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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCE
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Doctor of Philosophy

by Bin Chen

Networked dynamical systems have found increasingly more applications during the last

few decades, thanks to the significant reduction in the cost of sensing, computing and ac-

tuating technologies. Among them, there exists a class of networked dynamical systems

working in a repetitive manner and requiring high control performance. As an example,

next generation advanced manufacturing contains a large number of subsystems working

together to perform a variety of manufacturing tasks repeatedly with high performance

requirements. For such systems, traditional control methods have significant difficulties

meeting the high performance requirements: centralised design does not scale well, while

distributed methods mainly focus on asymptotic behaviour. In addition, they all require

a highly accurate model which can be difficult/expensive to obtain in practice.

Recently, iterative learning control (ILC), which ‘learns’ from the input and error infor-

mation of the previous attempts of the same task without requiring an accurate model

to generate the input, has been proposed as an alternative solution. However, most of

the existing ILC design for networked dynamical systems have poor scalability, limited

convergence performance, and also lack of the ability to deal with system constraints

and more general task, e.g., point-to-point (P2P) task. To address these limitations, this

thesis proposes novel distributed/decentralised optimisation-based ILC design methods.

This thesis considers three design problems for networked dynamical systems, i.e., con-

sensus tracking, formation control and collaborative tracking. We propose optimisation

based ILC design methods using the idea of norm optimal ILC, and the proposed ILC

methods show appealing convergence properties and certain degree of robustness to

model uncertainties. Using the alternating direction method of multipliers (ADMM),

all the designs can be implemented in the distributed/decentralised manner such that

only local information is needed, allowing the proposed algorithms to be applied to large

scale networked dynamical systems and have great scalability for dynamically growing

network. These algorithms can also be extended to solve two unexplored problems in

ILC design for networked dynamical systems, namely, constraint handling and P2P task.

Numerical examples are given to illustrate the performance of the proposed algorithms.
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Chapter 1

Introduction

This chapter gives an overview of this thesis. In Section 1.1, we review the background

of the networked dynamical systems working in a repetitive manner and requiring high

control performance. Then, Section 1.2 gives the motivation of this thesis and finally,

Section 1.3 summaries contributions and the organisation of this thesis.

1.1 Background

Networked dynamical systems or multi agents systems refer to a group of subsystems

(agents) working together to perform a variety of tasks in a network, which was first

introduced by Minski (1986). Networked dynamical systems were unappreciated in the

early days because of the high cost in sensing, computing and actuating technologies.

However, as the price of the component has dropped dramatically over time and the

demand for network dynamical systems has also increased, the concept of networked

dynamical systems attracts increasingly more attention. Till now, it has found many

applications in various areas, e.g., collaborative micro-robots, unmanned aircraft vehi-

cles, traffic networks, smart grids (Knorn et al., 2016; Olfati-Saber et al., 2007).

Among the above applications, there exists a class of networked dynamical systems

working in a repetitive manner with high control performance requirements. Figure 1.1

shows an example of Amazon warehouse mobile robot systems. In the figure, each mo-

bile robot is a subsystem and the group of them constitutes the warehouse mobile robot

system. For such system, it requires all the subsystems moving in the desired formation

and transporting the goods repeatedly. During the control process, each subsystem com-

municates with its neighbouring subsystems and negotiates a common control strategy

to achieve the desired formation. Note that, the high control performance requirement

is crucial in such system, as even a minor mistake caused by a single robot (subsystem)

may lead to trouble for the whole warehouse mobile robot system, e.g., if one robot can-

1
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Figure 1.1: Example of Amazon warehouse mobile robot (Wurman et al., 2008)

not achieve the speed consensus with the neighbours, the formation will deviate from

the desired objective.

In such applications, most of the traditional control methods have significant difficulties

in meeting the high performance requirements (Knorn et al., 2016; Olfati-Saber et al.,

2007): the traditional centralised structure has poor scaling proprieties and cannot be

applied to large scale networked dynamical systems; distributed control design often

focuses on asymptotic performance than dynamic tracking; in addition, all of them

require highly accurate model information to achieve the high performance requirement,

which is often expensive and/or difficult to obtain in practice. High performance control

design algorithms without the need of accurate model information have been waiting.

1.2 Research Motivation

Iterative learning control (ILC) is a well-known control design method that especially

suitable for the system executing the same task repetitively and requiring high control

performance. ILC can ‘learn’ from the input and error information of the previous

attempts of the same task to generate its control input. Since the information have

actually contained the model information, ILC does not require a highly accurate model

to achieve the high performance requirements (Ahn et al., 2007; Bristow et al., 2006;

Owens and Hatonen, 2005). This outstanding feature makes ILC increasingly more to be

used on high performance networked dynamical systems working in a repetitive manner.

As stated in Section 1.1, conventional control algorithms are limited by several limita-

tions, and hence they are not the best choice for high performance networked dynamical
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systems working in a repetitive manner. Benefiting from the learning process, ILC pro-

vides a more rational control structure for the aforementioned systems. A number of

ILC algorithms have been proposed for different control tasks in networked dynamical

systems, e.g., collaborative tracking (Chen et al., 2018a; Chu, 2019; Devasia, 2016), con-

sensus tracking (Devasia, 2017; Jin, 2016; Li and Li, 2014a; Li et al., 2018; Li and Li,

2014b; Meng et al., 2012, 2015a; Shen et al., 2019; Yang and Xu, 2016; Yang et al., 2016,

2017), formation control (Li and Li, 2014a; Li et al., 2018; Li and Li, 2014b; Liu and

Jia, 2012, 2015; Meng and Jia, 2014; Meng and Moore, 2016, 2017; Meng et al., 2012,

2014a, 2015b; Xu et al., 2011; Yang et al., 2017). However, there are some limitations

in existing methods:

� Poor scalability: Scalability indicates the algorithm’s capacity to handle large

scale network and dynamically growing network:

(A) The majority ILC algorithms have difficulties to control large scale networked

dynamical systems, which causes the scalability problem. In particular, existing

distributed PID type and adaptive type ILC (which currently occupy a dominant

number in ILC design for networked dynamical systems) need to calculate the con-

dition to guarantee the convergence performance and this convergence condition

normally involves the Laplacian matrix of the graph (which is used to define the

network topology and will be carefully defined in the next section) in the calcu-

lation. The dimension of Laplacian matrix is depending on the network size, and

hence the computational complexity will increase as the increasing of the size of

the network. When the size of the network increases to a very large number (e.g.,

millions), then it is extremely challenging to design a controller using most of these

existing algorithms.

(B) Another important issue of the scalability is about how to deal with a dynami-

cally growing network, i.e., the algorithms do not need to be redesigned and/or the

parameters do not need to be re-tuned even when the size of the network increases

during the control process. For the dynamically growing network, none of the ex-

isting distributed/decentralised ILC algorithms for networked dynamical systems

can deal with this situation. Currently, all the existing algorithms’ convergence

parameters are pre-calculated for certain network topologies and they have to use

the new Laplacian matrix when the size of the network growing, hence they do

not have the ability to handle the changing network. By contrast, the proposed

algorithms in this thesis are designed in a fully distributed/decentralised manner

and no parameters are required to be tuned even when the network change, hence

it can deal with the dynamically growing network problem.

� Limited convergence performance: In practice, most designs require the

tracking error norm to converge monotonically, since asymptotic convergence may

cause the tracking error norm to grow to a large value before it eventually con-

verges. The sudden increase in the error norm may cause some practical problems,
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e.g., product quality problem, time-consuming problem, and equipment deprecia-

tion problem (Owens and Hatonen, 2005). However, most of the existing designs

focus on asymptotic convergence, while monotonic convergence of the tracking er-

ror norm, is either not guaranteed, or is only achievable when the system dynamics

satisfy certain conditions.

� Lack of the ability to deal with system constraints: System constraints

are widely existing in the practical design. As an example, within a group of un-

manned aerial vehicles (UAVs) working together, each UAV has an allowable input

(voltage) range. If one agent’s applied input exceeds its acceptable voltage range,

it may damage that UAV and further affect the mission of the whole networked

dynamical system. Unfortunately, none of the existing ILC algorithms has the

ability to handle the control constraints in the networked dynamical systems.

� Lack of the ability to control general point to point (P2P) task: P2P task

focuses on the tacking performance at specific time instants. It has found a great

number of applications in practice, e.g., robotic ‘pick’ and ‘place’ task (which only

consider the tracking performance on the ‘pick’ and ‘place’ time instantsE). Despite

its importance in practical applications, most of the existing ILC algorithms for

networked dynamical systems have not considered the P2P tasks with exceptions

for Meng and Jia (2011, 2012); Meng et al. (2013, 2014b, 2015c), where a special

case, terminal ILC (i.e., the tracking at the final point), has been considered.

However, terminal ILC can only achieve the tracking on the final point, while the

general P2P task in networked dynamical systems cannot be solved.

The above problems limit the algorithm’s control performance for practical applications.

Hence, the following question arises naturally: could we design distributed/decentralised

ILC algorithms to address all of the above limitations? This question motivates the

research for this thesis.

1.3 Contributions and Organisation

1.3.1 Contributions

Motivated by the aforementioned limitations of existing ILC algorithms for networked

dynamical systems, this thesis introduces novel distributed/decentralised optimization-

based ILC designs for the networked dynamical systems working in a repetitive manner

and requiring high control performance. The main contributions of this thesis are de-

scribed as follows:

� The development of optimisation-based ILC frameworks for different control prob-

lems (e.g., consensus tracking, formation control, collaborative tracking) in net-
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worked dynamical systems. All the resulting frameworks can achieve the desired

control objective and have superior convergence properties (e.g., most of them

can guarantee the monotonic convergence of the tracking error norm). Moreover,

they have certain degree of robustness against the model uncertainty, which are

desirable in practice.

� The derivation of distributed/decentralised algorithms to implement the proposed

designs using the alternating direction method of multipliers (ADMM). ADMM is a

powerful tool for solving distributed/decentralised optimization problems, and has

found applications in a range of areas, e.g., in machine learning, applied statistics

and privacy preservation (Boyd et al., 2011; Cheng et al., 2017; Deng and Yin, 2016;

Zhang et al., 2019a). Using ADMM, the resulting algorithms can be implemented

in a distributed/decentralised manner which only requires local information, and

therefore guarantees the algorithm’s scalability and can be applied to large scale

networked dynamical systems.

� The exploitation of novel ILC algorithms to deal with the constraint handling

problem in networked dynamical systems. For this type of problem, the proposed

ILC design methods guarantee not only the satisfaction of the system constraints,

but also the convergence of the tracking error norm to a ‘best fit’ solution (in

particular, zero tracking error when the desired objective is achievable), which is

appealing in practice.

� The extension of the proposed ILC algorithms to deal with unexplored problem in

ILC design for networked dynamical systems, namely, P2P control task. For P2P

control problem, the proposed design can not only guarantee the achievement of

the desired objective, but also converge to the minimum control energy solution

for a particular choice of initial control input.

Note that, the proposed ILC algorithms have the capacity to control the networked

dynamical systems with either homogeneous (i.e., all the subsystems have the same

system dynamics) or heterogeneous (i.e., the system dynamics can be different) net-

works. Furthermore, most of the proposed algorithms have the ability to handle the

non-minimum phase systems, since the design does not involve the calculation of the

inverse of subsystem’s dynamics.

1.3.2 Organisation

The organisation of the thesis is shown in Figure 1.2. The detailed explanation of each

chapter is given as follows:

Chapter 2 reviews the concept of networked dynamical systems and defines the consen-

sus tracking problem, formation control problem in networked dynamical systems. We
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Figure 1.2: The structure flow chart of this thesis

describe the details of concepts, background, mission of ILC and the basic algorithms in

ILC. A general review of all the existing ILC algorithms for networked dynamical sys-

tems working in a repetitive manner is given to describe the current research landscape.

Finally, we provide an explicitly description of ADMM and then review the general idea

of ADMM for ‘consensus’ and ‘sharing’ problem.

Chapter 3 considers the high performance consensus tracking of networked dynamical

systems. We formulate the high performance consensus tracking problem into the norm

optimal ILC (NOILC) framework and propose a distributed implementation method

using ADMM. The resulting ILC algorithm not only guarantees the tracking error norm

converges monotonically to zero, but also has certain degree of robustness against the

model uncertainty. In particular, the proposed algorithm can be extended to solve P2P

consensus tracking problem, and applied to both homogeneous and heterogeneous net-

works, as well as non-minimum phase systems, which is of great practical relevance.

Rigorous analyses of algorithms’ (convergence and robustness) properties are given and

simulation results are presented to demonstrate the effectiveness of the proposed dis-

tributed NOILC algorithm.

Chapter 4 considers the constrained consensus tracking problem and proposes con-

strained ILC algorithms using the well-known successive projection framework. The

proposed algorithms guarantee the satisfaction of the system constraints and have ap-

pealing convergence performance: when perfect consensus tracking is achievable, the

consensus tracking error norm converges monotonically to zero; otherwise, it converges

monotonically to a minimum (possible) tracking error norm. Furthermore, we provide

distributed implementations for the proposed ILC algorithms using the idea of ADMM,

allowing the proposed algorithms to be applied to large scale networked dynamical sys-
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tems using only local information. Convergence properties of the algorithms are analysed

rigorously and numerical examples are given to show their performance.

Chapter 5 considers the high performance consensus tracking problem with switching

network topologies and proposes a novel ILC framework to deal with this type of prob-

lem. The design of a novel performance index guarantees monotonic convergence of the

tracking error norm to zero even with the switching network topologies. Furthermore,

the proposed algorithm is suitable for homogeneous and heterogeneous networked dy-

namical systems, which is appealing in practice. A distributed implementation using

the idea of ADMM for the proposed ILC framework is provided, allowing the algorithm

to be applied to large scale networked dynamical systems. Convergence properties of

the algorithm are analysed rigorously and numerical examples are presented to verify

the algorithm’s effectiveness.

Chapter 6 considers the high performance formation control of networked dynamical

systems. We formulate the formation control problem into the NOILC framework and

provide the ADMM distributed implementation of the proposed framework (as well as

the method to find the best parameter of ADMM). The algorithm guarantees monotonic

convergence of the formation error norm to zero, and can handle both homogeneous and

heterogeneous networks, as well as non-minimum phase systems. In addition, compared

to most existing algorithms, the proposed algorithm has a distinguished character that it

converges to the minimum control energy solution for a particular choice of initial control

input. An analysis of the algorithm’s properties is given and numerical simulations are

given to demonstrate the effectiveness of the proposed algorithm.

Chapter 7 considers an unexplored design problem in ILC design for networked dynam-

ical systems, which aims at minimising the individual input energy cost in the system.

Two novel distributed ILC algorithms are proposed: the first algorithm can guarantee

the tracking error norm converge monotonically to a minimum value, while ensuring the

individual input energy consumption does not exceed a prescribed level in the whole con-

trol process; the second algorithm can generate a proper input, which not only achieves

the desired objective, but also produces minimum individual energy cost. Further-

more, the proposed algorithms are suitable for both homogeneous and heterogeneous

networks, as well as non-minimum phase systems, which is appealing in practice. Con-

vergence properties of the algorithms are analysed rigorously and numerical examples

are presented to demonstrate the algorithms’ effectiveness.

Chapter 8 considers the constrained collaborative tracking problem and proposes de-

centralised optimisation based ILC algorithm to solve it. The proposed algorithm can

guarantee not only the satisfaction of the system constraints, but also the monotonic

convergence of the tracking error norm to a minimum (possible) solution. Furthermore,

the proposed algorithms are suitable for both homogeneous and heterogeneous networks,

as well as non-minimum phase systems. To verify the effectiveness of this proposed al-
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gorithm, we exhaustively analyze the corresponding convergence properties and provide

numerical examples.

Chapter 9 concludes the works have been done in this thesis, and then points out the

future directions of the research.



Chapter 2

Literature Review

This chapter is divided into five parts. In Section 2.1, the concept and network topolo-

gies of networked dynamical systems are given. In addition, the ideas of consensus and

formation control problems are presented, with the plant modelling for networked dy-

namical systems introduced. Section 2.2 provides a review of the concepts of iterative

learning control (ILC). Some well-known ILC algorithms and important issues (e.g., ro-

bustness, non-minimum phase systems) are introduced. In Section 2.3, we review the

idea of ILC for networked dynamical systems and give examples to illustrate the cur-

rent situations of ILC for high performance networked dynamical systems. Section 2.4

reviews the idea of the alternating direction method of multipliers (ADMM) and in-

troduces two important problem formulations (i.e., consensus and sharing) in ADMM.

Finally, we summarize the context and highlight the motivations in Section 2.5.

2.1 Networked Dynamical Systems

This section introduces the concept of networked dynamical systems and then provides

the modelling details for systems. Based on the formulation, we review some important

control design problems in networked dynamical systems and introduce an important

class of networked systems, which works repetitively and requires high performance.

2.1.1 Introduction

Networked dynamical systems are systems that contain more than one subsystem (agent)

working together and achieving the desired objective. In networked dynamical systems,

each subsystem needs to communicate, negotiate, and collaborate with neighbouring

subsystems to reach a global objective, e.g., cooperatively track a desired output (Mirza

et al., 2015), reach a common state (Anderson et al., 2008). In contrast to a single

agent system that has limited capacity to observe the environment, networked dynamical

9
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Figure 2.1: Example of networked dynamical systems (Yang et al., 2017)

systems have many advantages, e.g., wider mission areas, higher efficiency, improved

performance, stronger robustness, parallel computing ability (Schurr et al., 2005).

Figure 2.1 illustrates an example of networked dynamical system in the civil domain. In

the figure, the networked dynamical system consists of three heterogeneous unmanned

aerial vehicles (UAVs), and the mission of the whole system is to accomplish exploration,

searching, and surveillance of the urban region. For a single UAV, its control area is

limited and it cannot cover the whole area at the same time. By adding two more

subsystems into the network, the networked dynamical system’s control area becomes

large enough to cover the entire urban area, which ensures the feasibility of the mission.

Note that, the network topology could be homogeneous (i.e., all the subsystems have

the same system dynamics) and heterogeneous (i.e., the subsystem’s dynamics can be

different from each other) in the system, hence it creates possibilities to describe different

real-world systems. Up to now, networked dynamical systems have found numerous

applications in varied areas, e.g., unmanned aerial vehicles, autonomous surface vessels,

batch processes, traffic networks, smart grids, satellites (Olfati-Saber et al., 2007).

2.1.2 Modelling for Networked Dynamical Systems

The system model is important in analysing & designing the networked dynamical sys-

tems. Hence, we first introduce the general formulation of the system dynamics and the
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network topologies before formally defining the control problem in networked dynamical

systems.

2.1.2.1 System Dynamics

Consider a networked dynamical system including p subsystems (agents), with the dy-

namics of ith (1 ≤ i ≤ p) subsystem is assumed to be a discrete-time, linear time in-

variant (LTI), single-input-single-output (SISO) system, represented using the following

state-space model

xi(t+ 1) = Aixi(t) +Biui(t), xi,0 = xi(0)

yi(t) = Cixi(t), i = 1, 2, · · · , p
(2.1)

where t ∈ [0, N ] is the time index; N is the trial length; i is the subsystem index;

xi(t) ∈ Rni (ni is the order of ith subsystem), ui(t) ∈ R, yi(t) ∈ R are the state, input

and output of subsystem i; Ai, Bi, Ci are system matrices with proper dimensions.

2.1.2.2 Network Topology

To describe the relationship between different subsystems, we use the graph theory which

is commonly used in analysing the network topology. As a branch of mathematics, graph

theory provides a practical mathematics tool for analysing the property of networked

dynamical systems. It is widely believed that Euler (1741) first introduced the concept

of graph theory for ‘the Seven Bridges of Königsber’ problem. After that, this theory

was generalized and derived to an important branch of mathematics, namely, topology.

In this thesis, we consider the undirected graph as the network topology since all the

proposed algorithms are established on the undirected graph structure. The presentation

in the following is mainly summarised from Bullo (2018).

Assuming a networked dynamical system is formed by p subsystems, and then the

network topology can be represented using an undirected graph G = (V ,E ), where

V = {1, 2, ..., p} is the vertex (node) set and E is the set of unordered pairs of vertexes

called edges. For vertexes i, j ∈ V (i ̸= j), the set (i, j) ∈ E implies an undirected edge

between vertexes i and j.

Figure 2.2 gives an example of an undirected graph in a networked dynamical system.

In the figure, there exist three different vertexes and each vertex has certain relationship

with other vertexes. For vertexes 1 and 2, they have an unordered edge between them,

and hence set (1, 2) define the edge E , which means they can transfer the information

between each other. On the other hand, vertexes 1 and 3 do not have any unordered

edge between them, meaning they cannot transfer any data directly. However, vertex 1

can still indirectly transfer the information to 1 with the help of vertex 3.
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31 2

Figure 2.2: Example of undirected graph

To further describe the relationship between vertexes and edges, we introduce the adja-

cency matrix A = [aij ]. Its element aij is defined as

aij =

{
Wij if (i, j) ∈ E

0 otherwise
(2.2)

where weight Wij is often considered as the connection strength of the edge , i.e., sub-

system i will put more emphasis on the information transformation with subsystem j.

Given an example, in the transportation system, there exist some subsystems have direct

access to the reference trajectory (i.e., ‘leader’ subsystems), their neighbours (without

access to the reference) know the leaders have information about the desired objective

and hence they will put more emphasize on communicating information with the ‘leader’

subsystems to improve its tracking efficiency. Note that, for an undirected graph, the

adjacency matrix A = [aij ] is symmetric.

For each subsystem, the range of communication is limited, and its next moment state

is mainly calculated using the state of itself and its ‘neighbours’. Usually, Ni is used to

denote the ‘neighbours’ of subsystem i, and it is defined as

Ni = {j : (i, j) ∈ E } (2.3)

In fact, the relationship between two subsystems may change along with different factors,

e.g., time. Based on the changing relationship between two different subsystems, graphs

can also be divided into two categories:

� Fixed Graph: The relationship between subsystems would not change for any

factor. In this case, each subsystem has fixed ‘neighbours’ and exchanges informa-

tion at all times.

� Switching Graph: The relationship between subsystems would change for differ-

ent factors, e.g., time, experiment number. Under this situation, there exists a rule

indicates how the ‘neighbour’ change. As an example, graph structure G = (V ,E )

becomes G (t) = (V ,E (t)) if the relationship between two subsystems change along

with time.

Based on the ith node’s neighbours set, the concept of degree is introduced, which

denoted as d(i). In particular, the degree of a node i is the weighted number of edges of
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the form (i, j) ∈ E , i.e.,

d(i) =

p∑
j=1

aij (2.4)

and then, the global degree matrix is denoted as D = diag(d(1), d(2), · · · d(p)).

In addition to the adjacency matrix A , there exists a more commonly used matrix called

Laplacian matrix L = {lij} := D − A . It is a real symmetric matrix with element lij

defined as below

lij =

{ ∑p
j=1 aij if j = i

−aij otherwise
, (2.5)

or alternatively, in the following form

lij =


−Wij if j ∈ Ni∑
j∈Ni

Wij if j = i

0 otherwise

(2.6)

Note that, the Laplacian matrix is commonly used when analysing networked dynamical

systems, since it combines the degree matrix with the adjacency matrix and provides

more detail when describing a network. Hence, we will design the algorithm mainly

based on the Laplacian matrix.

Another important property of a graph is the connectivity and it can be divided into

two different types in an undirected graph

� Connected: Each vertex can be connected with other vertexes through an undi-

rected path.

� Unconnected: None of the vertexes can be connected to all the vertexes through

undirected paths.

Normally, the undirected graph in the design is required to be connected to make sure

the control information can flow through all the vertexes. However, using the switching

topologies can release this requirement in some cases. As an example, the algorithm

proposed in Jiang and Jiang (2020) only requires the union of the graph, over the time

intervals, to have a spanning tree.

2.1.3 Control Design of Networked Dynamical Systems

Networked dynamical systems have found a great number of control designs in different

fields, e.g., consensus, flocking, formation control (Olfati-Saber et al., 2007). Among

these designs, consensus problem and formation control are two important classes, hence

both of them will be introduced in the following.
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2.1.3.1 Consensus Problem

The earliest studies of consensus problem appeared in the area of management sci-

ence, statistics (DeGroot, 1974). Then its concept began to be used in different fields

(Benediktsson and Swain, 1992; Olfati-Saber et al., 2007; Weller and Mann, 1997). In

the area of networked dynamical systems, consensus problem requires all the subsystems

to reach an agreement state that is negotiated by all of them (Olfati-Saber et al., 2007).

Consider a networked dynamical system where the dynamics of ith (1 ≤ i ≤ p) subsystem

is assumed to be a first-order integrator, i.e.

xi(t+ 1) = ui(t). (2.7)

The network topology is denoted using an undirected graph and the control design

objective is to find a proper input ui(t) that guarantees all the subsystems reach a

common state, i.e.

lim
t→∞

x1(t) = lim
t→∞

x2(t) = · · · = lim
t→∞

xp(t) (2.8)

According to Olfati-Saber and Murray (2004), when the network topology is either a

fixed graph, or a switching graph with zero transmission time-delay, the following control

law can be used to achieve the distributed consensus design objective:

ui(t) =
∑
j∈Ni

Wij(xj(t) − xi(t)) (2.9)

Input updating law (2.9) indicates that subsystem i keeps sharing its state xi with all

its neighbours j ∈ Ni during the control and its input is a collective decision by all the

subsystems. Eventually, the collective decision of all the subsystems is equivalence to

the average of all the subsystems’ initial state, i.e.

lim
t→∞

xi(t) =
1

p

p∑
i=0

xi(0) (2.10)

which is called as average consensus. Besides the average consensus, there are other

types of consensus designs: cluster consensus (Chen et al., 2011; Han et al., 2013; Liu

and Chen, 2011), leader-follower consensus (Defoort et al., 2015; Ni et al., 2017), high

performance consensus tracking within a finite time interval (Devasia, 2017; Jin, 2016;

Yang et al., 2017).

2.1.3.2 Formation Control

Formation control is another important topic in the coordination of networked dynamical

systems. It requires a group of subsystems working together to maintain a desired state-
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Figure 2.3: Triangle formation

difference between each other, which requires the collaboration of every subsystem at all

times (Oh et al., 2015). For example, if the networked dynamical systems are required

to form a triangle (as shown in Figure 2.3), we can define the state difference Rij as the

desired state-difference between subsystems i and j.

Consider a networked dynamical system where the dynamics of ith (1 ≤ i ≤ p) subsystem

is assumed to be a first-order integrator, i.e.

xi(t+ 1) = ui(t), (2.11)

and then the control design objective of formation control is to find a proper input ui(t)

that can reach a relative state consensus, i.e.

lim
t→∞

xi(t) = lim
t→∞

xj(t) − Rij , j ∈ Ni. (2.12)

When the network topology is either a fixed graph, or switching graph with zero trans-

mission time-delay, the following control law can be used to achieve the distributed

formation (Olfati-Saber et al., 2007):

ui(t) =
∑
j∈Ni

Wij(xj(t) − xi(t) − Rij) =
∑
j∈Ni

Wij(xj(t) − xi(t)) −
∑
j∈Ni

WijRij . (2.13)

From input updating law (2.13), it shows that the formation control problem requires

the state difference between neighbouring subsystems equal to a nonzero bias term∑
j∈Ni

WijRij , which can be seen as a variant form of the consensus problem.

2.1.4 High Performance Networked Dynamical Systems

As described in the previous session, networked dynamical systems have found increas-

ingly more applications during the last few decades, thanks to the significant reduction

in the cost of sensing, computing and actuating technologies. Among these applications,

there exists a class of networked dynamical systems working in a repetitive manner (i.e.,

executing the same task repetitively within a finite time interval) and requiring high

performance during the control process. This type of networked dynamical system is

called as high performance networked dynamical system and it has broad applications in

different fields including physics, automobiles, biology and robotics (Liu and Jia, 2012).
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Figure 2.4: Example of high performance networked dynamical systems working
in a repetitive manner: Amazon warehouse mobile (Farah et al., 2019)

In the following, we present two applications of high performance networked dynamical

systems in real world:

1. Amazon Warehouse Mobile

Amazon warehouse mobile is a typical example of high performance networked dynamical

systems, which is illustrated in Figure 2.4. In the figure, a group of warehouse mobiles

(subsystems) form a networked dynamical system and the mission of the whole system

is to transport the ‘goods’. Note that, the warehouse system is working in a repetitive

manner to guarantee the ‘goods’ can be precisely transferred to the right destination.

In each repetitive process, the Amazon warehouse robot will leave the charging station

at the beginning (i.e., the initial condition remains the same) and continuously transport

the ‘goods’ within a finite time interval (until it almost runs out of battery and returns

to the charging station). For such application, all the Amazon robots are working in

the same environment and performing their own mission in the network. The repetition

of initial conditions and the control process is useful for such application: on the one

hand, the repetition guarantees all the data from previous experiences are available and

the controller can use all the data (stored in the memory) within the repetitive process

to greatly save the computational complexity; on the other hand, the repetition process

guarantees the causality when using all the past data in the whole time range t ∈ [0, T ]

and hence improve the performance (by learning from the future time information in

the past process).

2. Freeway Traffic System

From a macro point of view, the traffic flow pattern in the freeway traffic system works
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Figure 2.5: Example of high performance networked dynamical systems working
in a repetitive manner: Freeway traffic system (Yang et al., 2016)

in a repetitive manner that requires high control performance every day. Taking one day

as a unit, the traffic flow starts from a high level in the morning rush time (around 7−9

AM), then fluctuates until reaches the second peak in the afternoon (around 5− 7 PM).

After reaching the afternoon peak, the traffic flow will decrease to a low level at night

and finally return to the morning peak on the second day. Clearly, the traffic system

is operating in a repetitive manner and the macroscopic traffic model is invariant along

the week/month axis.

To illustrate the high performance requirement in the freeway traffic system, we take

Figure 2.5 as an example. In the figure, each vehicle (subsystem) is required to coordinate

its speed, and location with neighbouring vehicles because it needs to keep a safe distance

from its neighbouring vehicles. The requirement on the speed consensus is extremely

important, since any mistake caused by one subsystem (e.g, engine stalls) may lead to

huge trouble (e.g., vehicle collision). It is worth mentioning that this application is

often coupled with constraint handling problem. For example, the allowable amount of

subsystems on the freeway will change along the hour axis because of the traffic rule and

the limited capacity. This constrained design, requiring the traffic system to control the

number of subsystems on the freeway to move in a desired formation, is non-trivial.

As shown in the above examples, this class of networked dynamical systems has enormous

potential and board applications, which attracts increasingly more interest in practice.

However, to achieve the high performance objective, most traditional control design

methods will meet difficulties as they often require a highly accurate model which can

be expensive and/or difficult to obtain in practice (Knorn et al., 2016). To avoid the
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strict requirement of the highly accurate model, the next section will introduce ILC which

does not require a highly accurate model to achieve the high performance requirement.

2.2 Iterative Learning Control

This section gives a review of the ILC design. Concept, classical algorithms (including

model-free and model-based design) and important issues of ILC are introduced. The

presentation in the following is based on the work in Bristow et al. (2006); Owens (2016);

Owens and Hatonen (2005).

2.2.1 Overview of Iterative Learning Control

2.2.1.1 Plane Modelling for ILC

ILC is a control design method extremely suitable for the system that executes the same

task repeatedly and requires high control performance. In the control community, the

heuristic article of ILC research is Arimoto et al. (1984). After that, a great number of

ILC approaches have been proposed and the idea of ILC has become well-known in the

control community.

In this section, we formulate the system using the following discrete time, linear time

invariant, single-input-single-output state space model

xk(t+ 1) = Axk(t) +Buk(t), xk(0) = x0

yk(t) = Cxk(t)
(2.14)

where t ∈ [0, N ] is the time index; N is the trial length; k is the trial number; xk(·) ∈ R,

uk(·) ∈ R, yk(·) ∈ R are the state, input and output at trial k, respectively; A,B,C

are system matrices with proper dimensions; the initial condition is the same for all the

trials. The system is working in a repetitive manner to track a reference over a finite

time interval: at t = N + 1, the time t is reset to 0, the subsystem’s state is reset to

x0, and the system is required to track the same reference again. Note that, the reset of

initial condition is commonly required in ILC design, since it guarantees the causality

when updating the control law.

By defining r(t) as the reference signal, the mission of the system can be stated as

generating the output yk(t) that tracks r(t) precisely. Then, we can define the tracking

error ek(t) as

ek(t) = r(t) − yk(t) (2.15)

For traditional non-learning control algorithms, all the parameters are already set up

once the controller is designed. Theoretically, if the model of a control system is precisely
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Figure 2.6: The block diagram of iterative learning control (reproduce from
Figure 1 in (Bristow et al., 2006))

known, then the perfect tracking of reference trajectory is achievable. However, model

uncertainty is commonly existing in practice and this reason makes most of the tradi-

tional non-learning control algorithms could not achieve the perfect output tracking of

r(t). By contrast, ILC can use the information (i.e., input and error) from the previous

experiments to update its new trial’s input (which is illustrated in Figure 2.6). Since

the error information has contained the plant’s model information, ILC can eventually

achieve the perfect output tracking (by learning previous trials’ information).

To facilitate later design for ILC, a ‘lifted matrix form’ representation of the system

dynamics is first introduced (Hatonen et al., 2004). Assuming the relative degree of

each subsystem is unity, i.e., CB ̸= 0. Introduce uk, yk, r, ek as the ‘lifted form’ of

input uk(t), output yk(t), reference r(t), and error ek(t), which are defined as follows

uk =


uk(0)

uk(1)
...

uk(N − 1)

 yk =


yk(1)

yk(2)
...

yk(N)

 r =


r(1)

r(2)
...

r(N)

 ek =


ek(1)

ek(2)
...

ek(N)

 (2.16)

Then, system model (2.14) can be represented in an equivalent ‘lifted system’ form

yk = Guk + d (2.17)

where uk ∈ U , yk ∈ Y, and U , Y are real Hilbert space. The Hilbert space H is a
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complete inner product space and it is defined as

H = RN × RN (2.18)

with inner product and induced norm

⟨u1, u2⟩U =
N∑
t=0

uT1 (t)Ru2(t), ∥u∥U =
√

⟨u, u⟩U

⟨y1, y2⟩Y =
N∑
t=0

yT1 (t)Qy2(t), ∥y∥Y =
√

⟨y, y⟩Y

(2.19)

and Q, R are positive definite matrices. The system matrix G is represented as

G =


CB 0 · · · 0

CAB CB · · · 0
...

...
. . .

...

CAN−1B CAN−2B · · · CB

 (2.20)

and d is the response of initial condition, which is defined as

d =
[
CAx0 CA2x0 · · · CANx0

]T
(2.21)

Without loss of generality, we assume d = 0 by using r− d to replace r, then the system

model (2.17) can be simplified as

yk = Guk (2.22)

and the error vector ek can now be rewritten as

ek = r −Guk (2.23)

In ILC, the control input is generated using the previous trials’ input and error infor-

mation, as shown in the following form

uk+1 = f(uk, . . . , uk−b, ek, . . . , ek−c) (2.24)

where 0 < b ≤ k and 0 < c ≤ k (b and c are integer). By contrast with traditional

non-learning algorithms, ILC can learn from the previous trials’ data (e.g., inputs and

errors) to update its input, and hence achieves the perfect tracking even when the model

is inaccurate. An example is given below to further demonstrate the difference between

the traditional feedback control algorithm and ILC.

Example 2.1. Consider the following system

G(s) =
s+ 1

s2 + 5s+ 3
(2.25)
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Figure 2.7: Output response of PID method and ILC algorithm at the 30th trial

where t ∈ [0, 6]. This system is sampled using a zero-order hold, with the sampling time

Ts = 0.01s. Zero initial condition is assumed and the reference trajectory r(t) is defined

as

r(t) = sin(
2

3
πt) (2.26)

To track the reference trajectory, we first use the Proportional-Integral-Derivative (PID)

control algorithm (which is the most commonly used feedback control algorithm)

u(t) = Kpe(t) +Ki

t∑
l=0

e(l) +Kd[e(t+ 1) − e(t)] (2.27)

to control the system for 30 trials (with the parameters Kp = 13, Ki = 5, Kd = 0.1).

Furthermore, to make comparison with the traditional PID control method, we use the

Arimoto-type ILC algorithm (Arimoto et al., 1985)

uk+1(t) = uk(t) + γek(t+ 1) (2.28)

where γ = 5, 8, to perform the same task again for 30 trials.

Figure 2.7 shows the output for both two methods at 30th trial and it suggests that the

output generated by ILC could track the reference trajectory perfectly, for both cases
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Figure 2.8: Convergence behaviour of PID method and ILC algorithm

γ = 5 and γ = 8. By contrast, the PID algorithm cannot achieve the perfect tracking

of the reference signal for the choice of parameters. Figure 2.8 shows the convergence

behaviour of the tracking error norm ek over 30 trials. For PID control law, the tracking

error norm ∥ek∥ remains the same along the trial length because of the non-learning

property. In comparison, the tracking error norm of ILC design will converge to zero

after 30th trial, demonstrating that the perfect tracking of the reference trajectory can

be achieved for both cases γ = 5 and γ = 8.

The fundamental idea of most traditional control methods is to design a model-based

controller which accurately describes the real system, however, this controller is difficult

and expensive to obtain in practice. ILC relaxes this restriction because its control input

is generated by ‘learning’ the previous attempts’ input and error. By constantly learning

from previous information to modify its control strategy, ILC gradually improves the

tracking performance. This outstanding advantage makes ILC explicitly suitable for

high performance dynamical systems working in a repetitive manner.

Note that, in Figure 2.8, the ILC convergence behaviours are depending on the choices of

learning gain γ. These two convergence behaviours represent two classes of convergence

properties in terms of tracking error ek(t), which are summarised as follows:

� Asymptotic convergence: Asymptotic convergence only cares about the con-
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vergent result but not the convergence behaviour during the control process, i.e.

lim
k→∞

ek = 0 (2.29)

� Monotonic convergence: Monotonic convergence requires not only the tracking

error ek = 0 as k → ∞, but also the tracking error norm in next trial is not greater

than the tracking error norm in current trial, i.e.

lim
k→∞

ek = 0 & ∥ek+1∥Q ≤ ∥ek∥Q (2.30)

It is worth mentioning that, asymptotic convergence is often not enough since the track-

ing error may grow to a large value (as shown in Figure 2.8) before it ultimately con-

verges. This may cause some problems in practice, e.g., product quality problem, wasting

time or permanent damage of the system (Owens and Hatonen, 2005). Hence, monotonic

convergence is more desirable when designing an ILC algorithm.

2.2.1.2 Adjoint Operator in ILC design

The adjoint operator G∗ of system matrix G plays an important role in ILC design,

hence we will give a discussion in the following. For the adjoint operator, it can be

defined using the following equation (Luenberger, 1997)

⟨u,Gv⟩Y = ⟨G∗v, u⟩U (2.31)

for an arbitrary u ∈ U and u ∈ Y, it can be shown that the adjoint operator G∗ exists

and is bounded and linear. When the system is discrete time, and the input and output

space are defined as in (2.19), the following theorem holds:

Theorem 2.1. With the above definitions, the adjoint operator of the linear map y = Gu

corresponding to the linear, time-invariant state space model S(A,B,C,D)

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cxk(t) +Du(t), x(0) = 0 (2.32)

is the map v = G∗z corresponding to the linear system

p(t) = AT p(t+ 1) + CTQz(t+ 1), v(t) = R−1(BT p(t) +DT z(t)) (2.33)

with a terminal boundary condition p(N) = 0. Or, in matrix form representation

G∗ = R⃗−1GT Q⃗ (2.34)

where R⃗ = diag(R,R, · · · , R) and R⃗ = diag(R,R, · · · , R).
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Now, after introducing the basic concept and idea of ILC, we will review some basic

algorithms in ILC design in the following section. Note that, all the algorithms can be

divided into model-free design and model-based design, and we first review the model-

free ILC design (since it is much more straightforward).

2.2.2 Model Free ILC Algorithm

Model free ILC algorithms are easy to implement since they only require the informa-

tion of tracking errors (without requiring any model information) when updating the

input. In some cases, they are easy to implement and can provide acceptable perfor-

mance, which is useful in some cases that do not require fast convergence speed and/or

monotonic convergence of the tracking error norm. Next, we review some of the basic

algorithms to illustrate the idea.

2.2.2.1 Proportional-Integral-Derivative ILC

In the field of ILC, the first algorithm was proposed by Arimoto et al. (1984) and it was

called as the Derivative-type ILC. Its input updating law is shown as

uk+1(t) = uk(t) +Kd

[
ek(t+ 1) − ek(t)

]
. (2.35)

Then, the Proportional-type ILC was presented in Arimoto et al. (1985), with the input

updating law given as

uk+1(t) = uk(t) +Kpek(t+ 1) (2.36)

However, the error term has not been fully utilized in both Proportional-type ILC and

Derivative-type ILC. Hence, Arimoto and his co-author blended the idea of Proportional-

Integral-Derivative (PID) algorithm into ILC in Arimoto (1986) and derived the PID

type ILC algorithm

uk+1(t) = uk(t) +Kpek(t+ 1) +Ki

t∑
l=1

ek(l) +Kd

[
ek(t+ 1) − ek(t)

]
(2.37)

where Kp represents the proportional parameter; Ki denotes the integral parameter and

Kd is the derivative parameter.

For PID type ILC, it records the error value and then uses the value to generate its

input. It is robust to model uncertainty when the parameters are chosen appropriately.

Hence, PID type ILC algorithm is still commonly used in ILC area.
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2.2.2.2 Phase-Lead ILC

Phase-lead ILC is a feedforward algorithm and it was first introduced by Park et al.

(1998). The general update law is shown as

uk+1(t) = uk(t) + Lek(t+ τ) (2.38)

where τ > 0 is the phase-lead parameter of the error signal and L is an iteration gain.

The form of phase-lead ILC is similar to that of Proportional-type ILC and it is suitable

for the dynamical system with time delay. For the phase-lead ILC design, it is useful

when controlling a system with non-minimum phase dynamics. It can maximize con-

vergence and minimize the tracking error when compared with P-Type, D-Type ILC

(Freeman et al., 2005).

2.2.2.3 Data-Driven ILC

Data-driven ILC is a kind of model-free method that utilizes the data information to

control the system. One common idea is to estimate the system model (parameters or

system matrices) based on the input and output obtained in previous execution of the

same task. After obtaining the estimated system model, the model-based ILC algorithms

(which will be introduced in the later session) can be applied to the system. An example

of this idea is shown below.

Janssens et al. (2013) proposed a data-driven method that especially uses the historical

input, output to estimate the system matrix. In the paper, it first defines the ulc and

ylc as the linear combinations of previous ILC trials’ input and output signal, i.e.

ulc = l0u0 + l1u1 + · · · + ljuj

ylc = l0y0 + l1y1 + · · · + ljyj
(2.39)

where lj is weighting parameter for trial j.

Then, noting the fact that y = Gu, the estimated model can be defined as

Ĝ = U−1
lc Ylc (2.40)

in which Ulc and Ylc are lower-triangular Toeplitz matrices of ulc and ylc. It has been

proved in the paper that the estimated system matrix Ĝ is equal to G when the following

conditions hold: (1) Ulc is full rank; (2) the whole system is LTI; (3) no measurement

noise or other disturbances in the system.

However, noise and disturbance are commonly existing in practice, and the above re-

quirement (3) is difficult to realize in practice. To relax this strict requirement, Janssens
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et al. (2013) further improved the estimation of the model. By assuming the measured

output ymj = yj + nj (with nj a zero-mean Gaussian noise with standard deviation σn),

Equation (2.40) can be further rewritten as

Ĝ = U−1
lc Y m

lc = U−1
lc (Ylc +Nlc) (2.41)

in which Nlc is the lower-triangular Toeplitz matrix of linear combinations of previous

ILC trials’ measurement noise Nj .

After using (2.41) to estimate the system model, model-based algorithms are applied to

achieve the desired mission and result in a great performance. However, this data-driven

method highly relies on the choice of l (e.g., how to choose a proper l to make sure Ulc

is full rank), and it may be difficult to be used in practice.

