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Abstract

When analysing the results from experimental and observational
studies, the main aim is often to estimate what effect the treatment
is having on the participant. For this reason, it is important that the
estimate for the treatment effect is not influenced (biased) by hav-
ing imbalanced (heterogeneous) treatment groups. Randomisation is
often used in experimental studies to obtain homogenous treatment
groups i.e. the distribution of all covariates (except treatment group)
is the same between treatment groups. However, when the sample
size is small, randomisation may not successfully obtain entirely ho-
mogeneous groups. Heterogeneous groups are often an issue in obser-
vational studies as randomisation cannot be used. This thesis aims
to demonstrate the need to adjust for baseline heterogeneity by show-
ing the potential consequences of not. The thesis also aims to find a
method to successfully adjust for baseline heterogeneity.

A hypothetical example is drawn up to demonstrate the potential
bias in the results if no adjustment for the baseline heterogeneity is
made. An explanation is given on how failing to adjust for heterogene-
ity, could lead to false conclusions to the extent that a harmful drug
could be wrongly authorised. This thesis examines the properties of
six potential methods for adjusting for baseline heterogeneity which
include 5 parametric methods (using an Offset, Continuous Covari-
ate, Categorical Covariate, Random Effect and a Conditional model)
and a non-parametric method (Mantel-Haenszel). The ability of these
methods to adjust for heterogeneity is assessed by using them to anal-
yse three datasets containing baseline heterogeneity. Furthermore, a
detailed simulation study is undertaken to analyse the bias and RMSE
of each of the methods.

The treatment effects obtained from the different methods (for ad-
justing for baseline heterogeneity) differ in the analysis of the example
datasets. The AIC and BIC demonstrate that adjusting for baseline
heterogeneity is required. However, the AIC and BIC cannot convinc-
ingly separate the parametric methods (AIC and BIC is not available
for the Mantel Haenszel method). In order to distinguish between
the 6 different trial methods, simulation studies are used. The RMSE
is then calculated for a range of different scenarios (different sample
sizes, risk ratios, number of treatment groups and time points). The
Continuous method consistently performs well. For this reason, the

13



Continuous method appears to be the preferred method to use.
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1 Introduction

The issues caused by baseline heterogeneity are a major problem in Ob-
servational studies such as Cohort studies but the issues also occur in Exper-
imental studies in Medicine and Life sciences such as Clinical Trials. Details
of why this is an issue is explained in detail later in the thesis. The impor-
tance of well managed clinical trials has possibly never been more apparent
than with the occurrence of Covid-19. Given this, the ability to analyse data
from such studies accurately and reliably is essential.

The data collected from these studies is often longitudinal. This means
data for the outcome variable is taken at various different times (for each
individual) including the start. The final measurement (known as the end
point) can be thought of as the starting value plus some evolution over time.
The evolution part is known as the “longitudinal effect” and the starting
point is known as the “cross sectional effect”. Typically, it is the longitudinal
effect that is studied.

Longitudinal studies are particularly susceptible to baseline heterogene-
ity. This is because heterogeneity can occur in the baseline measurement of
the outcome as well as other variables which could potentially influence the
outcome. Clinical trials use “randomisation” to adjust for baseline hetero-
geneity in variables which could influence the outcome variable. It is not
always possible to remove all heterogeneity this way. Kent et al. [21] have
done research into how to assess any unaccounted for heterogeneity and how
best to report it.

One common thought is that balanced studies (equal numbers are anal-
ysed at each time point) produce substantially higher levels of validity for
the longitudinal effect. A presentation given in February 2020 by Verbeke
shows that the decrease in validity caused by unbalanced data is typically
quite minor. This is also supported in a paper by Verbeke et al. [45]).

When carrying out analysis of longitudinal data from both observational
studies and clinical trials, it is thought vital to adjust for any significant
baseline variables. The need to adjust for such variables is outlined in the
CONSORT and EMA guidelines [12]. Failing to do this adjustment can cause
some bias to occur in the longitudinal effects, with the exception of the growth
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curve model for completely balanced data (see Verbeke et al. [44]). The term
bias can have different meanings depending on the situation. In this thesis,
bias is used to describe the precision of the longigitudinal estimates.The
bias caused by leaving out significant baseline variables in generalised linear
models is shown by Neuhaus [27]. Gail et al. [15] demonstrate the bias for
non-linear models. A further example of just how severe the bias can be, is
given in Chao et al. [7] where binary clustered data is used.

In the case of linear models (e.g. ANOVA) or linear mixed models with
balanced longitudinal data (equal numbers are analysed at each time point),
the longitudinal effects are protected from bias when omitting baseline ef-
fects [44]. This is due to the orthogonality properties of the model. The
orthogonal properties (absence of correlation between model parameters) in
linear models such as ANOVA are explained in the paper by Winer [47]. It
is worth noting that the baseline measurement of the outcome variable is
not one of the baseline effects which can safely be omitted. Interestingly, in
linear mixed models, the orthogonal properties protect the standard errors
from bias where this is not the case for linear models such as ANOVA [44].

Palta and Yao [32] also did research into whether this useful finding (i.e
no bias) holds when omitting baseline covariates in linear models when the
data is correlated. A compound covariance structure and normality of co-
variates were assumed. These conditions are highly unlikely to hold in most
situations, hence the results have little practical meaning and are therefore
not considered here.

There is clear agreement, as pointed out in the CONSORT guidelines, on
the need to adjust for the baseline measurement of the outcome variable but
what type of adjustment should be used? Stephen Senn in a guest post on
the website ”Error Statistics” [38] examines the merit of analysing the dif-
ference between outcome and baseline measurements. The results presented
show that an ANCOVA (covariate adjustment) approach is better than the
difference method. Research by Hernández et al. [18] shows adjusting for
a significant baseline covariate increases the power of the analysis on the
longitudinal effect (i.e. treatment effect). This finding is also supported by
Kahan et al [22].

There is support for carrying out a covariate adjustment for the baseline
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measurement of the outcome variable. But what type of covariate adjust-
ment is best? Verbeke et al. [45] suggest using a conditional linear mixed
model as this does not cause any bias in the longitudinal effect. Another
benefit is that this model can be interpreted as an extension of the classical
paired t-test. This is a major benefit given the popularity of paired t-tests
(see Verbeke and Fieuws, [43]). The main disadvantage of conditional linear
mixed models is that typically all information about cross sectional effects
is lost while carrying out the conditioning. This is of little concern as it is
the longitudinal effects which are of more interest. Neuhaus and Kalbfleisch
[28] tried to extend these findings to clustered data with generalised linear
models. However, a covariance structure (which is very unlikely to occur)
must be assumed for there to be no bias.

From reviewing the current literature, there is a clear problem with base-
line heterogeneity in longitudinal studies. The vast majority of current re-
search focuses on scenarios where binary or continuous data is collected.
There does not appear to have been any research on the issues of baseline
heterogeneity in count data. Thus, this thesis is going to focus on count data
and how to account for any possible baseline heterogeneity. Three longitudi-
nal datasets from clinical trials are used to demonstrate the adjustments.

1.1 Research objectives

• Demonstrate the need to adjust for baseline heterogeneity:
Multiple papers have demonstrated issues with baseline heterogeneity
and the need to account for it [44] [45] [7]. This thesis aims to demon-
strate the need for adjustment in the case of count data.

• Find a suitable method to perform the adjustment: Six sta-
tistical methods are investigated for their ability to adjust for baseline
heterogeneity. Five of the methods are a form of parametric analysis
where the other method investigated is non-parametric.

• Use of statistical software: Demonstrate how to employ the neces-
sary statistical techniques with the statistical software R.
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1.2 Motivating data sets

This thesis uses data from 3 clinical trials to achieve the above research
objectives. These publicly available datasets are explained below.

1.2.1 Belcap study

This community randomised trial recruited pre-school children in Belo
Horizonte (Brazil) and looked at preventing caries (decay or cavities). Four
different interventions were randomised to four different schools. A fifth
school then received all four intervention and finally a sixth school acted as
a control. All children from the same school receive the same intervention.
The outcome variable was the number of tooth surfaces with decay, missing
teeth or surfaces with fillings (DMFS). This outcome measure was taken at
baseline and at the end of the study which was two years later (see Böhning
et al, [6]). Table 1 below shows what variables are included in the data set.

Table 1: Variables in Brazil data set.

Variable Description

Treat OHE = Oral Health Education

ESD = Enrichment of school diet with rice bran

MW = Mouth Wash with 0.2% sodium fluoride

OHY= Oral Hygiene

ALL = All interventions received

CONTROL = No intervention

Ethnicity 1=dark, 2=white, 3=black

Gender 0=female, 1=male

DMFS-beg Number of tooth surfaces with decay,

missing or filling at the start of study

DMFS-end Number of tooth surfaces with decay,

missing or filling at the end of study

1.2.2 Polyps data set

A polyp is a clump of cells which, in the case of bowel polyps, form on the
inner lining of the large intestine or rectum. They are very common, affecting
around 25% of people at some point in their lives. These polyps are rarely
cancerous. However, if they are not removed, there is a chance that they will
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turn cancerous. It is thought by doctors that a specific form of bowel polyp,
known as an Adenoma, is what bowel cancer stems from (see nhs.uk, [29]).
For this reason, it is always recommended to get polyps treated. The data
set here is from a clinical trial comparing an experimental and control group
for the removal of polyps. It follows that the outcome measure here is the
number of polyps present. It is measured at baseline and after 3 months of
treatment. Table 2 below shows what variables are included in the data set.

Table 2: Variables in Polyps data set.

Variable description

Treat 0 = Placebo, 1 = Experimental

Gender 0 = Female, 1= Male

Age ranges 13 -50 years old

Count-b Number of polyps at the start of the study

Count-3 Number of polyps after three months of treatment

1.2.3 Falls dataset

”Parkinson’s disease” is a neurological condition which, among other
things, affects people’s balance and thus, increases the risks of falling over. It
is thought that about 0.5% of people will suffer from this disease. Typically,
symptoms start to appear once the sufferer is aged over 50 however, about
20% of cases show symptoms under the age of 40 [30].

The falls suffered by Parkinson’s patients can often lead to severe injuries
[17] [31] [34] [46] and in some cases lead to psychological difficulties [20] [50].
Currently there is no cure for Parkinson’s disease. However, a considerable
amount of research has gone into how to provide better care for patients with
Parkinson’s [4] [24].

One such study involved a randomised clinical trial which took place in
the South West of England [16]. The eligibility criteria for this trial required
participants to have a diagnosis of Parkinson’s, have suffered at least 2 falls
in the last year, have a mobilising ability and either be a resident or enrolled
with a GP practice in Devon. The trial enrolled 130 participants on the
study which was split into three 10 week periods.
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The first block of ten weeks (known as the baseline period) involved all
participants’ received standard care, during which the number of falls suffered
was recorded. This measurement was used as the baseline measurement.

During the second block of 10 weeks (intervention period), participants
received the treatment which was randomly allocated to them. This resulted
in 64 receiving the intervention and 66 continuing with just standard care.
The participants in the intervention group received standard care as well as,
one group exercise session and two home exercises in each of the 10 weeks.
Each participant recorded the number of falls they had during this period.
This measurement was known as the intervention measurement.

The final block of 10 weeks was known as the outcome period. During
the outcome period, all participants only received standard care. All partic-
ipants recorded the number of falls they suffered during this period. This
measurement was known as the outcome measurement. Table 3 below shows
the variables collected from this trial.

Table 3: Variables in Falls data set.

Variable description

ID Number code to identify each participant

Baseline falls The number of falls during the baseline period

Follow up falls The number of falls while recieving treatment

Intervention 0 = Control, 1 = Intervention

Log baseline Natural log of the baseline count

1.3 Structure of thesis

Chapter 2 looks at different aspects of clinical trials and cohort studies.
This includes different randomization techniques. Chapter 3 gives a hypo-
thetical situation where heterogeneity could occur and the potential harm
which failing to account for it could do. Chapter 4 looks at the methodology
behind GLMs and describes the five methods, proposed in this paper, for
dealing with baseline heterogeneity. In chapter 5, the six trial methods are
applied to the three data sets (Belcap, Polyps, Falls). Chapter 6 performs a
simulation study to try and further understand the usefulness of the 6 differ-
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ent methods. Finally, chapter 7 has a discussion of the findings of this thesis
as well as a description of possible future work.
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2 Background to experimental and observa-

tional studies

Statistical studies often take the form of either an experimental or an
observational study. The choice between the two could be influenced by a
variety of issues such as time constraints or ethical matters. The key differ-
ence between the types of study is how the treatment is allocated. Exposure
to the treatment of interest occurs naturally within observational studies
which means the investigator has no control over treatment allocation (see
Timothy and Legg, [42]). In an experimental study, the investigator controls
the method of allocation to either the experimental or control group.

2.1 Experimental studies

The most common type of experimental study in medicine is a clinical
trial. It is these trials which are used to check new treatments or drugs for
effectiveness and safety in humans. All drugs or treatments must undergo
“successful” clinical trials before they can be licensed for general use, thus the
vital importance of well conducted clinical trials is readily apparent. Most
clinical trials randomly allocate participants into groups, typically called an
“experimental group” and a “control group” but there may be more than one
experimental group where this is seen as beneficial. Analysis of the outcome
variable is performed after the trial to assess the performance of the new drug
or treatment. The random allocation of participants to groups is important
as it can help form homogeneous groups. There are different types of clinical
trials which have no randomisation or the amount of randomisation is limited.
This could lead to some baseline heterogeneity appearing and damaging the
validity of the results if not accounted for appropriately (see Piantadosi, [33]).

2.1.1 Types of clinical trial

There are different types of trial depending on the trial objectives and the
resources available. The reliability of conclusions made from clinical trials
also depends on which type of trial has been conducted.

The type of trial that generally provides the most accurate results is
known as an “Individual randomised trial” (IRT) with a large sample size
which could extend into the thousands. Due to the law of large numbers,
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key characteristics have similar or identical distributions between treatment
groups when the sample size is large. Hence very little if any baseline het-
erogeneity is left unaccounted for. This type of trial is typically a phase 3
trial. Due to the high level of randomisation, the methods studied later in
this thesis are not required in these large IRTs.

There are also IRTs with small sample sizes, perhaps only double figures
(the Polys data set in section 2.2 is an example of this). In these trials some
randomisation takes place, however, the sample size is too small makes it
unlikely the law of large numbers will work. Thus, not all key characteristics
have similar distributions. This means there could be some baseline hetero-
geneity unaccounted for. The methods studied later in the thesis may then
be of use in improving the reliability of the results.

Another type of trial is a “Community randomised trial” (CRT). This is
where the treatment is randomised to a whole community, meaning potential
key characteristics are not specifically randomised. An example of such a
trial is given in section 2.1 (the Belcap study). This limited amount of
randomisation can lead to baseline heterogeneity between treatment groups
to be problematic. This issue may be dealt with using one of the methods
described later in the thesis. Given equal sample sizes, IRTs have less baseline
heterogeneity than CRTs.

Finally, there are trials with no randomisation at all. These are the most
likely to suffer from heterogeneity at baseline and it is of definite importance
that adjustments for this heterogeneity are made in these trials.

2.1.2 Phases of a clinical trial

Clinical trials can differ greatly depending upon what “phase” of the
whole process they belong to.

Phase 1 trials involve very few patients and is the first occasion that the
treatment is used in humans. Typically, this phase uses healthy participants,
however, when the illness is terminal such as some cancers, participants with
the illness may be involved. This phase has the primary aims of finding out
if the drug or treatment is safe along with identifying any side effects. These
trials have too small a sample size to use randomisation (see Shamley and
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Wright, [39]).

Phase 2 trials are slightly larger than Phase 1 trials and look into
the efficiency of the treatment, as well as possible side effects, in greater
detail. It is worth noting that Phase 2 trials may be large enough to involve
randomisation (see Shamley and Wright, [39]).

Phase 3 trials attract the most attention. They tend to involve the
most participants, the number of which can extend into the thousands. It is
now that the new drug or treatment is compared to the standard treatment
or placebo. A new treatment providing better outcomes than the standard
is clearly beneficial. Should the new treatment be cheaper, it would only
need to perform equally as well as the standard for it to be viewed as an
improvement. After a drug or treatment has passed the third Phase, it is
licensed and released onto the market. Given the much larger size of Phase
3 trials and the fact that the drug then goes onto the market, randomisation
is essential whenever possible (see Shamley and Wright, [39]).

Phase 4 trials are used to examine the long term benefits or risks of
the treatment and follow on from Phase 3. Randomisation is rare in phase
4, information on benefits and adverse events are often collected in a more
routine manner (see Shamley and Wright, [39]).

Trials can sometimes span 2 phases. For example, there are trials which
are known as Phase 1/2 which cover the aims of both a Phase 1 and a Phase
2 trial.

2.1.3 Randomisation techniques

As discussed above, all phase 3 trials try to use randomisation, however,
there are numerous possible techniques for carrying out this process. Below
are some examples.

Simple Randomisation is the most basic method. This involves ran-
dom numbers being generated every time a participant is enrolled in a trial.
For example, if the random number generated is even, the participant is allo-
cated to the experimental group, if odd, he or she is allocated to the control
group. This method is flawed as no patient characteristics are accounted
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for so, in an extreme case, all the males could end up in one group and the
females in the other group. This would clearly bias the results. Simple ran-
domisation can also fail to produce balanced group sizes, particularly if the
sample size is small (see Suresh, [41]).

Blocked Randomisation is an improvement on simple randomisation.
This involves choosing a participant “block size”, typically between 2 and 8
participants and randomising each block separately. Taking a block size of 6
participants as an example, a list of randomly generated single figure numbers
is produced. The numbers greater than the block size are ignored. The first
three numbers (half of the block size) are read off and these correspond to
the individuals allocated to the experimental group. For example, if the first
three numbers are 2, 5 and 6, the second, fifth and sixth participants in the
first block are allocated to the experimental group. The first, third and fourth
participants are then allocated to the control group. This process is then
repeated for each block (see Altman and Bland, [3]). This method produces
equal group sizes unless the trial stops recruiting mid-block, but, this degree
of imbalance is likely to be insignificant. The issue of key characteristics not
being accounted for has again, not been solved by this method.

Stratified Randomisation accounts for perceived key characteristics.
Strata are formed for each category of the key characteristics. If the char-
acteristics are say gender and age, age maybe split into categories, of say,
under 60 and 60 or above. The number of strata is given by multiplying the
number of categories for each characteristic together. For the gender and age
example, there are 4 (2×2) strata. These are; male and under 60, male and
60 or above, female and under 60, female and 60 or above (see Weir and Lees,
[48]). Randomisation is performed (blocked randomisation is preferred) on
each stratum individually. This method produces groups which are balanced
in terms of size and the key characteristics (age and gender in the above
example).

2.2 Observational studies

There are different types of observational study. The different types vary
in the way they are set up and in what circumstances they may be used. A
description of two types of observational study, known as cohort and case-
control studies are described below. Cohort studies suffer from baseline het-
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erogeneity more frequently than case-control studies.

2.2.1 Cohort studies

Cohort studies can be conducted prospectively or retrospectively. They
don’t produce as high a level of medical evidence as randomised clinical trials
however, they still provide a decent standard [40].

Prospective cohort studies take a group of people that are assumed to
be free from the condition of interest. The participants are split into groups
according to exposure from a particular factor (a common factor used is
smoking) and are then followed over time to see whether exposure to the
factor is associated with future occurrence of the disease [40].

Reterospective cohort studies differ as they use data from the past.
These studies are also called historical cohort studies. The key to conducting
these studies is that the exposure groups are defined according to the histor-
ical exposure. This historical exposure is analysed to see if it is associated
with current occurrence of the disease [40].

Table 4 below shows the advantages and disadvantages of cohort studies
when compared with other observational studies [40].

Table 4: Advantages and disadvantages of cohort studies.

Advantages Disadvantages

Able to assess causality Possible selection bias

Look at how an exposure is associated may need large sample size (expensive)

with multiple outcomes

Suitable for rare exposures Long follow up, may be hard to maintain, people drop out *

Able to calculate relative risk recall bias and less control on variables **

* Only applies to prospective studies ** Only applies to retrospective studies

2.2.2 Case-control studies

Case-control studies are often retrospective. They differ from retrospec-
tive cohort studies as in case-control studies the cases and controls are deter-
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mined by the outcome not the exposure. Thus, when setting up the study a
set of cases are found and then controls are found to match the cases. The
matching of cases and controls is done so the two groups are identical in every
way except for exposure to the potential risk factor being studied (smoking
is a common one). This means that baseline heterogeneity is not an issue
in these studies and therefore, the methods presented in this thesis are not
needed for case-control studies [40].

Table 5 below shows the advantages and disadvantages of case-control
studies when compared with other observational studies [40].

Table 5: Advantages and disadvantages of case-control studies.

Advantages Disadvantages

Good for rare outcomes Susceptible to recall bias

Quick as existing records used Difficult to validate information

Small sample size so cheaper Control of external variables may not be possible

Examine multiple risk factors Risk of disease cannot be established
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3 Hypothetical example of issues with base-

line heterogeneity

This section describes a purely hypothetical situation where an issue with
heterogeneity could occur. A potential issue caused by failing to account for
heterogeneity is shown here.

3.1 Hypothetical situation

A new cream has been developed and is believed to reduce the number
of spots (following 3 days of treatment) caused by being infected by Chicken
Pox. A randomised clinical trial is set up to investigate whether this new
cream is successful. Let Y denote the number of spots at the end of the study
(after 3 days) and B the number of spots at the start of the study. Also, let
T be an indicator variable taking the value 1 if the experimental cream is
used or the value 0 if the control treatment is used.

Now under randomisation, it is expected that E(B|T=1) = E(B|T=0).
Now if E(log(B+1)|T=1) = E(log(B+1)|T=0) occurs, the baseline value can
be safely ignored in the analysis. The above equality is not always the case
though and it is this situation that this thesis focuses on.

3.2 The models when no heterogeneity is present

Given the number of spots can be treated as a count, the Poisson models
shown below are assumed to hold. Equation 1 is for the experimental group
and equation 2 is for the control group.

log(E(Y )) = α + β × T + γ × E(log(B + 1)) (1)

log(E(Y )) = α + γ × E(log(B + 1)) (2)

A unit increase is added to the baseline value to remove any issues caused by
zero counts leading to undefined values when the natural logarithm is taken.
Conditional on the baseline value and E(log(B+1)|T=1) = E(log(B+1)|T=0),
the difference between equation 1 and 2 gives

log(E(Y |T = 1))− log(E(Y |T = 0)) = β. (3)
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Now, as the difference between to logarithms can be written as a ratio, the
term β can be interpreted as the log relative risk between the treatment
groups.

3.3 The models when heterogeneity is present

Now if E(log(B+1)|T=1) 6= E(log(B+1)|T=0) the baseline value cannot
be ignored and the models differ for the two treatment groups. The model
for the experimental group (T=1) is

log(E(Y )) = α + β + γ × E(log(B + 1)|T = 1), (4)

and the model for the control group (T=0) is

log(E(Y )) = α + γ × E(log(B + 1)|T = 0). (5)

Now, the larger the difference between E(log(B+1)|T=1) and E(log(B+1)|T=0),
the more heterogeneity there is and the more of an issue the heterogeneity
causes. The true log relative risk is given by β however, substracting equation
5 from 4 gives,

β + γ × [E(log(B + 1)|T = 1)− E(log(B + 1)|T = 0)] = β + γ × δ. (6)

where δ = E(log(B+1)|T=1) - E(log(B+1)|T=0). Thus, δ is a measure of
the baseline heterogeneity present and how it affects the true relative risk.

