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A B S T R A C T

The capability of a novel Kullback–Leibler divergence method is examined herein within the
Kalman filter framework to select the input–parameter–state estimation execution with the
most plausible results. This identification suffers from the uncertainty related to obtaining
different results from different initial parameter set guesses, and the examined approach uses the
information gained from the data in going from the prior to the posterior distribution to address
the issue. Firstly, the Kalman filter is performed for a number of different initial parameter
sets providing the system input–parameter–state estimation. Secondly, the resulting posterior
distributions are compared simultaneously to the initial prior distributions using the Kullback–
Leibler divergence. Finally, the identification with the least Kullback–Leibler divergence is
selected as the one with the most plausible results. Importantly, the method is shown to select
the better performed identification in linear, nonlinear, and limited information applications,
providing a powerful tool for system monitoring.

. Introduction

Output-only system identification techniques have a long history of assessing the system condition when performed during
heir normal operation with ambient vibration data. In this direction, the stochastic modal identification techniques are introduced
rom output-only data combining high computational robustness efficiency with high estimation accuracy. To address the non-
utomated identification issue in output-only procedures extensive research is performed, and it is still ongoing. Rainieri and
abbrocino [1] presented a literature review for the most common automated output-only dynamic identification techniques. Later,
intelon et al. [2] introduced a novel multi-output algorithm for continuous-time operational modal analysis in the presence of
armonic disturbances with time-varying frequency. López-Aenlle et al. [3] proposed a procedure to optimize the mass-change
trategy, which uses the modal parameters of the original system as the basic information. Reynders [4] examined the issue of
ata-driven system matrices derived using identified state sequences, while also investigated the uncertainty quantification. To
rovide insight on non-automated techniques, Priori et al. [5] studied a time domain output-only data-driven stochastic subspace
dentification technique for modal models providing also some user-defined parameters suggestions. Additionally, Grez et al. [6]
eveloped a subspace identification method for the estimation of the structural parameters while rejecting the influence of the
eriodic input.

Online dynamic system monitoring, on the other hand, has been an active area of research for more than a half century for
ssessing the system condition in real-time. Over this period, the estimation of the dynamic states was firstly addressed mainly
ased on the Kalman filter and the particle filter [7–9]. While the state estimation has its applications, the original versions of these
ethods do not provide information on the remaining quantities of the system such as on the parameter and/or the input. This
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deficiency is problematic for damage detection and the impracticability of needing to know the input in some circumstances. This
has led to either the dynamic states and the parameters estimation in real-time, or the estimation of the dynamic states and the
input in real-time. Methodologies are proposed for the joint parameter-state estimation [10,11] based on nonlinear filters such as the
extended Kalman filter [12–15], the unscented Kalman filter [16–18], or the particle filter [19–21]. Nonetheless, the required input
cannot always be measured, or the measurement of the input may be more unreliable than what is demanded. For instance, there
is not a reliable means of accurately measuring the traffic and wind load on large structural systems. Methodologies for the joint
input-state estimation or for unknown input dynamic state estimation are proposed in [22–28]. However, for known parameters the
requirements of damage detection are not met. Though the procedures are useful and practical for real systems, they fail to address
the complete identification problem when all quantities are unknown. The aforementioned, with respect to some assumed system
properties, lead to the need of extraction of as much information as possible using only output data.

To this end, the simultaneous estimation of the dynamic states, the system parameters, and the input attracts the attention
f the dynamic system monitoring community [29]. Over this period, Naets et al. [30] proposed an extended Kalman filter with
ugmented states for the unknown inputs and parameters. Dertimanis et al. [31] suggested an observer which combines the dual
nd the unscented Kalman filter. Furthermore, Castiglione et al. [32] introduced a time-varying auto-regressive model for the
nknown input. Maes et al. [33] proposed a linearization of the system model around the states. Lei et al. [34] suggested a recursive
onlinear least squares strategy for the unknown input. Additionally, Song [35] proposed a minimum variance unbiased filtering
ith direct feedthrough. Rogers et al. [36] proposed a Gaussian process latent force model which allows a flexible Bayesian prior

o be placed over the unknown forcing signal. Huang et al. [37] investigated the modulated colored noise for the unknown inputs.
mportantly, Teymouri et al. [38] developed a Bayesian expectation–maximization methodology for the noise calibration. Finally,
apalbo et al. [39] proposed a parametric model order reduction for the augmented Kalman filtering, and the research is still
ngoing.

However, developing a joint input–parameter–state methodology incorporates, apart from the identification convergence, the
election of the correct or the most plausible results. The main challenge is in the presence of uncertainty related to the different
esults from different initial parameter set guesses. Especially, if these are not reasonably close to the true parameter values, the
lgorithms converge to wrong values, and the user is unable to select the correct results among several executions. Specifically, the
lgorithms converge to suboptimal results which, although partially reproduce the measured data, they do not provide the correct
arameter estimates.

A way to address this challenge is examined here using a generalized real-time procedure which selects automatically the most
lausible results. The Kullback–Leibler divergence [40] is therefore employed, termed also as relative entropy.

Importantly, the Kullback–Leibler divergence has already been examined to select the better performed model class in real-time
dentification problems [16,41,42]. It has also been used extensively in machine learning [43] and in the sensor configuration
ptimization [44–47] for structural health monitoring applications. In another application, it has been proposed to appropriately
elect the distributions on the extended space that includes atomic coordinates and collective variables [48].

The Kullback–Leibler divergence, specifically, is a type of statistical distance, namely a measure of how different a probability
istribution is from a second one. In this work, it is interpreted as the larger its value, the greater the information gained from the
ata between the posterior and the prior distribution, indicating a more complex identification which is less favorable.

In the examined method, the estimates of the Kalman filter, especially the unscented Kalman filter (UKF) [49] and the residual-
ased Kalman filter (RKF) [50] are evaluated simultaneously using the Kullback–Leibler divergence. Subsequently, the identification
ith the least Kullback–Leibler divergence is selected as the most plausible one.

The proposed method for selecting the most plausible results among several executions should not be confused with the Bayesian
odel evidence algorithms for online estimation [51–54]. Those approaches calculate the evidence of each candidate model given

he available measured data, and they finally select the simpler ones over the unnecessarily complicated ones. The importance of
hose methods is highlighted by the fact that a more complicated model fits the data better than one which has fewer adjustable
ncertain parameters, but it is likely results in data over-fitting and poor future predictions. This is attributed to the parameter
itting which depend too much on the detail of the data and the measurement noise. On the other hand, the proposed method solely
olves the system identification problem for each candidate model.

The work is organized as follows: the Kullback–Leibler divergence for parameter set selection is developed in Section 2. In
ection 3, the unknown input UKF is extended by the Kullback–Leibler divergence approach. In Section 4, the unknown input RKF
s extended by the Kullback–Leibler divergence approach. Section 5 provides the summary and the detailed algorithmic tables.
mportantly, Section 6, Section 7, and Section 8 investigate numerical applications on linear, limited information, and nonlinear
ystems. Investigations are also provided for various levels of observation noise and for comparison with systems with larger
egrees of freedom (DOFs). Finally, further discussion, investigation of algorithmic parameters, and suggestions for future research
s provided in Section 9. Last but not least, the conclusions are provided in Section 10.

. The Kullback–Leibler divergence for parameter set selection

To select the initial parameter set 𝑆𝑖 in a Bayesian framework, one needs to use their prior probability distribution, and then
ssess their posterior probability plausibility. Let 𝐒 be the space of the parameter sets 𝑆𝑖∶𝑖𝑚𝑎𝑥 . The posterior probability 𝑃 (𝑆𝑖 | 𝐲,𝐒)

of the parameter set 𝑆𝑖 is defined using the Bayes theorem as:

𝑃 (𝑆𝑖 | 𝐲,𝐒) =
𝑝(𝐲 |𝑆𝑖) ⋅ 𝑃 (𝑆𝑖 |𝐒) (1)
2

𝑝(𝐲 |𝐒)
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where, 𝑃 (𝑆𝑖 |𝐒) is the prior probability of 𝑆𝑖, 𝐲 is the measurement vector, and 𝑝(𝐲 |𝑆𝑖) is the evidence given the set 𝑆𝑖. The
enominator is replaced by the summation of the prior probability and the likelihood for every parameter set, written as:

𝑃 (𝑆𝑖 | 𝐲,𝐒) =
𝑝(𝐲 |𝑆𝑖) ⋅ 𝑃 (𝑆𝑖 |𝐒)

∑𝑖𝑚𝑎𝑥
𝑖

{

𝑝(𝐲 |𝑆𝑖) ⋅ 𝑃 (𝑆𝑖 |𝐒)
}

(2)

et 𝜃𝑗 ∈ 𝑆𝑖 be the parameter 𝑗 of the set 𝑆𝑖. The posterior probability distribution 𝑝(𝜃𝑗 | 𝐲, 𝑆𝑖) of 𝜃𝑗 is written as:

𝑝(𝜃𝑗 | 𝐲, 𝑆𝑖) =
𝑝(𝐲 | 𝜃𝑗 , 𝑆𝑖) ⋅ 𝑝(𝜃𝑗 |𝑆𝑖)

∫𝜃𝜃𝜃 𝑝(𝐲 | 𝜃𝑗 , 𝑆𝑖) ⋅ 𝑝(𝜃𝑗 |𝑆𝑖)𝑑𝜃𝑑𝜃𝑑𝜃
=

𝑝(𝐲 | 𝜃𝑗 , 𝑆𝑖) ⋅ 𝑝(𝜃𝑗 |𝑆𝑖)
𝑝(𝐲 |𝑆𝑖)

(3)

where, 𝑝(𝐲 | 𝜃𝑗 , 𝑆𝑖) is the likelihood given the parameter 𝜃𝑗 and the set 𝑆𝑖, and 𝑝(𝜃𝑗 |𝑆𝑖) is the prior probability density function of
𝑗 given the set 𝑆𝑖. Here, computing the evidence 𝑝(𝐲 |𝑆𝑖) for each set 𝑆𝑖 is not trivial. Specifically, the high-dimensional integral is
sually analytically intractable, for instance when nonconjugate prior probabilities and/or latent variables exist.