In addition to the above algorithms, there is another class of model-free ILC suitable

for nonlinear systems, namely, adaptive ILC. This ILC design is established on different

approaches, e.g., contraction mapping (Hui et al., 2020; Xu, 1997; Xu and Qu, 1998;

Yang et al., 2016), Lyapunov function (Jin, 2016; Qu and Xu, 2002; Shen et al., 2019;

Tayebi, 2004), and can guarantee the achievement of the desired objective. Please refer

to the above reference for more details.

2.2.3 Model Based ILC

In this section, we will introduce ILC algorithms that require both the tracking error

and model information. The algorithms’ convergence properties are analysed rigorously.

Consider the system model (2.14), the most widely used ILC updating law is shown as

(Bristow et al., 2006)

uk+1 = Q(uk + Lek) (2.42)

where Q denotes the Q-filter and L is the learning function. Normally, most of the ILC

algorithm fix Q as an identity matrix and then choose different L. In the following, we

set Q = I, and then from (2.42), we can have the following error evolution

ek+1 = (I −GL)ek (2.43)

To guarantee the convergence properties of the model based ILC algorithms, an intuitive

way is to guarantee the spectral radius of matrix I −GL smaller than 1, i.e.

ρ(I −GL) < 1 (2.44)

where spectral radius ρ(I−GL) is the modulus of the largest eigenvalue in matrix I−GL.

Note that, the condition in Equation (2.44) can only guarantee the asymptotic conver-
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gence of tracking error norm ∥ek∥Q. As mentioned previously, monotonic convergence

is more desirable in practice, and to achieve the monotonic convergence of ∥ek∥Q, the

convergence condition is further updated as

∥I −GL∥Q < 1 (2.45)

since

∥ek+1∥Q = ∥(I −GL)ek∥Q ≤ ∥(I −GL)∥ ∥ek∥Q < ∥ek∥Q (2.46)

Note that the model G is fixed in (2.44) and (2.45), and hence, choosing a proper learning

gain L is the main idea in model based ILC algorithms. In the following, we introduce

three methods to choose the learning gain L.

2.2.3.1 Inverse Based ILC

An obvious way to guarantee the condition (2.45) is to choose the learning gain L as

the inverse of system model G. This method is proposed by Harte et al. (2005) and the

updating law is shown as follows

uk+1 = uk + βG−1ek (2.47)

with the convergence condition becomes

|1 − β| < 1. (2.48)

Clearly, the choice of β ∈ (0, 2) guarantees the convergence of tracking error norm. In

the ideal case, the choice of β = 1 guarantees the zero tracking error in one trial, since

e1 = r − (Gu0 +GG−1e0) = 0. (2.49)

However, we normally choose a small β because the system may contain the model

uncertainty. In addition, inverse based ILC has difficulties to be applied to non-minimum

phase systems because of the right half plane zeros.

2.2.3.2 Gradient Based ILC

To avoid the directly use of the model inverse, we introduce an alternative method called

gradient based ILC (Owens et al., 2009). For any ILC algorithm, the ultimate goal is to

find an proper input such that the tracking error ek = 0 and this is a process of solving

the following optimization problem

min
uk∈U

∥ek∥2Q & ek = r −Guk. (2.50)
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Note that, the steepest descent direction is the derivative of ∥ek∥2Q, i.e., the gradient of

∥ek∥2Q. Based on this idea, we can have the following control updating law

uk+1 = uk + βG∗ek (2.51)

where G∗ = R−1GTQ is the adjoint of G. By choosing L = βG∗, the convergence

condition in (2.45) becomes

∥I − βGG∗∥ < 1 (2.52)

In discrete time systems, since GG∗ is a positive definite matrix, the convergence con-

dition (2.52) can be further rewritten as

0 < β <
2

∥GG∗∥
=

2

∥G∥2
(2.53)

For gradient based ILC, it does not involve the inverse model in the design and hence it

is much more robust to the model uncertainty, however, the strong robustness is at the

expense of the convergence speed. For a gradient based ILC, its convergence speed can

be slow even when the model is highly accurate. In the next section, we will introduce

a moderate algorithm that can make the trade-off between robustness and convergence

speed (by selecting different weighting matrices).

2.2.3.3 Norm Optimal ILC

Norm optimal ILC (NOILC) is a well-known algorithm which guarantees the monotonic

convergence of the tracking error norm without any restraints on the controller. The

idea of NOILC was first proposed by Amann et al. (1996a,b) in 1996 and from then on,

the NOILC algorithm has been widely used in the ILC field, e.g. Barton and Alleyne

(2011); Chu and Owens (2011, 2009); Owens (2016); Owens and Hatonen (2005). The

presentation below is mainly summarised from Owens (2016).

Consider the system model (2.14), the general updating law of NOILC can be shown as

uk+1 = arg min
uk+1∈U

{
Jk+1(uk+1) : ∥ek+1∥2Y + ∥uk+1 − uk∥2U

}
. (2.54)

Equation (2.54) shows that not only the error norm is required to be small in each trial,

but also the difference value between the next trial’s input and the current trial’s input

should not be large. By adding the second term, NOILC shows better performance

than normal inverse-based algorithm both in stability and robustness (at the expense of

convergence speed).

By directly applying partial derivative of Jk+1 with respect to uk+1 and finding the
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stationary point (i.e., set
∂Jk+1

∂uk+1
= 0), we can get the optimal solution

uk+1 = uk +G∗(I +GG∗)−1ek (2.55)

By multiplying G and subtracting from r in both side, we have

yk+1 = yk +GG∗(I +GG∗)−1ek (2.56)

and then the error evolution is given as

ek+1 = (I +GG∗)−1ek (2.57)

Using the input updating law (2.55) to track a reference trajectory, NOILC has appealing

convergence properties as shown in the following propositions:

Proposition 2.1. (Amann et al., 1996b) Assuming that reference r ∈ Rg(G), in which

Rg(G) denotes the range of G. The input sequence {uk} satisfies

lim
k→∞

uk+1 − uk = 0 (2.58)

and the error sequence {ek} satisfies

lim
k→∞

ek = 0 (2.59)

Note that, for a continuous time system, the convergence in tracking error norm is

slightly different (due to the infinite dimensions). Please refer to Amann et al. (1996a)

for more details.

Proposition 2.2. (Amann et al., 1996b) If the operator G∗ has an inverse with norm

1/σ for some σ > 0, then the error sequence satisfies the following relationship:

∥ek+1∥ ≤ 1

1 + σ2
∥ek∥ (2.60)

Note that, Amann et al. (1996a) and Amann et al. (1998) have shown that σ2 = 0

(in Proposition 2.2) when the plane is a continuous-time system; otherwise, σ2 ̸= 0

when the plane is a discrete-time system. This implies that NOILC guarantees mono-

tonic convergence in continuous-time systems and guarantees geometric convergence in

discrete-time systems. Both Propositions 2.1 and 2.2 show that discrete-time NOILC

achieves the perfect tracking of the reference trajectory, but also guarantees that the

tracking error norm converges geometrically to 0, which is appealing in the practical

design.

The NOILC input updating law (2.55) provides a simple way to obtain the control input,
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however, it requires the inverse calculation of the system matrix G and the computation

will significantly increase with the dimensions ofG. To address this limitation, a feedback

plus feedforward implementation (Amann et al., 1996b) can be used to enhance the

calculation speed and robustness. The introduction of Riccati equation K(t), predictive

term ξk(t) can save the time used when calculating the system matrix G, at the same

time, the feedback structure enhances the robustness when it is applied to the real world

plant (because of the real-time feedback). The idea of the feedback plus feedforward

implementation can be illustrated as follows:

Feedback plus feedforward implementation:

For the updating law (2.55), it can be further arranged as

uk+1(t) = uk(t) −R−1BT
{
K(t)

[
I +BR−1BTK(t)

]−1
A [xk+1(t) − xk(t)] − ξk+1(t)

}
(2.61)

where K(t) is the Riccati equation

K(t) = ATK(t+1)A+CTQC−ATK(t+1)B[BTK(t+1)B+R]−1BTK(t+1)A

K(N) = 0
(2.62)

and ξk+1(t) is the predictive feedforward term

ξk+1(t) =
[
I +K(t)BR−1BT

]−1 [
AT ξk+1(t+ 1) + CTQek(t+ 1)

]
ξk+1(N) = 0

(2.63)

The main steps of this casual implementation could be described in the below steps:

1. Select suitable weighting Q, R and calculate K(·) using (2.62) in reverse time;

2. Choose an initial u0 to control the system. Record u0(·), e0(·), x0(·) and set k = 1.

3. Calculate ξk+1(t) using (2.63) in reverse time;

4. Update the input using (2.61), and record uk(·), ek(·), xk(·). Set k = k+ 1 and go

to step 3.

In the above, the standard NOILC algorithm for discrete time systems has been intro-

duced and it shows great performance on convergence properties. In the control law, as

the weighting matrix R decreases (with a fixed matrix Q), the convergence speed will

increase. However, this increase is at the expense of the robustness of the system, which

will cause problems when the model uncertainty is large. Amann et al. (1998) proposed

a predictive extension of the standard NOILC algorithm, providing another way to im-

prove the convergence speed. The idea of this predictive NOILC can be illustrated as

follows:
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Predictive Norm Optimal ILC:

The idea of predictive NOILC is to predict future input differences and tracking errors

in the cost function. By looking into the future, it will have faster convergence than the

standard NOILC algorithm. The performance index in predictive NOILC is replaced

by:

Jk+1,n(u⃗k+1) =
n∑

j=1

λj−1
(
∥ek+1,j∥2Q + ∥uk+1,j − uk+1,j−1∥2R

)
(2.64)

in which u⃗k+1 = [uTk+1,1 uTk+1,2 · · · uTk+1,n]T , λ > 0 is the weighting parameter (used

to clarify the importance of future information) and ek+1,j , uk+1,j are the (predicted)

error, input for ILC iteration k+j calculated during ILC iteration k+1. In Amann et al.

(1998), it has been rigorously proved that the predictive cost function (2.64) result in

faster convergence than the non-predictive performance index Jk+1(uk+1) in Equation

(2.54). For more details, please refer to Amann et al. (1998).

In addition to all of the above algorithms, there are other model-based ILC algorithms,

for example, two dimensional ILC (Bolder and Oomen, 2016; Hladowski et al., 2010,

2011), H∞ ILC (Amann et al., 1996c; Paszke et al., 2006). For more detail review

of different model-based ILC algorithms, please refer to Bristow et al. (2006) and the

reference therein.

2.2.4 Other Aspects in ILC

In this section, four important concepts of ILC are discussed: point-to-point task, con-

straint handling problem, robustness and non-minimum phase system.

2.2.4.1 Point-to-Point Task

In most of the literature, the reference r(t) is considered as a signal defined on every single

point in the whole trial length and the system is required to track this signal perfectly

during the finite time. However, there exist some tasks in networked dynamical systems

that only focus on the tracking of several intermediation points, e.g., Amazon warehouse

multi robot ‘pick and place’ task. The Amazon warehouse multi robot ‘pick and place’

task contains a number of intelligent robots to perform the P2P task within a finite time

interval. Starting from the initial position (e.g., the charging battery), all the robotic

arms will travel to the ‘pick’ position (i.e., the storage unit) at time instant t1; then

move the objectives from the ‘pick’ position to the ‘place’ position (carrier car) at time

instant t2. This task lies emphasis on the consensus tracking at time instants t1, t2, and

tracking at other time instants are of less interest. In this case, the normal reference
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signal r is changed into rP and it can be written as

rP = [r(t1) r(t2)]
T (2.65)

where 0 ≤ t1 < t2 ≤ tN . This type of task is called as point-to-point (P2P) task and it

allows an infinite number of input choices. This freedom creates more design flexibility,

on the other hand, it causes significant design difficulties. For more details about the

P2P task in single-agent ILC design, please refer to Chen et al. (2018b); Freeman and

Tan (2013); Jin (2018); Shen et al. (2017).

2.2.4.2 Constraint Handling Problem

System constraints are widely existing in practice, since they are often related to practical

limitations (e.g., constraints of total input energy cost) or performance requirements

(e.g., individual input saturation). As an example, the actuator in the system has a

maximum input limitation. During the control process, if the actuator’s applied input

violates the maximum input limitation, it may damage the actuator and further affect

the system. Hence, considering the ability to handle system constraints is important

when designing an ILC algorithm.

To deal with the system constraint problem, a successive projection framework pro-

posed in Chu and Owens (2010) can be used. Combining it into the ILC design, the

resulting ILC algorithm has very nice convergence properties: the algorithm guarantees

the monotonic convergence of the tracking error norm to a minimum (possible) solution

(zero tracking error norm when perfect tracking is possible). For rigorous proof of the

convergence properties, please refer to Chu and Owens (2010).

2.2.4.3 Robustness

Robustness discusses the tracking performance of control systems with various distur-

bances. For a robust ILC control algorithm, it not only guarantees the output converges

to the reference trajectory under an ideal environment, but also generates the output

signal to converge to the neighbouring area of the reference trajectory under bounded

disturbances. For ILC, its robustness analysis can be separated into three categories:

� Modelling error: Modelling the dynamics of a real plant is one of the most

important steps in analysing & designing a system, and it is difficult to obtain an

accurate model in most cases. For a non-robust algorithm, an inaccurate model

affects the convergence properties and causes the instabilities in control systems,

which is undesirable in practice. To analyse the ILC algorithm’s robustness against

the model uncertainty, a number of methods have been proposed, e.g., Ge et al.

(2018); Owens (2016); Son et al. (2016).
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� Effect of noise/disturbances: In a real control environment, there exists a vari-

ety of random noise which affect the performance of the control system. Although

adding a filter could eliminate most of the noise, there still exist some noise that

are stubborn to be removed from the environment. In this situation, robustness

to the effect of noise is required. To eliminate the noise, adding online observers

or filters is an effective approach (Lee et al., 2000; Mandra et al., 2021).

� Initial state error: For most of the ILC algorithms, the initial state is assumed

to be the same which means the control system can perfectly reset the initial state

condition in each trial. However, perfect initial state setting is an ideal situation,

and the initial state may change in practice. The non-coincident in initial state

may cause the unstable in the control system when the robustness of the algorithm

is not strong enough. Hence, a robust ILC algorithm is able to notice the changing

of initial conditions in each trial, and then take some actions to eliminate the

adverse effect. Some recent researches have considered the effect of the initial

state error and designed robust ILC algorithms to eliminate this effect, e.g., Bi

et al. (2018); Lan and Cui (2018).

2.2.4.4 Non-Minimum Phase Systems

Non-minimum phase systems are stable and causal systems, however, the inverses of

their dynamics are causal and unstable (because the inverse model contain poles on

the right half plane for continuous systems). Due to the poles on the right half plane,

inverse-based ILC has difficulty to control the non-minimum phase systems. To illustrate

this problem, consider the following inverse-based algorithm

uk+1(t) = uk(t) +G−1ek(t) (2.66)

and the optimal input u∗(t) that achieves perfect tracking is

u∗(t) = G−1r(t). (2.67)

When the system is a non-minimum phase system, the system inverse G−1 is unstable,

and therefore the noise/disturbances will cause divergence of the tracking error in prac-

tice. On the other hand, since r(t) is normally selected independent from system G, the

optimal input u∗(t) obtained from (2.67) contains the unstable models and grows to a

large value, which is dangerous in many cases. Even for some algorithms which seem

successfully been applied to non-minimum phase systems, although the tracking error

norm converges fast at the beginning, the convergence speed will slow down after several

trials (Owens et al., 2014). For more results of ILC for non-minimum phase systems,

please refer to Noueili et al. (2017); Owens et al. (2014); Yoo et al. (2016).
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2.3 ILC for High Performance Networked Systems

As mentioned in Section 2.1.4, the high performance requirements are crucially impor-

tant for networked dynamical systems operating in a repetitive manner. In contrast to

the traditional control methods which have significant difficulties to meet the require-

ments, ILC provides an alternative solution since its input is mainly updated by learning

from the data (e.g. inputs and tracking errors) collected from previous executions of

the task, without requiring accurate model information. Next, we will review several

algorithms to illustrate the current situations of ILC for high performance networked

dynamical systems.

2.3.1 Consensus Tracking

This section considers the consensus tracking problem of networked dynamical systems,

i.e., all the subsystems in the networked dynamical system are required to track the same

desired reference (and thus achieve consensus tracking) with high accuracy requirements.

The difficulty here is that the reference information is only available to a subset of the

network’s subsystems. To give an example of the existing ILC algorithms for consensus

tracking problem, the algorithm proposed in Devasia (2017) will be reviewed in the

following.

Consider a networked dynamical system with p subsystems, where the dynamics of each

subsystem is assumed to be a linear SISO system. The relationship between subsys-

tem’s individual input ui,k and subsystem’s individual output yi,k in Laplace domain is

described as

yi,k(w) = Gi(w)ui,k(w) (2.68)

where k is the trial number; w is the frequency; i is the subsystem’s index; Gi is the

system matrix for ith subsystem. The mission of the high performance consensus tracking

problem is to achieve the following objective:

yi,k(w) = r(w). (2.69)

Note that the reference r(w) is not generally known to all the subsystems, which makes

the design non-trivial. For the subsystems know the reference information, they are

called as ‘leader’ subsystems; otherwise, they are called as ‘follower’ subsystems.

For the ‘follower’ subsystems, Devasia (2017) design the updating law as follow:

ui,k+1(w) = ui,k(w) + ρ(w)Gi(w)
∑
j∈Ni

[yj,k(w) − yi,k(w)] (2.70)

where ρ(w) is a real-valued scalar. For the ‘leader’ subsystem, the updating law is
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defined as:

ui,k+1(w) = ui,k(w)+ρ(w)Gi(w)−1

∑
j∈Ni

[yj,k(w) − yi,k(w)] + [r(w) − yi,k(w)]

 (2.71)

In updating laws (2.71), it shows that the ‘leader’ subsystems need to achieve the tracking

mission of the desired reference and share the reference information with the neighbour-

ing subsystems. For the ‘follower’ subsystems, the only mission is to keep consensus

with their neighbouring subsystems (as shown in updating law (2.70)). By constantly

communicating via the network, all the subsystems will have the information of the

reference trajectory and then achieve the consensus tracking of the desired reference.

The above method uses the idea of inverse based ILC to solve the consensus tracking

problem, which achieves the desired objective. Other types of ILC algorithms have been

proposed for consensus tracking problem in networked dynamical systems: Proportional-

Integral-Derivative type ILC algorithms which do not require model information, are

proposed in Meng and Moore (2016); Meng et al. (2012, 2015a) for linear networked

systems; Contraction mapping method based ILC algorithms are introduced in Yang

et al. (2014, 2016) for continuous nonlinear systems with fixed graph and switching

graphs, respectively; The Lyapunov function or composite energy function based adap-

tive ILC algorithms (which adaptively updating controller parameters) are introduced in

Jin (2016); Li and Li (2013, 2015, 2016); Shen et al. (2019); Yang et al. (2015); Terminal

ILC, focusing on the tracking performance at the final point, have been proposed in Bu

et al. (2021); Meng and Jia (2011, 2012); Meng et al. (2013, 2014b, 2015c).

2.3.2 Formation Control

Formation control of networked dynamical systems is a control design problem that

contains a group of subsystems working together to form a prescribed formation. Nor-

mally, there is no reference information in the formation control task, which results in

infinite input solutions. To illustrate the current situation of ILC for high performance

formation control, we will review the algorithm proposed in Meng and Jia (2014).

Consider a networked dynamical system with p subsystems, where ith (1 ≤ i ≤ p)

subsystem’s dynamics of each subsystem a linear multi-input-multi-output system

xi,k(t+ 1) = Axi,k(t) +Bui,k(t)

yi,k(t) = Cxi,k, xi,k(0) = xi0,
(2.72)

where k is the trial number; t ∈ [0, N ] represents the time; ui,k(·) ∈ Rnu , xi,k(·) ∈ Rnx ,

yi,k(·) ∈ Rny are the input, state and output of subsystem i at trial k, respectively. Note

that, for ith subsystem, the initial condition remains the same for all the trials.
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The control design objective of formation control problem is defined as

lim
k→∞

yi,k(t) = r(t) + di(t) (2.73)

where di(t) is the desired trajectory deviation of subsystem i defining the desired for-

mation, r(t) is the desired reference trajectory that can be arbitrarily prescribed on

t ∈ [0, N ]. Note that, the reference r(t) is not generally accessed to all the subsystems

and the author define a nonnegative scalar wi to represent this accessibility. When r(t)

is known by subsystem i, wi > 0; otherwise, wi = 0.

The input updating law is then given as

ui,k+1(t) = ui,k(t)+Γq

{ ∑
j∈Ni

ϕijaij
[
yj,k(t)−yi,k(t)+dij(t)

]
+ψiwi

[
r(t)−yi,k(t)+di(t))

]}
(2.74)

in which q is a forward time shift operation (e.g., qx(t) = x(t + 1)), Γ is an nu × ny

gain matrix, aij is the adjacency value, dij = di − dj is the desired formation difference

between subsystems i and j. ψi and ϕij are nonnegative learning gain, defined as

ψi =

{
> 0 if j ∈ Ni

= 0 if j /∈ Ni

& ϕij =

{
> 0 if wi > 0

= 0 if wi = 0
(2.75)

The algorithm uses a modified Proportional type ILC to solve the formation control

problem, and the simulation result in the paper shows that the desired objective can

be achieved. There also exist other types of ILC algorithms proposed for formation

control of networked dynamical systems: Proportional-Integral-Derivative (PID) type

ILC control laws have been proposed for nonlinear networked dynamical systems in Liu

and Jia (2012, 2015); Meng and Moore (2017); Meng et al. (2014a, 2015b); adaptive

ILC control laws are proposed in Li and Li (2014a); Li et al. (2018); Li and Li (2014b)

for nonlinear networked dynamical systems; a high-order internal model based ILC is

developed in Xu et al. (2011); Yang et al. (2017).

2.3.3 Collaborative Tracking

Collaborative tracking aims to generate input to co-learn the desired reference trajectory,

and the design objective in frequency domain can be defined as
∑p

i=1Gi(w)ui(w) = r(w).

Next, we will review the algorithm in Devasia (2016) to give a brief review of ILC

algorithm for the collaborative tracking problem.

Consider a networked dynamical system with p subsystems, where the dynamics of each

subsystem is assumed to be a linear SISO system. The relationship between subsystem’s
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individual input ui,k and individual output yi,k in Laplace domain is defined as

yi,k(w) = Gi(w)ui,k(w). (2.76)

Then, the overall output is defined as

yk(w) =

p∑
i=1

yi,k(w) =

p∑
i=1

Gi(w)ui,k(w) (2.77)

and the control design objective of cooperative tracking is described by

p∑
i=1

Gi(w)ui,k(w) = yk(w) = r(w) (2.78)

Based on the inverse-based framework, Devasia (2016) designed an ILC algorithm with

time-partitioned update for collaborative tracking problem. In detail, the input updating

law in frequency domain is proposed as

ui,k+1(w) = ui,k(w) + ρi,k(w)Ĝ−1
i (w)[r(w) − yk(w)] (2.79)

where ρi,k(w) is a real-valued scalar and Ĝi(w) represents the nominal model of subsys-

tem i.

By using the updating law (2.79) to achieve the collaborative tracking task, it guaran-

tees the convergence performance for any unity partition (i.e.,
∑p

i=1 ρi,k(w) = 1). For

detailed proof of the convergence, please refer to Devasia (2016).

This inversed-based algorithm has been extended in Realmuto et al. (2018) for human-

robot collaborative output tracking. In addition, Chen and Freeman (2020) propose a

decentralised ILC framework with three model-based implementations for collaborative

tracking problem and verify the framework on a wearable stroke rehabilitation technol-

ogy. For more details, please see Chen and Freeman (2020); Realmuto et al. (2018).

2.3.4 Summary

From the above, we can see that most of the existing research has not fully investigated

the potential of ILC for high performance networked dynamical systems. All the existing

ILC algorithms have very poor scalability to control large scale networks and handle the

dynamically growing network. For the monotonic convergence of the tracking/formation

error norm (which is desirable in practice), most of the existing ILC algorithms cannot

guarantee this properties, with the exception of a few algorithms that guarantee the

monotonic convergence only when the system dynamics satisfy certain conditions.

Inverse based ILC methods explicitly utilise the model inverse to design the algorithm,
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and thus have difficulties to be applied to non-minimum phase networked dynamical

systems. Besides, P2P task and constraint handling problem, representing a great num-

ber of practical applications, have not been fully investigated in existing ILC design for

high performance networked dynamical systems.

As mentioned previously, an optimisation-based ILC algorithm (e.g., NOILC) can achieve

various appealing system performances (e.g., monotonic convergence of the tracking er-

ror norm) by appropriately designing the performance index. Hence, designing novel

optimisation-based ILC frameworks and implementing them in distributed/decentralised

manner would be a feasible solution to solve the existing limitations. Among all the

distributed implementation methods, there exists a widely used method called the al-

ternating direction method of multipliers which has super convergence properties. The

next section will give a review of this method.

2.4 The Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM) is a well-known distribut-

ed/decentralised optimisation algorithm and it was first presented in the 1970s (Gabay

and Mercier, 1976). Boyd et al. (2011) review the ADMM systematically and apply

its ideas to solve the lasso, group lasso, and other machine learning problems. In the

following, we will review the basic idea, and convergence properties of ADMM based on

Boyd et al. (2011).

2.4.1 Basic Idea of ADMM

ADMM is a method that blends the convergence properties of the method of multipliers

with the decomposability of dual decomposition method, which has found many impor-

tant applications in various areas, e.g., in machine learning, applied statistics and privacy

preservation (Boyd et al., 2011; Cheng et al., 2017; Deng and Yin, 2016; Zhang et al.,

2019a). To illustrate the general idea of ADMM, consider the following optimization

problem

minimize f(x) + g(z)

subject to Ax+ Bz = C
(2.80)

The augmented Lagrangian of the above problem is shown as

Lρ(x, z, γ) = f(x) + g(z) + γT (Ax+ Bz − C) +
ρ

2
∥Ax+ Bz − C∥22 (2.81)

where γ is the dual variable and ρ is the penalty parameter. The ADMM updating steps
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can be shown as

x q+1 = arg minLρ(x, zq, γq) (2.82)

z q+1 = arg minLρ(x q+1, z, γq) (2.83)

γ q+1 = γ q + ρ(Axq+1 + Bzq+1 − C) (2.84)

For ADMM, it can guarantee the convergence of the residual, objective function and

dual variable (under mild conditions). An analysis of its convergence properties will be

given in the next section.

2.4.2 Convergence Properties of ADMM

To analyse the convergence properties of ADMM, the following two assumptions are

required:

Assumption 2.1. (Boyd et al., 2011) The (extended-real-valued) functions J : Rn →
R ∪ {+∞} and g : Rm → R ∪ {+∞} are closed, proper, and convex.

Assumption 2.2. (Boyd et al., 2011) The unaugmented Lagrangian L0 has a saddle

point.

Assumption 2.1 guarantees that the x-updating law (2.82) and z-updating law (2.83)

are solvable. Also, convex cost function guarantees the local optimization is the global

optimization. Combining Assumptions 2.1 and 2.2, it shows that L0(x
∗, z∗, γ∗) is finite

for any saddle point (x∗, z∗, γ∗), which indicates that (x∗, z∗) is a solution of the opti-

mization problem (2.80). Under this situation, γ∗ is dual optimal, and it follows that

the primal optimal values equal to the dual optimal values, i.e., the strong duality holds.

Now, under Assumptions 2.1 and 2.2, ADMM has following convergence properties

(Boyd et al., 2011):

� Residual convergence: rk → 0 as k → ∞, i.e., the iterates approach feasibility.

� Objective convergence: f(xk) + g(zk) → p∗ as k → ∞, i.e., the objective function

of the iterates approaches the optimal value.

� Dual variable convergence: γk → γ∗ as k → ∞, where γ∗ is a dual optimal point.

It should be noted that, ADMM can guarantee the convergence for any positive penalty

parameter ρ and this outstanding property makes ADMM widely used to solve the

distributed/decentralised optimization problems. Rigorous analysis and proof of the

convergence can be found in Boyd et al. (2011).
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2.4.3 ADMM General Consensus Optimization with Regularization

For ADMM steps (2.82) – (2.84), it is the basic pattern mainly designed for centralised

implementation. To deal with distributed problems (mainly for the consensus problem),

we need to use the ADMM ‘General Form Consensus Optimization with Regularization’

pattern.

Consider the following distributed optimisation problem

minimize

p∑
i=1

fi(xi) + g(z)

subject to xi − Ẽiz = 0, i = 1, · · · , p

(2.85)

where xi ∈ Rpi is the local input decision variable consisting of the component in the

global variable z ∈ Rp and Ẽi is a matrix that selects the components from z that match

the local variable xi.

The augmented Lagrangian for (2.85) is shown as

Lρ(x, z, γ) =

p∑
i=1

Lρi(xi, z, γi) = g(z)+

p∑
i=1

[
fi(xi)+γTi (xi−Ẽiz)+

ρ

2
∥xi−Ẽiz∥2

]
(2.86)

and ADMM solves the optimisation problem (2.85) by iteratively performing the follow-

ing three steps

x q+1
i = arg minLρi(xi, z

q, γqi ) (2.87)

z q+1 = arg minLρ(x q+1, z, γq) (2.88)

γ q+1
i = γ q

i + ρ(x q+1
i − Ẽiz

q+1) (2.89)

This ‘General Form Consensus Optimization with Regularization’ pattern is specifically

suitable for the distributed problem (even with regularization on the global value), and

thus, it will be used in later Chapters for the consensus tracking and formation control

problem (with or without system constraints).

2.4.4 ADMM General Sharing Problem with Regularization

Besides the ‘consensus’ pattern mentioned in the last section, there exists another canon-

ical problem in ADMM especially suitable for decentralised optimisation. The so called

‘sharing’ problem in ADMM has many similarities with the collaborative tracking prob-

lem, which we will review in the following.

To describe its general idea, we consider the following optimisation problem (Boyd et al.,
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2011)

minimize

p∑
i=1

fi(xi) + g

(
p∑

i=1

zi

)
subject to Ẽixi − zi = 0, i = 1, · · · , p

(2.90)

where xi ∈ RN denotes the local variable, Ẽi ∈ RN×N is the corresponding matrix,

zi ∈ RN denotes the related element in the global variable z = [zT1 zT2 · · · zTp ]T .

For problem (2.90), its augmented Lagrangian is defined as

Lρ(xi, z, µi) =

p∑
i=1

fi(xi) + g

(
p∑

i=1

zi

)
+
ρ

2

p∑
i=1

∥Ẽixi − zi + µi∥2 (2.91)

where ρ is the penalty parameter, and µi = γi/ρ is the scaled dual value. Then, ADMM

will perform the following three steps iteratively to solve problem (2.90)

x q+1
i = arg min

xi

[
fi(xi) +

ρ

2
∥Ẽixi − zqi + µqi ∥

2
]

(2.92)

z q+1 = arg min
z

[
g

(
p∑

i=1

zi

)
+
ρ

2

p∑
i=1

∥Ẽix
q+1
i − zi + µqi ∥

2

]
(2.93)

µ q+1
i = µ q

i + Ẽix
q+1
i − zq+1

i (2.94)

Note that, z-step requires the controller to solve a problem in pN variables, which

creates significant computational complexity. To save the computational complexity,

we introduce auxiliary variables Ex = 1
p

∑p
i=1 Ẽixi and z̄ = 1

p

∑p
i=1 zi to the above

equations. Then, the ADMM steps can be simplified as (more details can be found in

Boyd et al. (2011))

x q+1
i = arg min

xi

[
fi(xi) +

ρ

2
∥Ẽixi − Ẽix

q
i + Ex

q − z̄q + µq∥2
]

(2.95)

z̄ q+1 = arg min
z̄

[
g(pz̄) +

ρ

2
p∥Exq+1 − z̄ + µq∥2

]
(2.96)

µ q+1 = µ q + Ex
q+1 − z̄q+1. (2.97)

For these ADMM steps, the z-update step only requires solving a problem in N variables

and each subsystem’s scale dual variables µi are the same (and hence they are replaced

by a single variable µ), which greatly saves the computational complexity.

2.4.5 Discussion about ADMM in Networked ILC Design

In this thesis, we use ADMM as the distributed implementation method because it has

several outstanding advantages for networked ILC design:

� First and foremost, ADMM is extremely suitable for networked ILC design. As
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shown in Sections 2.4.3 and 2.4.4, ADMM can be used to solve ‘consensus’ and

‘sharing’ optimisation problem in a distributed manner if the performance index

is separable. In the later chapters, it can be seen that due to ILC problem have

finite horizon, we can formulate the networked ILC control problem into the form

of a optimisation problem with separable global performance index. By separating

the global performance index into several local performance indexes (for different

subsystems) and using the corresponding matrix Ẽi (which denotes the network

structure) to link the global decision variable with the local input plan, the global

ILC design problem can be implemented in a fully distributed manner, which solves

large-scale problems surprisingly fast. From the computational point of view, ILC

is an off-line method and it can use all the data from previous trials to update the

input between two continuous ILC trials, which would not meet the computational

problem during the control process.

� ADMM can guarantee the convergence properties under very mild conditions, con-

trasting with most distributed algorithms, e.g., dual decomposition (Boyd et al.,

2011). While the dual decomposition method implements an optimisation prob-

lem distributively, the convergence to the optimal solution is only guaranteed for

proper choice of step sizes and under rather strong assumptions on the original

problem. By contrast, ADMM can guarantee the convergence for any positive

penalty parameters in a convex problem, and even for non-convex and non-smooth

performance index (Wang et al., 2019).

� Benefited from the regularization term, ADMM has the capacity to handle the

system constraints. Especially, if the global constraint set can be separated into

smaller local constraint set, ADMM is able to update the global value in parallel,

which greatly solves the computation complexity. Moreover, ADMM is robust

to computation errors and noise (Simonetto and Leus, 2014) and therefore it has

strong industrial practicability.

2.5 Summary

This chapter provides a general literature review of networked dynamical systems and

ILC. Section 2.1 gives a general background of the networked dynamical systems, and

discusses the consensus and formation control problem in networked dynamical systems.

Then in Section 2.2, the concepts/approaches of ILC are reviewed and some important

issues in ILC are introduced. Section 2.3 reviews the existing ILC algorithms for high

performance networked dynamical systems and discusses the limitations of existing ap-

proaches. In Section 2.4, the basic concept of ADMM is reviewed, with the ‘consensus’

and ‘sharing’ problem introduced.

From the literature that have been reviewed, we could see that high performance net-
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worked dynamical systems, which work in a repetitive manner and require high control

performance, have found a number of applications in different fields. However, these

types of networked dynamical systems have not been fully studied in the ILC design

and most of the existing ILC algorithms have the following limitations:

� They have very poor scalability, the majority of the distributed/decentralised ILC

designs have difficulty controlling very large scale networked dynamical systems.

In addition, none of the ILC algorithms can deal with the dynamically growing

network, i.e., When the size of network growing during the control process, the

algorithms need to be redesigned and/or the parameters need to be re-tuned.

� Most of the existing ILC designs for networked dynamical systems have limited

convergence performance, the monotonic convergence of the tracking error norm

(that is desirable in practice) is either not guaranteed, or only guaranteed when

the controller satisfies certain conditions.

� None of the existing ILC algorithms consider the system constraint (that is widely

existing in practice) in the design.

� All of the existing ILC design lack of the ability to control the general P2P task.

Hence, novel distributed/decentralised ILC algorithms that address these limitations

have still been waiting to explore. In the next six chapters, we will introduce novel

distributed/decentralised ILC algorithms to solve different control design problems in

networked dynamical systems.





Chapter 3

Distributed NOILC for

Consensus Tracking Problem

Consensus tracking is a design problem that requires all the subsystems perfectly track

the same desired time varying reference with a high accuracy requirement. The difficulty

here is that this reference information is only available to a subset of the network’s

subsystems. A number of ILC algorithms have been proposed for consensus tracking

problem: distributed Proportional–Integral–Derivative (PID) type ILC control laws are

proposed in Meng et al. (2012, 2015a); Yang et al. (2017); an adaptive ILC is introduced

in Jin (2016) for a class of nonlinear networked dynamical systems; a model-inverse based

ILC algorithm is proposed in Devasia (2017); terminal ILC, focusing on the tracking

performance at the final point, have been proposed in Bu et al. (2021); Meng and Jia

(2011, 2012); Meng et al. (2013, 2014b, 2015c). These algorithms have shown great

advantages to utilise ILC for high performance consensus tracking problem.

However, most of the existing articles for consensus tracking problem have the following

limitations: (1) the majority of the existing ILC algorithms have difficulties to be applied

to large scale networked dynamical systems, since their computational complexity of the

convergence condition depends on the size of the network; (2) all the existing algorithms

lack of the capacity to deal with a dynamically growing network, i.e., when the size

of network increased during the control process, the algorithms need to be redesigned

or the parameters need to be re-tuned; (3) monotonic convergence of the tracking error

norm (which is desired in practice) is either not guaranteed or guaranteed only when the

controller satisfies certain conditions; (4) general point-to-point (P2P) problems, which

focus on the tracking performance on the intermediate time instants, have not been

considered in literature. Moreover, the robustness issue and heterogeneous network,

which are of great practice relevance, have only been considered in few articles.

In this chapter, we address the aforementioned limitations by proposing a novel dis-

tributed norm optimal ILC (NOILC) algorithm for consensus tracking of networked

45
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dynamical systems working in a repetitive manner. The proposed algorithm has a num-

ber of advantages: it can guarantee the tracking error norm converge monotonically to

zero (without any requirement on the controller), and has certain resistance to model

uncertainties; it can be extended to solve the P2P consensus tracking problem and

maintain the good convergence, robustness properties; it has nice scalability and can be

applied to large scale networked systems; it can be applied to both homogeneous and

heterogeneous networks, as well as non-minimum phase systems. This chapter is based

on the work from Chen and Chu (2019c,a).

The chapter is organised as follows: Section 3.1 introduces the system dynamics, network

topology and then defines the ILC design problem based on these formulations. In

Section 3.2, a NOILC framework for consensus tracking is proposed and its convergence

properties are analysed rigorously. Section 3.3 develops a distributed implementation of

the proposed algorithm using ADMM. Moreover, we give a feedback plus feedforward

implementation for the distributed algorithm and show an efficient way to find the best

penalty parameters in ADMM. In Section 3.4, we analyse the algorithm’s robustness

properties and characterise the tolerated model uncertainty’s range analytically both in

time & frequency domain. Section 3.5 extend the proposed algorithm to solve the P2P

task and then analyse the P2P algorithm’s convergence and robustness properties. In

Section 3.6, numerical simulations are presented to demonstrate the effectiveness of the

algorithm, and finally summaries are given in Section 3.7.

3.1 Problem Formulation

In this section, the subsystem’s dynamics is formulated using an abstract Hilbert space

representation and the formulation is presented for discrete time, linear time invariant

(LTI), single input single output (SISO) system for simplicity. In addition, we use graph

structure to represent the network topology and then provide the ILC design problem.

3.1.1 System Dynamics

Consider a networked dynamical system (either homogeneous or heterogeneous) includ-

ing p subsystems, with ith (i = 1, · · · , p) subsystem’s dynamics described as a discrete

time, LTI, SISO system. Then, ith subsystem’s dynamics can be represented using the

following state space model

xi,k(t+ 1) = Aixi,k(t) +Biui,k(t), xi,k(0) = xi,0

yi,k(t) = Cixi,k(t)
(3.1)

where t ∈ [0, N ] is the time index; k is the ILC trial index; yi,k ∈ R, ui,k ∈ R, xi,k ∈ Rni

(ni is the order of subsystem i) are output, input, state of ith subsystem at trial k; Ai,
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Bi, Ci are state space matrices with appropriate dimensions. The networked dynamical

system is working in a repetitive manner performing the same task within time interval

[0, N ]. At t = N + 1, the system resets the time t = 0 and the state xi,k to the initial

state xi,0, and executes the same task again.

The networked system is required to achieve the high performance consensus tracking,

i,e., all the subsystems are required to track a given reference r(t) with high accuracy.

Note that, the reference trajectory is only known by part of the subsystems, as an

example, in a group of UAVs, while the front subsystems have access to the reference

information, the rear subsystems have to wait for the information transited from the

front subsystems.

To facilitate later ILC design, we use a ‘lifted matrix form’ to describe the subsystem’s

dynamics (Hatonen et al., 2004). Assume the relative degree of each subsystem is unity

(i.e., CiBi ̸= 0) and define ui,k, yi,k, r as the ‘lifted form’ of ith subsystem’s input ui,k(t),

output yi,k(t), reference signal r(t), i.e.

ui,k = [ui,k(0) ui,k(1) · · · ui,k(N − 1)]T ∈ Ui

yi,k = [yi,k(1) yi,k(2) · · · yi,k(N)]T ∈ Yi

r = [r(1) r(2) · · · r(N)]T ∈ Yi

(3.2)

where ith subsystem’s input space Ui = RN and output space Yi = RN are defined with

inner products and induced norms

⟨u, v⟩R = uTRv, ∥u∥R =
√

⟨u, u⟩R

⟨x, y⟩Q = xTQy, ∥y∥Q =
√
⟨y, y⟩Q

(3.3)

and R, Q are symmetric positive definite matrices. In ‘lifted matrix form’, the system

model (3.1) can be written as follows

yi,k = Giui,k + di (3.4)

where the system matrix Gi is denoted as

Gi =


CiBi 0 · · · 0

CiAiBi CiBi · · · 0
...

...
. . .

...

CiA
N−1
i Bi CiA

N−2
i Bi · · · CiBi

 (3.5)

and di ∈ RN represents the response of initial conditions

di =
[
CiAixi,0 CiA

2
ixi,0 · · · CiA

N
i xi,0

]T
(3.6)
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Introduce u⃗k, y⃗k, d⃗, r⃗ as the global form of ui,k, yi,k, di, and r, i.e.

u⃗k =
[
uT1,k uT2,k · · · uTp,k

]T ∈ U

y⃗k =
[
yT1,k yT2,k · · · yTp,k

]T ∈ Y

d⃗ =
[
dT1 dT2 · · · dTp

]T ∈ Y

r⃗ =
[
rT rT · · · rT

]T ∈ Y

(3.7)

where the global input space U = U1 × U2 × · · · × Up and the global output space

Y = Y1 × Y2 × · · · × Yp are defined with inner products and induced norms

⟨u⃗, v⃗⟩R⃗ =

p∑
i=1

uTi Rvi, ∥u⃗∥R⃗ =
√

⟨u⃗, u⃗⟩R⃗

⟨x⃗, y⃗⟩Q⃗ =

p∑
i=1

xTi Qyi, ∥y⃗∥Q⃗ =
√

⟨y⃗, y⃗⟩Q⃗

(3.8)

in which Q⃗ = diag(Q,Q, · · · , Q), R⃗ = diag(R,R, · · · , R) are symmetric positive definite

matrices, and × represents the Cartesian product.

Then, the global system model can be written as

y⃗k = Gu⃗k + d⃗ (3.9)

where G = diag (G1, G2, · · · , Gp).

The high performance consensus tracking problem can be stated as finding a proper

input u⃗k such that the output y⃗k tracks the reference r⃗ precisely. For a single-agent

system, the reference is fully accessed by the system, and hence it is straightforward to

find the solution. However, in the networked dynamical system, the limited accessibility

makes the control design non-trivial.

3.1.2 Network Topology

In this chapter, the network topology is represented using an undirected graph G =

(V ,E ), where V = {1, 2, ..., p} is the vertex set, and E ⊂ V × V is the set of pairs of

vertexes called edges. If two vertexes have an edge between them, they are called as

neighbours. The ith subsystem’s neighbours set is denote as Ni := {j : (i, j) ∈ E }.

To represent the topology relationship between different subsystems, we introduce the

adjacency matrix A = [aij ], with its element aij defined as

aij =

{
Wij if (i, j) ∈ E

0 otherwise
(3.10)
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where weight Wij is often considered as the connection strength of the edge , i.e., sub-

system i will put more emphasis on the information transformation with subsystem j.