3.4 How heterogeneity can influence the findings

Suppose that the hypothetical experimental cream studied here actually
has a log relative risk of 0.4. This would mean that log(β) equals 0.4 and
the relative risk would approximately equal 1.5. Thus, a person receiving
the experimental cream would, on average, suffer 1.5 times the number of
spots as an individual on the control treatment. This is a situation where
the experimental treatment is worse than the control and should therefore
not be released onto the market. What would an analysis ignoring baseline
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heterogeneity conclude? The estimated relative risks, when not adjusting
for baseline, from various scenarios (varying amounts of imbalance between
control and experimental groups) are displayed in Table 6 below. Note the
value of γ is taken to be 0.2 in these calculations.

Table 6: Effect of baseline heterogeneity when the true risk ratio is 1.4 and
γ = 0.2.

δ Estimated relative risk

−1 1.2214

−2 1

−3 0.8187

−4 0.6703

−5 0.5488

Table 6 shows that in this situation, an imbalance of 3 or more (with the
experimental group having the lower baseline) between the treatment groups
at baseline would have led to an estimated relative risk below 1. This could
then in turn lead to a harmful drug being released onto the market. This
demonstrates the need for methods to be able to isolate the δ term from the
β term in equation 6.
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4 Methodology

The main aim of this project is to demonstrate that baseline heterogeneity
in the outcome variable, in longitudinal count data, should be accounted for.
This will be achieved by analysing three data sets, firstly ignoring baseline
heterogeneity, then accounting for it and comparing the results. Six different
ways of adjusting for the heterogeneity will be studied to give an idea of the
effectiveness of each method. A “Generalised Linear Model” (GLM) is the
model type used to model these data sets, with and without adjustment for
heterogeneity. Below is a description of GLMs and how they are built.

4.1 Generalised Linear Model

In this paper, the regression model used is known as a “Generalised Linear
Model” (GLM). This is used because simpler regression models can only
cope successfully with normally distributed outcome variables. GLMs can
deal with normally distributed outcome variables, as well as binary outcome
variables and other types (see Agresti, [2]).

4.1.1 Exponential Family of Distributions

GLMs are a group of models which can model outcome variables which
belong to “the exponential family of distributions”. A distribution belongs
to the exponential family if the distribution can be written in the form (see
Forbes, [13]),

f(y; θ) = exp(a(y)b(θ) + c(y) + d(θ)),

or equivalently written as,

f(y; θ) = c′(y)d′(θ) exp(a(y)b(θ)), (7)

where f is the density function, c and a are functions of the data, d and b
are functions of θ.

4.1.2 Example: The Bernoulli Distribution belongs to the Expo-
nential Family of Distributions

Assume that y has a Bernoulli distribution with parameter p. Below is
the probability mass function for the Bernoulli distribution.
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f(y|p) = py(1− p)1−y

This can then be written in the following form,

f(y|p) = (1− p)ey log( p
1−p

). (8)

Thus giving,

c′(y) = 1, d′(p) = 1− p, a(y) = y, b(p) = log(
p

1− p
).

The above shows that the Bernoulli distribution belongs to the exponential
family of distributions, therefore a GLM can be used to model Bernoulli data.

4.1.3 Example: The Poisson Distribution belongs to the Expo-
nential Family of Distributions

Assume that y has a Poisson distribution with parameter θ. Below is the
probability mass function for the Poison distribution.

f(y|θ) =
θye−θ

y!
.

This can then be written in the following form.

f(y|θ) =
ey log(θ)e−θ

y!
. (9)

Thus giving,

c′(y) =
1

y!
, d′(θ) = e−θ, a(y) = y, b(θ) = log(θ).

The above proves that the Poisson distribution belongs to the exponential
family of distributions, therefore a GLM can be used to model Poisson data.

4.1.4 Structure of a Generalised Linear Model

All GLMs, regardless of distribution, have the same basic structure. They
consist of 3 components which are the random component (determined by
the distribution), the systematic component and the link function. The sys-
tematic component is also known as the linear predictor and is formed from
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the explanatory variables. The link function is then used to link together the
mean of the random component and the systematic component. In the case
where the outcome variable (Y) has a Poisson distribution, the components
of the GLM with p explanatory variables are (see Forbes, [14]),

•
random component : Y |Xwith distribution Po(µ)

•
systematic component : β0 + β1x1 + β2x2 + ...+ βpxp

•
link function : log(µ)

•
model : µ = eβ0+β1x1+β2x2+...+βpxp

4.1.5 Iterative methods for model parameter estimation

In GLMs, a method known as “maximum likelihood estimation” is used to
estimate model parameters. This method involves maximising the likelihood
function, however, this is often not feasible in reality in the sense that closed
form solutions are not available. Thus, a type of numerical method is often
used instead. Two common methods are the Newton-Raphson method (see
Collett, [8]) and iterative weighted least squares (see Nelder and Wedderburn,
[26]), and it is normally one of these two which is employed by computer stats
packages such as “R”, which is used in chapter 5 of this thesis.

4.1.6 Model selection criteria

There are various different ways to compare different GLMs. This sub-
section describes the 3 different methods used in this thesis. A formal test
often used is the likelihood ratio test (LRT) which involves comparing the
change in likelihood between models (see Hosmer et al., [19]). This difference
in likelihood is cross referenced with a Chi-squared distribution to determine
whether the addition of a variable significantly improves the model. The
LRT can also be used to see whether the removal of a variable significantly
harms the model. The degrees of freedom for the LRT is the difference in the
number of parameters between the two models. A downside of the LRT is
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that it can only compare nested models i.e. models which are subsets of each
other. In the case of non-nested models, other methods such as the “Akaike
Information Criterion” and the “Bayesian Information Criterion” are often
used where the model with the lowest value is deemed the superior model
(see Agressti, [1]). Given below are the formulas for AIC and BIC.

AIC = −2l + 2p (10)

BIC = −2l + p log(n), (11)

where, n is the sample size, p is the number of parameters in the model and
l is the log-likelihood.

4.1.7 Residual Analysis

Once the superior model has been found, the model assumptions need to
be checked before any interpretation can be performed. The assumptions are
checked using residual analysis. As the name suggests, this involves using
residuals. These are the differences between the predicted values (under the
superior model) and the true values in the data set.

Many types of adjusted residuals exist and in this thesis standardised
residuals are used unless stated otherwise. Standardised residuals are resid-
uals that have been divided by the standard deviation of the residuals.

A first step is to produce a plot of standardised residuals and look at
whether the plot shows any patterns. A plot which demonstrates a pattern
suggests that the model has not been specified properly whereas, a plot with
no pattern implies the correct type of model has been chosen.

The way standardised residuals are calculated, it is expected 5% of the
standardised residuals will have magnitude greater than 1.96. If more than
5% of the standardised residuals have magnitude greater than 1.96, there
is potentially an issue with outliers in the data. The topic of dealing with
outliers is not considered here.

The linear predictor needs to be checked for whether any important vari-
ables have been missed out or any variables incorrectly specified. This is
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done by plotting standardised residuals against the variables. Should the
plots show any pattern then the linear predictor may have been wrongly
specified.

Finally, any observations which have a large influence on the model pa-
rameters need to be identified. Many statistics exist for this too but the
simplest two are used here which are known as leverages and cook’s dis-
tances. These statistics are then plotted against observation number to see
whether any observation has too much influence on the model parameters.

4.2 Six methods for adjusting baseline heterogeneity
in the outcome variable

When including variables, there are numerous different ways this can be
done. For example, the variable could be included as a main effect, within
an interaction term or random effect. How the variable is included in the
model also depends on whether the variable is numeric or not. This thesis is
looking at how to include baseline measurements (of the outcome variable)
in the model, in order to account for baseline heterogeneity for count data.

When conducting analysis of count data, there are two broad types of
method that can be used known as Parametric methods and non-Parametric
methods. As the name suggests, the Parametric methods use parameters to
explain relationships in the data and typically take the form of regression
models. This thesis is going to look at using 4 different Poisson regression
models (overdispersion is tested using a negative binomial model). These
models will differ in the way that the baseline count is included (via an
Offset, Continuous covariate, Categorical covariate and a Random effect).
These 4 variations of the Poisson model are being examined due to them
using the most commonly used ways of including a baseline measurement in
the analysis. On top of this, an adaptation of the conditional linear mixed
model used by Verbeke is examined to see whether the same findings (absence
of bias in treatment effects) hold in the scenario of count data. These don’t
cover all parametric methods and to do so would be infeasible. The above
5 do however, allow a varied analysis of the relative merits of the different
ways (Offset, Continuous covariate, Categorical covariate, Random effect and
a Time by Treatment interaction) of including the baseline measurement.
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Finally, it was desirable to include a non-Parametric method to gain an
understanding of the usefulness of such a method at accounting for baseline
heterogeneity. The Mantel-Haneszel method is used here because it is the
most commonly used non parametric method. Below is a description of the
notation and in the preceding subsections, a description of each method is
given.

The variable Yijs is used to represent the outcome value for the jth individual,
in the ith treatment group and the sth stratum of the baseline measurement
for that individual.

The variable Ti is an indicator as to which treatment group the individual
belongs to.

log(B+1)ij where B is the baseline measurement of the outcome variable for
the jth individual, in the ith treatment group.

The continuous baseline values could be split into groups (strata) and the
strata used in the model. This is done using the variable Is as an indicator
variable which indicates which stratum the individual belongs to.

α, βi, γs are regression coefficients representing a constant, the effect of the
sth treatment and the effect of being in the sth stratum respectively.

4.2.1 Method 1: Poisson regression using an offset term

An offset term is a way of including an extra variable which influences the
intercept, depending on the offset’s value. The offset is included in the model
in the same way as a numeric variable except that an offset has a regression
coefficient fixed at one (see Dobson and Barnett, [11]).

Typically, Poisson regression is used to model count data, however, it
is also possible to model rates (e.g. rates of occurrence). When modelling
rates, the exposure times of the objects being observed need to be taken into
account. It is sometimes difficult to maintain equal exposure times hence, an
offset term representing exposure is used to establish equal exposure within
the regression model (see Cummings, [9]).
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The use of an offset term is investigated to determine whether an offset
can adjust for baseline heterogeneity. The variable trialled as the offset is
the baseline measurement for the outcome variable. Hence, this methodology
looks to adjust for baseline heterogeneity within the outcome variable. Note,
in the regression model the natural logarithm is taken, so there is a potential
issue with baseline measurements taking the value zero. This is overcome by
adding 1 to all baseline observations.

The model equation is shown below,

log(E(Yij)) = α + βi + log(Bij + 1), (12)

where, i denotes the treatment group and j the individual. Note that the
control group is shown using i=0 and β0 = 0.

4.2.2 Method 2: Poisson regression using baseline measurements
as a continuous covariate

This method includes the baseline measurements of the outcome variable
as a continuous (numeric) variable. This is very similar to the use of an offset
term. The difference is that when the adjustment is via a numeric variable,
there is an estimated regression coefficient rather than the fixed parameter
(value one) for the offset. Using a numeric variable for the adjustment tests
whether a continuous baseline is appropriate. The model equation is shown
below,

log(E(Yij)) = α + βi + γ × log(Bij + 1), (13)

where, i denotes the treatment group and j the individual. Note that the
control group is shown using i=0 and β0 = 0.

4.2.3 Method 3: Poisson regression using baseline measurements
as a categorical covariate

The possibility of using the baseline measurements as a single categorical
variable in order to adjust for baseline heterogeneity will also be investigated.
This will involve creating a category for each unique baseline measurement
which in practice could lead to far too many categories. A solution to this
could be to group similar measurements together. The decision on what is
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similar would probably be made in consultation with an expert in the field,
such as a doctor in a medical situation. The model equation is shown below,

log(E(Yijs)) = α + βi + γs (14)

where, i denotes the treatment group and j the individual. Note that the
control group is shown using i=0 and β0 = 0. γs is the regression coefficient
for the sth stratum

4.2.4 Method 4: Poisson regression with a random effect

This technique makes use of a mixed Poisson model. Mixed regression
models contain both fixed and random effects. The adjustment for base-
line heterogeneity in the outcome variable will be via a random effect term.
This random effect term will have a normal distribution with zero mean and
variance σ2

B. The model equation is shown below,

log(E(Yijs)) = α + βi + γs. (15)

where, i denotes the treatment group and j the individual. Note that the
control group is shown using i=0 and β0 = 0. γs is the random effect for
stratum s. The γs each have a normal distribution with mean 0 and variance
σ2
B.

4.2.5 Method 5: Adaptation of the conditional linear mixed model

Research has taken place into how a conditional approach can account
for baseline heterogeneity in normally distributed outcome data [44] [45].
This methodology cannot be directly transferred into our situation as the
count data is not normally distributed. Thus, an adapted form is proposed
here. This involves turning the count data which contains more than 1 time
point (i.e the data is also longitudinal) into long format. This means each
participant has as many rows of data as there are time points. Hence, if there
are 2 time points, each participant has 2 rows of data. As part of turning
the data into long format an indicator variable depicting the time point is
formed. The equation of the adapted model is shown below,

log(E(Yijt)) = α + αj + βi + δ ∗ t+ δi ∗ t+ β ∗ δi ∗ t (16)
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In the above equaation α is the fixed intercept, αj is the random intercept,
βi is the fixed treatment effect, δ is the fixed time effect, δj is the random
time effect and δ*βi is the interaction between treatment and time.

4.2.6 Method 6: Mantel-Haenszel Approach

The Mantel-Haenszel Approach will be the final method investigated and
is an example of a non parametric method. All the methods discussed above
are parametric methods. The Mantel-Haenszel method originally dates back
to 1959 (see Mantel et Haenszel, [23]) but, a more modern general version
will be used here (see Woodward, [49]). Risk ratios can be computed for each
stratum using the formula,

RRs =

∑
j
Y1jsn0s

ns∑
j
Y0jsn1s

ns

. (17)

Here, n1s is the number of individuals in the experimental treatment group
within the sth stratum. n0s is the number of individuals in the control treat-
ment group within the sth stratum. Also n0s + n1s = ns. This does assume
there is one experimental group. In the case of more experimental groups, a
ratio is produced for each experimental group separately.

From here it is possible to derive the Mantel-Haenszel estimate of the
overall risk ratio using the formula below. Note that the summations are
taken before the ratio.

RRMH =

∑
s[
∑

j
Y1jsn0s

ns
]∑

s[
∑

j
Y0jsn1s

ns
]
. (18)

Like with all statistics, an indication of the variability of the statistic
is required. This comes in the form of the statistic’s variance. The issue
with the Mantel-Haenszel risk ratio is that no exact formula for the variance
exists. Robins et al [35] proposed an estimator of the variance for an odds
ratio which is consistent for both sparse and large strata sizes. It is claimed
by Greenland and Robins [36] that the methodology used for the odds ratio
can be extended to give an estimator of the variance for the log risk ratio.
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Adapting the notation to match what is used here, the estimator of the
variance for the log risk ratio is given below.

V AR(log(RRMH)) =

∑
s[
∑

j
n1sn0s(Y1js+Y0js)−Y1jsY0jsns

n2
s

]∑
s[
∑

j
Y0jsn1s

ns
]
∑

s[
∑

j
Y1jsn0s

ns
]
. (19)

It is common to extend this to form a 95% confidence interval (CI) for
the log risk ratio. The lower and upper bounds of this interval are given by
the expression,

log(RRMH)− 1.96 ∗
√
V AR(log(RRMH)) (20)

log(RRMH) + 1.96 ∗
√
V AR(log(RRMH)). (21)

This CI can be converted into a CI for the risk ratio by taking the exponential
of the lower and upper bounds.
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5 Analysing the motivating data sets

This chapter looks at applying the methods outlined in section 4.2 to the 2
data sets outlined in sections 1.2.1 and 1.2.2. This will lead to an examination
as to whether these methods successfully adjust for baseline heterogeneity.
Five of the methods to be used involve a Poisson regression model (the Neg-
ative Binomial versions are also explored to account for any overdispersion
in the data). This choice of model assumes the outcome variables in both
data sets have a Poisson distribution. As both outcome variables contain
count data, this seems a reasonable assumption. The Poisson variables will
contain all explanatory variable deemed to be significant using a test known
as “The Likelihood Ratio Test”. Given it is baseline heterogeneity that this
project is focusing on, the baseline measurements are used in the models to
adjust for baseline heterogeneity. Finally, every Poisson model is checked for
overdispersion via the use of a Negative Binomial model.

5.1 Belcap data set

This data set has data on the number of tooth surfaces and the number of
teeth with decay, missing or presence of filling (DMFS) at the start and end
of the study. Along with this the participant’s treatment group, ethnicity
and gender were recorded.

This data set will be analysed taking DMFS-end as the outcome variable.
Before modelling the data, exploratory data analysis is performed to better
understand the make-up of the data set. Also, any potential outliers or errors
in the data set may be picked up at this point.

5.1.1 Exploratory Data Analysis

Figure 1 below shows a boxplot of damaged tooth surfaces with DMFS
at baseline, split by treatment group. The different treatment groups have
reasonably similar spreads of data with very few outliers. The outliers which
are present do not appear to be unreasonable measurements so they are left
in the data set.
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Figure 1: Boxplot showing the spread in the outcome variable at baseline
split by treatment group.

Table 7 below shows the average DMFS scores for each treatment group
at baseline. The standard deviation in scores is also given for each treatment
group. Table 7 shows that the average DMFS score does vary slightly between
treatment group which implies that in future analysis baseline heterogeneity
may be an issue. The presence of this heterogeneity makes this dataset a
good example for demonstrating how well the proposed 6 trial methods deal
with this imbalance.

Table 7: Average DMFS score at baseline.

Mean

Treatment n DMFS count SD

Control 136 7.2994 5.6772

ALL 127 4.3535 4.3610

ESD 132 6.1136 5.4419

MW 155 6.6974 6.1806

OHE 124 7.7387 5.7890

OHY 123 5.5024 5.3823

Figure 2 below shows a boxplot of tooth surfaces with DMFS at the end
of the study split by treatment group. The experimental groups have fairly
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similar spread but the “ALL” group does appear to have the healthier values.
The “Control” group has a wider spread than the experimental groups, in-
dicating that there are still some participants in this group with many tooth
surfaces with DMFS.

Figure 2: Boxplot showing the spread in the outcome variable at the end
split by treatment group.

Examining the data shows most participants have lower DMFS values at
the end than at the start. This implies that some tooth surfaces which had
decay, in the sense of small lesions on the tooth surface, are now clear of
problems.

Figure 3 below is a scatter plot which has a line with unit slope added to
it. All the points lie below the line which means the average DMFS count
has decreased for all treatment groups by the end of the study. The vertical
gap between the line and the point shows how much the average DMFS in
that particular group has changed. It is clear that the ALL group has the
lowest average DMFS at the end but this could be partly due to this group
having the smallest average at baseline. The treatment groups which have
had the biggest effect are OHE and MW. The treatment group with the
smallest change is the Control group.
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Figure 3: Scatter plot showing average DMFS count before and after the
study for all treatment groups.

Table 8 shows how the average DMFS-end varies between treatment
groups. Note that some of the 95 percent confidence intervals (CI) do not
overlap between treatment groups. The P-value from a one way anova is also
vertually 0. This implies that there is a difference between the treatment
groups. This means treatment group would be expected to be significant at
the 5 percent significance level when carrying out the modelling, ignoring all
other explanatory variables.
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Table 8: Average DMFS-end split by treatment group.

Mean

Treat n DMFS-end SD 95% CI

OHE 124 4.9839 4.2846 (4.2297 , 5.7380)

ALL 127 2.9528 3.4037 (2.3608 , 3.5447)

CONTROL 136 6.7794 5.5320 (5.8497 , 7.7092)

ESD 132 5.0682 4.3027 (4.3342 , 5.8022)

MW 155 4.3806 4.5773 (3.6600 , 5.1013)

OHY 123 4.3089 4.5071 (3.5124 , 5.1055)

* A one way anova produces a p-value of vartually 0.

Table 9 shows how the average DMFS-end varies between different eth-
nicities. Note that all of the 95 percent CI overlap ( the p-value from a one
way anova is 0.3650) hence, ethnicity is not expected to be significant at
the 5 percent significance level when carrying out the modelling, ignoring all
other explanatory variables.

Table 9: Average DMFS-end split by ethnicity.

Mean

Ethnicity n DMFS-end SD 95% CI

dark 302 4.7848 4.5775 (4.2685 , 5.3010)

white 383 4.9269 4.6579 (4.4604 , 5.3934)

black 112 4.1161 4.3158 (3.3168 , 4.9154)

* A one way anova gives a p-value of 0.3650

Table 10 shows how the average DMFS-end varies between males and
females. Note that the 95 percent CI just overlap however the t-test produces
a highly significant p-value. There is therfore some evidence to suggest that
gender is significant at the 5 percent significance level.
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Table 10: Average DMFS-end split by gender.

Mean

Gender n DMFS-end SD 95% CI

Female 389 4.3059 4.2755 (3.8810 , 4.7308)

Male 408 5.1912 4.8239 (4.7231 , 5.6593)

* A 2 sample t-test (due to equal variances and normality) leads to a p-value of 0.0063

5.1.2 Poisson Regression ignoring Baseline Heterogeneity

Poisson regression models are produced where only significant explana-
tory variables are used (likelihood ratio test is used to test significance). This
results in a model which contains the variables treatment- group and gender.
Table 11 below shows the model coefficients and their standard errors.

Table 11: Coefficients and standard errors from model with no adjustment
for heterogeneity.

Covariate name Coefficient Standard error P-value

Intercept 1.8120 0.0386 < 0.0001

Gender (Male) 0.1715 0.0328 < 0.0001

School (All) −0.8234 0.0613 < 0.0001

School (ESD) −0.2797 0.0508 < 0.0001

School (MW) −0.4148 0.0507 < 0.0001

School (OHE) −0.2952 0.0520 < 0.0001

School (OHY) −0.4456 0.0545 < 0.0001

The model equation produced from this methodology is below.

log(E(DMFS-end)) = 1.81197 + 0.17149 ∗ (Male)− 0.82335 ∗ (ALL)

−0.27970∗(ESD)−0.41477∗(MW)−0.29518∗(OHE)−0.44555∗(OHY). (22)

The terms Male represents a dummy variable for gender which takes the
value 1 if the person is Male and 0 otherwise. The same logic is used for the
other dummy variables (ALL, ESD, MW, OHE, OHY).
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Before interpreting any regression model, it is good practice to perform a
residual analysis to ensure the model assumptions are not violated. Noting
that the deviance for the model is 3493.2 which is much higher than the
residual degrees of freedom. Thus, there is some evidence of model misspec-
ification. Figure 4 below shows a ”funnelling” meaning that the points are
less concentrated on the right hand side of the plot. This suggests there could
be something wrong with the model.

Figure 4: Scatter plot showing the standardised residual for each observa-
tion.

The Cook’s distance of every observation is calculated and Figure 5 shows
a plot of the Cook’s distances. None of the observations have a Cooks’s
distance greater than 1 hence, none of the observations are influential.
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Figure 5: Scatter plot showing the Cook’s distance of each observation.

Finally, the model is checked for potential over-dispersion. This is done
by refitting the model under a negative binomial distribution and comparing
this to the Poisson model. This results in a p-value of virtually 0, hence, the
negative binomial model (over-dispersion adjusted for) is the superior model.
The test to look for overdispersion used here is the likelihood ratio test. This
is a valid test as the poisson model and the negative binomial model are
”nested”. The poisson distribution is a special case of the negative binomial.
In the case of the poisson the parameter theta is equal to infinity. The
coefficients for this model are given in Table 12 below.
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Table 12: Coefficients and standard errors from the negative binomial model
with no adjustment for heterogeneity.

Covariate name Coefficient Standard error P-value

Intercept 1.749 79 0.0986 < 0.0001

Gender (Male) 0.1745 0.0764 0.0500

School (All) −0.8757 0.1342 < 0.0001

School (ESD) −0.2509 0.1270 0.0365

School (MW) −0.4078 0.1235 0.0012

School (OHE) −0.3184 0.1301 0.0296

School (OHY) −0.5589 0.1328 0.0012

Notice that the exponential of the coefficients represents the relative risk
for that category compared with the reference category. The reference cate-
gory for gender and treatment are female and control respectively. Thus the
negative sign for all treatments show that all the treatments are more bene-
ficial than the control treatment. Looking at the ALL category, participants
have 0.42 times the risk (slightly less than half) of DMFS than participants
in the CONTROL.

