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Abstract
We present a floating element force balance design that uses an optical measurement of the force using photoelastic stress 
analysis. The force sensing element consists of pins embedded in photoelastic polyurethane pads, which generate an internal 
stress when the floating element is loaded that is observed via a transmission polariscope. A series of known loads and their 
corresponding fringe patterns allow a calibration matrix to be derived using a polynomial model solved by least squares 
regression. Finite element analysis (FEA) simulation is carried out to validate the proposed method. The balance then meas-
ured a lift curve of the NACA0015 wing at low speed. A comparison of the photoelastic balance and a commercial, 6-axis 
strain-gauge load cell showed typical differences of less than 6 % . This optical approach enables accurate measurements 
with inexpensive and simple components inside the sensor. This work demonstrates that a photoelastic balance is a simple, 
inexpensive, and sensitive force transducer.

1 Introduction

The measurement of small aerodynamic forces in the 
1 − 1000 mN range, such as lift and drag on wind tunnel 
models at low speeds (Mueller and Jansen 1982) or the 
net wall shear stress over a floating element (Ferreira et al. 
2018), has been historically challenging. Yet, to gain insights 
into, e.g. reducing fuel consumption caused by bio-fouling 
and skin-friction drag on ships (Lindholdt et al. 2015), or the 
low Reynolds number aerodynamics of air vehicles such as 
UAVs (Mueller and Jansen 1982), such measurements are 
essential. General indirect methods to measure these forces 
include control volume analysis and the integration of sur-
face pressure (Baliga and Patankar 1983; Aly 2013). How-
ever, in some circumstances, indirect methods are unsuitable 
because flow-field measurements are inaccessible or because 

it is infeasible to instrument the model with pressure taps. 
For turbulent boundary layers, the Clauser chart method pro-
vides an indirect way to estimate skin fiction. Still, it is based 
upon assumptions about the flow, which are not always met 
(Wei et al. 2005). In contrast, direct methods such as force 
transducers have the benefit of being independent of flow 
conditions and do not require assumptions about the flow 
(Schetz 1997). Although other direct techniques exist for 
particular configurations, e.g. oil film interferometry over 
smooth walls (Pailhas et al. 2009), force transducers provide 
unrivalled choice over model geometry.

A common, direct method of force measurements used 
in boundary layer studies is the floating element (FE) bal-
ance (Pabon et al. 2018; Winter 1979), which traces its ori-
gins back to Kempf in 1929 (Kempf 1929). The floating 
element functions by keeping a “floating” plate, over which 
the average wall shear stress is to be measured, structurally 
independent from the rest of the balance and allowing it to 
move only in plane (Schmidt et al. 1988). A force transducer 
is coupled to the load on the floating element providing a 
direct measurement of the (area average) wall shear stress. 
FE balances are often tailored to the requirements of a given 
experiment (Ferreira et al. 2018; Schmidt et al. 1988; Win-
ter 1979). As an illustrative example, Ferreira et al. (2018) 
compute that for a floating element balance with plan area 
0.04 m2 at freestream speeds of up to 25 m/s , the integrated 
load due to wall shear may be up to ∼ 1 N for a rough wall 
boundary layer and just 50mN in the smooth wall case.
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To sense this applied load, strain gauge-based force trans-
ducers are by far the most common (Tropea et al. 2007). 
Such devices are typically very accurate, achieving meas-
urement uncertainties below 0.1% of full scale (Tropea et al. 
2007). However, their most significant limitation in this con-
text is their low sensitivity, which makes the direct measure-
ment of O(mN) aerodynamic forces extremely challenging 
(Ferreira et al. 2018; Mueller and Jansen 1982). In addition, 
they are sensitive to overload and damage (Yan et al. 2005), 
and their performance is affected by humidity, and tempera-
ture and the repeatability can drop with prolonged use (Ber-
todo 1959). Furthermore, strain gauges can only measure in 
one direction. To measure multi-directional loads, complex 
systems of multiple strain gauges are required (Ştefănescu 
2011).

Transducers based on photoelastic principles offer 
an alternative, optical, non-intrusive means of sensing 
mechanical loads. Examples include measurement of dif-
ferential pressure (Martens 1984), torque through a rotat-
ing shaft (Chung et al. 1998), point loads (Mukashev et al. 
2022; Daniels et al. 2017; Dubey et al. 2007) as well as 
more complex distributed loads (Dubey et al. 2007) and 
friction due to slip (Dubey and Crowder 2006). In all these 
examples, a mechanical load is transferred to a photoelastic 
material, which exhibits stress-induced birefringence. The 
stress field can be visualised using a polariscope using stand-
ard techniques (Phillips 1998), allowing optical measure-
ment of the load. The resultant photoelastic fringe patterns 
can be recorded using inexpensive colour cameras (Chung 
et al. 1998; Dubey et al. 2007; Mukashev et al. 2022) and 
interrogated to infer the load. In an aerodynamic context, 
the concept was recently employed by Etter et al. (2022) to 
measure wind-speed from aerodynamic loads exerted on a 
whisker-like structure embedded in a photoelastic material. 
However, to date, photoelasticity based sensors have been 
infrequently used and have not been applied to make direct 
force measurements in an aerodynamic application.