Given an example, in the transportation system, there exist some subsystems have direct

access to the reference trajectory (i.e., ‘leader’ subsystems), their neighbours (without

access to the reference) know the leaders have information about the desired objective

and hence they will put more emphasize on communicating information with the ‘leader’

subsystems to improve its tracking efficiency. Based on the ith node’s neighbours set,

the degree of a node i is defined as d(i) =
∑p

j=1 aij and it follow by the degree matrix

D = diag(d(1), d(2), · · · d(p)). Using the definition of adjacency matrix and degree ma-

trix, the Laplacian matrix is defined as L = {lij} := D − A , which is a real symmetric

matrix with element lij defined as below

lij =


−Wij if j ∈ Ni∑
j∈Ni

Wij if j = i

0 otherwise

(3.11)

For the high performance consensus tracking problem, only few subsystems have access

to the reference signal, and hence we introduce a reference-accessibility matrix D =

diag{Dii} to represent this relationship. The diagonal element Dii is denoted as

Dii =

{
1 if subsystem i has access

0 if subsystem i does not have access
(3.12)

Remark 3.1. In the design, matrices A and L indicate the topology relationship between

different subsystems, while the reference-accessibility matrix represent the relationship

between subsystems and reference trajectory, which form the basic structure to describe

networked dynamical systems. For consensus tracking problem, the reference information

will first transfer to subsystems with Dii = 1 (which called as ‘leader’ subsystems). After

that, the ‘leader’ subsystem will transfer the reference information to other UAVs through

the network (follows the topology relationship indicated on the Laplacian matrix).

In this chapter, the following assumptions are required to achieve the desired objective:

Assumption 3.1. At least one subsystem has access to the reference r, i.e., ∃D⟩⟩ ̸= 0.

Assumption 3.2. The discussed undirected graph G is connected, i.e., there exists at

least one path from one node to another nodes (Bullo, 2018).

Remark 3.2. Assumption 3.1 guarantees the reference information is available in the

system. However, even if not reference in the system, the proposed algorithm can still

be applied to achieve the consensus (without tracking any reference signal).

Remark 3.3. Assumption 3.2 is commonly used for the consensus tracking task of the

networked dynamical systems. If there exists a subsystem not connected with any other

subsystems, it is impossible for it to achieve consensus with other subsystems.
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Under the above assumptions, the Laplacian matrix has the following properties, which

will be used later in analysing the algorithm’s convergence properties.

Lemma 3.1. (Devasia, 2017) Under Assumption 3.2

(1) The undirected graph has a real symmetric Laplacian matrix L. Correspondingly,

{λi}pi=1, the eigenvalues of L are real, along with a set of orthonormal eigenvector {Vi}pi=1

V T
i Vj = δij (3.13)

where δij represents Kronecker delta:

δij =

{
1 if i = j

0 otherwise
(3.14)

(2) For a Laplacian matrix L of any connected graph G , its rank equals to p− 1;

(3) The vector 1 = {1, · · · , 1}T is both a right and left eigenvector of the Laplacian L

with eigenvalue 0, i.e.,

1TL = 01T , L1 = 01 (3.15)

(4) Every non-zero eigenvalues of L should be positive and bounded, i.e.,

0 = λ1 < λ2 ≤ · · · ≤ λp ≤ 2dL (3.16)

where dL represents the maximum degree of G

dL = max
i≤i≤p

|lii| (3.17)

Using Lemma 3.1 yields the following Lemma:

Lemma 3.2. (Devasia, 2017) The augmented Laplacian LD := [L + D] is a real sym-

metric and positive-definite matrix, whose eigenvalues {λD,i}pi=1 are real and positive,

corresponding to a set of orthonormal eigenvectors {VD,i}pi=1

V T
D,iVD,j = δij (3.18)

where δij is the Kronecker delta.

3.1.3 ILC for High Performance Consensus Tracking

The ILC design problem in this chapter can be stated as finding an appropriate input

updating law in the form

u⃗k+1 = f(u⃗k, e⃗k) (3.19)
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such that ith subsystem achieves the perfect tracking of the reference trajectory and the

resulting input converges to the optimal solution as k → ∞, i.e.

lim
k→∞

yi,k = r, lim
k→∞

ui,k = u∗i , i = 1, 2, · · · , p (3.20)

where e⃗k = r⃗ − y⃗k is the ‘virtual’ tracking error and only part of it is available in ILC

design (since not every subsystems have access to the reference information), u∗i is ith

subsystem’s optimal solution for the high performance consensus tracking problem.

For traditional ILC algorithm, the difficulty to achieve (3.20) is that they require full

information of e⃗k, which is generally unavailable in practice. To solve this problem, we

will design a distributed ILC algorithm in the following sections.

3.2 NOILC Framework for Consensus Tracking Problem

In this section, we propose a novel NOILC framework for the high performance consensus

tracking problem, and analyse the framework’s convergence properties rigorously.

3.2.1 Algorithm Description

In principle, the NOILC framework aims at minimising a particular performance index

(formed by the input difference norm and tracking error norm) to achieve the monotonic

convergence property (the details are given in Section 2.2.3.3). However, since the full

information of e⃗k is difficult to be obtained in the networked systems, we need to extend

the idea of classical NOILC by properly defining the consensus tracking error as

êk+1 := (L + D)e⃗k+1 (3.21)

in which D = D ⊗ IN , L = L⊗ IN , ⊗ is the Kronecker product, IN denotes a N by N

identity matrix. In (3.21), it involves the calculation of Dek+1 and Lek+1. Minimising

Dek+1 guarantees the subsystem with access to the reference (i.e., Dii ̸= 0) can perfectly

track the reference trajectory. At the same time, the minimisation of Lek+1 guarantees

the reference information is transferring within the network, and hence achieve the

desired consensus tracking objective. It is worth pointing out that solving Le⃗k+1 only

requires the output difference between neighbouring subsystems (since Lr⃗ = 0), and

hence avoiding the requirement of full information of e⃗k.

Now, using NOILC structure, we have the following algorithms:

Algorithm 3.1. For any initial choice of global input u⃗0 and associated consensus

tracking error e⃗0, the input sequence {u⃗k+1}k≥0 generated as follows

u⃗k+1 = arg min{Jk+1(u⃗k+1)} (3.22)
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with Jk+1(u⃗k+1) defined as

Jk+1(u⃗k+1) = ∥u⃗k+1 − u⃗k∥2R⃗ + ∥(L + D)e⃗k+1∥2Q⃗ (3.23)

in which e⃗k+1 = e⃗k−G(u⃗k+1−u⃗k), provides a solution for the high performance consensus

tracking problem, i.e.

lim
k→∞

yi,k = r, lim
k→∞

ui,k = u∗i , i = 1, 2, · · · , p. (3.24)

Note that, when the number of subsystems is small, Algorithm 3.1 can be implemented

in a centralised manner by directly finding the stationary point of the cost function

(3.23). The input updating law is shown as follows

u⃗k+1 = u⃗k +
[
R⃗−1GT (L + D)T Q⃗(L + D)G + IpN

]−1
R⃗−1GT (L + D)T Q⃗(L + D)e⃗k.

(3.25)

However, centralised implementation requires significant computational complexity for

large scale networked systems, which can be difficult and expensive to implement in

practice. Later, we will develop a distributed implementation in section 3.3.

3.2.2 Convergence Properties of the Algorithm 3.1

By designing a novel performance index, Algorithm 3.1 has nice convergence properties

as shown in the following:

Theorem 3.1. Given any initial input u⃗0 with initial tracking error e⃗0, the consensus

tracking error norm ∥êk∥Q⃗ := ∥(L + D)e⃗k∥Q⃗ converges monotonically to zero, i.e.

∥êk+1∥Q⃗ ≤ ∥êk∥Q⃗, lim
k→∞

e⃗k = 0. (3.26)

Consequently, the objective is achieved and each subsystem’s input converges to optimal

solution as k → ∞, i.e.

lim
k→∞

yi,k = r, lim
k→∞

ui,k = u∗i , i = 1, 2, · · · , p (3.27)

Proof. At trial k + 1, the input of the proposed algorithm is generated by solving the

following optimization problem

u⃗k+1 = arg min {Jk+1(u⃗k+1)} (3.28)

For the above problem, the choice of u⃗k+1 = u⃗k gives a potentially non-optimal solution

Jk+1(u⃗k) = ∥êk∥2Q⃗ (3.29)
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from which it follows that for optimal u⃗k+1, we have

Jk+1(u⃗k+1) ≤ Jk+1(u⃗k), (3.30)

that is

∥u⃗k+1 − u⃗k∥2R⃗ + ∥êk+1∥2Q⃗ ≤ ∥êk∥2Q⃗ (3.31)

As the value of ∥u⃗k+1 − u⃗k∥2 is non-negative, we have

∥êk+1∥2Q⃗ ≤ ∥êk∥2Q⃗, k = 0, 1, · · · ,∞ (3.32)

From (3.30), we also have (by summing up both sides from k = 0 to k)

k∑
k=0

∥u⃗k+1 − u⃗k∥2R⃗ ≤ ∥ê0∥2Q⃗ − ∥êk+1∥2Q⃗ ≤ ∥ê0∥2Q⃗ (3.33)

Note that, the sequence Sk :=
∑k

k=0 ∥u⃗k+1− u⃗k∥2R⃗ is a bounded non-decreasing sequence

and use Monotone Convergence Theorem gives

lim
k→∞

Sk+1 = ∥ê0∥2Q⃗, (3.34)

and hence

lim
k→∞

Sk+1 − Sk = 0 (3.35)

It follows that

lim
k→∞

∥u⃗k+1 − u⃗k∥2R⃗ = 0, (3.36)

hence

lim
k→∞

u⃗k+1 − u⃗k = 0 (3.37)

Solving the optimization problem (3.22) gives

u⃗k+1 − u⃗k =
[
R⃗−1GT (L + D)T Q⃗(L + D)G + IpN

]−1
R⃗−1GT (L + D)T Q⃗(L + D)e⃗k

=
[
GT (L + D)T Q⃗(L + D)G + R⃗

]−1
GT (L + D)T Q⃗(L + D)e⃗k

Note that matrices GT and GT (L + D)T Q⃗(L + D)G + R⃗ are invertible, we have

lim
k→∞

(L + D)T Q⃗(L + D)e⃗k = 0 (3.38)

Note that matrix L + D is positive definite (as shown in Lemmas 3.1 & 3.2). Also,

matrix Q⃗ is positive definite, hence e⃗k = 0 as k → ∞. As a result, lim
k→∞

ui,k = u∗i . That
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completes the proof.

Theorem 3.1 shows that ∥êk+1∥Q⃗ converges monotonically to zero and each subsystem’s

input ui,k converges to the optimal solution as k → ∞, which is appealing in practice.

For centralised implementation, ILC can use a central controller to generate the control

input in once and it is easy to be implemented for a small scale networked dynamical

system. However, real networked dynamical systems normally contain a great number

of subsystems, and hence it is impractical to design a central controller for large scale

networked dynamical systems. Next, we will introduce distributed methods to imple-

ment Algorithm 3.1 in a more reasonable manner for networked dynamical systems with

great number of subsystems.

3.3 Distributed ILC Algorithm

This section develops a distributed implementation of the Algorithm 3.1 using the ‘con-

sensus’ formulation in ADMM. In the distributed algorithm, a centralised controller

(requiring the global information) is not required any more, and instead, each subsys-

tem only needs to optimise its local cost function and exchange information with other

subsystems via the network (which eventually obtain the same solution as the centralised

result). Since each local input update can be done in parallel using multiple processors,

Algorithm 3.1 is applicable to large scale networked dynamical systems. In the next

section, we will first give a brief review of the ‘consensus’ formulation in ADMM.

3.3.1 The Alternating Direction Method of Multipliers

ADMM is a well-known optimisation method and its general form consensus optimiza-

tion pattern can solve the following distributed optimisation problem

minimize

p∑
i=1

Ji(xi)

subject to xi − Ẽiz = 0, i = 1, · · · , p

(3.39)

where xi ∈ Rpi represents the local variable (pi is the amount of corresponding element)

and Ẽi is the corresponding matrix that map the global value z ∈ Rp to xi.

Define the augmented Lagrangian of problem (3.39) as

Lρ(x, z, γ) =

p∑
i=1

Lρi(xi, z, γi) =

p∑
i=1

[
Ji(xi) + γTi (xi − Ẽiz) +

ρ

2
∥xi − Ẽiz∥2

]
(3.40)

Then, ADMM solve the problem (3.39) by iteratively performing the following steps
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x q+1
i = arg minLρi(xi, z

q, γqi ) (3.41)

z q+1 = arg minLρ(x q+1, z, γq) (3.42)

γ q+1
i = γ q

i + ρ(x q+1
i − Ẽiz

q+1) (3.43)

where q is ADMM iteration index, ρ is the penalty parameter and γi is the local dual

variable.

ADMM has good convergence properties: it can guarantee the convergence to the opti-

mal solution for any ρ > 0, which contrasts with other distributed optimisation methods.

For rigorous proof of the convergence, please refers to Boyd et al. (2011).

3.3.2 Distributed Implementation of Algorithm 3.1

Note that, the cost function Jk+1(u⃗k+1) in (3.23) can be written into the following

separate form

Jk+1(u⃗k+1) =

p∑
i=1

Ji,k+1(u⃗i,k+1) (3.44)

where ith subsystem’s local cost function Ji,k+1(u⃗i,k+1) is defined as

Ji,k+1(u⃗i,k+1) = ∥(Li + Di)(r⃗i − G⃗iu⃗i,k+1 − d⃗i)∥2Qi
+ ∥Si(u⃗i,k+1 − u⃗i,k)∥2Ri

(3.45)

in which Qi = Q⊗ Ipi , Ri = R⊗ Ipi and Li,Di,Si, G⃗i are local Laplacian matrix, local

reference-accessibility matrix, local selected matrix, local system matrix, respectively.

As an example, if Ni = {l,m}, then

Li =


∑

j∈Ni
Wij −Wil −Wim

0 0 0

0 0 0

⊗ IN

Di =

 Dii 0 0

0 0 0

0 0 0

⊗ IN Si =

 1 0 0

0 0 0

0 0 0

⊗ IN

G⃗i = diag (Gi, Gl, Gm).

Correspondingly, r⃗i, d⃗i, u⃗i,k are local reference, local initial state respond and local input

vector, which defined as

r⃗i = [rT rT rT ]T

d⃗i = [dTi dTl dTm]T

u⃗i,k = [uTi,k uTl,k uTm,k]T

Remark 3.4. Note that, all the above local parameters are obtained by extracting the

corresponding elements in the global matrices/vectors defined in (3.23). When each
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subsystem updates its control law, the computation only these local parameters and hence

can be done in a fully distributed manner.

Using ADMM to implement Algorithm 3.1 distributively, yields the following distributed

implementation algorithm:

Algorithm 3.2.0. At k + 1th ILC trial, the input u⃗k+1 generated distributively by the

following ADMM steps

u⃗ q+1
i,k+1 = arg min

[
Ji,k+1(u⃗

q+1
i,k+1)+

ρ

2
||u⃗ q+1

i,k+1−Ẽiz
q
k+1||

2+γ q
i,k+1

T
(u⃗ q+1

i,k+1−Ẽiz
q
k+1)

]
(3.46)

z q+1
i,k+1 =

1

1 + |Ni|
∑

o∈(Ni
⋃

i)

(u⃗ q+1
o,k+1)i (3.47)

γ q+1
i,k+1 = γ q

i,k+1 + ρ(u⃗ q+1
i,k+1 − Ẽiz

q+1
k+1) (3.48)

provides a distributed implementation to solve the problem (3.22), i.e.

lim
q→∞

zqk+1 = arg min{Jk+1(u⃗k+1)} (3.49)

where zi,k+1 is the ith global component at k+ 1th ILC trials, (u⃗o,k+1)i is the element in

u⃗o,k+1 that related to zi,k+1 and |Ni| is the ith subsystem’s neighbour amount.

Note that for the input updating law (3.46), it can be computed in a matrix form, or in

a feedback plus feedforward form, as shown in the following two propositions:

Proposition 3.1. The input law (3.46) can be implemented in a matrix form as follows:

u⃗ q+1
i,k+1=

[
G⃗i

T
(Li+Di)

TQi(Li+Di)G⃗i+
ρ

2
I+Si

TRiSi

]−1

×
[
G⃗i

T
(Li+Di)

TQi(Li+Di)(r⃗i − d⃗i) + Si
TRiSiu⃗i,k +

ρ

2
Ẽiz

q
k+1 −

1

2
γ q
i,k+1

] (3.50)

Proof. Finding the stationary point of Equation (3.46), we have[
G⃗i

T
(Li+Di)

TQi(Li+Di)G⃗i+
ρ

2
I+Si

TRiSi

]
u⃗ q+1
i,k+1 =

G⃗i
T

(Li+Di)
TQi(Li+Di)(r⃗i − d⃗i) + Si

TRiSiu⃗i,k +
ρ

2
Ẽiz

q
k+1 −

1

2
γ q
i,k+1.

(3.51)

Note that the term G⃗i
T

(Li+Di)
TQi(Li+Di)G⃗i+

ρ
2I+Si

TRiSi is invertible, it yields the

input updating law (3.50).

Proposition 3.2. The input law (3.46) can be calculated via a feedback plus feedforward

structure

u⃗ q+1
i,k+1(t) = η q

i,k+1(t) + Ψ−1
i (t)B⃗T

i ψ
q+1
i,k+1(t) (3.52)
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with costate ψ q+1
i,k+1(t) defined as

ψ q+1
i,k+1(t) =

{
−Ki(t)

[
Ipi + B⃗iΨ

−1
i (t)B⃗T

i Ki(t)
]−1

A⃗iχ⃗
q+1
i,k+1(t)

}
+ ξ q+1

i,k+1(t) (3.53)

where χ⃗ q+1
i,k+1(t) is denoted as

χ⃗ q+1
i,k+1(0) = 0

χ⃗ q+1
i,k+1(t+ 1) = A⃗iχ⃗

q+1
i,k+1(t) + B⃗i

[
u⃗ q+1
i,k+1(t) − η q

i,k+1(t)
] (3.54)

and A⃗i, B⃗i, C⃗i are local state space matrices of subsystem i and Ki(·) is the local discrete

Riccati Equation on the time interval t ∈ [0, N − 1] with terminal condition Ki(N) = 0:

Ki(t) = A⃗T
i Ki(t+ 1)A⃗i + C⃗T

i Ξi(t+ 1)C⃗i

− A⃗T
i Ki(t+ 1)B⃗i

[
B⃗T

i Ki(t+ 1)B⃗i + Ψi(t+ 1)
]−1

BT
i Ki(t+ 1)A⃗i

(3.55)

ξ q+1
i,k+1(t) denotes the feedforward term as

ξ q+1
i,k+1(t) =

[
Ipi +Ki(t)B⃗iζ

−1
i B⃗T

i

]−1[
A⃗T

i ξ
q+1
i,k+1(t+1) + C⃗T

i Ξi(t+1)θ q
i,k+1(t+1)

]
(3.56)

with terminal condition ξ q+1
i,k+1(N) = 0; η q

i,k+1 is defined as

η q
i,k+1 = ζ−2

i

(
ρ

2
Ẽiz

q
k+1 −

1

2
γ q
i,k+1 + Si

TRiSiu⃗i,k

)
(3.57)

ζi, ςi are defined as

ζi =
(
Si

TRiSi +
ρ

2
IpiN

) 1
2
, ςi = Qi

1
2 (Li + Di) (3.58)

Ψi, Ξi are defined as

Ψi = ζTi ζi, Ξi = ςTi ςi (3.59)

θ q
i,k+1 is defined as

θ q
i,k+1 = r⃗i − G⃗iη

q
i,k+1 − d⃗i (3.60)

and (·)(t) denotes the tth element in the vector or matrix.

Proof. At iteration q+ 1, the input of the ADMM algorithm is generated by solving the

following optimization problem

u⃗ q+1
i,k+1 = arg min{∥(Di + Li)(r⃗i − G⃗iu⃗

q+1
i,k+1 − d⃗i)∥2Qi

+ ∥Si(u⃗
q+1
i,k+1 − u⃗i,k)∥2Ri

+
ρ

2
∥u⃗ q+1

i,k+1 − Ẽiz
q
k+1∥

2 + γ q
i,k+1

T
(u⃗ q+1

i,k+1 − Ẽiz
q
k+1)}

(3.61)
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For the above optimization problem, we define the last 3 terms as ϖq+1
i,k+1, which could

be written as:

ϖq+1
i,k+1 = (u⃗ q+1

i,k+1)
T
(
Si

TRiSi +
ρ

2
IpiN

)
u⃗ q+1
i,k+1

− 2(u⃗ q+1
i,k+1)

T
[ρ

2
Ẽiz

q
k+1−

1

2
γ q
i,k+1+Si

TRiSiu⃗i,k

] (3.62)

that is

ϖq+1
i,k+1 = ∥ζi(u⃗ q+1

i,k+1 − η q
i,k+1)∥

2 (3.63)

where ζi =
(
Si

TRiSi + ρ
2IpiN

) 1
2 , η q

i,k+1 = ζ−2
i

(
ρ
2 Ẽiz

q
k+1 −

1
2γ

q
i,k+1 + Si

TRiSiu⃗i,k

)
. It

follows that

ϖq+1
i,k+1 = ∥u⃗ q+1

i,k+1 − η q
i,k+1∥

2
Ψi=ζiT ζi

(3.64)

Note that, the first term in (3.61) can be written as:

ϱq+1
i,k+1 =

∥∥∥ςi [θ q
i,k+1 − G⃗i(u⃗

q+1
i,k+1 − η q

i,k+1)
]∥∥∥2 (3.65)

where

ςi = Qi
1
2 (Li + Di)

θ q
i,k+1 = r⃗i − G⃗iη

q
i,k+1 − d⃗i

(3.66)

then, we have

ϱq+1
i,k+1 = ∥θ q

i,k+1 − G⃗i(u⃗
q+1
i,k+1 − η q

i,k+1)∥
2
Ξi=ςiT ςi

. (3.67)

Now, the input law (3.46) can be written into a Linear Quadratic Tracking (LQT)

problem:

u⃗ q+1
i,k+1 = argmin(∥θ q

i,k+1 − G⃗i(u⃗
q+1
i,k+1 − η q

i,k+1)∥
2
Ξi

+ ∥u⃗ q+1
i,k+1 − η q

i,k+1∥
2
Ψi

) (3.68)

and then substituting the term in (3.68) into standard LQT problem, yields (3.52). That

completes the proof.

Implementing Equation (3.46) in matrix form is easy to follow. However, it requires

huge computational load to calculate the system matrix inverse when the trial length

is large. By contrast, the feedback plus feedforward implementation has less calcula-

tion requirement (since it does not involve the system matrix inverse calculation), and

stronger robustness (benefiting from the real-time state feedback).

3.3.3 Distributed NOILC Algorithm

Using Algorithm 3.2.0 to implement Algorithm 3.1, a distributed NOILC Algorithm 3.2

for high performance consensus tracking problem is obtained. For Algorithm 3.2, the



Chapter 3 Distributed NOILC for Consensus Tracking Problem 59

Algorithm 3.2. Distributed NOILC Algorithm for Consensus Tracking Problem

Input: State space matrix Ai, Bi, Ci, reference trajectory r, reference-accessibility
matrix D, Laplacian matrix L, maximum-trial kmax, maximum-iteration qmax,
penalty parameter ρ, weighting Q and weighting R

Output: Optimal input ui,kmax for each subsystem
1: Initialization: Set the trial number k = 0
2: For: k = 0 to kmax

3: For: q = 0 to qmax

4: For: i = 1 to p
5: Receive information from neighbours

6: u⃗ q+1
i,k+1 updating law either in (3.50) or in (3.52)

7: z q+1
i,k+1 updating law in Equation (3.47)

8: γ q+1
i,k+1 updating law in Equation (3.48)

9: Send information to neighbours
10: End for
11: End for
12: Transform u⃗ qmax

i,k+1 into ui,k+1

13: End for
14: Return: Optimal input ui,kmax for each subsystem

mission of distributed implementation is to find the optimal input solution in each ILC

experiment. In each ADMM iteration, all the subsystems are required to update the

local variables in parallel (and hence save the computational complexity): in Step 5, each

subsystem collects useful information from its neighbours and uses these information

to generate the local input plan (either in matrix form using (3.50) or feedback plus

feedforward structure using (3.52)) in Step 6; in Step 7, each subsystem performs a

local averaging of all the corresponding local input plan to conclude the global element

z q+1
i,k+1 and then the local dual variable γ q+1

i,k+1 is generated by calculating the difference

between local input plan and global element in Step 8; finally, each subsystem sends its

local data to neighbouring subsystems in Step 9 and waits for next ADMM iteration.

By repetitively performing Step 4 – 11 for qmax times, the resulting input solution is

considered as the optimal input choice in current ILC trial and the result will be used

for next trial’s input generation.

Note that, the choice of maximum-iteration qmax influence the convergence speed of Al-

gorithm 3.2. In theory, it requires infinite ADMM iterations to approach the centralised

result, which seems unrealisable. In reality, ADMM is efficient in most cases and hence

few iteration numbers are enough to approach the centralised result, which is demon-

strated in later simulations. In addition, the choice of penalty parameter also affect the

convergence performance. A proper choice of the penalty parameter resulting in fast

convergence is given in the next section.
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3.3.4 Penalty Parameter Selection

Although ADMM can guarantee the convergence for any positive penalty parameter ρ,

its convergence speed is extremely sensitive to the choice of ρ. In some cases, ADMM

may converge slower than other distributed algorithm if the choice of ρ is not proper.

To address this problem, some research propose different rule of thumb for choosing

the penalty parameter ρ, e.g., Deng and Yin (2016); Hong and Luo (2017); Joshi et al.

(2013). However, empirically tuning the parameter ρ cannot return the best control

result, which is undesirable in practice. Fortunately, Ghadimi et al. (2015); Teixeira

et al. (2013, 2016) provide a mathematics way to calculate ρ. Next, we will use the

result in the above paper to find the best penalty parameter ρ.

To find the best ρ, we first transform the problem into the centralised formulation, i.e.

minimize
1

2
u⃗Tk+1Qu⃗k+1 + qT u⃗k+1

subject to M(u⃗k+1 − Ẽzk+1) = 0
(3.69)

where Q = R⃗−1GT (L+D)T Q⃗(L+D)G+ IpN and q = GT (L+D)T Q⃗(L+D)r⃗+ R⃗u⃗k,

Ẽ is a matrix that maps the global variable zk+1 to the centralised input plan u⃗k+1,

and M is a scaling matrix. For simplicity, we define F̄ = −MẼ and the optimisation

problem in (3.69) is rewritten as

minimize
1

2
u⃗Tk+1Qu⃗k+1 + qT u⃗k+1

subject to Mu⃗k+1 + F̄ zk+1 = 0
(3.70)

Considering the input sequence {u⃗ q
k+1} approaching to the optimal solution u⃗ ∗

k+1, and

then we define the convergence factor as follow (Bertsekas and Tsitsiklis, 1997)

ϕ ≜ sup
u⃗ q
k+1 ̸=u⃗ ∗

k+1

∥u⃗ q+1
k+1 − u⃗ ∗

k+1∥
∥u⃗ q

k+1 − u⃗ ∗
k+1∥

(3.71)

and the mission of the penalty parameter selection can be stated as finding the best ρ

that minimizes the convergence factor ϕ. By applying the result in Teixeira et al. (2016)

to investigate the best choice of ρ, we have the following proposition:

Proposition 3.3. In Algorithm 3.2, the optimal penalty parameter ρ∗ is defined as

ρ∗ =


1 −

√
1 − λ2n−s

λ2n−s − 1 +
√

1 − λ2n−s

λn−s > 0

1 λn−s ≤ 0

(3.72)

where λi is the ith generalized eigenvalue of (MT
[
2F̄ (F̄ T F̄ )−1F̄ T − IpN

]
M ,MTM),
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order as λn ≥ · · · ≥ λi ≥ λ1, M = [R⃗−1GT (L + D)T Q⃗(L + D)G + IpN ]
1
2 , F̄ = −MẼ,

and R(A) ≜ {y ∈ Rn|y = Ax, x ∈ Rm} is the range-space of matrix A ∈ Rn×m with

s = dim(R(F̄ )). In this situation, the corresponding optimal convergence factor is

ϕ∗ = |ϕ2n−s| =


1

2

1 +
λn−s

1 +
√

1 − λ2n−s

 λn−s > 0

1

2
λn−s ≤ 0

(3.73)

Proof. By defining F̄ = −MẼ and MTM = Q meet the Assumption 3 in Teixeira et al.

(2016) , we can apply Theorem 3, Theorem 4, Corollary 1 in Teixeira et al. (2016) to

obtain Proposition 3.3. That completes the proof.

To sum up, the steps to find the optimal penalty parameter can be described as follows:

1. Set M =
[
R⃗−1GT (L + D)T Q⃗(L + D)G + IpN

] 1
2

and calculate F̄ = −MẼ;

2. Find the generalized eigenvalue of (MT
[
2F̄ (F̄ T F̄ )−1F̄ T − IpN

]
M ,MTM);

3. Find s = dim(R(F̄ )) and calculate λn−s;

4. Use Proposition 3.3 to find the optimal penalty parameter ρ∗ and corresponding

optimal convergence factor ϕ∗.

Remark 3.5. By introducing the scaling matrix M , the optimisation problem is refor-

mulated, and the input and dual variable updating law are still separable since matrix

M , F are block matrices and can be separated into p smaller local matrices. However,

the global variable updating law can not be separated, it has a combined form defined as

zq+1
k+1 = (F̄ T F̄ )−1F̄ T (Mu⃗ q+1

k+1 + ργ q+1
k+1 ) (3.74)

3.4 Robustness Analysis of the Proposed Algorithm

In practice, an accurate system model is not always possible, and therefore we need to

analyse the robustness property of the proposed NOILC algorithm. In this section, the

robustness is defined in terms of Robust Monotone Convergence (Owens et al., 2009):

Robust Monotone Convergence: An ILC algorithm has the property of robust monotone

convergence with respect to a vector norm ∥ ·∥2 in the presence of a defined set of model

uncertainties if, and only if, for every choice of control on the first trial (and hence

for the corresponding initial error) and for any choice of model uncertainty within the

defined set, the resulting sequence of iteration error time signals converges to zero with

a strictly monotonically decreasing norm.
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In the following section, we consider G0,i(z) as the transfer function of ith subsystem’s

plant, and then the relationship between plant and model can be represented as

G0,i(z) = Gi(z)Ui(z), i = 1, · · · , p (3.75)

where Ui(z) represents multiplicative uncertainty of ith subsystem (assume it is proper

and stable). Then, if Ui(z) has a matrix representation Ui, it follows that

G0,i = GiUi, i = 1, · · · , p (3.76)

Then, the global form of (3.76) can be written as

G0 = GU (3.77)

where G0= diag (G0,1, · · · , G0,p), U = diag (U1, · · · , Up).

Following a similar robustness analysis approach for NOILC in Owens (2016), we have

the following results.

3.4.1 Time Domain Robustness Analysis

In the presence of model uncertainty, the error evolution of Algorithm 3.1 is shown as

follows (by multiplying GU in both side of Equation (3.25) and subtracting from r⃗− d⃗ )

r⃗ − d⃗−GUu⃗k+1 = r⃗ − d⃗−GUu⃗k −GULuGT (L + D)T Q⃗(L + D)e⃗k (3.78)

e⃗k+1 =
[
IpN −GULuGT (L + D)T Q⃗(L + D)

]
e⃗k (3.79)

where Lu =
[
GT (L + D)T Q⃗(L + D)G + R⃗

]−1
(introduced for notational simplicity).

Note that, the inner product

∥êk∥2Q⃗ =
〈
Q⃗

1
2 (L + D)e⃗k, Q⃗

1
2 (L + D)e⃗k

〉
(3.80)

and then use the error evolution (3.79), we have

∥êk+1∥2Q⃗ = ∥êk∥2Q⃗ + e⃗Tk (L + D)T Q⃗(L + D)GLu

×
[
UTGT (L + D)T Q⃗(L+D)GU− UTLm− LmU

]
LuGT (L + D)T Q⃗(L + D)e⃗k

(3.81)

where Lm = GT (L + D)T Q⃗(L + D)G + R⃗ (introduced for notational simplicity).

Note that, achieving Robust Monotone Convergence is equivalent to ensure the mono-

tonicity property ∥êk+1∥2Q⃗ ≤ ∥êk∥2Q⃗ for all k ≥ 0. Based on Equation (3.81), we can

derive the robustness condition as shown in the following theorem:
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Theorem 3.2. In the presence of the modelling error Ui(z), Algorithm 3.1 is robust

monotone convergent, if and only if the system satisfies the following condition

LmU + UTLm ≥ UTGT (L + D)T Q⃗(L + D)GU (C1)

Proof. Note that, LuGT (L+D)T Q⃗(L+D) is non-singular, and from the error evolution

(3.81), it follows that the condition

UTGT (L + D)T Q⃗(L + D)GU− LmU− UTLm ≤ 0

result in monotonicity of tracking error norm ∥êk∥2Q⃗.

Theorem 3.2 provides an explicit way to check the robustness of Algorithm 3.1 in the

presence of the modelling error, however, the calculation is time-consuming. Alterna-

tively, the following proposition simplifies the result by proving a conservative sufficient

condition.

Proposition 3.4. In the presence of the modelling error Ui(z), Algorithm 3.1 is robust

monotone convergent if (sufficient condition) the system satisfies the following condition

LmU + UTLm ≥ ∥(L + D)G∥2
Q⃗
UTU (C2)

Proof. Note that, the term GT (L + D)T Q⃗(L + D)G can be simplified as

GT (L + D)T Q⃗(L + D)G ≤ ∥(L + D)G∥2
Q⃗

(3.82)

and follows from Condition C1, Condition C2 is obtained.

Note that, we can obtain another conservative sufficient condition by finding the maxi-

mum eigenvalue of matrix (L + D)T Q⃗(L + D), as shown in the following:

Proposition 3.5. In the presence of the modelling error Ui(z), Algorithm 3.1 is robust

monotone convergent if (sufficient condition) the system satisfies the following condition

LmU + UTLm ≥ (2dL + dD)2dQUTGTGU (C3)

where dD and dQ denote the maximum diagonal elements in the matrices D and Q.

Proof. Note that, adding the diagonal, non-negative matrix D to the Laplacian matrix L

can only increase the diagonal elements of L. Using Lemma 3.2 and Gershgorin theorem,

the eigenvalues of matrix L+D are shown as

0 ≤ λL+D,i ≤ 2dL + dD, 1 ≤ i ≤ p. (3.83)
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Then, we have

(L + D)T Q⃗(L + D) =
[
(L+D)TQ(L+D)

]
⊗ IN ≤ (2dL + dD)2dQIpN (3.84)

and follows from Condition C1, Condition C3 is obtained.

3.4.2 The Interpretation for Design

Some useful observations of the algorithm’s robustness conditions can be obtained as:

(1) The first situation is when no modelling error and hence multiplicative uncertainty

U = IpN . The condition in Theorem 3.2 reduces to

2Lm ≥ GT (L + D)T Q⃗(L + D)G (3.85)

and clearly, this (sufficient and necessary) condition is always hold. This implies that the

proposed algorithm can guarantee the monotonic convergence of the consensus tracking

error norm when no modelling error in the networked dynamical systems.

(2) When there exists modelling error in the system (i.e., U ̸= IpN ), different choices of

weighting matrices Q and R affect the algorithm’s robustness property. From the error

evolution (3.79), we have the following relationship:

êk+1=
[
IpN − Q⃗

1
2 (L + D)GULuGT (L + D)T Q⃗

1
2

]
êk (3.86)

To guarantee the Robust Monotone Convergence, the sufficient and necessary condition

for (3.86) is that

∥IpN − Q⃗
1
2 (L + D)GULuGT (L + D)T Q⃗

1
2 ∥ < 1 (3.87)

and the question becomes: how Q⃗ and R⃗ affect the range of modelling error U?

Intuitively, a larger Q⃗

R⃗
can tolerate larger model uncertainty, and hence results in stronger

robustness. Note that, analysing the effect of weighting matrices is difficult in theory,

since all the terms are matrices and they are tight coupled. However, we can run a

simple example to verify the phenomenon:

Example 3.1. Consider a networked dynamical system has 3 subsystems and the time

instant is set to be 1 for simplicity. We set the terms in Equation (3.87) as follows:

G =

 0.15 0 0

0 0.25 0

0 0 0.3

 L =

 1 −1 0

−1 2 −1

0 −1 1
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Figure 3.1: Robust region for different R

U =

 U1 0 0

0 U2 0

0 0 U3

 D =

 1 0 0

0 0 0

0 0 0


In the simulation, we use the Monte Carlo method to generate different U. By fixing the

scalar weighting Q = 1, we draw the region for different scalar weighting R that satisfies

the condition (3.87), as shown in Figure 3.1. Clearly, when the scalar weighting R

increases, the algorithm covers larger region (i.e., it tolerates more model uncertainties).

3.5 The Proposed Algorithm for Consensus Tracking of

Point To Point Tasks

The P2P task has found a great number of application in practice and the exploration

of the algorithm for P2P task is valuable. Given an example, multi robot ‘pick and

place’ collaborative task requires all the robotic arms travel from the initial position

to the ‘pick’ position at time instant t1; then collaboratively move the objectives from

the ‘pick’ position to the ‘place’ position at time instant t2; finally return to the initial

position and wait for next experiment. This task lies emphasis on the consensus tracking

at time t1, t2, which allows infinite choices of the control input, and therefore creates

greater design flexibility, but on the other hand , it leads to significant design difficulties.

In this section, we further extend the proposed algorithm to solve P2P consensus tracking

problem, with the convergence and robustness properties analysed rigorously.
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3.5.1 Formulation of P2P Consensus Tracking Task

For the P2P consensus tracking task, it only requires tracking at M time instants tm

(m = 1, 2, · · · ,M) rather than the tracking over the whole horizon [0, N ]. Different from

the general consensus tracking task, P2P consensus tracking task creates more freedoms

for the control input choices because there exists infinity input solutions.

For P2P task, we define the time instant vector as

Λ = [t1 t2 · · · tM ]T , (3.88)

and naturally, the P2P reference vector is defined as

rP = [r(t1) r(t2) · · · r(tM )]T . (3.89)

Now, we define the ith subsystem’s P2P output as

yPi,k = [yi,k(t1) yi,k(t2) · · · yi,k(tM )]T (3.90)

where ith subsystem’s P2P output space YP
i = RM are defined with inner products and

induced norms

⟨x, y⟩Q = xTQy, ∥y∥Q =
√

⟨y, y⟩Q. (3.91)

Note that, with a slight abuse of notation, we still use the same notation Q to define

the output weighting in P2P space, however, the dimension of Q will become m×m.

Then, the P2P system model can be written as

yPi,k = GP
i ui,k + dPi (3.92)

where GP
i , dPi is obtained by extracting the related rows from Gi and di.

Using the ‘lifted matrix form’ representation, the global system model is written as

y⃗Pk = GP u⃗k + d⃗ P (3.93)

where GP , d⃗P , r⃗P and y⃗Pk are defined as

GP = diag (GP
1 , G

P
2 , · · · , GP

p )

d⃗P =
[
dP1

T
dP2

T · · · dPp
T
]T

∈ YP

r⃗P =
[
rP

T
rP

T · · · rP
T
]T

∈ YP

y⃗Pk =
[
yP1,k

T
yP2,k

T · · · yPp,k
T
]T

∈ YP

(3.94)

and the P2P output space YP = YP
1 × YP

2 × · · · × YP
p are defined with inner products



Chapter 3 Distributed NOILC for Consensus Tracking Problem 67

and induced norms

⟨x⃗, y⃗⟩Q⃗ =

p∑
i=1

xTi Qyi, ∥y⃗∥Q⃗ =
√
⟨y⃗, y⃗⟩Q⃗ (3.95)

where matrix Q⃗ = diag(Q,Q, · · · , Q) is positive definite.

Now, we are ready to define the ILC design problem for P2P consensus tracking tasks:

ILC for P2P Consensus Tracking Task: The ILC design problem can be stated

as finding a control law

u⃗k+1 = f(u⃗k, e⃗
P
k ) (3.96)

such that y⃗Pk tracks the desired P2P reference r⃗P , i.e.

lim
k→∞

y⃗Pk = r⃗P (3.97)

where e⃗Pk = r⃗P − ŷPk is the ‘virtual’ P2P tracking error (since the P2P reference is only

available to part of the subsystems).

3.5.2 Algorithm Description

The proposed NOILC algorithm for P2P consensus tracking task is given as follows:

Algorithm 3.3. For any initial input choice u⃗0 and corresponding ‘virtual’ tracking

error e⃗P0 , the input sequence {u⃗k+1}k≥0 defined as

u⃗k+1 = arg min{∥(L + D)e⃗Pk+1∥2Q⃗ + ∥u⃗k+1 − u⃗k∥2R⃗} (3.98)

where e⃗Pk+1 = e⃗Pk − G(u⃗k+1 − u⃗k), L = L ⊗ IM , D = D ⊗ IM , provides a solution for

P2P consensus tracking problem, i.e.

lim
k→∞

y⃗Pi,k = rP , i = 1, 2, · · · , p (3.99)

Remark 3.6. The P2P distributed implementation follows exactly the same way as in

Section 3.3, however, the form of feedback plus feedforward implementation will change

(following a similar way as the traditional P2P feedback plus feedforward implementa-

tion), please refer to Owens et al. (2013) for more details.

3.5.3 Convergence Properties of the P2P Algorithm

Algorithm 3.3 has appealing convergence properties shown in the following theorem:
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Theorem 3.3. For any initial input choice u⃗0 and corresponding ‘virtual’ tracking error

e⃗P0 , Algorithm 3.3 achieves monotonic convergence of the P2P consensus tracking error

norm ∥êPk ∥Q⃗ := ∥(L + D)e⃗Pk ∥Q⃗ to 0, i.e.

∥êPk+1∥Q⃗ ≤ ∥êPk ∥Q⃗, lim
k→∞

êPk = 0. (3.100)

Consequently, the perfect tracking is achieved as k → ∞, i.e.

lim
k→∞

yPi,k = rP , i = 1, 2, · · · , p (3.101)

Proof. Following the similar proof of Theorem 3.1, the P2P consensus tracking error

norm converges monotonically to zero. Details are omitted here for brevity.

In addition, the converged input has appealing properties shown in the next theorem.

Theorem 3.4. For any initial input choice u⃗0 and corresponding ‘virtual’ tracking error

e⃗P0 , Algorithm 3.3 guarantees the control input converge as follows

lim
k→∞

u⃗k = u⃗∗ (3.102)

where u⃗∗ is the solution for the following problem

minimize ∥u⃗− u⃗0∥2R⃗
subject to GP u⃗+ d⃗ P − r⃗P = 0

(3.103)

Note that, if u⃗0 is chosen to be 0, Algorithm 3.3 converges to the minimum input energy

solution, i.e.

minimize ∥u⃗∥2
R⃗

subject to GP u⃗+ d⃗ P − r⃗P = 0
(3.104)

Proof. For the optimisation problem

minimize ∥u⃗− u⃗0∥2R⃗
subject to GP u⃗+ d⃗ P − r⃗P = 0

(3.105)

its Lagrangian is represented as

L(u, λ) = ∥u⃗− u⃗0∥2R⃗ + 2(λ, (GP u⃗+ d⃗ P − r⃗P )) (3.106)

The control law for (3.98) is shown as

u⃗k+1 − u⃗k =
[
R⃗−1GP T

(L+D)T Q⃗(L+D)GP + IpM

]−1
R⃗−1GP T

(L+D)T Q⃗(L+D)e⃗Pk

= R⃗−1GP T
(L+D)T Q⃗(L+D)

[
GP R⃗−1GP T

(L+D)T Q⃗(L+D) + IpM

]−1
e⃗Pk
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For matrix
[
GP R⃗−1GP T

(L + D)T Q⃗(L + D) + IpM

]−1
, it is positive definite with eigen-

values 0 < λi ≤ 1. We then define the space spanned by the eigenvector corresponding

to unitary eigenvalues as E⊥, yields[
GP R⃗−1GP T

(L + D)T Q⃗(L + D) + IpM

]−1
|E < IpM[

GP R⃗−1GP T
(L + D)T Q⃗(L + D) + IpM

]−1
|E⊥ = IpM

(3.107)

where T |B represents the restriction of operator T on the subspace B.