5.1.3 Model 1: Poisson Regression using baseline measurements
as an offset

Poisson regression models are produced here with the DMFS-beg variable
included as an offset term. The role of the offset term is to adjust for base-
line heterogeneity. The inclusion of the offset caused gender to cease being
significant at the 5 percent significance level. Significance is assessed via the
likelihood ratio test. Thus, the coefficients and standard errors for the final
model having adjusted for baseline heterogeneity are shown in Table 13.
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Table 13: Coefficients and standard errors from model with the natural log
of baseline measurements as an offset.

Covariate name Coefficient Standard error P-value

Intercept −0.2008 0.0329 < 0.0001

School (All) −0.3885 0.0613 < 0.0001

School (ESD) −0.1361 0.0508 0.0074

School (MW) −0.3603 0.0506 < 0.0001

School (OHE) −0.3593 0.0520 < 0.0001

School (OHY) −0.2072 0.0545 < 0.0001

The equation for the model produced is shown below.

log(E((DMFS − end))) = −0.2008− 0.3885 ∗ (ALL)− 0.1361 ∗ (ESD)

−0.3603∗ (MW)−0.3593∗ (OHE)−0.2072∗ (OHY)+log(DMFS-beg). (23)

Before interpreting any regression model, it is good practice to perform a
residual analysis to ensure the model assumptions are not violated. Noting
that the deviance for the model is 3106.6 which is much higher than the
residual degrees of freedom. Thus, there is some evidence of model misspec-
ification. Figure 6 below shows a downward trend in standardised residual
which further indicates possible misspecification.
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Figure 6: Scatter plot showing the standardised residual for each observa-
tion from method 1.

The Cook’s distance of every observation is calculated and Figure 7 shows
a plot of the Cook’s distances. All the Cook’s distances are below 1 hence,
none of the observations are deemed to be influential.
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Figure 7: Scatter plot showing the Cook’s distance of each observation from
method 1.

Finally, the model is checked for potential over-dispersion. This is done
by refitting the model under a negative binomial distribution and comparing
this to the Poisson model. This results in a p-value of below 0.05, hence, the
negative binomial model (over-dispersion adjusted for) is the superior model.
The coefficients for this model are given in Table 14 below.

Table 14: Coefficients and standard errors from the negative binomial model
with an offset adjustment for heterogeneity.

Covariate name Coefficient Standard error P-value

Intercept −0.1293 0.0743 0.0819

School (All) −0.3601 0.1157 0.0019

School (ESD) −0.0199 0.1074 0.8533

School (MW) −0.3446 0.0011 0.0011

School (OHE) −0.3034 0.0055 0.0055

School (OHY) −0.1503 0.1803 0.1803
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The negative sign for all the treatments shows that the treatments are
more beneficial than the control. Looking at the ALL category, participants
have 0.6868 times the risk of DMFS than participants in the CONTROL.

Figure 8 below shows a scatter graph comparing the risk ratios produced
by ignoring baseline heterogeneity and those produced via method 1. The
points above the superimposed line show the risk ratios which were increased
when the offset term was used to adjust for heterogeneity. This applies to
all Treatment Groups other than OHE. The risk ratio for OHE lies below
the superimposed line meaning the offset adjustment caused the risk ratio to
decrease.

Figure 8: Scatter plot showing the risk ratio, for each experimental treat-
ment relative to the control, for the offset adjustment and when no adjust-
ment is done.

An increase in risk ratio, from using the offset term to adjust for baseline

53



heterogeneity, for all Treatment Groups excluding OHE means the benefit
of the treatments (excluding OHE) is less than originally thought. Whereas
the decrease in risk ratio for the OHE Treatment Group means the benefit
of this treatment is higher than originally thought.

5.1.4 Method 2: Poisson Regression using baseline measurements
as a continuous covariate

In this subsection, the baseline measurements are included in the Poisson
regression as a continuous covariate. This is potentially another way of deal-
ing with any heterogeneity in the data set. The coefficients from the model
are shown below in Table 15 along with their standard errors.

Table 15: Coefficients and standard errors from model where baseline mea-
surements are used as a continuous covariate.

Covariate name Coefficient Standard error P-value

Intercept 0.4795 0.0611 < 0.0001

Gender (Male) 0.0666 0.0331 0.0441

School (All) −0.5029 0.0620 < 0.0001

School (ESD) −0.1736 0.0509 < 0.0001

School (MW) −0.3530 0.0509 < 0.0001

School (OHE) −0.3423 0.0521 < 0.0001

School (OHY) −0.2613 0.0547 < 0.0001

DMFS-beg+1 0.6863 0.0219 < 0.0001

The equation produced from this methodology is shown below.

log(E((DMFS−end))) = 0.4795+0.0666∗(Male)−0.5029∗(ALL)−0.1736∗(ESD)

−0.3530∗(MW)−0.3423∗(OHE)−0.2613∗(OHY)+0.6863∗log(DMFS-beg + 1)

.

Before interpreting any regression model, it is good practice to perform a
residual analysis to ensure the model assumptions are not violated. Noting
that the deviance for the model is 2267.0 which is much higher than the
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residual degrees of freedom. Thus, there is some evidence of model misspeci-
fication. Figure 9 below does not show any trend (no issue with non-constant
variances).

Figure 9: Scatter plot showing the standardised residual for each observa-
tion from method 2.

The Cook’s distance of every observation is calculated and Figure 10
shows a plot of the Cook’s distances. None of the Cook’s distances have a
value greater than 1 hence, there are no influential observations.
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Figure 10: Scatter plot showing the Cook’s distance of each observation
from method 2.

Finally, the model is checked for overdispersion. This is done by refitting
the model under a negative binomial distribution and comparing this to the
Poisson model. This results in a p-value smaller than 0.05, hence, there
is sufficient evidence of model overdispersion. Thus, the negative binomial
model (over-dispersion adjusted for) is the superior model. The coefficients
for this model are given in Table 16 below. It is worth noting that gender
ceased to be significant in this analysis.
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Table 16: Coefficients and standard errors from the negative binomial model
with a continuous adjustment for heterogeneity.

Covariate name Coefficient Standard error P-value

Intercept 0.3786 0.0743 < 0.0001

School (All) −0.4664 0.1157 < 0.0001

School (ESD) −0.0933 0.1074 0.3573

School (MW) −0.3575 0.1058 0.0003

School (OHE) −0.2982 0.1092 0.0038

School (OHY) −0.2262 0.1121 0.0328

DMFS beg + 1 0.7423 0.1121 < 0.0001

Figure 11 below shows a scatter graph comparing the risk ratios produced
by ignoring baseline heterogeneity and those produced via method 2. The
points above the superimposed line show the risk ratios which were increased
when the continuous adjustment was used to adjust for heterogeneity. This
applies to all Treatment Groups other than OHE. The risk ratio for OHE
lies below the superimposed line meaning the continuous adjustment caused
the risk ratio to decrease.
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Figure 11: Scatter plot showing the risk ratio, for each experimental treat-
ment relative to the control, for the continuous adjustment and when no
adjustment is done.

5.1.5 Method 3: Poisson Regression using baseline measurements
as a categorical covariate

In this subsection, the baseline measurements are included in the Poisson
regression as a categorical covariate. This means that the values of the
baseline variable have to be grouped. Ideally, in a medical situation like this,
the decision of which values to group together would be made in consultation
with a medical professional such as a doctor (or dentist in the case of teeth).
This was not possible here, so the values for baseline have been grouped to
try and produce even groups in terms of size. Table 17 below shows the
groups produced for baseline and the sample sizes in each group.
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Table 17: Sample sizes of the baseline DMFS groups.

Baseline values in group Sample Size

0 151

1-2 118

3-5 144

6-8 133

9-12 130

13+ 121

The grouping of baseline measurements into groups and then using these
groups within the model, is potentially another way of dealing with any
heterogeneity in the data set. The coefficients from this model are shown
below in Table 18 along with their standard errors.

Table 18: Coefficients and standard errors from model where baseline mea-
surement groups are used as a categorical covariate.

Covariate name Coefficient Standard error P-value

Intercept 0.1376 0.0949 0.1469

Gender (Male) 0.0797 0.0331 0.0160

School (All) −0.5390 0.0624 < 0.0001

School (ESD) −0.1915 0.0510 0.0002

School (MW) −0.3415 0.0511 < 0.0001

School (OHE) −0.3410 0.0521 < 0.0001

School (OHY) −0.2581 0.0549 < 0.0001

DMFS-beg (1-2) 1.0159 0.1044 < 0.0001

DMFS-beg (3-5) 1.5459 0.0958 < 0.0001

DMFS-beg (6-8) 1.8635 0.0941 < 0.0001

DMFS-beg (9-12) 2.0131 0.0933 < 0.0001

DMFS-beg (13+) 2.2023 0.0927 < 0.0001

The equation produced from this methodology is shown below.

log(E((DMFS−end))) = 0.1376+0.0797∗(Male)−0.5390∗(ALL)−0.1915∗(ESD)

−0.3415∗(MW)−0.3410∗(OHE)−0.2581∗(OHY)+1.0159∗(1-2)+1.5459∗(3-5)
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+1.8635 ∗ (6-8) + 2.0131 ∗ (9-12) + 2.2023 ∗ (13+)

.

The deviance for the model is 2295.9 which is much higher than the resid-
ual degrees of freedom. Thus, there is some evidence of model misspecifica-
tion. Figure 12 below does not show any trend (no issue with non-constant
variances).

Figure 12: Scatter plot showing the standardised residual for each obser-
vation from method 3.

The Cook’s distance of every observation is calculated and Figure 13
shows a plot of the Cook’s distances. None of the observations have a Cook’s
distance greater than 1 hence, there are no issues with influential observa-
tions.
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Figure 13: Scatter plot showing the Cook’s distance of each observation
from method 3.

Finally, the model is checked for overdispersion. This is done by refitting
the model under a negative binomial distribution and comparing this to the
Poisson model. This results in a p-value smaller than 0.05, hence, there
is sufficient evidence of model overdispersion. Thus, the negative binomial
model (over-dispersion adjusted for) is the superior model. The coefficients
for this model are given in Table 19 below. It is worth noting that gender
ceased to be significant in this analysis.
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Table 19: Coefficients and standard errors from a negative binomial model
where baseline measurement groups are used as a categorical covariate.

Covariate name Coefficient Standard error P-value

Intercept 0.1533 0.1234 0.2143

School (All) −0.4949 0.1109 < 0.0001

School (ESD) −0.1247 0.1013 0.2180

School (MW) −0.3648 0.0996 0.0003

School (OHE) −0.2940 0.1028 0.0042

School (OHY) −0.2203 0.1059 0.0375

DMFS-beg (1-2) 1.0070 0.1343 < 0.0001

DMFS-beg (3-5) 1.5389 0.1248 < 0.0001

DMFS-beg (6-8) 1.8703 0.1246 < 0.0001

DMFS-beg (9-12) 2.0170 0.1248 < 0.0001

DMFS-beg (13+) 2.2081 0.1254 < 0.0001

Figure 14 below shows a scatter graph comparing the risk ratios produced
by ignoring baseline heterogeneity and those produced via method 3. The
points above the superimposed line show the risk ratios which were increased
when the continuous adjustment was used to adjust for heterogeneity. This
applies to all Treatment Groups other than OHE. The risk ratio for OHE
lies below the superimposed line meaning the continuous adjustment caused
the risk ratio to decrease.
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Figure 14: Scatter plot showing the risk ratio, for each experimental treat-
ment relative to the control, for the categorical adjustment and when no
adjustment is done.

5.1.6 Method 4: Poisson Regression using baseline measurements
as a random effect

In this subsection, the baseline measurements are used as a random effect
in the Poisson model. The role of this random effect is to account for baseline
heterogeneity. When fitting this model, the log likelihood is approximated
using the Adaptive Gauss-Hermite approximation with twenty points per
axis. Table 20 below shows the coefficients from this GLMM model.
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Table 20: Coefficients and standard errors from model where baseline mea-
surement are used as a random effect.

Covariate name Coefficient Standard error P-value

Intercept 1.7934 0.2572 < 0.0001

Gender (Male) 0.0712 0.0331 0.0313

School (All) −0.5768 0.0623 < 0.0001

School (ESD) −0.1914 0.0510 0.0002

School (MW) −0.3498 0.0511 < 0.0001

School (OHE) −0.3531 0.0521 < 0.0001

School (OHY) −0.2709 0.0548 < 0.0001

The deviance for the model is 4538.3 which is much higher than the resid-
ual degrees of freedom. Thus, there is some evidence of model misspecifica-
tion. Figure 15 below does not show any trend (no issue with non-constant
variances).

Figure 15: Scatter plot showing the standardised residual for each obser-
vation from method 4.
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In the models used in methods 1-3 are all examples of generalised lin-
ear models (GLMs) where method 4 is a generalised linear mixed model
(GLMM). There are concerns about the validity of Cook’s distances for
GLMMs, for example, the statistical software package R gives a warning
should Cook’s distances be calculated for such a model. As this thesis is
mainly concerned with adjusting for baseline heterogeneity and not residuals
analysis, an alternative method is not looked for. Thus, the last option to
deal with the large deviance is to look for potential over-dispersion. This
is done by refitting the model under a negative binomial distribution and
comparing this to the Poisson model. This results in a p-value of below 0.05,
hence, the negative binomial model (over-dispersion adjusted for) is the su-
perior model. The coefficients for this model are given in Table 21 below. It
is worth noting that gender ceases to be significant.

Table 21: Coefficients and standard errors from the negative binomial model
with a random adjustment for heterogeneity.

Covariate name Coefficient Standard error P-value

Intercept 1.8175 0.2658 < 0.0001

School (All) −0.5712 0.1140 < 0.0001

School (ESD) −0.1305 0.1057 0.2168

School (MW) −0.3809 0.1022 0.0002

School (OHE) −0.3268 0.1066 0.0022

School (OHY) −0.2503 0.1096 0.0223

Figure 16 below shows a scatter graph comparing the risk ratios produced
by ignoring baseline heterogeneity and those produced via method 4. The
points above the superimposed line show the risk ratios which were increased
when the continuous adjustment was used to adjust for heterogeneity. This
applies to all Treatment Groups other than OHE. The risk ratio for OHE
lies below the superimposed line meaning the continuous adjustment caused
the risk ratio to decrease.
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Figure 16: Scatter plot showing the risk ratio, for each experimental treat-
ment relative to the control, for the random effect adjustment and when no
adjustment is done.

5.1.7 Method 5: Adaptation of the conditional linear mixed model

For this method, the data has to be converted into long format. For the
Belcap study, this means every participant has two rows of data, one for
baseline and the other for the end point. An indicator variable is also formed
to indicate whether the data is from baseline or the end point. Likelihood
ratio tests are used to assess the significance of any covariates. Table 22
below shows the coefficients and standard errors from this model.
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Table 22: Coefficients and standard errors from conditional model.

Covariate name Coefficient Standard error P-value

Intercept 1.8731 0.0741 < 0.0001

School (All) −0.4780 0.1095 < 0.0001

School (ESD) −0.1537 0.1060 0.1471

School (MW) −0.0833 0.1018 0.4133

School (OHE) 0.0814 0.1064 0.4441

School (OHY) −0.2873 0.1090 0.0084

time −0.3197 0.0709 < 0.0001

time : School (All) −0.4474 0.1130 0.0001

time : School (ESD) −0.1005 0.1026 0.3274

time : School (MW) −0.5004 0.1014 < 0.0001

time : School (OHE) −0.3600 0.1034 0.0005

time : School (OHY) −0.2352 0.1079 0.0292

The deviance for the model is 8665.6 which is much higher than the
residual degrees of freedom. Thus, there is strong evidence this model doesn’t
fit the data well. Figure 17 below does not show any clear trend (no issue
with non-constant variances).
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Figure 17: Scatter plot showing the standardised residual for each obser-
vation from method 5.

This method is also an example of a GLMM which means Cook’s distances
are not available. Like with method 4 above, the only way left to deal with
the large deviance is to look for potential over-dispersion. This is done by
refitting the model under a negative binomial distribution and comparing
this to the Poisson model. This results in a p-value above 0.05, hence, the
Poisson model is suitable.

Figure 18 below shows a scatter graph comparing the risk ratios produced
by ignoring baseline heterogeneity and those produced via method 4. The
points above the superimposed line show the risk ratios which were increased
when the continuous adjustment was used to adjust for heterogeneity. This
applies to all Treatment Groups other than OHE. The risk ratio for OHE
lies below the superimposed line meaning the continuous adjustment caused
the risk ratio to decrease.
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Figure 18: Scatter plot showing the risk ratio, for each experimental treat-
ment relative to the control, for method 5 and when no adjustment is done.

5.1.8 Method 6: The Mantel-Haenszel Approach

The Mantel-Haenszel approach is a non-parametric method so, there is no
model equation produced like with the other methods. Instead, the Mantel-
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Haenszel formula (given in section 4.2.5) is used to produce a risk ratio for
being in an experimental group relative to the control group. In this example,
there are 5 experimental groups hence, there will be 5 risk ratios. Table 23
below shows the estimated risk ratios for each experimental group.

Table 23: Mantel-Haenszel estimates of the risk ratio for each experimental
group

Experimental Group Risk Ratio

ALL 0.6307

ESD 0.8827

MW 0.8828

OHE 0.8143

OHY 1.0164

Table 23 suggests that the treatment “ALL” gives the best results i.e.
lowest risk of DMFS where the treatment “OHY” gives the worst results.
The risk ratio for “OHY” being greater than 1 implies that this treatment
is worse than the control however, the difference between 1 and 1.0164 is
minimal and probably would not meet statistical significance. It is also worth
noting that the treatments “OHE”, “ESD”,“MW” all have similar risk ratios
implying these treatments are almost equally effective.

Figure 19 below shows a scatter graph comparing the risk ratios produced
by ignoring baseline heterogeneity and those produced via method 5. The
points above the superimposed line show the risk ratios which were increased
when the continuous adjustment was used to adjust for heterogeneity. This
applies to all Treatment Groups other than OHE. The risk ratio for OHE
lies below the superimposed line meaning the Mantel-Haenszel adjustment
caused the risk ratio to decrease.
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Figure 19: Scatter plot showing the risk ratio, for each experimental treat-
ment relative to the control, for the Mantel-Haenszel method and when no
adjustment is done.

5.2 Analysing the Polyps data set

Data is collected from a study looking at whether a treatment influences
the number of polyps after three months. The data is analysed to see whether
the experimental treatment has a significantly larger difference on the number
polyps than the placebo. Along with the count of polyps after three months,
the count is taken at baseline and the participant’s treatment group, age and
gender is recorded. Poisson regression models with and without an offset
term are produced in order to assess whether the offset term successfully
adjusts for heterogeneity.
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5.2.1 Exploratory Data Analysis

Looking at Figure 20, there is clearly one outlier in each treatment group
which could heavily bias any results. For this reason, these two observations
are removed from the analysis.

Figure 20: Boxplot showing the spread in the outcome variable at baseline
split by treatment group.

Figure 21 is an identical boxplot to Figure 20 except for the outliers
already mentioned having been removed. There is now a new observation
classed as an outlier. This observation is not removed as it is perfectly
feasible that this is an accurate measurement and was not previously flagged
as an outlier. Figure 21 also shows a much smaller spread of data for the
experimental group. In addition, participants in the experimental group
appear to have a lower count of polyps at baseline.
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Figure 21: Boxplot showing the spread in the outcome variable at baseline
split by treatment group with outliers removed.

Table 24 below shows the average polyps count at baseline along with the
standard deviation. Table 24 shows that the average polyps count is a lot
higher in the placebo group than the experimental group. This is a very good
example of where baseline heterogeneity could potentially cause an issue in
future analysis.

Table 24: Average polyps count at baseline.

Mean

Treatment n polyps count SD

Placebo 10 27.5 22.9068

Experimental 10 14.8 8.6769

The boxplot in Figure 22 below examines the number of polyps after 3
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months. There is a much smaller spread of data and a lower count of polyps
for the experimental group. The outlier being flagged is not thought to be
an issue as the observation is perfectly feasible hence, no additional action is
needed.

Figure 22: Boxplot showing the spread in the outcome variable after 3
months split by treatment group with outliers removed.

The CIs in Table 25 do not overlap (the p-value from Welch’s t-test is also
significant) which suggests that the average number of polyps varies between
treatment groups. Thus, it is likely that treatment group would be found
significant in future modelling.
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Table 25: Average number of polyps after 3 months split by treatment
group.

Mean

Treatment n polyps count SD 95% CI

Placebo 10 26.7 18.4153 (15.2861 , 38.1139)

Experimental 10 8.9 7.5028 (4.2485 , 13.5515)

* a Welch t-test (Welch due to non equal variances) produces a p value of 0.0153

Table 26 below shows that females on average have the higher polyps
count after three months of treatment. Despite this the CI for the means
overlap so, the difference appears to be insignificant. The Welch’s t-test also
gives a p-value of 0.775 which is insignificant.Thus, gender is likely to be
insignificant in future modeling.

Table 26: Average number of polyps after 3 months split by gender.

Mean

Gender n polyps count SD 95% CI

Female 9 19.1111 23.3101 (3.8818 , 34.3404)

Male 11 16.7273 8.7646 (11.5477 , 21.9068)

* a Welch t-test (Welch due to non equal variances) produces a p value of 0.7775

Performing Pearson’s correlation coefficient, on the variables age and
polyps count after three months of treatment gives a value -0.086. Thus,
resulting in a p-value of 0.7177 meaning there is no evidence of a correlation
between age and polyps count after three months. On this basis, age would
probably be insignificant in future modeling.

5.2.2 Poisson Regression ignoring Baseline Heterogeneity

Poisson regression models are produced using the likelihood ratio test for
significance testing. This results in a model which only contains the variable
treatment group (the only significant explanatory variable). The coefficients
from the model are shown below in Table 27 along with their standard errors.
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Table 27: Coefficients and standard errors from model where no adjustment
for baseline heterogeneity is made.

Covariate name Coefficient Standard error P-value

Intercept 3.2847 0.0612 < 0.0001

Treatment (Experimental) −1.0986 0.1224 < 0.0001

Below is the equation for this model.

log(E(3 month polyps count)) = 3.2847− 1.0986 ∗ (experimental treatment)

.
Before interpreting any regression model, it is good practice to perform

a residual analysis to ensure the model assumptions are not violated. Not-
ing that the deviance for the model is 158.73 which is much higher than the
residual degrees of freedom. Thus, there is some evidence of model misspecifi-
cation. Figure 23 below does not show any trend (no issue with non-constant
variances).
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Figure 23: Scatter plot showing the standardised residual for each obser-
vation from the model having not adjusted for baseline heterogeneity.

The Cook’s distance of every observation is calculated and Figure 24
shows a plot of the Cook’s distances. The points which lie above the su-
perimposed line are deemed to have too great an influence on the model
parameters. Thus, these observations are removed from the data set and the
model is recalculated.
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Figure 24: Scatter plot showing the Cook’s distance of each observation
from the model having not adjusted for baseline heterogeneity.

The deviance for the model (with the influential points removed) is now
59.561 which is much closer to the residual degrees of freedom. The last
check is for potential over-dispersion. This is done by refitting the model
under a negative binomial distribution and comparing this to the Poisson
model. This results in a p-value of below 0.05, hence, the negative binomial
model (over-dispersion adjusted for) is the superior model. The coefficients
for this model are given in Table 28 below.

Table 28: Coefficients and standard errors from the negative binomial model
having not adjusted for baseline heterogeneity.

Covariate name Coefficient Standard error P-value

Intercept 3.1936 0.1646 < 0.0001

Treatment (Experimental) −1.2636 0.2505 < 0.0001

The negative sign for experimental treatment shows that the experimental
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treatment is more beneficial than the control. Participants taking the exper-
imental treatment are estimated to have 0.28 times (just over a quarter) the
risk of polyps than participants in the control group.