In the case of floating element balances, photoelastic 
force transducers are attractive because the load can be 
sensed optically and non-intrusively using inexpensive com-
ponents. The mechanical design can also be simplified. This 
allows a new design space to be explored, e.g. to create an 
array of several, inexpensive balances, or to measure multi-
ple components of applied force or moment. It also allows 
the possibility of creating more easily sealed designs, since 
feedthroughs for sensor electronics are not required. This is 
desirable if the gap around the floating element is to be filled 
with liquid to mitigate horizontal buoyancy forces created 
by pressure gradients (Hirt et al. 1986), which are a signifi-
cant source of skin friction measurement error (Brown and 
Joubert 1969; Hirt et al. 1986). We have previously explored 
this design possibility (Ferreira et al. 2018), but rejected 

it due to the practical difficulties of containing the liquid 
around the other balance components.

Although photoelastic force transducers offer some desir-
able characteristics for use in aerodynamic applications, the 
main difficulty to overcome is their limited sensitivity and 
accuracy. For instance, Mukashev et al. (2022) report a typi-
cal measurement uncertainty of around 6% of full scale load 
(8 N) in the measurement of point loads. Similarly, Dubey 
et al. (2007) report typical measurement uncertainties of 
around 3–4% of full scale load (25 N). The full-scale load 
in these examples is still an order of magnitude larger than 
required for wall shear-stress sensing (Ferreira et al. 2018). 
Therefore, to become competitive with strain-gauge based 
transducers, new designs which improve both the sensitiv-
ity and accuracy are required. To achieve the latter, a better 
understanding of the main error sources is required.

In this paper, we demonstrate a proof-of-concept design 
of floating element force balance that uses a photoelastic ele-
ment to sense millinewton scale forces and quantify the main 
sources of measurement uncertainty using finite element 
analysis simulations and wind tunnel tests. This represents 
a first-step in exploring the design space of FE balances 
based on photoelastic transducers, and achieves a signifi-
cant improvement in absolute measurement uncertainty over 
previous, comparable sensors (Dubey and Crowder 2006; 
Dubey et al. 2007; Mukashev et al. 2022). The sensing ele-
ment functions by capturing images of the photoelastic pat-
terns created by concentrated point-loads applied to a set of 
polyurethane pads, which secure the floating element. These 
patterns are then calibrated against a polynomial model. The 
concept is explored through finite element analysis (FEA) 
simulations, which allow us to investigate the main sources 
of measurement error in our design and predict its perfor-
mance. We then test our design experimentally via low-
speed wind tunnel measurements of the lift of a NACA0015 
aerofoil mounted on the FE balance. These are compared to 
replicate measurements taken by a commercially available 
strain-gauge based load cell.

The paper is structured as follows. Section 2 outlines the 
design of the balance and the operating principle of force 
sensing. In Sect. 3, we introduce our finite element analysis 
simulation and document the results of tests on synthetic 
images. In Sect. 4, we document our wind tunnel testing 
methodology and present the results of our wind tunnel test-
ing in Sect. 5. We provide conclusions in Sect. 6.

2  Balance design and calibration method

Photoelasticity is an optical method of stress and strain 
analysis. It takes advantage of a mechanical property called 
stress-induced birefringence, which many transparent poly-
mers possess (Phillips 1998). Birefringence occurs when 
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light waves travelling through a material are split into two 
components according to their polarisation, which experi-
ence different refractive indices. Under planar stress per-
pendicular to the optical axis, stress-induced birefringence 
creates “fast” and “slow” axes in the material, causing the 
material to act as a temporary wave-plate with a stress-
dependent phase shift. The angular phase shift Δ is related 
to the stress by the stress-optic law (Phillips 1998):

where C is the stress-optic constant (a material property), 
t is the thickness of the sample along the optical axis, � 
is the wavelength of the incident light, and �1 and �2 are 
the principal stresses (ordered 𝜎1 > 𝜎2 ) in the plane perpen-
dicular to the optical axis. Equation 1 shows that the phase 
shift is directly proportional to the difference in the principal 
stresses. It is this relationship that allows the photoelastic 
force balance to function.

Figure 1 shows the cross-section of one of the pho-
toelastic sensing elements. An upper PMMA acrylic plate, 
acting as the floating element, transfers an aerodynamic 
load to a slender pin embedded in a polyurethane pad, 

(1)Δ =
2�Ct

�

(
�1 − �2

)

which acts as the photoelastic material. Two circular 
polarising films, each consisting of a linear polariser and 
quarter wave-plate, are arranged on either side of the pad 
to create a circular polariscope. The polariser is backlit 
by white light from LED strips around the edge of the top 
PMMA plate, which acts as a light pipe. A USB camera is 
placed directly underneath the pad to take images of the 
photoelastic pattern in the pad.

Figure  2 shows an example of the fringe pattern 
observed in a single pad. The stress concentration gener-
ated by transferring the load to the slender pin is essential 
to achieving a large sensitivity. By doing so, we generate a 
large photoelastic response with a small force, unlike pre-
vious approaches (Dubey and Crowder 2006; Dubey et al. 
2007; Mukashev et al. 2022) where the applied load is 
distributed over a much larger region of photoelastic mate-
rial. Even when the pad is unloaded, there is a pronounced 
fringe pattern due to internal stresses from the insertion 
of the pin into the pad. Initially, attempts were made to 
minimise this. However, as we will discuss in Sect. 3, our 
FEA study highlighted that this pre-loading is essential 
to measuring the direction of the applied load. There are 
additional practical considerations to ensure a clear fringe 
pattern. The colour temperature of the LED light ( 6000 K) 
was chosen to ensure even illumination intensity across 
colour components. A matte white background (in this 
case, correction fluid) is used to ensure homogeneous, 
white backlighting. It was also helpful to paint the other 
internal components black to minimise external light and 
reflections.