For any initial input choice u⃗0, define the corresponding consensus error as e⃗P0 , its

decomposition on E and E⊥ is

e⃗P0 = e⃗P0
E

+ e⃗P0
E⊥

(3.108)

From (3.107), we have

e⃗P0
E⊥

=
[
GP R⃗−1GP T

(L + D)T Q⃗(L + D) + IpM

]−1
e⃗P0

E⊥

therefore

GP R⃗−1GP T
(L + D)T Q⃗(L + D)e⃗P0

E⊥
= 0 (3.109)

Note that matrix GP R⃗−1GP T
(L + D)T Q⃗(L + D) is invertible, we have

e⃗P0
E⊥

= 0 (3.110)

Equation (3.107) becomes

u⃗k+1 − u⃗0 =R⃗−1GP T
(L + D)T Q⃗(L + D)

[
GP R⃗−1GP T

(L + D)T Q⃗(L + D) + IpM

]−1

×
k∑

j=0

[
GP R⃗−1GP T

(L + D)T Q⃗(L + D) + IpM

]−j
e⃗P0

Note that e⃗P0
E ∈ E and e⃗P0

E⊥
= 0, we have

u⃗∞ − u⃗0 =R⃗−1GP T
(L + D)T Q⃗(L + D)

[
GP R⃗−1GP T

(L + D)T Q⃗(L + D) + IpM

]−1

×
{
IpM −

[
GP R⃗−1GP T

(L + D)T Q⃗(L + D) + IpM

]−1
|E
}−1

e⃗P0
E

By setting λ = −(L + D)T Q⃗(L + D)
[
IpM + GP R⃗−1GP T

(L + D)T Q⃗(L + D)
]−1 {

IpM
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−
[
GP R⃗−1GP T

(L + D)T Q⃗(L + D) + IpM

]−1
|E
}−1

e⃗P0
E
, we then have

u⃗∞ − u⃗0 = R⃗−1GP T
λ (3.111)

Equation (3.111) shows that (u⃗∞,λ) is a stationary point of the Lagrangian. The problem

(3.105) is strictly convex and hence u⃗∞ is the unique solution. That completes the

proof.

Remark 3.7. Though the idea of NOILC framework has been successfully developed

for P2P task in single-agent system (e.g., Chen et al. (2018b); Owens et al. (2013)), it

has not been explored to networked dynamical systems. The extension of the result from

the single-agent case to the multi-agent case is non-trivial, since the transformation in

information relies on the network topology. For the P2P task in networked dynamical

systems, each subsystem exist infinity choice of input solution and the whole system has

infinity combination of these input solutions. All the subsystems can only use the network

to communicate with each other and conclude the best input solution that guarantees the

monotonic convergence (as shown in Theorem 3.3) and minimum energy cost (as shown

in Theorem 3.4). It should be noticed that, the convergence result differs from the single-

agent case, and it much more depends on the network topology (i.e., related to matrices

L and D).

3.5.4 Robustness Properties of the P2P Algorithm

Following a similar analyse as in Section 3.4, we can have the following robustness

conditions.

3.5.4.1 Time Domain Robustness Analysis

Theorem 3.5. In the presence of the multiplicative modelling error Ui(z), Algorithm

3.3 is robust monotone convergent if, and only if (sufficient and necessary condition),

the system satisfies the following condition

UTLP
m + LP

mU ≥ UTGP T
(L + D)T Q⃗(L + D)GPU (C4)

where LP
m = GP T

(L + D)T Q⃗(L + D)GP + R⃗.

Proof. Following the similar proof of Theorem 3.2, Theorem 3.5 can be proved.

We also provide the following conservative sufficient conditions for easier check.
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Proposition 3.6. In the presence of the modelling error Ui(z), Algorithm 3.3 is robust

monotone convergent if (sufficient condition) the system satisfies the following conditions

UTLP
m + LP

mU ≥ ∥(L + D)GP ∥2
Q⃗
UTU (C5)

Proof. Following the similar proof of Proposition 3.4, Proposition 3.6 can be proved.

In addition, by finding the maximum eigenvalue of matrix (L + D)T Q⃗(L + D), we have

the following Proposition:

Proposition 3.7. In the presence of the modelling error Ui(z), Algorithm 3.1 is robust

monotone convergent if (sufficient condition) the system satisfies the following condition

UTLP
m + LP

mU ≥ (2dL + dD)2dQUTGP TGPU (C6)

where dQ is the maximum eigenvalue of matrix Q.

Proof. Following the similar proof of Proposition 3.5, Proposition 3.7 can be proved.

3.5.4.2 Input Energy Cost under Model Uncertainty

Without model uncertainty, Theorem 3.4 shows that Algorithm 3.3 converges to the

minimum input energy solution when the initial input is chosen to be zero. Follows

that, a natural question to be answered is ‘in the presence of model uncertainty, what

solution would the control input converge to?’ This question can be answered by the

following theorem.

Theorem 3.6. For any initial input choice u⃗0 and corresponding ‘virtual’ tracking error

e⃗P0 , if the model uncertainty U satisfying the following condition

∥IpM −GPULP
uGP T

(L + D)T Q⃗(L + D)∥ ≤ 1 (3.112)

then Algorithm 3.3 guarantees the control input converge to a solution (u⃗∞, λU) of the

equations

u⃗∞ − u⃗0 = R⃗−1GP T
λU (3.113)

and

GPUu⃗∞ + d⃗ P − r⃗P = 0 (3.114)

Proof. Note that, the error evolution of Algorithm 3.3 is shown as

e⃗Pk+1 =
[
IpM−GPULP

uGP T
(L + D)T Q⃗(L + D)

]
e⃗Pk (3.115)
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where LP
u =

[
GP T

(L + D)T Q⃗(L + D)GP + R⃗
]−1

.

Combining the input law (3.107) with the error evolution (3.115) in the presence of

model uncertainty, we have

u⃗∞ − u⃗0 =R⃗−1GP T
(L + D)T Q⃗(L + D)

[
GP R⃗−1GP T

(L + D)T Q⃗(L + D) + IpM

]−1

×
∞∑
j=0

[
IpM −GPULP

UGP T
(L + D)T Q⃗(L + D)

]j
e⃗P0

From error evolution (3.115), to guarantee the convergence of the tracking error norm,

the model uncertainty must satisfy the following condition

∥IpM −GPULP
uGP T

(L + D)T Q⃗(L + D)∥ ≤ 1 (3.116)

Under condition (3.116), IpM − GPULP
uGP T

(L + D)T Q⃗ (L + D) is a positive definite

matrix, with eigenvalues 0 < λi ≤ 1. We then define the space spanned by the eigenvec-

tor corresponding to unitary eigenvalues as E⊥
U , yields

IpM −GPULP
uGP T

(L + D)T Q⃗(L + D)|EU < IpM

IpM −GPULP
uGP T

(L + D)T Q⃗(L + D)|E⊥
U

= IpM
(3.117)

For any initial input choice u⃗0, define the corresponding consensus error as e⃗P0 , its

decomposition on EU and E⊥
U is

e⃗P0 = e⃗P0
EU + e⃗P0

E⊥
U (3.118)

and from (3.117), we have

GPULP
uGP T

(L + D)T Q⃗(L + D)|E⊥
U
e⃗P0

E⊥
U = 0 (3.119)

Equation (3.116) becomes

u⃗∞ − u⃗0 =R⃗−1GP T
(L + D)T Q⃗(L + D)

[
GP R⃗−1GP T

(L + D)T Q⃗(L + D) + IpM

]−1

×
∞∑
j=0

[
IpM −GPULP

uGP T
(L + D)T Q⃗(L + D)|EU

]j
e⃗P0

E⊥
U

and it follows that

u⃗∞ − u⃗0 =R⃗−1GP T
(L + D)T Q⃗(L + D)

[
GP R⃗−1GP T

(L + D)T Q⃗(L + D) + IpM

]−1

× [GPULP
uGP T

(L + D)T Q⃗(L + D)]−1e⃗P0
E⊥
U
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Figure 3.2: The graph structure of numerical examples

Setting λU = (L + D)T Q⃗(L + D)
[
GP R⃗−1GP T

(L + D)T Q⃗(L + D) + IpM

]−1 [
GPULP

u

GP T
(L + D)T Q⃗(L + D)

]−1
e⃗P0

E⊥
U , we then have

u⃗∞ − u⃗0 = R⃗−1GP T
λU (3.120)

That completes the proof.

Theorem 3.6 shows that Algorithm 3.3 converge to a perturbed solution when the uncer-

tainty satisfies (3.112), and it returns good approximation for small model uncertainty.

3.6 Numerical Examples

In this section, two examples would be used to verify our proposed algorithms. All the

following examples are constructed by a seven-agent networked system (p = 7) and the

network topology is shown in Figure 3.2 (with unity weighting Wij = 1). The desired

reference is chosen as

r(t) =

{
sin(2π(t− 1)) 0 ≤ t < 2

0 otherwise
, (3.121)

and then we assume the reference trajectory is defined on the time interval [0, 3] with

sampling time Ts = 0.05s (sampled using a zero order hold). Furthermore, ith subsys-

tem’s initial state condition xi,0 and the first trial’s input ui,0 are assumed to be zero.

3.6.1 ILC for High Performance Consensus Tracking Task

We first consider a heterogeneous networked dynamical system, with ith subsystem’s

dynamics is represented using the following discrete-time, minimum phase, low damping
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Figure 3.3: Effect of different qmax on convergence performance over 2000 trial

transfer function

Gi(s) =
s+ 10

0.6 ∗ (s2 + s+ τi)
(3.122)

where τi = i and i = 1, 2, 3, · · · , 7.

For Algorithm 3.2, its convergence behaviour is influenced by different parameters, e.g.,

maximum-iteration qmax, weighting matrices Q and R, penalty parameter ρ. In the

following, we will investigate these parameters individually.

To investigate the effect of qmax, the penalty parameter ρ is set to be 1, the scalar

weighting Q = R = 1. Figure 3.3 shows how the convergence performance evolves for

centralised and distributed implementation over 2000 ILC trials. For both implementa-

tions, they achieve monotonic convergence of the consensus tracking error norm ∥êk∥Q⃗
to zero, which verifies Theorem 3.1. Moreover, for distributed implementation, its con-

vergence speed increases with the maximum-iteration qmax, however, the distributed

result is almost coincide with the centralised result after qmax ≥ 20. This implies that

in this case, a small iteration number is enough for ADMM to approach the centralised

result. However, it is still not clear how the the system parameters affect the ADMM

iteration number, a more rigorously investigation will be done in the future.

Figure 3.4 demonstrates the tracking behaviour of Algorithm 3.2 at 2000th ILC trial.

It shows that for the subsystems with or without access to reference signal, they both



Chapter 3 Distributed NOILC for Consensus Tracking Problem 75

Figure 3.4: Output comparison for subsystems 1 and 6 at 2000th trial

achieve the perfect tracking of the desired reference. Figure 3.5 shows the input of seven

subsystems at 2000th ILC trial. These input signal are different from each other because

of the heterogeneous topology.

To investigate the effect of weighting matrices Q, R, the penalty parameter ρ is set to be

1, the maximum-iteration qmax is set to be 20 and the scalar weighting Q = 1. Figure

3.6 shows how the tracking error norm ∥êk∥Q⃗ evolves for different weighting R over the

2000 ILC trials. It can be seen from the figure that for different choice of R, the tracking

error norm converges monotonically to zero. In addition, as R increases, the convergence

speed decreases accordingly, i.e., a larger R results in slower convergence speed.

To investigate the effect of penalty parameter ρ, the scalar weighting Q = R = 1. By

using Proposition 3.3 to calculate the optimal penalty parameter, we have the optimal

result ρ∗ = 1 (with the optimal corresponding convergence factor ϕ∗ = 0.5). Figure 3.7

shows the input accuracy evolution for different ρ in each ADMM iteration: beginning

from a small ρ, the convergence speed of the proposed algorithm increases with the larger

of penalty parameter ρ, however, the convergence speed will slow down after reaching

the optimal penalty parameter ρ∗ = 1, which is consistent with our expectations in

Proposition 3.3.

To check whether ρ = 1 is the best choice in each ILC trial, we set the maximum ADMM

iteration qmax = 20 and then operate the simulation with scalar weighting Q = R = 1.



76 Chapter 3 Distributed NOILC for Consensus Tracking Problem

Figure 3.5: Input comparison between different subsystems at 2000th trial

Figure 3.6: Effect of different R on convergence performance
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Figure 3.7: Convergence comparison for different ρ in ADMM

Figure 3.8 shows how the tracking error norm evolves for different ρ over the first ILC

trial. The convergence speed of tracking error norm consists with the phenomenon

summarised in Figure 3.7, which further verifies Proposition 3.3.

3.6.2 The Proposed Algorithms for Non-Minimum Phase Networked

Dynamical Systems

As mentioned previously, the proposed algorithms are suitable to control non-minimum

phase networked dynamical systems, and this session will investigate the algorithms’

effectiveness for non-minimum phase dynamics. To make compression with the conver-

gence result in Figure 3.3, we assume all the parameters remain unchanged except the

minimum phase zero converts into non-minimum phase zero, i.e., the ith subsystem’s

transfer function becomes

Gi(s) =
s− 10

0.6 ∗ (s2 + s+ τi)
(3.123)

where τi = i and i = 1, 2, 3, · · · , 7.

Figure 3.9 shows how the convergence performance evolves for centralised and distributed

implementation over 2000 ILC trials. For both implementations, they can still guarantee

the monotonic convergence of the consensus tracking error norm ∥êk∥Q⃗. However, after

a rapidly decreasing in the tracking error norm on the first few ILC trials, both algo-

rithms will move along a plateau with little change on the tracking error norm, i.e., the
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Zoom In

Figure 3.8: Convergence comparison for different ρ in ILC

Figure 3.9: Effect of different qmax on convergence performance over 2000 trial
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Figure 3.10: The extended graph structure for scalability case

convergence speed is almost zero. This is due to the existence of non-minimum phase

zero, and the plateau value ∥ê∞∥Q⃗ is only an improvement of a factor of ∼ 10 on the

initial error ê0. Please refer to Owens et al. (2014) for more details.

3.6.3 Scalability of the Distributed Algorithm 3.2

As mentioned previously, the proposed distributed Algorithm 3.2 has good scalability,

i.e., it is applied to large scale network and it can deal with the dynamically growing

network. We will investigate this property using the following simulation. Assuming all

the new subsystems are directly connected to its previous index’s subsystem, as shown

in Figure 3.10. The new subsystems’ transfer function are still in the same form as in

(3.122), i.e.

Gi(s) =
s+ 10

0.6 ∗ (s2 + s+ τi)
(3.124)

where τi = i and i = 8, 9, · · · , p. For comparison, the other parameters remain the

same. In the following section, we will first investigate the scalability of the distributed

Algorithm 3.2 for large scale network.

3.6.3.1 Scalability of Algorithm 3.2 for Large Scale Network

To investigate the algorithm’s scalability for large scale network, we assume the sub-

system’s number changes from 8 to 150, and accordingly record the computation time

of both centralised and distributed implementation (with qmax = 50) for different sub-

system’s amount in the first trial, as shown in Table 3.1 and Figure 3.11. For the

centralised Algorithm 3.1, its computation time will increase (in an exponential way)

as the increasing of subsystem’s number. This is due to the reason that Algorithm 3.1

requires a central controller to compute the input solution, and the controller’s com-

putation time will increase exponentially as the matrix dimension (that is related to

the subsystem’s amount) increases. Clearly, it is impossible to use Algorithm 3.1 for

million-level networked dynamical systems in practice.

In contrast to Algorithm 3.1, it can be seen that distributed Algorithm 3.2 use the same

computation time for different subsystem’s amount, which shows great scalability for
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Table 3.1: Subsystem Amounts V.S. Computation Time

Subsystem amounts 8 20 40 70 110 150

Time for centralised (s) 0.0239 0.2126 1.2532 5.7653 25.9331 62.3407

Time for distributed (s) 0.0338 0.0338 0.0309 0.0380 0.0381 0.0385

Figure 3.11: The consumption time against subsystem’s amount

large scale network. For distributed algorithm, the global cost function has actually been

separated into smaller local cost functions. Even for million-level networked dynamical

systems, the dimension of each local cost function is relatively small. The calculation

of each local cost function is done independently in different processors and hence the

computation time for Algorithm 3.2 is almost not affected by the total subsystem’s

amount in the network.

3.6.3.2 Scalability of Algorithm 3.2 for Dynamically Growing Network

In this section, we will investigate the scalability of the distributed algorithm for the

dynamically growing network. We assume a new subsystem 8 is directly connected to

subsystem 7 at trial 60. By fixing the maximum-iteration number qmax = 20, the penalty

parameter ρ = 1, scalar weighting Q = R = 1, we have the simulation result as shown in

Figure 3.12. It can be concluded from the figure that although the consensus tracking
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Subsystem 8 is directly     
connected  to subsystem 7

Figure 3.12: The evolution of convergence performance when a new subsystem
for the dynamically growing network

error norm grows to a larger number when subsystem 8 is first added to the network,

the tracking error norm converges monotonically after that. It should be noticed that,

none of the parameters needed to be returned after adding the new subsystem, which

demonstrates the scalability of Algorithm 3.2 for the dynamically growing network.

3.6.4 ILC for P2P Consensus Tracking Task

In the following simulation, we consider the same system as in Section 3.6.1, and define

the time instant set as

Λ = [5 20 35]T (3.125)

with the P2P reference point r⃗P defined as

r⃗P = [1 0 − 1]T (3.126)

We choose the best parameter have been found in Section 3.6.1 (i.e., maximum ADMM

iteration qmax = 20, penalty parameter ρ = 1, scalar weighting Q = R = 1) and then

investigate the performance of P2P Algorithm 3.3. Figure 3.13 shows all the subsystem’s

output curves on 2000th ILC trial, demonstrating that the control target is achieved by

all the subsystems (even when the reference signal is only known by subsystem 1 and 2).
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Figure 3.13: Output comparison for different subsystems at 2000th trial

Figure 3.14 presents the evolution of system’s input energy consumption over 2000 ILC

trials, showing that the system’s input energy cost does converge to the optimal input

solution ∥u⃗∗∥2
R⃗

= 63.6020, which verifies Theorem 3.4.

Next, we investigate the robustness performance of the proposed P2P algorithm. For

simplicity, we define the multiplicative uncertainty Ui(z) as a diagonal matrix, which is

shown in the following structure

Ui(z) = κIN , i = 1, · · · , p. (3.127)

We set the scalar weighting Q = R = 1, and use the Condition C4 (in Theorem 3.5)

to find the allowable range of κ that can guarantee the Robust Monotone Convergence.

Condition C4 indicates that when 0 < κ ≤ 2.0205, the P2P algorithm will converge

monotonically to zero. To further verify if this statement is correct or not, we choose

different κ for numerical simulation. Figure 3.15 shows the convergence of ∥êPk ∥Q⃗ for

different uncertainty over 50 ILC trials. The simulation results in Figure 3.15 conform to

the conclusion obtained in Condition C4, which further verifies Theorem 3.5. Simulations

with different reference trajectory, trial length, and damping ratio (including critically

damped and over-damped cases) have also been investigated. The proposed algorithms

work for all of the cases, hence they are omitted here for brevity.
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Figure 3.14: Input energy cost of the proposed P2P algorithm

Figure 3.15: Convergence comparison between different κ
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3.7 Summary

This chapter proposes a novel ILC framework for consensus tracking of networked dy-

namical systems working in a repetitive manner using the well-known norm optimal

ILC framework. The resulting algorithm achieves perfect consensus tracking of the de-

sired reference with tracking error norm reducing monotonically to zero and has certain

degree of robustness against the model uncertainty. The algorithm can be applied to

heterogeneous networked systems and non-minimum phase systems, which is appeal-

ing in practice. In addition, we extend the proposed ILC framework to solve the P2P

tracking problem (that is an important task in networked dynamical systems), with

the convergence and robustness properties remaining unchanged. Convergence and ro-

bustness properties of the proposed algorithms are analysed rigorously, and distributed

implementations of the algorithms are derived using ADMM so they can be applied to

very large scale networked dynamics (with great scalability). Feedback plus feedfor-

ward implementation and the method to choose the best penalty parameter ρ are also

given. Numerical simulations are presented to illustrate the effectiveness of the proposed

algorithms. However, we have not considered the system constraint (that is widely ex-

isting in practice) in the design. To address this limitation, we will propose a novel ILC

algorithm to solve the constraint handling problem in the next chapter.



Chapter 4

Distributed NOILC for

Constrained Consensus Tracking

Problem

System constraints are widely existing in practice, often relating to performance require-

ments or physical limitations. As an example, within a group of unmanned aerial vehicles

(UAVs) operating together, each UAV has an allowable input (voltage) range. If one

agent’s applied input exceeds its acceptable voltage range, it may damage that UAV and

further affect the mission of the whole networked system. These constraints, however,

are not considered by most existing research of ILC for consensus tracking problem.

The only exceptions are the recent works in Shen and Xu (2017, 2018); Yang and Li

(2019), which consider the constrained ILC design for nonlinear networked systems us-

ing adaptive or barrier/composite Lyapunov function methods that can only guarantee

asymptotic convergence of tracking error norm (rather than monotonic convergence that

is desirable in practice) under certain conditions.

To address the above limitations, this chapter uses a successive projection framework

(that has been successfully applied to single system ILC design in Chu and Owens (2010))

to formulate the constrained consensus tracking problem and based on this formulation

develops two novel ILC algorithms for constrained consensus tracking problem, further

extending the work on ILC for unconstrained networked systems in Chapter 3. For both

algorithms, they guarantee the consensus tracking error norm to converge to zero when

perfect consensus tracking is possible, whereas the convergence speed of one algorithm is

faster than the other at the cost of more computation complexity. When perfect consen-

sus tracking is unachievable, the computational complex algorithm always converges to

the best result that can be achieved, while the other converges to the result that is influ-

enced by the input and output weighting matrices. Furthermore, all the algorithms can

be applied to both homogeneous and heterogeneous networks, as well as nonminimum

85
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phase systems, which are desirable in practice. To avoid the computational difficulties

for very large scale networked systems, we propose distributed implementations for the

proposed ILC algorithm using the idea of the alternating direction method of multipliers

(ADMM) that has been widely used in different areas (e.g., Boyd et al. (2011); Zhang

et al. (2019a)), allowing the algorithm to be implemented distributively using only local

information. This chapter is based on the work from Chen et al. (2020).

This chapter is organised as follows: Section 4.1 provides the formulation of the system

dynamics, network topology, system constraints and defines the constrained consensus

ILC problem; Section 4.2 reviews the idea of successive projection framework and then

reformulates the constrained consensus ILC problem into successive projection frame-

work; Sections 4.3 and 4.4 introduce two novel ILC algorithms (including distributed

implementations) for the constrained consensus tracking problem, with the algorithms’

convergence properties analysed rigorously; Section 4.5 provides numerical examples to

demonstrate the algorithms’ effectiveness and Section 4.6 summaries this chapter.

4.1 Problem Formulation

In this section, we provide the formulation of the system dynamics, network topology,

system constraints, and define the constrained ILC design problem. For simplicity, we

consider a single input, single output (SISO) system.

4.1.1 System Dynamics

The system description is the same as in Chapter 3, but for completeness, descried in the

following again. Consider a networked system (either homogeneous or heterogeneous)

consisting of p subsystems, with ith (1 ≤ i ≤ p) subsystem’s dynamics a discrete-time,

linear time invariant (LTI) system described as follows

xi,k(t+ 1) = Aixi,k(t) +Biui,k(t), xi,k(0) = xi,0

yi,k(t) = Cixi,k(t)
(4.1)

where k is the trial index, t ∈ [0, N ] is the time; Ai, Bi, Ci are system matrices with

appropriate dimensions; xi,k(·) ∈ Rni (ni is ith subsystem’s order), ui,k(·), yi,k(·) are

the state, input, output of subsystem i. For the consensus tracking problem, all the

subsystems are required to track the same reference signal r(t) within time interval

[0, N ] repetitively. At time instance t = N + 1, the time t is reset to 0, the state of ith

subsystem is reset to the initial condition xi,0, and the subsystems are required to track

the same reference signal again. For such problem, all the subsystems need to conclude

the best control strategy while only part of the subsystems know the reference, which

makes the design non-trivial.



Chapter 4 Distributed NOILC for Constrained Consensus Tracking Problem 87

To facilitate later ILC design, a ‘lifted form’ representation is introduced (Hatonen et al.,

2004). Assume each subsystem’s relative degree is one (i.e., CiBi ̸= 0), the input ui,k,

output yi,k, reference r are denoted as

ui,k = [ui,k(0) ui,k(1) · · · ui,k(N − 1)]T ∈ RN

yi,k = [yi,k(1) yi,k(2) · · · yi,k(N)]T ∈ RN

r = [r(1) r(2) · · · r(N)]T ∈ RN

(4.2)

The system model (4.1) can then be rewritten as

yi,k = Giui,k + di (4.3)

where system matrix Gi is defined as

Gi =


CiBi 0 · · · 0

CiAiBi CiBi · · · 0
...

...
. . .

...

CiA
N−1
i Bi CiA

N−2
i Bi · · · CiBi

 (4.4)

and the initial condition’s respond di is denoted as

di =
[
CiAixi,0 CiA

2
ixi,0 · · · CiA

N
i xi,0

]T
(4.5)

Introducing u⃗k, y⃗k, d⃗, r⃗ as the global vectors of ui,k, yi,k, di, r, i.e.

u⃗k =
[
u1,k

T u2,k
T · · · up,k

T
]T

y⃗k =
[
y1,k

T y2,k
T · · · yp,k

T
]T

d⃗ =
[
d1

T d2
T · · · dp

T
]T

r⃗ =
[
rT rT · · · rT

]T
,

(4.6)

then, the global system model of (4.1) can be represented as

y⃗k = Gu⃗k + d⃗ (4.7)

where G = diag(G1, G2, · · · , Gp).

Now, the high performance consensus tracking of networked dynamical systems can be

stated as finding an appropriate global input u⃗k such that the global output y⃗k tracks

the desired reference r⃗ perfectly.
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4.1.2 Network Topology

For simplicity, the network topology in this chapter is represented using an undirected

graph G = (V ,E ), in which the vertex set V = {1, 2, · · · , p}, and edge set E ⊂ V × V .

When there exists an edge between vertexes i and j, the vertexes i and j are neighbours,

which denoted as Ni := {j : (i, j) ∈ E }.

To represent the topology relationship between different subsystems, we introduce the

adjacency matrix A = [aij ], with its element aij defined as

aij =

{
Wij if (i, j) ∈ E

0 otherwise
(4.8)

where weight Wij is often considered as the connection strength of the edge. Based on

the ith node’s neighbours set, the degree of a node i is defined as d(i) =
∑p

j=1 aij and

it follows by the degree matrix D = diag(d(1), d(2), · · · d(p)). Using the definition of

adjacency matrix and degree matrix, the Laplacian matrix is defined as L = {lij} :=

D − A , which is a real symmetric matrix with element lij defined as below

lij =


−Wij if j ∈ Ni∑
j∈Ni

Wij if j = i

0 otherwise

(4.9)

For the high performance consensus tracking problem, only few subsystems have access

to the reference signal, and hence we introduce a reference-accessibility matrix D =

diag{Dii} to represent this relationship. The diagonal element Dii is denoted as

Dii =

{
1 if subsystem i has access

0 if subsystem i does not have access
(4.10)

In this chapter, the following standard assumptions for high performance consensus

tracking problem are required:

Assumption 4.1. At least one Eulerian path from one vertex to other vertices, i.e., the

graph G is connected.

Assumption 4.2. At least one of the subsystems has direct access to the reference

trajectory, i.e., Dii ̸= 0.

Remark 4.1. Assumption 4.1 is commonly required to achieve consensus tracking task.

If there exists one subsystem has not relationship with any other subsystems (i.e., it

cannot receive any information from others), then it is impossible for that subsystem to

keep consensus with other subsystems.

Remark 4.2. Assumption 4.2 guarantees the reference information is available to at

least one of the subsystems. Note that, when there is not reference in the system, the
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proposed algorithms can still achieve the consensus of the subsystems (without tracking

any reference).

4.1.3 System Constraints

System constraints often relate to performance requirements (e.g., input energy cost)

or physical limitations (e.g., output saturation), and hence they are widely existing in

practical applications. For simplicity, this chapter considers input constraints, however,

all the results can be extended to other types of system constraints without any diffi-

culties. Assuming the input ui of ith subsystem is constrained in a closed convex set Ωi,

then some examples of input constraints can be formulated as follows:

� Input sign constraints:

Ωi =
{
ui ∈ RN : 0 ≤ ui(t)

}
(4.11)

� Input saturation constraints:

Ωi =
{
ui ∈ RN : |ui(t)| ≤Mi(t)

}
(4.12)

� Input energy constraints:

Ωi =

{
ui ∈ RN :

N−1∑
t=0

u2i (t) ≤Mi

}
(4.13)

� Input amplitude constraints:

Ωi =
{
ui ∈ RN : λi(t) ≤ ui(t) ≤ µi(t)

}
(4.14)

The global input constraint set Ω can then be defined as

Ω = Ω1 × Ω2 × Ω3 × · · · × Ωp (4.15)

in which × represents the Cartesian product.

4.1.4 Constrained Iterative Learning Control Design

In this chapter, the constrained ILC design problem can be stated as finding a proper

input updating law in the following form

u⃗k+1 = f(u⃗k, e⃗k), ∀k ≥ 0 (4.16)
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such that
ui,k ∈ Ωi, ∀k ≥ 0

lim
k→∞

yi,k = r, i = 1, 2, · · · , p
(4.17)

where e⃗k = r⃗− y⃗k represents the ‘virtual’ consensus tracking error and it is not generally

known by all the subsystems (since not all the subsystems have access to the reference

information). It should be noted that the constraint requirement makes the design non-

trivial, since the algorithm is required to guarantee the satisfaction of the constraints

and to achieve the high performance consensus tracking simultaneously.

4.2 Constrained Consensus Tracking using Successive Pro-

jection Method

In this section, we first review the general idea of the successive projection framework

and then reformulate the constrained consensus tracking problem using the successive

projection framework.

4.2.1 Overview of Successive Projection Framework

The successive projection method described in Owens and Jones (1978) is an efficient

technique for finding the intersection between two closed, convex sets K1 and K2 in

some real Hilbert space H. By selecting an initial point k0 in the Hilbert space H,

the subsequent points are obtained by alternatively projecting the previous points onto

one set and then the other set. The properties of the successive projection method are

formally described in the following theorem.

Theorem 4.1. (Owens and Jones, 1978) Let K1 ∈ H, K2 ∈ H be two closed, convex

sets in a real Hilbert space H with K1 ∩K2 non-empty. Define

KM =

{
K1, M odd

K2, M even
(4.18)

Then, given the initial guess k0 ∈ H, the sequence {kM}M≥0 satisfying

∥kM − kM−1∥ = min
k∈KM

∥k − kM−1∥, M ≥ 1 (4.19)

with kM ∈ KM ,M ≥ 1, is uniquely defined for each k0 ∈ H and satisfies

∥kM+1 − kM∥ ≤ ∥kM − kM−1∥, M ≥ 2 (4.20)

where ∥ · ∥ is the induced norm in the Hilbert space H.
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Furthermore, for any x ∈ K1 ∩K2,

∥x− kM∥2 ≥ ∥x− kM+1∥2 + ∥kM+1 − kM∥2, (4.21)

so that the sequence {∥x− kM+1∥2}M≥0 is monotonically decreasing and {kM}M≥0 con-

tinuously gets closer to every point in K1 ∩K2. In addition

∞∑
M=1

∥kM+1 − kM∥2 ≤ ∥x− k1∥2, (4.22)

so that, for each ϵ ≥ 0, there exists an integer N such that for M ≥ N

inf
k∈KM+1

∥k − kM∥ < ϵ. (4.23)

that is, the iterates kM ∈ KM become arbitrarily close to KM+1.

Moreover, when K1 ∩K2 is empty, the algorithm converges in the sense that ∥kM+1 −
kM∥ → d(K1,K2) defining the minimum distance d(K1,K2) between two sets K1 and

K2.

4.2.2 Successive Projection Formulation for Constrained Consensus

Tracking Problem

To illustrate the idea of constrained ILC design, we initially consider the ILC design

problem without any constraints. For the general consensus tracking problem, it can be

formulated into the successive projection framework by defining two closed, convex sets

in the Hilbert space H = U × Y (where U ∈ RpN and Y ∈ RpN ) as follows

� S1 =
{

(e⃗, u⃗) ∈ H : e⃗ = r⃗ −Gu⃗− d⃗
}

;

� S2 = {(e⃗, u⃗) ∈ H : e⃗ = 0}

with inner products, induced norms for U , Y defined as

⟨u⃗, v⃗⟩U = u⃗T R⃗v⃗, ∥u⃗∥U =
√

⟨u⃗, u⃗⟩U
⟨e⃗, z⃗⟩Y = e⃗T Q⃗z⃗, ∥e⃗∥Y =

√
⟨e⃗, e⃗⟩Y

(4.24)

in which Q⃗ = LT
DQ̄LD with LD = (L + D) ⊗ IN , IN is an N by N identity matrix,

⊗ is the Kronecker product and Q̄ = diag(Q,Q, · · · , Q), R⃗ = diag(R,R, · · · , R) (where

Q ∈ RN and R ∈ RN are positive definite matrices, therefore Q⃗ is also a positive definite

matrix). The inner product and associated induced norm for the Hilbert space H are

naturally defined as

⟨(e⃗, u⃗), (z⃗, v⃗)⟩ = e⃗T Q⃗z⃗ + u⃗T R⃗v⃗

∥(e⃗, u⃗)∥ =
√
⟨(e⃗, u⃗), (e⃗, u⃗)⟩

(4.25)
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Now, by introducing the constrained set as follows

� S3 = {(e⃗, u⃗) ∈ H : u⃗ ∈ Ω},

the constrained consensus tracking problem can be stated as finding the interaction of

three different sets (i.e., S1 ∩ S2 ∩ S3). Note that, perfect consensus tracking is not

always possible under the constraint S3, in particular, when S1∩S2∩S3 = ∅, the perfect

consensus tracking cannot be achieved.

It seems like there has three sets in the constraint handling problem and the successive

projection method proposed in Theorem 4.1 cannot be applied. However, by incorporat-

ing set S3 into either S1 (i.e., S1∩S3) or S2 (i.e., S2∩S3), the 3-set problem is formulated

into a 2-set problem, which can be solved using the successive projection method. Based

on different combinations of sets S1, S2 and S3, we can generate two novel ILC frame-

works for constrained consensus tracking problem, and then use ADMM to implement

the ILC framework in a distributed manner (including the projection step computed

using ADMM). Note that, the existence of the network topology makes the distributed

design differ from the single-agent case, which will be described in the following sections.

4.3 Constrained Consensus ILC Algorithm 4.1

For this algorithm, we incorporate the input constraints with the system dynamics, and

hence it requires more computational complexity than another formulation (which will

be introduced later). In this cases, the set K1 = S1 ∩ S3 and K2 = S2, i.e.

� K1 =
{

(e⃗, u⃗) ∈ H : e⃗ = r⃗ −Gu⃗− d⃗, u⃗ ∈ Ω
}

;

� K2 = {(e⃗, u⃗) ∈ H : e⃗ = 0}

Figure 4.1 illustrates that when K1 ∩ K2 ̸= ∅, perfect consensus tracking is possible;

otherwise, perfect consensus tracking is impossible, as shown in Figure 4.2, e.g., the

reference signal is designed inadequately and the subsystem’s actuator could not simul-

taneously guarantee the tracking performance and the satisfaction of system constraints.

4.3.1 Algorithm Description

Algorithm 4.1. Given any initial input u⃗0 satisfying the input constraint set Ω, the

input law defined as follows

u⃗k+1 = arg min
u⃗∈Ω

{
∥e⃗k+1∥2Q⃗ + ∥u⃗k+1 − u⃗k∥2R⃗

}
(4.26)
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Figure 4.1: Algorithm 4.1 – perfect consensus tracking is possible
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Figure 4.2: Algorithm 4.1 – perfect consensus tracking is impossible

where e⃗k+1 = e⃗k − G(u⃗k+1 − u⃗k), iteratively solves the constrained ILC problem in the

input constraints set Ω, i.e.

ui,k ∈ Ωi, ∀k ≥ 0

lim
k→∞

yi,k = r, i = 1, 2, · · · , p
(4.27)

Remark 4.3. By definition, the input updating law (4.26) can be rewritten as follow

u⃗k+1 = arg min
u⃗∈Ω

{
∥(L + D)e⃗k+1∥2Q̄ + ∥u⃗k+1 − u⃗k∥2R⃗

}
, (4.28)

in which L = L ⊗ IN , D = D ⊗ IN , ∥(L + D)e⃗k+1∥2Q̄ represents the quadratic form

e⃗Tk+1(L + D)T Q̄(L + D)e⃗k+1 and similarly with ∥ · ∥2
R⃗
. It should be noted that, the

existence of Laplacian matrix L makes the implementation of (4.28) only requires the

output difference between neighbouring subsystems, and therefore avoiding the require-

ment of full information e⃗k that is normally unavailable in practice (since only part of

the subsystems have access to reference trajectory).

Remark 4.4. For the input updating law (4.26), it can be implemented in a centralised

manner by directly solving a constrained quadratic programming (QP) problem. How-

ever, it requires huge computation load when implementing the algorithm centrally for

large scale networked dynamical systems, which is undesirable in practice.
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4.3.2 Convergence Properties of Algorithm 4.1

For the proposed constrained ILC Algorithm 4.1, its convergence analysis will be divided

into two cases.

4.3.2.1 Perfect Consensus Tracking is Achievable

In this case, the point (0, u⃗∗) in the intersection ofK1 andK2 does exist, i.e., K1∩K2 ̸= ∅.

Algorithm 4.1 has appealing convergence properties, as shown in the following theorem:

Theorem 4.2. Given any initial input u⃗0 ∈ Ω and associated tracking error e⃗0, when

perfect consensus tracking is achievable, Algorithm 4.1 guarantees the generated input

sequence satisfies the constraint requirements, i.e.

u⃗k+1 ∈ Ω, ∀k ≥ 0, (4.29)

and the consensus tracking error norm converges monotonically to zero, i.e.

∥e⃗k+1∥Q⃗ ≤ ∥e⃗k∥Q⃗, lim
k→∞

e⃗k = 0. (4.30)

Consequently, each subsystem achieves perfect consensus tracking and the corresponding

input converges to the optimal solution as k → ∞, i.e.

lim
k→∞

yi,k = r, lim
k→∞

ui,k = u∗i (4.31)

Proof. The property of (4.29) is a direct consequence of solving the problem (4.26).

For the optimisation problem (4.26), when perfect consensus tracking is achievable, the

non-optimal input choice u⃗k+1 = u⃗k yields a suboptimal solution

∥u⃗k+1 − u⃗k∥2R⃗ + ∥e⃗k+1∥2Q⃗ ≤ ∥e⃗k∥2Q⃗ (4.32)

Note that ∥u⃗k+1 − u⃗k∥2R⃗ is non-negative, hence

∥e⃗k+1∥2Q⃗ ≤ ∥e⃗k∥2Q⃗, k = 0, 1, · · · ,∞ (4.33)

Note that Algorithm 4.1 iteratively finds the intersection of sets K1 and K2, and when

K1 ∩K2 ̸= ∅, the crosspoint is (0, u⃗∗). Hence

lim
k→∞

∥e⃗k∥2Q⃗ = 0, lim
k→∞

uk = u∗ (4.34)

which follows that

lim
k→∞

e⃗Tk Q⃗e⃗k = 0 (4.35)
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Note that matrix L + D is positive definite (as shown in Lemma 3.1) and hence Q⃗ is

a positive definite matrix, which follows that e⃗k = 0 as k → ∞. That completes the

proof.

Moreover, when perfect consensus tracking is possible, Algorithm 4.1 has the property

that the input difference between the optimal input solution and the kth input is de-

creasing monotonically, as shown in the following theorem:

Theorem 4.3. Given any initial input u⃗0 ∈ Ω and associated tracking error e⃗0, Algo-

rithm 4.1 guarantees the generated input approach the optimal solution monotonically in

norm, i.e.

∥u⃗k+1 − u⃗∗∥R⃗ ≤ ∥u⃗k − u⃗∗∥R⃗, ∀k ≥ 0 (4.36)

Proof. When the perfect consensus tracking is possible, the intersection x ∈ K1 ∩K2 =

(0, u⃗∗) and then based on Theorem 4.1, we have

∥k2k − x∥2 ≥ ∥k2k+1 − x∥2 ≥ ∥k2(k+1) − x∥2. (4.37)

Note that k2k is the point (0, u⃗k) and k2(k+1) is the point (0, u⃗k+1), and it follows that

∥u⃗k+1 − u⃗∗∥R⃗ ≤ ∥u⃗k − u⃗∗∥R⃗, ∀k ≥ 0. (4.38)

That completes the proof.

4.3.2.2 Perfect Consensus Tracking is Unachievable

In this case, the point in the intersection of K1 and K2 does not exist, i.e., K1∩K2 = ∅.

Algorithm 4.1 guarantees the monotonic convergence of the consensus tracking error

norm to a minimum consensus tracking error solution, as shown in the following theorem:

Theorem 4.4. Given any initial input u⃗0 ∈ Ω and associated tracking error e⃗0, Algo-

rithm 4.1 guarantees the generated input sequence satisfies the constraint requirements,

i.e.

u⃗k+1 ∈ Ω, ∀k ≥ 0 (4.39)

and the convergence of the consensus tracking error norm is monotonic, i.e.

∥e⃗k+1∥Q⃗ ≤ ∥e⃗k∥Q⃗, k ≥ 0 (4.40)

Furthermore, the global input u⃗ converges to the optimal solution u⃗∗s for the following

optimisation problem

u⃗∗s = arg min
u⃗∈Ω

∥r⃗ −Gu⃗− d⃗∥2
Q⃗

(4.41)
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Proof. The proof of the monotonically convergence of the consensus tracking error norm

is similar to the proof in Theorem 4.2, hence it is omitted here.

According to Theorem 1, when perfect consensus tracking is unachievable, Algorithm

4.1 converges to u⃗∗s, where k1 = (e⃗, u⃗) ∈ K1 and k2 = (0, u⃗∗s) ∈ K2 defining the minimum

distance of two sets, and it is the solution for the following optimisation problem

(k1, k2) = arg min
k1∈K1,k2∈K2

∥k1 − k2∥2 (4.42)

From the definition of K1 and K2, solving problem (4.42) is equivalent to solve the

following optimisation problem

(u⃗, u⃗∗s) = arg min
u⃗∈Ω,u⃗0

{
∥r⃗ −Gu⃗− d⃗ ∥2

Q⃗
+ ∥u⃗− u⃗0∥2R⃗

}
(4.43)

and hence, Algorithm 4.1 converges to u⃗∗s, which defined as

u⃗∗s = arg min
u⃗∈Ω,u⃗0

{
∥r⃗ −Gu⃗0 − d⃗ ∥2

Q⃗
+ ∥u⃗− u⃗0∥2R⃗

}
= arg min

u⃗∈Ω

{
min
u⃗0

∥r⃗ −Gu⃗0 − d⃗∥2
Q⃗

+ ∥u⃗− u⃗0∥2R⃗

} (4.44)

Note that u⃗0 = u⃗ is the solution of the inner minimization, and hence

u⃗∗s = arg min
u⃗∈Ω

∥r⃗ −Gu⃗− d⃗ ∥2
Q⃗

(4.45)

Since matrices Q⃗ and G are invertible, the performance index is strictly convex. It should

be noted that, the constraint is also convex, hence (4.45) has the unique solution. That

completes the proof.