5.2.3 Method 1: Poisson Regression using baseline measurements
as an offset

A Poisson regression models is produced here using the count-b variable
as an offset term. The role of the offset term is to adjust for baseline hetero-
geneity. Note only significant variables are included and the significance is
assessed using the likelihood ratio test. The coefficients and standard errors,
for the model having adjusted for baseline heterogeneity via an offset term,
are shown below in Table 29.

Table 29: Coefficients and standard errors from model where no adjustment
for baseline heterogeneity is made.

Covariate name Coefficient Standard error P-value

Intercept −0.0652 0.0612 0.2860

Treatment (Experimental) −0.5087 0.1224 < 0.0001

Below is the equation for this model.

log(E(3 month polyps count)) = −0.0652−0.5087∗(experimental treatment)

+ log(baseline polyps count + 1)

.

Note that the deviance for the model is 25.94 which is higher than the
residual degrees of freedom. Thus, there is some evidence of model misspecifi-
cation. Figure 25 below does not show any trend (no issue with non-constant
variances).
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Figure 25: Scatter plot showing the standardised residual for each obser-
vation from method 1.

The Cook’s distance of every observation is calculated and Figure 26
shows a plot of the Cook’s distances. None of the observations have a Cook’s
distance greater than 1. Thus, none of the observations are having a large
influence on the model.
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Figure 26: Scatter plot showing the Cook’s distance of each observation
from method 1.

The last option to deal with the large deviance is to look for potential
over-dispersion. This is done by refitting the model under a negative binomial
distribution and comparing this to the Poisson model. This results in a p-
value of 0.837. Thus the model written above is optimal.

5.2.4 Method 2: Poisson Regression using baseline measurements
as a continuous covariate

In this subsection, the baseline measurements are included in the Poisson
regression as a continuous covariate. This is potentially another way of deal-
ing with any heterogeneity in the data set. The coefficients from the model
are shown below in Table 30 along with their standard errors.
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Table 30: Coefficients and standard errors from model where baseline mea-
surements are used as a continuous covariate.

Covariate name Coefficient Standard error P-value

Intercept 0.3120 0.2957 0.2910

Treatment (Experimental) −0.5846 0.1353 < 0.0001

log(Count-b + 1) 0.8950 0.0811 < 0.0001

Before interpreting any regression model, it is good practice to perform a
residual analysis to ensure the model assumptions are not violated. Noting
that the deviance for the model is 24.288 which is slightly higher than the
residual degrees of freedom. Figure 27 below does not show any trend (no
issue with non-constant variances).

Figure 27: Scatter plot showing the standardised residual for each obser-
vation from method 2.

The Cook’s distance of every observation is calculated and Figure 28
shows a plot of the Cook’s distances. No observation has a Cook’s distance
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greater than 1 which means no observation is having too great an influence
on the model parameters. Thus, these observations are removed from the
data set and the model is recalculated.

Figure 28: Scatter plot showing the Cook’s distance of each observation
from method 2.

Given only one iteration of residual analysis is being allowed, the last op-
tion to deal with the large deviance is to look for potential over-dispersion.
This is done by refitting the model under a negative binomial distribution.
The algorithm used in R-studio to maximise the log likelihood fails to con-
verge hence, no comparison is possible here. For this reason the Poisson
model is assumed to be the better model.

5.2.5 Method 3: Poisson Regression using baseline measurements
as a categorical covariate

In this subsection, the baseline measurements are included in the Poisson
regression as a categorical covariate. This means that the values of the
baseline variable have to be grouped. Ideally, in a medical situation like this,
the decision of which values to group together would be made in consultation
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with a medical professional such as a doctor (or dentist in the case of teeth).
This was not possible here, so the values for baseline have been grouped to
try and produce even groups in terms of size. Table 31 below shows the
groups produced for baseline and the sample sizes in each group.

Table 31: Sample sizes of the Count-b groups.

Baseline values in group Sample Size

0-7 4

8-11 4

12-20 5

21-34 4

35+ 3

The grouping of baseline measurements into groups and then using these
groups within the model, is potentially another way of dealing with any
heterogeneity in the data set. The coefficients from this model are shown
below in Table 32 along with their standard errors.

Table 32: Coefficients and standard errors from model where baseline mea-
surement groups are used as a categorical covariate.

Covariate name Coefficient Standard error P-value

Intercept 1.9678 0.2189 < 0.0001

Treatment (Experimental) −0.6209 0.1416 < 0.0001

Count-b (8-11) 0.5685 0.2778 0.0407

Count-b (12-20) 0.8254 0.2502 0.0010

Count-b (21-34) 1.5041 0.2357 < 0.0001

Count-b (35+) 1.8965 0.2343 < 0.0001

Before interpreting any regression model, it is good practice to perform
a residual analysis to ensure the model assumptions are not violated. Not-
ing that the deviance for the model is 36.213 which is much higher than the
residual degrees of freedom. Thus, there is some evidence of model misspecifi-
cation. Figure 29 below does not show any trend (no issue with non-constant
variances).
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Figure 29: Scatter plot showing the standardised residual for each obser-
vation from method 3.

The Cook’s distance of every observation is calculated and Figure 30
shows a plot of the Cook’s distances. The points which lie above the su-
perimposed line are deemed to have too great an influence on the model
parameters. Thus, these observations are removed from the data set and the
model is recalculated.
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Figure 30: Scatter plot showing the Cook’s distance of each observation
from method 3.

The deviance for the model (with the influential points removed) is now
28.235 which is still higher than the new residual degrees of freedom. Given
only one iteration of residual analysis is being allowed, the last option to deal
with the large deviance is to look for potential over-dispersion. This is done
by refitting the model under a negative binomial distribution and comparing
this to the Poisson model. This results in a p-value of below 0.05, hence, the
negative binomial model (over-dispersion adjusted for) is the superior model.
The coefficients for this model are given in Table 33 below.
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Table 33: Coefficients and standard errors from the negative binomial model
with a categorical adjustment for heterogeneity.

Covariate name Coefficient Standard error P-value

Intercept 1.9151 0.2422 < 0.0001

Treatment (Experimental) −0.4652 0.1857 0.0122

Count-b (8-11) 0.0165 0.3905 0.9663

Count-b (12-20) 0.7938 0.2775 0.0042

Count-b (21-34) 1.5093 0.2663 < 0.0001

Count-b (35+) 1.9492 0.2752 < 0.0001

5.2.6 Method 4: Poisson Regression using baseline measurements
as a random effect

In this subsection, the baseline measurements are used as a random effect
in the Poisson model. The role of this random effect is to account for baseline
heterogeneity. When fitting this model, the log likelihood is approximated
using the Adaptive Gauss-Hermite approximation with twenty points per
axis. Table 34 below shows the coefficients from this GLMM model.

Table 34: Coefficients and standard errors from model where baseline mea-
surements are used as a random effect.

Covariate name Coefficient Standard error P-value

Intercept 2.9428 0.3050 < 0.0001

Treatment (Experimental) −0.6408 0.1411 < 0.0001

Before interpreting any regression model, it is good practice to perform
a residual analysis to ensure the model assumptions are not violated. Not-
ing that the deviance for the model is 57.5 which is much higher than the
residual degrees of freedom. Thus, there is some evidence of model misspecifi-
cation. Figure 31 below does not show any trend (no issue with non-constant
variances).
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Figure 31: Scatter plot showing the standardised residual for each obser-
vation from method 4.

Given only one iteration of residual analysis is being allowed and Cook’s
distances aren’t valid for this type of model, the last option to deal with
the large deviance is to look for potential over-dispersion. This is done by
refitting the model under a negative binomial distribution and comparing
this to the Poisson model. This results in a p-value of .0871. Thus, there is
insufficient evidence of overdispersion so the Poisson model is sufficient.

5.2.7 Method 5: Adaptation of the conditional linear mixed model

For this method, the data has to be converted into long format. For the
Belcap study, this means every participant has two rows of data, one for
baseline and the other for the end point. An indicator variable is also formed
to indicate whether the data is from baseline or the end point. Likelihood
ratio tests are used to assess the significance of any covariates. Table 35
below shows the coefficients and standard errors from this model.
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Table 35: Coefficients and standard errors from model with the natural log
of baseline measurements as an offset.

Covariate name Coefficient Standard error P-value

Intercept 3.1138 0.2085 < 0.0001

Treatment −0.4994 0.2992 0.0951

Time −0.0652 0.0852 0.4437

Treatment : Time −0.5087 0.1575 0.0012

Figure 32 below does not show any clear trend (no issue with non-constant
variances).

Figure 32: Scatter plot showing the standardised residual for each obser-
vation from method 5.

This method is also an example of a GLMM which means Cook’s distances
are not available. Like with method 4 above, the only way left to deal with
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the large deviance is to look for potential over-dispersion. This is done by
refitting the model under a negative binomial distribution and comparing
this to the Poisson model. This results in a p-value of almost 1. Thus, there
is insufficient evidence of overdispersion so the Poisson model is sufficient.

5.2.8 Method 6: The Mantel-Haenszel Approach

In this example, the polyps count after 3 months is used as the outcome
variable and the same strata (categories) are used as in section 5.2.5. Using
the formula for the Mantel-Haenszel Approach given in section 4.2.5, an
estimate of 0.3993 is produced for the risk ratio of being in the experimental
group relative to the control group. This estimate suggests that the risk
of polyps in the experimental group is 0.3993 times the risk of the control
group.

5.3 The Falls dataset

Data is collected on the number of falls suffered by Parkinson’s patients
during a baseline period and a follow up period. The treatments being com-
pared is Standard care against some intervention. The patients’ treatment
allocation is also recorded along with their baseline and follow up counts.
Poisson regression models with and without an adjustment are produced in
order to show an adjustment is needed and then find which adjustment is
best.

5.3.1 Exploratory Data Analysis

Looking at Figure 33 below shows that there are a lot of outliers in the
baseline data. None of these outliers appear to be that extreme and therefore
no action is taken. It is clear that the data from the intervention group has a
greater interquartile range which means the centre of the data is more spread
out.
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Figure 33: Boxplot showing the spread in baseline falls split by treatment
group.

Figure 34 now shows the same boxplot but with the y axis limited to 100.
This zoomed in view of the boxplot improves the readability of the graph
and it is now clear that the Standard care group has the smaller median.
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Figure 34: Boxplot showing the spread in baseline falls (capped at 100)
split by treatment group.

Table 36 below shoes the average (and standard deviation) falls count at
baseline for those receiving Standard care and the Intervention. From this
table, the two treatment types have similar number of patients and the pa-
tients in the Standard care group were suffering fewer falls on average during
the baseline period. Finally, the standard deviation shows that there was
greater variation in the number of falls suffered by patients in the Standard
care group. This could be caused by some of the large outliers within this
group.

Table 36: Average number of falls during the baseline period.

Mean

Treatment n falls count SD

Standard Care 63 25.4762 59.9572

Intervention 61 30.3934 45.4603

Moving on to look at the follow up data, Figure 35 below shows a boxplot
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of the follow up counts. Again, there are numerous outliers however, they
are not that extreme so no action is taken. It is hard to read many of the
features of the graph as the outliers are damaging the scaling.

Figure 35: Boxplot showing the spread in follow up falls split by treatment
group.

Thus, Figure 36 below shows the same graph but with the y axis restricted
to 100. Again the Standard care group has the smaller interquartile range
and median count of falls.
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Figure 36: Boxplot showing the spread in follow up falls (capped at 100)
split by treatment group.

Table 37 below shoes the average (and standard deviation) falls count at
baseline for those receiving Standard care and the Intervention. The patients
in the Standard care group were suffering fewer falls on average during the
follow up period. The difference between the groups is smaller now though.
Finally, the standard deviation shows that there was greater variation in the
number of falls suffered by patients in the Standard care group. This could
be caused by some of the large outliers within this group.

Table 37: Average number of falls during the followup period.

Mean

Treatment n falls count SD

Standard Care 63 24.9683 58.9182

Intervention 61 19.5410 28.6389
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5.3.2 Poisson Regression ignoring Baseline Heterogeneity

Poisson regression models are produced using the likelihood ratio test for
significance testing. This results in a model which only contains the variable
treatment group (the only significant explanatory variable). The coefficients
from the model are shown below in Table 38 along with their standard errors.

Table 38: Coefficients and standard errors from model where no adjustment
for baseline heterogeneity is made.

Covariate name Coefficient Standard error P-value

Intercept 3.2176 0.0252 < 0.0001

Intervention −0.2451 0.0384 < 0.0001

Below is the equation for this model.

log(E(3 month polyps count)) = 3.2176− 0.2451 ∗ (Intervention)

.
Before interpreting any regression model, it is good practice to perform a

residual analysis to ensure the model assumptions are not violated. Noting
that the deviance for the model is 6007.5 which is much higher than the
residual degrees of freedom. Thus, there is some evidence of model misspec-
ification. Figure 37 below does not show any trend however, there are some
very big residuals.
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Figure 37: Scatter plot showing the standardised residual for each obser-
vation from the model having not adjusted for baseline heterogeneity.

The Cook’s distance of every observation is calculated and Figure 38
shows a plot of the Cook’s distances. The points which lie above the su-
perimposed line are deemed to have too great an influence on the model
parameters. Thus, these observations are removed from the data set and the
model is recalculated.
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Figure 38: Scatter plot showing the Cook’s distance of each observation
from the model having not adjusted for baseline heterogeneity.

The deviance for the model (with the influential points removed) is now
2048.1 which is still a lot higher than the residual degrees of freedom. The
last check is for potential over-dispersion. This is done by refitting the model
under a negative binomial distribution and comparing this to the Poisson
model. This results in a p-value of below 0.05, hence, the negative binomial
model (over-dispersion adjusted for) is the superior model. The coefficients
for this model are given in Table 39 below.

Table 39: Coefficients and standard errors from the negative binomial model
having not adjusted for baseline heterogeneity.

Covariate name Coefficient Standard error P-value

Intercept 2.2902 0.2024 < 0.0001

Intervention 0.3388* 0.2854 0.2350

*This fails to achieve statistical significance.

The lack of significance suggests that there was no difference between
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receiving the intervention and the standard care.

5.3.3 Method 1: Poisson Regression using baseline measurements
as an offset

A Poisson regression model is produced here using the baseline falls count
as an offset term. The role of the offset term is to adjust for baseline hetero-
geneity. Note only significant variables are included and the significance is
assessed using the likelihood ratio test. The coefficients and standard errors,
for the model having adjusted for baseline heterogeneity via an offset term,
are shown below in Table 40.

Table 40: Coefficients and standard errors from model where no adjustment
for baseline heterogeneity is made.

Covariate name Coefficient Standard error P-value

Intercept −0.0586 0.0252 0.02

Treatment (Experimental) −0.4154 0.0384 < 0.0001

Below is the equation for this model.

log(E(followup falls)) = −0.0586−0.4154∗(experimental treatment)+log(baseline falls + 1)

.

Note that the deviance for the model is 220.62 which is higher than the
residual degrees of freedom. Thus, there is some evidence of model misspecifi-
cation. Figure 39 below does not show any trend (no issue with non-constant
variances).
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Figure 39: Scatter plot showing the standardised residual for each obser-
vation from method 1.

The Cook’s distance of every observation is calculated and Figure 40
shows a plot of the Cook’s distances. None of the observations have a Cook’s
distance greater than 1. Thus, none of the observations are having a large
influence on the model.
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Figure 40: Scatter plot showing the Cook’s distance of each observation
from method 1.

The last option to deal with the large deviance is to look for potential
over-dispersion. This is done by refitting the model under a negative binomial
distribution and comparing this to the Poisson model. This results in a p-
value of below 0.05, hence, the negative binomial model (over-dispersion
adjusted for) is the superior model. The coefficients for this model are given
in Table 41 below.

Table 41: Coefficients and standard errors from the negative binomial model
having an offset adjustment for baseline heterogeneity.

Covariate name Coefficient Standard error P-value

Intercept −0.1020 0.0436 0.0193

Intervention −0.3791 0.0615 < 0.0001

Below is the equation for this model.
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log(E(followup falls)) = −0.1020− 0.3791 ∗ (intervention)

+ log(baseline falls + 1)

.

5.3.4 Method 2: Poisson Regression using baseline measurements
as a continuous covariate

In this subsection, the baseline measurements are included in the Poisson
regression as a continuous covariate. This is potentially another way of deal-
ing with any heterogeneity in the data set. The coefficients from the model
are shown below in Table 42 along with their standard errors.

Table 42: Coefficients and standard errors from model where baseline mea-
surements are used as a continuous covariate.

Covariate name Coefficient Standard error P-value

Intercept −0.2300 0.0777 0.0031

Intervention −0.4066 0.0386 < 0.0001

log(baseline + 1) 1.0383 0.0163 < 0.0001

Before interpreting any regression model, it is good practice to perform a
residual analysis to ensure the model assumptions are not violated. Noting
that the deviance for the model is 215.04 which is higher than the residual
degrees of freedom. Figure 41 below does not show any trend (no issue with
non-constant variances).
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Figure 41: Scatter plot showing the standardised residual for each obser-
vation from method 2.

The Cook’s distance of every observation is calculated and Figure 42
shows a plot of the Cook’s distances. No observation has a Cook’s distance
greater than 1 which means no observation is having too great an influence
on the model parameters.
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Figure 42: Scatter plot showing the Cook’s distance of each observation
from method 2.

Given only one iteration of residual analysis is being allowed, the last
option to deal with the large deviance is to look for potential over-dispersion.
This is done by refitting the model under a negative binomial distribution
and comparing this to the Poisson model. This results in a p-value of below
0.05, hence, the negative binomial model (over-dispersion adjusted for) is the
superior model. The coefficients for this model are given in Table 43 below.

Table 43: Coefficients and standard errors from negative binomial model
where baseline measurements are used as a continuous covariate.

Covariate name Coefficient Standard error P-value

Intercept −0.3293 0.1029 0.0014

Intervention −0.3965 0.0613 < 0.0001

log(baseline + 1) 1.0638 0.0259 < 0.0001

Below is the equation for this model.
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log(E(followup falls)) = −0.3293− 0.3965 ∗ (experimental treatment)

+1.0638 ∗ log(baseline falls + 1)

.

5.3.5 Method 3: Poisson Regression using baseline measurements
as a categorical covariate

In this subsection, the baseline measurements are included in the Poisson
regression as a categorical covariate. This means that the values of the
baseline variable have to be grouped. Ideally, in a medical situation like this,
the decision of which values to group together would be made in consultation
with a medical professional such as a doctor. This was not possible here, so
the values for baseline have been grouped to try and produce even groups in
terms of size. Table 44 below shows the groups produced for baseline and
the sample sizes in each group.

Table 44: Sample sizes of the baseline fall groups.

Baseline values in group Sample Size

0-1 38

2-4 23

5-14 16

15-45 30

46+ 17

The grouping of baseline measurements into groups and then using these
groups within the model, is potentially another way of dealing with any
heterogeneity in the data set. The coefficients from this model are shown
below in Table 45 along with their standard errors.
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Table 45: Coefficients and standard errors from model where baseline mea-
surement groups are used as a categorical covariate.

Covariate name Coefficient Standard error P-value

Intercept −0.9776 0.2892 0.0003

Intervention −0.3641 0.0385 < 0.0001

Count-b (2-4) 2.0827 0.3151 < 0.0001

Count-b (5-14) 3.3511 0.3009 < 0.0001

Count-b (15-45) 4.3674 0.2910 < 0.0001

Count-b (46+) 5.8145 0.2896 < 0.0001

Before interpreting any regression model, it is good practice to perform
a residual analysis to ensure the model assumptions are not violated. Not-
ing that the deviance for the model is 813.4 which is much higher than the
residual degrees of freedom. Thus, there is some evidence of model misspeci-
fication. Figure 43 below does not show any trend but there is 1 exceptionally
large residual

Figure 43: Scatter plot showing the standardised residual for each obser-
vation from method 3.
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The Cook’s distance of every observation is calculated and Figure 44
shows a plot of the Cook’s distances. The points which lie above the su-
perimposed line are deemed to have too great an influence on the model
parameters. Thus, these observations are removed from the data set and the
model is recalculated.

Figure 44: Scatter plot showing the Cook’s distance of each observation
from method 3.

The deviance for the model (with the influential points removed) is now
339.03 which is still higher than the new residual degrees of freedom. Given
only one iteration of residual analysis is being allowed, the last option to deal
with the large deviance is to look for potential over-dispersion. This is done
by refitting the model under a negative binomial distribution and comparing
this to the Poisson model. This results in a p-value of below 0.05, hence, the
negative binomial model (over-dispersion adjusted for) is the superior model.
The coefficients for this model are given in Table 46 below.
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Table 46: Coefficients and standard errors from negative binomial model
where baseline measurement groups are used as a categorical covariate.

Covariate name Coefficient Standard error P-value

Intercept −1.1126 0.2958 0.0002

Intervention −0.0776* 0.0870 0.3728

Count-b (2-4) 2.1434 0.3246 < 0.0001

Count-b (5-14) 3.3206 0.3131 < 0.0001

Count-b (15-45) 4.3783 0.2994 < 0.0001

Count-b (46+) 5.6521 0.3031 < 0.0001

*Failed to reach statistical significance.

5.3.6 Method 4: Poisson Regression using baseline measurements
as a random effect

In this subsection, the baseline measurements are used as a random effect
in the Poisson model. The role of this random effect is to account for baseline
heterogeneity. When fitting this model, the log likelihood is approximated
using the Adaptive Gauss-Hermite approximation with twenty points per
axis. Table 47 below shows the coefficients from this GLMM model.

Table 47: Coefficients and standard errors from model where baseline mea-
surements are used as a random effect.

Covariate name Coefficient Standard error P-value

Intercept 2.1487 0.8884 0.0156

Intervention −0.3641 0.0385 < 0.0001

Before interpreting any regression model, it is good practice to perform
a residual analysis to ensure the model assumptions are not violated. Not-
ing that the deviance for the model is 1262.4 which is much higher than
the residual degrees of freedom. Thus, there is some evidence of model mis-
specification. Figure 45 below does not show any trend however, there is 1
extremely big residual.
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Figure 45: Scatter plot showing the residuals for each observation from
method 4.

Given only one iteration of residual analysis is being allowed and Cook’s
distances aren’t valid for this type of model, the last option to deal with
the large deviance is to look for potential over-dispersion. This is done by
refitting the model under a negative binomial distribution and comparing
this to the Poisson model. This results in a p-value of below 0.05, hence, the
negative binomial model (over-dispersion adjusted for) is the superior model.
The coefficients for this model are given in Table 48 below.

Table 48: Coefficients and standard errors from the negative binomial model
where baseline measurements are used as a random effect.

Covariate name Coefficient Standard error P-value

Intercept 2.0527 0.8862 0.0205

Intervention −0.1488* 0.1035 0.1505

*This fails to reach statistical significance.
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5.3.7 Method 5: Adaptation of the conditional linear mixed model

For this method, the data has to be converted into long format. For the
Belcap study, this means every participant has two rows of data, one for
baseline and the other for the end point. An indicator variable is also formed
to indicate whether the data is from baseline or the end point. Likelihood
ratio tests are used to assess the significance of any covariates. Table 49
below shows the coefficients and standard errors from this model.

Table 49: Coefficients and standard errors from the Conditional method.

Covariate name Coefficient Standard error

Intercept 1.6147 0.2122

Intervention 0.3918* 0.3019

Time −0.1458 0.0603

Intervention : Time −0.3463 0.0786

*Failed to reach statistical significance.

Figure 46 below shows some huge residuals so there is clearly some model
misspecification.
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Figure 46: Scatter plot showing the residual for each observation from
method 5.