To measure the applied load from colour fringe pat-
tern images, a least squares fit to a fifth order polynomial 
model is used. The fringe pattern image can be represented 
as a column vector y with N = 3npx elements, correspond-
ing to the red-green-blue intensity of each pixel. The poly-
nomial model y⋆ of the image is written

Fig. 1  Cross-section of a photoelastic force balance element. A slen-
der pin (3) creates a high-stress region in a photoelastic, polyurethane 
pad (2) as a load is applied to the upper floating element. The stress 
field is visualised using a circular polariscope (6), which is back-
illuminated by white LED light (4) guided to the sample through the 
transparent PMMA sheets (1), and is imaged from below with a cam-
era (5)

Fig. 2  Example of the pho-
toelastic fringe pattern for an 
unloaded pad (left) and under a 
0.5 N horizontal load (right)
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where F is the applied axial load and vectors cn ∈ ℝ
3npx are 

unknown calibration coefficients. For convenience, we write 
these in terms of the matrix C = {cn}

5
n=0

 whose columns cor-
respond to the coefficients cn , and a vector x = [F0 …F5] of 
polynomial terms. To calibrate the sensor, a N × K matrix 
Y = {yi}

K
k=1

 is built up of K calibration images recorded 
at known loads Fk . To obtain the coefficients C , we solve 
Y ≈ CX in the least-squares sense for C , where X = {xk}

K
k=1

 
is a K × 6 matrix of polynomial terms. The least-squares 
solution is given by C = YXT

(
XXT

)−1 . The calibration 
matrix C can now be used to determine the unknown loads 
to a given image y . A non-linear least squares fit is used 
based on (2), which finds the value of F that minimises the 
�2 norm error ‖y − y⋆‖2 between the model and the image.

An engineering drawing of the force balance used in 
the wind tunnel tests is shown in Fig. 3. It consists of a 
220 × 220 mm2 square frame, laser cut from 5 mm thick 
PMMA acrylic sheet, with the bottom and top plates cut 
from the same material. The bottom plate was cut to fit 
tightly inside the frame, while the top plate was cut with 
rounded corners and a 1 mm clearance to avoid contact with 
the sides of the frame. The floating element sits upon four 
polyurethane pads, located at the midpoint of each edge 

(2)y⋆ =

5∑

n=0

cnF
n = Cx

and connected via 0.7 mm diameter pins. The pads are of 
approximately 10 × 10 × 2 mm3 cuboidal shape with a shore 
hardness of 65A and a Young’s Modulus of 2.42 MPa . There 
is a 1mm clearance between the top of the pads and the top 
plate. While the properties of the polyurethane may change 
with time, the calibration accounts for this issue. Our experi-
mental protocol has been to complete a calibration at the 
start of a given experiment which is repeated weekly. This 
practice has allowed for experiments over three weeks or 
more with no noticeable reduction in accuracy with time.

3  Tests on synthetic data

To predict the performance of this design, and to validate 
the calibration method, we conducted FEA simulations of a 
single pad under various loadings. The FEA model is a sim-
plified, 2D version of the sensing element, i.e. a square pad 
with side length w = 10 mm and a circular hole of diameter 
d = 0.7 mm . The geometry is shown in Fig. 4. The dimen-
sions were chosen to match the physical balance and the 
simulation assumed a Young’s Modulus of 2.5 MPa and 
a Poisson’s ratio of 1/3 to match the actual pad’s proper-
ties. The pad was loaded with a uniform, horizontal surface 
traction force F and radial pressure P at surface S1. A no-
displacement boundary condition was applied at the edges 
of the pad, S2.

The FEA was conducted in MATLAB using the in-built 
static plane stress modeling package. The maximum edge 
size of the mesh was 1/12 of the pin diameter. More refined 
meshes were tested, but the change in solution was minimal 
and significantly increased processing time. The solution 
was then interpolated onto a regular grid with 256 × 256 ele-
ments. We modelled the response of a circular polariscope 
as (Phillips 1998)

where I(x, y) is the intensity after passing through the polari-
scope, I0 = 1 is the initial intensity, and Δ(x, y) is the relative 
retardation of the incident light. This is performed at wave-
lengths � = 630, 532 and 465 nm , simulating red, green and 
blue channels in a colour image. The stress-optic constant 
of polyurethane was taken to be C = 3.5 × 10−9 Pa−1 (Aben 
and Guillemet 1993). Images were discretised to 256 levels 
over the interval [0, 1], which simulates acquisition using 
an 8-bit image sensor.

