSS decreases (when populations have

spatial trend and spatial correlation is high) with much slower rate such that they remain

considerably larger than those under others sampling methods.
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Table 4.5: Relative values of second-order Bayes risk under different sampling designs
with respect to SRS, for different sample sizes (n) from highly clustered populations with
low, medium and high spatial autocorrelation.

No spatial trend Linear spatial trend Binary responses
z1 z2 z3 z4 z5 z6 y(0.1) y(0.3) y(0.5)

4

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.089 1.190 12.636 1.910 3.631 30.918 3.143 8.476 9.701
BSS 1.028 1.218 21.668 1.355 2.242 24.855 3.439 12.617 14.972
LPM1 1.014 1.277 21.940 1.620 2.871 25.775 4.782 15.214 16.857
LPM2 1.050 1.256 18.472 1.503 2.580 22.627 4.470 12.598 13.759
SCPS 1.084 1.391 23.886 1.663 2.867 23.841 5.075 16.217 17.961
DBSS 1.050 1.319 24.305 1.533 2.585 21.197 4.934 16.526 18.480
PWD 16.134 26.741 168.305 4.518 9.215 57.849 132.584 141.400 140.967

12

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.111 1.756 18.986 1.926 3.025 14.621 11.557 14.355 13.350
BSS 1.044 1.335 24.821 1.661 2.860 24.642 5.675 13.977 14.311
LPM1 1.262 2.635 24.857 1.877 3.001 8.568 24.706 21.602 18.422
LPM2 1.244 2.353 22.879 1.762 2.742 7.924 21.885 19.655 16.927
SCPS 1.309 2.657 23.316 1.882 2.985 7.337 22.781 20.472 17.744
DBSS 1.225 2.496 23.215 1.768 2.827 7.603 21.801 19.893 17.359
PWD 36.512 109.916 104.760 7.079 18.801 16.632 123.587 126.016 126.505

20

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.307 2.273 19.952 1.730 2.636 11.081 21.206 16.760 14.481
BSS 1.068 1.264 24.316 1.601 2.732 30.247 6.782 13.726 14.097
LPM1 1.557 3.484 21.320 1.809 2.826 7.734 33.626 20.378 16.875
LPM2 1.474 3.000 19.325 1.673 2.557 6.982 28.498 18.654 15.622
SCPS 1.767 3.418 19.690 1.917 2.893 7.516 29.738 18.906 16.067
DBSS 1.518 3.282 19.282 1.704 2.553 6.295 29.855 18.958 15.752
PWD 28.622 57.126 36.993 5.863 10.923 9.656 80.533 57.175 50.607

32

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.419 3.046 20.400 1.972 2.488 6.905 26.311 17.199 14.827
BSS 1.091 1.389 25.218 1.754 2.654 22.956 7.271 13.669 14.102
LPM1 1.740 4.478 17.887 1.945 2.352 3.991 33.490 17.821 14.680
LPM2 1.622 3.718 16.933 1.855 2.256 3.900 29.824 16.913 14.140
SCPS 2.149 4.456 17.239 2.008 2.490 3.893 31.142 17.347 14.555
DBSS 1.724 4.341 16.393 1.871 2.243 3.356 31.322 16.963 14.025
PWD 23.988 43.498 25.932 5.120 6.883 3.795 61.701 37.249 32.733

44

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.584 3.271 20.985 1.979 2.823 5.889 29.673 17.609 15.372
BSS 1.035 1.335 27.745 1.730 3.017 23.564 7.820 14.070 15.021
LPM1 1.946 4.584 16.415 1.927 2.473 3.400 33.818 16.755 14.210
LPM2 1.767 3.930 16.102 1.860 2.403 3.215 30.690 16.257 13.996
SCPS 2.397 4.510 16.498 2.010 2.574 3.263 32.311 16.704 14.656
DBSS 2.008 4.470 15.354 1.888 2.386 2.678 32.343 16.126 13.696
PWD 18.359 27.764 20.196 4.876 6.607 3.408 51.242 27.653 25.340

110



4.3. EPSEM BY AUXILIARY AND SPATIAL BALANCING

Table 4.6: Relative values of second-order Bayes risk under different sampling designs
with respect to SRS, for different sample sizes (n) from clustered populations with low,
medium and high spatial autocorrelation.

No spatial trend Linear spatial trend Binary responses
n z1 z2 z3 z4 z5 z6 y(0.1) y(0.3) y(0.5)

4

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.085 1.131 13.333 1.786 2.895 25.680 2.736 8.335 10.182
BBS 1.070 1.132 15.524 1.256 1.810 22.078 2.482 8.561 11.350
LPM1 1.090 1.207 18.905 1.549 2.298 23.256 4.072 12.148 14.362
LPM2 1.074 1.257 15.805 1.333 1.933 19.267 3.598 10.139 11.691
SCPS 1.167 1.295 18.794 1.641 2.359 22.972 4.225 12.067 13.832
DBSS 1.147 1.255 20.605 1.510 2.219 21.875 4.038 13.080 15.686
PWD 15.895 23.163 93.494 4.839 8.441 44.352 90.331 95.028 99.590

12

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.119 1.442 18.275 2.070 3.006 18.309 9.102 12.421 12.575
BBS 1.041 1.132 17.666 1.606 2.188 23.507 3.729 9.626 11.582
LPM1 1.251 1.695 23.038 1.853 2.574 13.839 15.083 16.868 15.826
LPM2 1.204 1.599 20.787 1.715 2.345 12.452 12.961 14.989 14.434
SCPS 1.373 1.880 21.198 1.922 2.442 12.335 13.502 15.709 15.264
DBSS 1.213 1.708 22.694 1.726 2.391 11.621 14.414 16.521 15.887
PWD 29.317 58.466 100.811 7.067 12.820 23.635 96.454 104.998 101.273

20

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.315 1.729 21.677 2.080 2.918 14.594 14.782 14.299 13.956
BBS 1.043 1.146 19.681 1.785 2.388 24.094 4.442 9.886 11.812
LPM1 1.446 2.175 22.387 1.946 2.592 10.099 21.607 16.758 15.208
LPM2 1.338 1.931 20.706 1.823 2.389 9.530 18.453 15.205 14.024
SCPS 1.656 2.229 21.138 2.063 2.577 9.389 19.419 16.051 14.831
DBSS 1.483 2.070 22.007 1.876 2.424 8.341 20.360 16.389 15.070
PWD 28.061 53.459 50.116 5.746 9.679 8.725 70.853 57.803 54.187

32

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.420 2.116 19.739 1.721 2.520 11.617 17.697 15.018 13.675
BBS. 1.058 1.148 18.317 1.521 2.170 23.540 4.491 9.786 11.451
LPM1 1.713 2.810 17.485 1.642 2.150 7.205 23.118 15.211 13.151
LPM2 1.607 2.471 16.807 1.589 2.046 6.889 20.270 14.513 12.864
SCPS 2.084 2.996 16.841 1.757 2.258 6.975 21.695 15.317 13.298
DBSS 1.711 2.783 17.288 1.595 2.048 5.780 22.548 15.281 13.259
PWD 20.827 35.854 28.138 4.390 6.789 6.475 50.635 36.685 31.914

44

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.546 2.466 20.402 1.886 2.563 12.324 19.996 14.871 13.545
BBS 1.054 1.159 19.551 1.663 2.328 29.752 4.615 9.484 11.307
LPM1 2.002 3.190 16.234 1.799 2.145 7.103 23.636 13.979 12.201
LPM2 1.826 2.783 15.920 1.710 2.090 7.058 21.397 13.640 11.978
SCPS 2.439 3.484 16.050 1.904 2.342 6.959 23.209 14.391 12.470
DBSS 2.038 3.193 15.893 1.789 2.079 5.792 23.097 13.938 12.181
PWD 17.963 27.890 22.290 3.999 5.279 5.494 42.239 27.868 24.855
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Table 4.7: Relative values of second-order Bayes risk under different sampling designs with
respect to SRS, for different sample sizes (n) from sparse populations with low, medium
and high spatial autocorrelation.