To this end, stochastic simulation methods are used. Particularly, the Markov chain Monte Carlo methods generate samples from
he posterior distribution, and then compute the likelihood using the following identity of a rearranged Bayes theorem for every 𝜃𝑗 :

𝑙𝑛
(

𝑝(𝐲 |𝑆𝑖)
)

= 𝑙𝑛
(

𝑝(𝐲 | 𝜃𝑗 , 𝑆𝑖)
)

+ 𝑙𝑛
(

𝑝(𝜃𝑗 |𝑆𝑖)
)

− 𝑙𝑛
(

𝑝(𝜃𝑗 | 𝐲, 𝑆𝑖)
)

(4)

where, the natural logarithm 𝑙𝑛(∙) is applied to avoid numerical overflows. Eq. (4) is also written as [55]:

𝑙𝑛
(

𝑝(𝐲 |𝑆𝑖)
)

= ∫𝜃𝜃𝜃
𝑙𝑛
(

𝑝(𝐲 | 𝜃𝑗 , 𝑆𝑖)
)

𝑝(𝜃𝑗 | 𝐲, 𝑆𝑖)𝑑𝜃𝑑𝜃𝑑𝜃 − ∫𝜃𝜃𝜃
𝑙𝑛

(

𝑝(𝜃𝑗 | 𝐲, 𝑆𝑖)
𝑝(𝜃𝑗 |𝑆𝑖)

)

𝑝(𝜃𝑗 | 𝐲, 𝑆𝑖)𝑑𝜃𝑑𝜃𝑑𝜃 (5)

where, the first expectation term measures the posterior average data fit of the parameter set 𝑆𝑖, while the penalty-type second one
represents the Kullback–Leibler divergence 𝐷𝐾𝐿 between the parameter posterior and prior probability distributions.

Specifically, the Kullback–Leibler divergence measures the similarity between 𝑞𝐼 (𝜃𝜃𝜃) = 𝑝(𝜃𝑗 |𝑆𝑖) and 𝑞𝐼𝐼 (𝜃𝜃𝜃) = 𝑝(𝜃𝑗 | 𝐲, 𝑆𝑖) as:

𝐷𝐾𝐿

(

𝐪𝐈𝐈(𝜃𝜃𝜃)
|

|

|

|

|

|

𝐪𝐈(𝜃𝜃𝜃)
)

∶= ∫

∞

−∞
𝐪𝐈𝐈(𝜃𝜃𝜃) ⋅ 𝑙𝑛

(

𝐪𝐈𝐈(𝜃𝜃𝜃)
𝐪𝐈(𝜃𝜃𝜃)

)

𝑑𝜃𝑑𝜃𝑑𝜃 (6)

where the following property applies,

𝐷𝐾𝐿

(

𝐪𝐈𝐈(𝜃𝜃𝜃)
|

|

|

|

|

|

𝐪𝐈(𝜃𝜃𝜃)
)

{

≥ 0 ∀ 𝑞𝐼 (𝜃𝜃𝜃), 𝑞𝐼𝐼 (𝜃𝜃𝜃)
= 0 when 𝑞𝐼 (𝜃𝜃𝜃) = 𝑞𝐼𝐼 (𝜃𝜃𝜃)

(7)

Finally, for Gaussian distributions of 𝑑 dimension, it is finally written as:

𝐷𝐾𝐿

(

𝐪𝐈𝐈(𝜃𝜃𝜃)
|

|

|

|

|

|

𝐪𝐈(𝜃𝜃𝜃)
)

= 1
2

[

𝑙𝑛

(

𝐖𝐈
𝐖𝐈𝐈

)

− 𝑑 + 𝑡𝑟𝑎𝑐𝑒
(

𝐖−𝟏
𝐈 ⋅ 𝐖𝐈𝐈

)

+
(

𝐄𝐈 − 𝐄𝐈𝐈
)𝑇

⋅ 𝐖−𝟏
𝐈 ⋅

(

𝐄𝐈 − 𝐄𝐈𝐈
)

]

(8)

where, 𝐄 and 𝐖 are the mean and variance values of the prior I and the posterior II distribution, respectively. This Kullback–
eibler divergence representation allows for online and real-time evaluation of the identification with each parameter set 𝑆𝑖, and
mportantly, allows for a direct comparison of a number of simultaneous identifications from several sets.

. Input–parameter–state estimation using the Kullback–Leibler divergence the unscented Kalman filter

For the mathematical implementation of the unknown input UKF [49] consider the nonlinear process equation in the continuous-
ime and the state-space format:

�̇�(𝑡) = 𝑓
(

𝐳(𝑡),𝐮(𝑡)
)

+ 𝜈𝜈𝜈(𝑡) (9)

nd the nonlinear observation equation:

𝐲(𝑡) = ℎ
(

𝐳(𝑡),𝐮(𝑡)
)

+ 𝜂𝜂𝜂(𝑡) (10)

here, 𝐲(𝑡) is the observation vector. The state vector 𝐳(𝑡) = [𝐱(𝑡), �̇�(𝑡), 𝜃𝜃𝜃]𝑇 includes the dynamic states and the system parameters.
lso, 𝑓 (∙) and ℎ(∙) are the state transition function and the observation function, respectively, which take into account the, unknown
ere, input vector 𝐮(𝑡). Lastly, 𝜈𝜈𝜈(𝑡) and 𝜂𝜂𝜂(𝑡) are the process and the measurement noise of covariance matrices 𝐐(𝑡) and 𝐑(𝑡),
espectively. Eqs. (9) and (10) are discretized as:

𝐳𝐤 = 𝐹 (𝐳𝐤−𝟏,𝐮𝐤−𝟏) + 𝜈𝜈𝜈𝑘𝑘𝑘−𝟏 (11)

nd,

𝐲𝐤 = ℎ(𝐳𝐤,𝐮𝐤) + 𝜂𝜂𝜂𝑘𝑘𝑘 (12)

here,

𝐹 (𝐳𝐤−𝟏,𝐮𝐤−𝟏) = 𝐳𝐤−𝟏 +
(𝑘)𝛥𝑡

𝑓
(

𝐳(𝑡),𝐮(𝑡)
)

𝑑𝑡 (13)
3

∫(𝑘−1)𝛥𝑡
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Note that 𝑘 refers to 𝑘𝛥𝑡 time instant, where 𝛥𝑡 is the sampling period. The discretized process and observation covariance matrices
are:

𝐐𝐤−𝟏 ≈
𝐐
(

(𝑘 − 1)𝛥𝑡
)

𝛥𝑡
, 𝐑𝐤 =

𝐑(𝑘𝛥𝑡)
𝛥𝑡

(14)

It is assumed, though, that the matrices are constant during the whole process, where being constant does not harm the estimation
success; an investigation of their exact value, which importantly highly affects the success of the estimation [56], is shown in
Section 9.

Simultaneously estimating the unknown input is possible using the UKF. Employing the predicted states at time step 𝑘, the input
s estimated using the continuous equation of motion at the time instant 𝑘𝛥𝑡 as:

𝐮𝐩𝐤 ≈ 𝐆
(

�̈�𝐦𝐤 ,
̇𝐱𝑝𝑘, 𝐱

𝐩
𝐤 , 𝜃𝜃𝜃

𝑝𝑝𝑝
𝑘𝑘𝑘

)

(15)

here, 𝐆(∙) is the linear or nonlinear system model, which contains the estimated parameters and, thus, it is updated in every step.
mportantly, the predicted states are estimated using Eq. (11); with the prior input only.

Subsequently, the potential zero or non-zero valued known inputs replace the related 𝐮𝐩𝐤 rows. The resulting predicted input is
used in the updating process with the measurements in Eq. (12).

However, this predicted 𝐮𝐩𝐤 input is erroneous since neither the predicted states have been updated with the measurements yet,
nor the system parameters [49]. This is generally acceptable and its noise characteristics are incorporated into the measurement
noise 𝜂𝜂𝜂𝑘𝑘𝑘 of the observation equation. Here, the input error is usually larger than the state errors, and ignoring to update it would yield
large estimation errors steamed from the misrepresentation of the measurement noise covariance matrix that leads to unrealistic
gains for the Kalman-types filters. The next steps address this issue.

The input estimation is corrected using the updated with measurements dynamic states and parameters as:

𝐮𝐞𝐤 ≈ 𝐆
(

�̈�𝐦𝐤 , ̇𝐱𝑘, 𝐱𝐤, 𝜃𝜃𝜃𝑘𝑘𝑘
)

(16)

nd then, the known input rows replace the related rows of the final 𝐮𝐞𝐤.
The measurement error of the accelerations still exists in contrast to the displacement, the velocity, and the parameter error.

owever, this process error is filtered when modeled by 𝜂𝜂𝜂𝑘𝑘𝑘. The final 𝐮𝐞𝐤 is successively used at the prediction calculation of the
ext step 𝑘 + 1, and the overall procedure is repeated for a number of examined initial parameter sets.

The developed process is successively implemented for all steps, and the overall procedure is repeated for a number of examined
nitial parameter sets. To this end, 𝐷𝐾𝐿 evaluates the current parameter set using Eq. (8), where here, 𝐄𝐈, 𝐄𝐈𝐈,𝐖𝐈, and 𝐖𝐈𝐈 are
he mean values and the covariance matrices, respectively, of the initial parameter set denoted by I (not the current step prior),
nd the posterior parameter estimates denoted by II. Importantly, the posterior parameter estimates are provided online within the
nscented Kalman filter process. Subsequently, the evaluation is performed for all parameter sets in a simultaneous fashion. Finally,
he identification with the least 𝐷𝐾𝐿 provides the most plausible input-parameter-state estimation.

Assuming additive Gaussian noise with zero mean, without loss of generality, the procedure steps are provided in Table 1A of
ection 5. In this pseudo-code, 𝜆 is given by 𝜆 = 𝛼2(𝐿 + 𝜅) − 𝐿 with secondary parameter 𝜅 = 0 or 3 − 𝐿 [17], where 𝐿 is the
imension of 𝐳. The constant 𝛼 ∈ [10−4, 1] determines the spread of the sigma points around 𝐳, while the weights 𝑉 are given by:

𝑉 𝑚
0 = 𝜆

𝐿 + 𝜆

𝑉 𝑐
0 = 𝜆

𝐿 + 𝜆
+ (1 − 𝛼2 + 𝛽)

𝑉 𝑚
𝑖 = 𝑉 𝑐

𝑖 = 𝜆
2(𝐿 + 𝜆)

𝑖 = 1,… , 2𝐿

(17)

where, 𝛽 is a constant that incorporates prior information of the 𝐳 distribution.