Figure 4 shows an example of the synthetic fringe pat-
tern under different loadings. The fringe pattern resulting 
from a pure horizontal load, shown in Fig. 4a, is symmet-
ric about the axis of the applied force. It is therefore not 
possible to determine the direction of the load. In order 
to measure direction as well as magnitude, an asymmetry 

(3)I(x, y) = I0 cos
2
(
Δ

2

)

Fig. 3  Engineering drawing of photoelastic force balance
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must be introduced into the principal stress field. This can be 
achieved by applying a pre-load. Three types of pre-loading 
conditions were explored. The first was a pre-load in the 
direction of the measured force (x-direction), the second 
perpendicular to the measured force (y-direction), and the 
last case was an applied pressure force from the central hole 
(radial stress). Figure 4b shows the same applied force as 
4a but with the third type of pre-loading, radial stress. With 
apparent asymmetry in Fig. 4b, direction information is now 
contained within the fringe pattern.

To calibrate our virtual sensor, K = 21 fringe patterns 
were obtained for applied loads of F = −1 N… 1N in steps 
of 0.1 N and used to construct a calibration (2). Follow-
ing this, fringe patterns were obtained for loads between 
F = −1… 1 N in increments of 0.01 N to test the model.

3.1  Ideal loading and necessary pre‑load

Figure 5 shows the response of virtual sensor calibrated with 
the 5 th order polynomial model (2). Because these data con-
tain no random error, deviations in the calibrated response 
are due to systematic error introduced by the calibration 
model. As expected, without pre-loading, the magnitudes of 
the load can be captured, but direction cannot. Furthermore, 
the systematic error is very large at small loads. By pre-load-
ing in the direction of the measured force, this ambiguous 
region can be offset, but not eliminated. By applying a pre-
load in the direction perpendicular to the measured force, 
the ambiguity can be eliminated, but significant systematic 
errors remain at the largest loads. This approach could have 
severe limitations in practice, as the calibrated response may 
become sensitive to off-axis loads. This directional sensitiv-
ity can be avoided by pre-loading with a radial stress with 
comparable systematic error.

The required magnitude of this radial pre-stress to ensure 
accurate measurements remains unknown. To determine the 

magnitude of this pre-stress, we first define a non-dimen-
sional radial pressure as,

which normalises the radial pressure P against the character-
istic shear stress Ffs∕(�td) in the element at full scale. Here 
Ffs is the full-scale load, t is the thickness of the pad, and d is 
the diameter of the hole. Figure 6 shows the systematic error 
of the calibration for P̂ = 0.5, 1, 1.5, 2, 4, 8 . As P̂ increases, 
the systematic error in the measurements is reduced. Beyond 
P̂ = 2 , the improvement in systematic error is negligible.

Equation (2) essentially obtains a Taylor series expan-
sion of the combined polariscope (3) and principal stress 
field response to a change in the applied loading, F. 
Therefore, systematic errors are introduced into the force 
measurement as the polynomial model deviates from the 

(4)P̂ =
𝜋tdP

Ffs

Fig. 4  Simulated fringe pattern 
response to a load in the +x 
direction without pre-loading 
(left) and with radial pressure 
pre-load (right). The symme-
try of the principal stress field 
(�

1
− �

2
) is broken by the radial 

pre-load, allowing the direction 
of the load to be inferred

Fig. 5  Tests on synthetic data showing the effect of introducing a pre-
load force or radial pressure upon the directional sensitivity of the 
photoelastic sensor
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non-linear photoelastic response of the element. As the 
calibrated range is increased, the sensor response at full 
scale is increased and easier to detect, but the suitability 
of Eq. (2) may vary. Therefore, we examined the effect 
of changing the full scale load used for the calibration 
whilst keeping the radial pre-load dimensionally similar 
P̂ = 2 . Figure 7 shows the normalised systematic error for 
full scale load Ffs = 0.5, 1, 1.5 N . In all cases, the method 
accurately measured magnitude and direction. Systematic 
error reduces with the reduction of the full scale load.

3.2  Effect of noise

To understand the effect of image noise on the measure-
ment, zero-mean Gaussian noise was added to the synthetic 
images with a standard deviation � = 0.071 , i.e. a signal to 
noise ratio of ∼ 23dB , corresponding to a strong random 
noise source. The calibration matrix was built using images 
without noise for P̂ = 2 and Ffs = 1 N . Figure 8 shows that 
the noise contribution is negligible in comparison to the 
systematic error, despite the strong noise. As an example, 
at F = 0.6 N , the systematic error in the measurement is 
21.5 mN , whilst the standard deviation of the random error 
is 0.2 mN.