No spatial trend Linear spatial trend Binary responses
n z1 z2 z3 z4 z5 z6 y(0.1) y(0.3) y(0.5)

4

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.086 1.169 8.643 2.022 2.437 16.021 2.136 5.752 6.696
BBS 1.103 1.149 9.308 1.322 1.512 10.958 1.938 5.717 6.942
LPM1 1.077 1.112 10.128 1.695 1.998 14.618 2.578 6.864 7.862
LPM2 1.101 1.160 8.899 1.479 1.695 12.168 2.436 6.118 6.814
SCPS 1.116 1.177 11.573 1.747 2.002 13.770 2.819 7.817 8.938
DBSS 1.081 1.159 11.500 1.535 1.827 12.723 2.712 7.664 8.851
PWD 10.376 11.885 46.863 3.803 4.697 21.582 61.247 44.706 40.055

12

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.157 1.272 11.939 2.173 2.585 14.758 5.245 7.575 7.733
BBS 1.021 1.136 11.910 1.639 1.961 15.716 2.764 6.391 7.180
LPM1 1.176 1.410 14.631 1.821 2.136 10.602 8.419 10.075 9.579
LPM2 1.192 1.330 13.761 1.723 1.980 10.010 7.585 9.594 9.168
SCPS 1.329 1.573 15.541 1.872 2.136 9.264 9.202 11.021 10.612
DBSS 1.250 1.399 15.837 1.771 2.100 9.535 8.609 10.879 10.492
PWD 6.344 7.246 24.851 2.726 3.282 9.928 24.415 21.818 20.012

20

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.268 1.354 13.020 2.118 2.480 12.551 7.206 9.066 8.865
BBS 1.040 1.062 12.169 1.681 1.947 16.301 3.039 6.670 7.502
LPM1 1.364 1.578 13.765 1.729 2.012 7.818 11.122 10.928 9.967
LPM2 1.339 1.531 13.203 1.718 1.945 7.311 10.234 10.448 9.681
SCPS 1.547 1.836 14.188 1.838 2.083 6.723 12.216 11.574 10.648
DBSS 1.440 1.591 14.951 1.779 2.002 6.863 11.611 11.801 10.854
PWD 12.592 15.286 25.400 3.701 4.446 7.453 38.118 27.623 24.562

32

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.461 1.648 13.918 1.866 2.128 6.483 9.964 9.747 9.416
BBS 1.086 1.087 12.165 1.534 1.835 10.888 3.283 6.411 7.167
LPM1 1.633 2.020 12.551 1.644 1.866 3.688 14.475 10.627 9.456
LPM2 1.576 1.891 12.317 1.579 1.776 3.555 13.342 10.310 9.257
SCPS 1.972 2.388 12.644 1.696 1.939 3.102 15.236 11.144 9.961
DBSS 1.649 2.026 13.255 1.632 1.802 3.160 14.666 11.002 10.024
PWD 19.509 23.151 21.054 4.451 5.617 3.821 42.097 27.529 23.780

44

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.607 1.823 13.210 2.325 2.613 7.757 11.815 10.431 9.381
BBS 1.076 1.081 12.454 1.950 2.294 15.146 3.444 6.995 7.417
LPM1 2.008 2.389 11.240 2.148 2.254 3.949 16.515 11.131 9.388
LPM2 1.823 2.226 11.103 2.086 2.200 3.982 15.364 10.774 9.119
SCPS 2.491 2.889 11.188 2.240 2.397 3.545 17.387 11.372 9.661
DBSS 1.991 2.453 11.665 2.129 2.265 3.467 16.675 11.449 9.753
PWD 16.971 20.570 15.059 4.661 5.687 3.271 36.802 23.267 18.866
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4.3.2 Linear regression model

Now consider the linear regression model given by yi = µi+ϵi, where x
⊤
i β is linear predic-

tor and ϵi is random error term. When the errors are independent with constant variance,

the AMSE of HT-estimator is minimum under balanced equal probability sampling design

and spatial balancing in addition to auxiliary balance (i.e. doubly balanced sampling) is

expected to add nothing in terms of efficiency. As pointed out in literature and discussed

in previous sections, errors can be correlated in reality. Therefore, spatial balancing in

addition to auxiliary balance is expect to improve the AMSE in this case. As mentioned

earlier, two types of balance (auxiliary and spatial) are not same in general. There might

be compromise between the two under a doubly balanced design. In order to investigate

this, simulation study from Section 4.2.2 is partly extend (using only sparse spatial frame

and sample sizes n = 20, 44) for the linear regression model with spatially correlated

errors given by yi = 1 + xiβ + ϵi, where xi = i/N .

For the spatial frame with sparse population units, twelve spatial populations zij(i =

1, 2, 3, 4; j = 1, 2, 3) are generated, with three level of spatial autocorrelation low, medium,

hight and four values of regression coefficient β to simulate different levels of variation

explained (10%, 30%, 50%, 70%) by the linear predictor of the model. To computer the

first- (i.e. AMSE) and second-order Bayes risks of HT-estimator under the given model,

5000 populations are generated and 5000 equal probability samples are selected from each

population under the sampling designs including auxiliary, spatially and doubly balanced

sampling, given by

• CUBE: Balanced sampling with respect to auxiliary variable using cube method,

• LPMX : Balance with respect to auxiliary variable using LPM1,

• LPM: Spatially balance sampling using LPM1,

• LCUBE: Doubly balanced sampling using local cube method.

Two different sample sizes are considered n = (20, 44). Values of first- and second-order

Bayes risks relative to those under SRS are shown in Tables 4.8 and 4.9 respectively.

First row in the Table 4.8, denoted by V(X̂HT ), is auxiliary balance achieved by sampling

designs relative that of SRS. The results for the AMSE’s shows that the most balanced

design is cube method, LPM method (i.e. LPMX) achieves some balance with respect to

auxiliary variable but less than cube method. Doubly balanced sampling design compro-

mise some auxiliary balance in order to achieve spatial balance, it may not be suitable
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when variation explained by the auxiliary variable is relatively high, for instance, for those

populations with low spatial autocorrelation i.e. z41 and z42. For auxiliary and doubly

balanced designs, second-order Bayes risk (from Table 4.9) tend to decrease as the pro-

portion of variation explained by the auxiliary variable increases, while values for LPM

do change in the same direction but are not very different for larger sample size.

Table 4.8: Relative values of AMSE’s with respect to SRS under auxiliary, spatial and
doubly balanced sampling designs, and linear regression model with correlated errors.

n = 20 n = 44
SRS CUBE LPMX LPM LCUBE SRS CUBE LPMX LPM LCUBE

V(X̂HT ) 1.000 0.046 0.056 0.994 0.060 1.000 0.022 0.029 1.038 0.031
z11 1.000 0.888 0.889 0.999 0.889 1.000 0.887 0.887 1.004 0.887
z12 1.000 0.887 0.887 0.987 0.884 1.000 0.886 0.887 0.975 0.874
z13 1.000 0.881 0.879 0.678 0.660 1.000 0.878 0.878 0.567 0.550
z21 1.000 0.728 0.731 0.998 0.732 1.000 0.727 0.728 1.010 0.728
z22 1.000 0.727 0.730 0.988 0.728 1.000 0.726 0.728 0.987 0.718
z23 1.000 0.714 0.715 0.740 0.539 1.000 0.712 0.714 0.657 0.448
z31 1.000 0.564 0.568 0.997 0.570 1.000 0.560 0.563 1.017 0.564
z32 1.000 0.563 0.567 0.990 0.567 1.000 0.560 0.563 0.999 0.555
z33 1.000 0.548 0.550 0.803 0.419 1.000 0.544 0.547 0.750 0.345
z41 1.000 0.365 0.372 0.996 0.374 1.000 0.357 0.361 1.025 0.362
z42 1.000 0.365 0.371 0.991 0.372 1.000 0.356 0.361 1.014 0.357
z43 1.000 0.352 0.358 0.877 0.278 1.000 0.344 0.348 0.860 0.224

Table 4.9: Relative values of second-order Bayes risk with respect to SRS under auxiliary,
spatial and doubly balanced sampling designs and linear regression model with correlated
errors.

n = 20 n = 44
SRS CUBE LPMX LPM LCUBE SRS CUBE LPMX LPM LCUBE

z11 1.000 2.820 3.062 1.345 3.115 1.000 2.947 3.798 2.052 3.505
z12 1.000 2.750 3.012 1.499 3.109 1.000 2.913 3.712 2.305 3.586
z13 1.000 3.372 3.615 13.075 8.327 1.000 3.867 4.437 13.051 8.712
z21 1.000 3.674 3.829 1.299 3.862 1.000 3.887 4.502 2.040 4.241
z22 1.000 3.574 3.715 1.427 3.774 1.000 3.843 4.428 2.295 4.195
z23 1.000 6.259 6.336 12.124 5.044 1.000 7.126 7.433 13.383 4.737
z31 1.000 3.375 3.483 1.262 3.490 1.000 3.605 4.029 2.038 3.826
z32 1.000 3.289 3.373 1.371 3.392 1.000 3.575 3.977 2.288 3.743
z33 1.000 7.983 7.939 10.684 3.335 1.000 8.967 9.110 12.895 2.706
z41 1.000 2.246 2.322 1.227 2.305 1.000 2.420 2.661 2.041 2.537
z42 1.000 2.205 2.263 1.319 2.251 1.000 2.415 2.639 2.285 2.477
z43 1.000 7.657 7.547 8.286 2.161 1.000 8.518 8.553 11.185 1.477
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4.4 Sampling from populations with negative spatial

autocorrelation

The phenomenon of negative spatial autocorrelation is not as common as its positive

version. Therefore, it has received relatively less attention, and literature is scant about

the treatment of negative spatial autocorrelation in spatial statistics. According to Griffith

and Arbia (2010), “Negative spatial autocorrelation refers to a geographic distribution of

values, or a map pattern, in which the neighbours of locations with large values have small

values, the neighbours of locations with intermediate values have intermediate values,

and the neighbours of locations with small values have large values”. Griffith (2011) and

Chun and Griffith (2018) studied impact of positive and negative spatial autocorrelations

on distributions of random variables respectively. Griffith and Arbia (2010) and Chun

and Griffith (2018) mentioned some examples of negative spatial autocorrelation from

literature.

In the context of socio-economic surveys, one may come across the situation when some

study variables are spatially correlated in positive sense while some others are suspected

to have negative spatial autocorrelation. Selecting a spatially balanced sample may com-

promise the efficiency of estimates for study variables with negative spatial autocorre-

lation. For such kind of surveys, one should be looking for a spatial sampling design

which achieves spatial balance but also minimize the efficiency loss for those variables

with negative spatial autocorrelation.