4. Input–parameter–state estimation using the Kullback–Leibler divergence and the residual Kalman filter

For the mathematical implementation of the unknown input residual-based Kalman filter [50] consider the process equation in
the continuous-time and the state-space format:

�̇� = 𝐀𝐳 + 𝐁𝐮 (18)

where, 𝐀(𝜃𝜃𝜃) is the system matrix depended on the unknown parameter vector 𝜃𝜃𝜃, and 𝐁 is the input distribution matrix.
The discrete-time transformation of the system and the input matrices is provided by the zero-order hold assumption for the

input in between the time instants 𝑘𝛥𝑡, as:

𝐀𝐝 = 𝑒𝐀𝛥𝑡 ≈ 𝐈𝟐𝐧×𝟐𝐧 + 𝛥𝑡𝐀 + 𝛥𝑡
2
𝐀2 (19)

and,

𝐁𝐝 =
𝛥𝑡
𝑒𝐀𝜏 𝐁 𝑑𝜏 = 𝐀−1[𝐀𝐝 − 𝐈𝟐𝐧×𝟐𝐧

]

𝐁 ≈ 𝛥𝑡𝐁 (20)
4

∫0
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The state-space model of Eq. (18) in the discrete-time, including the noise term 𝐰𝐤, is written as:

𝐳𝐤+𝟏 = 𝐀𝐝 𝐳𝐤 + 𝐁𝐝 𝐮𝐞𝐤 + 𝐰𝐤 (21)

where, 𝐮𝐞𝐤 and 𝐀𝐝(𝜃𝜃𝜃𝑘𝑘𝑘) are the estimated input and system matrix of the prior step which are considered as known quantities at the
𝑘 + 1 step.

The equation which relates the measurements 𝐲 to the estimated dynamic states is written as:

𝐲𝐤+𝟏 = 𝐇𝐳𝐤+𝟏 + 𝐰𝐲
𝐤+𝟏 (22)

where, 𝐇 is the observation matrix mapping the measurements to the dynamic states, and here is chosen to not depend on the
unknown parameters and input. To this end and for limited information applications, 𝐲 consists of displacement and velocity pseudo-
measurements; the integrated of the actual acceleration measurements. Additionally, the accelerations which are not measured
are assumed to be equal to the estimated accelerations of the previous step. Specifically here, the matrix 𝐇 is introduced as
the observation matrix mapping measurements to dynamical states. This matrix only accommodates displacements and velocities
observed from all DOFs with real or pseudo-measurements.

It may seem here that the acceleration responses are not covered by the observation matrix. However, this is chosen intentionally
since it addresses two problems. Firstly, the unknown input and parameters have not yet been estimated for the step 𝑘 + 1, and
secondly the prior step parameters and input possibly affect negatively the observation equation when they are inaccurate.

More importantly, the presented observation model reflects the model for the pseudo-measurements rather than the actual
measured quantities. In that case, the actual observation model relating the observed quantities to the state vector is not defined. To
clarify how different measurement scenarios are accommodated within this approach and at which step they weigh in, the reader
is referred to [50]. Additionally, a discussion is provided in Section 9 for the assumption of the unmeasured acceleration responses
to be equal to the predicted accelerations from previous steps to legitimate and justify such an approach.

The predicted covariance matrix 𝐏𝐤+𝟏 of the dynamic states is then written as:

𝐏𝐤+𝟏 = 𝐀𝐝 𝐏𝐤 𝐀𝐓
𝐝 +𝐐𝐝(𝐤) (23)

where, the covariance matrices of the measurements and the system process are derived in similar manner to Section 3 using Eq. (14).
Having provided the posterior prediction model for the dynamic states and their covariances, the update process starts according

to the Kalman filter. The updated dynamic state estimate is specifically derived by a correction of the predicted dynamic states using
the measurement pre-fit residual, multiplied and controlled by the optimal Kalman gain 𝐉 given as:

𝐉𝐤+𝟏 = 𝐏𝐤+𝟏 𝐇𝐓 𝐍−𝟏
𝐤+𝟏 (24)

where, the pre-fit residual covariance 𝐍 is:

𝐍𝐤+𝟏 = 𝐇𝐏𝐤+𝟏 𝐇𝐓 + 𝐑𝐝 (25)

The final estimation of the posterior dynamic states is then given by:

𝐳𝐤+𝟏 = 𝐳𝐤+𝟏 + 𝐉𝐤+𝟏
(

𝐲𝐤+𝟏 −𝐇𝐳𝐤+𝟏
)

(26)

while the final estimation of the covariance of the dynamic states is given by:

𝐏𝐤+𝟏 =
(

𝐈𝐧×𝐧 − 𝐉𝐤+𝟏 𝐇
)

𝐏𝐤+𝟏 (27)

For Eqs. (26) and (27), the same quantity on the right and left hand side implies that they are re-calculated at the same time step;
the a priori estimate of the right hand side is used for the calculation of the a posteriori estimate on the left hand side.

Once the dynamic states are filtered using the pseudo-measurements, and with the use of the parameters of the prior step: The
input at the current step is approximated by the system model at the time instant (𝑘 + 1) 𝑑𝑡 as:

𝐮𝐞𝐤+𝟏 ≈ 𝐆
(

�̈�𝐦𝐤+𝟏, 𝐳𝐤, 𝜃𝜃𝜃𝑘𝑘𝑘
)

(28)

where, 𝐆(∙) is the linear or nonlinear system model, which contains the prior step estimated parameters. Importantly, the predicted
states are estimated using Eq. (26); with the prior input and parameters only. The known input rows of 𝐮𝐞𝐤+𝟏 are replaced by the
potential known zero or non-zero valued inputs.

For the parameter estimation, a sensitivity analysis approach is implemented by the Taylor series expansion truncated after the
linear term. To provide a real-time estimation specifically, the measured outputs are chosen to be accelerations instead of the modal
parameters, written as:

𝜖𝜖𝜖𝑘𝑘𝑘+𝟏 = 𝐦𝐚
𝐤+𝟏 − 𝐚𝐤+𝟏 ≈ 𝐫𝐤+𝟏 + 𝐔𝐤+𝟏(𝜃𝜃𝜃 − 𝜃𝜃𝜃𝑘𝑘𝑘+𝟏) (29)

where, 𝜖𝜖𝜖𝑘𝑘𝑘+𝟏, 𝐦𝐚
𝐤+𝟏, and 𝐚𝐤+𝟏 denote the error, the acceleration measurements, and the predicted output, respectively, at the step 𝑘+1.

The sensitivity matrix 𝐔𝐤+𝟏, which does not need an initial value or prior information, is written as:

𝐔𝐤+𝟏 = −

[

𝜕𝜕𝜕 𝐦𝐚
𝐤+𝟏
𝜕𝜕𝜕 𝜃𝜃𝜃

]

(30)
5

𝜃𝜃𝜃=𝜃𝜃𝜃𝑘𝑘𝑘+𝟏
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where, the error 𝜖𝜖𝜖𝑘𝑘𝑘+𝟏 is assumed to be small for the parameter vector 𝜃𝜃𝜃 in the vicinity of 𝜃𝜃𝜃𝑘𝑘𝑘+𝟏.
At each step, Eq. (29) is solved by a Gauss–Newton gradient approach: The prior parameter estimates are corrected as:

𝜃𝜃𝜃𝑘𝑘𝑘+𝟏 = 𝜃𝜃𝜃𝑘𝑘𝑘 +𝛥𝛥𝛥𝜃𝜃𝜃𝑘𝑘𝑘+𝟏 ⋅ 𝑒
−𝜇 ‖𝜌𝜌𝜌𝑘𝑘𝑘+𝟏‖2 (31)

where, 𝜇 is a scaling parameter and ‖𝜌𝜌𝜌𝑘𝑘𝑘+𝟏‖2 is the Euclidean norm of the residual of the system model estimation. In practice,
𝑒−𝜇 ‖𝜌𝜌𝜌𝑘𝑘𝑘+𝟏‖2 acts as a control factor for the convergence speed and fluctuation range. An investigation of this scaling parameter is
shown in Section 9. A similar investigation can be done to define it for different types of model parameters within various dynamic
systems.

For Eq. (31), the residual of the system model estimation is:

𝜌𝜌𝜌𝑘𝑘𝑘+𝟏 = 𝐮𝐞𝐤+𝟏 −𝐆
(

�̈�𝐦𝐤+𝟏, ̇𝐱𝑘+1, 𝐱𝐤+𝟏, 𝜃𝜃𝜃𝑘𝑘𝑘
)

(32)

where, 𝐮𝐞𝐤+𝟏 is the estimated input for the step 𝑘 + 1, and the dynamic states are provided by the Kalman filter.
For the objective function, the least square approach is formulated with an additional scaling parameter 𝜆2 balancing specifically

the contribution of the parameter estimates. The final optimal 𝛥𝛥𝛥𝜃𝜃𝜃𝑘𝑘𝑘+𝟏 correction is provided by:

𝛥𝛥𝛥𝜃𝜃𝜃𝑘𝑘𝑘+𝟏 = [𝐔𝐓
𝐤+𝟏 𝐔𝐤+𝟏 + 𝜆2 𝐈]−1 𝐔𝐓

𝐤+𝟏 𝜌𝜌𝜌𝑘𝑘𝑘+𝟏 (33)

where, 𝜆2 remains constant during the real-time procedure. An investigation of this scaling parameter is shown in Section 9. A similar
investigation can be done to set both scaling parameters for different types of model parameters within various dynamic systems.

Table 1
Input–system–state identification using the Kullback–Leibler divergence.