3.3  Directional dependence

To explore the ability of the balance to separate loads in cross 
directions, a calibration was made as above ( F = −1 N… 1N 
in steps of 0.1 N ) with no load in the Y direction. Test 
images were simulated between Fx = −1 N… 1N in steps 
of 0.01 N with a radial pre-load of P̂ = 2 and an additional 
load Fy = 0 N… 1N in steps of 0.2 N . The systematic error 
in these measurements is shown in Fig. 9. It is apparent 
that a simple 1D polynomial calibration is not sufficient to 
measure the axial load accurately when under a general 2D 
loading. In principle, this effect could be accounted for by 
performing a 2D calibration using a generalised 2D polyno-
mial model. However, for small traverse loads Fy , the loss 
in accuracy due to transverse loading is minimal. The error 
in the Fy = 0.2N case (i.e. a transverse load of 20% of full 
scale) is still less than 5 % at all points.
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Fig. 6  Systematic calibration error, normalised by full scale load Ffs , 
shown for different values of radial pre-load P̂ . For P̂ of 0.5 and 1, the 
error near the full scale and close to zero is large. For P̂ ≥ 2 , increas-
ing the radial pre-load results in no significant improvement in sys-
tematic error
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Fig. 7  Dependence of the systematic error (normalised by full scale) 
upon the full-scale calibration range Ffs , for P̂ = 2 . Smaller full scale 
loads result in a lower systematic error
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Fig. 8  Sensitivity of systematic error (normalised by full-scale load) 
to Gaussian image noise with a signal to noise ratio of 23 dB , full 
scale Ffs = 1 N and P̂ = 2 . The effect of strong image noise is neg-
ligible
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To summarise, tests on synthetic data validate the poly-
nomial fitting procedure and demonstrate the feasibility of 
measuring forces with a photoelastic sensor. The FEA indi-
cates that ideally, there should be a pre-load radial stress 
applied of a size that results in a P̂ ≥ 2 . This analysis also 
shows that while the error is slightly larger towards zero, the 
method is robust to noise. Further, the polynomial regression 
method is accurate to single-direction loading and can han-
dle traverse loads up to Fy ≈ 20% of full scale. A multivari-
ate polynomial regression or a more advanced data-driven 
method would be needed to measure two-directional load-
ing or cross-loads on similar scales. The simple polynomial 
regression was deemed to be acceptable for the experimental 
validation presented here where the lift force measurement 
of a wing is carried out. Here, the drag force will be signifi-
cantly smaller than the expected lift force.

4  Experimental demonstration

The sensitivity of the photoelastic force balance was tested 
in practice by measuring the aerodynamic loads on a 2D, 
NACA0015 wing section at low speed ( Re = 4 × 105 and 
5.7 × 105 ). As a comparison, we also characterised the 
performance using a commercial ATI mini40 strain-gauge 
based load cell. Measurements were conducted in an open-
loop, low-speed, blow-down wind tunnel at the University of 
Southampton, previously characterised in Bleischwitz 2016. 
Although measuring skin friction is the intended application, 
we choose this simpler configuration for reasons of practical-
ity and time constraints in using our larger, boundary layer 
wind tunnel facility (BLWT). However, the loads in both 
scenarios are comparable. For instance, based on a rough 
surface of staggered cubes with skin friction coefficient 

Cf = 8.5 × 10−3 (Ferreira et al. 2018), we estimate the drag 
on our floating element balance would be between 20 and 
413 mN for typical free-stream speeds in the BLWT between 
10 and 45 m/s. In the present measurements, the largest lift 
force measured is around 771 mN.

The experimental setup is shown in Fig. 10. The balance 
was fared into the floor of the tunnel, which has a cross-
section of 43 × 48 cm , and the wing affixed to the floating 
element using an optical post holder. The wing model is a 
foam cut NACA0015 section supported by a carbon fiber rod 
through the quarter chord, with a chord length of c = 12 cm , 
a span of s = 36 cm and aspect ratio AR = 3. In the compar-
ison experiment, the ATI sensor was also fared into the tun-
nel floor. This reference sensor has a resolution of 1∕200 N 
in the lift- and drag- axes and 20 N full scale. The freestream 
velocity U∞ was determined using a Pitot tube to measure 
the dynamic pressure Δp =

1

2
�U2

∞
 using a FCO560 digital 

manometer, which has an accuracy of ±0.23Pa . Two free-
stream speeds U∞ were tested, 5 m∕s and 7m∕s , resulting in 
chord-based Reynolds number of Re = 4 × 105 and 5.7 × 105 
respectively. The wing was tested over a range of angle of 
attack � = −14… 12◦ in steps of 2◦.

The balance was calibrated for forces applied along the 
lift axis, as shown in Fig. 10. The calibration was com-
pleted inside the wind tunnel where the wing test would 
occur. Point loads were applied at the half-span of the 
wing via known weights suspended on a monofilament 
Nylon fishing line using a Pasco ME-9450 low-friction 
pulley with an effective coefficient of friction of 7 × 10−3 
(Ferreira et al. 2018). We have observed that the balance 
response is sensitive to the moment arm, i.e. the height at 
which the load is applied, so the loads were applied at the 
approximate aerodynamic centre. The masses ranged from 
−100 to 100 g in steps of 10 g , and the weight of the line 
was assumed to be negligible. For each load, a video was 
recorded at 7.5 frames/s for 40s : 10s unloaded, 20s loaded, 
and 10s unloaded. The unloaded period allowed the back-
ground image to be removed to account for the internal 
stress of the pad. An average image y was found for each 
video, corresponding to the difference between the loaded 
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Fig. 9  Sensitivity of the systematic error, obtained for a 1D calibra-
tion, to varying transverse loadings with Ffs = 1 N and P̂ = 2

Fig. 10  CAD model of the experimental set-up inside of the wind 
tunnel
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and unloaded states. Frames were not included in the aver-
aging process around the application and removal of the 
load to avoid any transients. This method created an image 
showing the average change in the fringe pattern due to the 
application of the load. The procedure resulted in K = 21 
images, one for each applied load, which were used to 
obtain a calibration as in Sect. 2.