The efficiency of non-spatial sampling designs can be affected by either version (positive

or negative) of the spatial autocorrelation, as it can change the distributions of variables

under study. Almost all the spatially balanced sampling designs are motivated by the

phenomenon of positive spatial autocorrelation in the study populations. These designs

may not perform well or even under-perform as compared to non-spatial designs when

spatial populations exhibit negative spatial autocorrelation (Altieri and Cocchi, 2021).

In this section, some sampling schemes are proposed which use cube and local cube

algorithms (Deville and Tillé, 2004; Grafström and Tillé, 2013) and Moran eigenvector

spatial filtering specification of a spatial regression model (Griffith, 2003, 2019). Before

that bellow a spatial sampling design based on spatial entropy from literature is reviewed

which aims to take into account both versions of spatial autocorrelation.
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Spatial sampling using spatial entropy

Altieri and Cocchi (2021) proposed a weighting criteria, for SCPS spatially balanced sam-

pling design (Grafström et al., 2012), based on measure of spatial entropy. In general,

entropy is a heterogeneity measure for a random variable. In sampling theory, sampling

entropy is associated with a sampling design which measures the randomness of the sam-

ples under that design. Spatial entropy measures the heterogeneity of the random variable

in two-dimensional space. It is decomposed into two factors, one factor which is related

to spatial configuration of the population units is used to construct weights for the SCPS

design, for more details see the original article from Altieri and Cocchi (2021).

Altieri and Cocchi (2021) conducted a simulation study based on different artificial spa-

tial populations to compare spatially balanced sampling methods including LPM, SCPS,

PWD and the proposed spatial sampling design named as SPI (SCPS with weights based

on spatial entropy) with SRS. In the spatial populations, binary response variables (with

proportion of ones p = 0.25, 0.5) were simulated with different spatial structures includ-

ing regular (negative spatial autocorrelation), random (no spatial variation), compact

(strong positive spatial autocorrelation) and multi-cluster (weak positive spatial auto-

correlation). A regular grid of points was used as spatial configuration of population

units. Equal probability samples were selected with respect to three different sampling

fractions f = (0.01, 0.05, 0.10) under the sampling designs. The proposed SPI design

was the most efficient for populations with negative spatial autocorrelation and with no

spatial variation. The PWD was the most spatially balanced and the most efficient for

multi-clustered population under all the three sampling fractions. It was the most efficient

for the population with compact spatial structure only when the sampling fraction was

f = 0.01, while LPM and SCPS were more efficient than PWD when sampling fraction

was f = (0.05, 0.10), both being equally spatially balanced and equally efficient with

slight differences.

4.4.1 Spatial sampling using eigenvectors of modified SWM

For analysis of spatial data, two basic and commonly used regression models are autore-

gressive (AR) model and simultaneous autoregressive (SAR) model. They are also known

as spatial lag model and spatial error lag model respectively, given by

SA: y = ρMy +Xβ + ϵ

SAR: y = Xβ + (I− ρM)−1ϵ
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where M is row standardised spatial weight matrix (SWM), see Section 1.5.1, ρ is spa-

tial dependence parameter such that |ρ| < 1 and ϵ is vector of independently identically

distributed (iid) random errors under the standard normal distribution. Spectral decom-

position of the matrix M gives N orthogonal eigenvector and associated eigenvalues. Each

eigenvector represents a unique pattern which characterise the spatial dependence in the

response values, i.e. yi’s. Negative or positive sign eigenvalue tells the nature, while value

of the eigenvalue represents strength of the spatial autocorrelation associated with the

eigenvector.

Under the eigenvector spatial filtering (ESF) model specification (Griffith, 2003), a set of

synthetic proxy variables is added in the regression model as control variables in order

to account for spatially correlated error in the regression model. The proxy variables are

extracted as eigenvectors from spatial weight matrix M. Using ESF, spatial regression

model can be written as

y = Xβ + EkβE + ϵ (4.3)

where ϵ is vector of iid random errors under the standard normal distribution after spatial

autocorrelation being filtered out by adding eigenvectors Ek’s, as control variables, in the

mean function of regression model. There are N pairs of eigenvalues and eigenvectors

which can be large in number for large data set. Therefore, a two-step criteria is used to

selected relevant set of eigenvectors: first eigenvectors are selected such that |λ1/λN | >
0.25, where λ1 and λN are the smallest and largest eigenvalues of the matrix M; second,

further selection is done by fitting stepwise (backward or forward) linear regression.

Since eigenvectors with large negative eigenvalues characterise negative spatial autocor-

relation, therefore balanced sampling with respect to these eigenvectors is expected to

given protection against loss of efficiency for variables with negative spatial autocorrela-

tion. The idea for the proposed spatial sampling scheme is to select samples, using local

cube algorithm, which is spatially balanced with respect to spatial coordinates and bal-

anced with respect to spatial coordinates and the eigenvectors (associated with negative

spatial autocorrelation). Under this sampling scheme, it is expected that some efficiency

will be compromise for variables with positive spatial autocorrelation. Following three

sampling schemes are explored through a simulation study:

1. LCUBE(sp,E): Selecting samples spatially balanced with respect to spatial coordi-

nates and balanced with respect to eigenvectors associated with negative spatial

autocorrelation of the population,
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2. LCUBE(E,sp): Selecting samples spatially balanced with respect to spatial coordi-

nates and balanced with respect to eigenvector and spatial coordinates (in the order

they are written in the subscript, since landing phase of the local cube methods

drops the last variable to complete the sample selection),

3. CUBE(sp,E): Selecting samples balanced with respect to spatial coordinates and

eigenvectors using cube method.

4. CUBE(E,sp): Selecting samples balanced with respect to eigenvectors and spatial

coordinates using cube method.

4.4.2 Simulation study for the proposed spatial sampling schemes

In this simulation study, three spatial frames: highly clustered, clustered and sparse, are

considered. For each spatial frame, nine variables (or spatial populations) are simulated

each of size N = 400: six with positive (z1, ..., z6) and three with negative (z7, ..., z9)

spatial autocorrelation. Variables with positive spatial autocorrelation are simulated in

the similar manner as in simulation study from Section 4.2.2 with spatial trend. In order to

simulate variables with negative spatial autocorrelation, first a variable z was simulated

from normal distribution with mean 5 and unity standard deviation. Then, spatially

balanced samples of size 40, 120 and 200 were selected from each frame. Values of the z

variable for selected units were replaced by a value 10, which gave z7, z8, z9 for selected

values 40, 120 and 200 respectively. One realization for z7, z8, z9 for each of three spatial

frames is show in Figure 4.2.

From each spatial population, 5000 equal probability samples are selected with respect to

sampling fractions given by f = (0.05, 0.11) i.e. n = (20, 44). AMSE’s of HT-estimator of

population totals for each of nine study variables are computed in the same manner as in

the simulation study from Section 4.2.2. Relative values of AMSE’s under spatial sampling

design with respect to SRS are shown in Tables 4.10, 4.11 and 4.12 for the spatial frames

with highly clustered, clustered and sparse spatial configuration of population units.

Results from the Tables 4.10, 4.11 and 4.12 show that proposed sampling schemes tend

to be more efficient than spatial balanced sampling designs for populations with negative

spatial autocorrelation, but also compromise some efficiency for populations with positive

spatial autocorrelation. By increasing sample size, efficiency of the proposed sampling

schemes increases; compromise of efficiency tend to decrease for spatial population with

linear spatial trend, but it increase for populations with no spatial trend.
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Figure 4.2: Populations with negative spatial autocorrelations: reading from left to right,
top layer show z7, z8, z9 for sparse spatial frame, middle layer shows z7, z8, z9 for clustered
spatial frame and bottom layer show z7, z8, z9 for highly clustered spatial frame

One issue with the proposed sampling schemes which might not be acceptable that they

can be less efficient than SRS for populations with no spatial trend having low and medium

spatial autocorrelations. In this regard, two sampling schemes based on local cube method

seems to be less problematic as compared to those based on cube method. On other hand,

sampling schemes based on local cube method achieve lesser efficiency for the populations

with negative spatial autocorrelation.

A direct comparison with the spatial sampling method (denoted by SPI) from Altieri and

Cocchi (2021) may not be possible, as its implementation in R software is not available

until now, to our best knowledge. An indirect comparison might be possible by computing

the values of MSE’s relative to SRS from the simulation study conducted in the original

article, see Table 4.13. A brief description of the simulation already provided earlier in

this section. The results in Table 4.13 shows that SPI method is always better than SRS
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and spatially balanced sampling methods for populations with negative spatial autocorre-

lation. However, it compromise more in terms of efficiency for populations with positive

spatial autocorrelation as compared to proposed sampling strategies. For instance, per-

cent gain in efficiency as compared to spatially balanced sampling is computed, using Eq.

(4.4) for SPI spatial sampling method (where MSEsp denotes minimum MSE achieved by

spatially balanced designs) and proposed sampling schemes using Eq. (4.5). Results are

shown in Table 4.14. For populations with negative spatial spatial autocorrelation, maxi-

mum gain under SPI (as compared to spatially balanced sampling) is 48% and maximum

loss is 1449% (for population with positive spatial autocorrelation). For the proposed

sampling schemes, maximum gain is 26% while maximum loss is 362%.