A. Kullback–Leibler divergence with UKF. B. Kullback–Leibler divergence with RKF.

step 1: step 1:
∙ 𝑆 = 1 (Identification Set) ∙ 𝑆 = 1 (Identification Set)
∙ 𝑘 = 0 (Time step) ∙ 𝑘 = 0 (Time step)
∙ 𝐳𝐤 = E[𝐳𝟎] (E stands for Expectation) ∙ 𝐳𝐤 = E[𝐳𝟎]
∙ 𝐏𝐤 = E

[

(𝐳𝟎 − 𝐳𝐤)(𝐳𝟎 − 𝐳𝐤)𝑇
]

(Covariance matrix) ∙ 𝐏(𝑘) = E
[(

𝐳 − 𝐳(𝑘)
)(

𝐳 − 𝐳(𝑘)
)𝑇 ]

∙ 𝐮𝐞𝐤 = E[𝐮𝐞𝟎] ∙ 𝜽(𝑘) = E[𝜽]
∙ 𝜆2 ≈ 5 ⋅ 10−2

∙ 𝜇 ≈ 5 ⋅ 10−3

∙ 𝐮𝐞𝐤 = E[𝐮𝐞𝟎]

step 2: step 2:
∙ 𝐙𝐤 = [𝐳𝐤 −

√

(𝐿 + 𝜆)𝐏𝐤 , 𝐳𝐤 , 𝐳𝐤 +
√

(𝐿 + 𝜆)𝐏𝐤]
∙ 𝑘 = 𝑘 + 1
∙ 𝐙𝐩 = 𝐹 (𝐙𝐤−𝟏 ,𝐮𝐞𝐤−𝟏) (p stands for prediction) ∙ 𝐳(𝑘 + 1) = 𝐀𝐝 𝐳(𝑘) + 𝐁𝐝 𝐮𝐞(𝑘)
∙ 𝐳𝐩 =

∑2𝐿
𝑖=0 𝑉 𝑚

𝑖 𝐙𝐢,𝐩
∙ 𝐮𝐩𝐤 ≈ 𝐆

(

�̈�𝐦𝐤 , 𝐳𝐩 , 𝜽
𝒑
𝒌

)

(𝐺(∙) involves estimated
parameters and it is updated in every step)

∙ Replace all 𝐮𝐩𝐤 zero/non-zero known input rows

∙𝐏𝐩 =
∑2𝐿

𝑖=0 𝑉 𝑐
𝑖 [𝐙𝐢,𝐩 − 𝐳𝐩][𝐙𝐢,𝐩 − 𝐳𝐩]𝑇 +𝐐𝐤−𝟏 ∙ 𝐏(𝑘 + 1) = 𝐀𝐝 𝐏(𝑘)𝐀𝐓

𝐝 +𝐐𝐝

∙ 𝐘𝐢 = ℎ(𝐙𝐢,𝐩 ,𝐮
𝐩
𝐤) ∙ 𝐉(𝑘 + 1) = 𝐏(𝑘 + 1)𝐇𝑇

(

𝐑𝐝 +𝐇𝐏(𝑘 + 1)𝐇𝑇
)−1

∙ 𝐲 =
∑2𝐿

𝑖=0 𝑉 𝑚
𝑖 𝐘𝐢

∙ 𝐏𝐦 =
∑2𝐿

𝑖=0 𝑉 𝑐
𝑖 [𝐘𝐢 − 𝐲][𝐘𝐢 − 𝐲]𝑇 + 𝐑𝐤

∙ 𝐏𝐬 =
∑2𝐿

𝑖=0 𝑉 𝑐
𝑖 [𝐙𝐢,𝐩 − 𝐳𝐩][𝐘𝐢 − 𝐲]𝑇

If 𝐲𝐦𝐤 is the measurement vector at the current time step: If 𝐲𝐦𝐤 is the measurement vector at the current time step:
∙ Create the Pseudo-measurements (double integration [50])

∙ 𝐳𝐤 = 𝐳𝐩 + 𝐏𝐬 𝐏−𝟏
𝐦 ⋅ (𝐲𝐦𝐤 − 𝐲) (State estimation) ∙ 𝐳(𝑘 + 1) = 𝐳(𝑘 + 1) + 𝐉(𝑘 + 1) ⋅

(

𝐦𝐳(𝑘 + 1) −𝐇𝐳(𝑘 + 1)
)

∙ 𝐏𝐤 = 𝐏𝐩 − 𝐏𝐬 ⋅
(

𝐏𝐬 𝐏−𝟏
𝐦
)𝑇 (Covariance estimation) ∙ 𝐏(𝑘 + 1) =

(

𝐈 − 𝐉(𝑘 + 1)𝐇
)

𝐏(𝑘 + 1)
∙ 𝐮𝐞𝐤 ≈ 𝐆

(

�̈�𝐦𝐤 , 𝐳𝐤 , 𝜽𝒌
)

(Final Input estimation) ∙ 𝐮𝐞𝐤+𝟏 ≈ 𝐆
(

�̈�𝐦𝐤+𝟏 , 𝐳𝐤 , 𝜽𝒌
)

(Final Input estimation)
∙ Replace all 𝐮𝐞𝐤 zero/non-zero known input rows ∙ Replace all 𝐮𝐞𝐤+𝟏 zero/non-zero known input rows

∙ 𝐔𝐤+𝟏 = −[𝝏 𝐦𝐚𝐤+𝟏∕𝝏 𝜽 ]𝜽=𝜽𝒌+𝟏
∙ 𝝆(𝑘 + 1) = 𝐮(𝑘 + 1) −𝐆

(

�̈�𝐦𝐤+𝟏 , �̇�𝐤+𝟏 , 𝐱𝐤+𝟏 , 𝜽𝒌
)

∙ 𝜟𝜽(𝑘 + 1) = [𝐔𝑇𝐔 + 𝜆2𝐈]−1 𝐔𝑇 𝝆(𝑘 + 1)
∙ 𝜽(𝑘 + 1) = 𝜽(𝑘) + 𝜟𝜽(𝑘 + 1) ⋅ 𝑒−𝜇 ||𝝆(𝑘+1)||2

step 3: step 3:
∙ 𝐷𝐾𝐿

(

𝐪𝐈𝐈(𝜽)
|

|

|

|

|

|

𝐪𝐈(𝜽)
)

= ∫ ∞
−∞ 𝐪𝐈𝐈(𝜽) ⋅ 𝑙𝑛

(

𝐪𝐈𝐈(𝜽)∕𝐪𝐈(𝜽)
)

𝒅𝜽 ∙ 𝐷𝐾𝐿

(

𝐪𝐈𝐈(𝜽)
|

|

|

|

|

|

𝐪𝐈(𝜽)
)

= ∫ ∞
−∞ 𝐪𝐈𝐈(𝜽) ⋅ 𝑙𝑛

(

𝐪𝐈𝐈(𝜽)∕𝐪𝐈(𝜽)
)

𝒅𝜽
∙ Go to Step 2 until 𝑘 = 𝑘𝑚𝑎𝑥 ∙ Go to Step 2 until 𝑘 = 𝑘𝑚𝑎𝑥

step 4: step 4:
∙ Go to Step 1 until 𝑆 = 𝑆𝑚𝑎𝑥 ∙ Go to Step 1 until 𝑆 = 𝑆𝑚𝑎𝑥
6
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Importantly, it is seen here that the transitional model assumed for the system parameters is involved in the full input–parameter–
state estimation success, and taking partial derivatives is required. Also, the scaling factor is tied to the difference between the
estimated and the predicted input forces. The nature, the order of magnitude, and the governing equations for the input and model
parameters are different, but this approach shows to be beneficial in yielding stable estimates for the model parameters.

The developed process is successively implemented for all steps, and the overall procedure is repeated for a number of examined
initial parameter sets. To this end, 𝐷𝐾𝐿 evaluates the current parameter set using Eq. (8), where here, 𝐄𝐈, 𝐄𝐈𝐈,𝐖𝐈, and 𝐖𝐈𝐈 are the
mean values and the covariance matrices, respectively, of the initial parameter set denoted by I (not the current step prior), and the
posterior estimates related to each parameter dynamic state denoted by II. Importantly, the posterior estimates are provided online
within the residual-based Kalman filter process. Subsequently, the evaluation is performed for all parameter sets in a simultaneous
fashion. Finally, the identification with the least 𝐷𝐾𝐿 provides the most plausible input–parameter–state estimation. The detailed
procedure steps of this procedure are provided in Table 1B of Section 5.

5. Procedure summary

The procedure is illustrated here where each step is detailed in Table 1:

1. Initialize the identification. Set the initial estimates for the dynamic states, the parameters, the input, and the algorithmic
parameters.

2. Execute the input–parameter–state estimation. Predict the dynamic states using the discrete state-space model and the
prior input and parameters. Create the pseudo-measurements by integrating the output data to provide the displacement and
velocity pseudo-measurements, while use additional displacement sensing for highly nonlinear systems. The non-measured
accelerations are replaced by the prior step acceleration estimates. Finally, estimate the current step dynamic states, the
current step input using the updated system model, and the current step parameters. The algorithmic parameters mentioned
here derive a reasonable value after Section 9 investigation. In the same section, the effect of taking the unmeasured
acceleration responses equal to their estimated priors is discussed to provide insight into the convergence and stability of
the estimates.

3. Estimate the Kullback–Leibler divergence. Estimate the Kullback–Leibler divergence for the examined initial parameter
set using the Kalman filter mean and variance values compared to the initial ones. Repeat Step 2 and 3 for all time steps.
The mean and variances values are specifically provided online within the Kalman filter procedure by 𝐳 and 𝐏.

4. Select the final estimation. Repeat Steps 1–3 for the next initial parameter set 𝑆𝑖+1. Select the most plausible input–
parameter–state estimation using the identification with the least 𝐷𝐾𝐿.

Importantly, the initial distribution assumption for the parameters to run the Kullback–Leibler divergence 𝐖𝐈 is equal to the
examined mean value of the initial parameter states with the unit covariance matrix; namely a Gaussian distribution is defined
assuming that the user does not have any specific prior information. All applications in this work are using this assumption.

6. Application to linear systems

Fig. 1. Linear or nonlinear n-DOF system excited at DOF n, or at more DOFs.
For the linear numerical application consider a 3-DOF system based on Fig. 1, with the implementation of the unscented Kalman

filter with the Kullback–Leibler divergence provided by Table 1A. The system is described by the following equation:

𝐌
⎧

⎪

⎨

⎪

�̈�1(𝑡)
�̈�2(𝑡)
�̈� (𝑡)

⎫

⎪

⎬

⎪

+ 𝐂
⎧

⎪

⎨

⎪

�̇�1(𝑡)
�̇�2(𝑡)
�̇� (𝑡)

⎫

⎪

⎬

⎪

+𝐊
⎧

⎪

⎨

⎪

𝑥1(𝑡)
𝑥2(𝑡)
𝑥 (𝑡)

⎫

⎪

⎬

⎪

=

⎧

⎪

⎨

⎪

0
0

𝑢 (𝑡)

⎫

⎪

⎬

⎪

(34)
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where the system matrices which need to be identified (apart from 𝐌) are:

𝐌 =
⎡

⎢

⎢

⎣

𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, 𝐂 =
⎡

⎢

⎢

⎣

𝑐1 + 𝑐2 −𝑐2 0
−𝑐2 𝑐2 + 𝑐3 −𝑐3
0 −𝑐3 𝑐3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0.25 + 0.5 −0.5 0
−0.5 0.5 + 0.75 −0.75
0 −0.75 0.75

⎤

⎥

⎥

⎦

,

𝐊 =
⎡

⎢

⎢

⎣

𝑘1 + 𝑘2 −𝑘2 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3
0 −𝑘3 𝑘3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

9 + 11 −11 0
−11 11 + 13 −13
0 −13 13

⎤

⎥

⎥

⎦

(35)

with initial conditions 𝐱(0) = [0 0 0]𝑇 and �̇�(0) = [0 0 0]𝑇 .
In order to create synthetic measurements, the Runge–Kutta 4th order method of integration is used to compute the system

response for 30 s. The sampling frequency for the dynamic state measurements is considered to be 100 Hz, therefore the time
discretization 𝛥𝑡 is 0.01 s. Finally, to consider measurement noise, each response signal is contaminated by a Gaussian white noise
sequence with a 5% root-mean-square noise-to-signal ratio.