Remark 4.5. It should be noted that, the convergence speed of Algorithm 4.1 will be

affected by the weighting matrices Q and R (in a similar way as that of standard norm

optimal ILC algorithm). Taking scalar weighting as an example: a smaller weighting R

indicates greater input change between two ILC trials, and hence leads to faster conver-

gence speed. For more information, please refer to Chu and Owens (2010).

Theorems 4.2, 4.3 and 4.4 show that Algorithm 4.1 guarantees the satisfaction of the

input constraints and the monotonic convergence of the consensus tracking error norm

to a minimum (possible) solution, which is appealing in practice. As mentioned in Re-

mark 4.4, the centralised implementation of Algorithm 4.1 requires huge computational

complexity for large scale networked dynamical systems, and hence we will propose

distributed implementations for Algorithm 4.1 in the following sections.
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4.3.3 Distributed Implementations of Algorithm 4.1

In this section, the idea of ‘consensus’ formulation in ADMM is used to develop two

distributed implementations for Algorithm 4.1. In the following, we first review the

general idea of ADMM.

4.3.3.1 The Alternating Direction Method of Multipliers

ADMM has superior convergence properties: the convergence of the objective, residual

and dual variable is guaranteed for any ρ > 0, which is contrast to most of the distributed

methodologies, e.g., dual decomposition (Boyd et al., 2011). For rigorous proof of the

convergence properties, please refer to Boyd et al. (2011). To describe the general idea

of ADMM, consider the following optimisation problem

minimize

p∑
i=1

Ji(xi) + g(z)

subject to xi − Ẽiz = 0, i = 1, · · · , p

(4.46)

where Ji(xi) is the local cost function, g(z) is the global regularization function, xi ∈ Rpi

is the local variable, z ∈ Rp denotes the global variable, and Ẽi is the corresponding

matrix that maps the local variable to the global component.

To solve problem (4.46), ADMM will perform the following three steps iteratively

x q+1
i = arg minLρi(xi, z

q, γqi ) (4.47)

z q+1 = arg minLρ(x q+1, z, γq) (4.48)

γ q+1
i = γ q

i + ρ(x q+1
i − Ẽiz

q+1) (4.49)

where γi ∈ Rpi denotes the dual variable, q is the ADMM iteration index, ρ is the

penalty parameter and the augmented Lagrangian is defined as

Lρ(x, z, γ) =

p∑
i=1

Lρi(xi, z, γi) + g(z)

Lρi(xi, z, γi) = Ji(xi) + γTi (xi − Ẽiz) +
ρ

2
∥xi − Ẽiz∥2

(4.50)

4.3.3.2 Distributed Implementation Algorithm 4.2

The most intuitive method is to perform the restriction on each local input updating

step. The optimal solution of input law (4.26) at trial k+ 1 can be found by solving the
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following optimisation problem

minimize

p∑
i=1

Ji,k+1(u⃗i,k+1)

subject to u⃗i,k+1 − Ẽizk+1 = 0, i = 1, · · · , p

(4.51)

in which u⃗i,k+1 is ith subsystem’s local input plan for itself and its neighbours. As an

example, if Ni = {l,m}

u⃗i,k+1 =
[
ui,k+1

T ul,k+1
T um,k+1

T
]T

(4.52)

and Ji,k+1(u⃗i,k+1) is defined as

Ji,k+1(u⃗i,k+1) = ∥
∑
j∈Ni

Wij [(Gjuj,k+1 + dj) − (Giui,k+1 + di)]

+ Dii(r −Giui,k+1 − di)∥2Q + ∥ui,k+1 − ui,k∥2R

(4.53)

with the domain of Ji,k+1 defined as

dom Ji,k+1 =
{
u⃗i,k+1| u⃗i,k+1 ∈ Ω⃗i

}
(4.54)

where Dii = Dii ⊗ IN , Ω⃗i = Ωi × Ωl × Ωm (if Ni = {l,m}), ∥ui,k+1 − ui,k∥2R = (ui,k+1 −
ui,k)TR(ui,k+1 − ui,k) and similarly with ∥ · ∥2Q.

Now, by defining the global variable zk+1 in (4.46) as

zk+1 =
[
zT1,k+1 zT2,k+1 · · · zTp,k+1

]T
(4.55)

where zi,k+1 is the ith component of the global value, and using ADMM three steps

(4.47) – (4.49) to solve (4.51), the following distributed implementation method can be

obtained.

Algorithm 4.2. At trial k + 1, the input sequence {u⃗q+1
i,k+1}q≥0 obtained from the fol-

lowing three steps

u⃗ q+1
i,k+1 = arg min

u⃗i,k+1∈Ω⃗i

[
γ q
i,k+1

T
(u⃗ q+1

i,k+1 − Ẽiz
q
k+1)

+
ρ

2
∥u⃗ q+1

i,k+1 − Ẽiz
q
k+1∥

2 + Ji,k+1(u⃗
q+1
i,k+1)

] (4.56)

z q+1
i,k+1 =

1

1 + |Ni|
∑

o∈(Ni
⋃

i)

(u⃗ q+1
o,k+1)i (4.57)

γ q+1
i,k+1 = γ q

i,k+1 + ρ(u⃗ q+1
i,k+1 − Ẽiz

q+1
k+1) (4.58)
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provides a solution for problem (4.26), i.e.

lim
q→∞

zq+1
k+1 = arg min

u⃗∈Ω

{
∥e⃗k+1∥2Q⃗ + ∥u⃗k+1 − u⃗k∥2R⃗

}
(4.59)

where q is the iteration index, and (u⃗ q+1
o,k+1)i denotes all the relevant elements in the local

input plan u⃗ q+1
o,k+1 related to the ith agent.

Implementing the proposed Algorithm 4.1 using Algorithm 4.2 is straightforward, how-

ever, its computational burden can be heavy since each input updating step needs to

solve a constrained optimisation problem (without analytic solution) to obtain the op-

timal solution.

4.3.3.3 Distributed Implementation Algorithm 4.3

An alternative method is to perform the regularization on the global variable. The solu-

tion of input law (4.26) can be obtained by solving the following optimisation problem

minimize

p∑
i=1

Ji,k+1(u⃗i,k+1) + g(zk+1)

subject to u⃗i,k+1 − Ẽizk+1 = 0, i = 1, · · · , p

(4.60)

where the local cost function Ji,k+1(u⃗i,k+1) is defined as

Ji,k+1(u⃗i,k+1) = ∥
∑
j∈Ni

Wij [(Gjuj,k+1 + dj)−(Giui,k+1 + di)]

+ Dii(r −Giui,k+1 − di)∥2Q + ∥ui,k+1 − ui,k∥2R

(4.61)

with the domain of Ji,k+1 defined as

dom Ji,k+1 =
{
u⃗i,k+1| u⃗i,k+1 ∈ RpiN

}
(4.62)

and g(zk+1) is the indicator function of set Ω:

g(zk+1) =

{
0 zk+1 ∈ Ω

+∞ zk+1 /∈ Ω
(4.63)

Then, using the idea of general form in ADMM, yields the following distributed imple-

mentation method:

Algorithm 4.3. At trial k + 1, the input sequence {u⃗q+1
i,k+1}q≥0 obtained from the fol-

lowing three steps

u⃗ q+1
i,k+1 = argmin

[
Ji,k+1(u⃗

q+1
i,k+1) +

ρ

2
∥u⃗ q+1

i,k+1 − Ẽiz
q
k+1∥

2 + γ q
i,k+1

T
(u⃗ q+1

i,k+1 − Ẽiz
q
k+1)

]
(4.64)
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Algorithm 4.4. Distributed ILC Algorithm for Constraint Handling Problem

Input: State space matrix Ai, Bi, Ci, reference trajectory r, reference-accessibility
matrix D, Laplacian matrix L, maximum-trial kmax, maximum-iteration qmax,
penalty parameter ρ, weighting Q and weighting R

Output: Each subsystem’s optimal input ui,kmax

1: Initialization: Set the ILC trial number k = 0
2: For: k = 0 to kmax

3: For: q = 0 to qmax

4: For: i = 1 to p
5: Receive data from neighbouring subsystems

6: Perform u⃗ q+1
i,k+1 minimization (4.56) (or (4.64))

7: Perform z q+1
i,k+1 minimization (4.57) (or (4.65))

8: Perform γ q+1
i,k+1 minimization (4.58) (or (4.66))

9: Send data to neighbouring subsystems
10: End for
11: End for
12: Transform local input plan u⃗ qmax

i,k+1 into ui,k+1

13: End for
14: Return: Each subsystem’s optimal input ui,kmax

z q+1
i,k+1 = ΠΩi

[
1

1+|Ni|
∑

o∈(Ni
⋃

i)

[(u⃗ q+1
o,k+1)i+(γ q+1

o,k+1)i]

]
(4.65)

γ q+1
i,k+1 = γ q

i,k+1 + ρ(u⃗ q+1
i,k+1 − Ẽiz

q+1
k+1) (4.66)

provides a solution for problem (4.26), i.e.

lim
q→∞

zq+1
k+1 = arg min

u⃗∈Ω

{
∥e⃗k+1∥2Q⃗ + ∥u⃗k+1 − u⃗k∥2R⃗

}
(4.67)

where ΠΩi denotes the projection onto the input constraint set Ωi and (γ q+1
o,k+1)i represents

all the corresponding components of local dual variable γ q+1
o,k+1 related to the ith agent.

4.3.4 Distributed ILC Algorithm 4.4

Using distributed implementation Algorithm 4.2 (4.3) to implement Algorithm 4.1 dis-

tributively, yields the distributed ILC algorithm for constrained consensus tracking prob-

lem, as shown in the Algorithm 4.4. Algorithm 4.4 contains kmax ILC trials and each

trial requires qmax ADMM iterations to approach the optimal input solution. In each

ADMM iteration, each subsystem receives information from its neighbours in Step 5; in

Step 6 – 8, it uses the updating law (4.56) – (4.58) (or (4.64) – (4.66)) to update the local

input plan u⃗ q+1
i,k+1, global value component z q+1

i,k+1 and local dual value γ q+1
i,k+1; in Step 9,

each subsystem sends data to its neighbours and starts the next ADMM iteration (until

reaching the maximum iteration number).

Remark 4.6. Note that, for Algorithm 4.4, the convergence behaviour of ADMM is
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Figure 4.3: Algorithm 4.5 – perfect consensus tracking is possible
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Figure 4.4: Algorithm 4.5 – perfect consensus tracking is impossible

affected by the maximum ADMM iteration number qmax. In theory, infinite iteration

number is required for ADMM to approximate the centralised solution, however, a small

number of ADMM iteration is usually sufficient to approach the centralised result in

practice. This phenomenon will be verified in later simulation.

4.4 Constrained Consensus ILC Algorithm 4.5

In contrast to Algorithm 4.1 proposed in Section 4.3, the following algorithm will incor-

porate the input constraints with the zero error tracking. In this cases, the set K1 = S1

and K2 = S2 ∩ S3, i.e.

� K1 =
{

(e⃗, u⃗) ∈ H : e⃗ = r⃗ −Gu⃗− d⃗
}

;

� K2 = {(e⃗, u⃗) ∈ H : e⃗ = 0, u⃗ ∈ Ω}.

The cases for K1 ∩ K2 ̸= ∅ and K1 ∩ K2 = ∅ are illustrated in Figures 4.3 and 4.4,

respectively.

4.4.1 Algorithm Description

Algorithm 4.5. Given any initial input u⃗0 satisfying the input constraint set Ω, the in-

put sequence {u⃗k}k≥0 defined by the solution of the following unconstrained optimisation
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problem

ûk+1 = arg min
u⃗

{
∥e⃗k+1∥2Q⃗ + ∥u⃗− u⃗k∥2R⃗

}
(4.68)

followed by the input projection

u⃗k+1 = arg min
u⃗∈Ω

∥u⃗− ûk+1∥ ∈ Ω (4.69)

iteratively solves the constrained ILC problem in the input constraints set Ω, i.e.

ui,k ∈ Ωi, ∀k ≥ 0

lim
k→∞

yi,k = r, i = 1, 2, · · · , p
(4.70)

Remark 4.7. For the first step (4.68) in Algorithm 4.5, it can be implemented in a

centralised manner by directly finding the stationary point of the cost function and the

input law is shown as

ûk+1 = u⃗k + (GT Q⃗G + R⃗)−1GT Q⃗e⃗k (4.71)

However, it requires huge computation load when implementing the algorithm centrally

for large scale networked dynamical systems, which is undesirable in practice.

Remark 4.8. For the second step (4.69) in Algorithm 4.5, the solution seems not easy

to be obtained. However, the individual input constraint set Ωi is normally a point-wise

constraint that can be calculated easily. As an example, if Ωi = {ui ∈ RN : 0 ≤ ui(t)},
then the input solution is simply obtained as follows

ui,k+1(t) =

{
ûi,k+1(t) if ûi,k+1(t) ≥ 0

0 if ûi,k+1(t) < 0
(4.72)

for t ∈ [0, N − 1].

4.4.2 Convergence Properties of Algorithm 4.5

For the proposed constrained ILC Algorithm 4.5, its convergence analysis will also be

divided into two cases.

4.4.2.1 Perfect Consensus Tracking is Achievable

In this situation, the intersection of sets K1 and K2 is not empty (i.e., K1 ∩ K2 ̸= ∅)

and Algorithm 4.5 has appealing convergence properties shown as follow:



Chapter 4 Distributed NOILC for Constrained Consensus Tracking Problem 103

Theorem 4.5. Given any initial input u⃗0 ∈ Ω and associated tracking error e⃗0, Algo-

rithm 4.5 guarantees the generated input sequence satisfies the constraint requirements,

i.e.

u⃗k+1 ∈ Ω, ∀k ≥ 0 (4.73)

and the consensus error norm converges to zero, i.e.

lim
k→∞

e⃗k = 0. (4.74)

Consequently, each subsystem achieves the perfect consensus tracking and the corre-

sponding input converges to the optimal solution as k → ∞, i.e.

lim
k→∞

yi,k = r, lim
k→∞

ui,k = u∗i . (4.75)

Moreover, the monotonic convergence is hold for the following performance index:

Jk = ∥Ee⃗k∥2Q⃗ + ∥F e⃗k∥2R⃗ (4.76)

in which

E = IpN −G(GT Q⃗G + R⃗)−1GT Q⃗, (4.77)

F = (GT Q⃗G + R⃗)−1GT Q⃗ (4.78)

Proof. When perfect consensus tracking is achievable (i.e., S1∩(S2∩S3) ̸= ∅), the succes-

sive projection framework iteratively finds the intersection (0, u⃗∗), and hence Equations

(4.74) and (4.75) are obtained.

According to Theorem 4.1, the distance between {k0, k1, k2, k3, · · · } is decreasing, i.e.,

∥k2k − k2k+1∥ ≥ ∥k2k+1 − k2(k+1)∥

≥ ∥k2(k+1) − k2(k+1)+1∥.
(4.79)

Note that, the norm in the left side is the projection of k2k onto the set K1, i.e.

∥k2k − k2k+1∥ = arg min
u⃗

{
∥e⃗k+1∥2Q⃗ + ∥u⃗− u⃗k∥2R⃗

}
(4.80)

and it has an analytic solution, which shown as

ûk+1 = u⃗k + (GT Q⃗G + R⃗)−1GT Q⃗e⃗k (4.81)

Then, using the solution (4.81), Equation (4.80) is further rewritten as

∥k2k − k2k+1∥ = ∥Ee⃗k∥2Q⃗ + ∥F e⃗k∥2R⃗ (4.82)

where matrix E and F are defined in (4.77) and (4.78). Note that, Equation (4.82) is
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the performance index Jk. Following the similar idea, the bottom term of (4.79) is Jk+1

and then we have

Jk+1 ≤ Jk. (4.83)

That completes the proof.

In the above theorem, it shows that Algorithm 4.5 cannot guarantee the monotonic

convergence of the consensus tracking error norm ∥e⃗k∥Q⃗ even when perfect consensus

tracking is possible, however, Algorithm 4.5 has the property that the input difference

between the optimal input solution and the kth trial’s input is decreasing monotonically,

as shown in the following theorem:

Theorem 4.6. Given any initial input u⃗0 ∈ Ω and associated tracking error e⃗0, Algo-

rithm 4.5 guarantees the generated input approach the optimal solution monotonically in

norm, i.e.

∥u⃗k+1 − u⃗∗∥R⃗ ≤ ∥u⃗k − u⃗∗∥R⃗, ∀k ≥ 0 (4.84)

Proof. The proof follows the similar procedure as the proof of monotonic convergence

on control input in Theorem 4.3. Hence, it is omitted here for brevity.

4.4.2.2 Perfect Consensus Tracking is Unachievable

In this situation, the intersection of sets K1 and K2 is empty (i.e., K1 ∩K2 = ∅) and

Algorithm 4.5 has appealing convergence properties shown as follow.

Theorem 4.7. Given any initial input u⃗0 ∈ Ω and associated tracking error e⃗0, Algo-

rithm 4.5 guarantees the generated input sequence satisfies the constraint requirements,

i.e.

u⃗k+1 ∈ Ω, ∀k ≥ 0 (4.85)

and the monotonic convergence is hold for the following performance index

Jk = ∥Ee⃗k∥2Q⃗ + ∥F e⃗k∥2R⃗ (4.86)

in which

E = IpN −G(GT Q⃗G + R⃗)−1GT Q⃗, (4.87)

F = (GT Q⃗G + R⃗)−1GT Q⃗ (4.88)

Furthermore, the global input u⃗ converges to the optimal solution u⃗∗s for the following

optimisation problem

u⃗∗s = arg min
u⃗∈Ω

{
∥Ee⃗ ∥2

Q⃗
+ ∥F e⃗ ∥2

R⃗

}
(4.89)
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Proof. The proof of the monotonically convergence of the defined performance index Jk

is similar to the proof in Theorem 4.5, hence it is omitted here.

According to Theorem 4.1, when perfect consensus tracking is unachievable, Algorithm

4.5 converges to u⃗∗s, where k1 = (e⃗, u⃗) ∈ K1 and k2 = (0, u⃗∗s) ∈ K2 defining the minimum

distance of two sets, and it is the solution for the following optimisation problem

(k1, k2) = arg min
k1∈K1,k2∈K2

∥k1 − k2∥2 (4.90)

From the definition of K1 and K2, solving problem (4.90) is equivalent to solve the

following optimisation problem

(u⃗, u⃗∗s) = arg min
u⃗∈Ω,u⃗0

{
∥r⃗ −Gu⃗0 − d⃗ ∥2

Q⃗
+ ∥u⃗0 − u⃗∥2

R⃗

}
(4.91)

and hence, Algorithm 4.5 converges to u⃗∗s, which defined as

u⃗∗s = arg min
u⃗∈Ω,u⃗0

{
∥r⃗ −Gu⃗0 − d⃗ ∥2

Q⃗
+ ∥u⃗0 − u⃗∥2

R⃗

}
= arg min

u⃗∈Ω

{
min
u⃗0

∥r⃗ −Gu⃗0 − d⃗∥2
Q⃗

+ ∥u⃗0 − u⃗∥2
R⃗

} (4.92)

Note that, the inner minimization has an analytic solution, which shown as

u⃗0 = u⃗+ (GT Q⃗G + R⃗)−1GT Q⃗e⃗ (4.93)

Then, substitute (4.93) into (4.92), we have

u⃗∗s = arg min
u⃗∈Ω

{
∥Ee⃗ ∥2

Q⃗
+ ∥F e⃗ ∥2

R⃗

}
(4.94)

where matrix E and F are defined in (4.87) and (4.88).

Since matrices Q⃗, R⃗, E and F are invertible, the performance index is strictly convex. It

should be noted that, the constraint is also convex, hence (4.92) has the unique solution.

That completes the proof.

Remark 4.9. Note that, when perfect consensus tracking is unachievable, smaller weight-

ing R will still result in faster convergence speed, however, the convergent error value

will change (in contrast to the case in Algorithm 4.1). As mentioned in Theorem 4.7,

the input of Algorithm 4.5 converges as follow:

u⃗∗s = arg min
u⃗∈Ω

{
∥Ee⃗ ∥2

Q⃗
+ ∥F e⃗ ∥2

R⃗

}
(4.95)

and when R⃗ → ∞, the first term is ∥e⃗ ∥2
Q⃗

and the second term is 0. Hence, Equation
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(4.95) becomes

u⃗∗s = arg min
u⃗∈Ω

∥e⃗ ∥2
Q⃗
. (4.96)

This is the best result can be achieved when the perfect consensus tracking is unachievable,

but on the other hand, the convergence speed of consensus error is extremely slow and

it should take infinity ILC trials to achieve the optimal solution, which is undesired in

practice.

Consider another extreme situation R⃗ = 0, the first term becomes 0 and the second term

is ∥G−1e⃗ ∥2
R⃗
. Note that ∥G−1e⃗ ∥2

R⃗
= ∥u⃗ − u⃗∗∥2

R⃗
(where u⃗∗ is the optimal input when

perfect consensus tracking is possible). Hence, Equation (4.95) becomes

u⃗∗s = arg min
u⃗∈Ω

∥u⃗− u⃗∗∥2
R⃗
. (4.97)

This is the projection of the optimal input ∥u⃗∗∥ onto the constraint set Ω and clearly,

the value of (4.97) is larger than (4.96). However, the convergence speed is extremely

fast in this situation.

4.4.3 Distributed Implementations of (4.68) in Algorithm 4.5

For the first step (4.68) in Algorithm 4.5, its performance index can be fully separated

into p local cost functions, with the local cost function Ji,k+1(ûi,k+1) of ith subsystem

defined as

Ji,k+1(ûi,k+1) = ∥
∑
j∈Ni

Wij [(Giui,k+1 + di)−(Gjuj,k+1 + dj)]

+ Dii(r −Giui,k+1 − di)∥2Q + ∥ui,k+1 − ui,k∥2R

(4.98)

in which ûi,k+1 represents the local auxiliary input variable for subsystem i and its

neighbours j ∈ Ni. As an example, if Ni = {l,m}, ûi,k+1 is denoted as

ûi,k+1 =
[
uTi,k+1 uTl,k+1 uTm,k+1

]T
(4.99)

Using the idea of ADMM, we can have the following implementation algorithm:

Algorithm 4.6.0. At ILC trial k+ 1, the input sequence {û q+1
i,k+1}q≥0 obtained from the

following three steps

û q+1
i,k+1 = arg min

[
Ji,k+1(û

q+1
i,k+1)+

ρ

2
∥û q+1

i,k+1−Ẽiz
q
k+1∥

2+γ q
i,k+1

T
(û q+1

i,k+1−Ẽiz
q
k+1)

]
(4.100)

z q+1
i,k+1 =

1

1 + |Ni|
∑

o∈(Ni
⋃

i)

(û q+1
o,k+1)i (4.101)

γ q+1
i,k+1 = γ q

i,k+1 + ρ(û q+1
i,k+1 − Ẽiz

q+1
k+1) (4.102)
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provides a distributed implementation for problem (4.68), i.e.

lim
q→∞

zqk+1 = arg min
{
∥e⃗k+1∥2Q⃗ + ∥u⃗− u⃗k∥2R⃗

}
(4.103)

where (ûo,k+1)i denotes the element in ûo,k+1 that related to zi,k+1.

For the distributed input updating law (4.100), it is actually the form of unconstrained

Linear Quadratic Tracking (LQT), and hence it can be implemented in a matrix form,

or in a feedback plus feedforward form. We first consider the matrix form, as shown in

the following proposition:

Proposition 4.1. For the input law (4.100), it can be implemented in a matrix form

as follows

û q+1
i,k+1 =

[
G⃗i

T
(Li+Di)

TQi(Li+Di)G⃗i+
ρ

2
I+Si

TRiSi

]−1

×
[
G⃗i

T
(Li+Di)

TQi(Li+Di)(r⃗i − d⃗i) + Si
TRiSiu⃗i,k +

ρ

2
Ẽiz

q
k+1 −

1

2
γ q
i,k+1

] (4.104)

in which Qi = Q ⊗ Ipi, Ri = R ⊗ Ipi and Li,Di,Si, G⃗i are local Laplacian matrix,

local reference-accessibility matrix, local selected matrix and local system matrix. As an

example, if Ni = {l,m}, then

Li =


∑

j∈Ni
Wij −Wil −Wim

0 0 0

0 0 0

⊗ IN

Di =

 dii 0 0

0 0 0

0 0 0

⊗ IN Si =

 1 0 0

0 0 0

0 0 0

⊗ IN

G⃗i = diag (Gi, Gl, Gm).

Moreover, r⃗i, d⃗i, u⃗i,k are local reference trajectory, local initial state respond and local

input vector, which defined as

r⃗i =
[
rT rT rT

]T
d⃗i =

[
dTi dTl dTm

]T
u⃗i,k =

[
uTi,k uTl,k uTm,k

]T
Proof. All the above local parameters are obtained by extracting the corresponding

elements in the global matrices/vectors defined in (4.68). Finding the stationary point
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of Equation (4.100), we have[
G⃗i

T
(Li+Di)

TQi(Li+Di)G⃗i+
ρ

2
I+Si

TRiSi

]
û q+1
i,k+1 =

G⃗i
T

(Li+Di)
TQi(Li+Di)(r⃗i − d⃗i) + Si

TRiSiu⃗i,k +
ρ

2
Ẽiz

q
k+1 −

1

2
γ q
i,k+1.

(4.105)

Note that the term G⃗i
T

(Li+Di)
TQi(Li+Di)G⃗i+

ρ
2I+Si

TRiSi is invertible, it yields the

input updating law (4.104).

Note that, the matrix form implementation (4.104) is easy to follow, but on the other

hand, it involve the calculation of the system matrix inverse and hence produces large

computational load. Next, we will introduce a feedback plus feedforward implementa-

tion.

Proposition 4.2. For the input law (4.100), it can be calculated using a feedback plus

feedforward structure

û q+1
i,k+1(t) = η q

i,k+1(t) + Ψ−1
i (t)B⃗T

i ψ
q+1
i,k+1(t) (4.106)

with costate ψ q+1
i,k+1(t) is defined as

ψ q+1
i,k+1(t) =

[
−Ki(t){Ipi + B⃗iΨ

−1
i (t)B⃗T

i Ki(t)}−1A⃗iχ⃗
q+1
i,k+1(t)

]
+ ξ q+1

i,k+1(t) (4.107)

where χ⃗ q+1
i,k+1(t) is denotes as

χ⃗ q+1
i,k+1(0) = 0

χ⃗ q+1
i,k+1(t+ 1) = A⃗iχ⃗

q+1
i,k+1(t) + B⃗i

[
û q+1
i,k+1(t)−η

q
i,k+1(t)

] (4.108)

and A⃗i, B⃗i, C⃗i are local state-space matrices of subsystem i and Ki(·) represents the

local discrete Riccati Equation on the time interval t ∈ [0, N − 1] with terminal condition

Ki(N) = 0:

Ki(t) = − A⃗T
i Ki(t+ 1)B⃗i{B⃗T

i Ki(t+ 1)B⃗i + Ψi(t+ 1)}−1

×BT
i Ki(t+ 1)A⃗i + A⃗T

i Ki(t+ 1)A⃗i + C⃗T
i Ξi(t+ 1)C⃗i

(4.109)

and ξ q+1
i,k+1(t) denotes the feedforward term denotes as (with conditions ξ q+1

i,k+1(N) = 0)

ξ q+1
i,k+1(t) =

{
Ipi +Ki(t)B⃗iζ

−1
i (t)B⃗T

i

}−1

×
{
A⃗T

i ξ
q+1
i,k+1(t+ 1) + C⃗T

i Ξi(t+ 1)θ q
i,k+1(t+ 1)

} (4.110)
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η q
i,k+1 is defined as

η q
i,k+1 = ζ−2

i

(
ρ

2
Ẽiz

q
k+1 −

1

2
γ q
i,k+1 + Si

TRiSiu⃗i,k

)
, (4.111)

ζi, ςi are defined as

ζi = (Si
TRiSi +

ρ

2
IpiN )

1
2 , (4.112)

ςi = Qi
1
2 (Li + Di), (4.113)

Ψi, Ξi are defined as

Ψi = ζTi ζi, (4.114)

Ξi = ςTi ςi, (4.115)

θ q
i,k+1 is defined as

θ q
i,k+1 = r⃗i − G⃗iη

q
i,k+1 − d⃗i (4.116)

and ·(t) denotes the tth element in the corresponding vector or matrix.

Proof. At iteration q+ 1, the input of the ADMM algorithm is generated by solving the

following optimization problem

û q+1
i,k+1 = arg min

{
∥(Di + Li)(r⃗i − G⃗iû

q+1
i,k+1 − d⃗i))∥2Qi

+ ∥Si(û
q+1
i,k+1 − u⃗i,k))∥2Ri

+
ρ

2
∥û q+1

i,k+1 − Ẽiz
q
k+1∥

2 + γ q
i,k+1

T
(û q+1

i,k+1 − Ẽiz
q
k+1)

} (4.117)

For the above optimization problem, we define the last 3 terms as ϖq+1
i,k+1, which could

be written as:

ϖq+1
i,k+1 =(û q+1

i,k+1)
T (Si

TRiSi +
ρ

2
IpiN )û q+1

i,k+1

− 2(û q+1
i,k+1)

T
[ρ

2
Ẽiz

q
k+1−

1

2
γ q
i,k+1+Si

TRiSiu⃗i,k

] (4.118)

that is

ϖq+1
i,k+1 = ∥ζi(û q+1

i,k+1 − η q
i,k+1)∥

2 (4.119)

where ζi = (Si
TRiSi + ρ

2IpiN )
1
2 , η q

i,k+1 = ζ−2
i (ρ2 Ẽiz

q
k+1 − 1

2γ
q
i,k+1 + Si

TRiSiu⃗i,k). It

follows that

ϖq+1
i,k+1 = ∥û q+1

i,k+1 − η q
i,k+1∥

2
Ψi=ζiT ζi

(4.120)

Note that, the first term in (4.117) can be written into the following form:

ϱq+1
i,k+1 = ∥ςi(θ q

i,k+1 − G⃗i(û
q+1
i,k+1 − η q

i,k+1))∥
2 (4.121)
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Algorithm 4.6. Distributed ILC Algorithm for Constraint Handling Problem

Input: State space matrices Ai, Bi, Ci, desired reference r, reference-accessibility
matrix D, Laplacian matrix L, maximum-trial kmax, maximum-iteration qmax,
penalty parameter ρ, weighting Q and weighting R

Output: Each subsystem’s optimal input ui,kmax

1: Initialization: Set the ILC trial number k = 0
2: For: k = 0 to kmax

3: For: q = 0 to qmax

4: For: i = 1 to p
5: Receive data from neighbouring subsystems

6: Perform û q+1
i,k+1 minimization (4.104) (or (4.106))

7: Perform z q+1
i,k+1 minimization (4.101)

8: Perform γ q+1
i,k+1 minimization (4.102)

9: Send data to neighbouring subsystems
10: End for
11: End for
12: Transform local input plan û qmax

i,k+1 into ûi,k+1

13: Perform the input projection step (4.69)
14: End for
15: Return: Each subsystem’s optimal input ui,kmax

where

ςi = Qi
1
2 (Li + Di)

θ q
i,k+1 = r⃗i − G⃗iη

q
i,k+1 − d⃗i

(4.122)

then, we have

ϱq+1
i,k+1 = ∥θ q

i,k+1 − G⃗i(û
q+1
i,k+1 − η q

i,k+1)∥
2
Ξi=ςiT ςi

(4.123)

Now, the input law (4.56) can be written into a Linear Quadratic Tracking (LQT)

problem:

û q+1
i,k+1 = argmin(∥θ q

i,k+1 − G⃗i(û
q+1
i,k+1 − η q

i,k+1)∥
2
Ξi

+ ∥û q+1
i,k+1 − η q

i,k+1∥
2
Ψi

) (4.124)

and then substituting the term in (4.124) into standard LQT problem, we can obtain

(4.106). That completes the proof.

By contrast to matrix form, the feedback plus feedforward implementation not only

requires less calculation (since it does not involve the calculation of the system matrix

inverse), but also has stronger robustness (benefiting from the real-time state feedback).
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4.4.4 Distributed ILC Algorithm 4.6

Using distributed implementation Algorithm 4.6.0 to implement Algorithm 4.5 distribu-

tively, we have the distributed ILC Algorithm 4.6 for constrained consensus tracking

problem. For Algorithm 4.6, it follows the similar idea as Algorithm 4.4: it repetitively

perform ADMM three steps in the inner loop (either in matrix form or feedback plus

feedforward form) to approximate the centralised solution. However, the main differ-

ence between two algorithms is that: Algorithm 4.4 directly solves the constrained ILC

problem in the ADMM inner loop, while Algorithm 4.6 solves an unconstrained problem

in the ADMM inner loop and then performs the projection step (4.69) in Step 13 to find

the input solution.

Remark 4.10. Note that, Algorithm 4.6 requires less computation than Algorithm 4.4

(since it has analytic solution in the ADMM inner loop). However, it cannot guarantee

the monotonic convergence of the consensus tracking error norm, which may cause some

problems in practice (e.g., product quality problem).

4.5 Numerical Example

In this section, we provide numerical examples to verify the effectiveness of all the

proposed algorithms. Consider a heterogeneous networked dynamical system including

seven subsystems, where ith subsystem’s dynamics a discrete-time, over-damping, non-

minimum phase system, which described as

Gi(s) =
15s− 1

s2 + 6s+ τi
(4.125)

where τi = i, i = 1, 2, · · · , 7.

Figure 4.5 shows the network topology of the networked dynamical system. Assuming

the trial length is 3s (i.e., t ∈ [0, 3]), sampling time Ts = 0.05s (sampled using a zero-

order hold), ith subsystem’s initial condition xi,0 = 0. The reference is defined as

r(t) =

{
sin [π(Tst− 1)] 20 ≤ t ≤ 40

0 otherwise
(4.126)

4.5.1 Example 1: Perfect Consensus Tracking is Possible

We consider input saturation constraint (Pakshin et al., 2019) in the following examples

and the case when perfect consensus tracking is possible is first investigated. To make

sure the perfect consensus tracking is achievable, we assume each subsystem’s input



112 Chapter 4 Distributed NOILC for Constrained Consensus Tracking Problem

1Reference 3 5

2 4 6

7

Figure 4.5: The graph structure of numerical example

constraint set is big enough to contain the optimal input solution:

Ωi =
{
ui ∈ RN : −1 ≤ ui(t) ≤ 1

}
(4.127)

and in the following, we will investigate Algorithm 4.4 and Algorithm 4.6 separately to

demonstrate their effectiveness.

4.5.1.1 Distributed Algorithm 4.4

As mentioned in Remark 4.6, the convergence speed of Algorithm 4.4 will be affected by

the maximum-iteration qmax, and hence we investigate the effect of maximum-iteration

qmax in the following. All the subsystems’ initial input at the first trial are set to be 0,

the weighting matrices Q and R are set to be IN , and the penalty parameter ρ is set

to 4. Figure 4.6 shows the convergence behaviour of distributed Algorithm 4.4 (using

distributed implementation Algorithms 4.2 and 4.3) and centralised solution over 1000

ILC trials. For both distributed implementations, they guarantee the consensus track-

ing error norm converges monotonically in each ILC trial (with the same convergence

behaviour) and eventually achieves perfect consensus tracking, which verifies Theorem

4.2.

Furthermore, as the increases of maximum-iteration number qmax in each ILC trial, the

convergence speed of the proposed algorithm increases. However, this improvement on

the convergence speed is marginal: after qmax ≥ 50, the results of both distributed

implementations are almost indistinguishable from the centralised result, showing that

a small number of ADMM iterations is usually sufficient to approach the centralised

solution in practice. The input of different subsystems on 1000th ILC trial (with qmax =

80) are shown in Figure 4.7, and it shows that all the subsystem’s input are constrained

in the constrained set Ωi, which achieves the desired objective (4.39).
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Zoom In

Figure 4.6: Algorithm 4.4 – Convergence of tracking error norm over 1000 trials
(for different maximum-iteration qmax)

Figure 4.7: Algorithm 4.4 – Input signal of different subsystems on 1000th trial
(when perfect consensus tracking is possible)
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Zoom In

Figure 4.8: Algorithm 4.6 – Convergence of tracking error norm over 1000 trials
(for different maximum-iteration qmax)

4.5.1.2 Distributed Algorithm 4.6

To make comparison with Algorithm 4.4, we choose the same parameters as in last sec-

tion, i.e., the weighting matrices Q = R = IN , and the penalty parameter ρ = 4. Figure

4.8 shows the convergence behaviour of distributed Algorithm 4.6 over 1000 ILC trials.

The figure shows that when perfect consensus tracking is possible, the proposed Algo-

rithm 4.6 can guarantee the consensus tracking error norm converge to zero. Moreover,

increasing ADMM maximum-iteration number qmax result in faster convergence before

qmax = 50 and after that, the distributed results are equivalent to the centralised result,

which demonstrate the high efficiency of ADMM in practice. By fixing the ADMM

maximum-iteration qmax = 80, we have the input trajectory of seven subsystems as

shown in Figure 4.9, demonstrating that each subsystem’s input is constrained in the

constraint set Ωi.

4.5.2 Example 2: Perfect Consensus Tracking is Impossible

In this section, we assume that all the setting are the same as the last example except

each subsystem’s input constraint set is replaced by

Ωi = {ui ∈ RN : −0.35 ≤ ui(t) ≤ 0.35} (4.128)
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Figure 4.9: Algorithm 4.6 – Input signal of different subsystems on 1000th trial
(when perfect consensus tracking is possible)

and hence the perfect consensus tracking is unachievable.

4.5.2.1 Distributed Algorithm 4.4

Figure 4.10 shows the convergence of the consensus consensus tracking error norm over

600 ILC trials. In this situation, both distributed algorithms (for different qmax) guaran-

tee ∥e⃗k∥Q⃗ converges monotonically to the ‘best fit’ solution, which verifies Theorem 4.4.

All the agents’ input on 600th trial are shown in Figure 4.11 and it demonstrates that

each agent’s resulting input is still constrained in the constraint set Ωi , which confers

to our expectations. Figure 4.12 shows the input energy consumption over 600 trials,

and it demonstrates that Algorithm 4.4 guarantees the input converge to the optimal

solution (4.41).

To investigate the effect of weighting matrices Q and R, the maximum-iteration number

qmax is fixed to 50, with the penalty parameter ρ = 4 and the scale weighting Q = 1.

Figure 4.13 shows the convergence performance of Algorithm 4.4 for different scalar

weighting R. The figure shows that as the decreases of R, the convergence speed of

consensus tracking error norm increases, which consist with our expectations. On the

other hand, the improvement in convergence speed does not affect the convergent value

and all the situations converge monotonically to the ‘best fit’ solution.
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Zoom In

Figure 4.10: Algorithm 4.4 – Convergence of tracking error norm over 600 trials
(for different maximum-iteration qmax)

Figure 4.11: Algorithm 4.4 – Input signal of different subsystems on 600th trial
(when perfect consensus tracking is impossible)
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Figure 4.12: Algorithm 4.4 – Convergence of input energy consumption over
600 trials

R  

Figure 4.13: Algorithm 4.4 – Convergence of tracking error norm over 150 trials
(for different scale weighting R)
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Zoom In

Figure 4.14: Algorithm 4.6 – Convergence of tracking error norm over 600 trials
(for different maximum-iteration qmax)

4.5.2.2 Distributed Algorithm 4.6

Figure 4.14 shows the convergence behaviour for different qmax over 600 ILC trials.

It can be concluded that when perfect consensus tracking is impossible, the proposed

algorithm guarantees the consensus tracking error norm converge asymptotically to a

‘best approximation’ solution (relating to the weighting matrices Q and R). For the

effect of maximum-iteration qmax on the convergence speed, it confers to the phenomenon

concluded in the previous simulations.

Figure 4.15 shows the input signal of different subsystems when perfect consensus track-

ing is impossible, which supports that the proposed Algorithm 4.6 can also guarantee

the satisfaction of system constraints. For Figure 4.16, it shows that the total input

energy consumption will converge to the desired solution (4.95), which verifies Theorem

4.7.

For the investigation of weighting matrices, we set the maximum-iteration number

qmax = 50, with the penalty parameter ρ = 4 and scalar weighting Q = 1. Figure

4.17 shows the convergence performance of Algorithm 4.6 when scalar weighting R are

set to be 0.1, 0.2, 0.5, 1, respectively. The figure shows that decreasing the scalar weight-

ing R will increase the convergence speed, however, the changing of weighting matrix

R also affect the convergent value (which different from Algorithm 4.4 that return the
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Figure 4.15: Algorithm 4.6 – Input signal of different subsystems on 600th trial
(when perfect consensus tracking is impossible)

Figure 4.16: Algorithm 4.6 – Convergence of input energy consumption over
600 trials
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Zoom In

R  

Zoom In

R  

Figure 4.17: Algorithm 4.6 – Convergence of tracking error norm over 150 trials
(for different scale weighting R)

same convergent value for different weighting matrices).

It should be noted that although Algorithm 4.4 has better convergence performance than

Algorithm 4.6, that comes at the cost of a large calculation load. For some practical

applications, they may require nearly optimal performance using simple computation,

and then Algorithm 4.6 is much useful for these applications.

4.6 Summary

In this chapter, we consider an important design problem in consensus tracking of net-

worked dynamical systems, which is called as the constraint handling problem. We use

a well-known framework, namely successive projection framework, to reformulate the

constrained consensus tracking problem and then propose two novel ILC algorithms.

For both ILC algorithms, they have appealing convergence performance: when perfect

consensus tracking is possible, they can guarantee the consensus tracking error norm

converges to zero while satisfying the system constraints during the whole control pro-

cess; when perfect consensus tracking is impossible, they can guarantee the sanctification

of the system constraints and eventually converge to ‘best fit’ solutions. Note that, the

main difference between the proposed algorithms is that one can always guarantee the
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monotonic convergence of consensus tracking error norm, while the other requires less

computation. These observations need to be taken into consideration when selecting the

algorithm in practice, which is a trade-off between the computation cost and convergence

performance.

To avoid the huge computational complexity of the proposed algorithms for large scale

networked dynamical systems, we use the idea of ADMM to design distributed meth-

ods (including different implementations) for the proposed ILC algorithms, allowing the

input updating to be done in a distributed manner and have great scalability. Further-

more, the proposed distributed ILC algorithms can be applied to both homogeneous and

heterogeneous networks, as well as non-minimum phase systems, which are appealing

in real applications. The convergence properties of the algorithms are analysed rigor-

ously and numerical examples are presented to demonstrate the algorithms’ effectiveness.

Though this chapter focus on consensus tracking on the whole trial length, the idea can

also be extended to solve point-to-point (P2P) task without any difficulties.

Note that, all the existing results in this chapter are established on the fixed topology,

while the switching topologies (that is another important class of network structure)

have not been considered. To fill this gap, we will propose a novel distributed ILC

algorithm to deal with the switching topologies in the next chapter.





Chapter 5

Distributed ILC for Networked

Systems with Switching

Topologies

Existing ILC algorithms for high performance consensus tracking problem mainly deal

with networked dynamical systems with fixed network topology, i.e., the networked

relationship between different subsystems is fixed during the control process. However, in

some applications, the network topology may change for security reason or performance

requirements. As an example, modern air transportation system contains a number

of unmanned aerial vehicles (UAVs) that repetitively transport ‘goods’ from the origin

to the destination, and normally one UAV can only talk to its neighbouring UAVs

during the control process. Starting from the initial condition, the position of different

UVAs may differ from the last trial and it leads to the change in network topology (i.e.,

the topology is switching). For such situation, the ability to deal with the switching

topologies is crucially important. It is worth mentioning that there exist some ILC

design algorithms especially working for high performance consensus tracking problem

with switching topologies, e.g., Li et al. (2015); Liu et al. (2019); Meng et al. (2015a,

2016). However, the convergence performance of these algorithms are only guaranteed

when the controller satisfies certain conditions.

Motivated by the work on ILC for networked dynamical systems with fixed topology

in Chapter 3 , this chapter further relaxes the restriction on the network topology and

proposes a novel ILC design to address the aforementioned limitations in the existing

literature. By designing a novel performance index, the resulting ILC algorithm guaran-

tees monotonic convergence of the tracking error norm to zero (without any restriction

on the controller) even with switching topologies. Furthermore, since the proposed

performance index can be written into a separable form, a distributed implementation

method via the alternating direction method of multipliers (ADMM) is proposed, which

123
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allows the proposed algorithm to be applied to large scale networked dynamical systems.