Percent gain in efficiency =

(
1− MSESPI

MSEsp

)
× 100 (4.4)

Percent gain in efficiency =

(
1− AMSEproposed

AMSEPWD

)
× 100 (4.5)

The four proposed strategies are based on a heuristic idea of using eigenvector for spatial

sampling, a further exploration about them may provide better results. For instance,

selection of appropriate eigenvectors; usually a larger set of eigenvectors characterise neg-

ative spatial autocorrelation as compared to those which characterise positive spatial

autocorrelation. This was also evident from the simulation studies presented here. An

adjustment in the threshold |λ1/λN | > 0.25, or selection of particular eigenvectors based

on some known information about spatial pattern of the population units might be useful.
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Table 4.10: Relative AMSE’s for propose sampling strategies and spatial balanced design
with respect to SRS for highly clustered spatial populations

n z1 z2 z3 z4 z5 z6 z7 z8 z9

20

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 0.999 0.951 0.607 0.375 0.364 0.275 1.023 1.030 1.032
BBS 1.000 0.994 0.907 0.277 0.276 0.247 1.004 1.004 1.000
LPM1 0.999 0.929 0.463 0.303 0.286 0.167 1.037 1.043 1.043
LPM2 0.999 0.934 0.487 0.302 0.286 0.171 1.033 1.043 1.042
SCPS 0.999 0.935 0.484 0.299 0.284 0.168 1.035 1.042 1.038
DBSS 0.999 0.931 0.462 0.288 0.271 0.151 1.036 1.043 1.043
PWD 0.994 0.848 0.317 0.283 0.248 0.115 1.042 1.047 1.045
LCUBE(sp,E) 1.008 0.988 0.595 0.287 0.282 0.179 1.025 1.016 0.985
LCUBE(E,sp) 1.011 0.998 0.614 0.373 0.370 0.270 1.025 1.010 0.973
CUBE(sp,E) 1.010 1.041 0.957 0.285 0.293 0.264 0.998 0.981 0.946
CUBE(E,sp) 1.012 1.052 0.976 0.332 0.342 0.315 0.997 0.975 0.935

44

SRS.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS.1 0.998 0.914 0.496 0.308 0.288 0.183 1.037 1.057 1.067
BBS.1 1.000 0.994 0.899 0.255 0.253 0.223 1.004 1.005 1.001
LPM1.1 0.999 0.864 0.364 0.273 0.241 0.117 1.066 1.096 1.102
LPM2.1 0.998 0.877 0.385 0.271 0.242 0.120 1.058 1.091 1.100
SCPS.1 0.998 0.879 0.381 0.269 0.240 0.116 1.058 1.089 1.091
DBSS.1 0.998 0.868 0.351 0.258 0.227 0.099 1.064 1.095 1.101
PWD.1 0.992 0.787 0.263 0.247 0.198 0.069 1.073 1.108 1.113
LCUBE(sp,E) 1.009 0.945 0.457 0.262 0.246 0.124 1.049 1.053 1.023
LCUBE(E,sp) 1.012 0.953 0.468 0.310 0.296 0.175 1.048 1.050 1.015
CUBE(sp,E) 1.011 1.045 0.943 0.262 0.270 0.238 1.000 0.979 0.940
CUBE(E,sp) 1.013 1.052 0.950 0.291 0.300 0.269 0.998 0.977 0.936

121



4.4. POPULATIONS WITH NEGATIVE SPATIAL AUTOCORRELATION

Table 4.11: Relative AMSE’s for propose sampling strategies and spatial balanced design
with respect to SRS for clustered spatial populations

n z1 z2 z3 z4 z5 z6 z7 z8 z9

20

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.000 0.974 0.683 0.351 0.345 0.274 1.024 1.032 1.035
BBS 1.000 0.998 0.925 0.263 0.263 0.240 1.003 1.003 1.003
LPM1 0.999 0.965 0.563 0.301 0.293 0.197 1.037 1.044 1.046
LPM2 0.999 0.966 0.586 0.300 0.292 0.200 1.035 1.043 1.045
SCPS 1.000 0.969 0.576 0.291 0.283 0.188 1.035 1.043 1.045
DBSS 1.000 0.965 0.559 0.275 0.267 0.169 1.037 1.044 1.046
PWD 1.000 0.922 0.428 0.246 0.228 0.109 1.045 1.047 1.048
LCUBE(sp,E) 1.002 1.090 0.861 0.275 0.295 0.235 1.003 0.945 0.863
LCUBE(E,sp) 1.002 1.109 0.934 0.526 0.551 0.505 0.997 0.930 0.837
CUBE(sp,E) 1.002 1.095 1.081 0.272 0.294 0.284 0.985 0.932 0.860
CUBE(E,sp) 1.003 1.111 1.135 0.439 0.464 0.463 0.981 0.919 0.836

44

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.000 0.951 0.570 0.288 0.277 0.186 1.040 1.061 1.070
BBS 1.000 0.998 0.914 0.245 0.244 0.220 1.004 1.005 1.003
LPM1 1.000 0.926 0.446 0.269 0.251 0.138 1.067 1.099 1.104
LPM2 1.000 0.932 0.466 0.265 0.250 0.140 1.061 1.094 1.101
SCPS 1.000 0.937 0.454 0.264 0.250 0.135 1.063 1.092 1.097
DBSS 1.000 0.929 0.434 0.252 0.236 0.119 1.065 1.097 1.103
PWD 1.000 0.877 0.343 0.239 0.211 0.086 1.079 1.111 1.114
LCUBE(sp,E) 1.003 1.091 0.712 0.251 0.271 0.178 1.022 0.959 0.857
LCUBE(E,sp) 1.003 1.099 0.746 0.389 0.411 0.324 1.020 0.953 0.844
CUBE(sp,E) 1.004 1.106 1.073 0.249 0.273 0.259 0.985 0.924 0.837
CUBE(E,sp) 1.003 1.114 1.101 0.353 0.378 0.369 0.983 0.919 0.827
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Table 4.12: Relative AMSE’s for proposed spatial sampling schemes and spatial balanced
design with respect to SRS for sparse spatial populations.

n z1 z2 z3 z4 z5 z6 z7 z8 z9

20

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 1.000 0.990 0.754 0.391 0.388 0.331 1.021 1.030 1.035
BBS 1.000 0.999 0.938 0.273 0.272 0.255 1.003 1.004 1.004
LPM1 1.000 0.985 0.632 0.326 0.322 0.237 1.037 1.044 1.047
LPM2 1.000 0.985 0.645 0.318 0.315 0.232 1.035 1.043 1.046
SCPS 0.999 0.987 0.618 0.298 0.295 0.205 1.038 1.043 1.044
DBSS 0.999 0.986 0.624 0.289 0.285 0.197 1.036 1.044 1.046
PWD 0.999 0.972 0.530 0.258 0.251 0.144 1.042 1.048 1.048
LCUBE(sp,E) 1.000 1.012 0.699 0.280 0.282 0.204 1.027 1.023 1.005
LCUBE(E,sp) 1.001 1.019 0.711 0.333 0.337 0.261 1.026 1.018 0.995
CUBE(sp,E) 1.002 1.027 0.967 0.273 0.279 0.262 0.999 0.985 0.959
CUBE(E,sp) 1.001 1.031 0.978 0.305 0.311 0.295 0.998 0.983 0.954

44

SRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GRTS 0.999 0.979 0.647 0.323 0.318 0.238 1.038 1.060 1.073
BBS 1.000 0.999 0.929 0.255 0.254 0.235 1.005 1.005 1.005
LPM1 1.000 0.967 0.502 0.282 0.274 0.162 1.069 1.099 1.109
LPM2 1.000 0.968 0.516 0.280 0.272 0.163 1.065 1.095 1.106
SCPS 0.999 0.970 0.490 0.270 0.263 0.146 1.071 1.097 1.103
DBSS 0.999 0.968 0.489 0.262 0.254 0.138 1.066 1.097 1.106
PWD 0.997 0.939 0.397 0.248 0.234 0.103 1.080 1.110 1.116
LCUBE(sp,E) 1.000 1.009 0.581 0.259 0.261 0.156 1.051 1.059 1.043
LCUBE(E,sp) 1.001 1.015 0.593 0.295 0.297 0.194 1.049 1.056 1.035
CUBE(sp,E) 1.001 1.033 0.962 0.257 0.264 0.244 1.001 0.984 0.953
CUBE(E,sp) 1.002 1.036 0.967 0.280 0.287 0.268 0.999 0.982 0.948
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Table 4.13: Values of MSE from simulation of Altieri and Cocchi (2021); relative values of
MSE with respect to SRS; and percent gain with respect to spatially balanced sampling.