In discrete-time the system is written, in an recursive form, as:

𝐳𝐤 =
⎡

⎢

⎢

⎣

𝐱𝐤−𝟏 + 𝛥𝑡 ⋅ ̇𝐱𝑘−1
̇𝐱𝑘−1 + 𝛥𝑡 ⋅ �̈�𝐤−𝟏

𝜃𝜃𝜃𝑘𝑘𝑘−𝟏

⎤

⎥

⎥

⎦

(36)

and, using Eq. (34) to replace the accelerations �̈�𝐤−𝟏, the process Eq. (11) is written as:

𝐳𝐤 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑧1(𝑘−1) + 𝛥𝑡 ⋅ 𝑧4(𝑘−1)
𝑧2(𝑘−1) + 𝛥𝑡 ⋅ 𝑧5(𝑘−1)
𝑧3(𝑘−1) + 𝛥𝑡 ⋅ 𝑧6(𝑘−1)

𝑧4(𝑘−1) + 𝛥𝑡 ⋅ 𝑚−1
1

{

���⌃
0

𝑢𝑒1(𝑘−1) −
(

𝑧7(𝑘−1) + 𝑧8(𝑘−1)
)

𝑧4(𝑘−1) + 𝑧8(𝑘−1)𝑧5(𝑘−1)
−
(

𝑧10(𝑘−1) + 𝑧11(𝑘−1)
)

𝑧1(𝑘−1) + 𝑧11(𝑘−1)𝑧2(𝑘−1)

}

𝑧5(𝑘−1) + 𝛥𝑡 ⋅ 𝑚−1
2

{

���⌃
0

𝑢𝑒2(𝑘−1) + 𝑧8(𝑘−1)𝑧4(𝑘−1) −
(

𝑧8(𝑘−1) + 𝑧9(𝑘−1)
)

𝑧5(𝑘−1) + 𝑧9(𝑘−1)𝑧6(𝑘−1)
+𝑧11(𝑘−1)𝑧1(𝑘−1) −

(

𝑧11(𝑘−1) + 𝑧12(𝑘−1)
)

𝑧2(𝑘−1) + 𝑧12(𝑘−1)𝑧3(𝑘−1)

}

𝑧6(𝑘−1) + 𝛥𝑡 ⋅ 𝑚−1
3

{

𝑢𝑒3(𝑘−1) + 𝑧9(𝑘−1)𝑧5(𝑘−1) − 𝑧9(𝑘−1)𝑧6(𝑘−1) + 𝑧12(𝑘−1)𝑧2(𝑘−1) − 𝑧12(𝑘−1)𝑧3(𝑘−1)
}

𝑧7(𝑘−1)
𝑧8(𝑘−1)
𝑧9(𝑘−1)
𝑧10(𝑘−1)
𝑧11(𝑘−1)
𝑧12(𝑘−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(37)

here,

𝐳𝐤 =
[

𝑥1𝑘 𝑥2𝑘 𝑥3𝑘 �̇�1𝑘 �̇�2𝑘 �̇�3𝑘 𝑐1𝑘 𝑐2𝑘 𝑐3𝑘 𝑘1𝑘 𝑘2𝑘 𝑘3𝑘
]𝑇 (38)

Three initial parameter sets are examined. Set 1 underestimates their value by 50%, Set 2 underestimates their value by 25%,
nd Set 3 overestimates their value by 50%.

Importantly, acceleration measurements are used for all DOFs, where they are double integrated for displacement and velocity
seudo-measurements. The process covariance 𝐐𝐤−𝟏 and the measurement covariance 𝐑𝐤 matrices are chosen to be constant during
he identification process and equal to 10−9 ⋅ 𝐈𝟏𝟐×𝟏𝟐 and 10−3 ⋅ 𝐈𝟗×𝟗, respectively. For larger values, the algorithm needs more data
nd time to converge, or it may even diverge. The prior initial parameter covariance matrix 𝐖𝐈 is set equal to the unit one, namely
𝟔×𝟔.

Regarding the parameter estimation error 𝐸𝑟(𝑘) depended to the time step 𝑘, it is estimated by the absolute value summation of
he error, namely:

𝐸𝑟(𝑘) =
𝑗𝑚𝑎𝑥
∑

𝑗

|

|

|

|

|

𝜃𝑗 (𝑘) − 𝜃𝑡𝑟𝑢𝑒𝑗

𝜃𝑡𝑟𝑢𝑒𝑗

|

|

|

|

|

(39)

where, 𝜃𝑗 refers to the 𝑗 parameter estimate, and 𝜃𝑡𝑟𝑢𝑒𝑗 is the true value of the 𝑗 parameter. The detailed behavior fluctuation of the
parameter estimates is shown in [49]. It is also shown in Section 9 for a 6-DOF system.

Two input loads are examined in Figs. 2 and 3: a pulse input of 100 𝑁 amplitude and 0.01 s duration applied at the time instant
of 5 s, which is not known beforehand, and an ambient input, namely a white noise-type input, of mean value 0 and variance 4.
Here, each figure column refers to each identification set, while the bottom plot shows all Kullback–Leibler divergences.

In Fig. 2, the true and the estimated input, the parameter error, and the DOF 2 true and estimated response are shown for
the pulse input. The Kullback–Leibler divergence methodology successfully selects the initial parameter Set 2 which provides the
identification with the least estimation error.

Furthermore, in Fig. 3, the application is shown for the ambient input. The Kullback–Leibler divergence methodology also
8

successfully selects the initial parameter Set 2 which provides the identification with the least estimation error.
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Fig. 2. Results for the 3-DOF linear system with pulse input. A detailed discussion on the estimation behavior for each one of the parameters and the input
error is provided in Section 9.
9
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Fig. 3. Results for the 3-DOF linear system with white noise input. A detailed discussion on the estimation behavior for each one of the parameters and the
input error is provided in Section 9.
10
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Fig. 4. Results for the 3-DOF linear system with white noise input and level of observation noise = 10% root-mean-square noise-to-signal ratio. A detailed
discussion on the estimation behavior for each one of the parameters and the input error is provided in Section 9.
11
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Fig. 5. Results for the 3-DOF linear system with white noise input and level of observation noise = 20% root-mean-square noise-to-signal ratio. A detailed
discussion on the estimation behavior for each one of the parameters and the input error is provided in Section 9.
12
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Related to the concern of the methodology being tested to various levels of observation noise, Figs. 4 and 5 show additionally
he ambient input application when the consider measurement noise for each response signal is contaminated by a Gaussian white
oise sequence with a 10% and 20% root-mean-square noise-to-signal ratio, respectively. It is shown that reasonable noise levels can
e adequately handed by the methodology. However, for larger noise levels poorer performance is seen on all estimated quantities.
espite that, the better-performed identification indicated by the Kullback–Leibler divergence approach still provides valuable

nformation for the system compared to the less optimal identifications. For all identification sets though in the last noise level
ase, the state estimation is not satisfactory.

. Application to limited information systems

For the limited information numerical application consider Fig. 1 system of Section 6, with the implementation of the residual
alman filter with the Kullback–Leibler divergence provided by Table 1B.

The state-space representation is initially written in continuous-time as:

𝐳(𝑡) =
{

𝐱(𝑡)
�̇�(𝑡)

}

(40)

The system matrix 𝐀(𝜃𝜃𝜃) of 2𝑛 × 2𝑛 dimension, which contains all the characteristics of the system and depends on the unknown
parameters, is written as:

𝐀(𝜃𝜃𝜃) =
[

𝟎𝐧×𝐧 𝐈𝐧×𝐧
−𝐌−1 𝐊(𝜃𝜃𝜃) −𝐌−1 𝐂(𝜃𝜃𝜃)

]

(41)

where, 𝟎 and 𝐈 are the zero and the unit matrices, respectively. Furthermore, the input distribution matrix 𝐁 of 2𝑛 × 𝑛 dimension,
hich relates the input to the dynamic state vector, is written as:

𝐁 =
[

𝟎𝐧×𝐧
𝐌−1

]

(42)

he input at the current step is approximated by the system model, namely the equation of motion in the continuous-time at the
ime instant (𝑘 + 1) 𝑑𝑡 as:

𝐮𝐞𝐤+𝟏 ≈ 𝐌𝐦𝐚
𝐤+𝟏 + [𝐊𝐤 𝐂𝐤] 𝐳𝐤+𝟏 (43)

nd then,

𝐮𝐞𝐤+𝟏 =
{

𝟎𝐤𝐧𝐨𝐰𝐧or𝐮𝐤𝐧𝐨𝐰𝐧𝐤+𝟏
𝐮𝐞𝐤+𝟏

}

(44)

here, the known zero or non-zero inputs replace the related input rows of the vector 𝐮𝐞𝐤+𝟏. The sensitivity matrix at each step is
written as:

𝐆𝐤+𝟏 = −

[𝜕𝜕𝜕
(

𝐌−𝟏(𝐮𝐤+𝟏 − [𝐊 𝐂] 𝐳𝐤+𝟏
)

)

𝜕𝜕𝜕𝜃𝜃𝜃

]

𝜃𝜃𝜃=𝜃𝜃𝜃𝑘𝑘𝑘+𝟏

(45)

hich is simplified as:

𝐆𝐤+𝟏 =

[𝜕𝜕𝜕
(

𝐌−1([𝐊 𝐂] 𝐳𝐤+𝟏
)

)

𝜕𝜃𝜕𝜃𝜕𝜃

]

𝜃𝜃𝜃=𝜃𝜃𝜃𝑘𝑘𝑘+𝟏

(46)

here, the accelerations are replaced by the system model of Eq. (34), and where the input is not a function of the parameter vector
n the final form. Importantly, this sensitivity matrix is chosen since the acceleration measurements contain high noise in contrast
o the Kalman filter estimated dynamic states (see [50] for further details).