Figure 11 shows the systematic error in the experi-
mental calibration, which was obtained by applying the 
calibration model to the calibration input images it was 
derived from. The maximum systematic error is around 
8% of full scale Ffs = 1 N and shows no obvious trend. 
When the calibration was repeated over a smaller range 
of masses −40… 40 g in 5g increments, we observe that 
the systematic error is lower in both relative and absolute 
terms ( < 3.3% of full scale), consistent with our observa-
tions in Fig. 7. This shows that the measurement range of 
the balance can be tailored to operate over different scales. 
We also note that the systematic error observed is compa-
rable in magnitude to our FEA simulations in Fig. 7. The 
calibration of Ffs = 1 N is used in the subsequent experi-
ments presented here.

5  Results

Measurements of lift for the NACA 0015 aerofoil were 
taken over a period of six days, with the calibration for 
the photoelastic balance performed on the first day. Six 
repeats of the lift measurements as a function of the 
angle of attack were performed for the ATI sensor, whilst 
three repetitions of the measurement were taken for the 

photoelastic balance. A comparison of the CL − � curves 
obtained using the ATI and photoelastic sensors is shown 
in Fig. 12. A common semi-empirical approximation of 
the lift-curve slope of a finite, symmetric aerofoil

which is appropriate for slender, small aspect ratio, rectan-
gular planform wings below stall (John D. Anderson 2016) 
is also shown.

Figure 12 shows that the lift-curve of all four data sets 
collapses and follows the expected theoretical lift-curve 
(5) at small angles of attack. Both techniques capture the 
angle of maximum lift (and stall) at the same angle of 
attack. A standard uncertainty propagation and uncertainty 
budget was performed for the lift coefficient measure-
ments, detailed in Appendix A. The error bars in Fig. 12 
show the uncertainty in the measurement to 95% confi-
dence interval. The largest source of uncertainty comes 
from the repeatability of the lift. It is remarkable that, over 
six days of aerodynamic testing, the photoelastic force bal-
ance calibration is stable enough to provide uncertainty 
comparable to a commercial sensor which is two orders of 
magnitude more expensive. The most significant difference 
between the ATI and the photoelastic sensors occurs at the 
smallest angles of attack, where the forces measured are 
the smallest. The RMS error between the ATI and pho-
toelastic sensors for the U∞ = 5m∕s case was 16 mN and 
36mN for the 7m∕s case. The average discrepancy between 
the two was 4.8% and 6.8% at 5 and 7m∕s respectively, for 
an overall “average” discrepancy of 5.9% . In dimensional 
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(
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Fig. 11  Systematic error normalized by Ffs for two different physical 
calibrations

Fig. 12  Comparison of lift coefficient CL of wing model determined 
from strain-gauge based ATI mini40 sensor and photoelastic balance 
at free-stream speeds U∞ = 5 m/s and 7 m/s over a range of angle of 
attack � . The black line shows the semi-empirical lift-curve slope pre-
diction (5) for an AR = 3 wing below stall



Experiments in Fluids (2023) 64:126 

1 3

Page 9 of 11 126

terms, the largest lift force measured is approximately 
771 mN . The consistency of these results demonstrates 
that the photoelastic force balance can reliably measure 
millinewton scale aerodynamic loads with comparable 
performance to a commercial strain-gauge-based sensor.

Example uncertainty budgets for the lift coefficient 
obtained for the PFB and the ATI sensor are presented in 
Tables 1 and 2, respectively. The uncertainty of the two sen-
sors is very similar, both in total contribution and in how the 
contribution is distributed among the sources of error. The 
budget confirms that the largest source of uncertainty comes 
from the repeatability of the lift. The area and the velocity 
had a moderate effect, while the temperature and pressure 
readings had minimal impact on the measurement of Cl.

6  Conclusions

In this paper, we have presented the proof-of-concept of a 
floating element force balance design based on the principles 
of photoelasticity to measure small ( < 1 N ) aerodynamic 

loads with typical measurement error as low as 16 mN . 
This high sensitivity is achieved by concentrating the load 
from the floating element onto slender pins embedded in a 
photoelastic material, creating a stress concentration which 
induces a large photoelastic response. A fifth-order polyno-
mial model is then calibrated to model fringe pattern images 
generated by loading the balance in one dimension, which 
can be used to determine the applied load from the fringe 
patterns.

Finite element analysis was used to predict the perfor-
mance of the design and validate the calibration method. The 
FEA shows that some pre-loading of the element is essen-
tial to provide directional sensitivity. This can be effectively 
achieved by the radial stress created around the pin as it 
is inserted into the photoelastic material. Systematic errors 
are introduced into the force measurement as the polyno-
mial model deviates from the true, nonlinear photoelastic 
response of the element. The systematic errors are the main 
source of measurement error: synthetic images contami-
nated with strong random noise (signal to noise ratio 23 dB ) 
show that random error introduced by image noise is two 
orders of magnitude smaller than the systematic error. The 
absolute and relative magnitude of the systematic errors, in 
comparison to the full scale load, can be reduced by calibrat-
ing over a smaller range. This observation is replicated in 
subsequent experimental tests. Systematic errors can also be 
induced by off-axis loads. A simple, 1D polynomial calibra-
tion model results in systematic errors below 5% of full scale 
provided the off-axis load is below 20% of full scale. Under 
a more general 2D loading, the 1D polynomial calibration 
model fails. A more general multivariate polynomial regres-
sion model or more advanced data-driven method would be 
needed to measure 2D loading or off-axis loads on similar 
scales.