Value of MSE MSE/MSEsrs
p n SRS SBS SPI SBS SPI Percent gain

Compact 30963 1944 10035 0.063 0.324 -416
Multicluster 31792 18390 25615 0.578 0.806 -39

50 Regular 29924 31112 26939 1.040 0.900 13
Random 30040 31016 24363 1.032 0.811 21
Compact 12026 448 3446 0.037 0.287 -669
Multicluster 11745 4734 4832 0.403 0.411 -2

0.5 125 Regular 11756 12042 7723 1.024 0.657 36
Random 12196 11657 9550 0.956 0.783 18
Compact 5659 139 1135 0.025 0.201 -717
Multicluster 5609 1623 2992 0.289 0.533 -84

250 Regular 5657 5439 2830 0.961 0.500 48
Random 5762 5592 4463 0.970 0.775 20
Compact 22969 1985 8075 0.086 0.352 -307
Multicluster 23459 12228 20761 0.521 0.885 -70

50 Regular 22312 23621 20801 1.059 0.932 12
Random 23028 21939 19939 0.953 0.866 9

0.25 Compact 8864 443 3416 0.050 0.385 -671
Multicluster 8670 3079 6903 0.355 0.796 -124

125 Regular 8693 9200 7234 1.058 0.832 21
Random 9087 8796 8131 0.968 0.895 8
Compact 4288 147 2277 0.034 0.531 -1449
Multicluster 4117 1083 2806 0.263 0.682 -159

250 Regular 4332 4468 4263 1.031 0.984 5
Random 4035 4080 3361 1.011 0.833 18
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Table 4.14: Percent relative gain of propose spatial sampling schemes with respect PWD
spatially balanced sampling design for highly clustered, clustered and sparse spatial
frames.

z1 z2 z3 z4 z5 z6 z7 z8 z9
(Highly cluster n = 20)
LCUBE(sp,E) -1 -17 -88 -1 -14 -56 2 3 6
LCUBE(E,sp) -2 -18 -94 -32 -49 -136 2 3 7
CUBE(sp,E) -2 -23 -202 -1 -18 -130 4 6 9
CUBE(E,sp) -2 -24 -208 -17 -38 -175 4 7 11
(Highly cluster n = 44)
LCUBE(sp,E) -2 -20 -73 -6 -24 -79 2 5 8
LCUBE(E,sp) -2 -21 -78 -26 -50 -154 2 5 9
CUBE(sp,E) -2 -33 -258 -6 -36 -245 7 12 16
CUBE(E,sp) -2 -34 -261 -18 -52 -290 7 12 16
(Cluster n = 20)
LCUBE(sp,E) -0 -18 -101 -12 -29 -115 4 10 18
LCUBE(E,sp) -0 -20 -118 -114 -142 -362 5 11 20
CUBE(sp,E) -0 -19 -153 -11 -29 -160 6 11 18
CUBE(E,sp) -0 -20 -165 -78 -103 -324 6 12 20
(Cluster n = 44)
LCUBE(sp,E) -0 -24 -107 -5 -28 -108 5 14 23
LCUBE(E,sp) -0 -25 -117 -62 -94 -279 5 14 24
CUBE(sp,E) -0 -26 -213 -4 -29 -203 9 17 25
CUBE(E,sp) -0 -27 -221 -47 -79 -331 9 17 26
(Sparse n = 20)
LCUBE(sp,E) -0 -4 -32 -8 -12 -42 1 2 4
LCUBE(E,sp) -0 -5 -34 -29 -34 -81 2 3 5
CUBE(sp,E) -0 -6 -82 -6 -11 -82 4 6 8
CUBE(E,sp) -0 -6 -84 -18 -24 -105 4 6 9
(Sparse n = 44)
LCUBE(sp,E) -0 -7 -46 -5 -12 -52 3 5 7
LCUBE(sp,E) -0 -8 -49 -19 -27 -88 3 5 7
CUBE(E,sp) -0 -10 -142 -3 -13 -137 7 11 15
CUBE(sp,E) -0 -10 -144 -13 -23 -160 7 12 15

4.5 Variance estimation

Despite the fact that spatially or doubly balanced sampling designs are more efficient

than designs which are not balanced under the assumption of positive spatial autocorre-

lation, it is still important to estimate the variance (or sampling error) of the estimates

which is often a challenge. For example, an unbiased estimate of the sampling variance is
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desirable for the calculation of confidence intervals. It is also important to know a valid

variance estimate when balancing out the precision of the sampling design with other

costs involved in the sample survey. For spatially balanced sampling designs, local-mean

variance estimator from Stevens Jr and Olsen (2003) is commonly used in practice and

often recommended in literature (Stevens Jr and Olsen, 2004; Grafström, 2012; Grafström

et al., 2012; Robertson et al., 2013; Benedetti and Piersimoni, 2017). For doubly balanced

sampling, Grafström and Tillé (2013) proposed a variance estimator by combining esti-

mators in Eq. (1.17) and Eq. (1.16) from Stevens Jr and Olsen (2003) and Deville and

Tillé (2005) respectively. Both the estimators are described in Section 1.6. In this section,

methodology of variance estimation for balanced sampling from Section 3.5 is extended

for spatially and doubly balanced sampling designs. Again, the variance approximation

is based on decomposition of the sampling variance of HT-estimator assuming the Moran

eigenvectors spatial filtering formulation of the assumed spatial super-population model.

In the case of doubly balanced sampling using super-population model specification from

Eq. (4.3), response values can be written as yi = x⊤
i B + E⊤

k BE + ei, where ei is finite

population residual associated with ith element, B and BE are vectors of finite popu-

lation regression coefficients associated with auxiliary variables and eigenvectors used in

the working model respectively. The HT-estimator of population total can be written as

ŶHT = X̂⊤
HTB+Ê⊤

HTBE+ êHT , where ÊHT and êHT estimates vector of totals of eigenvec-

tors and total of finite population residuals. The sampling variance of the HT-estimator

ŶHT under the doubly balanced sampling design can be written as

VESF(ŶHT ) = B⊤ΛB +B⊤
EΛEBE + V (êHT ) (4.6)

where the matrix Λ is defined in Eq. (3.2) and is estimated empirically (in the same way

as for variance estimation under balanced sampling in Chapter 3), Λ̂E is also estimated

empirically based on many samples under the given sampling design, B vectors are also

estimated in the similar manner (using Eq. (1.7)) based on the given sample, and V (êHT )

is estimated using local-mean variance estimator from Eq. (1.17). Here, the subscript

ESF stands for eigenvectors spatial filtering. Based on the proposed approximation,

variance estimator under doubly balanced sampling is given by

V̂ESF(ŶHT ) = B̂
⊤
Λ̂B̂ + B̂

⊤
EΛ̂EB̂E + V̂NBH(êHT ) (4.7)

where Λ̂, Λ̂E, B̂, B̂E denote the estimators of their respective finite population quantities.

In case of spatially balanced, there are no auxiliary variables, therefore, first term in the

variance approximation should be dropped and remaining terms are estimated in the same
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manner as described earlier.

In the following, two Examples 4.2 and 4.3 are presented based on simulation studies

from literature (Grafström et al., 2012; Grafström and Tillé, 2013), which compare the

proposed variance estimator against the local-mean variance estimator under spatially

balanced designs and against an estimator from Grafström and Tillé (2013) under doubly

balanced sampling using local cube method, respectively. The comparison is made in

terms of percent relative bias and precision using Eq. (3.17).

Example 4.2. To compare the proposed variance estimator with local-mean variance es-

timator in Eq. (1.17) under spatially balanced sampling, two artificial spatial populations

from Example. 5 and 6 of Grafström et al. (2012) are used; they consisted of N1 = 400

and N2 = 200 observations and denoted by U1 and U2 here, respectively. The population

U1 has strong spatial trend, while U2 was generated (with no spatial trend) from Gaussian

random field with exponential covariance function. Equal probability samples of different

sizes, n = (16, 32, 48) from U1 and n = (30, 50, 90) from U2, are selected under GRTS,

LPM1, LPM2, SCPS, DBSS and PWD spatially balanced sampling methods. From each

population, 1000 samples of each size are selected under the aforementioned sampling

designs, and empirical values of sampling variances are calculated for each design. Two

variance estimators, proposed V̂ESF(ŶHT ) and local-mean V̂NBH(ŶHT ), are computed for

each of 1000 samples. R-package spsurvey (Dumelle et al., 2021) is used for the calculation

of local-mean variance estimator. While computing the proposed variance estimator, the

same 1000 samples are used to compute the empirical estimates of the variance-covariance

matrices Λ and ΛE. Percent relative bias and stability using Eq. (3.17) are calculated.

The results are reported in Tables 4.15 and 4.16 for populations U1 and U2 respectively.

Under the proposed variance estimation, eigenvectors and eigenvalues of the row standard-

ised weight matrices are computed for both the spatial populations. Using the selection

criterion λ1/λN > 0.25 (where λ1 and λN are smallest and largest eigenvalues respec-

tively), four and seven eigenvectors (i.e. Ek’s) were chosen for U1 and U2 respectively.

Moran’s I indices of spatial autocorrelation for response variables in the populations U1

and U2 are given by 0.35 and 0.12 respectively. After fitting linear regression model, given

by yi = µ+EkiβEk
+ϵi, for both the populations, Moran’s I indices of population residuals

for U1 and U2 are given by 0.16 and 0.04 respectively. These computations have not been

used anywhere in calculation of proposed variance estimator, rather they are made to

get an idea about amount of spatial correlation accounted by eigenvector spatial filtering

under the working spatial model.

From Table 4.15, results for population U1 show that the proposed variance estimator
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Table 4.15: Results for U1 population in Example 4.2: Relative percent bias and variance
of proposed and local-mean variance estimators based on 1000 samples under spatially
balanced sampling designs.