Finally, the proposed algorithm can be applied to both homogeneous and heterogeneous

networked dynamical systems, which is appealing in practical applications where the

dynamics of each subsystem can be different. This chapter is based on the work from

Chen and Chu (2022).

The rest of this chapter is organised as follows: Section 5.1 provides the formulation of

the system dynamics, network topology and control design objective; Section 5.2 intro-

duces the proposed ILC algorithm and analyses its convergence properties rigorously;

Section 5.3 provides a distributed implementation for the proposed ILC algorithm; Sec-

tion 5.4 uses numerical examples to verify the effectiveness of the proposed algorithm

and finally, Section 5.5 concludes this chapter.

5.1 Problem Formulation

In this section, the dynamics and network topology of the system are introduced, and

the design objective of the high performance consensus tracking problem is provided.

For simplicity, we consider a discrete time, single-input-single-output (SISO) system in

this chapter.

5.1.1 System Dynamics

Consider a (homogeneous or heterogeneous) networked dynamical system with p sub-

systems, where ith (1 ≤ i ≤ p) subsystem’s dynamics is represented using the following

linear time invariant (LTI), SISO, discrete time state space model

xi,k(t+ 1) = Aixi,k(t) +Biui,k(t) xi,k(0) = xi,0

yi,k(t) = Cixi,k(t) t ∈ [0, N ]
(5.1)

where t is the time index; k is the ILC trial index; N is the trial length; xi,k(·) ∈ Rni

(ni is the order of ith subsystem), ui,k(·) ∈ R, yi,k(·) ∈ R are state, input and output of

subsystem i on kth trial; Ai, Bi, Ci are system matrices with proper dimensions. The

system is required to work in a repetitive manner, i.e., starting from the initial condition

xi,0, it performs the same task within the time interval [0, N ] and after t = N + 1, the

time t is reset to 0, the state of ith subsystem is reset to the initial condition xi,0, and

the system will execute the same design task again.

For high performance consensus tracking problem, it requires all the subsystems track

the same reference r(t) that is only known by part of subsystems, which makes the design

non-trivial. To facilitate subsequent ILC design, a ‘lifted form’ representation proposed

in Hatonen et al. (2004) is introduced. By assuming unity relative degree for all the
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subsystems (i.e., CiBi ̸= 0), the ‘lifted’ input, output and reference are represented as

ui,k = [ui,k(0), ui,k(1), · · · , ui,k(N − 1)]T ∈ Ui

yi,k = [yi,k(1), yi,k(2), · · · , yi,k(N)]T ∈ Yi

r = [r(1), r(2), · · · , r(N)]T ∈ Yi

(5.2)

where the input space Ui = RN and output space Yi = RN are defined with inner

products and induced norms

⟨u, v⟩Ri = uTRiv, ∥u∥Ri =
√
⟨u, u⟩Ri

⟨x, y⟩Qi = xTQiy, ∥y∥Qi =
√

⟨y, y⟩Qi

(5.3)

in which Ri, Qi are symmetric positive definite matrices.

The system model (5.1) can then be rewritten as

yi,k = Giui,k + di (5.4)

where the response of initial conditions di ∈ RN is

di =
[
CiAixi,0, CiA

2
ixi,0, CiA

3
ixi,0, · · · , CiA

N
i xi,0

]T
(5.5)

and the system matrix Gi is defined as

Gi =


CiBi 0 · · · 0

CiAiBi CiBi · · · 0
...

...
. . .

...

CiA
N−1
i Bi CiA

N−2
i Bi · · · CiBi

 (5.6)

Introduce u⃗k, y⃗k, r⃗, d⃗ as the global vector of ‘lifted’ input ui,k, output yi,k, reference r,

and initial condition’s respond di, which are represented as

u⃗k =
[
u1,k

T , u2,k
T , · · · , up,kT

]T ∈ U y⃗k =
[
y1,k

T , y2,k
T , · · · , yp,kT

]T ∈ Y

r⃗ =
[
rT , rT , · · · , rT

]T ∈ Y d⃗ =
[
dT1 , d

T
2 , · · · , dTp

]T ∈ Y
(5.7)

in which the global input space U = U1 × U2 × · · · × Up and global output space Y =

Y1 × Y2 × · · · × Yp are defined with inner products and induced norms

⟨u⃗, v⃗⟩R⃗ =

p∑
i=1

uTi Rivi, ∥u⃗∥R⃗ =
√

⟨u⃗, u⃗⟩R⃗

⟨x⃗, y⃗⟩Q⃗ =

p∑
i=1

xTi Qiyi, ∥y⃗∥Q⃗ =
√

⟨y⃗, y⃗⟩Q⃗

(5.8)
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where × represents the Cartesian product, and matrices Q⃗ = diag(Q1, Q2, · · · , Qp),

R⃗ = diag(R1, R2, · · · , Rp).

The global system model can be then rewritten as

y⃗k = Gu⃗k + d⃗ (5.9)

where G = diag (G1, G2, · · · , Gp).

The high performance consensus tracking problem can be stated as finding a proper

global input u⃗k such that the global output y⃗k tracks the global reference r⃗ accurately

even when r⃗ is not generally known by all the subsystems.

5.1.2 Network Topology

This chapter uses a switching undirected graph Gk = (V ,Ek) to represent the network

topology on kth trial, where V = {1, 2, ..., p} is the node set and Ek ⊂ V × V is the

set of pairs of nodes on kth trial called edges. For ith subsystem, its neighbours set on

kth trial is represented as Ni,k := {j : (i, j) ∈ Ek}. In addition, we introduce a set

Gσ = {Gσ1,Gσ2, · · · } to describe all the possible graph defined for the subsystems , i.e.,

Gk ∈ Gσ for all k. It is worth pointing out that Gσ has finite elements.

The Laplacian matrix Lk = {lij,k} indicates the relationship between different nodes,

and it is a real positive semi-definite, symmetric matrix with element lij,k defined as

lij,k =


−Wij,k if j ∈ Ni,k∑

j∈Ni,k
Wij,k if j = i

0 otherwise

(5.10)

where Wij,k is the weight used to denotes the edge’s connection strength on trial k (Bullo,

2018). When nodes i and j are neighbours on trial k, Wij,k > 0; otherwise, Wij,k = 0.

Note that, the larger the value Wij,k is, the stronger connection between subsystems

i and j at trial k will be, i.e., subsystem i will put more emphasis on the information

transformation with subsystem j. Given an example, in the transportation system, there

exist some subsystems that have direct access to the reference trajectory (i.e., ‘leader’),

their neighbours (without access to the reference) know the leaders have information

about the desired objective and hence they will put more emphasize on communicating

information with the ‘leader’ subsystems to improve its tracking efficiency.

As mentioned above, the main difficulty of the high performance consensus tracking

problem is the limited access of subsystems to the reference. To indicate the accessibility

of different subsystems on different trials, we further define a reference-accessibility
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matrix Dk = diag{Dii,k}, with its element Dii,k defined as

Dii,k =

{
1 if agent i has access on trial k

0 otherwise
(5.11)

To ensure the design objective is achievable, the following assumptions are necessary:

Assumption 5.1. The switching graph Gσ is always connected, i.e., in each ILC trial,

one node can be reached by another nodes through one path (Bullo, 2018).

Assumption 5.2. In each ILC trial, at least one subsystem has access to the reference

r, i.e., ∃i,Dii,k ̸= 0.

5.1.3 Iterative Learning Control Design

The ILC design objective of high performance consensus tracking problem can be stated

as finding a global input in the following form

u⃗k+1 = f(u⃗k, e⃗k) (5.12)

such that all the subsystems’ output track the reference trajectory as k → ∞, i.e.

lim
k→∞

yi,k = r, i = 1, 2, · · · , p (5.13)

where e⃗k = r⃗ − y⃗k is the ‘virtual’ tracking error and only part of it is available in

ILC design since the reference trajectory is only known by few of the subsystems in

practice. Note that finding the optimal input for objective (5.13) is non-trivial because

the network topology keeps changing during the control process.

5.2 Optimization-Based ILC Algorithm for High Perfor-

mance Consensus Tracking Problem

In this section, a novel optimization-based ILC algorithm for high performance consensus

tracking problem is provided and its convergence properties are analysed rigorously.

5.2.1 Algorithm Description

Algorithm 5.1. For any initial choice of u⃗0, the input series {u⃗k}k≥0 defined as follows

u⃗k+1 = arg min {Jk+1(u⃗k+1)} (5.14)
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provides a solution for high performance consensus tracking problem, i.e.

lim
k→∞

yi,k = r, i = 1, 2, · · · , p (5.15)

in which Jk+1(u⃗k+1) is defined as

Jk+1(u⃗k+1) = ∥(Lk+1 + Dk+1)e⃗k+1∥2Q⃗ + ∥u⃗k+1 − u⃗k∥2R⃗ (5.16)

where the weighting matrix R⃗ is selected as

R⃗ = γGTG, (5.17)

and Dk+1 = Dk+1 ⊗ IN , Lk+1 = Lk+1 ⊗ IN , e⃗k+1 = r⃗ − y⃗k+1 = e⃗k −G(u⃗k+1 − u⃗k), IN

is an N by N identity matrix, ⊗ represents the Kronecker product and γ is a positive

scaling factor.

Remark 5.1. Algorithm 5.1 is an extended version of the basic consensus NOILC al-

gorithm (that is proposed in Chapter 3) for networked dynamical systems with switching

topologies. In the performance index (5.16), we introduce matrix Lk+1 +Dk+1 to ensure

the reference information is always transforming within the network during the control

process (based on Assumptions 5.1 and 5.2), which eventually achieve the perfect con-

sensus tracking. However, as the network is changing during the control process, the

monotonic convergence is not longer guaranteed for any weighting matrix R⃗. To recover

the monotonic convergence property (that is desirable in practice) of the proposed algo-

rithm, we observe that R⃗ = γGTG is a proper choice. A detailed convergence analysis

will be introduced in the next section.

5.2.2 Convergence Properties of the Proposed Algorithm

Using Algorithm 5.1 to solve the high performance consensus tracking problem, it has

the desired convergence properties shown in the following theorem.

Theorem 5.1. For any initial choice of u⃗0 and e⃗0, Algorithm 5.1 guarantees monotonic

convergence of the ‘virtual’ tracking error norm to 0, i.e.,

∥e⃗k+1∥Q⃗ ≤ ∥e⃗k∥Q⃗, lim
k→∞

e⃗k = 0. (5.18)

Consequently, all the subsystems track the reference trajectory perfectly as k → ∞, i.e.

lim
k→∞

yi,k = r, i = 1, 2, · · · , p (5.19)

Proof. Solving the problem (5.14) on trial k + 1, we have

u⃗k+1 = u⃗k + γ−1G−1(Lk+1 + Dk+1)
T Q⃗(Lk+1 + Dk+1)e⃗k+1 (5.20)
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From (5.20), we have

e⃗k =
[
IpN + γ−1(Lk+1 + Dk+1)

T Q⃗(Lk+1 + Dk+1)
]
e⃗k+1 (5.21)

hence

∥e⃗k∥2Q⃗ =
[
e⃗k+1 + γ−1(Lk+1 + Dk+1)

T Q⃗(Lk+1 + Dk+1)e⃗k+1

]T
×
[
Q⃗e⃗k+1+γ−1Q⃗(Lk+1 + Dk+1)

T Q⃗(Lk+1 + Dk+1)e⃗k+1

]
= ∥e⃗k+1∥2Q⃗ + 2γ−1e⃗Tk+1

[
(Lk+1 + Dk+1)Q⃗

]2
e⃗k+1

+ γ−2e⃗Tk+1(Lk+1 + Dk+1)
T Q⃗(Lk+1 + Dk+1)Q⃗(Lk+1 + Dk+1)

T Q⃗(Lk+1 + Dk+1)e⃗k+1

Note that

2γ−1e⃗Tk+1(Lk+1 + Dk+1)
T (Lk+1 + Dk+1)e⃗k+1 ≥ 0

γ−2e⃗Tk+1(Lk+1 + Dk+1)
T Q⃗(Lk+1 + Dk+1)Q⃗(Lk+1 + Dk+1)

T Q⃗(Lk+1 + Dk+1)e⃗k+1 ≥ 0

hence

∥e⃗k∥2Q⃗ ≥ ∥e⃗k+1∥2Q⃗ (5.22)

Therefore, ∥e⃗k∥2Q⃗ is converging (as is bounded below). Hence

e⃗Tk+1(Lk+1 + Dk+1)
T Q⃗(Lk+1 + Dk+1)e⃗k+1 → 0 (5.23)

It follows that

(Lk+1 + Dk+1)e⃗k+1 → 0 (5.24)

Note that the possible graph set Gσ has finite element, matrix Lk+1 + Dk+1 is pos-

itive definite for all the k (based on Lemma 3.2 and Assumptions 5.1, 5.2). Hence,

limk→∞ e⃗k = 0. That completes the proof.

Theorem 5.1 shows that the proposed algorithm achieves monotonic convergence of the

tracking error norm to zero. As can be seen from Equation (5.21), the convergence speed

of ‘virtual’ tracking error norm depends on the choice of scaling factor γ: a smaller scaling

factor γ allows bigger input change and hence it leads to faster convergence speed. This

will also be demonstrated later in numerical simulations.

Remark 5.2. The centralised solution of Algorithm 5.1 can be found by directly calcu-

lating the stationary point of (5.16), and the input updating law is shown as follows

u⃗k+1 = u⃗k+ G−1
[
γIpN + (Lk+1 + Dk+1)

T Q⃗(Lk+1 + Dk+1)
]−1

× (Lk+1 + Dk+1)
T Q⃗(Lk+1 + Dk+1)e⃗k

(5.25)
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However, centralised realization requires significant computational complexity when the

subsystem’s number is large. Hence, distributed implementation is more essential and

applicable in practice.

5.3 Distributed Implementation of Algorithm 5.1

In this section, the idea of ‘consensus’ formulation in ADMM is used to implement Algo-

rithm 5.1 in distributed manner. In the following, we first review the idea of ‘consensus’

formulation in ADMM.

5.3.1 The Alternating Direction Method of Multipliers

ADMM is a method that is well suited to distributed implementation and it has been

widely used in different areas, e.g., in machine learning, applied statistics and privacy

preservation (Boyd et al., 2011; Cheng et al., 2017; Deng and Yin, 2016; Zhang et al.,

2019a). To introduce the general idea of ADMM, we consider the following optimisation

problem

minimize

p∑
i=1

fi(xi)

subject to xi − Ẽiz = 0, i = 1, · · · , p

(5.26)

where xi ∈ Rpi , z ∈ Rp are the local variable and the global variable; Ẽi is a matrix that

maps the local competent to the global element. For problem (5.26), ADMM can find

the optimal solution by iteratively performing the following steps

x q+1
i = arg minLρi(xi, z

q, γqi ) (5.27)

z q+1 = arg minLρ(x q+1, z, γq) (5.28)

γ q+1
i = γ q

i + ρ(x q+1
i − Ẽiz

q+1) (5.29)

where q is the ADMM iteration index, ρ is the penalty parameter, γi ∈ Rpi is the dual

variable and the augmented Lagrangian Lρ is defined as

Lρ(x, z, γ) =

p∑
i=1

Lρi(xi, z, γi)

=

p∑
i=1

[
fi(xi) + γTi (xi − Ẽiz) +

ρ

2
∥xi − Ẽiz∥2

] (5.30)

In obvious contrast to most of the distributed methodologies, ADMM can guarantee the

objective convergence for any positive penalty parameter, which is appealing in practice.

For detailed proof of its convergence properties, please refer to Boyd et al. (2011).
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5.3.2 Distributed Implementation of Algorithm 5.1

On trial k+ 1, the optimal input solution of (5.14) can be found using (5.25). Note that

G has a block diagonal structure. Therefore, if ∆ũk+1 defined as follows

∆ũk+1 = [γIpN + (Lk+1+Dk+1)
T Q⃗(Lk+1+Dk+1)]

−1(Lk+1+Dk+1)
T Q⃗(Lk+1+Dk+1)e⃗k

(5.31)

is obtained, the algorithm can then be implemented as

u⃗k+1 := u⃗k + G−1∆ũk+1 (5.32)

or in a local manner as

ui,k+1 := ui,k +G−1
i ∆ũi,k+1 (5.33)

where ∆ũk+1 is a global vector including the local ∆ũi,k+1 for all the subsystems.

Computing (5.31) is equivalent to solving the following optimisation problem:

∆ũk+1 = arg min
∆ũk+1

{Jk+1(∆ũk+1)} (5.34)

where

Jk+1(∆ũk+1) = ∥(Lk+1 + Dk+1)(r⃗ − y⃗k − ∆ũk+1)∥2Q⃗+γ∥∆ũk+1∥2IpN

which can be rewritten into the following form

minimize

p∑
i=1

Ji,k+1(∆ũi,k+1)

subject to ∆ũi,k+1 − Ẽi,k+1zk+1 = 0, 1 ≤ i ≤ p

(5.35)

where ith subsystem’s local cost function is defined as

Ji,k+1(∆ũi,k+1) = ∥
∑

j∈Ni,k+1

Wij,k(yi,k − yj,k + ∆ũi,k+1 − ∆ũj,k+1)

+ Dii,k+1(r − yi,k − ∆ũi,k+1)∥2Qi
+ γ∥∆ũi,k+1∥2IN

in which Dii,k+1 = Dii,k+1 ⊗ IN , zk+1 is a global vector contains all the element zi,k+1,

∆ũi,k+1 is a local plan for ith agent and its neighbours, and Ẽi,k+1 is the local mapping

matrix, e.g., if Ni,k+1 = {l,m}, ∆ũi,k+1 is defined as

∆ũi,k+1 =
[
∆ũTi,k+1 ∆ũTl,k+1 ∆ũTm,k+1

]T
Ẽi,k+1 is defined as

Ẽi,k+1 = ẽi,k+1 ⊗ IN

in which ẽi,k+1 is a 3 by p matrix with all elements zeros except for the (1, i), (2, l),
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(3,m) entries to be 1. Note that, the above formulation is in the format of (5.26) and

therefore can be solved using ADMM.

After computing ∆ũk+1 as above, the optimal input solution can be obtained as follows

u⃗k+1 = u⃗k + G−1∆ũk+1 (5.36)

(or in a local manner). This leads to the following algorithm:

Algorithm 5.2. On trial k+1, the series {∆ũ q+1
i,k+1}q≥0 obtained by iteratively perform-

ing the following steps

∆ũ q+1
i,k+1 = argmin

[
Ji,k+1(∆ũ q+1

i,k+1) + γ q
i,k+1

T
(∆ũq+1

i,k+1 − Ẽi,k+1z
q
i,k+1)

+
ρ

2
∥∆ũ q+1

i,k+1 − Ẽi,k+1z
q
i,k+1∥

2
IpiN

] (5.37)

z q+1
i,k+1 =

1

1 + |Ni,k+1|
∑

o∈(Ni,k+1
⋃

i)

(∆ũ q+1
o,k+1)i (5.38)

γ q+1
i,k+1 = γ q

i,k+1 + ρ(∆ũ q+1
i,k+1 − Ẽi,k+1z

q+1
i,k+1) (5.39)

provides a distributed implementation for problem (5.34), i.e.

lim
q→∞

zqk+1 = ∆ũk+1 (5.40)

where (∆ũo,k+1)i denotes the element in ∆ũo,k+1 corresponding to zi,k+1, |Ni,k+1| is the
neighbour’s number of ith subsystem on trial k + 1.

The input updating law (5.25) can therefore be updated locally as follows

ui,k+1 = ui,k +G−1
i ∆ũi,k+1 (5.41)

Note that no model information of neighbours is needed when solving problem (5.34)

using Algorithm 5.2.

5.3.3 Distributed ILC Algorithm

Using Algorithm 5.2 to implement Algorithm 5.1, a distributed algorithm that solve the

high performance consensus tracking problem with switching topologies is proposed, as

shown in Algorithm 5.3. Algorithm 5.3 includes of kmax ILC trial, and each ILC trial

contains qmax ADMM iteration as well as one experiment. In each ADMM iteration,

each subsystem receives the local information from its neighbours in Step 5 and obtains

local plan ∆ũ q+1
i,k+1 (through calculating the local cost function Ji,k+1(∆ũi,k+1)) in Step

6. In Step 7, each subsystem averages corresponding local plan to conclude the global

variable, and then uses its local plan and global variable to calculate the local dual
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Algorithm 5.3. Distributed ILC Algorithm for High Performance Consensus Tracking

Problem with Switching Topologies

Input: State space matrices Ai, Bi, Ci, desired reference r, reference-accessibility
matrix Dk, Laplacian matrix Lk, maximum-trial kmax, maximum-iteration qmax,
penalty parameter ρ

Output: Optimal input solution u⃗kmax

1: Initialization: Set k = 0
2: For: k = 0 to kmax

3: For: q = 0 to qmax

4: For: i = 1 to p
5: Receive data from neighbouring subsystems

6: Perform ∆ũ q+1
i,k+1 minimization step (5.37)

7: Perform z q+1
i,k+1 minimization step (5.38)

8: Perform γ q+1
i,k+1 minimization step (5.39)

9: Send data to neighbouring subsystems
10: End for
11: End for

12: Set ui,k+1 = ui,k +G−1
i ∆ũi,k+1

13: End for
14: Return: Optimal input solution u⃗kmax

variable in Step 8. In Step 9, each subsystem sends its local information to neighbours

and then waits for next iteration. By performing Step 4 – 11 continuously, all the

subsystems ‘codetermine’ the optimal local plan ∆ũi,k+1 and then it would be used in

Step 12 when calculating the optimal input solution u⃗i,k+1.

Remark 5.3. In theory, ADMM requires infinity iterations to approach the centralised

solution, which seems impossible to implement in reality. Fortunately, ADMM has been

shown to be very efficient in practice, a small iteration number is sufficient to approach

the centralised solution in most of the cases. Later simulation will illustrate this.

5.4 Numerical Examples

In this section, numerical examples are provided to verify the effectiveness of the pro-

posed ILC algorithm. Consider a heterogeneous over-damping, networked dynamical

system contains seven subsystems, with ith subsystem’s transfer function defined as

Gi(s) =
15s+ 10

s2 + 6s+ τi
(5.42)

where τi = i, i = 1, 2, · · · , 7.

We assume the trial length is 3s and the sampling time Ts is 0.05s (with a zero-order

hold). The initial condition xi,0 and the first trial input ui,0 for ith subsystem are set to
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Figure 5.1: The graph structure of numerical example

be 0 and the reference trajectory is defined as

r(t) =

{
sin[π(Tst− 1)] 20 ≤ t ≤ 40

0 otherwise
(5.43)

The discussed networked dynamical system’s switching topologies are shown in Figure

5.1, with unity weight on each edge. We assume the network topology is G1 on the first

trial, and it will switch follow the order: G1 → G2 → G3 → G1 → · · · as the trial number

increases. In the following, we will first discuss the proposed algorithm’s effectiveness

without any model uncertainty.

5.4.1 Example without Model Uncertainty

The convergence speed of Algorithm 5.3 depends on the choice of maximum iteration

number qmax, hence the effect of different qmax choices is first investigated and the con-

vergence performance will be compared with the result generated by the centralised

input solution (5.25). We set ρ = 4, γ = 1 and Figure 5.2 shows the evolution of the

‘virtual’ tracking error norm over 800 trials (i.e., kmax = 800 in Algorithm 5.3) with

qmax = 20, 30, 40, 60, respectively. From Figure 5.2, it can be seen that both the dis-

tributed solution and centralised solution achieve monotonic convergence of the ‘virtual’

tracking error norm to zero even when most of the subsystems do not have access to the

reference and the communication topologies are switching. Furthermore, the convergence

speed of Algorithm 5.3 becomes faster as qmax increases (which means the distributed

implementation provides more accurate solution to the optimisation problem), however,

the improvement is marginal: after qmax ≥ 60 , the distributed algorithm’s convergence
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Figure 5.2: Convergence of the ‘virtual’ error norm over 800 trials (with different
qmax choices)

performance is almost indistinguishable with the centralised result, which suggests that

a small iteration number is sufficient for ADMM to approach the centralised result in

practice. For qmax = 60, the final converging output of different subsystems are shown

in Figure 5.3.

Next, the effect of scaling parameter γ is also investigated. We set ρ = 4, qmax = 60, and

Figure 5.4 shows how the ‘virtual’ tracking error norm evolves for γ = 0.3, 0.6, 1, 1.4, 1.7,

respectively. From the figure, it can be concluded that as γ decreases, the convergence

performance of Algorithm 5.3 improves, which is consistent with our expectations.

5.4.2 Example with Model Uncertainty

In this section, the robustness of the proposed algorithm is demonstrated. An inaccurate

model of ith subsystem is represented using the following transfer function

Gi,model(s) =
17s+ 12

1.05s2 + 5.25s+ 1.05τi
(5.44)

and it is used in the controller design. Figure 5.5 shows the convergence behaviour

of the ‘virtual’ tracking error norm over 600 ILC trials with ρ = 4, qmax = 60 and

γ = 0.3, 0.6, 1, 1.4, 1.7, respectively. It shows that without a highly accurate system
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Figure 5.3: Output of different subsystems on 800th trial

Figure 5.4: Convergence of the ‘virtual’ error norm over 600 trials (with different
choices of γ when the model is accurate)



Chapter 5 Distributed ILC for Networked Systems with Switching Topologies 137

Figure 5.5: Convergence of the ‘virtual’ error norm over 600 trials (with different
choices of γ when the model is inaccurate)

model, both the centralised implementation and distributed implementation can still

guarantee monotonic convergence of the ‘virtual’ tracking error norm to zero even when

the communication topologies are switching and only part of subsystems have access

to the reference, demonstrating that the proposed ILC algorithm has certain degree of

robustness against the model uncertainty. In all the above simulations, the effect of

different ρ is also investigated and the result is consistent with the results above, hence

the simulation is omitted here for simplicity.

5.5 Summary

In this chapter, we propose a distributed ILC algorithm for high performance consensus

tracking problem with switching topologies. By designing a novel performance index,

the proposed ILC algorithm has appealing convergence properties that it can achieve

monotonic convergence of the ‘virtual’ tracking error norm to zero for any choice of

controller’s parameters, which is desired in practice. Considering the ubiquity of large

scale networked dynamical systems in practice, we further design a distributed imple-

mentation method using the idea of ADMM, allowing the proposed ILC algorithm to

be applied to networked dynamical systems with a large number of subsystems and

have great scalability. Numerical examples with heterogeneous, switching topologies
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networked dynamical systems are given to verify the proposed algorithm’s effectiveness.

Although the robustness properties have not been rigorously proof in this chapter, a

similar technology as in Chapter 3 can be applied to analyse the robustness properties.

This would be part of future research.

However, the proposed design has an inevitable drawback, i.e., it will meet the high

frequency issue and has difficulties to be applied to non-minimum phase networked

dynamical systems (since the algorithms involve the inverse of system dynamics in the

input updating law). By choosing the weighting matrix R⃗ = γGTG, the proposed design

shares some similarities with the inverse-based ILC and may cause the instability for

non-minimum phase systems. This issue will be further investigated in the future.

In the next section, we will consider the formation control problem (which is another

important design problem in networked systems coordination) and propose a novel dis-

tributed ILC algorithm to solve it.



Chapter 6

Distributed NOILC for Formation

Control Problem

Formation control is a design problem that requires a group of subsystems work together

and precisely form a prescribed formation within a finite time interval. Indeed, many

practical applications is designed using the idea of formation control, e.g., cooperative

transportation, sensor networks, formation flying (Cao et al., 2013). Benefiting from

its broad applications, a number of ILC designs for formation control have been pro-

posed: Proportional (P) type ILC control laws are proposed in Meng and Jia (2014);

Meng et al. (2012) for linear networked dynamical systems and most recently for two

dimensional (2D) switching graph in Meng and Moore (2016); Proportional-Integral-

Derivative (PID) type ILC control laws have been proposed for nonlinear networked

dynamical systems in Liu and Jia (2012, 2015); Meng and Moore (2017); Meng et al.

(2014a, 2015b); adaptive ILC control laws are proposed in Li and Li (2014a); Li et al.

(2018); Li and Li (2014b) for nonlinear networked dynamical systems; a high-order in-

ternal model based ILC is developed in Xu et al. (2011); Yang et al. (2017). While the

aforementioned results provide some useful designs, there are certain limitations needed

to be addressed. A particular aspect is that most existing designs focus on asymptotic

formation convergence, while monotonic convergence of the formation error norm, which

is desirable in practice, is either not guaranteed, or is only achievable when the system

dynamics satisfy certain conditions.

In this chapter, we further develop the previous NOILC design (proposed in Chapter 3)

to solve the formation control of networked dynamical systems working in a repetitive

manner. By incorporating the formation control requirement explicitly into a perfor-

mance index which is subsequently optimised, the resulting norm optimal design algo-

rithm not only guarantees monotonic convergence of the formation error norm to zero

but also minimizes the control input energy which is a distinct feature of the proposed

design. The proposed design can be applied to both homogeneous and heterogeneous

139
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networked dynamical systems and can also handle the difficult case of non-minimum

phase systems.

In addition, it can be shown that the performance index of the proposed ILC framework

can be written into a separable form, and hence it can be implemented in a distributed

manner via the alternating direction method of multipliers (ADMM), which has found

extensive applications in distribution optimisations (e.g. Boyd et al. (2011); Cheng et al.

(2017); Deng and Yin (2016); Zhang et al. (2019a)), allowing the proposed design to be

applicable to networked systems with a large number of subsystems. This chapter is

based on the work from Chen and Chu (2019b).

The chapter is organized as follows: Section 6.1 formulates the formation control prob-

lem of networked dynamical systems; Section 6.2 introduces a NOILC framework for

formation control and analyses its convergence properties in detail; Section 6.3 devel-

ops a distributed implementation of the proposed NOILC framework using ADMM and

gives a method to find the optimal penalty parameter ρ; Section 6.4 presents numeri-

cal simulations to demonstrate the performance of the proposed algorithm, and finally

Section 6.5 gives a brief conclusion to summary what have been done in this chapter.

6.1 Problem Formulation

In this section, the dynamics of networked dynamical systems are described and the ILC

design problem is formulated.

6.1.1 System Dynamics

Consider a networked dynamical system (which can be either homogeneous or heteroge-

neous) with p subsystems, where the dynamics of ith subsystem (1 ≤ i ≤ p) is a m-input,

ℓ-output discrete time, linear time-invariant (LTI) system described below

xi,k(t+ 1) = Aixi,k(t) +Biui,k(t) xi,k(0) = xi,0

yi,k(t) = Cixi,k(t)
(6.1)

where k is the trial number; t ∈ [0, N ] represents the time; Ai, Bi, Ci are system matrices

with proper dimensions; ui,k(·) ∈ Rm, xi,k(·) ∈ Rn, yi,k(·) ∈ Rℓ are the input, state and

output of subsystem i at trial k respectively, and for ith subsystem, the initial condition

remain the same for all the trials. The networked dynamical system is required to

repetitively establish the desired formation over the finite interval [0, N ]. At t = N + 1,

the time t is reset to 0, the subsystem’s state to xi,0, and the networked dynamical

system is required to establish the desired formation from initial state condition again.
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Given any subsystems i and j, let yij,k(t) = yi,k(t)− yj,k(t) denotes the relative position

between subsystems i and j. Then the formation control problem can be stated as

designing input ui,k(t) to achieve the desired relative formation, i.e.

lim
k→∞

yij,k(t) = r∗ij(t) (6.2)

where r∗ij(t) = r∗i (t)− r∗i (t) denotes the desired relative formation between subsystems i

and j, in which r∗i is a virtual reference for agent i defining the desired formation. It is

important to point out that r∗i is neither available to nor is supposed to be tracked by

subsystem i — it is the relative formation, i.e. r∗ij that is of interest.

To facilitate subsequent design, we first introduce a ‘lifted matrix form’ representation

of the system model (Hatonen et al., 2004). Note that there is no direct input feed

through. The input ui,k(t), output yi,k(t), and virtual reference r∗i (t) of subsystem i can

be defined using the ‘lifted form’ as follows

ui,k =
[
ui,k(0)T ui,k(1)T · · · ui,k(N − 1)T

]T
yi,k =

[
yi,k(1)T yi,k(2)T · · · yi,k(N)T

]T
r∗i =

[
r∗i (1)T r∗i (2)T · · · r∗i (N)T

]T (6.3)

where ui,k ∈ U , yk ∈ Y. U , Y are real Hilbert space and their inner product and induced

norm are defined as

⟨u1,k, u2,k⟩U =
N−1∑
t=0

uT1,k(t)Ru2,k(t), ∥ui,k∥U =
√
⟨ui,k, ui,k⟩U

⟨y1,k, y2,k⟩Y =
N−1∑
t=0

uT1,k(t)Qu2,k(t), ∥yi,k∥Y =
√
⟨yi,k, yi,k⟩Y

(6.4)

with weighting matrices Q, R are positive definite.

Then, we can rewrite the system model (6.1) into the following form

yi,k = Giui,k + di (6.5)

where the system matrix Gi is

Gi =



CiBi 0 · · · 0 0

CiAiBi CiBi
. . . 0 0

CiA
2
iBi CiAiBi

. . .
. . .

...
...

. . .
. . . CiBi 0

CiA
N−1
i Bi · · · · · · CiAiBi CiBi


(6.6)
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and di ∈ RN is the initial condition’s response

di =
[
CiAixi,0 CiA

2
ixi,0 CiA

3
ixi,0 · · · CiA

N
i xi,0

]T
(6.7)

Introduce u⃗k, y⃗k, r⃗∗, d as the combined vector of all the subsystems’ input ui,k, output

yi,k, virtual reference r∗i and initial condition’s response di

u⃗k =
[
uT1,k uT2,k · · · uTp,k

]T
y⃗k =

[
yT1,k yT2,k · · · yTp,k

]T
r⃗∗ =

[
r∗T1 r∗T2 · · · r∗Tp

]T
d =

[
dT1 dT2 · · · dTp

]T
.

(6.8)

Then, the ‘lifted matrix form’ representation of the whole networked dynamical system

can be rewritten as

y⃗k = Gu⃗k + d (6.9)

where G = diag (G1, G2, G3, · · · , Gp−1, Gp).

Using ‘lifted matrix form’ representation, the formation control requirement (6.2) can

be written equivalently as

lim
k→∞

yi,k − yj,k = r∗i − r∗j (6.10)

In this chapter, we assume that there exists a solution to the problem, i.e. there exists

an input usi such that

lim
k→∞

yi,k − yj,k = (Giu
s
i + di) − (Gju

s
j + dj) = r∗i − r∗j (6.11)

To guarantee the later results is applied to MIMO networked dynamical systems, the

following assumption is required:

Assumption 6.1. The global virtual vector r⃗∗ ∈ Rg(LG), where L = L⊗ INℓ, ⊗ is the

Kronecker product, and INℓ denotes Nℓ×Nℓ identity matrix.

6.1.2 Network Topology

In this chapter, the topology of the networked dynamical system is represented using

an undirected graph G = (V ,E ), where V = {1, 2, 3, · · · , p} denotes the node set and

E ⊂ V × V is the edges set. The neighbour set of subsystem i is represented as

Ni := {j : (i, j) ∈ E }.

Laplacian matrix L = {lij} denotes the topology relationship between different subsys-
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tems, and it is a real positive semi-definite, symmetric matrix with element lij

lij =


−Wij if j ∈ Ni∑
j∈Ni

Wij if j = i

0 otherwise

(6.12)

For the desired formation control to be achievable, the following assumption is standard:

Assumption 6.2. The graph G is connected, i.e. there exists at least one path from

one vertex to another vertex.

6.1.3 Control Design Objective

The ILC design problem for formation control of networked dynamical systems can be

stated as designing an input updating law in the following form

u⃗k+1 = f(u⃗k, y⃗k) (6.13)

such that subsystem’s output yi,k (i = 1, 2, · · · , p) can establish the desired formation

as k → ∞, i.e.

lim
k→∞

yi,k − yj,k = r∗i − r∗j (6.14)

It should be noted that, the solution to the above problem is not unique. In fact as will

be seen later, there are infinite number of solutions. Among these solutions, there exists

one with the minimum control input energy. To the best of our knowledge, none of

the existing ILC algorithms for formation control problem can guarantee the minimum

control input energy solution. By contrast, the NOILC design proposed in next section

will not only guarantee the achievement of the desired formation, but also converge to

the minimum control energy solution.

6.2 Norm Optimal ILC Algorithm for Formation Control

of Networked Dynamical Systems

In this section, we proposes a novel NOILC framework to achieve the high-precision for-

mation control of networked dynamical systems. The algorithm’s convergence properties

are analysed rigorously.
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6.2.1 Algorithm Description

Algorithm 6.1. For any initial input choice u⃗0, the control input sequence {u⃗k+1}k>0,

defined as follows

u⃗k+1 = arg min {Jk+1(u⃗k+1)} (6.15)

iteratively solve the formation control problem, i.e.

lim
k→∞

yi,k − yj,k = r∗i − r∗j (6.16)

where the cost function Jk+1(u⃗k+1) is defined as

Jk+1(u⃗k+1) = ∥e⃗k+1∥2Q + ∥u⃗k+1 − u⃗k∥2R (6.17)

where e⃗k+1 = L(r⃗∗ − y⃗k+1) is the formation error.

Remark 6.1. For the formation control problem, the term (L+D) (appears in consensus

tracking problem as in Chapter 3) is replaced by L, since we consider the case that not

reference trajectory is supported to be tracked by the subsystems. Instead, the subsystems

need to discuss a strategy by themselves to form the desired formation.

Remark 6.2. By directly solving problem (6.15) (by calculating the stationary point of

the performance index), Algorithm 6.1 can be implemented in a centralised manner as

u⃗k+1 = u⃗k + (G∗LTLG + IpNℓ)
−1G∗LTL(r⃗∗ − y⃗k) (6.18)

where G∗ = R−1GTQ is the adjoint operator of G, Q = diag (Q,Q, · · · , Q) and R =

diag (R,R, · · · , R).

However, solving Equation (6.18) requires huge computational load for large scale net-

worked systems (i.e., when p is large), which is often unrealistic and impractical.

6.2.2 Convergence Properties

Algorithm 6.1 achieves monotonic convergence in the formation error norm as shown in

following theorem.

Theorem 6.1. For any initial input choice u⃗0, Algorithm 6.1 guarantees that the for-

mation error norm ∥e⃗k+1∥Q⃗ converges monotonically to zero, that is

∥e⃗k+1∥Q⃗ ≤ ∥e⃗k∥Q⃗, lim
k→∞

e⃗k = 0 (6.19)

As a result, the control system achieve desired formation as k → ∞, i.e.

lim
k→∞

yi,k − yj,k = r∗i − r∗j (6.20)
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Proof. For the optimisation problem (6.15), it is clear that choosing u⃗k+1 = u⃗k produces

a suboptimal solution. Therefore

Jk+1(u⃗k+1) ≤ Jk+1(u⃗k) (6.21)

from which

∥u⃗k+1 − u⃗k∥2R⃗ + ∥e⃗k+1∥2Q⃗ ≤ ∥e⃗k∥2Q⃗ (6.22)

hence

∥e⃗k+1∥2Q⃗ ≤ ∥e⃗k∥2Q⃗ (6.23)

proving the monotonic convergence of the formation error norm.

To show that e⃗k → 0, note solving (6.15) gives

u⃗k+1 = u⃗k + (G∗LTLG + IpNℓ)
−1G∗LT e⃗k (6.24)

from the proof of monotone convergence theorem. We have

lim
k→∞

∥u⃗k+1 − u⃗k∥2R⃗ = 0 (6.25)

hence

(G∗LTLG + IpNℓ)
−1G∗LT e⃗k → 0 (6.26)

Note that matrix G∗LTLG + IpNℓ is invertible, therefore

G∗LT e⃗k → 0 (6.27)

Note that e⃗k = L(r⃗∗ − y⃗k). Denote a solution to the problem as u⃗s (see (6.11)). We

then have

L(Gu⃗s + d) = Lr⃗∗ (6.28)

using which we have

e⃗k = L(r⃗∗ − y⃗k) = LG(u⃗s − u⃗k) (6.29)

Substituting this into (6.27) gives

G∗LTLG(u⃗s − u⃗k) → 0 (6.30)

therefore

(u⃗s − u⃗k)TG∗LTLG(u⃗s − u⃗k) → 0 (6.31)

It then follows that

LG(u⃗s − u⃗k) → 0 (6.32)
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therefore

L(Gu⃗s −Gu⃗k) = L(r⃗∗ − y⃗k) = e⃗k → 0 (6.33)

To show the formation control has been achieved, i.e.

lim
k→∞

yi,k − yj,k = r∗i − r∗j (6.34)

Note that L(r⃗∗ − y⃗k) → 0 indicates r⃗∗ − y⃗k → 1⊗ c (as L is positive semi-definite with

eigenvalues {0, · · · } and the eigenvector corresponding to 0 eigenvalue is 1, as shown in

Lemma 3.1), where c ∈ RNℓ. We then have

yi,k − yj,k → (r∗i − c) − (r∗j − c) = r∗i − r∗j (6.35)

as desired in (6.34). That completes the proof.

The above theorem shows that Algorithm 6.1 can achieve the desired formation control

of networked dynamical systems with the desirable property of monotonic reduction in

formation error norm. Furthermore, the converged input has following property:

Theorem 6.2. For any initial input choice u⃗0, the input generated by Algorithm 6.1

converges as follows

lim
k→∞

u⃗k = u⃗∗ (6.36)

where u⃗∗ is the solution of the following optimisation problem

minimize ∥u⃗− u⃗0∥2R⃗
subject to L(Gu⃗+ d) = Lr⃗∗

(6.37)

As a direct consequence, if the initial input is chosen as u⃗0 = 0, Algorithm 6.1 converges

to the minimum control energy solution that produces the desired formation. i.e.

minimize ∥u⃗∥2
R⃗

subject to L(Gu⃗+ d) = Lr⃗∗
(6.38)

Proof. For the optimisation problem

minimize ∥u⃗− u⃗0∥2R⃗
subject to L(Gu⃗+ d) = Lr⃗∗

(6.39)

the Lagrangian

L(u, λ) = ∥u⃗− u⃗0∥2R⃗ + 2(λ,L(Gu⃗+ d− r⃗∗)) (6.40)
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Note that the control updating law for (6.17) is

u⃗k+1 = u⃗k + (G∗LTLG + IpNℓ)
−1G∗LT e⃗k

= u⃗k + G∗LT (LGG∗LT + IpNℓ)
−1e⃗k

(6.41)

Matrix (G∗LTLG + IpNℓ)
−1 is positive definite with eigenvalues 0 < λi ≤ 1, define the

space spanned by the eigenvector corresponding to unitary eigenvalues as E⊥, then we

have
(LGG∗LT + IpNℓ)

−1|E < 1

(LGG∗LT + IpNℓ)
−1|E⊥ = 1

(6.42)

where T |B represents the restriction of operator T on the subspace B.

For any initial input choice u⃗0, denote the corresponding formation error as e⃗0, its

decomposition on E and E⊥ is

e⃗0 = e⃗E0 + e⃗E
⊥

0 (6.43)

Note that by definition

e⃗E
⊥

0 = (LGG∗LT + IpNℓ)
−1e⃗E

⊥
0 (6.44)

therefore

LGG∗LT e⃗E
⊥

0 = 0 (6.45)

This further implies that

G∗LT e⃗E
⊥

0 = 0 (6.46)

From the proof of Theorem 6.1 yields

e⃗E
⊥

0 = 0 (6.47)

then Equation (6.43) becomes

e⃗0 = e⃗E0 (6.48)

We then have

u⃗k+1 − u⃗0 = G∗LT (LGG∗LT + IpNℓ)
−1

k∑
j=0

(LGG∗LT + IpNℓ)
−j e⃗0 (6.49)

therefore

u⃗k+1 − u⃗0 = G∗LT (LGG∗LT + IpNℓ)
−1

k∑
j=0

(LGG∗LT + IpNℓ)
−j e⃗E0 (6.50)
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Note that e⃗E0 ∈ E , we have

u⃗∞ − u⃗0 = G∗LT (LGG∗LT + IpNℓ)
−1
[
IpNℓ − (LGG∗LT + IpNℓ)

−1|E
]−1

e⃗E0 (6.51)

therefore

u⃗∞ − u⃗0 = G∗LT (LGG∗LT + IpNℓ)
−1
[
IpNℓ − (LGG∗LT + IpNℓ)

−1|E
]−1

e⃗E0 (6.52)

Set λ =
[
IpNℓ − (LGG∗LT + IpNℓ)

−1(LGG∗LT + IpNℓ)
−1|E

]−1
e⃗E0 + e⃗E

⊥
0 , then

u⃗∞ − u⃗0 = G∗LTλ (6.53)

Equation (6.53) shows that (u∞,λ) is a stationary point of the Lagrangian. Also, note

that the optimisation problem is strictly convex. This shows u∞ is the unique solution

to the optimisation problem. That completes the proof.