The synthetic measurements are derived in a similar manner to Section 6. The parameter vector is written as:

𝜃𝜃𝜃 = [𝑘1, 𝑘2, 𝑘3, 𝑐1, 𝑐2, 𝑐3]𝑇 (47)

or accelerometers at DOF 2–3, the observation matrix is written as:

𝐇𝟐𝟑 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 𝟏 0 0 0 0

0 0 𝟏 0 0 0

0 0 0 0 𝟏 0

0 0 0 0 0 𝟏

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(48)

apping the pseudo-measurement vector to the estimated dynamic state vector 𝐳(𝑘 + 1).
Accordingly, for any number of output (acceleration) measurements, the sensitivity matrix is written as:

𝐆𝐤+𝟏 = 𝐌−1 ⋅

⎡

⎢

⎢

⎢

𝑧𝑘+1(1) 𝑧𝑘+1(1) − 𝑧𝑘+1(2) 0 𝑧𝑘+1(4) 𝑧𝑘+1(4) − 𝑧𝑘+1(5) 0

0 𝑧𝑘+1(2) − 𝑧𝑘+1(1) 𝑧𝑘+1(2) − 𝑧𝑘+1(3) 0 𝑧𝑘+1(5) − 𝑧𝑘+1(4) 𝑧𝑘+1(5) − 𝑧𝑘+1(6)

⎤

⎥

⎥

⎥

(49)
13

⎣
0 0 𝑧𝑘+1(3) − 𝑧𝑘+1(2) 0 0 𝑧𝑘+1(6) − 𝑧𝑘+1(5)⎦



Journal of Sound and Vibration 569 (2024) 117965M. Impraimakis

c
T
p
𝐸
i

w
a

a
S

s
b
p
e

i

w

r
t

where, the Kalman filtered vectors 𝐳𝐤+𝟏 are used.
Three initial parameter sets are examined similarly to Section 6. Importantly, the process covariance 𝐐𝐝 and the measurement

ovariance 𝐑𝐝 matrices are chosen to be constant during the identification process and equal to 100 ⋅𝐈𝟔×𝟔 and 10−10 ⋅𝐈𝟔×𝟔, respectively.
he parameter 𝜆2 is chosen to be 5 ⋅ 10−2, while the parameter 𝜇 is chosen to be 5 ⋅ 10−3 (see Section 9 for an investigation). The
rior initial dynamic state covariance matrix 𝐖𝐈 is set equal to the unit one, namely 𝐈𝟔×𝟔. Regarding the parameter estimation error
𝑟(𝑘), it is estimated using Eq. (39). The detailed behavior fluctuation of the parameter estimates is shown in [50]. It is also shown

n Section 9 for a 6-DOF system.
Two cases are examined on Figs. 6 and 7, where the input is white noise with mean value equal to 0 and variance 4. Input

ithout zero mean value is also examined. Here, each figure column refers to each identification set, while the bottom plot shows
ll Kullback–Leibler divergences.

In Fig. 6, the true and the estimated input, the parameter error, and the DOF 2 true and estimated response are shown, when the
cceleration is measured at DOF 2 and 3. The Kullback–Leibler divergence methodology successfully selects the initial parameter
et 2 which provides the identification with the least estimation error.

Additionally, in Fig. 7, the true and the estimated input, the parameter error, and the DOF 2 true and estimated response are
hown, when the acceleration is measured at DOF 2 and 3, and when there is real-time damage. Specifically, the damage is modeled
y a parameter change of 50% at the time instant of 50𝑠. The Kullback–Leibler divergence methodology successfully selects the initial
arameter Set 2 which provides the identification with the least estimation error. Interestingly, at the moment of damage, all of the
stimated quantities diverge temporarily until they converge to the new ones.

However, for a larger number of DOFs, a larger number of known zero-valued inputs may exist. In that case, a better limited
nformation performance is possible. This is examined using a 6-DOF system.

For this numerical application consider the 6-DOF system described by the following equation:

𝐌

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�̈�1(𝑡)

�̈�2(𝑡)

�̈�3(𝑡)

�̈�4(𝑡)

�̈�5(𝑡)

�̈�6(𝑡)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

+ 𝐂

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�̇�1(𝑡)

�̇�2(𝑡)

�̇�3(𝑡)

�̇�4(𝑡)

�̇�5(𝑡)

�̇�6(𝑡)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

+𝐊

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)

𝑥4(𝑡)

𝑥5(𝑡)

𝑥6(𝑡)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0

0

0

0

𝑢5(𝑡)

𝑢6(𝑡)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(50)

for zero or non-zero input 𝑢5(𝑡) at DOF 5, where the system matrices which need to be identified (apart from 𝐌) are:

𝐌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚1 0 0 0 0 0

0 𝑚2 0 0 0 0

0 0 𝑚3 0 0 0

0 0 0 𝑚4 0 0

0 0 0 0 𝑚5 0

0 0 0 0 0 𝑚6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑐1 + 𝑐2 −𝑐2 0 0 0 0

−𝑐2 𝑐2 + 𝑐3 −𝑐3 0 0 0

0 −𝑐3 𝑐3 + 𝑐4 −𝑐4 0 0

0 0 −𝑐4 𝑐4 + 𝑐5 −𝑐5 0

0 0 0 −𝑐5 𝑐5 + 𝑐6 −𝑐6
0 0 0 0 −𝑐5 𝑐6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.25 + 0.25 −0.25 0 0 0 0

−0.25 0.25 + 0.5 −0.5 0 0 0

0 −0.5 0.5 + 0.5 −0.5 0 0

0 0 −0.5 0.5 + 0.75 −0.75 0

0 0 0 −0.75 0.75 + 0.75 −0.75

0 0 0 0 −0.75 0.75

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑘1 + 𝑘2 −𝑘2 0 0 0 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3 0 0 0

0 −𝑘3 𝑘3 + 𝑘4 −𝑘4 0 0

0 0 −𝑘4 𝑘4 + 𝑘5 −𝑘5 0

0 0 0 −𝑘5 𝑘5 + 𝑘6 −𝑘6
0 0 0 0 −𝑘5 𝑘6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

9 + 9 −9 0 0 0 0

−9 9 + 11 −11 0 0 0

0 −11 11 + 11 −11 0 0

0 0 −11 11 + 13 −13 0

0 0 0 −13 13 + 13 −13

0 0 0 0 −13 13

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ith initial conditions 𝐱(0) = [0 0 0 0 0 0]𝑇 and �̇�(0) = [0 0 0 0 0 0]𝑇 .
The synthetic measurements are derived in a similar manner to Section 6. The parameter vector is written as:

𝜃𝜃𝜃 = [𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑐1, 𝑐2, 𝑐3 𝑐4, 𝑐5, 𝑐6]𝑇 (51)

The observation matrices are written in a similar manner to the previous system. Here, the acceleration sensors which are
emoved each time, are chosen to be as far as possible from the DOF where the input is applied, which is a crucial detail for
14

he success of the input–parameter–state estimation.
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Fig. 6. Results for the 3-DOF linear system when measuring the acceleration at DOF 2 to 3. A detailed discussion on the estimation behavior for each one of
the parameters and the input error is provided in Section 9.
15
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Fig. 7. Results for the 3-DOF linear system with 50% damage considered for the system parameters at the time instant 50 s, when measuring the acceleration
at DOF 2 to 3. A detailed discussion on the estimation behavior for each one of the parameters and the input error is provided in Section 9.
16
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Fig. 8. Results for the 6-DOF linear system when measuring the acceleration at DOF 3 to 6. A detailed discussion on the estimation behavior for each one of
the parameters and the input error is provided in Section 9.
17
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Fig. 9. Results for the 6-DOF linear system when measuring the acceleration at DOF 4 to 6. A detailed discussion on the estimation behavior for each one of
the parameters and the input error is provided in Section 9.
18
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Fig. 10. Results for the 6-DOF linear system with two non-white inputs when measuring the acceleration at DOF 4 to 6. A detailed discussion on the estimation
behavior for each one of the parameters and the input error is provided in Section 9.
19
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Fig. 11. Results for a 10-DOF linear system when measuring the acceleration at DOF 5 to 10. A detailed discussion on the estimation behavior for each one of
the parameters and the input error is provided in Section 9.
20
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The sensitivity matrix for this system, for any number of accelerometers and inputs, is written as:

𝐆𝐤+𝟏 = 𝐌−1

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑧(1) 𝑧(1) − 𝑧(2) 0 0 0 0 𝑧(7) 𝑧(7) − 𝑧(8) 0 0 0 0
0 𝑧(2) − 𝑧(1) 𝑧(2) − 𝑧(3) 0 0 0 0 𝑧(8) − 𝑧(7) 𝑧(8) − 𝑧(9) 0 0 0
0 0 𝑧(3) − 𝑧(2) 𝑧(3) − 𝑧(4) 0 0 0 0 𝑧(9) − 𝑧(8) 𝑧(9) − 𝑧(10) 0 0
0 0 0 𝑧(4) − 𝑧(3) 𝑧(4) − 𝑧(5) 0 0 0 0 𝑧(10) − 𝑧(9) 𝑧(10) − 𝑧(11) 0
0 0 0 0 𝑧(5) − 𝑧(4) 𝑧(5) − 𝑧(6) 0 0 0 0 𝑧(11) − 𝑧(10) 𝑧(11) − 𝑧(12)
0 0 0 0 0 𝑧(6) − 𝑧(5) 0 0 0 0 0 𝑧(12) − 𝑧(11)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(52)

where, the Kalman filtered 𝐳 vector refers to the 𝐳𝐤+𝟏 estimates, and the parenthesis value denotes the vector row.
Three initial parameter sets are examined similarly to Section 6. Importantly, the process covariance 𝐐𝐝 and the measurement

covariance 𝐑𝐝 matrices are chosen to be constant during the identification process and equal to 100 ⋅ 𝐈𝟏𝟐×𝟏𝟐 and 10−10 ⋅ 𝐈𝟏𝟐×𝟏𝟐,
respectively. The parameter 𝜆2 is chosen to be 5⋅10−2, while the parameter 𝜇 is chosen to be 5⋅10−3 (see Section 9 for an investigation).
The prior initial dynamic state covariance matrix is set equal to the unit one, namely 𝐈𝟏𝟐×𝟏𝟐. Regarding the parameter estimation
error 𝐸𝑟(𝑘), it is estimated using Eq. (39). The detailed behavior fluctuation of the parameter estimates is shown in [50]. It is also
shown in Section 9 for a 6-DOF system.