Percent relative bias Percent relative MSE

n V̂NBH(ŶHT ) V̂ESF(ŶHT ) V̂NBH(ŶHT ) V̂ESF(ŶHT )

16

GRTS 162.649 58.530 168.137 62.310
LPM1 98.448 50.301 104.951 53.844
LPM2 111.483 56.021 118.498 59.665
SCPS 203.152 88.370 210.347 92.696
DBSS 227.085 108.096 233.902 112.141
PWD 759.583 356.439 768.670 362.270

32

GRTS 65.488 26.518 70.464 29.329
LPM1 120.784 76.308 124.696 77.940
LPM2 104.814 66.612 108.337 68.202
SCPS 239.471 132.457 243.686 134.363
DBSS 262.832 151.829 266.825 153.630
PWD 886.202 479.720 891.774 482.175

48

GRTS 50.076 25.312 54.032 28.012
LPM1 109.167 74.886 111.586 76.223
LPM2 91.931 62.656 94.488 64.089
SCPS 248.501 146.058 251.417 147.890
DBSS 260.532 154.832 263.417 156.640
PWD 860.644 497.296 865.238 500.111

is better than local-mean variance estimator in terms of both bias and precision under

all the spatially balanced sampling designs considered in this study. Biases of the both

estimator tend to decrease with sample size under GRTS design LPM2, while decrease

under GRTS design is much quicker than LPM2. They behave approximately in similar

manner for rest of the sampling designs, that is, their percent relative bias and MSE

increase when moving from n = 16 to n = 32 whereas they become stable when moving

from n = 32 to n = 48. From Table 4.16, results for population U2 also suggest that the

proposed variance estimator is better than the local-mean variance estimator in terms of

both bias and stability.

Overall, both the estimators overestimate the true sampling variance under all the sam-

pling designs. Although the magnitude of bias is very large (often more than 100% of

MSE) for the population with spatial trend U1, still the proposed variance estimator re-

duces the bias. Proposed estimator tend to perform better for population U1 as compare

to population U2. One reason might be the greater spatial trend in the U1, and proposed

estimator aims at the mean function of the underlying super-population model. The
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Table 4.16: Results for U2 population in Example 4.2: Relative percent bias and variance
of proposed and local-mean variance estimators based on 1000 samples under spatially
balanced sampling designs.

Percent relative bias Percent relative MSE

n V̂NBH(ŶHT ) V̂ESF(ŶHT ) V̂NBH(ŶHT ) V̂ESF(ŶHT )

30

GRTS -0.369 3.660 21.405 25.281
LPM1 16.334 8.358 31.453 28.198
LPM2 11.914 3.874 26.592 24.157
SCPS 16.259 6.227 29.635 24.377
DBSS 23.231 9.999 35.634 28.020
PWD 36.251 11.936 44.901 27.202

50

GRTS 25.150 23.708 32.746 30.922
LPM1 57.424 47.031 62.847 52.592
LPM2 35.739 27.281 42.021 34.221
SCPS 43.559 35.466 48.990 41.269
DBSS 50.238 38.854 55.845 44.675
PWD 91.014 72.325 95.127 76.537

90

GRTS 59.976 57.870 62.511 60.083
LPM1 91.369 82.831 93.207 84.571
LPM2 82.452 75.297 84.482 77.170
SCPS 73.069 66.738 75.206 68.737
DBSS 95.749 85.789 97.823 87.706
PWD 140.718 127.178 142.495 128.900

PWD design often has much larger bias as compared to other designs, since it is the most

efficient design among the designs considered in this study.

Example 4.3. To compare the proposed variance estimator against the variance estima-

tor in Eq. (1.18) from Grafström and Tillé (2013) under doubly balanced sampling, a

simulation study is partially replicated from the same article (Grafström and Tillé, 2013).

In this simulation study, a spatial data set, known as meuse, consisting of N = 164 obser-

vations is used as a spatial population. The data set meuse was obtained from R-package

gstat (Gräler et al., 2016), and eight variables from this data set are used, described in

Table 4.17. Three variables: zinc, lead and cadmium are considered as study populations;

other three: copper, elev and om are used as auxiliary (or balancing) variable; x and y

are used for spatial balancing.

From the spatial population, 10000 samples of size n = 50 are selected with equal proba-

bility using local cube method. Using these samples, true empirical sampling variance was
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Table 4.17: Description of variables in meuse spatial data set.

variables description
1 x : x-coordinates,
2 y : y-coordinates,
3 cadmium: topsoil cadmium concentration,
4 copper: topsoil copper concentration,
5 lead: topsoil lead concentration,
6 zinc: topsoil zinc concentration,
7 elev: relative elevation,
8 om: organic matter, as percentage.

Table 4.18: Results for Example 4.3: Ratio between average of the estimated variances (us-
ing two estimators V̂DBS(ŶHT ) and V̂ESF(ŶHT )) and true empirical variance based on 10000
simulations under equal probability doubly balanced sampling by local cube method.

V̂DBS(ŶHT ) V̂ESF(ŶHT ) No. of Ek’s
zinc 1.06 1.03 5
lead 1.14 1.02 15
cadmium 0.74 0.82 25

computed. For each sample, values for the proposed variance estimator V̂ESF(ŶHT ) are

calculated for all the three study variables and then averaged over 10000 values. A ratio is

computed between the average of 10000 estimates of proposed variance estimator and true

empirical sampling variance. Ideally, the same ratio should have been calculated for the

existing variance estimator V̂DBS(ŶHT ) for comparison. Due to complexity of calculations

for the existing estimator, the values of ratio for this variance estimator are copied from

the original simulation study, see first row in the last section of Table 2 from Grafström

and Tillé (2013). The values of ratios for both variance estimators and three study vari-

ables are shown in Table 4.18. A value of the ratio less than 1 represents underestimation

while a value greater than one indicates that the variance estimator overestimates the

true sampling variance; a value close to 1 is desirable.

For the proposed variance estimation in this case, the criteria of choosing eigenvectors

given by λ1/λN > 0.20 did not work. Therefore, hit and trial method is used to find

out appropriate number of eigenvectors to be used in the variance estimation such that a

better estimator can be found. This suggests that a more sophisticated criteria is needed

for proposed variance estimation under doubly balanced sampling. For this study, number

of eigenvectors used for each study variables are given in the last column of Table 4.18.

From Table 4.18, results shows that the proposed variance estimator V̂ESF(ŶHT ) has

smaller bias than that of the existing variance estimator V̂DBS(ŶHT ). However, both
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the estimators overestimate the sampling variance for study populations zinc and lead,

and underestimate for the study population cadmium.

Simulation studies in the above examples suggest that the proposed variance estima-

tion methodology is more accurate and more precise than the local-mean (or local-

neighbourhood) variance estimation.

4.6 Conclusions

Production and use of geo-referenced (or spatial data) is not restricted to geo-sciences

any more; its utilization in different fields is increasing every day. An essential aspect of

the geo-reference data is that it reveals impact of spatial location on the data values. A

common phenomena is positive spatial autocorrelation, where values which are collected

from nearby locations are tend to be similar. Often, sample surveys are conducted to

collect data. It is emphasized in literature that sampling designs should take into account

the location of the sampling units. Spatially balanced sampling method aims to select

units which are well-spread over the study area using location of sampling units and tend

to improve the efficiency of sample estimates.

A variety of spatially balanced sampling methods is found in literature which aims to select

well-spread sample using different algorithms and techniques. Spatially balanced sampling

methods based on the distance measures between pair of units are often more efficient

than those based on spatial partitioning of the study area. All the spatially balanced

sampling methods assume that the study population has positive spatial autocorrelation

including spatial trends and different kinds spatial patterns. Some methods may perform

better than others for a particular type of populations. Comparisons of different sampling

method were conducted in literature on the basis of MSE and measure of spatial balance.

Here, those comparison are extent on the basis of AMSE under a spatial super-population

model which assume positive spatial autocorrelation. Under equal probability sampling,

spatially balanced sampling design which selects samples with probability proportional

to product of within sample distant (PWD) is found to have smallest AMSE among the

sampling methods compared here. On the other hand, it has high variability in MSE (i.e.

high second-order Bayes risk). It means that performance of this method is better than

others on average but its efficiency may vary a lot for different spatial populations.
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When a set of geo-referenced auxiliary variables is known, doubly balanced sampling with

respect to both auxiliary variables and the location is suggested in literature. Spatially

balanced sampling also achieve some balance with respect to auxiliary variable under some

conditions, while they are not same in general. In most cases doubly balanced sampling

improve the efficiency of estimates (in terms of AMSE) as compared to auxiliary balanced

sampling. When variation explained by auxiliary variables is very high relative to spatial

correlation in the study variable, doubly balanced sampling should be used cautiously.

In the context of multi-objective surveys, for instance, socio-economic surveys collect data

on a variety of variables; some study variables may have negative spatial autocorrelation or

complete randomness, whereas phenomenon of positive spatial autocorrelation is common.

Spatially balanced samples can be less efficient than SRS for the estimation of parameters

for those variables with negative spatial autocorrelation. The proposed spatial sampling

schemes aims to minimize the loss of the efficiency for variables with negative spatial

autocorrelation. They tend to achieve efficiency (in terms of AMSE) which is comparable

with spatially balanced sampling designs and also have smaller loss of efficiency for those

population with negative spatial autocorrelation. There are some scenarios, for instance,

when positive spatial autocorrelation is low, the proposed sampling schemes may also be

less efficient than SRS but not spatially balanced sampling methods.