This method is also an example of a GLMM which means Cook’s distances
are not available. Like with method 4 above, the only way left to deal with
the large deviance is to look for potential over-dispersion. This is done by
refitting the model under a negative binomial distribution and comparing
this to the Poisson model. This results in a p-value of below 0.05, hence, the
negative binomial model (over-dispersion adjusted for) is the superior model.
The coefficients for this model are given in Table 50 below.

Table 50: Coefficients and standard errors from the Conditional method
accounting for overdispersion.

Covariate name Coefficient Standard error P-value

Intercept 1.8515 0.2281 < 0.0001

Intervention 0.4190* 0.3236 0.1940

Time −0.0740* 0.0452 0.016

Intervention : Time −0.4029 0.0597 < 0.0001

*Failed to reach statistical significance.
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5.3.8 Method 6: The Mantel-Haenszel Approach

In this example, the follow up falls count is used as the outcome variable
and the same strata (categories) are used as in section 5.3.5. Using the
formula for the Mantel-Haenszel Approach given in section 4.2.5, an estimate
of 0.6962 is produced for the risk ratio of being in the Intervention group
relative to the Standard care group. This estimate suggests that the risk of
falls in the intervention group is 0.6962 times the risk of the Standard care
group.

5.4 How successful are the proposed methods at deal-
ing with baseline heterogeneity

The two data sets have been analysed with and without adjusting for
baseline heterogeneity. The question of interest is whether any of the 5
proposed methods used in chapter 4 are successful at adjusting for baseline
heterogeneity. This is judged, for the 4 parametric models, using model
selection criterion known as “AIC” and “BIC” (see Agressti, [1]). The success
of the non-parametric method (Mantael-Haenszel) is judged by performing
it with and without adjustment for baseline heterogeneity.

5.4.1 Results from the Belcap study

The results from using “AIC” and “BIC” for the Belcap data set are
shown below in Table 51.

Table 51: Model criterion for models (analysing the belcap data) with
and without adjustment for baseline heterogeneity and having adjusted for
overdispersion.

Type of Adjustment AIC BIC

No Adjustment 4210 4248

Offset 3919 3952

Continuous Covariate 3876 * 3914 *

Categorical Covariate 3880 3936

Random Effect 3955 3992

*this method fits the data the best
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Table 51 above shows that the AIC and BIC are lower, for all adjustment
methods when compared to the no adjustment method. Thus, the four other
models for adjusting baseline heterogeneity shown in this table, fit the data
better than the model with no adjustment. Note the AIC and BIC for the
Conditional model cannot be meaningfully compared with the corresponding
values of the no adjustment method. This is because different datasets are
used, where the Conditional model has a much larger sample size which
inflates the AIC and BIC. The remaining question is how similar are the
estimates of the risk ratios (statistic of interest) produced by these parametric
and non-parametric methods. Table 52 below shows the estimated risk ratios
from all 6 proposed methods and the model with no adjustment for baseline
heterogeneity.

Table 52: Risk ratios (treatment versus control) from models with and with-
out adjustment for baseline heterogeneity and having adjusted for overdis-
persion.

No

Adjust Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

ALL 0.4390 0.7302 0.5739 0.5834 0.5998 0.6916 0.6307

ESD 0.7560 0.8926 0.8246 0.8257 0.8310 0.8336 0.8827

MW 0.6605 0.7042 0.6688 0.7107 0.7195 0.6977 0.8828

OHE 0.7444 0.6934 0.7091 0.7111 0.7201 0.6869 0.8143

OHY 0.6405 0.8431 0.7371 0.7725 0.7638 0.8289 1.0164

Table 52 above shows that these 6 methods are not similar estimates of
the risk ratios. This then begs the question, “Which method produces the
best estimate?” This question is investigated in chapter 6.

5.4.2 Results from the Polyps study

The results from using “AIC” and “BIC” for the Polyps data set are
shown below in Table 53.
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Table 53: Model criterion for models (analysing the polyps data) with and
without an offset term for the Polyps data set.

Type of Adjustment AIC BIC

No Adjustment 249 251

Offset 116 * 118 *

Continuous Covariate 117 120

Categorical Covariate 120 126

Random Effect 150 153

*This model fits the data the best

Table 53 above shows that the AIC and BIC are lower, for all adjustment
methods when compared to the no adjustment method. Thus, the four other
models for adjusting baseline heterogeneity shown in this table, fit the data
better than the model with no adjustment. Note the AIC and BIC are not
shown for the Conditional model as they cannot be meaningfully compared
with the corresponding values of the no adjustment method. This is be-
cause different datasets are used. The Conditional model has a much larger
sample size which inflates the AIC and BIC. The remaining question is how
similar are the estimates of the risk ratios (statistic of interest) produced by
these parametric and non-parametric methods. Table 54 below shows the
estimated risk ratios from all 6 proposed methods and the model with no
adjustment for baseline heterogeneity.

Table 54: Risk ratios (treatment versus control) from models with and
without adjustment for baseline heterogeneity.

No

Adjust Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

Experimental 0.2826 0.6194 0.5548 0.6280 0.5269 0.6193 0.3993

Table 54 above shows that these 6 methods are not similar in terms of
estimating the risk ratios. This then begs the question, “Which method
produces the best estimate?” This question is investigated within chapter 6.
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5.4.3 Results from the Falls study

The results from using “AIC” and “BIC” for the Polyps data set are
shown below in Table 55.

Table 55: Model criterion for models (analysing the falls data) with and
without an adjustment for baseline heterogeneity.

Type of Adjustment AIC BIC

No Adjustment 767.1399 775.3485

Offset 617.4739 625.9347

Continuous Covariate 613.3379 624.619

Categorical Covariate 582.4625* 602.0906*

Random Effect 656.8407 668.1218

*This method fits the data the best

Table 55 above shows that the AIC and BIC are lower, for all adjustment
methods when compared to the no adjustment method. Thus, the four other
models for adjusting baseline heterogeneity shown in this table, fit the data
better than the model with no adjustment. Note the AIC and BIC are not
shown for the Conditional model as they cannot be meaningfully compared
with the corresponding values of the no adjustment method. This is be-
cause different datasets are used. The Conditional model has a much larger
sample size which inflates the AIC and BIC. The remaining question is how
similar are the estimates of the risk ratios (statistic of interest) produced by
these parametric and non-parametric methods. Table 56 below shows the
estimated risk ratios from all 6 proposed methods and the model with no
adjustment for baseline heterogeneity.

Table 56: Risk ratios (Intervention versus Standard care) from models with
and without adjustment for baseline heterogeneity.

No

Adjust Method 1 Method 2 Method 3 Method 4 Method 5 Method6

Intervention 1.4033* 0.6845 0.6727 0.9253* 0.8617* 0.9287* 0.6962

* Are judged to not be significantly different to 1.

Table 56 above shows that these 6 methods are not similar in terms of
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estimating the risk ratios. This then begs the question, “Which method
produces the best estimate?” This question is investigated within chapter 6.
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6 Which method is best at adjusting for base-

line heterogeneity

The results in chapter 5 demonstrate the need for some form of adjust-
ment when analysing data sets such as those introduced in sections 1.2.1
and 1.2.2. The next issue to solve is which method is best at adjusting for
heterogeneity. The concept of which method is best can get ambiguous as
there are different criteria which could be used. A common requirement for
a good method is that of zero Bias meaning on average, the estimates have
zero error. This can be confusing though as the error from the individual
estimates produced could have large positive or negative values which then
cancel once averaged. Thus, making a poor method look reasonable. In this
chapter the Bias and Mean Squared Error (MSE) are going to be used when
judging the results from the different methods used in chapter 5. MSE is
calculated by summing the variance and the bias squared.

To be able to do this, a data set needs to be formed where the true risk
ratio between the experimental and control groups is known. In reality, this
is never possible as clinical trials are only using a sample of the population,
and if a different sample was taken, slightly different data would be obtained
which could then lead to different results being produced. The way around
this is to perform a simulation study. Some key terms which need explaining
are that of replication value and sample size. Replication value refers to how
many times is the simulation is repeated and sample size refers to how many
observations are simulated in each replication.

6.1 A simulation algorithm based on the Polyps study

The first simulation will be of a situation with one treatment group such
as the Polyps study. Below is an outline of the process. See appendix 1 for
the R code.

Part 1: Set the parameters for the simulation

Step 1: Produce a Logistic regression model where the treatment group is
the outcome variable and the baseline value is the predictor. This is done
using the original Polyps data set.
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Step 2: Produce a null Poisson model with baseline value as the outcome.
This is also done using the original Polyps data set.

Step 3: Produce a Poisson model with end data as the outcome, treatment
group as a categorical predictor and log baseline value as a continuous pre-
dictor. The point of this model is to understand the relationship between the
experiment and control treatment having adjusted for baseline heterogeneity
(via the log baseline term). This model is produced using the original Polyps
data set too.

Part 2: Perform the simulation

Step 4: Simulate baseline data from a Poisson distribution where the param-
eter is equal to the linear predictor from step 2. The example in section 6.1.1
simulates 250 values.

Step 5: For each of the simulated baseline values from step 4, predict the
probability of it belonging to the experimental group using the Logistic model
from step 1.

Step 6: For each of the simulated baseline values (from step 4) separately,
simulate a draw from a Bernoulli distribution where the “Success” probability
is equal to the probability predicted in step 5. If the value drawn from the
Bernoulli distribution is 1 then the baseline value belongs to the experimental
group. Should the value drawn from the Bernoulli distribution be 0 then the
baseline value belongs to the control group.

Step 7: Now, combine the simulated baseline data and the indicator for
treatment group together forming a data set with 2 columns.

Step 8: Simulate end of study data from a Poisson distribution where the
parameter is given by the linear predictor of the model in step 3. This uses
the baseline data and the indicator of treatment group from the data set
produced in step 7.

Step 9: Combine the end of study data with the data set from step 7. This
forms the full simulated data set.
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Step 10: Apply the 6 trial methods being studied to the simulated data set.

Step 11: Repeat steps 4 - 10 multiple times. The example shown in section
6.1.1 uses a replication value of 1000.

Part 3: Analyse the results from the simulation

Step 12: Calculate the biases and mean squared errors for the estimates of
the risk ratio (for the treatment group) produced by each of the six methods
being studied.

6.1.1 Results from simulation based on the Polyps study

Using a replication value of 1,000 (each with a sample size of 250) for the
simulation laid out in section 6.1 produces the results shown below in Table
57 (only the first 5 replicates are shown).

Table 57: Estimated risk ratios for each method from the first 5 iterations
of the simulation study with one treatment group. The true risk ratio is
0.5499.

No Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

Adjustment

0.5203 0.5610 0.5540 0.5494 0.5491 0.5501 0.5495

0.5287 0.5450 0.5427 0.5409 0.5408 0.5463 0.5411

0.5274 0.5513 0.5470 0.5449 0.5448 0.5591 0.5446

0.5116 0.5455 0.5393 0.5365 0.5362 0.5437 0.5364

0.5270 0.5434 0.5406 0.5407 0.5406 0.5526 0.5408

Table 58 below, now shows the average point estimate produced for the
Risk Ratio along with estimates for the bias and mean squared error produced
by each of the six trial methods being studied.
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Table 58: Average estimated risk ratio, bias and mean squared error for
each of the six trial methods having run 1000 replicates each with sample
size 250.

Method Average Bias Standard RMSE

estimate Deviation

No adjustment 0.5253 −0.0246 0.0211 0.0324

Offset 0.5554 0.0055 0.0179 0.0187

Continuous 0.5509 0.0010 0.0176 0.0176

Categorical 0.5482 −0.0017 0.0181 0.0181

Random Effect 0.5473 −0.0026 0.0180 0.0182

Mantel-Haenszel 0.5483 −0.0016 0.0181 0.0181

Conditional Method 0.5554 0.0055 0.0179 0.0187

*The Conditional methodology failed to converge on 89 replicates. Thus, the analysis is based on only

the 911 replicates for which all methods achieved convergence

Table 58 above shows that the variability in the estimates produced for
each of the six types of adjustment are similar (to 4dp). The assessment of
which method is best is made using the root mean squared error (RMSE).
This shows that the results produced using no adjustment for heterogeneity
are the worst. Thus, some adjustment for baseline heterogeneity is required.
The continuous adjustment has the lowest RMSE. Hence, the continuous
adjustment appears the better method for adjusting baseline heterogeneity.

6.1.2 Influence of a smaller sample size of each replication on the
simulation results

In Section 6.1.2, the continuous method is shown to be the best method.
The difference between the trial methods is very small though and there
is very little variability between replications. Given this, Table 59 below
repeats the simulation with 1000 replications however the sample size for
each is reduced to 100.
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Table 59: Average estimated Risk Ratio, Bias and Mean Squared Error for
each of the six trial methods having run 1000 iterations with sample size 100.

Method Average Bias Standard RMSE

estimate Deviation

No adjustment 0.5256 −0.0230 0.0340 0.0410

Offset 0.5462 −0.0037 0.0295 0.0297

Continuous 0.5503 0.0004 0.0292 0.0292

Categorical 0.5431 0.0068 0.0312 0.0319

Random effect 0.5408 −0.0091 0.0312 0.0325

Mantel Haenszel 0.5497 −0.0002 0.0279 0.0279

Conditional method 0.5432 −0.0067 0.0316 0.0323

*The Conditional methodology failed to converge on 155 iterations. Thus, the analysis is based on only

the 845 iterations for which all methods achieved convergence

Table 59 above shows that all six trial methods have a similar RMSE
which is also lower than the RMSE for the no adjustment method. This again
shows the need to adjust for baseline heterogeneity. The Mantel-Haenszel and
has the lowest RMSE and could therefore be viewed the better methods. It
is worth noting that the continuous and offset adjustments produced very
similar levels of RMSE.
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6.1.3 Influence of true treatment effect on the simulation results

The above subsection compared the relative performance of the 6 trial
methods at adjusting baseline heterogeneity for a specific Risk Ratio (0.5499).
But, what happens for treatments which cause other Risk Ratios? Is the best
method for adjusting baseline heterogeneity influenced by the magnitude of
the Risk Ratio?

These questions are answered by performing the same simulation but with
different Risk Ratios. The new Risk Ratios to be examined are 0.25, 0.5, 0.75,
1, 1.25, 1.5, 1.75, 2. Tables 60 - 67 show the average point estimate along
with the Bias and Mean Squared Error for each of the five trial methods (at
adjusting baseline heterogeneity) being studied and for when no adjustment
is performed.

Table 60: Average estimated Risk Ratio, Bias and Mean Squared Error for
each of the six trial methods when the true risk ratio is 0.25.

Method Average Bias Standard RMSE

estimate Deviation

No adjustment 0.2392 −0.0108 0.0207 0.0234

Offset 0.2531 0.0031 0.0187 0.0189

Continuous 0.2511 0.0011 0.0184 0.0184

Categorical 0.2502 0.0002 0.0193 0.0193

Random Effect 0.2489 −0.0011 0.0191 0.0191

Conditional method 0.2531 0.0031 0.0187 0.0190

Mantel Haenszel 0.2505 0.0005 0.0196 0.0196
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Table 61: Average estimated Risk Ratio, Bias and Mean Squared Error for
each of the six trial methods when the true risk ratio is 0.5.

Method Average Bias Standard RMSE

estimate Deviation

No adjustment 0.4797 −0.0203 0.0346 0.0401

Offset 0.050 39 0.0039 0.0297 0.0300

Continuous 0.5000 0.0000 0.0291 0.0291

Categorical 0.4965 −0.0035 0.0314 0.0316

Random Effect 0.4948 −0.0052 0.0315 0.0319

Conditional method 0.5039 −0.0039 0.0298 0.0300

Mantel Haenszel 0.4965 −0.0035 0.0313 0.0315

Table 62: Average estimated Risk Ratio, Bias and Mean Squared Error for
each of the five trial methods when the true risk ratio is 0.75.

Method Average Bias Standard RMSE

estimate Deviation

No adjustment 0.7124 −0.0376 0.0421 0.0565

Offset 0.7567 0.0067 0.0331 0.0338

Continuous 0.7504 0.0004 0.0336 0.0336

Categorical 0.7448 −0.0052 0.0365 0.0369

Random Effect 0.7419 −0.0081 0.0365 0.0374

Conditional method 0.7567 0.0067 0.0331 0.0338

Mantel Haenszel 0.7451 −0.0049 0.0361 0.0365
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Table 63: Average estimated Risk Ratio, Bias and Mean Squared Error for
each of the five trial methods when the true risk ratio is 1.

Method Average Bias Standard RMSE

estimate Deviation

No adjustment 0.9598 −0.0402 0.0668 0.0779

Offset 1.0197 0.0197 0.0516 0.0553

Continuous 1.0094 0.0094 0.0512 0.0520

Categorical 1.0059 0.0059 0.0556 0.0559

Random Effect 1.0023 0.0023 0.0554 0.0555

Conditional method 1.0196 0.0196 0.0517 0.0553

Mantel Haenszel 1.0060 0.0060 0.0555 0.0558

Table 64: Average estimated Risk Ratio, Bias and Mean Squared Error for
each of the five trial methods when the true risk ratio is 1.25.

Method Average Bias Standard RMSE

estimate Deviation

No adjustment 1.1939 −0.0561 0.0656 0.0863

Offset 1.2568 0.0068 0.0592 0.0596

Continuous 1.2484 −0.0016 0.0564 0.0564

Categorical 1.2448 −0.0052 0.0601 0.0603

Random Effect 1.2414 −0.0086 0.0596 0.0602

Conditional method 1.2568 0.0068 0.0593 0.0596

Mantel Haenszel 1.2448 −0.0052 0.0599 0.0601
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Table 65: Average estimated Risk Ratio, Bias and Mean Squared Error for
each of the five trial methods when the true risk ratio is 1.5.

Method Average Bias Standard RMSE

estimate Deviation

No adjustment 1.4262 −0.0738 0.0763 0.1061

Offset 1.5111 0.0111 0.0594 0.0605

Continuous 1.4999 −0.0001 0.0590 0.0590

Categorical 1.4965 −0.0035 0.0646 0.0647

Random Effect 1.4923 −0.0077 0.0641 0.0646

Conditional method 1.5111 0.0111 0.0595 0.0605

Mantel Haenszel 1.4965 −0.0031 0.0647 0.0647

Table 66: Average estimated Risk Ratio, Bias and Mean Squared Error for
each of the five trial methods when the true risk ratio is 1.75.

Method Average Bias Standard RMSE

estimate Deviation

No adjustment 1.6875 −0.0625 0.0945 0.1133

Offset 1.7817 0.0317 0.0709 0.0776

Continuous 1.7706 0.0206 0.0722 0.0750

Categorical 1.7636 0.0136 0.0786 0.0798

Random Effect 1.7593 0.0093 0.0782 0.0787

Conditional method 1.7816 0.0316 0.0708 0.0776

Mantel Haenszel 1.7633 0.0133 0.0782 0.0794
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Table 67: Average estimated Risk Ratio, Bias and Mean Squared Error for
each of the five trial methods when the true risk ratio is 2.

Method Average Bias Standard RMSE

estimate Deviation

No adjustment 1.9124 −0.0876 0.1085 0.1394

Offset 2.0323 0.0323 0.0788 0.0852

Continuous 2.0153 0.0153 0.0778 0.0792

Categorical 2.0065 0.0065 0.0807 0.0810

Random Effect 2.0011 0.0011 0.0813 0.0813

Conditional method 2.0323 0.0323 0.0788 0.0852

Mantel Haenszel 2.0073 0.0073 0.0804 0.0807

Tables 60-67 above show that the results produced using no adjustment
for heterogeneity are the worst (the no adjustment method consistently has
the highest RMSE). Thus, some adjustment for baseline heterogeneity is re-
quired. The continuous adjustment obtains the lowest RMSE in each case
and is therefore viewed the better method for adjusting baseline heterogene-
ity. It is worth noticing that the RMSE is often very similar for the Random,
Categorical and Mantel-Haenszel methods suggesting these methods perform
equally well to each other. Finally, the Offset and Conditional methods have
identical RMSEs in all but one case and their performance in relation to the
other methods is more favourable at lower risk ratios.

6.1.4 Relationship between the RMSE and true risk ratio

This section provides a visual comparison (Figure 47 below) of the RMSE
at varying risk ratios.
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Figure 47: Scatter plot showing the relationship between Risk Ratio and
RMSE for no adjustment and all 6 trial methods.

Figure 33 above shows the RMSE increases as the true risk ratio increases
for all the methods being studied. The stark difference in results, between not
adjusting and adjusting for baseline heterogeneity, shows just how vital it is
that some form of adjustment is made for baseline heterogeneity. The penalty
of not adjusting is also larger as the risk ratio increases. The RMSEs for
the categorical, random effect and Mantel-Haenszel methods are extremely
similar. This is not surprising as they all involve forming the same stratums
in the analysis. It is also very clear, just how successful the Continuous
method is at adjusting for baseline heterogeneity.
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6.2 A simulation based on the Belcap study

Section 6.1 above examines the effectiveness of the 6 trial methods when
there is only 1 experimental group however, many studies in real life have
multiple experimental groups such as the Belcap study. Thus in this sec-
tion, the situation with more than one treatment group is considered. The
effectiveness of the 6 trial methods are again assessed via their bias and
root mean squared error (RMSE). Hence another simulation is required and
a modified algorithm, to account for the extra experimental treatments, is
outlined below. See appendix 2 for the R code.

Part 1: Set the parameters for the simulation

Step 1: Produce a Multinomial regression model where the treatment group
is the outcome variable and the baseline value is the predictor. This is done
using the original Belcap data set.

Step 2: Produce a null Poisson model with baseline value as the outcome.
This is also done using the original Belcap data set.

Step 3: Produce a Poisson model with end data as the outcome, treatment
group as a categorical predictor and log baseline value as a continuous pre-
dictor. The point of this model is to understand the relationship between the
different treatment groups having adjusted for baseline heterogeneity (via the
log baseline term). This model is produced using the original Belcap data
set too.

Part 2: Perform the simulation

Step 4: Simulate baseline data from a Poisson distribution where the param-
eter is equal to the linear predictor from step 2. The example in section 5.2.1
simulates 500 values.

Step 5: For each of the simulated baseline values from step 4, predict the
probability of it belonging to each treatment group using the Mulitnomial
model from step 1.

Step 6: For each of the simulated baseline values (from step 4) separately,
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simulate a draw from a Multinomial distribution, where the probability of
being in any of the treatment groups is equal to the probability predicted in
step 5. The order in which the probabilities are given matters. One way of
stating the probabilities is control first, then the first experimental, then the
second experimental and so on. This ordering is used during the example in
section 6.2.1. Every draw from the distribution gives you a sequence of num-
bers. The length of the sequence is equal to the number of treatment groups.
All the numbers in the sequence are zero except one which has value 1. The
position of the value 1 in the sequence determines which group the baseline
value belongs to. For example, if the 1 comes first in the sequence, the base-
line value belongs to the treatment group specified first in the Multinomial
distribution.

Step 7: Now, combine the simulated baseline data and the indicator for
treatment group together forming a data set with 2 columns.

Step 8: Simulate end of study data from a Poisson distribution where the
parameter is given by the linear predictor of the model in step 3. This uses
the baseline data and the indicator of treatment group from the data set
produced in step 7.

Step 9: Combine the end of study data with the data set from step 7. This
forms the full simulated data set.

Step 10: Apply all 7 methods (no adjustment and 6 trial methods) being
studied to the simulated data set.

Step 11: Repeat steps 4 - 10 multiple times. The example shown in section
6.2.1 uses a replication value of 1,000.