We tested our design experimentally in a low-speed wind 
tunnel by measuring the lift force on a 2D NACA0015 aero-
foil mounted on the floating element. We compared these 
measurements to replicate measurements obtained using a 
commercially available ATI mini40 strain-gauge based load 
cell. The results from the PFB and ATI load cell are within 
6% of each other. In absolute terms, the RMS discrepancy 
between the two was around 16 − 36 mN , which is compa-
rable to the repeatability of the measurement itself. This 
proof-of-concept shows the technique is suitable to measure 
the forces expected on rough walls in our boundary layer 
wind tunnel facility.

Although the systematic error at full scale is still larger 
than well-optimised strain-gauge based FE balances (Ferreira 
et al. 2018), the balance presented here represents a first-step 
in applying photoelasticity based sensors to measure small 

Table 1  Example uncertainty budget in lift coefficient C
L
 for the pho-

toelastic force balance at U∞ = 5m∕s and � = 6◦

Measured quantity Accuracy Sensitivity value Uncertainty 
contribution 
(u)

Lift (L) 0.0143 N 1.518  N−1 0.0217
Temperature ( T) 0.1 K 0.00113  K−1

6.5 × 10−5

Atmospheric Pressure 
( p

atm
)

100 Pa 3.2 × 10−6 Pa
−1 1.8 × 10−4

Velocity ( U∞) 0.06 m/s 0.133 s/m 0.00461
Area ( A) 0.001  m2 7.681m−2 0.00443
Combined uncertainty 0.0227

Table 2  Example uncertainty budget in lift coefficient C
L
 for the ATI 

Mini 40 sensor at U∞ = 5m∕s and � = 6◦

Measured quantity Accuracy Sensitivity value Uncertainty 
contribution 
(u)

Lift ( L) 0.0137 N 1.518  N−1 0.0208
Temperature ( T) 0.1 K 3.2 × 10−5 K

−1
1.9 × 10−6

Atmospheric Pressure 
( p

atm
)

100 Pa 1.1 × 10−7 Pa
−1

6.2 × 10−6

Velocity ( U∞) 0.06 m/s 0.154 s/m 0.00534
Area ( A) 0.001  m2 8.89  m−2 0.00514
Combined uncertainty 0.0221
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loads. It has the advantages of being a non-intrusive optical 
measurement, having an inexpensive and simple mechanical 
design with no moving parts or electrical components in the 
sensor. This opens up new measurement possibilities for future 
research, e.g. to create an array of several, inexpensive bal-
ances or to fill the cavity around the the floating element with 
liquid to reduce horizontal buoyancy effects. Furthermore, the 
sensitivity of our photoelastic sensor to off-axis loads could 
be exploited to measure multiple components of force, which 
we have confirmed in initial tests using a 2D polynomial cali-
bration. We have also found that the balance is also able to 
measure unsteady forces (McLaughlin et al. 2023). A simple 
calculation based on the FEA-modelled stiffness and mass of 
our current design suggests the natural frequency is around 
50Hz, which offers the prospect of time-resolved sensing up 
to O(10 Hz) . Future research should quantify the temporal 
response of such photoelastic sensors.

A Uncertainty analysis

The standard uncertainty in the lift coefficient 
Cl = 2 L∕(�U2

∞
A) is obtained from uncertainty propagation 

(Kirkup and Frenkel 2006), where A = sc is the wing planform 
area and the air density � = patm∕RT  is calculated from the 
ideal gas equation, where R = 287.05Jkg−1K−1 is the specific 
gas constant for air, patm is the atmospheric pressure, and T is 
the ambient temperature. The standard uncertainty uCl

 there-
fore given in terms of the uncertainty of the measurands uX as

The uncertainty in the lift measurement and in the free-
steam velocity were found from the repeatability of the 
measurements across three runs. The uncertainty of the 
temperature and of the area where taken form the grada-
tion of the temperature probe and the ruler used to measure 
the wing dimensions, having a resolution of 0.1◦ and 1mm 
respectively. The pressure was taken from a local weather 
station accurate to 100Pa . Example uncertainty budgets for 
the lift coefficient obtained for the PFB and the ATI sensor 
are presented in Tables 1 and 2 respectively.

Author Contributions BM - Data Collection, Data Analysis, Figure 
Preparation, Writing - Original Draft; JL - Conceptualisation, Data 
analysis, Review and Editing; BG - Funding, Data Analysis, Review 
and Editing.

Funding The authors are grateful for financial support from the 
Engineering and Physical Sciences Research Council (Ref No: EP/
S013296/1 and EP/W026090/1).

(6)
u2Cl

=
(

�Cl

�L
uL

)2

+
(

�Cl

�T
uT

)2

+
(

�Cl

�P
uP

)2

+
(

�Cl

�U
uU

)2

+
(

�Cl

�A
uA

)2

.

Data Availability Pertinent data for this paper are available at https:// 
doi. org/ 10. 5258/ SOTON/ D2675.

Declarations 

Conflict of interest The authors report no conflict of interest.