Two-stage sampling design is often motivated by low survey cost. Spatially or doubly

balanced sampling aims to spread the sampling units in the population area. Further

work is required to investigate the effect of spatially balanced sampling on survey cost

under two-stage sampling design. Furthermore, when PSU’s are selected under spatially

balanced sampling, distance between centres of PSU’s is measured. For areal sampling

units (which is the often case for PSU’s), there exist other methods of measuring proximity.

One may also look to investigate how different ways of measuring distance impact the

efficiency of spatially balanced sampling of PSU’s.

Variance estimation is a typical challenge associated with spatially balanced sampling

design. Local-mean variance estimator is commonly used for most of the spatially balanced

sampling designs. Propose variance estimator under spatially balanced sampling tends to

perform better than local-mean variance estimator under almost all the spatially balanced

sampling designs considered in this study when samples are selected with equal probability.

The proposed variance estimator under doubly balanced sampling also perform better than

the existing estimator, however, it needs further work for better selection of appropriate

eigenvectors.

Here, it is important to mention that proposed spatial sampling schemes and variance
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estimators based on heuristic idea of using eigenvector spatial filtering (ESF) from spatial

data analysis literature. This idea needs further exploration for better results. Since

selection of eigenvectors for spatial sampling and for variance estimation is based on

the a fixed criteria which is adopted from literature. It was realised during simulation

studies that deviating from that fixed criteria might be useful for some situation, for

example, in case of variance estimation under doubly balanced sampling different number

of eigenvectors are used to get better results.
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Appendix A

A.1 AMSE derivations for HT- and GREG-estimator

under two-stage sampling by πps-SRS and two-

level model

The AMSE of the HT-estimator is given by AMSE(ŶHT ) = Em[Ep(ŶHT − Y )2], where

Em and Ep denotes expectation under model and sampling design respectively. Since

ygi = µgi + vg + egi = µgi + ϵgi, where ϵgi = vg + egi. Therefore, AMSE can be written as

AMSE(ŶHT ) = Em[Ep(µ̂HT − µ)2] + Em[Ep(ϵ̂HT − ϵ)2] (A.1)

where µHT is HT-estimator of total µ =
∑

i∈U µgi and ϵHT is HT-estimator of population

total ϵ =
∑

i∈U ϵgi.

AMSE under two-stage elements sampling: General formulation of sampling vari-

ance under two-stage element sampling design, from (Särndal et al., 1992, p. 307), is given

by

V (ŶHT ) = V1[E2(ŶHT )] + E1[V2(ŶHT )]

= V1

[
E2

(∑
g∈sI

ŶHTg

πg

)]
+ E1

[
V2

(∑
g∈sI

ŶHTg

πg

)]
= V1

(∑
g∈sI

Yg

πg

)
+
∑
g∈UI

1

πg

V2

(
ŶHTg

)
Using Eq. (A.1)

AMSE(ŶHT ) = Em

[
V1

(∑
g∈sI

µg

πg

)
+
∑
g∈UI

1

πg

V2 (µ̂HTg)

]
+ Em

[
V1

(∑
g∈sI

ϵg
πg

)
+
∑
g∈UI

1

πg

V2 (ϵ̂HTg)

]
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Using general formula for sampling variance of HT-estimator in the second term

AMSE(ŶHT ) =V1

(∑
g∈sI

µg

πg

)
+
∑
g∈UI

1

πg

V2 (µ̂HTg)+

Em

[
NI∑

g,h=1

(
πgh

πgπh

− 1

)
ϵgϵh +

NI∑
g=1

1

πg

Ng∑
i,j=1

(
πij|g

πi|gπj|g
− 1

)
ϵgiϵgj

]

where first two term of are constant under the model, now we solve model expectation of

last term as follow

Em

[
NI∑
g=1

(
1

πg

− 1

)( Ng∑
i=1

ϵ2gi + 2

Ng∑
i<j=1

ϵgiϵgj

)
+ 2

NI∑
g<h=1

(
πgh

πgπh

− 1

) Ng∑
i=1

Nh∑
j=1

ϵgiϵhj

+

NI∑
g=1

1

πg

{
Ng∑
i=1

(
1

πi|g
− 1

)
ϵ2gi + 2

Ng∑
i<j=1

(
πij|g

πi|gπj|g
− 1

)
ϵgiϵgj

}]

after applying model expectation, we get

=

NI∑
g=1

(
1

πg

− 1

)( Ng∑
i=1

σ2
i + 2

Ng∑
i<j=1

σij

)
+ 2

NI∑
g<h=1

(
πgh

πgπh

− 1

) Ng∑
i=1

Nh∑
j=1

σij

+

NI∑
g=1

1

πg

{
Ng∑
i=1

(
1

πi|g
− 1

)
σ2
i + 2

Ng∑
i<j=1

(
πij|g

πi|gπj|g
− 1

)
σij

}

Under two-stage element sampling by πps-SRS: πi|g = ng/Ng and πij|g = ng(ng−1)/Ng(Ng−
1). Under the two-level model with constant error variance we have: σ2

i ≡ σ2, σij = ρσ2

for i, j ∈ Ug, σij = 0 otherwise, therefore we get

=

NI∑
g=1

(
1

πg

− 1

)(
Ngσ

2 +Ng(Ng − 1)σ2ρ
)
+ 0

+

NI∑
g=1

1

πg

{
Ng

(
Ng

ng

− 1

)
σ2 +Ng(Ng − 1)

(
− Ng − ng

ng(Ng − 1)

)
σ2ρ

}

=

NI∑
g=1

(
1

πg

− 1

)
Ng{1 + (Ng − 1)ρ}σ2 +

NI∑
g=1

1

πg

(
Ng

ng

− 1

)
Ng(1− ρ)σ2
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The final expression for AMSE(ŶHT ) is given by

AMSE(ŶHT ) =V1

(∑
g∈sI

µg

πg

)
+
∑
g∈UI

1

πg

V2

Ng

ng

∑
i∈sg

µgi

+

NI∑
g=1

(
1

πg

− 1

)
Ng{1 + (Ng − 1)ρ}σ2 +

NI∑
g=1

1

πg

(
Ng

ng

− 1

)
Ng(1− ρ)σ2

(A.2)

Approximate AMSE of GREG-estimator under two-stage elements sampling by πps-SRS

also follows from the above expression, given by

AMSE(ŶGR) ≈
NI∑
g=1

(
1

πg

− 1

)
Ng{1 + (Ng − 1)ρ}σ2 +

NI∑
g=1

1

πg

(
Ng

ng

− 1

)
Ng(1− ρ)σ2

(A.3)

ASME under two-stage cluster sampling Again using general formulation of sam-

pling variance under two-stage cluster sampling design, we get

V (Ŷ 2Sc
HT ) = V1

(∑
g∈sI

Yg

πg

)
+
∑
g∈UI

1

πg

V2

(
nIIg∑
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)

Using Eq. (A.1)

AMSE(Ŷ 2Sc
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solution to the model expectation of last term is given by

Em
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after applying model expectation, we get

=
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Under two-stage cluster sampling by πps-SRS: πi|g = nIIg/NIIg and πij|g = nIIg(nIIg −
1)/NIIg(NIIg − 1). Under two-level with constant error variance: σ2

i = σ2, σij = ρσ2 for

i, j ∈ Ug, σij = 0 otherwise, therefore we get
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Consider the second term of the above expression
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where S2
Ngk

is variance of second-stage cluster sizes within gth PSU. Final expression for

AMSE of HT-estimator under two-stage cluster sampling by πps-SRS is given by

AMSE(ŶHT ) =V1
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σ2 (A.4)

Similarly, approximate AMSE of GREG-estimator under two-stage cluster sampling by
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πps-SRS can be written

AMSE(ŶGR) ≈
NI∑
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1
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2
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}
σ2 (A.5)

A.2 Descriptives for simulated population of house-

holds in Southampton

Table A.1: Composition of households and respective proportions in Southampton based
on UK census 2011..

Composition Proportion

1 One person Aged 65 and over 0.1397
2 One person Aged under 65 0.1835
3 Couple without children 0.2119
4 Couple with dependent children 0.2153
5 Couple with all non-dependent children 0.0642
6 Lone parent with dependent children 0.0647
7 Lone parent with all non-dependent children 0.0317
8 Multiperson with dependent children 0.0230
9 Multiperson others 0.0660

Table A.2: Household sizes and their proportions in Southampton based on UK census
2011.

Size 1 2 3 4 5 6 7 8 or more

Proportion 0.2936 0.3578 0.1505 0.1335 0.0448 0.0144 0.0035 0.0019

Table A.3: Household tenure types and respective proportions in Southampton based on
UK census 2011.

Household tenure type

1 Owned: Owned outright 0.3186
2 Owned: Owned with a mortgage or loan or shared ownership 0.3397
3 Rented: Social rented 0.1617
4 Rented: Private rented or living rent free 0.1801
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Table A.4: Gender of household reference person (HRP) and their proportion in
Southampton based on UK census 2011.

Gener of HRP Male Female

Proportion 0.6169 0.3831

Table A.5: National Statistics Socio-economic Status (NS-SeC) of household reference
person (HRP) and proportion of households for Southampton based on UK census 2011.