Theorems 6.1 and 6.2 demonstrate that the proposed Algorithm 6.1 can not only guar-

antee monotonic convergence in the formation error norm to zero, but also obtain the

minimum control input energy consumption, which is appealing in practice. Numerical

simulations will be provided in later section to demonstrate these properties.

6.3 Distributed Implementation of the Proposed Design

As mentioned earlier, the centralised implementation (6.18) will face significant difficul-

ties for large scale networked systems because of the huge computational complexity. To

address this problem, this section introduces a distributed implementation of Algorithm

6.1 for large scale networked dynamical systems using ADMM. In the following, we will

first review the idea of ‘consensus’ formulation in ADMM.

6.3.1 The Alternating Direction Method of Multipliers

ADMM is a powerful tool for solving distributed optimisation problems. To illustrate

the method, we consider the following optimisation problem

minimize

p∑
i=1

fi(xi)

subject to xi − Ẽiz = 0, i = 1, · · · , p

(6.54)

where xi ∈ Rpi is the local input decision variable consisting of the component in the

global variable z ∈ Rp and Ẽi is a matrix that selects the components from z that match

the local variable xi.
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The augmented Lagrangian for (6.54) is shown as

Lρ(x, z, γ) =

p∑
i=1

Lρi(xi, z, γi) =

p∑
i=1

[
fi(xi) + γTi (xi − Ẽiz) +

ρ

2
∥xi − Ẽiz∥2

]
(6.55)

and ADMM solves the optimisation problem (6.54) by iteratively performing the follow-

ing three steps

x q+1
i = arg minLρi(xi, z

q, γqi ) (6.56)

z q+1 = arg minLρ(x q+1, z, γq) (6.57)

γ q+1
i = γ q

i + ρ(x q+1
i − Ẽiz

q+1) (6.58)

ADMM has appealing convergence properties and it is widely used for solving the dis-

tributed optimisation problems in different areas, please refer to Boyd et al. (2011) for

more details.

6.3.2 Distributed Implementation of Algorithm 6.1

To use ADMM to implement Algorithm 6.1, its cost function Jk+1(u⃗k+1) at trial k + 1

is rewritten into the following separable form

Jk+1(u⃗k+1) =

p∑
i=1

Ji,k+1(u⃗i,k+1) (6.59)

in which the local cost function Ji,k+1(u⃗i,k+1) of subsystem i is denoted as

Ji,k+1(u⃗i,k+1) = ∥
∑
j∈Ni

Wij [(Giui,k+1+di)−(Gjuj,k+1+dj)−(r∗i −r∗j )]∥2Q+∥ui,k+1−ui,k∥2R

(6.60)

where u⃗i,k+1 denotes the local input plan. As an example, for Ni = {g, h}, u⃗i,k+1 is

represented as

u⃗i,k+1 = [uTi,k+1 uTg,k+1 uTh,k+1]
T (6.61)

Using the ‘consensus’ formulation in ADMM to solve the above problem at trial k + 1,

we have the following algorithm:

Algorithm 6.2. At trial k+1, the input sequence {u⃗ q+1
i,k+1}q>0 generated by the following

steps:

u⃗ q+1
i,k+1 = arg min

[
1

2
Ji,k+1(u⃗

q+1
i,k+1) +

ρ

2
∥u⃗ q+1

i,k+1 − E⃗iz
q
k+1∥

2 + γ q T
i,k+1(u⃗

q+1
i,k+1 − E⃗iz

q
k+1)

]
(6.62)

z q+1
i,k+1 =

1

1 + |Ni|
∑

o∈(Ni
⋃

i)

(u⃗ q+1
o,k+1)i (6.63)
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Algorithm 6.3. Distributed NOILC Algorithm for Formation Control of Networked

Dynamical Systems

Input: Virtual reference r∗i ; state space matrices Ai, Bi, Ci; Laplacian matrix L;
penalty parameter ρ; maximum ADMM iterations qmax; formation error norm
tolerance σ

Output: Subsystem’s optimal input u∗i
1: Initialization: Initialize the ILC trial index k
2: Repeat:
3: Set k = k + 1, q = 0
4: Repeat:
5: Set q = q + 1

6: u⃗ q+1
i,k+1 minimization using updating law (6.62)

7: z q+1
i,k+1 minimization using updating law (6.63)

8: γ q+1
i,k+1 minimization using updating law (6.64)

9: until q = qmax

10: Convert local input plan u⃗ qmax

i,k+1 into ui,k+1

11: Implement ui,k+1 and record yi,k+1 for all agents
11: until ∥e⃗k∥ ≤ σ
12: Return: Subsystem’s optimal input u∗i

γ q+1
i,k+1 = γ q

i,k+1 + ρ(u⃗ q+1
i,k+1 − E⃗iz

q+1
k+1) (6.64)

provides a distributed realization for (6.15), i.e.

lim
q→∞

zqk+1 = arg min {Jk+1(u⃗k+1)} (6.65)

where z q+1
i,k+1 is the ith element of global variable zk+1 at ADMM iteration q+1, (u⃗ q+1

o,k+1)i

denotes the corresponding element in each subsystem’s local plan u⃗o,k+1 related to sub-

system i.

It is worth pointing out that, the input updating law (6.62) in distributed Algorithm

6.2 can be implemented in both feedback plus feedforward implementation and matrix

form implementation. The details are similar with Propositions 3.1 and 3.2, hence they

are omitted here.

6.3.3 Distributed NOILC Algorithm

Using the distributed realization Algorithm 6.2 to implement the norm optimal frame-

work in Algorithm 6.1, we get the distributed NOILC algorithm as shown in Algorithm

6.3. The ADMM realization steps are embedded in step 4–9: for each iteration, each

agent first uses the corresponding global element (stored locally) and the (local element

of) dual variable to calculate the local input plan u⃗ q+1
i,k+1; then, new global value z q+1

i,k+1

is generated by averaging the corresponding local input plan; finally, new dual variable
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γ q+1
i,k+1 is updated using the results in previous two steps. In theory, ADMM will con-

verge to the optimal result as the iteration number qmax increases to infinity. However,

ADMM is usually very efficient in practice, and a small qmax is sufficient to approximate

the optimal solution in most of the cases. Later simulations will demonstrate this.

6.3.4 Penalty Parameter Selection

For ADMM, its convergence speed depends on the choice of penalty parameter ρ. Using

the result in (Ghadimi et al., 2015; Teixeira et al., 2013, 2016) to Algorithm 6.3, a

method to find the optimal penalty parameter is shown in the following proposition:

Proposition 6.1. The optimal penalty parameter ρ∗ for the proposed algorithm is

ρ∗ =


1 −

√
1 − λ2n−s

λ2n−s − 1 +
√

1 − λ2n−s

λn−s > 0

1 λn−s ≤ 0

(6.66)

and the corresponding convergence factor is

ϕ∗ = |ϕ2n−s| =


1

2

1 +
λn−s

1 +
√

1 − λ2n−s

 λn−s > 0

1

2
λn−s ≤ 0

(6.67)

where λi is the i
th generalized eigenvalue of (MT [2F̄ (F̄ T F̄ )−1F̄ T−IpNℓ]M ,MTM), order

as λn ≥ · · · ≥ λi ≥ λ1, matrix M = (G∗LTLG + IpNℓ)
1
2 and F̄ = −MẼ. R(A) ≜ {y ∈

Rn|y = Ax, x ∈ Rm} is the range-space of matrix A ∈ Rn×m , s = dim(R(F̄ )) and the

convergence factor is defined as (Bertsekas and Tsitsiklis, 1997)

ϕ∗ ≜ sup
u⃗ q
k+1 ̸=u⃗ ∗

k+1

∥u⃗ q+1
k+1 − u⃗ ∗

k+1∥
∥u⃗ q

k+1 − u⃗ ∗
k+1∥

(6.68)

Proof. Following a similar proof of Proposition 3.3, we can obtain Proposition 6.1.

The main steps to find the optimal penalty parameter could be described in below steps

1 Set M = (G∗LTLG + IpNℓ)
1
2 and calculate F̄ = −MẼ;

2 Find the generalized eigenvalue of (MT [2F̄ (F̄ T F̄ )−1F̄ T − IpNℓ]M ,MTM);

3 Find s = dim(R(F̄ )) and calculate λn−s;

4 Use Proposition 6.1 to find the optimal penalty parameter ρ∗ and corresponding

convergence factor ϕ∗ ;
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6

4

5

1

3

2

Figure 6.1: The network topology of numerical example

6.4 Numerical Example

In this section, a numerical example is provided to verify the proposed algorithm’s

performance. Consider a heterogeneous networked dynamical system with six (p = 6)

subsystems, and the system dynamics of each agent is a non-minimum phase system

with non-minimum phase zeros (z1 = 0.1, z2 = 0.2). System state space matrices are

defined as follow

Ai =


0 1 0 0

−5τi − 5 −1.5τi − 3 0 0

0 0 0 1

0 0 −5τi − 10 −1.5τi − 1


Bi =

[
0 1 0 0

0 0 0 1

]T
Ci =

[
−1 10 0 0

0 0 −2 10

]

where τi = i, i = 1, 2, · · · , 6.

The system is sampled using a sampling time of 0.1s and a zero order hold. The trial

length is 1s and Figure 6.1 shows the network topology of the networked dynamical

system. Assume the initial condition and first trial’s input of all agents are zero. The

desired formation is defined by the virtual reference as follows (i.e. forming a hexagon

that both rotates counterclockwise and shrinks its size along the time from t = 0 to

t = 1)

r∗1(t) = R(t)

[
1

0

]
e−0.5t r∗2(t) = R(t)

[
1
2

−
√
3
2

]
e−0.5t

r∗3(t) = R(t)

[
−1

2

−
√
3
2

]
e−0.5t r∗4(t) = R(t)

[
−1

0

]
e−0.5t

r∗5(t) = R(t)

[
−1

2√
3
2

]
e−0.5t r∗6(t) = R(t)

[
1
2√
3
2

]
e−0.5t
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Zoom In

Figure 6.2: Convergence of the formation error norm (different qmax)

where R(t) is a rotation matrix

R(t) =

[
cos(2πt) −sin(2πt)

sin(2πt) cos(2πt)

]

We simulate the system performance using both centralised implementation (6.18) and

the distributed implementation (Algorithm 6.3) over 50 trials with zero initial input

choice for all agents. In Algorithm 6.3, the penalty parameter ρ is set to be 1; the scalar

weighting Q = R = 1; the maximum ADMM iteration qmax is set to be 5, 8, 10, 25,

respectively. Figure 6.2 shows the formation error norm over 50 ILC trials. It can been

seen that as the maximum ADMM iteration number qmax increases, the performance

using distributed implementation improves and converges to the (optimal) centralised so-

lution.However, the improvement is marginal – for qmax ≥ 25, its performance is almost

identical to the optimal centralised solution, suggesting when using the distributed Al-

gorithm 6.3, a small qmax can be used in practice with much less computational demand.

Furthermore, for both centralised and distributed implementations, the formation error

norm monotonically converges to zero which verifies Theorem 6.1.

Figure 6.3 shows the output of all the subsystems at 50th ILC trial, demonstrating that

the desired formation has been achieved. Figure 6.4 shows the total input energy cost

of the system. Clearly, the total input energy consumption converges to the minimum
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Figure 6.3: The control result at ILC trial 50

control energy solution (6.38) which is consistent with our expectations in Theorem 6.2.

To investigate the effect of penalty parameter ρ, we set the scalar weighting Q = R = 1.

By using Theorem 6.1 to calculate the optimal penalty parameter, we obtain ρ∗ = 1.

Figure 6.5 shows how the input accuracy evolves for different ρ over 30 ADMM iteration.

Before reaching ρ∗ = 1, the convergence speed increases, however, the convergence speed

decreases after ρ > 1. This phenomenon consist with Proposition 6.1.

To further investigate the convergence speed of optimal penalty parameter ρ in each

ILC trial, we run the simulation for 20 ILC trial with the maximum ADMM iteration

qmax = 10 and the scalar weighting Q/R = 1. Figure 6.6 shows how ∥e⃗k∥Q⃗ evolves for

different ρ. It can be seem from the figure that for ρ = 1, it has the fastest convergence

speed, which consists with the centralised result. This phenomenon further verify the

presentation in Proposition 6.1.

To investigate the effect of scalar weighting Q and R, the penalty parameter ρ is set to

be 1, the maximum-iteration qmax is set to be 25 and the scalar weighting Q is set to be

1. Figure 6.7 shows how ∥e⃗k∥Q⃗ evolves for different R over 20 ILC trials. The proposed

algorithm can always guarantees the tracking error norms converge monotonically to zero

for different choice of R. It should be noticed that, increases R results faster convergence

speed, however, fast convergence speed is at the expense of robustness. In practice, the

choices of scalar weighting R should accord to the requirements.
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Figure 6.4: The control input energy consumption

Figure 6.5: Convergence comparison for different penalty parameter ρ in ADMM
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Zoom In

Figure 6.6: Convergence comparison for different penalty parameter ρ in ILC

Figure 6.7: Convergence comparison for different R (with Q = 1)
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6.5 Summary

This chapter proposes a novel distributed NOILC algorithm to solve the formation con-

trol problem of networked dynamical systems. The proposed NOILC framework guar-

antees the formation error norm monotonically converges to zero, and for a particular

choice of initial input converges to the minimum control input energy solution, which

is desirable in practice. Furthermore, we develop a distributed algorithm to implement

the proposed NOILC framework using ADMM which greatly reduces the computational

complexity so it can be applied to large scale networked dynamical systems. Also, a

method to find the best penalty parameter ρ is given in Proposition 6.1. Numerical

simulations using heterogeneous non-minimum phase networked dynamical systems are

given to demonstrate the proposed algorithm’s effectiveness.

For the proposed algorithm, it can guarantee the total input energy consumption is min-

imum, as shown in Theorem 6.2. However, there exist some applications that consider

the individual input energy cost and none of the ILC existing algorithms have considered

this problem. To bridge this gap, we will propose novel ILC algorithms to solve this

unexplored problem in the next chapter.





Chapter 7

Distributed ILC for Networked

Systems with Guaranteed

Individual Energy Cost

High performance formation control problem where a group of subsystems work repet-

itively to form a desired formation (using only local information) within a finite time

interval, has attracted significant interest in a range of areas, e.g., in transportation,

robotics and satellites (Knorn et al., 2016; Olfati-Saber et al., 2007). Most of the exist-

ing ILC algorithms for high performance formation control problem focus on the tracking

performance without considering constraints on the input energy cost. However, there

exist some applications where the individual input energy consumption is of great con-

cern. As an example, an autonomous air transportation system contains a number of

unmanned aerial vehicles (UAVs) repetitively transporting the goods from the origin

to the destination. During the control process, each UAV is required to maintain the

formation with its neighbours, at the same time, minimising its input energy or ensuring

its input energy consumption (i.e., individual energy cost) does not exceed the energy

limit (of that stored in its battery).

For the high performance formation control problem with guaranteed individual energy

cost, it contains infinity input solutions (since there is no direct reference in the control

problem), which creates more freedom in the input selection. ILC algorithms that can

achieve the desired formation control requirement with guaranteed individual energy

cost have been waiting.

To address the above problem, this chapter proposes two novel ILC algorithms for high

performance formation control problem with guaranteed individual energy cost. The

first algorithm considers the scenario where a prescribed level on the energy consumption

of each subsystem is known. The algorithm guarantees monotonic convergence of the

formation error norm, and satisfaction of the energy level requirement. The second

159
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algorithm, on the other hand, aims to optimise the energy use of the subsystems (by

minimising a common upper bound). However, monotonic convergence of the formation

error norm is lost.

In addition, the proposed algorithms have some very nice properties. They can be ap-

plied to both homogeneous and heterogeneous networks, as well as non-minimum phase

dynamics. Furthermore, we provide two distributed implementations using the alternat-

ing direction method of multipliers (ADMM) for the proposed algorithms, allowing them

to be applied to large scale networked dynamical systems and have great scalability. This

chapter is based on the work from Chen and Chu (2021).

The rest of this chapter is organised as follows: Section 7.1 formulates the system dy-

namics, network topology, and provides the control objectives; Section 7.2 introduces

the first distributed ILC algorithm, with its convergence properties given; Section 7.3

proposes the second distributed ILC algorithm and analyses its convergence proper-

ties; Section 7.4 presents numerical examples to verify the effectiveness of the proposed

algorithms; Section 7.5 concludes this chapter.

7.1 Problem Formulation

In this section, the dynamics and network topology of the system are introduced, and

the design objectives are described. For simplicity, we consider a discrete time, single-

input-single-output (SISO) system in this chapter.

7.1.1 System Dynamics

Consider a (homogeneous or heterogeneous) networked dynamical system with p sub-

systems, where ith (1 ≤ i ≤ p) subsystem’s dynamics is represented using the following

linear time invariant (LTI), SISO, discrete time state space model

xi,k(t+ 1) = Aixi,k(t) +Biui,k(t), xi,k(0) = xi,0

yi,k(t) = Cixi,k(t), t ∈ [0, N ]
(7.1)

where t is the time index; k is the ILC trial index; xi,k(·) ∈ Rni (ni is the order of ith

subsystem), ui,k(·) ∈ R, yi,k(·) ∈ R are state, input and output of subsystem i on kth

trial; Ai, Bi, Ci are system matrices with proper dimensions. The system is required to

work in a repetitive manner, i.e., starting from the initial condition xi,0, it performs the

same task within the time interval [0, N ] and after t = N + 1, the time t is reset to zero,

the state of ith subsystem is reset to the initial condition xi,0, and the system executes

the same task again.
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For high performance formation control problem, it requires all the subsystems work

together to construct a desired formation using only local information, which makes the

design problem non-trivial. Given any subsystems i and j, denote yij,k(t) = yi,k(t) −
yj,k(t) as their relative position, and then the objective can be stated as designing a

proper input ui,k(t) (1 ≤ i ≤ p) such that

lim
k→∞

yij,k(t) = r∗ij(t) = r∗i (t) − r∗j (t) (7.2)

where r∗ij(t) is the prescribed relative formation, and r∗i (t) denotes a virtual reference

for subsystem i. It should be noted that r∗i (t) is neither supposed to be tracked by

subsystem i nor known to subsystem i, since it is only used to define the formation (for

notational simplicity).

To facilitate subsequent ILC design, a ‘lifted form’ representation proposed in Hatonen

et al. (2004) is introduced. By assuming unity relative degree for all the subsystems

(i.e., CiBi ̸= 0), the ‘lifted’ input, output and virtual reference are represented as

ui,k = [ui,k(0), ui,k(1), · · · , ui,k(N − 1)]T

yi,k = [yi,k(1), yi,k(2), · · · , yi,k(N)]T

r∗i = [r∗i (1), r∗i (2), · · · , r∗i (N)]T

(7.3)

For the formation control objective to be achievable, it is assumed that the initial condi-

tion between neighbouring subsystems should satisfy the condition yij,k(0) = r∗ij(0) (due

to the relative degree is unity in the design, the current output at time instant t = 0 is

not able to be controlled).

The system model (7.1) can then be rewritten as

yi,k = Giui,k + di (7.4)

where di is the response of initial conditions given by

di =
[
CiAixi,0, CiA

2
ixi,0, CiA

3
ixi,0, · · · , CiA

N
i xi,0

]T
(7.5)

and the system matrix Gi is defined as

Gi =


CiBi 0 · · · 0

CiAiBi CiBi · · · 0
...

...
. . .

...

CiA
N−1
i Bi CiA

N−2
i Bi · · · CiBi

 (7.6)

Now, the control design objective (7.2) can be rewritten in a ‘lifted form’ as

lim
k→∞

yij,k = r∗i − r∗j (7.7)
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For simplicity, we introduce u⃗k, y⃗k, r⃗ ∗, d⃗ as the global vectors of the ‘lifted’ input ui,k,

output yi,k, desired formation r⃗ ∗i , and initial condition di, represented as

u⃗k =
[
uT1,k, u

T
2,k, · · · , uTp,k

]T
y⃗k =

[
yT1,k, y

T
2,k, · · · , yTp,k

]T
r⃗ ∗ =

[
r∗1

T , r∗2
T , · · · , r∗p

T
]T

d⃗ =
[
dT1 , d

T
2 , · · · , dTp

]T
(7.8)

and the global system model can then be written as

y⃗k = Gu⃗k + d⃗ (7.9)

where G = diag (G1, G2, · · · , Gp).

7.1.2 Network Topology

In this chapter, we use an undirected graph G = (V ,E ) to represent the network topology,

where V = {1, 2, ..., p} is the node set and E ⊂ V ×V is the set of pairs of nodes called

edges. For ith subsystem, its neighbour’s set is represented as Ni := {j : (i, j) ∈ E }.

To represent the topology relationship between different subsystems, we introduce the

adjacency matrix A = [aij ], with its element aij defined as

aij =

{
Wij if (i, j) ∈ E

0 otherwise
(7.10)

where weightWij is often considered as the connection strength of the edge. Based on the

ith node’s neighbours set, the degree of a node i is defined as d(i) =
∑p

j=1 aij and it follow

by the degree matrix D = diag(d(1), d(2), · · · d(p)). Using the definition of adjacency

matrix and degree matrix, the Laplacian matrix is defined as L = {lij} := D−A , which

is a real symmetric matrix with element lij defined as below

lij =


−Wij if j ∈ Ni∑
j∈Ni

Wij if j = i

0 otherwise

(7.11)

To ensure the control design objectives are achievable, the following standard assumption

is necessary:

Assumption 7.1. The graph G is connected, i.e., one node can be reached by another

node through one path. (Bullo, 2018)
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7.1.3 Iterative Learning Control Design

To achieve the desired formation, all the subsystems need to make efforts and work

together, and hence the individual energy cost is of interest. We introduce Ji,k as ith

subsystem’s input energy cost on trial k, which is defined as

Ji,k = ∥ui,k∥2Ri
= uTi,kRi ui,k (7.12)

whereRi is a positive definite weighting matrix, representing the ‘price’ of ith subsystem’s

energy cost. We consider the following two scenarios/problems:

P1: The networked system is required to achieve a desired formation, at the same

time, the individual energy cost Ji,k (1 ≤ i ≤ p) does not exceed a prescribed level M .

P2: The networked dynamical system is required to achieve a desired formation, at the

same time, an upper bound on the individual energy cost Ji,k (1 ≤ i ≤ p) is minimised.

The ILC design objectives can be stated as constructing input updating law in the

following form

u⃗k+1 = f(u⃗k, y⃗k) (7.13)

such that

lim
k→∞

yij,k = r∗ij , i = 1, · · · , p, j ∈ Ni (7.14)

and for problem P1

∥ui,k∥2Ri
≤M, i = 1, · · · , p, ∀k > 0 (7.15)

where M > 0 is a prescribed energy consumption level, or for problem P2

M = lim
k→∞

max
i

∥ui,k∥2Ri
= arg min{M |L(Gu⃗k + d⃗) = Lr⃗∗, ∥ui,k∥2Ri

≤M} (7.16)

is minimised.

Since there is no reference information available for subsystems in the problem, each

subsystem needs to exchange its information with neighbouring subsystems and then

uses the limited information to negotiate a best strategy to achieve the desired require-

ments, which makes the design problem non-trivial. To the best of our knowledge, none

of the existing ILC algorithms for high performance formation control problem have con-

sidered the above practically very relevant design objectives. To bridge this gap, we will

propose two novel distributed ILC algorithms that can guarantee the above objectives

in the following two sections.
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7.2 Distributed ILC Algorithm with Guaranteed Energy

Consumption Level

In this section, a novel optimization-based ILC algorithm is provided to solve prob-

lem P1. We analyse the algorithm’s convergence properties rigorously and provide a

distributed implementation for the proposed algorithm.

7.2.1 Algorithm Description

Based on the constrained design for networked dynamical systems in Chapter 4 (Algo-

rithm 4.1), we propose the following algorithm to solve problem P1:

Algorithm 7.1. For any initial choice of u⃗0 ∈ Ω, the input sequence {u⃗k+1}k≥0 defined

as follows

u⃗k+1 = arg min
u⃗k+1∈Ω

{
∥e⃗k+1∥2Q⃗ + ∥u⃗k+1 − u⃗k∥2R⃗

}
(7.17)

where e⃗k+1 = L(r⃗ ∗ − y⃗k+1) = e⃗k − L(Gu⃗k+1 + d∗ − y⃗k) denotes the formation er-

ror, in which L = L ⊗ IN , IN is a N × N identity matrix, ⊗ denotes the Kro-

necker product, ∥e⃗k+1∥2Q⃗ denotes the quadratic form e⃗Tk+1Q⃗e⃗k+1 and similarly with ∥ ·∥2
R⃗
,

R⃗ = diag(R1, R2, · · · , Rp), Q⃗ = diag(Q1, Q2, · · · , Qp) (where Qi ∈ RN is a positive

definite matrix), and the input constraint set Ω is defined as

Ω = Ω1 × Ω2 × · · · × Ωp (7.18)

with

Ωi = {ui,k+1 ∈ RN : ∥ui,k+1∥2Ri
≤M}, (7.19)

iteratively achieve the desired objectives (7.14) and (7.15).

Remark 7.1. For the input law (7.17), the first term contains the error and input

information from the last trial. Note that, the error information is obtained from the real

experiment while the system matrix G is the nominal model. When the model uncertainty

lay within a torrent range, Algorithm 1 can guarantee the convergence performance. For

the torrent range of model uncertainty, it will be investigated in the future.

Remark 7.2. Note that the convergence speed of Algorithm 7.1 will be affected by dif-

ferent choices of weighting matrices Q⃗, R⃗ in a similar way as that of the standard norm

optimal ILC algorithm, i.e., a smaller R⃗ leads to faster convergence speed. For more

details, please refer to Chu and Owens (2010).

Remark 7.3. Note that the updating law (7.17) is a nonlinear optimisation problem

with high order, however, it is in a very special form of the optimisation problem, called

as Quadratically Constrained Quadratic Programming (QCQP) problem, that has effi-

cient algorithms to solve it (please refer to Boyd and Vandenberghe (2004)). Hence,
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Algorithm 7.1 can be implemented in a centralised manner by solving the QCQP prob-

lem. However, solving (7.17) centrally requires significant computational complexity for

large scale networked dynamical systems, and hence can be difficult to be implemented

in practice. Later, we will develop a distributed implementation to make sure Algorithm

7.1 can be applied to large scale networked dynamical systems.

7.2.2 Convergence Properties of Algorithm 7.1

The convergence analysis of Algorithm 7.1 will be discussed in two situations due to the

existence of the constraint set Ω.

7.2.2.1 Perfect Formation Control is Achievable

When the prescribed input energy consumption level M is selected large enough to cover

the possible solution, perfect formation control is possible. Algorithm 7.1 has appealing

convergence properties, as shown in the following theorem.

Theorem 7.1. Given any initial input u⃗0 ∈ Ω, Algorithm 7.1 guarantees the generated

input sequence satisfies the input energy consumption requirements, i.e.

∥ui,k∥2Ri
≤M, i = 1, · · · , p, ∀k ≥ 0 (7.20)

and the formation error norm converges monotonically to zero, i.e.

∥e⃗k+1∥Q⃗ ≤ ∥e⃗k∥Q⃗, lim
k→∞

e⃗k = 0. (7.21)

Consequently, the networked dynamical system forms the desired formation as k → ∞,

i.e.

lim
k→∞

yij,k = r∗ij , i = 1, · · · , p, j ∈ Ni, (7.22)

and that the input energy consumption requirement is satisfied.

Proof. Following a similar proof of Theorem 4.2, we can obtain Theorem 7.1.

7.2.2.2 Perfect Formation Control is Unachievable

When the selection of input energy cost level M is small and could not cover the possible

solution, perfect formation control is impossible. Algorithm 7.1 guarantees the mono-

tonic convergence of the formation error norm to a minimum formation error solution,

as shown in the following theorem:
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Theorem 7.2. Given any initial input u⃗0 ∈ Ω, Algorithm 7.1 guarantees the generated

input sequence satisfies the input bound constraint requirements, i.e.

∥ui,k∥2Ri
≤M, i = 1, · · · , p, ∀k ≥ 0 (7.23)

and the convergence of the formation error norm is monotonic, i.e.

∥e⃗k+1∥Q⃗ ≤ ∥e⃗k∥Q⃗, k ≥ 0, (7.24)

to the minimum possible value, i.e., the solution u⃗∗s for the following optimisation prob-

lem

u⃗∗s = arg min
u⃗∈Ω

∥e⃗∗∥2
Q⃗

(7.25)

Proof. Following a similar proof of Theorem 4.4, we can obtain Theorem 7.2.

Both Theorems 7.1 and 7.2 show that Algorithm 7.1 guarantees the input constraint

(7.15) is satisfied and the formation error norm converges monotonically to the solution

that produces a minimum formation error norm, which is desirable in practice. How-

ever, as mentioned in Remark 7.3, implementing Algorithm 7.1 in a centralised manner

requires significant computational load for large scale networked dynamical systems.

Hence, the next subsection provides a distributed implementation for Algorithm 7.1.

7.2.3 Distributed Implementation of Algorithm 7.1

To be suitable for large scale networked dynamical systems, we provide a distributed

implementation for Algorithm 7.1 using the idea of ‘consensus’ formulation in ADMM.

In the following section, we will first introduce the general idea of ADMM.

7.2.3.1 The Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM) is a well-known distributed

implementation algorithm, which was firstly presented in Gabay and Mercier (1976) and

systematically reviewed in Boyd et al. (2011). ADMM can guarantee the convergence

for any positive penalty parameter ρ, contrasting with other distributed algorithms that

rely on the selection of step size (Boyd et al., 2011). Rigorous analysis and proof of the

convergence can be found in Boyd et al. (2011).

Consider the following distributed optimisation problem to illustrate the basic idea of

ADMM:

minimize

p∑
i=1

fi(xi) + g(z)

subject to xi − Ẽiz = 0, i = 1, · · · , p

(7.26)
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where the global variable z = [zT1 zT2 · · · zTp ]T ∈ Rp, xi ∈ Rpi is the local input

decision variable, and Ẽi is a matrix that selects the components from z that match the

local variable xi.

The augmented Lagrangian for (7.26) is shown as

Lρ(x, z, γ) =

p∑
i=1

Lρi(xi, z, γi) + g(z)

Lρi(xi, z, γi) = Ji(xi) + γTi (xi − Ẽiz) +
ρ

2
∥xi − Ẽiz∥2

(7.27)

and ADMM solves the optimisation problem (7.26) by iteratively performing the follow-

ing three steps

x q+1
i = arg minLρi(xi, z

q, γqi ) (7.28)

z q+1 = arg minLρ(x q+1, z, γq) (7.29)

γ q+1
i = γ q

i + ρ(x q+1
i − Ẽiz

q+1) (7.30)

where q is the ADMM iteration index and γ q+1
i,k+1 is the local dual variable.

Remark 7.4. Note that, if the global regularization function g(·) is separable, the global

value update law can also be done in a distributed manner. For problem P1, the global

constraint set is formed by several individual constraint set Ωi(1 ≤ i ≤ p) and hence

the z-update step can be written into p small update steps, which will be shown in the

following sections.

7.2.3.2 Distributed Algorithm 7.2

Note that, the optimal solution of input law (7.17) at trial k+1 can be found by solving

the following (equivalent) problem

minimize

p∑
i=1

fi,k+1(u⃗i,k+1)

subject to u⃗i,k+1 − Ẽizk+1 = 0, i = 1, · · · , p

(7.31)

where zk+1 ∈ RpN is the global value on trial k + 1

zk+1 =
[
zT1,k+1 zT2,k+1 · · · zTp,k+1

]T
(7.32)

u⃗i,k+1 ∈ RpiN is the local input plan for subsystem i on trial k + 1, e.g., if Ni = {l,m}

u⃗i,k+1 =
[
uTi,k+1 uTl,k+1 uTm,k+1

]T
(7.33)
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and Ẽi is the corresponding matrix that maps the local input u⃗i,k+1 to the global element

zk+1.

In (7.31), the local cost function for ith subsystem fi,k+1(u⃗i,k+1) is defined as

fi,k+1(u⃗i,k+1) = ∥
∑
j∈Ni

Wij [(Giui,k+1 + di) − (Gjuj,k+1 + dj) − r∗ij ]∥2Qi
+ ∥ui,k+1 − ui,k∥2Ri

with the domain of fi,k+1 defined as

dom fi,k+1 =
{
u⃗i,k+1| u⃗i,k+1 ∈ Ω⃗i

}
(7.34)

where Ω⃗i = Ωi × Ωl × Ωm (if Ni = {l,m}).

Now, applying ADMM to solve (7.17) distributively, a distributed ILC algorithm is

obtained as following:

Algorithm 7.2. Given any initial input u⃗0 ∈ Ω, the input u⃗k+1 generated distributively

by the following ADMM steps

u⃗ q+1
i,k+1 = arg min

u⃗i,k+1∈Ω⃗i

[
fi,k+1(u⃗

q+1
i,k+1) +

ρ

2
∥u⃗ q+1

i,k+1 − Ẽiz
q
k+1∥

2 + γ q
i,k+1

T
(u⃗ q+1

i,k+1 − Ẽiz
q
k+1)

]
(7.35)

z q+1
i,k+1 =

1

1 + |Ni|
∑

o∈(Ni
⋃

i)

[
(u⃗ q+1

o,k+1)i +
1

ρ
(γ q+1

o,k+1)i

]
(7.36)

γ q+1
i,k+1 = γ q

i,k+1 + ρ(u⃗ q+1
i,k+1 − Ẽiz

q+1
k+1) (7.37)

with

u⃗k+1 = lim
q→∞

zq+1
k+1 (7.38)

iteratively solves the high performance formation control in the input bound constraints

set Ω, i.e.

∥ui,k∥2Ri
≤M, i = 1, · · · , p, ∀k ≥ 0 (7.39)

lim
k→∞

yij,k = r∗ij , i = 1, · · · , p, j ∈ Ni, (7.40)

where (u⃗ q+1
o,k+1)i and (γ q+1

o,k+1)i denotes the element in u⃗ q+1
o,k+1 and γ q+1

o,k+1 corresponding to

zi,k+1.

Remark 7.5. In theory, ADMM requires infinite iterations to converge to the centralised

solution. Fortunately, ADMM has been shown to be very efficient in practice, and a small

number of iterations are usually sufficient in most of the cases. Later simulations will

illustrate this.
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7.3 Distributed ILC Algorithm with Minimum Individual

Input Energy Consumption

In this section, we propose a distributed ILC algorithm to solve problem P2, i.e., to

find the minimum individual input energy consumption level M while achieving the de-

sired formation. The algorithm’s convergence properties are analysed, and a distributed

implementation is provided.

7.3.1 Algorithm Description

To design the algorithm, we introduce an auxiliary vector ûk+1 as following:

ûk+1 = [u⃗Tk+1 Mk+1]
T (7.41)

where Mk+1 ∈ R. By introducing the auxiliary vector, the problem P2 can now be

stated as finding ûk+1 that the input u⃗k+1 achieves the desired formation requirement

(7.14), and at the same time, the bound Mk+1 defined in (7.16) is minimised.

Based on the above formulation, we can design the following algorithm for the problem

P2:

Algorithm 7.3. For any initial choice of û0, the sequence {ûk+1}k≥0 defined as follows

ûk+1 = argmin
ûk+1∈Ωk+1

{T ûk+1} ≡ argmin
ûk+1∈Ωk+1

Mk+1 (7.42)

where the matrix T is defined as

T = [0 0 · · · 0︸ ︷︷ ︸
p

1]T (7.43)

and constraint set Ωk+1 is defined as

Ωk+1 = Ψ1,k+1 ∩ Ψ2,k+1 ∩ · · · ∩ Ψp,k+1 ∩ Φk+1 (7.44)

in which Ψi,k+1 (1 ≤ i ≤ p) defined as

Ψi,k+1 = {ûk+1 ∈ RpN+1 : ∥ui,k+1∥2Ri
≤T ûk+1} (7.45)

and Φk+1 is defined as

Φk+1 = {ûk+1 ∈ RpN+1 : e⃗k −LG(u⃗k+1 − u⃗k) = 0}, (7.46)

iteratively achieve the objectives (7.14) and (7.16).
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Note that, Algorithm 7.4 can be implemented in a centralised manner by solving the

following second order cone programming (SOCP) problem:

minimize T ûk+1

subject to LG(u⃗k+1 − u⃗k) = e⃗k

∥ui,k+1∥2Ri
≤T ûk+1, ∀1 ≤ i ≤ p

(7.47)

Using (7.47) to solve Algorithm (7.42), yields the following algorithm for problem P2:

Algorithm 7.4. For any initial choice of û0, the input sequence {ûk+1}k≥0 obtained by

solving the following optimisation problem

minimize T ûk+1

subject to LG(u⃗k+1 − u⃗k) = e⃗k

∥ui,k+1∥2Ri
≤T ûk+1, ∀1 ≤ i ≤ p

(7.48)

iteratively achieve the objectives (7.14) and (7.16).

However, same as in Algorithm 7.1 for Problem P1, solving (7.42) centrally requires

significant computational complexity for large scale networked dynamical systems, and

hence can be difficult to be implemented in practice. In the next section, we will design a

distributed implementation for Algorithm 7.4 so it can be used to large scale networked

dynamical systems.

7.3.2 Distributed Algorithm 7.4

To design the distributed ILC algorithm, we first introduce the following auxiliary ma-

trices and vectors

Ai =

[
IpiN+1

LiG⃗i

]
Bi =

[
Êi

0N×(pN+1)

]
Ci,k+1 =

[
0(piN+1)×1

e⃗i,k + LiG⃗iu⃗k

]
ûi,k+1 = [u⃗Ti,k+1 Mi,k+1]

T

ẑk+1 = [zTk+1 Mk+1]
T

where Êi is a mapping matrix that links ûi,k+1 with ẑk+1, and the local formation error

e⃗i,k is defined in the form that

e⃗i,k =
∑
j∈Ni

Wij [(Giui,k + di) − (Gjuj,k + dj) − r∗ij ] (7.49)
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and G⃗i, Li are local system matrix and local Laplacian matrix. As an example, if

Ni = {l,m}, then

G⃗i = diag(Gi, Gl, Gm)

Li =
[ ∑

j∈Ni
Wij −Wil −Wim

]
⊗ IN

(7.50)

After introducing the above auxiliary matrices and vectors, the optimisation problem

(7.42) can then be rewritten as the following (equivalent) optimisation problem

minimize T ẑk+1 +

p∑
i=1

gi,k+1(ûi,k+1)

subject to Aiûi,k+1 − Biẑk+1 = Ci,k+1

(7.51)

where gi,k+1(ûi,k+1) is an indicator function defined as

gi,k+1(ûi,k+1) =

{
0 if ûi,k+1 ∈ Ψ̂i,k+1

+∞ otherwise
(7.52)

in which Ψ̂i,k+1 is the local constraint set, as an example, if Ni = {l,m}, then

Ψ̂i,k+1 = Ψ⃗i,k+1 ∩ Ψ⃗l,k+1 ∩ Ψ⃗m,k+1 (7.53)

with
Ψ⃗i,k+1 = {ûi,k+1∈R3N+3 :∥ui,k+1∥2Ri

≤Tiûi,k+1}

Ti = [0 0 · · · 0︸ ︷︷ ︸
pi

1]T (7.54)

Applying ADMM to solve problem (7.51) distributively, we have the following distributed

ILC algorithm:

Algorithm 7.5. Given any initial û0, the input u⃗k+1 generated distributively by the

following ADMM steps

û q+1
i,k+1 = arg min

ûi,k+1∈Ψ̂i,k+1

[ρ
2
∥Aiû

q+1
i,k+1 − Biẑ

q
k+1 − Ci,k+1∥2

+ γ q
i,k+1

T
(Aiû

q+1
i,k+1 − Biẑ

q
k+1 − Ci,k+1)

] (7.55)

ẑ q+1
i,k+1 =


1

1+|Ni|
∑

o∈(Ni
⋃

i)

[
(u⃗ q+1

o,k+1)i+
1
ρ(γ q+1

o,k+1)i

]
if 1 ≤ i ≤ p

1
p

{
−1

ρ +
p∑

i=1

[
(û q+1

i,k+1)p+1 + 1
ρ(γ q+1

i,k+1)p+1

]}
if i = p+ 1

(7.56)

γ q+1
i,k+1 = γ q

i,k+1 + ρ(Aiu⃗
q+1
i,k+1 − Biẑ

q
k+1 − Ci,k+1) (7.57)

with

u⃗k+1 = lim
q→∞

zq+1
k+1 (7.58)
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iteratively achieves the desired formation

lim
k→∞

yij,k = r∗ij , i = 1, · · · , p, j ∈ Ni (7.59)

and generates the minimum individual input energy, i.e.

lim
k→∞

max
i

∥ui,k+1∥2Ri
= M∗ (7.60)

where M∗ is the solution of (7.63).

7.3.3 Convergence Properties of Algorithm 7.5

Applying Algorithm 7.5 for the Problem P2, it has nice convergence properties shown

in the following:

Theorem 7.3. For any initial choice of auxiliary vector û0, Algorithm 7.5 guarantees

the achievement of the desired formation as k → ∞, i.e.

lim
k→∞

yij,k = r∗ij , i = 1, · · · , p, j ∈ Ni (7.61)

and the individual input energy consumption is minimised in the sense that

lim
k→∞

max
i

∥ui,k+1∥2Ri
= M∗ (7.62)

where M∗ is the solution of the following problem

minimize M

subject to ∥ui,k+1∥2Ri
≤M

L(Gu⃗+ d⃗) = Lr⃗∗

(7.63)

Proof. By reformulating the input updating law (7.42) into the form in (7.51), yields

the distributed Algorithm 7.5 for the Problem P2. Note that, the objective function

and equality constraints in (7.51) are convex. Based on the convergence properties of

ADMM, we can have the optimal solution for the Problem P2, which yields Theorem

7.3.

7.4 Numerical Examples

In this section, numerical examples are provided to verify the effectiveness of the pro-

posed ILC algorithms. Consider a heterogeneous, non-minimum phase, over-damping

networked dynamical system has four subsystems, with ith subsystem’s transfer function
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1 32

4

Figure 7.1: The graph structure of numerical examples

defined as

Gi(s) =
40s− 1

s2 + 6s+ τi
(7.64)

where τi = i, i = 1, 2, 3, 4.

We assume the trial length is 1s and the sampling time Ts = 0.05s (with a zero-order

hold). Each subsystem’s initial condition xi,0 is set as 0, and the desired formation is

r∗1(t) = −1 − 0.5 ∗ cos(πTs · t)

r∗2(t) = 1 + 0.5 ∗ cos(πTs · t)

r∗3(t) = 2 + 1 ∗ cos(πTs · t)

r∗4(t) = 2.8 + 2 ∗ cos(πTs · t)

(7.65)

and the network topology is shown in Figure 7.1. In the following, we will first investigate

the performance of Algorithms 7.1 and 7.2 that proposed in Section 7.2.