Ethical approval Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Aben H, Guillemet C (1993) Two-dimensional photoelasticity. Pho-
toelasticity of glass. Springer, Berlin, pp 69–78

Aly AM (2013) Pressure integration technique for predicting 
wind-induced response in high-rise buildings. Alex Eng J 
52(4):717–731

Baliga BR, Patankar SV (1983) A Control Volume Finite-element 
Method for Two-dimensional Fluid Flow and Heat Transfer. 
Numerical Heat Transfer 6(3):245–261

Bertodo R (1959) Development of high-temperature strain gauges. Proc 
Inst Mech Eng 173(1):605–622

Bleischwitz R (2016) Fluid-structure interactions of membrane wings 
in free-flight and in ground-effect. PhD thesis, University of 
Southampton

Brown KC, Joubert PN (1969) The measurement of skin friction in 
turbulent boundary layers with adverse pressure gradients. J Fluid 
Mech 35(4):737–757

Chung D, Merat FL, Discenzo FM, Harris JS (1998) Neural net based 
torque sensor using birefringent materials. Sens Actuators A 
70(3):243–249

Daniels KE, Kollmer JE, and Puckett JG (2017) Photoelastic force 
measurements in granular materials. Rev Sci Instrum 88(5)

Dubey VN, Crowder RM (2006) A dynamic tactile sensor on pho-
toelastic effect. Sens Actuators A 128(2):217–224

Dubey VN, Grewal GS, Claremont DJ (2007) Load extraction 
from photoelastic images using neural networks. Exp Mech 
47(2):263–270

Etter E, Mulleners K, and Ayancik F (2022) Application of transmis-
sion photoelasticity in visualizing fluid-structure interactions. In: 
20th international symposium on application of laser and imaging 
techniques to fluid mechanics, Lisbon, Portugal

Ferreira MA, Rodriguez-Lopez E, Ganapathisubramani B (2018) An 
alternative floating element design for skin-friction measurement 
of turbulent wall flows. Exp Fluids 59(10):155

Hirt F, Zurfluh U, Thomann H (1986) Skin friction balances for large 
pressure gradients. Exp Fluids 4(5):296–300

John D, Anderson J (2016) Fundamentals of aerodynamics
Kempf G (1929) Neue ergebnisse der widerstandsforschung. Werft, 

Reederei, Hafen, pp 234–239

https://doi.org/10.5258/SOTON/D2675
https://doi.org/10.5258/SOTON/D2675
http://creativecommons.org/licenses/by/4.0/


Experiments in Fluids (2023) 64:126 

1 3

Page 11 of 11 126

Kirkup L, Frenkel RB (2006) An introduction to uncertainty in meas-
urement. Cambridge University Press, Cambridge

Lindholdt A, Dam-Johansen K, and Olsen SM (2015) Effects of bio-
fouling development on drag forces of hull coatings for ocean-
going ships: a review. J Coat Technol Res

Martens G (1984) Measurement of pressure by photoelastic effects. 
Sens Actuators 6(3):181–190

McLaughlin B, Lawson J, and Ganapathisubramani B (2023) Measur-
ing instantaneous forces with a photoelastic force balance. AIAA 
SCITECH 2023 forum, p. 1937

Mueller T, Jansen JRB (1982) Aerodynamic measurements at low 
Reynolds numbers. In: 12th aerodynamic testing conference, Res-
ton, Virigina. American Institute of Aeronautics and Astronautics

Mukashev D, Zhuzbay N, Koshkinbayeva A, Orazbayev B, Kappassov 
Z (2022) PhotoElasticFinger: robot tactile fingertip based on pho-
toelastic effect. Sensors 22(18):1–14

Pabon RJ, Ukeiley L, Sheplak M, Barnard Keane C (2018) Charac-
teristics of turbulent boundary layer large scale motions using 
direct fluctuating wall shear stress measurements. Phys Rev Fluids 
3(11):114604

Pailhas G, Barricau P, Touvet Y, Perret L (2009) Friction measurement 
in zero and adverse pressure gradient boundary layer using oil 
droplet interferometric method. Exp Fluids 47(2):195–207

Phillips JW (1998) Photoelasticity. Experimental Stress Analysis, 
Urbana

Schetz JA (1997) Direct measurement of skin friction in complex fluid 
flows. Appl Mech Rev 50(11S):S198–S203

Schmidt M, Howe R, Senturia S, Haritonidis J (1988) Design and cali-
bration of a microfabricated floating-element shear-stress sensor. 
IEEE Trans Electron Devices 35(6):750–757

Ştefănescu D (2011) The basic circuit for strain gauge force transduc-
ers. In: Handbook of force transducers. Springer

Tropea C, Yarin AL, Foss JF (eds) (2007) Handbook of experimental 
fluid mechanics. Springer, Berlin

Wei T, Schmidt R, McMurtry P (2005) Comment on the Clauser 
chart method for determining the friction velocity. Exp Fluids 
38(5):695–699

Winter K (1979) An outline of the techniques available for the meas-
urement of skin friction in turbulent boundary layers. Prog Aerosp 
Sci 18:1–57

Yan T, Jones B, Rakowski R, Tudor M, Beeby S, White N (2005) 
Metallic resonant strain gauges with high overload capability. 
Sens Rev 25(2):144–147

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Development of a floating element photoelastic force balance
	Abstract
	1 Introduction
	2 Balance design and calibration method
	3 Tests on synthetic data
	3.1 Ideal loading and necessary pre-load
	3.2 Effect of noise
	3.3 Directional dependence

	4 Experimental demonstration
	5 Results
	6 Conclusions
	A Uncertainty analysis
	References