Part 3: Analyse the results from the simulation

Step 12: Calculate the biases and root mean squared errors for the estimates
of the risk ratio (for the treatment group) produced by each of the seven
methods.
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6.2.1 Results from simulation based on the Belcap study

The Belcap study is going to be used as an example. This data set has 6
treatment groups, 5 experimental and 1 control. The results from applying
the simulation outlined in section 6.2 are shown below in Table 68.
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Table 68: Results from a simulation with a replication number of 1,000 (each
with a sample size of 750 observations) where the true risk ratios for ALL,
ESD, MW, OHE, OHY are 0.5724, 0.8226, 0.6615, 0.7043, 0.7348 respectively

Method Treatment Average Bias Standard RMSE

estimate Deviation

No Adjustment 0.5643 −0.0288 0.0345 0.0449

Offset 0.6181 0.0250 0.0393 0.0466

ALL Continuous 0.5943 0.0012 0.0347 0.0347*

Categorical 0.5906 −0.0025 0.0347 0.0348

Random Effect 0.5896 −0.0035 0.0346 0.0348

Mantel Haenszel 0.5915 −0.0016 0.0349 0.0349

Conditional method 0.6272 0.0341 0.0422 0.0543

No Adjustment 0.8113 −0.0149 0.0429 0.0454

Offset 0.8382 0.0120 0.0414 0.0431

ESD Continuous 0.8266 0.0003 0.0397 0.0397*

Categorical 0.8252 −0.0010 0.0397 0.0397

Random Effect 0.8247 −0.0015 0.0396 0.0397

Mantel Haenszel 0.8244 −0.0018 0.0402 0.0402

Conditional method 0.8425 0.0163 0.0438 0.0467

No Adjustment 0.6977 −0.0054 0.0393 0.0397

Offset 0.7081 0.0051 0.0372 0.0375

MW Continuous 0.7036 0.0005 0.0354 0.0354*

Categorical 0.7026 −0.0005 0.0362 0.0362

Random Effect 0.7024 −0.0006 0.0362 0.0362

Mantel Haenszel 0.7025 −0.0006 0.0368 0.0368

Conditional method 0.7097 0.0067 0.0388 0.0393

No Adjustment 0.7136 0.0052 0.0408 0.0412

Offset 0.7055 −0.0029 0.0377 0.0378

OHE Continuous 0.7087 0.0003 0.0357 0.0357*

Categorical 0.7098 0.0013 0.0364 0.0364

Random Effect 0.7099 0.0015 0.0364 0.0365

Mantel Haenszel 0.7100 0.0016 0.0367 0.0367

Conditional method 0.7044 −0.0040 0.0394 0.0396

No Adjustment 0.7401 −0.0225 0.0438 0.0493

Offset 0.7794 0.0168 0.0453 0.0483

OHY Continuous 0.7623 −0.0004 0.0414 0.0414*

Categorical 0.7595 −0.0031 0.0418 0.0419

Random Effect 0.7588 −0.0038 0.0418 0.0419

Mantel Haenszel 0.7601 −0.0025 0.0418 0.0419

Conditional method 0.7856 0.0229 0.0483 0.0535

* best result for this treatment group
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The findings shown by Table 68 above vary slightly from the case of just
1 treatment group. It appears the inclusion of extra treatment groups causes
the Conditional method to perform worse than the no adjustment methods.
The Offset method was also reasonably close to the no adjustment method.
On this basis, it is safe to say these are the worst three methods at adjusting
for baseline heterogeneity. The difference between the no adjustment method
and the remaining trial methods is fairly large like in the case of one treat-
ment group. The Continuous method performs better for all the treatment
groups however, like in the one treatment group scenario, the Continuous,
Categorical and Mantel-Haenszel methods are fairly similar. It is also worth
noting that the Random Effect also has similar performance to the top 3
methods with the extra treatment groups where, this was not the case in the
one treatment group scenario. The final conclusion to draw from these find-
ings is that the Continuous method is the best choice for adjusting baseline
heterogeneity.

6.2.2 Influence of true treatment effect on the simulation results

Section 6.2.1 above examined how the different methods performed with
the risk ratios from the Belcap study. This section looks at how varying the
true risk ratio for one of the treatment groups affects the performance of the
method with no adjustment for baseline heterogeneity and the five methods
being studied.

Given that only one treatment group’s true risk ratio is being changed,
only estimates for this treatment group will be affected. The “ALL” treat-
ment group is the one being modified and when presenting the results in
Table 69 below, only the results for this group will be presented.
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Table 69: Simulation with a replication number of 1,000. Each replicate
has a sample size of 750. The true risk ratio for ALL is varied

True Method Average Bias Standard RMSE

Risk Ratio Estimate Deviation

No Adjustment 0.4735 −0.0265 0.0315 0.0412

Offset 0.5197 0.0197 0.0335 0.0389

0.5 Continuous 0.4993 −0.0007 0.0307 0.0307*

Categorical 0.4962 −0.0038 0.0309 0.0312

Random Effect 0.4956 −0.0044 0.0309 0.0312

Mantel Haenszel 0.4961 −0.0039 0.0315 0.0317

Conditional Method 0.5277 0.0277 0.0354 0.0450

No Adjustment 0.9826 −0.0174 0.0519 0.0547

Offset 1.0173 0.0173 0.0528 0.0556

1 Continuous 1.0021 0.0021 0.0472 0.0473*

Categorical 1.0003 0.0003 0.0477 0.0477

Random Effect 0.9999 −0.0001 0.0477 0.0477

Mantel Haenszel 1.0007 0.0007 0.0480 0.0480

Conditional Method 1.0230 0.0230 0.0563 0.0608

No Adjustment 1.4899 −0.0101 0.0718 0.0725

Offset 1.5122 0.0122 0.0666 0.0677

1.5 Continuous 1.5023 0.0023 0.0614 0.0615*

Categorical 1.5026 0.0026 0.0630 0.0631

Random Effect 1.5023 0.0023 0.0630 0.0631

Mantel Haenszel 1.5023 0.0023 0.0636 0.0636

Conditional Method 1.5159 0.0159 0.0710 0.0728

No Adjustment 2.0088 0.0088 0.1015 0.1018

Offset 1.9879 −0.0121 0.0900 0.0908

2 Continuous 1.9964 −0.0036 0.0842 0.0843*

Categorical 1.9997 −0.0003 0.0868 0.0868

Random Effect 1.9999 −0.0001 0.0869 0.0869

Mantel Haenszel 1.9988 −0.0012 0.0872 0.0872

Conditional Method 1.9851 −0.0149 0.0955 0.0967

* best result for this risk ratio

Table 69 above shows that regardless of risk ratio, the no adjustment
method performs very badly which demonstrates the need for some form of
adjustment for heterogeneity. The conditional method is not suitable for
adjusting for baseline heterogeneity given that it often performs worse than
the no adjustment method. The best method (based on having the lowest
RMSE) is the continuous method for all risk ratios.
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6.2.3 Relationship between the bias and true risk ratio

This section provides a visual comparison (Figure 48 below) of the RMSE
at varying risk ratios.

Figure 48: Scatter plot showing the relationship between Risk Ratio and
RMSE for no adjustment and all 6 trial methods.

Figure 34 above shows the RMSE increases as the true risk ratio increases
for all the methods being studied. The RMSEs for the categorical and ran-
dom effect are identical to each other. The Mantel-Haenszel method is very
similar to the random effect and categorical method. It is not surprising
that these three methods (categorical, random effect and Mantel-Haenszel)
as they all involve forming the same stratums in the analysis. The continu-
ous method gives the smallest RMSE at all risk ratios but it is only once the
risk ratio hits 1.5 that the difference between the continuous method and the
others is large enough to show up in Figure 34.
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6.3 A simulation based on a cluster randomised trial
where there are more clusters than treatments

In this section, the situation where there are more clusters than treat-
ments is considered. In the situation of the Belcap study, this means more
than one school being allocated to each treatment. Table 70 below shows the
results for a treatment group with two clusters allocated to it and the true
risk ratio for the treatment is 0.5.

Table 70: 2 clusters allocated to each treatment group

Method Average Bias Standard RMSE

estimate Deviation

No adjustment 0.4917 −0.0082 0.0180 0.0198

Offset 0.5066 0.0066 0.0171 0.0183

Continuous 0.5002 0.0002 0.0163 0.0163

Categorical 0.4992 −0.0008 0.0167 0.0167

Random Effect 0.4989 −0.0011 0.0167 0.0167

Mantel Haenszel 0.4992 −0.0008 0.0167 0.0167

Conditional method 0.5091 0.0091 0.0178 0.0200

Table 70 shows the similar finding of the continuous method being best at
adjusting for baseline heterogeneity. Interestingly, there is virtually no dif-
ference in the success of the categorical, random effect and Mantel-Haenszel
methods. Like before, the conditional method is not successful at all.

Table 71 below repeats the same simulation as above yet there are now
three clusters being allocated to each treatment group.
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Table 71: 3 clusters allocated to each treatment group

Method Average Bias Standard RMSE

estimate Deviation

No adjustment 0.4897 −0.0103 0.0220 0.0243

Offset 0.5046 0.0046 0.0231 0.0236

Continuous 0.4987 −0.0013 0.0220 0.0221

Categorical 0.4977 −0.0023 0.0228 0.0229

Random Effect 0.4974 −0.0026 0.0227 0.0229

Mantel Haenszel 0.4977 −0.0023 0.0229 0.0231

Conditional method 0.5058 0.0058 0.0248 0.0255

Comparing Tables 70 and 71, it is noticeable that the RMSEs are higher
in Table 71. This means that the results are less accurate in the case where
there are more clusters allocated to a treatment. This is due to the greater
within treatment group variation.

6.4 A simulation based on data with a third time point

All the simulations above agree that the adaptation of the conditional
linear model proposed by Verbeke compares unfavourably with the other
methods being studied here. All the above situations for the simulations
have one key similarity, they all assume data is only collected at the start
and end of the study. This is by no means always the case in reality (the
Falls dataset is an example of an exception). One of the potential upsides
of how the conditional method as defined here was that it could deal with
longitudinal data with multiple time points. For this reason another simula-
tion is performed to analyse the performance of the different methods being
studied when there are interim follow ups. For simplicity and the purpose
of comparability, the methods used to analyse the data from this simulation
are used as defined in section 4.2. In addition, the scenario is only extended
to have three time points and only one treatment group. Below is an outline
of the simulation process. See appendix 3 for the r code.

Part 1: Set the parameters for the simulation

Step 1: Produce a Logistic regression model where the treatment group is
the outcome variable and the baseline value is the predictor. This is done
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using the original Polyps data set.

Step 2: Produce a null Poisson model with baseline value as the outcome.
This is also done using the original Polyps data set.

Step 3: Produce a Poisson model with end data as the outcome, treatment
group as a categorical predictor and log baseline value as a continuous pre-
dictor. The point of this model is to understand the relationship between the
experiment and control treatment having adjusted for baseline heterogeneity
(via the log baseline term). This model is produced using the original Polyps
data set too.

Part 2: Perform the simulation

Step 4: Simulate baseline data from a Poisson distribution where the param-
eter is equal to the linear predictor from step 2. The example in section 6.1.1
simulates 250 values.

Step 5: For each of the simulated baseline values from step 4, predict the
probability of it belonging to the experimental group using the Logistic model
from step 1.

Step 6: For each of the simulated baseline values (from step 4) separately,
simulate a draw from a Bernoulli distribution where the “Success” probability
is equal to the probability predicted in step 5. If the value drawn from the
Bernoulli distribution is 1 then the baseline value belongs to the experimental
group. Should the value drawn from the Bernoulli distribution be 0 then the
baseline value belongs to the control group.

Step 7: Now, combine the simulated baseline data and the indicator for
treatment group together forming a data set with 2 columns.

Step 8: Simulate data from a Poisson distribution where the parameter is
given by the linear predictor of the model in step 3. This uses the baseline
data and the indicator of treatment group from the data set produced in step
7. Label the simulated data as ”Time 1”.

Step 9: Combine the end of study data with the data set from step 7.
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Step 10: Repeat step 8 but use ”Time 1” data in place of the baseline data.
Label the simulated data as ”End data ”.

Step 11: Add the ”End data” to the dataset in step 9 to form the final
dataset

Step 12: Apply the 5 trial methods being studied to the simulated data set.

Step 13: Repeat steps 4 - 10 multiple times. The example shown in section
6.4.1 uses a replication number of 1,000.

Part 3: Analyse the results from the simulation

Step 14: Calculate the biases and mean squared errors for the estimates of
the risk ratio (for the treatment group) produced by each of the six methods
being studied.

6.4.1 Results from simulation based on three time points

Table 72 below shows the results from implementing the above simulation.
Here a replication number of 1,000 is used and each run has a sample size of
250. The true risk ratio by the end of the study was 0.2767.

Table 72: Average estimated risk ratio, bias and mean squared error for
each of the six trial methods having run 1000 replicates with sample size
250.

Method Average Bias Standard RMSE

Estimate Deviation

No adjustment 0.2652 −0.0115 0.0223 0.0251

Offset 0.2801 0.0034 0.0223 0.0226

Continuous 0.2761 −0.0006 0.0219 0.0219

Categorical 0.2748 −0.0019 0.0221 0.0222

Random Effect 0.2734 −0.0033 0.0220 0.0222

Mantel Haenszel 0.2747 −0.0020 0.0222 0.0222

Conditional Method 0.2803 0.0036 0.0223 0.0226

*The Conditional methodology failed to converge on 277 iterations. Thus, the analysis is based on only

the 723 replicates for which all methods achieved convergence
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Table 72 above shows that the inclusion of a third time point hasn’t
changed the pecking order of the different methods. Thus, all the conclusions
made above appear to hold true for the scenario of three time points.

6.5 A simulation created from the Offset Method

All the simulations carried out in the previous sections all find the Con-
tinuous method to be best at adjusting for baseline heterogeneity. The only
concern with this is that all the simulations were created using results from
a Continuous method. Thus, a simulation is produced which replicates the
process outlined in Section 6.2 except for the outcome data being generated
using the Offset method. Table 73 below shows the results of this simulation.

Table 73: Simulation based on the Offset method

Method Average Bias Standard RMSE

estimate Deviation

No adjustment 0.5339 −0.0592 0.0326 0.0675

Offset 0.5849 −0.0082 0.0206 0.0221

Continuous 0.5943 0.0012 0.0205 0.0205

Categorical 0.5877 −0.0054 0.0221 0.0228

Random Effect 0.5875 −0.0056 0.0221 0.0228

Mantel Haenszel 0.5879 −0.0052 0.0223 0.0229

Conditional method 0.6966 0.1035 0.0223 0.1059

Table 73 shows the Continuous method is still best at adjusting for base-
line heterogeneity. Like before, the conditional method is still not successful
at all.
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7 Discussion and Conclusions

The goals of this thesis are to demonstrate the need to adjust for baseline
heterogeneity when analysing Count Data from Experimental. The thesis
also tries to find a successful statistical method for carrying out this adjust-
ment. The statistical methods considered consist of 5 parametric methods
(Offset, Continuous, Categorical, Random Effect, and Conditional) and a
Non-parametric method (Mantel-Haenszel). The analysis within this thesis
is based on 3 datasets (Belcap, Polyps, Falls) and many simulations which
are created to match the properties of one of the 3 datasets.

7.1 Demonstrating the need to adjust for baseline het-
erogeneity

This goal is addressed by analysing the 3 datasets using the 5 parametric
methods, a non-parametric method and a method which does not allow for
baseline heterogeneity. The method that does not allow for baseline het-
erogeneity is included to provide a comparison between analysis with and
without allowing for baseline heterogeneity. The AIC (Akaike Information
Criterion) and BIC (Bayesian Information Criterion) statistics are used to
examine how well the statistical model used within each method fits the data.
The AIC and BIC are not available for Non-parametric methods and the val-
ues produced for the Conditional method cannot be meaningfully compared
with the other values. This leaves values for AIC and BIC from 4 of the
Parametric Methods (Offset, Continuous, Categorical and Random Effect)
as well as the method with no allowance for heterogeneity. Comparing these
values, the AIC and BIC are much higher when not allowing for hetero-
geneity meaning it does not fit the data very well. Thus, it is clear that a
method which allows for baseline heterogeneity is required. This supports
the findings of Senn [38].

A purely hypothetical situation is also drawn up to demonstrate how
severe the consequences of not correctly allowing for baseline heterogeneity
can be. This includes a potentially unsafe drug being wrongly authorised for
general use.
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7.2 Finding the best method to adjust for baseline het-
erogeneity

The AIC and BIC for the Offset, Continuous, Categorical and Random
Effect methods are all fairly similar, hence, they do not differ significantly
in terms of how well they fit the data. Interestingly, the estimates for the
treatment effect(s) vary substantially between the 5 parametric methods and
the non-parametric method. For this reason some way of distinguishing be-
tween all these methods is required. This is done using simulation studies
based upon each of the original datasets separately. The baseline data are
simulated to have a Poisson distribution with the simulated mean equal to
the mean of the baseline data in the original dataset. The data is then split
into the required number of treatment groups in such a way that the re-
sulting treatment groups are a close match to the treatment groups in the
original datasets. The outcome data (for the simulated datasets) is then
created according to the model produced by using the Continuous method
to analyse the original dataset (e.g. Belcap / Polyps / Falls). Once the
simulated datasets are produced, the 5 parametric methods and the non-
parametric method are used to analyse each simulated dataset. The method
with no adjustment is also used to analyse the simulated datasets to further
emphasise how important it is to allow for baseline heterogeneity. From this
analysis, an estimate for each treatment effect is produced for each of the
methods. As the simulations are repeated 1000 times, 1000 estimates of each
treatment effect are produced for each method (i.e.7000 estimates in total).
These estimates of the treatment effect are then summarised by the Root
Mean Squared Error (RMSE) for each method separately. Thus at the end
of the analysis, one RMSE is obtained for each method.

Applying the above simulation methodology to the Polyps dataset leads
to all 5 parametric methods and the non-parametric method having smaller
RMSEs than the method with no adjustment for baseline heterogeneity. Thus
providing more evidence of how important it is to allow for baseline hetero-
geneity. The results appear to be reasonably robust to changes in the sample
size of each simulation and changes in the assumed treatment effect. The
RMSE’s for the Categorical, Continuous and the Mantel-Haenszel methods
are very similar. This suggests that any one of these methods is a reasonable
choice for adjusting baseline heterogeneity in the simple case of 1 treatment
group and 2 time points.
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The simulation strategy is also applied to the Belcap dataset in order to
see whether the relative performance of the parametric and non-parametric
methods vary with the number of treatment groups. Note, the Polyps dataset
contains only 2 treatment groups where, the Belcap study contains 6 treat-
ment groups. The simulations show that the Continuous method performs
the best (i.e. lowest RMSE) in this situation. The Conditional method
performs very badly in the simulation with many treatment groups, to the
extent that not allowing for baseline heterogeneity produces better estimates
for the treatment effect(s). This finding was not expected given that research
by Verbeke shows that using a Conditional Mixed model successfully allows
for baseline heterogeneity. One potential explanation for the contrary re-
sults is that the data being analysed here is Count Data whereas, the data
analysed by Verbeke was normally distributed.

Repeating the simulation strategy for the Falls dataset which has 2 treat-
ment groups and 3 time points leads to the same results as those produced
when simulating the Belcap dataset. The Continuous method has the lowest
RMSE and the Conditional method has the highest RMSE. This result was
not expected as the Conditional method is the only method being studied
which makes use of the data from the additional time point. One piece of anl-
ysis not considered here would have been to look whether treating the count
data as having an approximate normal distribution leads to better results.
This approximation could have been viewed as being valid due to the large
sample sizes (hence the Central Limit Theorem holds) in the simulations.

One concern regarding the Continuous method producing the best esti-
mates of the treatment effect(s) (smallest RMSE), is that the simulations
were designed based on the results from applying the Continuous method to
the relevant example dataset. Given this, another simulation is performed
based on the Offset method to check whether the same result is obtained.
The extra simulation produced the same result as before i.e. the Continuous
method has the smallest RMSE. This may not be too surprising as the offset
term is the same as a continuous term with coefficient equal to 1.

7.3 Limitations of this thesis

One limitation of this thesis is that only Count Data is considered. This
means the findings of this research are only useful in the case of Count Data.
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In addition, the models being used in the simulation studies do not take
account of overdispersion which frequently occurs in Count Data. Another
limitation is that only experimental studies were looked at and the issue of
baseline heterogeneity is arguably a larger problem in observational studies
as methods like randomisation are not used to create balanaced groups.

The parametric models considered in this thesis were not extended to in-
clude any polynomial terms which could potentially lead to better model fits.
The definition of the strata being used in the Categorical and Random Effect
methods is very subjective. The models can be made artificially good or bad
based on the definition of the strata being used. Creating only 1 stratum
makes the Categorical and Random Effect artificially bad as all individuals
are in the same stratum and are therefore treated as being the same. At
the other extreme, creating strata such that the strata all contain only 1
individual makes the Random Effect model and the Categorical model artifi-
cially good. For this reason a compromise between the above two situations
is required. In this thesis, strata are created based on the Quintiles of the
data. Thus, individuals with baseline values below the first quintile are in
the first strata and so on.

7.4 Overall conclusions and Further work

From the analysis in this thesis, it is clear that baseline heterogeneity
should be allowed for in the case of Count Data. This is the same as with
other types of data such as Normal data. The simulation studies further
demonstrate this need along with showing that the Continuous method is
the better method for dealing with baseline heterogeneity. On the basis of
this, it would be sensible to use the Continuous method when analysing
Count Data from Experimental studies.

In the future, this research could be extended to look at using a non-
linear term for the continuous adjustment or to look at data with different
distributions (e.g. Binomial). Another possibility would be to look at Re-
peated Measures data which is either complete or incomplete. The effect
of over-dispersion on the results in this thesis should also be looked into in
any future research. This could be of particular value as overdispersion is
common in Count Data. Finally it would also be useful to see wether the
findings here are the same for count data coming from observational studies.