7.4.1 Problem P1 with Prescribed Energy Consumption Level

We first consider the algorithm’s performance for problem P1. We set the input energy

bound M = 8, the weighting matrices Qi = Ri = IN , penalty parameter ρ = 2 and

all the subsystems’ initial condition xi,0 = 0 and first trial’s initial input ui,0 = 0. As

mentioned in Remark 7.3, the convergence speed of Algorithm 7.2 depends on the choice

of maximum iteration number qmax, hence the effect of different qmax is also investigated.

Figure 7.2 shows the evolution of the formation error norm for both centralised solution

(7.17) and distributed solution over 14 ILC trials. It can be seen that the proposed

Algorithms 7.1 & 7.2 guarantee the formation error norm converge monotonically to zero.

Furthermore, the convergence speed of Algorithm 7.2 becomes faster as qmax increases,

however, this improvement is marginal: after qmax ≥ 40, the convergence performance of

the distributed ILC Algorithm 7.2 is almost indistinguishable with the centralised result,

which suggests that a small number of iterations is sufficient for ADMM to approach

the centralised result in this case.

From Figure 7.2, it shows that the choice of qmax = 40 is sufficient to generate the

optimal solution, hence, we set qmax = 40 for the following investigation. Figure 7.3

shows the individual input energy cost Ji,k along the ILC trials, and it can be seen that
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Zoom In

Figure 7.2: Algorithms 7.1&7.2 – Convergence of the formation error norm over
14 ILC trials

Figure 7.3: Algorithm 7.2 – Convergence of the individual energy cost of differ-
ent subsystems over 10 ILC trials
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Figure 7.4: Algorithm 7.2 – Input of different subsystems on the 10th ILC trial

Figure 7.5: Algorithm 7.2 – Relative position between different subsystems on
the 10th ILC trial
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the prescribed input energy bound M = 8 is satisfied by each subsystem during the

whole control process. Figure 7.4 presents the input of different subsystems on the 10th

ILC trial and Figure 7.5 shows the output difference between different subsystems on

the 10th ILC trial, demonstrating that all the subsystems achieve the desired formation,

which is consistent with our expectations. Simulations with different penalty parameter

ρ, weighting matrices Qi and Ri are also investigated. The results are consistent with

our expectations and are omitted here for brevity.

7.4.2 Problem P2 with Minimum Individual Energy Consumption

In the following simulation, we consider the same system as in Example 7.4.1 and set

the weighting matrices Qi = Ri = IN , penalty parameter ρ = 2, and all the subsystems’

first trial’s input ui,0 = 0 to demonstrate the effectiveness of Algorithm 7.5.

For Algorithm 7.5, we set the maximum ADMM iteration number qmax = 40 and Figure

7.6 shows the evolution of individual input energy cost Ji,k along the ILC trials. From the

figure, it shows that Algorithm 7.5 can automatically find the minimum individual energy

cost bound (i.e., M∗ = 5.0420) for the discussed problem. Different from Algorithm

7.5 which can only guarantee the individual energy cost not exceed a given bound (as

shown in Figure 7.3), Figure 7.6 has smaller individual energy cost, which is appealing

in practice.

Figure 7.7 shows the evolution of the formation error norm over 20 ILC trials. It can be

seen that Algorithm 7.5 can only guarantee the formation error norm converges asymp-

totically to zero, since the design of Algorithm 7.5 is mainly based on ADMM that

cannot guarantee the monotonic convergence property. It should be noticed that, we

can choose a much larger qmax to make the problem becomes a steepest optimisation

problem (i.e., the optimal solution can be obtained in one trial), however, even a minor

model uncertainty in the system dynamics will perturb the solution for steepest opti-

misation problem. To enhance the robustness property of Algorithm 7.5, we suggest

that choose only dozens of ADMM iterations for each ILC trial in practice, and use

more practical error value to update the input (which improves the robustness to the

model uncertainty). Simulations with different system dynamics, formation, damping

ratio, constraint set have also been investigated, and both algorithms work well in all

the cases, hence omitted here for brevity.

7.5 Summary

In this chapter, we propose two ILC algorithms for high performance formation control

problem with guaranteed individual input energy cost, and both algorithms have ap-

pealing properties. For the first ILC algorithm, it can not only guarantee the formation
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Figure 7.6: Algorithm 7.5 – Convergence of the individual energy consumption
of different subsystems over 20 ILC trials

Figure 7.7: Algorithm 7.5 – Convergence of the formation error norm over 20
ILC trials
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Figure 7.8: Algorithm 7.5 – Input of different subsystems on the 20th ILC trial

Figure 7.9: Algorithm 7.5 – Relative position between different subsystems on
the 20th ILC trial
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error norm converge monotonically to the minimum possible solution, but also constrain

each subsystem’s input energy cost within a given energy level. The second proposed

ILC algorithm achieves the desired formation, at the same time, finds the minimum

possible individual input energy consumption. Considering the ubiquity of large scale

networked dynamical systems in practice, we further design distributed implementation

methods for the proposed algorithms, allowing them to be applied to networked dynam-

ical systems with large number of subsystems. Numerical examples with heterogeneous,

non-minimum phase, discrete-time networked dynamical systems are given to verify the

proposed algorithms’ effectiveness. In next section, we will consider the collaborative

tracking problem and propose novel decentralised ILC algorithm to solve it.





Chapter 8

Constrained ILC for

Collaborative Tracking

High accuracy collaborative tracking of networked dynamical systems is an important

control task that requires a group of subsystems (agents) working collaboratively to track

a desired reference, and to execute the same tracking mission repetitively. Such control

task has found a number of important applications in various areas. As an example,

multiple actuator robots contain different actuators (subsystems) to perform a variety

of collaborative positioning task repeatedly with high performance requirements (Chang

and Kim, 2013; Wilcox and Devasia, 2015); human machine collaboration requires the

repeated cooperation between human and subsystems to achieve a high precision oper-

ation (Warrier and Devasia, 2016, 2017).

Benefiting from the learning feature, a number of ILC based design have been proposed

for collaborative tracking problem: Devasia (2016) introduces an inverse based ILC al-

gorithm in frequency domain for heterogeneous linear networked dynamical systems and

shows that any unity partitions of the updating law guarantee the achievement of the

desired objective; an inverse based ILC algorithm is proposed in Warrier and Devasia

(2016, 2017) for human-machine collaboration problem, which enables even a novice hu-

man operator to perform a task to high accuracy with the help of the machine controller;

a gradient based ILC algorithm and a projection based ILC method are introduced in

Chu (2019) for the point to point (P2P) tasks and the constraint handling problem,

respectively; decentralised ILC framework with three model-based implementations are

proposed and verified on a wearable stroke rehabilitation technology in Chen and Free-

man (2020); collaborative tracking problem with the presence of noise is considered in

Shen et al. (2020).

System constraints are widely existing in practice, since they are often related to practical

limitations or performance requirements. For example, autonomous vehicle contains

several actuators working collaboratively to move forward and each actuator (subsystem)

181
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has its own allowable voltage (input) range. During the control process, if one actuator’s

applied input violates its allowable voltage range, it may damage the actuator and further

affect the performance of the autonomous vehicle. However, most existing decentralised

ILC methods only consider unconstrained collaborative tracking problem, which lack

the capability to handle system constraints. It is worth mentioning that Chu (2019)

has considered the constraint handling problem, but the monotonic convergence of the

tracking error norm is only guaranteed when the controller satisfies certain conditions.

Motivated by the constraint handling design for consensus tracking problem in Chapter

4, this chapter further considers the constrained collaborative tracking problem. We first

propose a constrained ILC algorithm for collaborative tracking using the constrained

norm optimal ILC (NOILC) framework. The algorithm has a simple structure but

needs a central controller. Then, using the idea of the alternating direction method

of multipliers (ADMM), a decentralised constrained ILC algorithm is developed. The

resulting ILC algorithms not only guarantee the satisfaction of the system constraints,

but also achieve the monotonic convergence of the collaborative tracking error norm

to a minimum (possible) solution. Furthermore, the proposed ILC algorithms can be

applied to both homogeneous and heterogeneous networks, as well as non-minimum

phase systems, which are desirable in practice. Convergence properties of the proposed

ILC algorithms are analysed rigorously and numerical examples are presented to verify

the algorithms’ effectiveness.

The rest of this chapter is organised as follows: Section 8.1 provides the formulation of

the system dynamics and system constraints, and then defines the ILC design objective;

Section 8.2 proposes a constrained ILC algorithm to solve the collaborative tracking

problem; Section 8.3 provides a decentralised constrained collaborative tracking ILC

algorithm; Section 8.4 provides numerical examples to demonstrate the effectiveness of

the proposed algorithms, and finally, Section 8.5 summaries this chapter.

8.1 Problem Formulation

In this section, we first provide the general formulation of the system dynamics and

system constraints, and then introduce the ILC design problem for constrained collab-

orative tracking of networked dynamical systems.

8.1.1 System Dynamics

Consider a (homogeneous or heterogeneous) networked dynamical system including p

subsystems, where ith (1 ≤ i ≤ p) subsystem’s dynamics is denoted using a linear time
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invariant (LTI), single input single output (SISO), discrete time state space model:

xi,k(t+ 1) = Aixi,k(t) +Biui,k(t), xi,k(0) = xi,0

yi,k(t) = Cixi,k(t), t ∈ [0, N ]
(8.1)

where i is the index of the subsystem; t is the time index; k is the ILC trial index; N is

the trial length; xi,k(·) ∈ Rni (ni is the order of ith subsystem), ui,k(·) ∈ R, yi,k(·) ∈ R
are state, input and output of subsystem i on the kth ILC trial, respectively; Ai, Bi,

Ci are system matrices with proper dimensions. The networked dynamical systems are

required to execute the same task repetitively, i.e., each subsystem’s state is reset to the

initial condition xi,0 at the end of each trial, and the subsystem is required to execute

the same control task again.

For the collaborative tracking problem, the output of the networked dynamical system

is defined as follows

yk(t) =

p∑
i=1

yi,k(t) (8.2)

and the system is required to track a desired reference trajectory r(t). Define the

collaborative tracking error as

ek(t) = r(t) − yk(t). (8.3)

The control design objective of collaborative tracking problem is that all the subsystems

work collaboratively to make sure ek(t) = 0. Note that, each subsystem only knows the

overall system output yk(t) but no information of the other subsystems and it has to

work independently, which makes the design non-trivial.

In this chapter, we introduce a ‘lifted form’ representation (see Hatonen et al. (2004) for

more details) to facilitate later ILC design. Assuming at least one subsystem’s relative

degree is unity (i.e., ∃i such that CiBi ̸= 0), the ‘lifted’ input, output, error, desired

reference can then be defined as

ui,k = [ui,k(0) ui,k(1) · · · ui,k(N − 1)]T ∈ Ui

yi,k = [yi,k(1) yi,k(2) · · · yi,k(N)]T ∈ Y

ek = [ek(1) ek(2) · · · ek(N)]T ∈ Y

r = [r(1) r(2) · · · r(N)]T ∈ Y

(8.4)

where the input space Ui = RN and the output space Y = RN are defined with inner

products and induced norms

⟨u, v⟩Ri = uTRiv, ∥u∥Ri =
√

⟨u, u⟩Ri

⟨x, y⟩Q = xTQy, ∥y∥Q =
√

⟨y, y⟩Q
(8.5)
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in which Ri, Q are symmetric positive definite matrices.

Then, the system model (8.1) can be rewritten as

yi,k = Giui,k + di (8.6)

where ith subsystem’s system matrix Gi is defined as

Gi =


CiBi 0 · · · 0

CiAiBi CiBi · · · 0
...

...
. . .

...

CiA
N−1
i Bi CiA

N−2
i Bi · · · CiBi

 (8.7)

and the response of ith subsystem’s initial condition di is

di =
[
CiAixi,0, CiA

2
ixi,0, CiA

3
ixi,0, · · · , CiA

N
i xi,0

]T
(8.8)

For notational simplicity, we introduce d, yk, G, u⃗k as the global vector of di, yi,k, Gi

and ui,k, which are defined as

d = d1 + d2 + · · · + dp

yk = y1 + y2 + · · · + yp

G = [G1 G2 · · · Gp]

u⃗k =
[
uT1,k uT2,k · · · uTp,k

]T ∈ U

(8.9)

where the global input space U = U1×U2×· · ·×Up, with the inner products and induced

norm defined as

⟨u⃗, v⃗⟩R⃗ = u⃗T R⃗v⃗, ∥u⃗∥R⃗ =
√

⟨u⃗, u⃗⟩R⃗ (8.10)

in which R⃗ = diag(R1, R2, · · · , Rp), and × represents the Cartesian product. Then, the

overall system model (8.2) can be represented in ‘lifted form’ as

yk = Gu⃗k + d. (8.11)

Based on the above ‘lifted form’ formulation, the desired objective of collaborative track-

ing problem can be stated as finding a set of proper individual input ui,k such that the

overall system output yk track the reference r precisely.

8.1.2 System Constraints

In practice, system constraints are widely existing, since they are often related to prac-

tical limitations (e.g., individual input saturation) or performance requirements (e.g.,
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constraints of total input energy consumption). Hence, considering the ability to handle

system constraints is important when designing a control algorithm. In this chapter, we

only consider input constraints for simplicity. The results can be extended to handle

other types of constraints (e.g., state constraints, output saturation) without any diffi-

culties. Assuming the individual input ui is lied in a closed and convex set Ωi in the

input space Ui. Some commonly used examples are defined as follows:

� Input sign constraints:

Ωi =
{
ui ∈ RN : 0 ≤ ui(t)

}
(8.12)

� Input saturation constraints:

Ωi =
{
ui ∈ RN : |ui(t)| ≤Mi(t)

}
(8.13)

� Input energy constraints:

Ωi =

{
ui ∈ RN :

N−1∑
t=0

u2i (t) ≤Mi

}
(8.14)

� Input amplitude constraints:

Ωi =
{
ui ∈ RN : λi(t) ≤ ui(t) ≤ µi(t)

}
(8.15)

where Mi, λi and µi are prescribed constraint bounds.

It should be noticed that, each subsystem’s input constraint is not necessary to be the

same, as commonly seen in practice. To facilitate subsequence ILC design, we define Ω

as the global input constraint set, i.e.

Ω = Ω1 × Ω2 × Ω3 × · · · × Ωp. (8.16)

8.1.3 Constrained Iterative Learning Control Design

In this chapter, the ILC design problem for constrained collaborative tracking problem

is stated as finding an input updating law in the following form

u⃗k+1 = f(u⃗k, ek) (8.17)

such that
u⃗k ∈ Ω, ∀k ≥ 0

lim
k→∞

yk = r, i = 1, 2, · · · , p
(8.18)
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Note that, during the whole control process, each subsystem needs to work independently

(since it has not access to the other subsystem’s information) without violating the

input constraints, which makes the design problem non-trivial. To solve this challenging

problem, we will develop a novel constrained ILC framework in the following section.

8.2 Constrained ILC Framework for Collaborative Track-

ing Problem

In this section, we propose a novel constrained ILC framework to solve the ILC design

problem (8.18) and then analyse its convergence properties rigorously.

8.2.1 Algorithm Description

Inspired by the constrained design for networked dynamical systems (please refer to

Algorithm 4.1 in Chapter 4 for more details), we propose the following NOILC framework

to solve the constrained collaborative tracking problem:

Algorithm 8.1. For any u⃗0 ∈ Ω, the input series {u⃗k+1}k≥0 defined as follows

u⃗k+1 = arg min
u⃗k+1∈Ω

{
∥ek+1∥2Q + ∥u⃗k+1 − u⃗k∥2R⃗

}
(8.19)

where ek+1 = r−yk+1 = ek−G(u⃗k+1− u⃗k), iteratively solve the constrained collaborative

tracking problem, i.e.

u⃗k ∈ Ω, ∀k ≥ 0

lim
k→∞

yk = r, i = 1, 2, · · · , p
(8.20)

Remark 8.1. Note that the convergence speed of Algorithm 8.1 will be affected by dif-

ferent choices of weighting matrices Q, R⃗ in a similar way as that of the standard norm

optimal ILC algorithm, i.e., a smaller R leads to faster convergence speed. For more

details, please refer to Amann et al. (1996a).

8.2.2 Convergence Properties of Algorithm 8.1

The convergence analysis of Algorithm 8.1 will be discussed in two cases due to the

existence of the constraint set Ω.

8.2.2.1 Perfect Collaborative Tracking is Possible

When the constraint set Ω is large enough to cover the possible solution, perfect col-

laborative tracking is possible. Algorithm 8.1 has appealing convergence properties, as

shown in the following theorem.
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Theorem 8.1. Given any u⃗0 ∈ Ω and associated collaborative tracking error e0, Algo-

rithm 8.1 guarantees the generated input sequence satisfy the constraint requirements,

i.e.

u⃗k+1 ∈ Ω, ∀k ≥ 0 (8.21)

and the collaborative tracking error norm converges monotonically to zero, i.e.

∥ek+1∥Q ≤ ∥ek∥Q, lim
k→∞

ek = 0. (8.22)

Consequently, the networked dynamical system achieves perfect collaborative tracking

and the corresponding input converges as k → ∞, i.e.

lim
k→∞

yk = r,

lim
k→∞

ui,k = u∗i , i = 1, 2, · · · , p
(8.23)

Proof. The proof of convergence follows from the result in Chapter 4 by formulating the

problem into a successive projection framework. In more details, we define two closed,

convex sets K1 and K2 in H = U × Y as follows

� K1 = {(e, u⃗) ∈ H : e = r −Gu⃗− d, u⃗ ∈ Ω};

� K2 = {(e, u⃗) ∈ H : e = 0}

with the inner product and the associated induced norm for H defined as

⟨(e, u⃗), (z, v⃗)⟩ = eTQz + u⃗T R⃗v⃗

∥(e, u⃗)∥ =
√
⟨(e, u⃗), (e, u⃗)⟩

(8.24)

Then, the property of (8.21) is a direct consequence of solving the problem (8.19) (by

using Theorem 4.1). For the optimisation problem (8.19), when perfect collaborative

tracking is achievable, the non-optimal input choice u⃗k+1 = u⃗k yields a suboptimal

solution

∥u⃗k+1 − u⃗k∥2R⃗ + ∥ek+1∥2Q ≤ ∥ek∥2Q (8.25)

Note that ∥u⃗k+1 − u⃗k∥2R⃗ is non-negative, hence

∥ek+1∥2Q ≤ ∥ek∥2Q, k = 0, 1, · · · ,∞ (8.26)

Note that Algorithm 8.1 iteratively finds a point of the intersection of sets K1 and K2.

When K1 ∩K2 ̸= ∅, the crosspoint is (0, u⃗∗), hence

lim
k→∞

∥ek∥2Q = 0, lim
k→∞

uk = u∗ (8.27)
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which follows that

lim
k→∞

eTkQek = 0 (8.28)

Note that matrix Q is positive definite, hence, ek = 0 as k → ∞. That completes the

proof.

8.2.2.2 Perfect Collaborative Tracking is Impossible

When the constraint set Ω does not cover the possible solution, perfect collaborative

tracking is impossible. In this case, Algorithm 8.1 guarantees the monotonic convergence

of the collaborative tracking error norm to a minimum (possible) solution, as shown in

the following theorem.

Theorem 8.2. Given any u⃗0 ∈ Ω and associated collaborative tracking error e0, Algo-

rithm 8.1 guarantees the generated input sequence satisfy the constraint requirements,

i.e.

u⃗k+1 ∈ Ω, ∀k ≥ 0 (8.29)

and the convergence of the collaborative tracking error norm is monotonic, i.e.

∥ek+1∥Q ≤ ∥ek∥Q, k ≥ 0 (8.30)

Furthermore, the global input u⃗ converges to the optimal solution u⃗∗s for the following

optimisation problem

u⃗∗s = arg min
u⃗∈Ω

∥e∗∥Q (8.31)

Proof. The proof of the monotonic convergence of the collaborative tracking error norm

is similar to the proof in Theorem 8.1, hence it is omitted here.

According to Theorem 4.1, when perfect collaborative tracking is unachievable, Algo-

rithm 8.1 converges to u⃗∗s, where k1 = (e, u⃗) ∈ K1 and k2 = (0, u⃗∗s) ∈ K2 defining

the minimum distance of two sets, and it is the solution for the following optimisation

problem

(k1, k2) = arg min
k1∈K1,k2∈K2

∥k1 − k2∥2 (8.32)

From the definition of K1 and K2, solving problem (8.32) is equivalent to solving the

following optimisation problem

(u⃗, u⃗∗s) = arg min
u⃗∈Ω,u⃗0

{
∥r −Gu⃗− d∥2Q + ∥u⃗− u⃗0∥2R⃗

}
(8.33)
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and hence, Algorithm 8.1 converges to u⃗∗s, which is defined as

u⃗∗s = arg min
u⃗∈Ω,u⃗0

{
∥r −Gu⃗0 − d∥2Q + ∥u⃗− u⃗0∥2R⃗

}
= arg min

u⃗∈Ω

{
min
u⃗0

∥r −Gu⃗0 − d∥2Q + ∥u⃗− u⃗0∥2R⃗

} (8.34)

Note that u⃗0 = u⃗ is the solution of the inner minimization, and hence

u⃗∗s = arg min
u⃗∈Ω

∥r −Gu⃗∗ − d∥2Q (8.35)

Since matrix Q is positive definite and matrix G has full rank, the performance index

is convex. It should be noticed that, the constraint is also convex, hence (8.35) has an

optimal solution. That completes the proof.

Theorems 8.1 & 8.2 show that Algorithm 8.1 guarantees both the satisfaction of the

constraints and the monotonic convergence of the tracking error norm to a minimum

solution (in particular, zero tracking error when perfect collaborative tracking is possi-

ble), which is desirable in practice. However, using a central controller (to solve a con-

strained quadratic programming problem) may not be possible in practice (especially for

large-scale networked dynamical system). Hence, we will propose a decentralised ILC

algorithm in the next session to address this problem.

8.3 Decentralised Constrained Collaborative Tracking ILC

Algorithm

In this section, we use the idea of ‘sharing’ formulation in ADMM to provide a decen-

tralised constrained collaborative tracking ILC Algorithm. In the following, the general

idea of ‘sharing’ formulation in ADMM will be reviewed.

8.3.1 The Alternating Direction Method of Multipliers

ADMM is a powerful distributed optimisation method with nice convergence properties:

the convergence of the objective is guaranteed under very mild conditions, which in

contrast to many other distributed methods, e.g., dual decomposition (Boyd et al., 2011).

The so called ‘sharing’ problem in ADMM has many similarities with the collaborative

tracking problem considered in this paper, which will be reviewed in the following.
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For the ‘sharing’ problem, it is defined in the following form

minimize

p∑
i=1

fi(ui) + g(

p∑
i=1

ui) (8.36)

where ui ∈ RN denotes the local variable.

Then, applying the idea of ADMM in Boyd et al. (2011), the ‘sharing’ problem (8.36)

can be written into the following form

minimize

p∑
i=1

fi(ui) + g(

p∑
i=1

zi)

subject to ui − zi = 0, i = 1, · · · , p

(8.37)

where zi ∈ RN denotes the global variable component.

For problem (8.37), its augmented Lagrangian is defined as

Lρ(ui, z, γi) =

p∑
i=1

fi(ui) + g(

p∑
i=1

zi) +
ρ

2

p∑
i=1

∥ui − zi + γi∥2 (8.38)

where ρ is the penalty parameter, γi is the scaled dual value. For problem (8.37), ADMM

iteratively performs the following steps to find the solution (more details can be found

in Boyd et al. (2011))

u q+1
i = arg min

ui

[
fi(ui) +

ρ

2
∥ui − uqi + uq − z̄q + γq∥2

]
(8.39)

z̄ q+1 = arg min
z̄

[
g(pz̄) +

ρ

2
p∥uq+1 − z̄ + γq∥2

]
(8.40)

γ q+1 = γ q + uq+1 − z̄q+1. (8.41)

where u = 1
p

∑p
i=1 ui, z̄ = 1

p

∑p
i=1 zi and q is the ADMM iteration number .

Note that, the z-update step only requires solving a problem in N variables (for i =

1, 2, . . . , p) and each subsystem’s scaled dual variables γi are the same (and hence they

are replaced by a single variable γ), which greatly reduces the computational complexity.

Note that, the above algorithm is guaranteed to converge to the optimal solution for

any ρ > 0, which is appealing in practice.

8.3.2 Decentralised Implementation of Algorithm 8.1

Using the ‘sharing’ problem formulation, a decentralised implementation for Algorithm

8.1 can be developed in the following. At trial k + 1, the optimal solution of input
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updating law (8.19) can be found by solving the following optimisation problem:

minimize

p∑
i=1

fi,k+1(ui,k+1) + gk+1

(
p∑

i=1

zi,k+1

)
subject to Giui,k+1 − zi,k+1 = 0, i = 1, · · · , p

(8.42)

where fi,k+1(ui,k+1) is defined as

fi,k+1(ui,k+1) = ∥ui,k+1 − ui,k∥2Ri

dom fi,k+1 = {ui,k+1| ui,k+1 ∈ Ωi}
(8.43)

and gk+1(
∑p

i=1 zi,k+1) is defined as

gk+1(

p∑
i=1

zi,k+1) = ∥ek + yk −
p∑

i=1

zi,k+1∥2Q

dom zi,k+1 = RN

(8.44)

Now, applying ADMM steps to solve (8.42), yields the following decentralised imple-

mentation:

Algorithm 8.2. At ILC trial k + 1, the input ui,k+1 obtained distributively using the

following ADMM steps

u q+1
i,k+1 = arg min

ui,k+1∈Ωi

[ρ
2
∥Giui,k+1−Giu

q
i,k+1+Gu

q − zk+1
q+γqk+1∥

2 + ∥ui,k+1 − ui,k∥2Ri

]
(8.45)

z̄ q+1
k+1 = (pQ+

ρ

2
IN )−1

[ρ
2

(γqk+1 +Gu
q+1

) +Q(ek + yk)
]

(8.46)

γ q+1
k+1 = γ q

k+1 +Gu
q+1 − zk+1

q+1 (8.47)

where Gu
q+1

= 1
p

∑p
i=1Giu

q+1
i,k+1, provides a decentralised implementation for optimisa-

tion problem (8.19).

8.3.3 Decentralised Constrained ILC Algorithm

Using distributed implementation Algorithms 8.2 to implement the centralised Algo-

rithm 8.1, yields the decentralised constrained ILC Algorithm 8.3 for the high perfor-

mance collaborative tracking problem. A flow chart is shown in Figure 8.1 to describe

the information flow during the control process. In Algorithm 8.3, each subsystem up-

dates its own input independently, which is desirable in practice. The only information

needed, in addition to the collaborative tracking error, are Gu
q+1

, zk+1
q+1, γq+1

k+1. Note

that, these information are easy to share, since they only require simple calculation of

the measurement unit, which also provide the tracking error information. By applying
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Algorithm 8.3. Decentralised Constrained Algorithm for Collaborative Tracking

Input: Desired reference trajectory r; system matrices Ai, Bi, Ci; maximum ILC
trials kmax; maximum ADMM iterations qmax; penalty parameter ρ

Output: Optimal input solution u⃗kmax

1: Initialization: Set the ILC trial index k = 0
2: For: k = 0 to kmax

3: For: q = 0 to qmax

4: For: i = 1 to p
5: Each subsystem receives information

6: Each subsystem updates u q+1
i,k+1 using (8.45)

7: End for

8: Measurement unit updates z̄ q+1
k+1 , γ q+1

k+1 using (8.46), (8.47), and broadcasts

them to all subsystems
9: End for
10: Each subsystem applies ui,k+1 to the system and measurement unit

records yk+1, ek+1

11: End for
12: Return: Optimal input solution u⃗kmax

the above idea, Algorithm 8.3 can be calculated in a fully decentralised manner, which

is desirable in practice.

Remark 8.2. Note that, ADMM requires infinite iteration number to approach the

centralised result in theory. However, ADMM is usually efficient in practice, i.e., a

small iteration number is enough to approximate the centralised result in most cases.

Later simulations will verify this phenomenon.

8.4 Numerical Examples

In this section, we provide numerical examples to verify the proposed algorithms’ ef-

fectiveness. Consider a heterogeneous, non-minimum phase, over-damping, seven-agent

networked dynamical systems. Each subsystem’s dynamics is defined as

Ai =

[
0 1

−τi −6

]
Bi =

[
1

0

]
Ci =

[
−1

5

]T

in which τi = i, i = 1, 2, · · · , 7.

The trial length is assumed to be 3s with the sampling time Ts = 0.05s (sampled using

a zero-order hold), and for simplicity, each subsystem’s initial condition xi,0 is set to be

0. The desired reference trajectory is defined as

r(t) = sin(π(Tst− 1)). (8.48)
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                                  Initialize                            𝒒 

 

Broadcast: 

𝜸𝒌+𝟏
𝒒+𝟏

 ; 𝑮𝒖    𝒒+𝟏 ; 𝒛𝒌+𝟏      𝒒+𝟏 

Start

Each subsystem receives information                            
and updates           using Equation (8.39)

               Measurement unit updates                           
                          using Equation (8.40)

 𝒛𝒌+𝟏      𝒒+𝟏 

 

𝒖𝒊,𝒌+𝟏
𝒒+𝟏

 

 

               Measurement unit updates                                
                          using Equation (8.41)

  𝜸𝒌+𝟏
𝒒+𝟏

 

 

𝒒 ≤ 𝒒𝒎𝒂𝒙 ? 

 
Yes

No

      Each subsystem applies            to the system   
      and measurement unit records 

𝒖𝒊,𝒌+𝟏
𝒒𝒎𝒂𝒙  

 

𝒌 ≤ 𝒌𝒎𝒂𝒙 ? 

 
Yes

No

                                  Set     

                                  Set     

End

ADMM part

ILC part

𝒒 = 𝒒 + 𝟏 

 

 𝒚𝒌+𝟏,𝒆𝒌+𝟏 

 

𝒌 = 𝒌 + 𝟏 

 

                       Initialize                         𝒖𝒊,𝟎,𝑮𝒖    , 𝒛𝒌+𝟏      ,𝜸𝟎, 𝒌 

 

Transfer: 
𝒖𝒊,𝒌; 𝒚𝒌; 𝒆𝒌 

 

Figure 8.1: The flow chart of distributed Algorithm 8.3
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Figure 8.2: Convergence of collaborative tracking error norm over 50 trials
(when perfect collaborative tracking is achievable)

In the following, we first consider the case that perfect collaborative tracking is achiev-

able.

8.4.1 Perfect Collaborative Tracking is Achievable

To make sure the perfect collaborative tracking is achievable, each subsystem’s individual

constraint set is selected large enough as follows to cover the solution:

Ωi = {ui ∈ RN : −0.25 ≤ ui(t) ≤ 0.25} (8.49)

In this case, we set the maximum ADMM iteration number qmax = 60, penalty parameter

ρ = 1, and the weighting matrices Q = Ri = IN for simplicity. Figure 8.2 shows the

convergence behaviour of both centralised and decentralised implementation over 50

ILC trials. As shown in the figure, the decentralised result is almost identical with the

centralised solution, demonstrating that a small iteration number is usually sufficient

for ADMM to approach the centralised result in most of the cases. It can also be seen

from the figure that the collaborative tracking error norm converges monotonically to

zero, which verifies Theorem 8.1.

Figures 8.3 and 8.4 show the input of seven subsystems and the output of the whole
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Figure 8.3: Input of different subsystems on the 50th trial (when perfect collab-
orative tracking is achievable)

networked dynamical systems on the 50th ILC trial. These figures demonstrate that when

perfect collaborative tracking is possible, Algorithms 8.1 & 8.3 not only guarantee the

satisfaction of the input constraint, but also achieve the desired collaborative tracking

objective, which further verifies Theorem 8.1.

8.4.2 Perfect Collaborative Tracking is Unachievable

In this case, we change the input constraint set into a smaller one (and hence there is

not possible solution in the set) as

Ωi = {ui ∈ RN : −0.20 ≤ ui(t) ≤ 0.20}. (8.50)

To make comparison with the case that perfect collaborative tracking is possible, we

consider the same parameter setting as the previous case. Figure 8.5 shows the conver-

gence performance of the collaborative tracking error norm over 50 ILC trials. Again,

the decentralised result and the centralised solution are almost indistinguishable in the

figure, which conform to our exception. Although the collaborative tracking error norm

cannot converge to zero in this case, it will converge monotonically to the minimum

solution ∥e∗∥Q⃗ = 0.1824 (that is obtained from (8.31)), which verifies Theorem 8.2.
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Figure 8.4: Output of the overall system on the 50th trial (when perfect collab-
orative tracking is achievable)

Figure 8.5: Convergence of collaborative tracking error norm over 200 trials
(when perfect collaborative tracking is impossible)
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Figure 8.6: Input signal of different subsystems on the 200th trial (when perfect
collaborative tracking is unachievable)

All of the subsystems’ input are shown in Figure 8.6, which demonstrates that even

when the perfect collaborative tracking is impossible, each subsystem can still generate

its input within the constraint set. Figure 8.7 shows the output of the overall system on

the 200th ILC trial, and it demonstrates that Algorithms 8.1 & 8.3 can return a good

approximation to the reference trajectory. We also investigate the effect of weighting

matrices Q and Ri, and the results conform to Remark 8.1.

8.5 Summary

In this chapter, we propose novel optimisation-based ILC algorithms for the constraint

handling problem in collaborative tracking of networked dynamical systems. The result-

ing constrained ILC framework can handle the system constraint while maintaining the

monotonic convergence of the collaborative tracking error norm to a minimum value (in

particular, zero tracking error when perfect collaborative tracking is achievable). More-

over, the proposed framework can be applied to both homogeneous and heterogeneous

networks, as well as non-minimum phase systems, which has strong applicability in prac-

tice. Two algorithms are proposed. The first one has a centralised structure. Noting the

fact that the central controller is not always possible in practice, we develop a decen-

tralised collaborative tracking ILC algorithm (using the ‘sharing’ problem formulation
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Figure 8.7: Output of the overall system on the 200th trial (when perfect col-
laborative tracking is unachievable)

in ADMM), which allows the resulting algorithm to be applied to large-scale networked

dynamical systems. In next chapter, we will summarises what have been done in this

thesis and what could be done in the future.



Chapter 9

Conclusion and Future Work

This chapter summaries the thesis and points out the direction for future research.

9.1 Summary and Conclusion

Networked dynamical systems have attracted increasingly more attention during the last

few decades since they can handle difficult/dangerous control tasks that are impossible

to be achieved by the single agent system. Benefiting from the vast potential, networked

dynamical systems have found many applications in different areas, e.g., traffic networks,

collaborative micro-robots, unmanned aircraft vehicles and smart grids. Among all the

applications of networked dynamical systems, there exists a class of networked dynamical

systems performing repetitive tasks and requiring high control performance. However,

most of the existing traditional control methods have difficulty controlling the above

networked system: the traditional centralised algorithm has poor scaling properties,

and it is usually computationally expensive when the size of networked system is large;

the distributed design often focuses on asymptotic (steady state) behaviour, achieving

high precision tracking for dynamic reference from the initial state largely remains open.

Moreover, they all require highly accurate model information (which is difficult and

expensive to obtain in practice) to achieve the high performance requirement.

To avoid the requirement of a highly accurate model, iterative learning control (ILC)

has recently been used for high performance networked dynamical systems. ILC up-

dates the input by learning from the data (e.g. input and tracking error) collected from

previous executions of the same task. These data contain (explicitly) the system model

information and therefore learning from the data avoids the use of an accurate system

model. Benefiting from the learning feature, a number of ILC algorithms have been

investigated for networked dynamical systems working in a repetitive manner. How-

ever, existing ILC algorithms have some limitations: (1) the majority ILC algorithms

199
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cannot be applied to large scale networked dynamical systems and none of the existing

algorithms can deal with a dynamically growing of networks during the control process;

(2) monotonic convergence of the tracking error norm (which is desired in practice) is

either not guaranteed or guaranteed only when the controller satisfies certain conditions;

(3) they have not considered the constraints handling problem (that is widely existing

in practice) in networked dynamical systems; (4) general point-to-point (P2P) tasks,

which focus on the tracking performance on the intermediate time instants, have not

been considered in existing ILC article for networked dynamical systems.

This thesis addresses the above limitations by introducing novel optimization-based

ILC design algorithms for high performance networked dynamical systems working in a

repetitive manner. In particular, the main contributions of this thesis are summaries as

follows:

� The design of optimisation-based ILC algorithms for three control problems (i.e.,

consensus tracking, formation control, and collaborative tracking) in networked

dynamical systems. The resulting frameworks have nice convergence properties

and certain degree of robustness against the model uncertainty.

� The derivation of distributed/decentralised implementations for the proposed ILC

frameworks, which allows the proposed frameworks to be applied to large scale

networked dynamical systems and have great scalability to a dynamically growing

network.

� The exploitation of ILC design algorithms for constraints handling problem of

networked dynamical systems. The resulting algorithms guarantee the system

constraints are always satisfied during the control process and the monotonic con-

vergence of the tracking error norm to a minimum (possible) solution.

� The extension of the proposed ILC design frameworks to solve P2P task, with the

convergence and robustness properties remaining unchanged.

Although all the proposed algorithms have shown great performance for high perfor-

mance networked dynamical systems working in a repetitive manner, the present work

can be further developed in the future, which are summarised in the next section.

9.2 Future Works

Based on what has been done in this thesis, the following topics will be of interest for

future research.
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9.2.1 Robustness Analysis of the Proposed Algorithms (Estimated

Time: 10 Months)

Due to the time limit, we have only analysed the robustness properties of some of the

distributed ILC algorithms. However, the robustness analysis of other extended ILC

algorithms remains open. For different assuming conditions (e.g., switching topologies,

the existence of system constraints, and different model uncertainty type), it will lead

to different robustness analyses in theory. To ensure the algorithms are applicable in

practice, we will investigate the robustness properties of all the proposed algorithms in

the future.

For all the ILC algorithms, their error evolution can be written into the following form

ek+1 = Lek (9.1)

and the convergence condition is that

ρ(L) < 1. (9.2)

This condition should always hold for a robust ILC algorithm. Hence, this condition

could be seen as a starting point when analysing the robustness for algorithms with

different assumptions.

As shown in Chapter 3, we have successfully used the time domain method in Owens

(2016) to derive the robustness condition in our situation. Hence, this robustness method

will be used for further robustness analysis of the other control problems in networked

dynamical systems. After robustness is rigorously analysed, we will test the robustness

condition on the simulation platform (under model uncertainty generating using the

Monte Carlo method).

9.2.2 ILC for Multi Input Multi Output, Continuous Time System

(Estimated Time: 10 Months)

In this thesis, all the ILC frameworks we design are established based on the discrete-

time, single input single output (SISO) networked dynamical system. It has been shown

that the proposed algorithms show great performance both on convergence and robust-

ness properties. However, the extension to continuous time, multi input multi output

(MIMO) is not-trivial because of the following potential risks:

� Possibly ρ(L) = 1 in the design. For a continuous time system, the convergence

condition ρ(L) < 1 is almost impossible to satisfy. The spectrum radius of the

learning operator need to be carefully analysed in order to establish the conver-

gence of tracking error.
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� Additional computational complexities. Given an example, if we want to use the

feedback and feedforward implementation in the ILC design, then it will involve

the calculation of the differential Riccati Equation for a continuous time system,

which creates more computational complexities.

� Mixed rank problem may arise in the MIMO setting. For a MIMO system with

heterogeneous networks (i.e., each subsystem’s dynamics is different), there may

exist a situation which some of the subsystem’s dynamics Gi is singular and leads

to unachievable of the control target.

The above issue needs to be addressed when we extend the results to the continuous

time, MIMO case. In Owens (2016), there have some answers to these questions and we

will investigate them in the future.

9.2.3 ILC for Nonlinear Networked Dynamical System (Estimated Time:

10 Months)

In this thesis, the problem formations and results are established on the linear networked

dynamical system. However, the dynamics of each subsystem is often nonlinear in prac-

tice, e.g., 6 degree-of-freedom Quadrotor (Najm and Ibraheem, 2019), satellite (Ahn

et al., 2010). To make sure the proposed design is applicable to most practical applica-

tions, the investigation of ILC for nonlinear networked dynamical systems is required in

the future.

For nonlinear ILC design, it is much more difficult to analysis the system behaviour. For

heterogeneous network, each nonlinear subsystem’s dynamics is different in its own way

and it is non-trivial to analyse the system’s convergence and robustness properties. In

the literature, there exist some nonlinear ILC designs for networked dynamical systems

using different approaches, e.g., contraction mapping (Hui et al., 2020; Yang et al., 2016),

Newton method (Lin and Owens, 2007; Lin et al., 2006), Lyapunov function (Jin, 2016;

Shen et al., 2019). The investigation of these methods can be seen as a starting point.

We will verify these methods’ effectiveness on the networked dynamical systems in the

future.

In addition, all the distributed/decentralised ILC algorithms proposed in this thesis are

established on the Hilbert space, allowing the algorithms and results to be applied to

more widely cases (including nonlinear networked dynamical systems). The extension

from linear system to nonlinear system is a very interesting research direction and it is

worthwhile to further study.
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9.2.4 Experiment Verification using a Quadrotor Platform (Estimated

Time: 1 Year)

Currently, the proposed algorithms are verified based on Matlab simulation, experiment

verification of the proposed algorithms is necessary in the future. Quadrotor platform

is commonly used in the experiment verification of networked dynamical systems. How-

ever, most of the practical swarm Quadrotors are controlled manually (through remote-

control), which cannot autonomously achieve the desired high performance require-

ment. Even considering the recent popularity of reinforcement learning (RL) Quadrotors

(which only existing in theory), they will meet difficulties in parameter tuning and sta-

bility.

The proposed algorithms have shown great convergence and robustness properties both

in theory and simulation, and they do not require a highly accurate model to achieve the

desired objective, which is definitely very competitive in practice. Hence, we will build

up a multiple Quadrotor test platform to verify the effectiveness of proposed algorithms

and improve the algorithms to make sure they meet the practical requirements (e.g,

constraint handling ability, energy efficiency).

The potential applications of our proposed algorithms include the high performance task

with repetitive manner, e.g., air logistics or urban surveillance. These applications are

all the important direction of future intelligence and hence the proposed algorithms will

have high commercial value. This future work forms an important part of our future

research, which provides evidence for the proposed algorithms to be applied to real world

networked dynamical systems.

9.2.5 Model Free ILC Design (Estimated Time: 1 Year)

In this thesis, all the ILC frameworks we design are model based. Generally speaking,

the explicit use of the (not necessarily accurate) model information shows appealing

convergence properties. However, model information may be expensive and difficult to

obtain in some practical applications.

Reinforcement learning (RL) is a completely model free method that learns an optimal

action policy to maximise some performance (reward). By constantly interacting with

the environment, applying policy, receiving and learning from the reward, RL can modify

the action policy to improve the tracking performance without any model information.

A preliminary study on the similarity between ILC and RL is proposed in Zhang et al.

(2019b), which shows that RL is suitable for developing model free ILC algorithms.

Model free actor-critic ILC algorithm is proposed in Poot et al. (2020) and it has been

successfully verified on a printer setup.

For RL based method, it needs to try various input/parameters to achieve the perfect
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tracking. However, in some real application where safety critical issues is important

(e.g., advanced robotic surgical system), the arbitrary choice of system parameters may

cause serious consequence (since the possible output is unpredictable). To deal with this

safety issue, there has been recent research on safety guaranteed model free learning,

and this will be further investigated.

Data-driven ILC methods can utilize previous trials’ input and output data to establish

the input-output relationship (which does not reproduce the system model), and it is a

powerful method when the model information is difficult to obtain. Some results that

successfully applying data-driven ILC to high performance control problem are presented

in Bolder and Oomen (2015); Bolder et al. (2014, 2018); Janssens et al. (2013), which

could be a starting point of the investigation of data-driven ILC for high performance

networked dynamical systems.

However, for existing data-driven approach, it will require extra more trials to perform

the experiment in order to establish the input-output relationship, which increases the

computational complexity. In networked dynamical systems, if the network is hetero-

geneous, it may produce great computational complexity when establishing each sub-

system’s input-output relationship. Furthermore, for the formation control problem

without any reference trajectory, it is difficult to establish the input-output relation-

ship (since each subsystem has infinite input choices and the tracking error is ‘virtual’).

These topics worth for future research and will be investigated.
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