Three cases are examined on Figs. 8–10. Here, each figure column refers to each identification set, while the bottom plot shows
all Kullback–Leibler divergences.

In Fig. 8, the true and the estimated input, the parameter error, and the DOF 2 true and estimated response are shown for a
white noise input with mean value equal to 0 and variance 9, when acceleration are measured at DOFs 3 to 6. The Kullback–Leibler
divergence methodology successfully selects the initial parameter Set 2 which provides the identification with the least estimation
error.

In Fig. 9, the true and the estimated input, the parameter error, and the DOF 2 true and estimated response are shown for a
white noise input with mean value equal to 0 and variance 9, when acceleration are measured at DOFs 4 to 6. The Kullback–Leibler
divergence methodology successfully selects the initial parameter Set 2 which provides the identification with the least estimation
error.

Finally, in Fig. 10, the true and the estimated input, the parameter error, and the DOF 2 true and estimated response are shown
for two input loads, when acceleration are measured at DOFs 4 to 6. Specifically, two simultaneous non-white noise inputs are
examined; three pulses of 100N for 0.01s are applied at DOF 6 at random and unknown time instants, and a harmonic load of
amplitude 1.0 N and circular frequency of 1.0 rad/s is applied at DOF 5. The Kullback–Leibler divergence methodology successfully
selects the initial parameter Set 2 which provides the identification with the least estimation error. Interestingly here, Set 1 and Set
3 identifications have a considerable input estimation error at DOF 5.

Related to the concern of the methodology being tested to structures with even larger DOFs, it is shown that an even larger
number of DOFs provides more information for the identification as there are potential more DOFs with a known zero-valued input.
This results in a better identification performance with a much faster convergence. Importantly, all the models used for identification
do not include any parametrization. This makes the identification more complex compared to even large finite element models where
very few parameters are often identified such as some Young’s moduli, yield stresses, and one or two Rayleigh damping parameters.
Fig. 11 shows the true and the estimated input, the parameter error, and the DOF 10 true and estimated response for a 10-DOF
system with 20 stiffness and damping unknown parameters, when acceleration are measured at DOFs 5 to 10. The Kullback–Leibler
divergence methodology successfully selects the initial parameter Set 2 which provides the identification with the least estimation
error.

8. Application to nonlinear systems

For the nonlinear numerical application consider the Duffing nonlinear 2-DOF system with the implementation of the unscented
Kalman filter with the Kullback–Leibler divergence provided by Table 1A. The system is described by the following equation:

𝐌
{

�̈�1(𝑡)
�̈�2(𝑡)

}

+ 𝐂
{

�̇�1(𝑡)
�̇�2(𝑡)

}

+𝐊
{

𝑥1(𝑡)
𝑥2(𝑡)

}

+ 𝐄
{

𝑥31(𝑡)
(

𝑥2(𝑡) − 𝑥1(𝑡)
)3

}

=
{

0
𝑢2(𝑡)

}

(53)

where the system matrices which need to be identified (apart from 𝐌) are:

𝐌 =
[

𝑚1 0
0 𝑚2

]

=
[

1 0
0 1

]

, 𝐂 =
[

𝑐1 + 𝑐2 −𝑐2
−𝑐2 𝑐2

]

=
[

0.5 + 0.5 −0.5
−0.5 0.5

]

,

𝐊 =
[

𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2

]

=
[

3 + 4.5 −4.5
−4.5 4.5

]

, 𝐄 =
[

𝜖1 −𝜖2
0 𝜖2

]

=
[

15 −27
0 27

]
(54)

with initial conditions 𝐱(0) = [0 0]𝑇 and �̇�(0) = [0 0]𝑇 . A pulse input of 100 𝑁 for 0.01 s is applied at the time instant of 5 s,
which is not known beforehand. Simultaneously, a white noise-type input of mean value 0 and variance 4 is applied to the system.
Both excitations are applied at DOF 2. The synthetic measurements are created in a similar manner to Section 6.
21
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Fig. 12. Results for the 2-DOF nonlinear system with pulse and white noise input when measuring the acceleration and displacement at DOF 1 to 2. A detailed
discussion on the estimation behavior for each one of the parameters and the input error is provided in Section 9.
22
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Fig. 13. Results for the 2-DOF nonlinear system with pulse and white noise input when measuring the acceleration and displacement at DOF 2. A detailed
discussion on the estimation behavior for each one of the parameters and the input error is provided in Section 9.
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In discrete time the system can be written, in an recursive form, as:

𝐳𝐤 =
⎡

⎢

⎢

⎣

𝐱𝐤−𝟏 + 𝛥𝑡 ⋅ ̇𝐱𝑘−1
̇𝐱𝑘−1 + 𝛥𝑡 ⋅ �̈�𝐤−𝟏

𝜃𝜃𝜃𝑘𝑘𝑘−𝟏

⎤

⎥

⎥

⎦

(55)

and, using the equation of motion (34) to replace the accelerations �̈�𝐤−𝟏, the process Eq. (11) is written as:

𝐳𝐤 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑧1(𝑘−1) + 𝛥𝑡 ⋅ 𝑧3(𝑘−1)
𝑧2(𝑘−1) + 𝛥𝑡 ⋅ 𝑧4(𝑘−1)

𝑧3(𝑘−1) + 𝛥𝑡 ⋅ 𝑚−1
1

⎧

⎪

⎨

⎪

⎩

���⌃
0

𝑢𝑒1(𝑘−1) −
(

𝑧5(𝑘−1) + 𝑧6(𝑘−1)
)

𝑧3(𝑘−1) −
(

𝑧7(𝑘−1) + 𝑧8(𝑘−1)
)

𝑧1(𝑘−1)
+𝑧6(𝑘−1)𝑧4(𝑘−1) + 𝑧8(𝑘−1)𝑧2(𝑘−1) − 𝑧9(𝑘−1)𝑧31(𝑘−1) + 𝑧10(𝑘−1)

(

𝑧2(𝑘−1) − 𝑧1(𝑘−1)
)3

⎫

⎪

⎬

⎪

⎭

𝑧4(𝑘−1) + 𝛥𝑡 ⋅ 𝑚−1
2

{

𝑢𝑒2(𝑘−1) + 𝑧6(𝑘−1)𝑧3(𝑘−1) − 𝑧6(𝑘−1)𝑧4(𝑘−1) + 𝑧8(𝑘−1)𝑧1(𝑘−1)
−𝑧8(𝑘−1)𝑧2(𝑘−1) − 𝑧10(𝑘−1)

(

𝑧2(𝑘−1) − 𝑧1(𝑘−1)
)3

}

𝑧5(𝑘−1)
𝑧6(𝑘−1)
𝑧7(𝑘−1)
𝑧8(𝑘−1)
𝑧9(𝑘−1)
𝑧10(𝑘−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(56)

where,

𝐳𝐤 =
[

𝑥1𝑘 𝑥2𝑘 �̇�1𝑘 �̇�2𝑘 𝑐1𝑘 𝑐2𝑘 𝑘1𝑘 𝑘2𝑘 𝜖1𝑘 𝜖2𝑘
]𝑇 (57)

Three initial parameter sets are examined similarly to Section 6. Importantly, the process covariance 𝐐𝐤−𝟏 and the measurement
covariance 𝐑𝐤 matrices are chosen to be constant during the identification process and equal to 10−9 ⋅ 𝐈𝟏𝟎×𝟏𝟎 and 10−5 ⋅ 𝐈𝟔×𝟔,
respectively. The prior initial parameter covariance matrix 𝐖𝐈 is set equal to the unit one, namely 𝐈𝟔×𝟔. Regarding the parameter
estimation error 𝐸𝑟(𝑘), it is estimated using Eq. (39). The detailed behavior fluctuation of the parameter estimates is shown in [49].
It is also shown in Section 9 for a 6-DOF system.

Two cases are examined on Figs. 12 and 13. Here, each figure column refers to each identification set, while the bottom plot
shows all Kullback–Leibler divergences.

In Fig. 12, the true and the estimated input, the parameter error, and the DOF 2 true and estimated response are shown. The
Kullback–Leibler divergence methodology successfully selects the initial parameter Set 2 which provides the identification with the
least estimation error.

Additionally, in Fig. 13 the application is shown when measuring only DOF 2, and the approximation is used for the prior step
acceleration estimation with additional displacement sensing. The Kullback–Leibler divergence methodology also successfully selects
the initial parameter Set 2 which provides the identification with the least estimation error.

9. Discussion

The correct identification of a system when the dynamic states, parameters, and input are unknown requires certain assumptions.
Without those, there are multiple erroneous combinations of parameters and inputs which simultaneously satisfy the measured
output [57]. As a consequence, regardless of which identification methodology is used, the estimation fails. In the case where the
input is known and there is no measurement noise in a linear system, the identifiability of the parameter vector can be checked
using the local identifiability test [58]. For nonlinear systems, the local identifiability can be examined using the Observability Rank
Condition [59–62].

In the case of the unknown input, a successful input–parameter–state estimation is possible when one of the following takes
place:

(a) All inputs are incorporated in the process error. This occurs when the input mean value is equal to zero and the amplitude
is low. In such a case, the error derived from the parameters and the dynamic states is also incorporated into the process error. As
a result, the update process filters out this pseudo-noise type of input.

(b) One or more inputs, either zero or non-zero, are known. Here, the known input, regardless of whether it is zero or non-zero,
can potentially lead to the correct identification of the real parameters, the dynamic states, and as a result the real input at the
other DOFs because the algorithm is calibrated based on this.