142



8 Appendicies

8.1 Appendix 1: Polyps simulation

# Load original polys data

setwd("C:/PhD")

polyps_edited <-read.csv(’polyps edited.csv’)

attach(polyps_edited)

# Poisson model (null model) to baseline data to get a mean Poisson value

library(plyr)

model_base <-glm(count_b~1,family = "poisson")

summary(model_base) # mean poisson value = exp(3.05164) = 21.15

# Logistic model to demonstrate correlation between baseline value and treatment.

# This is used for treatment allocation in the simulation

model_logistic <-glm(treatment~count_b,family = "binomial")

summary(model_logistic)

######################################################################################################################

# start loop to control number of simulations

overview <-NULL

number_iterations <-1000

sample_size_each_iteration <-100
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for(a in 1:number_iterations ){

tryCatch ({ #stops loop ending if error occurs. the error that can occur is lack of covergence in verbeke method

######################################################################################################################

# Simulate baseline data

baseline <-rpois(sample_size_each_iteration ,21.15)

prob_in_treat <-exp(summary(model_logistic )$ coefficients[1,1]+ summary(model_logistic )$ coefficients[2,1]* baseline )/

(1+exp(summary(model_logistic )$ coefficients[1,1]+ summary(model_logistic )$ coefficients[2,1]* baseline ))

treat_sim <-NULL

for(i in 1:length(prob_in_treat )){

t_sim <-rbinom(1,1,prob_in_treat[i])

treat_sim <-rbind(treat_sim ,t_sim)

}

sim_data_base_treat <-data.frame(cbind(baseline ,treat_sim))

######################################################################################################################

# Simulate Outcome data

outcome_data <-NULL

for(k in 1:length(prob_in_treat )){

if(sim_data_base_treat$V2[k]==0){

outcome <-rpois(1,exp(0.4924+0.8536*log(baseline[k])))

}else{

outcome <-rpois(1,exp(0.4924-0.5981+0.8536*log(baseline[k])))
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}

outcome_data <-rbind(outcome_data ,outcome)

}

sim_data_base_treat_out <-cbind(sim_data_base_treat ,outcome_data)

names(sim_data_base_treat_out)<-c("baseline","treat","outcome_adj")

######################################################################################################################

# Create baseline value categories

cate <-NULL

for (i in 1:length(baseline )){

if(sim_data_base_treat_out$baseline[i]<=quantile(baseline ,probs = 0.2)){

category <-"A"}else if (sim_data_base_treat_out$baseline[i]<=quantile(baseline ,probs = 0.4)){

category <-"B"}else if (sim_data_base_treat_out$baseline[i]<=quantile(baseline ,probs = 0.6)){

category <-"C"}else if (sim_data_base_treat_out$baseline[i]<=quantile(baseline ,probs = 0.8)){

category <-"D"} else{

category <-"E"

}

cate <-rbind(cate ,category)

}

final_data <-cbind(sim_data_base_treat_out ,cate)

######################################################################################################################

# Poisson model for simulated dataset , ignoring baseline heterogeneity

145



model_no <-glm(outcome_adj~treat ,data=final_data ,family = "poisson")

sum_no <-summary(model_no)

# Apply the four parametric methods to the simulated dataset

model_cont <-glm(outcome_adj~treat+log(baseline),data=final_data ,family = "poisson")

sum_cont <-summary(model_cont)

model_off <-glm(outcome_adj~treat+offset(log(baseline)),data=final_data ,family = "poisson")

sum_off <-summary(model_off)

model_cat <-glm(outcome_adj~treat+cate ,data=final_data ,family = "poisson")

sum_cat <-summary(model_cat)

suppressMessages(library(lme4))

model_ran <- glmer(outcome_adj~treat +(1|cate),data=final_data ,family=poisson ,nAGQ=20)

sum_ran <-summary(model_ran)

######################################################################################################################

#verbeke method

suppressMessages(attach(sim_data_base_treat_out))

longdata <-data.frame(outcome=c(baseline ,outcome_adj),

parti=factor(rep(paste(’p’, 1:100, sep=’’), 2)),

time=as.factor(rep(0:1, each=100)),

treat_group=rep(treat , 2))

suppressMessages(library(glmmADMB ))

model_ver <- glmmadmb(outcome ~ treat_group*time+(1+time|parti), family = "poisson", data = longdata)

sum_ver <-summary(model_ver)
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if (ver_coef==sum_ver$coefficients[4,1]) stop(paste("error on iteration",a,sep=" "))

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

####################################################################

# Mantel -Haneszel

split_treat <-split(final_data ,final_data$treat)

experiment <-split_treat$‘1‘

experiment_cat <-split(experiment ,experiment$cate)

exp_a<-experiment_cat$A

exp_b<-experiment_cat$B

exp_c<-experiment_cat$C

exp_d<-experiment_cat$D

exp_e<-experiment_cat$E

control <-split_treat$‘0‘

control_cat <-split(control ,control$cate)

con_a<-control_cat$A

con_b<-control_cat$B

con_c<-control_cat$C

con_d<-control_cat$D

con_e<-control_cat$E

numerator_a<-sum(exp_a$outcome_adj)/ length(exp_a$outcome_adj)
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numerator_b<-sum(exp_b$outcome_adj)/ length(exp_b$outcome_adj)

numerator_c<-sum(exp_c$outcome_adj)/ length(exp_c$outcome_adj)

numerator_d<-sum(exp_d$outcome_adj)/ length(exp_d$outcome_adj)

numerator_e<-sum(exp_e$outcome_adj)/ length(exp_e$outcome_adj)

denominator_a<-sum(con_a$outcome_adj)/ length(con_a$outcome_adj)

denominator_b<-sum(con_b$outcome_adj)/ length(con_b$outcome_adj)

denominator_c<-sum(con_c$outcome_adj)/ length(con_c$outcome_adj)

denominator_d<-sum(con_d$outcome_adj)/ length(con_d$outcome_adj)

denominator_e<-sum(con_e$outcome_adj)/ length(con_e$outcome_adj)

risk_a<-numerator_a/denominator_a

risk_b<-numerator_b/denominator_b

risk_c<-numerator_c/denominator_c

risk_d<-numerator_d/denominator_d

risk_e<-numerator_e/denominator_e

weight_a<-(sum(con_a$outcome_adj)* length(exp_a$outcome_adj ))/( length(con_a$outcome_adj)+ length(exp_a$outcome_adj))

weight_b<-(sum(con_b$outcome_adj)* length(exp_b$outcome_adj ))/( length(con_b$outcome_adj)+ length(exp_b$outcome_adj))

weight_c<-(sum(con_c$outcome_adj)* length(exp_c$outcome_adj ))/( length(con_c$outcome_adj)+ length(exp_c$outcome_adj))

weight_d<-(sum(con_d$outcome_adj)* length(exp_d$outcome_adj ))/( length(con_d$outcome_adj)+ length(exp_d$outcome_adj))

weight_e<-(sum(con_e$outcome_adj)* length(exp_e$outcome_adj ))/( length(con_e$outcome_adj)+ length(exp_e$outcome_adj))

final_numerator <-(weight_a*risk_a)+( weight_b*risk_b)+( weight_c*risk_c)+( weight_d*risk_d)+( weight_e*risk_e)

final_denominator <-weight_a+weight_b+weight_c+weight_d+weight_e

mant_hans <-final_numerator/final_denominator

######################################################################################################################

# results from 5 methods
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sample_size_experiment <-length(experiment$baseline)

sample_size_control <-length(control$baseline)

no_adj_coef <-sum_no$coefficients[2,1]

no_adj_se <-sum_no$coefficients[2,2]

off_coef <-sum_off$coefficients[2,1]

off_se <-sum_off$coefficients[2,2]

cont_coef <-sum_cont$coefficients[2,1]

cont_se<-sum_cont$coefficients[2,2]

cat_coef <-sum_cat$coefficients[2,1]

cat_se <-sum_cat$coefficients[2,2]

ran_coef <-sum_ran$coefficients[2,1]

ran_se <-sum_ran$coefficients[2,2]

ver_coef <-sum_ver$coefficients[4,1]

ver_se <-sum_ver$coefficients[4,2]

test_coef <-sum_ver$coefficients[2,1]+sum_ver$coefficients[4,1]

alt_coef <-sum_ver$coefficients[2,1]

full_coef <-sum_ver$coefficients[2,1]+sum_ver$coefficients[3,1]+sum_ver$coefficients[4,1]

iteration <-cbind(sample_size_experiment ,sample_size_control ,no_adj_coef ,off_coef ,

cont_coef ,cat_coef ,ran_coef ,ver_coef ,test_coef ,alt_coef ,full_coef ,

log(mant_hans),no_adj_se ,off_se ,cont_se ,cat_se ,ran_se ,ver_se)

overview <-rbind(overview ,iteration)
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print(a)

}

overview <-as.data.frame(overview)
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8.2 Appendix 2: Belcap simulation

# Load original polys data

setwd("C:/PhD")

belcap <-read.csv(’belcap with A_control.csv’)

belcap <- within(belcap , school <- relevel(school , ref = "Control"))

attach(belcap)

# Poisson model (null model) to baseline data to get a mean Poisson value

library(plyr)

library(nnet)

library(lme4)

model_base <-glm(dmfs_beg~1,family = "poisson")

summary(model_base) # mean poisson value = exp(1.8417) = 6.34

# Multinomial model to demonstrate correlation between baseline value and treatment

model_multinomial <-multinom(school~dmfs_beg)

summary(model_multinomial)

continuous <-glm(dmfs_end~school+log(dmfs_beg),family = "poisson")

summary(continuous)

######################################################################################################################

# start loop to control number of simulations

overview_all <-read.csv("750 overview all belcap.csv")
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overview_esd <-read.csv("750 overview esd belcap.csv")

overview_mw<-read.csv("750 overview mw belcap.csv")

overview_ohe <-read.csv("750 overview ohe belcap.csv")

overview_ohy <-read.csv("750 overview ohy belcap.csv")

sample_size <-750

for(a in 1:1000){

tryCatch ({ #stops loop ending if error occurs. the error that can occur is lack of covergence in verbeke method

######################################################################################################################

# Simulate baseline data

baseline <-rpois(sample_size ,6.34)

prob_in_all <-exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline )/

(1+exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline ))

prob_in_esd <-exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline )/

(1+exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline ))

prob_in_mw<-exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline )/

(1+exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline)
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+exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline ))

prob_in_ohe <-exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline )/

(1+exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline ))

prob_in_ohy <-exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline )/

(1+exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline ))

prob_in_con <-1/

(1+exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline ))

treat_sim <-NULL

for(i in 1:length(prob_in_all)){

t_sim <-rmultinom(1,1,c(prob_in_all[i],prob_in_esd[i],prob_in_mw[i],prob_in_ohe[i],prob_in_ohy[i],prob_in_con[i]))

if(t_sim[1,1]==1){

treat_sim_new <-"ALL"

} else if(t_sim[2,1]==1){

treat_sim_new <-"ESD"

} else if(t_sim[3,1]==1){

treat_sim_new <-"MW"
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} else if(t_sim[4,1]==1){

treat_sim_new <-"OHE"

} else if(t_sim[5,1]==1){

treat_sim_new <-"OHY"

} else{

treat_sim_new <-"A_Control"

}

treat_sim <-rbind(treat_sim ,treat_sim_new)

}

sim_data_base_treat <-data.frame(cbind(baseline ,treat_sim))

names(sim_data_base_treat)<-c("baseline","treat")

sim_data_base_treat$baseline <-as.numeric(sim_data_base_treat$baseline)

######################################################################################################################

# Simulate Outcome data

for(j in 1:length(prob_in_all)){

if(sim_data_base_treat$treat[j]=="ALL"){

sim_data_base_treat$outcome[j]<-rpois(1,exp(1.1146-0.5224+0.4602*log(baseline[j])))

}else if(sim_data_base_treat$treat[j]=="ESD"){

sim_data_base_treat$outcome[j]<-rpois(1,exp(1.1146-0.1909+0.4602*log(baseline[j])))

}else if(sim_data_base_treat$treat[j]=="MW"){
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sim_data_base_treat$outcome[j]<-rpois(1,exp(1.1146-0.3523+0.4602*log(baseline[j])))

}else if(sim_data_base_treat$treat[j]=="OHE"){

sim_data_base_treat$outcome[j]<-rpois(1,exp(1.1146-0.3447+0.4602*log(baseline[j])))

}else if(sim_data_base_treat$treat[j]=="OHY"){

sim_data_base_treat$outcome[j]<-rpois(1,exp(1.1146-0.2710+0.4602*log(baseline[j])))

}else{

sim_data_base_treat$outcome[j]<-rpois(1,exp(1.1146+0.4602*log(baseline[j])))}

}

######################################################################################################################

# Create baseline value categories

cate <-NULL

for (i in 1:length(baseline )){

if(sim_data_base_treat$baseline[i]<=quantile(sim_data_base_treat$baseline ,probs = 0.2)){

category <-"A"}else if (sim_data_base_treat$baseline[i]<=quantile(sim_data_base_treat$baseline ,probs = 0.4)){

category <-"B"}else if (sim_data_base_treat$baseline[i]<=quantile(sim_data_base_treat$baseline ,probs = 0.6)){

category <-"C"}else if (sim_data_base_treat$baseline[i]<=quantile(sim_data_base_treat$baseline ,probs = 0.8)){

category <-"D"}else {

category <-"E"

}

cate <-rbind(cate ,category)

}
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final_data <-cbind(sim_data_base_treat ,cate)

model_ran <- glmer(outcome~treat +(1|cate),data=final_data ,

family=poisson ,nAGQ=20,

glmerControl(optimizer = "bobyqa"))

sum_ran <-summary(model_ran)

if(isSingular(model_ran )== TRUE){

x<-NULL

repeat {

print(paste("error on iteration",a,sep=" "))

baseline <-rpois(sample_size ,6.34)

prob_in_all <-exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline )/

(1+exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline ))

prob_in_esd <-exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline )/

(1+exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline)
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+exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline ))

prob_in_mw <-exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline )/

(1+exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline ))

prob_in_ohe <-exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline )/

(1+exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline ))

prob_in_ohy <-exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline )/

(1+exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline ))

prob_in_con <-1/

(1+exp(summary(model_multinomial )$ coefficients[1,1]+ summary(model_multinomial )$ coefficients[1,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[2,1]+ summary(model_multinomial )$ coefficients[2,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[3,1]+ summary(model_multinomial )$ coefficients[3,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[4,1]+ summary(model_multinomial )$ coefficients[4,2]* baseline)

+exp(summary(model_multinomial )$ coefficients[5,1]+ summary(model_multinomial )$ coefficients[5,2]* baseline ))

treat_sim <-NULL

for(i in 1:length(prob_in_all)){

t_sim <-rmultinom(1,1,c(prob_in_all[i],prob_in_esd[i],prob_in_mw[i],prob_in_ohe[i],prob_in_ohy[i],prob_in_con[i]))

if(t_sim[1,1]==1){
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treat_sim_new <-"ALL"

} else if(t_sim[2,1]==1){

treat_sim_new <-"ESD"

} else if(t_sim[3,1]==1){

treat_sim_new <-"MW"

} else if(t_sim[4,1]==1){

treat_sim_new <-"OHE"

} else if(t_sim[5,1]==1){

treat_sim_new <-"OHY"

} else{

treat_sim_new <-"A_Control"

}

treat_sim <-rbind(treat_sim ,treat_sim_new)

}

sim_data_base_treat <-data.frame(cbind(baseline ,treat_sim))

names(sim_data_base_treat)<-c("baseline","treat")

sim_data_base_treat$baseline <-as.numeric(sim_data_base_treat$baseline)

######################################################################################################################

# Simulate Outcome data

for(j in 1:length(prob_in_all)){
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if(sim_data_base_treat$treat[j]=="ALL"){

sim_data_base_treat$outcome[j]<-rpois(1,exp(1.2309-0.5580+0.0789*log(baseline[j])))

}else if(sim_data_base_treat$treat[j]=="ESD"){

sim_data_base_treat$outcome[j]<-rpois(1,exp(1.2309-0.1953+0.0789*log(baseline[j])))

}else if(sim_data_base_treat$treat[j]=="MW"){

sim_data_base_treat$outcome[j]<-rpois(1,exp(1.2309-0.4132+0.0789*log(baseline[j])))

}else if(sim_data_base_treat$treat[j]=="OHE"){

sim_data_base_treat$outcome[j]<-rpois(1,exp(1.2309-0.3506+0.0789*log(baseline[j])))

}else if(sim_data_base_treat$treat[j]=="OHY"){

sim_data_base_treat$outcome[j]<-rpois(1,exp(1.2309-0.3082+0.0789*log(baseline[j])))

}else{

sim_data_base_treat$outcome[j]<-rpois(1,exp(1.2309+0.0789*log(baseline[j])))}

}

######################################################################################################################

# Create baseline value categories

cate <-NULL

for (i in 1:length(baseline )){

if(sim_data_base_treat$baseline[i]<=quantile(sim_data_base_treat$baseline ,probs = 0.2)){

category <-"A"}else if (sim_data_base_treat$baseline[i]<=quantile(sim_data_base_treat$baseline ,probs = 0.4)){

category <-"B"}else if (sim_data_base_treat$baseline[i]<=quantile(sim_data_base_treat$baseline ,probs = 0.6)){

159



category <-"C"}else if (sim_data_base_treat$baseline[i]<=quantile(sim_data_base_treat$baseline ,probs = 0.8)){

category <-"D"}else {

category <-"E"

}

cate <-rbind(cate ,category)

}

final_data <-cbind(sim_data_base_treat ,cate)

model_ran <- glmer(outcome~treat +(1|cate),data=final_data ,

family=poisson ,nAGQ=20,

glmerControl(optimizer = "bobyqa"))

sum_ran <-summary(model_ran)

if(isSingular(model_ran )== FALSE) {

print(paste("fixed iteration",a,sep=" "))

break

}

}

}

######################################################################################################################

# Poisson model for simulated dataset , ignoring baseline heterogeneity

model_no <-glm(outcome~treat ,data=final_data ,family = "poisson")

sum_no <-summary(model_no)

160



# Apply the four parametric methods to the simulated dataset

model_cont <-glm(outcome~treat+log(baseline+1),data=final_data ,family = "poisson")

sum_cont <-summary(model_cont)

model_off <-glm(outcome~treat+offset(log(baseline+1)),data=final_data ,family = "poisson")

sum_off <-summary(model_off)

model_cat <-glm(outcome~treat+cate ,data=final_data ,family = "poisson")

sum_cat <-summary(model_cat)

######################################################################################################################

#verbeke method

suppressMessages(attach(sim_data_base_treat))

longdata <-data.frame(out=c(baseline ,outcome),

parti=factor(rep(paste(’p’, 1:sample_size , sep=’’), 2)),

time=as.factor(rep(0:1, each=sample_size)),

treat_group=rep(treat , 2))

suppressMessages(library(glmmADMB ))

model_ver <- glmmadmb(out ~ treat_group*time+

(1+time|parti),

family = "poisson",

data = longdata)

sum_ver <-summary(model_ver)

if (ver_coef_all==sum_ver$coefficients[8,1]) stop(paste("error on iteration",a,sep=" "))

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

######################################################################################################################
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#mantel haneszel RR for ALL

split_treat <-split(final_data ,final_data$treat)

experiment <-split_treat$ALL

experiment_cat <-split(experiment ,experiment$cate)

exp_a<-experiment_cat$A

exp_b<-experiment_cat$B

exp_c<-experiment_cat$C

exp_d<-experiment_cat$D

exp_e<-experiment_cat$E

control <-split_treat$A_Control

control_cat <-split(control ,control$cate)

con_a<-control_cat$A

con_b<-control_cat$B

con_c<-control_cat$C

con_d<-control_cat$D

con_e<-control_cat$E

numerator_a<-sum(exp_a$outcome )/ length(exp_a$outcome)

numerator_b<-sum(exp_b$outcome )/ length(exp_b$outcome)

numerator_c<-sum(exp_c$outcome )/ length(exp_c$outcome)

numerator_d<-sum(exp_d$outcome )/ length(exp_d$outcome)
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numerator_e<-sum(exp_e$outcome )/ length(exp_e$outcome)

denominator_a<-sum(con_a$outcome )/ length(con_a$outcome)

denominator_b<-sum(con_b$outcome )/ length(con_b$outcome)

denominator_c<-sum(con_c$outcome )/ length(con_c$outcome)

denominator_d<-sum(con_d$outcome )/ length(con_d$outcome)

denominator_e<-sum(con_e$outcome )/ length(con_e$outcome)

risk_a<-numerator_a/denominator_a

risk_b<-numerator_b/denominator_b

risk_c<-numerator_c/denominator_c

risk_d<-numerator_d/denominator_d

risk_e<-numerator_e/denominator_e

weight_a<-(sum(con_a$outcome )* length(exp_a$outcome ))/( length(con_a$outcome )+ length(exp_a$outcome ))

weight_b<-(sum(con_b$outcome )* length(exp_b$outcome ))/( length(con_b$outcome )+ length(exp_b$outcome ))

weight_c<-(sum(con_c$outcome )* length(exp_c$outcome ))/( length(con_c$outcome )+ length(exp_c$outcome ))

weight_d<-(sum(con_d$outcome )* length(exp_d$outcome ))/( length(con_d$outcome )+ length(exp_d$outcome ))

weight_e<-(sum(con_e$outcome )* length(exp_e$outcome ))/( length(con_e$outcome )+ length(exp_e$outcome ))

final_numerator <-(weight_a*risk_a)+( weight_b*risk_b)+( weight_c*risk_c)+( weight_d*risk_d)+( weight_e*risk_e)

final_denominator <-weight_a+weight_b+weight_c+weight_d+weight_e

mant_hans_ALL <-final_numerator/final_denominator

######################################################################################################################

#mantel haneszel RR for ESD

split_treat <-split(final_data ,final_data$treat)

experiment <-split_treat$ESD

experiment_cat <-split(experiment ,experiment$cate)

exp_a<-experiment_cat$A
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exp_b<-experiment_cat$B

exp_c<-experiment_cat$C

exp_d<-experiment_cat$D

exp_e<-experiment_cat$E

control <-split_treat$A_Control

control_cat <-split(control ,control$cate)

con_a<-control_cat$A

con_b<-control_cat$B

con_c<-control_cat$C

con_d<-control_cat$D

con_e<-control_cat$E

numerator_a<-sum(exp_a$outcome )/ length(exp_a$outcome)

numerator_b<-sum(exp_b$outcome )/ length(exp_b$outcome)

numerator_c<-sum(exp_c$outcome )/ length(exp_c$outcome)

numerator_d<-sum(exp_d$outcome )/ length(exp_d$outcome)

numerator_e<-sum(exp_e$outcome )/ length(exp_e$outcome)

denominator_a<-sum(con_a$outcome )/ length(con_a$outcome)

denominator_b<-sum(con_b$outcome )/ length(con_b$outcome)

denominator_c<-sum(con_c$outcome )/ length(con_c$outcome)

denominator_d<-sum(con_d$outcome )/ length(con_d$outcome)
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denominator_e<-sum(con_e$outcome )/ length(con_e$outcome)

risk_a<-numerator_a/denominator_a

risk_b<-numerator_b/denominator_b

risk_c<-numerator_c/denominator_c

risk_d<-numerator_d/denominator_d

risk_e<-numerator_e/denominator_e

weight_a<-(sum(con_a$outcome )* length(exp_a$outcome ))/( length(con_a$outcome )+ length(exp_a$outcome ))

weight_b<-(sum(con_b$outcome )* length(exp_b$outcome ))/( length(con_b$outcome )+ length(exp_b$outcome ))

weight_c<-(sum(con_c$outcome )* length(exp_c$outcome ))/( length(con_c$outcome )+ length(exp_c$outcome ))

weight_d<-(sum(con_d$outcome )* length(exp_d$outcome ))/( length(con_d$outcome )+ length(exp_d$outcome ))

weight_e<-(sum(con_e$outcome )* length(exp_e$outcome ))/( length(con_e$outcome )+ length(exp_e$outcome ))

final_numerator <-(weight_a*risk_a)+( weight_b*risk_b)+( weight_c*risk_c)+( weight_d*risk_d)+( weight_e*risk_e)

final_denominator <-weight_a+weight_b+weight_c+weight_d+weight_e

mant_hans_ESD <-final_numerator/final_denominator

######################################################################################################################

#mantel haneszel RR for MW

split_treat <-split(final_data ,final_data$treat)

experiment <-split_treat$MW

experiment_cat <-split(experiment ,experiment$cate)

exp_a<-experiment_cat$A

exp_b<-experiment_cat$B

exp_c<-experiment_cat$C

exp_d<-experiment_cat$D

exp_e<-experiment_cat$E
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control <-split_treat$A_Control

control_cat <-split(control ,control$cate)

con_a<-control_cat$A

con_b<-control_cat$B

con_c<-control_cat$C

con_d<-control_cat$D

con_e<-control_cat$E

numerator_a<-sum(exp_a$outcome )/ length(exp_a$outcome)

numerator_b<-sum(exp_b$outcome )/ length(exp_b$outcome)

numerator_c<-sum(exp_c$outcome )/ length(exp_c$outcome)

numerator_d<-sum(exp_d$outcome )/ length(exp_d$outcome)

numerator_e<-sum(exp_e$outcome )/ length(exp_e$outcome)

denominator_a<-sum(con_a$outcome )/ length(con_a$outcome)

denominator_b<-sum(con_b$outcome )/ length(con_b$outcome)

denominator_c<-sum(con_c$outcome )/ length(con_c$outcome)

denominator_d<-sum(con_d$outcome )/ length(con_d$outcome)

denominator_e<-sum(con_e$outcome )/ length(con_e$outcome)

risk_a<-numerator_a/denominator_a

risk_b<-numerator_b/denominator_b

risk_c<-numerator_c/denominator_c

risk_d<-numerator_d/denominator_d

risk_e<-numerator_e/denominator_e
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weight_a<-(sum(con_a$outcome )* length(exp_a$outcome ))/( length(con_a$outcome )+ length(exp_a$outcome ))

weight_b<-(sum(con_b$outcome )* length(exp_b$outcome ))/( length(con_b$outcome )+ length(exp_b$outcome ))

weight_c<-(sum(con_c$outcome )* length(exp_c$outcome ))/( length(con_c$outcome )+ length(exp_c$outcome ))

weight_d<-(sum(con_d$outcome )* length(exp_d$outcome ))/( length(con_d$outcome )+ length(exp_d$outcome ))

weight_e<-(sum(con_e$outcome )* length(exp_e$outcome ))/( length(con_e$outcome )+ length(exp_e$outcome ))

final_numerator <-(weight_a*risk_a)+( weight_b*risk_b)+( weight_c*risk_c)+( weight_d*risk_d)+( weight_e*risk_e)

final_denominator <-weight_a+weight_b+weight_c+weight_d+weight_e

mant_hans_MW<-final_numerator/final_denominator

######################################################################################################################