National Statistics Socio-economic Status Proportion

1 Higher managerial, administrative and professional occupations 0.1549
2 Lower managerial, administrative and professional occupations 0.2414
3 Intermediate occupations 0.1155
4 Small employers and own account workers 0.1119
5 Lower supervisory and technical occupations 0.0854
6 Semi-routine occupations 0.1246
7 Routine occupations 0.1109
8 Never worked and long-term unemployed 0.0301
9 L15 Full-time students 0.0254

A.3 Summary of fitted regression models using LCF

survey data 2017-18

We fitted linear regression model for “log of household income” following Skentelbery

(2010) and logistic model for “internet connection” using five covariates for both of them.

The data set consists of 5407 cases. After removing cases with zero household income 5397

cases left. For the regression models we used Bonferroni test, see Kutner et al. (2005)

based on studentized residuals for the assessment of potential outlying values. After

removing the 11 outliers, models were fitted again and summary of those given bellow.
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Figure A.1: Linear regression for natural log of household income based on LCF survey
2017-18 data set
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Figure A.2: Logistic regression for binary variable “internet connection” based on LCF
survey 2017-18 data set

A.4 Simulated Annealing

The simulated annealing (SA) is a stochastic optimization algorithm, for more details see

Aarts and Korst (1988). It aims at the global optimum solution of the problem. It starts

with an initial value of the solution from the solution space, and a large initial value of
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Algorithm 1 Simulated annealing algorithm to minimize cost function C(λt).

1: Initialize:

• Initial solution vector λ(0) = λ,

• Initial value of temperature parameter is temp0, which is obtained form Algo-
rithm 2,

2: Generate: Generate a new solution vector λn ∈ S using the random generation
mechanism,

3: Cost: Calculate cost for the new solutions, C(λn),
4: Acceptance: Let λc is current solution, that is, λ(t) = λc. The new solution λn is

selected according following criterion:

λ(t+ 1) =


λn if C(λn) ≤ f(λc),

λn if C(λn) > f(λc) and U(0, 1) < exp
(
−f(λn)−f(λc)

tempr

)
,

λc otherwise.

where U(0, 1) is a uniform random variable,
5: Repeat: Step 2-4 are repeated Lr times, where Lr = 50 and r = 0, 1, 2, ...
6: Update:

• tempr+1 = 0.95(tempr),

• Update minimum solution vector, that is, if C(λn) < C(λmin) then λmin = λn

7: Terminate: algorithm stops if either of the following condition reached:

• If t ≥ tmax = 50000,

• If there is no improvement in terms minimum cost for consecutive 1000 iterations.

another parameter called temperature. A new solution is obtained by a random generation

mechanism in the neighbourhood of the current solution. If the new solution has cost

value smaller than the cost of the current solution then new solution is accepted as current

solution. Otherwise new solution is accepted as current solution according to certain

probability distribution. A fixed number of iterations are run for each of the temperature.

The value of the temperature decreases to zero according to a specific cooling schedule.

As the value of temperature decreases the probability of accepting solutions with large

cost values decreases. In the early stages of the algorithm, large values of temperature

allow accepting solutions with high cost which aims to avoid the local minima.

In Step 2 of the two-step cube method, SA-algorithm is used to minimise realised total

imbalance for a given realised cube sample space of size K. Features of the SA-algorithm

for this minimisation problem are described bellow:
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• Solution space S: It consists of all possible sampling distributions denoted by

λt vector of size K such that empirical inclusion probabilities implied by the cube

method π(λ) are achieved. That is,

S = {λt|Aλt = π(λ),1T
Kλt = 1}

where A is N × q matrix with elements aik = 1 if i ∈ sk, otherwise aik = 0, i ∈ U

and k = 1, ..., K.

• Random generation mechanism: Let λc denotes the current solution. A new

solution vector λn using current solution vector λc is generated as follows:

– Generate a random vector δc ofK elements from uniform distribution such that

δc ∼ U(−a, a), where a is a vector of K elements defined as ak = min(λck, 1−
λck, λk), k = 1, ..., K and λk ≡ 1/K.

– Calculate the vector λ′
c = {λck}Kk=1 =

 λck + δck if λck + δck > 0,

λck otherwise,

– Compute g weights based on calibration equations Aλ′
c = π(λ). To com-

pute the calibration weights, R-function gencalib(method="logit") is used

from R-package sampling (Deville, 2000; Estevao and Särndal, 2000; Tillé and

Matei, 2021).

– Compute the new solution vector λn = g × λ′
c

• Cost function: Cost value for the current solution vector λc is calculated as

C(λc) = tr(Λ̂λc)

• Acceptance criteria: Let λc is current solution vector at stage t, that is λ(t) = λc.

The new vector λn at stage t + 1 is accepted according to following probability

criteria:

P [λ(t+ 1) = λn] =

1 if C(λn) ≤ C(λc)

exp
(

C(λn)−C(λc)
temp

)
if C(λn) > C(λc)

(A.6)

where temp is temperature parameter defined in cooling schedule bellow.

• Cooling schedule: It defines the initial value, decrement function of temperature

parameter and number of iterations for each value of temperature. It also defines

the termination criteria of the algorithm.
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i. To find the initial value of temperature parameter, the SA-algorithm is run

with increasing temperature parameter until the all proposed solutions are

accepted. The resulting value is considered as initial value of temperature

parameter.

ii. There are many temperature decreasing functions range from simple to complex

forms, we shall consider as simple geometric function tempr+1 = d × tempr,

where d is a positive value which is smaller than 1.

iii. Number of iterations Lr = L0 for the given temperature value tempr is fixed.

iv. There are many criteria for termination of an algorithm depending time, num-

ber of iterations and quality of solutions. We fix maximum number of iterations

for this algorithm, denoted by tmax. Optimum solution is recorded at each it-

eration and the algorithm stops when there is no improvement in terms of

optimum solution for a fixed number of iterations.

Algorithm 2 computes the initial value of temperature parameter for Algorithm 1.

1: Initialize:

• Initial solution vector λ(0) = λ,

• Initial value of temperature parameter is temp0 = 1,

2: Generate: Generate a new solution vector λn ∈ S using the random generation
mechanism,

3: Cost: Calculate cost for the new solutions, C(λn),
4: Acceptance: Let λc is current solution, then the new solution λn is selected ac-

cording to following criterion:

λ(t+ 1) =


λn if C(λn) ≤ f(λc),

λn if C(λn) > f(λc) and U(0, 1) < exp
(
−f(λn)−f(λc)

tempr

)
,

λc otherwise.

where U(0, 1) is a uniform random variable,
5: Repeat: Step 2-4 are repeated Lr times, where Lr = 50 and r = 0, 1, 2, ...,
6: Update:

• tempr+1 = 1.5(tempr),

• Calculate acceptance ratio AR = No. of accepted solutions
Lr

,

7: Terminate: Steps 2-6 are repeated until AR = 1 (rounded up to three decimal
points).

Algorithm 1 describes process of minimisation using simulation annealing. Algorithm 2
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describes process of computing initial value for temperature parameter in the simulated

annealing algorithm.

A.5 MU284 data description

Table A.6: Description of variables in the Swedish municipalities data MU284.

2 P85 1985 population (in thousands).
3 P75 1975 population (in thousands).
4 RMT85 revenues from 1985 municipal taxation (in millions of kronor).
5 CS82 number of Conservative seats in municipal council.
6 SS82 number of Social-Democratic seats in municipal council.
7 S82 total number of seats in municipal council.
8 ME84 number of municipal employees in 1984.
9 REV84 real estate values according to 1984 assessment (in millions of kronor).
10 REG geographic region indicator.
11 CL cluster indicator (a cluster consists of a set of neighboring).

Table A.7: Correlation matrix for the modified Clustered MU284 data set used in the
simulation study for two-step cube method.

P75 RMT85 ME84 P85 CS82 S82 REV84 SIZE S82-CS82-SS82 CS82-SS82

P75 1.00 0.98 0.98 1.00 0.68 0.82 0.93 0.63 0.57 -0.46
RMT85 0.98 1.00 1.00 0.99 0.68 0.76 0.93 0.56 0.47 -0.41
ME84 0.98 1.00 1.00 0.99 0.68 0.76 0.93 0.56 0.47 -0.41

P85 1.00 0.99 0.99 1.00 0.72 0.80 0.95 0.62 0.55 -0.40
CS82 0.68 0.68 0.68 0.72 1.00 0.64 0.65 0.51 0.44 0.14
S82 0.82 0.76 0.76 0.80 0.64 1.00 0.79 0.93 0.88 -0.64
REV84 0.93 0.93 0.93 0.95 0.65 0.79 1.00 0.61 0.56 -0.45
SIZE 0.63 0.56 0.56 0.62 0.51 0.93 0.61 1.00 0.88 -0.65
S82-CS82-SS82 0.57 0.47 0.47 0.55 0.44 0.88 0.56 0.88 1.00 -0.53
CS82-SS82 -0.46 -0.41 -0.41 -0.40 0.14 -0.64 -0.45 -0.65 -0.53 1.00

146



Bibliography

Aarts, E. and Korst, J. (1988). Simulated annealing and Boltzmann machines. New York,

John Wiley and Sons Inc.

Abi, N. (2019). Spatially balanced sampling methods in household surveys. PhD thesis,

University of Canterbury, School of Mathematics and Statistics.

Altieri, L. and Cocchi, D. (2021). Spatial sampling for non-compact patterns. Interna-

tional Statistical Review, 89(3):532–549. https://doi.org/10.1111/insr.12445.
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Tillé, Y. (2006). Sampling algorithms. Springer-Verlag New York.
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