So far, figures have been provided for the numerical examples to demonstrate the application range of the proposed method.
They all consist of four rows, including the input estimation, the parameter error, the response, and the Kullback–Leibler divergence.
The vertical axis of the first row of plots, though, do not show the input estimation error to provide emphasis to the Kullback–Leibler
divergence since the detailed input and parameter estimation results are already available [49,50]. However, this work is presented
as a coupled input–parameter–state estimation method, and the information showing the convergence trajectory of different model
parameters should be provided. Importantly, the suggested approach aims to choose the set of initial parameters that could yield
accurate estimates for the unknown quantities and at this point, an observation at the parameter error plots may show error in
24

estimating model parameters even with good starting points given that all of them are visualized with only one plot.
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Fig. 14. Detailed parameter estimation and input error results for the system of Fig. 8 when the initial parameter set underestimate their value by 50%.
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Fig. 15. Detailed parameter estimation and input error results for the system of Fig. 8 when the initial parameter set underestimate their value by 25%.
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Fig. 16. Detailed parameter estimation and input error results for the system of Fig. 8 when the initial parameter set overestimate their value by 50%.
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To clarify this point, Figs. 14–16 are provided. They show for the 6-DOF linear system with 4 sensors, and specifically, the true
nd estimated response (first row), the stiffness parameters (second and third row), the damping parameters (fourth and fifth row),
nd the input estimation and its error at DOF 6 (last row).

Fig. 14 refers to the case where the initial parameter set underestimate their value by 50%, Fig. 15 refers to the case where the
nitial parameter set underestimate their value by 25%, and Fig. 16 refers to the case where the initial parameter set overestimate
heir value by 50%. At this point, it is shown the parameter estimation for each one of them, and especially it is demonstrated that
ig. 15 provides the least input and parameter estimation error. The identification performance for each scenario is also shown.

Another concern is related to the noise parameters are their manual tuning and calibration. The trial-and-error approach could
ield reasonable results for numerical studies where the actual values of the unknown quantities are known. The contribution of
his study is to minimize this drawback using the Kullback–Leibler divergence which shows to provide the best initial parameter
et without the user’s interference. Notably, the application of this study to practical problems is required as a future research,
ustified and demonstrated through experimental examples with real data. However, here, an extensive numerical investigation was
erformed to propose the discussed approach and to provide insight into the correct directions. The Kalman filters types, importantly,
ave been verified to give accurate results in many system identification problems [63–65].

Specifically for the user-defined algorithmic parameters which affect the success of the input–parameter–state estimation, an
nvestigation is provided for the RKF case, while for the UKF the reader is referred to [56]. The parameter 𝐐 is shown here to be

the least important one in this methodology compared to the rest. Its role is to model the process error and its contribution seems
to be directly related to the parameter 𝐑; their numerical distance is of interest. Therefore, without a further investigation, 𝐐 is
replaced by the unit matrix of proper dimensions. The parameter 𝐑, though, is a crucial one when it comes to the correct dynamic
tate estimation. Its role is to model the measurement error (in this case, the pseudo-measurement error) and its contribution is to
revent the algorithm from diverging from the pseudo-measurements. The pseudo-measurements may be polluted, but they are an
xcellent guide for the behavior of the system. Importantly, having correctly estimated dynamic states is a primary requirement for
he final correct convergence.

The parameter 𝜆2, for the RKF, is the most important algorithmic parameter when it comes to the performance of the system
arameter estimation. The lower the 𝜆2 (very close to zero) the higher the possibility that the dynamic states are mis-estimated and
ritically, the optimal Kalman gain 𝐉 to be close to singular or badly scaled. When this value is very high, the identification is far
rom the real system and a high divergence results. It is often convenient to set the regularization parameter constant and retain this
alue until the final step. For linear structural-mechanical systems the value is explored in the vicinity of [0.01, 0.2]. In this work, a 𝜆2

value close to 0.05 works adequately for the full input–parameter–state estimation [66–69]. The behavior of 𝜆2 with respect to the
estimation error follows a L-curve shape [70,71]. The curve is approximately vertical for 𝜆2 < 𝜆2𝑜𝑝𝑡𝑖𝑚𝑎𝑙, and later becomes horizontal
when 𝜆2 > 𝜆2𝑜𝑝𝑡𝑖𝑚𝑎𝑙, with a corner or a lower flat level near the optimal regularization parameter 𝜆2𝑜𝑝𝑡𝑖𝑚𝑎𝑙. The optimal value of the
regularization parameter corresponds to the balance between confidence in the pseudo-measurements and the estimated quantities.

The final algorithmic parameter is the exponential parameter 𝜇; a very important one when it comes to the convergence duration.
When this parameter is very high the final convergence of the system parameters happens within the first steps before the filter
identifies the true values. When it is very low, the system parameters do not converge to single values. Values close to 10−2 seems
a valid selection here, unless a possible damage is expected in real time with the identification.

Fig. 17 (four top plots) shows the relation between the norm of the residual of the system model estimation at the final step ‖𝑟‖2
versus the 𝐑 parameter. This demonstration is shown for the 6-DOF system without two of the six sensors. Here, as 𝐑 is getting lower,
the value of ‖𝑟‖2 is also getting lower. This has a limit though. After that, a lower value of 𝐑 does not provide a better performance.
A recommenced value of 𝐑 is 10−10 times the unit matrix of proper dimensions. It also shows the relation between the norm of
the residual of the system model estimation at the final step versus the value of 𝜆2 parameter. Subsequently, the relation is shown
between the norm of the parameter error at the final step versus the value of 𝜆2 parameter. Here, the vertical and horizontal lines
are clear before and after the optimal value of 𝜆2. For a chosen value close to but not 𝜆2𝑜𝑝𝑡𝑖𝑚𝑎𝑙, the methodology does not collapse;
the convergence is still acceptable. A value far from the optimal though harms the procedure, regardless of how the rest of the
algorithmic parameters are calibrated.

Finally, Fig. 17 (six bottom plots) shows the stiffness and damping parameter estimation when all algorithmic parameters remain
the same except for 𝜇. The demonstration is shown for the 6-DOF system without two of the six sensors. The 𝜇 values considered
are 10−1, 10−2, and 10−3. In the first case, the methodology does not have an adequate time to converge to the correct parameters.
In the second case, the methodology converges to the correct parameters in a reasonable time without allowing some later polluted
pseudo-measurements to re-estimate the already correctly estimated quantities. In the final case, the value of 𝜇 is so low that the
methodology does not converge; a trend exists towards the correct parameter value, but polluted pseudo-measurements keep the
filter from converging to a final estimate. Overall, it is beneficial to run the algorithm in parallel with different 𝜇 values, reject the
ones that do not fluctuate after the initial learning phase, and choose the one which stops fluctuate after a critical time period.

Regarding the effect of taking the unmeasured acceleration responses equal to their estimated priors, an investigated has been
provided in [50] for an insight into the convergence and stability of the estimates. It has been concluded that the results for the
dynamic states and the input are acceptably satisfactory for a low number of sensors but not all parameters converge to the true
values; especially the damping parameters where, by their nature, are excited the least. For an even lower number of sensors, the
estimation is even poorer as expected. Although the dynamic states and the input are correctly estimated, almost all parameters
diverge; this is an indication of a non-identifiable system for this combination of measurements and input.
28
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Fig. 17. It is shown (four top plots): 𝐑𝐝 parameter versus the residual of the system model estimation at the final step ‖𝑟‖2, optimal 𝜆2 parameter versus the
residual of the system model estimation at the final step ‖𝑟‖2 and the residual of the measurement and prediction error at the final step ‖𝜖𝜃‖2, and (six bottom
plots) 𝜇 scaling parameter investigation for the 6-DOF system of Fig. 8.
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Regarding the justification of the method placed here, it seems that when using the Kullback–Leibler divergence for restricting
he parametric distributions close to the initial assumption, one virtually forces these parameters to remain similar to the original
nitial assumption. This more or less would reflect a filter that does not need to do parameter estimation in the loop, but one which
uns for a fixed assumed set of parameters. Therefore, one may misinterpret that the equivalent approach to what is shown here
s running various filters of different samples of parameters in parallel and selecting the one corresponding to the best initial set.
n reality though, the methodology is shown to automatically select the best initial parameter set which is unknown to the user.

ithout this approach, the algorithm would have converged to suboptimal results which, although partially reproduce the measured
ata, they do not provide the correct parameter estimates. More importantly, this approach does not force the posterior to be close
o an assumed biased prior, but selects on its own the best prior assumptions. The need is derived from the fact that the filters do
ot always have the capacity to recover better fitting estimates when the initial parameter set are way off for input–parameter–state
stimation problems.

Alternative approaches for future investigation may be searched in the Particle Filters, or Rao-Blackwellized filters [72,73] to
erify the general applicability of the Kullback–Leibler divergence. However, so far it has not been reported an input–parameter–state
stimation methodology based on those.

Importantly, the current approach describes the Kullback–Leibler divergence to be estimated for every time step, and not for the
hole analysis cumulatively. It is performed in every time step of the filter computation as implied by all plots and it is used in the

equential updating of the parameters compared always to the initial distributions. As a result, it is not that only the final value is
imply observed in order to choose a best initial parameter guess.

A severe limitation of the structural health monitoring applications is the need of using a low number of sensors, and potentially
reate a pseudo-measurements approach from acceleration data. This is realistic, though, and in fact the main use of these filters is
o alleviate the need from full field measurements and allow a realistic assumption of few and sparse sensors.

Finally, a deeper uncertainty quantification is recommended for future research showing results for many initial parameter sets
nd large parameter vector dimensions for large-scale system applications in order the suggested approach to be validated in a
tatistical manner.

0. Conclusions

The capability of a novel Kullback–Leibler divergence method was examined herein within the Kalman filter framework to select
he input–parameter–state estimation execution with the most plausible results. This identification suffers from the uncertainty
elated to obtaining different results from different initial parameter set guesses, and the examined approach used the information
ained from the data in going from the prior to the posterior distribution to address the issue. Firstly, the Kalman filter was performed
or a number of different initial parameter sets providing the system input–parameter–state estimation. Secondly, the resulting
osterior distributions were compared simultaneously to the initial prior distributions using the Kullback–Leibler divergence. Finally,
he identification with the least Kullback–Leibler divergence was selected as the one with the most plausible results.

Overall, this method allowed for the joint input–parameter–state with:

1. Different initial parameter set considerations.
2. Real time evaluation of the posterior distributions.
3. Simultaneous and direct comparison of different identification executions, in the same test.
4. Automatic selection of the identification with the most plausible results.
5. Independent to the system type application.

Importantly, the method was shown to select the better performed identification in linear, nonlinear, and limited information
pplications, providing a powerful tool for system monitoring.
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