#mantel haneszel RR for OHE

split_treat <-split(final_data ,final_data$treat)

experiment <-split_treat$OHE

experiment_cat <-split(experiment ,experiment$cate)

exp_a<-experiment_cat$A

exp_b<-experiment_cat$B

exp_c<-experiment_cat$C

exp_d<-experiment_cat$D

exp_e<-experiment_cat$E

control <-split_treat$A_Control

control_cat <-split(control ,control$cate)

con_a<-control_cat$A

con_b<-control_cat$B

con_c<-control_cat$C

167



con_d<-control_cat$D

con_e<-control_cat$E

numerator_a<-sum(exp_a$outcome )/ length(exp_a$outcome)

numerator_b<-sum(exp_b$outcome )/ length(exp_b$outcome)

numerator_c<-sum(exp_c$outcome )/ length(exp_c$outcome)

numerator_d<-sum(exp_d$outcome )/ length(exp_d$outcome)

numerator_e<-sum(exp_e$outcome )/ length(exp_e$outcome)

denominator_a<-sum(con_a$outcome )/ length(con_a$outcome)

denominator_b<-sum(con_b$outcome )/ length(con_b$outcome)

denominator_c<-sum(con_c$outcome )/ length(con_c$outcome)

denominator_d<-sum(con_d$outcome )/ length(con_d$outcome)

denominator_e<-sum(con_e$outcome )/ length(con_e$outcome)

risk_a<-numerator_a/denominator_a

risk_b<-numerator_b/denominator_b

risk_c<-numerator_c/denominator_c

risk_d<-numerator_d/denominator_d

risk_e<-numerator_e/denominator_e

weight_a<-(sum(con_a$outcome )* length(exp_a$outcome ))/( length(con_a$outcome )+ length(exp_a$outcome ))

weight_b<-(sum(con_b$outcome )* length(exp_b$outcome ))/( length(con_b$outcome )+ length(exp_b$outcome ))

weight_c<-(sum(con_c$outcome )* length(exp_c$outcome ))/( length(con_c$outcome )+ length(exp_c$outcome ))

weight_d<-(sum(con_d$outcome )* length(exp_d$outcome ))/( length(con_d$outcome )+ length(exp_d$outcome ))

weight_e<-(sum(con_e$outcome )* length(exp_e$outcome ))/( length(con_e$outcome )+ length(exp_e$outcome ))

final_numerator <-(weight_a*risk_a)+( weight_b*risk_b)+( weight_c*risk_c)+( weight_d*risk_d)+( weight_e*risk_e)

final_denominator <-weight_a+weight_b+weight_c+weight_d+weight_e
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mant_hans_OHE <-final_numerator/final_denominator

######################################################################################################################

#mantel haneszel RR for OHY

split_treat <-split(final_data ,final_data$treat)

experiment <-split_treat$OHY

experiment_cat <-split(experiment ,experiment$cate)

exp_a<-experiment_cat$A

exp_b<-experiment_cat$B

exp_c<-experiment_cat$C

exp_d<-experiment_cat$D

exp_e<-experiment_cat$E

control <-split_treat$A_Control

control_cat <-split(control ,control$cate)

con_a<-control_cat$A

con_b<-control_cat$B

con_c<-control_cat$C

con_d<-control_cat$D

con_e<-control_cat$E

numerator_a<-sum(exp_a$outcome )/ length(exp_a$outcome)

numerator_b<-sum(exp_b$outcome )/ length(exp_b$outcome)
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numerator_c<-sum(exp_c$outcome )/ length(exp_c$outcome)

numerator_d<-sum(exp_d$outcome )/ length(exp_d$outcome)

numerator_e<-sum(exp_e$outcome )/ length(exp_e$outcome)

denominator_a<-sum(con_a$outcome )/ length(con_a$outcome)

denominator_b<-sum(con_b$outcome )/ length(con_b$outcome)

denominator_c<-sum(con_c$outcome )/ length(con_c$outcome)

denominator_d<-sum(con_d$outcome )/ length(con_d$outcome)

denominator_e<-sum(con_e$outcome )/ length(con_e$outcome)

risk_a<-numerator_a/denominator_a

risk_b<-numerator_b/denominator_b

risk_c<-numerator_c/denominator_c

risk_d<-numerator_d/denominator_d

risk_e<-numerator_e/denominator_e

weight_a<-(sum(con_a$outcome )* length(exp_a$outcome ))/( length(con_a$outcome )+ length(exp_a$outcome ))

weight_b<-(sum(con_b$outcome )* length(exp_b$outcome ))/( length(con_b$outcome )+ length(exp_b$outcome ))

weight_c<-(sum(con_c$outcome )* length(exp_c$outcome ))/( length(con_c$outcome )+ length(exp_c$outcome ))

weight_d<-(sum(con_d$outcome )* length(exp_d$outcome ))/( length(con_d$outcome )+ length(exp_d$outcome ))

weight_e<-(sum(con_e$outcome )* length(exp_e$outcome ))/( length(con_e$outcome )+ length(exp_e$outcome ))

final_numerator <-(weight_a*risk_a)+( weight_b*risk_b)+( weight_c*risk_c)+( weight_d*risk_d)+( weight_e*risk_e)

final_denominator <-weight_a+weight_b+weight_c+weight_d+weight_e

mant_hans_OHY <-final_numerator/final_denominator

######################################################################################################################

# results from 5 methods

#sample_size_experiment <-length(experiment$baseline)
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#sample_size_control <-length(control$baseline)

no_adj_coef_all <-sum_no$coefficients[2,1]

no_adj_coef_esd <-sum_no$coefficients[3,1]

no_adj_coef_mw <-sum_no$coefficients[4,1]

no_adj_coef_ohe <-sum_no$coefficients[5,1]

no_adj_coef_ohy <-sum_no$coefficients[6,1]

no_adj_se_all <-sum_no$coefficients[2,2]

no_adj_se_esd <-sum_no$coefficients[3,2]

no_adj_se_mw <-sum_no$coefficients[4,2]

no_adj_se_ohe <-sum_no$coefficients[5,2]

no_adj_se_ohy <-sum_no$coefficients[6,2]

off_coef_all <-sum_off$coefficients[2,1]

off_coef_esd <-sum_off$coefficients[3,1]

off_coef_mw <-sum_off$coefficients[4,1]

off_coef_ohe <-sum_off$coefficients[5,1]

off_coef_ohy <-sum_off$coefficients[6,1]

off_se_all <-sum_off$coefficients[2,2]

off_se_esd <-sum_off$coefficients[3,2]

off_se_mw <-sum_off$coefficients[4,2]

off_se_ohe <-sum_off$coefficients[5,2]
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off_se_ohy <-sum_off$coefficients[6,2]

cont_coef_all <-sum_cont$coefficients[2,1]

cont_coef_esd <-sum_cont$coefficients[3,1]

cont_coef_mw<-sum_cont$coefficients[4,1]

cont_coef_ohe <-sum_cont$coefficients[5,1]

cont_coef_ohy <-sum_cont$coefficients[6,1]

cont_se_all <-sum_cont$coefficients[2,2]

cont_se_esd <-sum_cont$coefficients[3,2]

cont_se_mw<-sum_cont$coefficients[4,2]

cont_se_ohe <-sum_cont$coefficients[5,2]

cont_se_ohy <-sum_cont$coefficients[6,2]

cat_coef_all <-sum_cat$coefficients[2,1]

cat_coef_esd <-sum_cat$coefficients[3,1]

cat_coef_mw <-sum_cat$coefficients[4,1]

cat_coef_ohe <-sum_cat$coefficients[5,1]

cat_coef_ohy <-sum_cat$coefficients[6,1]

cat_se_all <-sum_cat$coefficients[2,2]

cat_se_esd <-sum_cat$coefficients[3,2]

cat_se_mw <-sum_cat$coefficients[4,2]

cat_se_ohe <-sum_cat$coefficients[5,2]
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cat_se_ohy <-sum_cat$coefficients[6,2]

ran_coef_all <-sum_ran$coefficients[2,1]

ran_coef_esd <-sum_ran$coefficients[3,1]

ran_coef_mw <-sum_ran$coefficients[4,1]

ran_coef_ohe <-sum_ran$coefficients[5,1]

ran_coef_ohy <-sum_ran$coefficients[6,1]

ran_se_all <-sum_ran$coefficients[2,2]

ran_se_esd <-sum_ran$coefficients[3,2]

ran_se_mw <-sum_ran$coefficients[4,2]

ran_se_ohe <-sum_ran$coefficients[5,2]

ran_se_ohy <-sum_ran$coefficients[6,2]

ver_coef_all <-sum_ver$coefficients[8,1]

ver_coef_esd <-sum_ver$coefficients[9,1]

ver_coef_mw <-sum_ver$coefficients[10,1]

ver_coef_ohe <-sum_ver$coefficients[11,1]

ver_coef_ohy <-sum_ver$coefficients[12,1]

ver_se_all <-sum_ver$coefficients[8,2]

ver_se_esd <-sum_ver$coefficients[9,2]

ver_se_mw <-sum_ver$coefficients[10,2]
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ver_se_ohe <-sum_ver$coefficients[11,2]

ver_se_ohy <-sum_ver$coefficients[12,2]

iteration <-cbind(#sample_size_experiment ,sample_size_control ,

no_adj_coef_all ,off_coef_all ,cont_coef_all ,cat_coef_all ,ran_coef_all ,mant_hans_ALL ,ver_coef_all ,

no_adj_coef_esd ,off_coef_esd ,cont_coef_esd ,cat_coef_esd ,ran_coef_esd ,mant_hans_ESD ,ver_coef_esd ,

no_adj_coef_mw ,off_coef_mw ,cont_coef_mw ,cat_coef_mw ,ran_coef_mw ,mant_hans_MW ,ver_coef_mw ,

no_adj_coef_ohe ,off_coef_ohe ,cont_coef_ohe ,cat_coef_ohe ,ran_coef_ohe ,mant_hans_OHE ,ver_coef_ohe ,

no_adj_coef_ohy ,off_coef_ohy ,cont_coef_ohy ,cat_coef_ohy ,ran_coef_ohy ,mant_hans_OHY ,ver_coef_ohy ,

no_adj_se_all ,off_se_all ,cont_se_all ,cat_se_all ,ran_se_all ,ver_se_all ,

no_adj_se_esd ,off_se_esd ,cont_se_esd ,cat_se_esd ,ran_se_esd ,ver_se_esd ,

no_adj_se_mw ,off_se_mw ,cont_se_mw ,cat_se_mw ,ran_se_mw ,ver_se_mw ,

no_adj_se_ohe ,off_se_ohe ,cont_se_ohe ,cat_se_ohe ,ran_se_ohe ,ver_se_ohe ,

no_adj_se_ohy ,off_se_ohy ,cont_se_ohy ,cat_se_ohy ,ran_se_ohy ,ver_se_ohy)

iteration_all <-cbind(#sample_size_experiment ,sample_size_control ,

no_adj_coef_all ,off_coef_all ,cont_coef_all ,cat_coef_all ,ran_coef_all ,mant_hans_ALL ,ver_coef_all ,

no_adj_se_all ,off_se_all ,cont_se_all ,cat_se_all ,ran_se_all ,ver_se_all)

iteration_esd <-cbind(#sample_size_experiment ,sample_size_control ,

no_adj_coef_esd ,off_coef_esd ,cont_coef_esd ,cat_coef_esd ,ran_coef_esd ,mant_hans_ESD ,ver_coef_esd ,

no_adj_se_esd ,off_se_esd ,cont_se_esd ,cat_se_esd ,ran_se_esd ,ver_se_esd)

iteration_mw<-cbind(#sample_size_experiment ,sample_size_control ,

no_adj_coef_mw ,off_coef_mw ,cont_coef_mw ,cat_coef_mw ,ran_coef_mw ,mant_hans_MW ,ver_coef_mw ,

no_adj_se_mw ,off_se_mw ,cont_se_mw ,cat_se_mw ,ran_se_mw ,ver_se_mw)

iteration_ohe <-cbind(#sample_size_experiment ,sample_size_control ,

no_adj_coef_ohe ,off_coef_ohe ,cont_coef_ohe ,cat_coef_ohe ,ran_coef_ohe ,mant_hans_OHE ,ver_coef_ohe ,

no_adj_se_ohe ,off_se_ohe ,cont_se_ohe ,cat_se_ohe ,ran_se_ohe ,ver_se_ohe)

iteration_ohy <-cbind(#sample_size_experiment ,sample_size_control ,

no_adj_coef_ohy ,off_coef_ohy ,cont_coef_ohy ,cat_coef_ohy ,ran_coef_ohy ,mant_hans_OHY ,ver_coef_ohy ,

no_adj_se_ohy ,off_se_ohy ,cont_se_ohy ,cat_se_ohy ,ran_se_ohy ,ver_se_ohy)

overview_all <-rbind(overview_all ,iteration_all)

overview_esd <-rbind(overview_esd ,iteration_esd)
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overview_mw<-rbind(overview_mw,iteration_mw)

overview_ohe <-rbind(overview_ohe ,iteration_ohe)

overview_ohy <-rbind(overview_ohy ,iteration_ohy)

overview_all <-as.data.frame(overview_all)

overview_esd <-as.data.frame(overview_esd)

overview_mw<-data.frame(overview_mw)

overview_ohe <-data.frame(overview_ohe)

overview_ohy <-data.frame(overview_ohy)

setwd("C:/PhD/belcap sim")

write.csv(overview_all ,file = "750 overview all belcap.csv",row.names =FALSE )

write.csv(overview_esd ,file = "750 overview esd belcap.csv",row.names =FALSE )

write.csv(overview_mw,file = "750 overview mw belcap.csv",row.names =FALSE )

write.csv(overview_ohe ,file = "750 overview ohe belcap.csv",row.names =FALSE )

write.csv(overview_ohy ,file = "750 overview ohy belcap.csv",row.names =FALSE )

print(a)

}
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8.3 Appendix 3: Third time point

# Load original polys data

setwd("C:/PhD")

polyps_edited <-read.csv(’polyps edited.csv’)

attach(polyps_edited)

# Poisson model (null model) to baseline data to get a mean Poisson value

library(plyr)

model_base <-glm(count_b~1,family = "poisson")

summary(model_base) # mean poisson value = exp(3.05164) = 21.15

# Logistic model to demonstrate correlation between baseline value and treatment.

# This is used for treatment allocation in the simulation

model_logistic <-glm(treatment~count_b,family = "binomial")

summary(model_logistic)

######################################################################################################################

# start loop to control number of simulations

overview <-NULL

number_iterations <-100

sample_size_each_iteration <-100

RR_1<-c(0.5)

RR_2<-c(0.25)
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for(b in 1:length(RR_1)){

for(a in 1:number_iterations ){

tryCatch ({ #stops loop ending if error occurs. the error that can occur is lack of covergence in verbeke method

######################################################################################################################

# Simulate baseline data

baseline <-rpois(sample_size_each_iteration ,21.15)

prob_in_treat <-exp(summary(model_logistic )$ coefficients[1,1]+ summary(model_logistic )$ coefficients[2,1]* baseline )/

(1+exp(summary(model_logistic )$ coefficients[1,1]+ summary(model_logistic )$ coefficients[2,1]* baseline ))

treat_sim <-NULL

for(i in 1:length(prob_in_treat )){

t_sim <-rbinom(1,1,prob_in_treat[i])

treat_sim <-rbind(treat_sim ,t_sim)

}

sim_data_base_treat <-data.frame(cbind(baseline ,treat_sim))

######################################################################################################################

# Simulate 2nd time point data

second_data <-NULL

for(k in 1:length(prob_in_treat )){

if(sim_data_base_treat$V2[k]==0){

second <-rpois(1,exp(log(baseline[k])))

}else{
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second <-rpois(1,exp(log(RR_1[b])+log(baseline[k])))

}

second_data <-rbind(second_data ,second)

}

sim_data_base_treat_mid <-cbind(sim_data_base_treat ,second_data)

names(sim_data_base_treat_mid)<-c("baseline","treat","mid_adj")

######################################################################################################################

# Simulate Outcome data

outcome_data <-NULL

for(k in 1:length(prob_in_treat )){

if(sim_data_base_treat_mid$treat[k]==0){

outcome <-rpois(1,exp(log(sim_data_base_treat_mid$baseline[k])))

}else{

outcome <-rpois(1,exp(log(RR_2[b])+log(sim_data_base_treat_mid$baseline[k])))

}

outcome_data <-rbind(outcome_data ,outcome)

}

sim_data_base_treat_out <-cbind(sim_data_base_treat_mid ,outcome_data)

names(sim_data_base_treat_out)<-c("baseline","treat","mid_adj","outcome_adj")

######################################################################################################################
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# Create baseline value categories

cate <-NULL

for (i in 1:length(baseline )){

if(sim_data_base_treat_out$baseline[i]<=quantile(baseline ,probs = 0.2)){

category <-"A"}else if (sim_data_base_treat_out$baseline[i]<=quantile(baseline ,probs = 0.4)){

category <-"B"}else if (sim_data_base_treat_out$baseline[i]<=quantile(baseline ,probs = 0.6)){

category <-"C"}else if (sim_data_base_treat_out$baseline[i]<=quantile(baseline ,probs = 0.8)){

category <-"D"} else{

category <-"E"

}

cate <-rbind(cate ,category)

}

final_data <-cbind(sim_data_base_treat_out ,cate)

######################################################################################################################

# Poisson model for simulated dataset , ignoring baseline heterogeneity

model_no <-glm(outcome_adj~treat ,data=final_data ,family = "poisson")

sum_no <-summary(model_no)

# Apply the four parametric methods to the simulated dataset

model_cont <-glm(outcome_adj~treat+log(baseline),data=final_data ,family = "poisson")

sum_cont <-summary(model_cont)
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model_off <-glm(outcome_adj~treat+offset(log(baseline)),data=final_data ,family = "poisson")

sum_off <-summary(model_off)

model_cat <-glm(outcome_adj~treat+cate ,data=final_data ,family = "poisson")

sum_cat <-summary(model_cat)

suppressMessages(library(lme4))

model_ran <- glmer(outcome_adj~treat +(1|cate),data=final_data ,family=poisson ,nAGQ=20)

sum_ran <-summary(model_ran)

######################################################################################################################

#verbeke method

suppressMessages(attach(sim_data_base_treat_out))

longdata <-data.frame(outcome=c(baseline ,mid_adj ,outcome_adj),

parti=factor(rep(paste(’p’, 1:sample_size_each_iteration , sep=’’), 3)),

time=as.factor(rep(0:2, each=sample_size_each_iteration)),

treat_group=rep(treat , 3))

suppressMessages(library(glmmADMB ))

model_ver <- glmmadmb(outcome ~ treat_group*time+(1+time|parti), family = "poisson", data = longdata)

sum_ver <-summary(model_ver)

if (ver_coef==sum_ver$coefficients[4,1]) stop(paste("error on iteration",a,sep=" "))

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

####################################################################

# Mantel -Haneszel

split_treat <-split(final_data ,final_data$treat)

experiment <-split_treat$‘1‘
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experiment_cat <-split(experiment ,experiment$cate)

exp_a<-experiment_cat$A

exp_b<-experiment_cat$B

exp_c<-experiment_cat$C

exp_d<-experiment_cat$D

exp_e<-experiment_cat$E

control <-split_treat$‘0‘

control_cat <-split(control ,control$cate)

con_a<-control_cat$A

con_b<-control_cat$B

con_c<-control_cat$C

con_d<-control_cat$D

con_e<-control_cat$E

numerator_a<-sum(exp_a$outcome_adj)/ length(exp_a$outcome_adj)

numerator_b<-sum(exp_b$outcome_adj)/ length(exp_b$outcome_adj)

numerator_c<-sum(exp_c$outcome_adj)/ length(exp_c$outcome_adj)

numerator_d<-sum(exp_d$outcome_adj)/ length(exp_d$outcome_adj)

numerator_e<-sum(exp_e$outcome_adj)/ length(exp_e$outcome_adj)

denominator_a<-sum(con_a$outcome_adj)/ length(con_a$outcome_adj)

denominator_b<-sum(con_b$outcome_adj)/ length(con_b$outcome_adj)
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denominator_c<-sum(con_c$outcome_adj)/ length(con_c$outcome_adj)

denominator_d<-sum(con_d$outcome_adj)/ length(con_d$outcome_adj)

denominator_e<-sum(con_e$outcome_adj)/ length(con_e$outcome_adj)

risk_a<-numerator_a/denominator_a

risk_b<-numerator_b/denominator_b

risk_c<-numerator_c/denominator_c

risk_d<-numerator_d/denominator_d

risk_e<-numerator_e/denominator_e

weight_a<-(sum(con_a$outcome_adj)* length(exp_a$outcome_adj ))/( length(con_a$outcome_adj)+ length(exp_a$outcome_adj))

weight_b<-(sum(con_b$outcome_adj)* length(exp_b$outcome_adj ))/( length(con_b$outcome_adj)+ length(exp_b$outcome_adj))

weight_c<-(sum(con_c$outcome_adj)* length(exp_c$outcome_adj ))/( length(con_c$outcome_adj)+ length(exp_c$outcome_adj))

weight_d<-(sum(con_d$outcome_adj)* length(exp_d$outcome_adj ))/( length(con_d$outcome_adj)+ length(exp_d$outcome_adj))

weight_e<-(sum(con_e$outcome_adj)* length(exp_e$outcome_adj ))/( length(con_e$outcome_adj)+ length(exp_e$outcome_adj))

final_numerator <-(weight_a*risk_a)+( weight_b*risk_b)+( weight_c*risk_c)+( weight_d*risk_d)+( weight_e*risk_e)

final_denominator <-weight_a+weight_b+weight_c+weight_d+weight_e

mant_hans <-final_numerator/final_denominator

######################################################################################################################

# results from 5 methods

sample_size_experiment <-length(experiment$baseline)

sample_size_control <-length(control$baseline)

no_adj_coef <-sum_no$coefficients[2,1]

no_adj_se <-sum_no$coefficients[2,2]

off_coef <-sum_off$coefficients[2,1]

off_se <-sum_off$coefficients[2,2]

182



cont_coef <-sum_cont$coefficients[2,1]

cont_se<-sum_cont$coefficients[2,2]

cat_coef <-sum_cat$coefficients[2,1]

cat_se <-sum_cat$coefficients[2,2]

ran_coef <-sum_ran$coefficients[2,1]

ran_se <-sum_ran$coefficients[2,2]

ver_coef <-sum_ver$coefficients[6,1]

ver_se <-sum_ver$coefficients[6,2]

test_coef <-sum_ver$coefficients[2,1]+sum_ver$coefficients[6,1]

alt_coef <-sum_ver$coefficients[2,1]

full_coef <-sum_ver$coefficients[2,1]+sum_ver$coefficients[3,1]+sum_ver$coefficients[4,1]

iteration <-cbind(RR_1[b],RR_2[b],sample_size_experiment ,sample_size_control ,no_adj_coef ,off_coef ,

cont_coef ,cat_coef ,ran_coef ,ver_coef ,test_coef ,alt_coef ,full_coef ,

log(mant_hans),no_adj_se ,off_se ,cont_se ,cat_se ,ran_se ,ver_se)

overview <-rbind(overview ,iteration)

print(a)

}

print(paste("completed RR =",RR_1[b],sep=" "))

}

overview <-as.data.frame(overview)
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