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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Hybrid Machine Learning Models for Enhanced Sales Forecasting

by Albert F. H. M. Lechner

Sales forecasts are essential to every business’s strategic plans and can both save the

company money and increase its competitive advantage. However, many current busi-

nesses underestimate the opportunities which accurate forecasts provide and rely solely

on judgemental forecasts from experts within the business. Machine learning and sta-

tistical forecasting methods are used by both academics and practitioners to increase

the accuracy of these forecasting methods and can be further improved by combining

knowledge from within the business with the statistical and machine learning techniques

presented in this work. The models introduced in this study combine domain knowl-

edge with data-driven approaches to improve forecasting on small datasets. The first

approach in this work gathers global sales pipeline data to build a short-term sales fore-

cast for a newly proposed dynamic cluster-based Markov (DCBM) model. By applying a

newly developed algorithm, which first clusters the training and test set, the prediction

of future sales for the next three months can be improved over a regular Markov transi-

tion model. The second proposed approach applies product lifecycle (PLC) information

to improve the sales forecast. The accuracy of the sales forecast was increased for all 11

years for a luxury car manufacturer, comparing the newly developed PLC detrending

approach to a common detrending by differencing approach in a seasonal autoregressive

integrated moving average (SARIMA) framework. In a third model, the DCBM and

PLC approaches are synthesised by using a SARIMA- long short-term memory (LSTM)

framework capable of combining different data sources and thereby further increasing

sales forecasting accuracy. The SARIMA-LSTM was able to predict the changes in sales

occurring during the COVID-19 pandemic. All new models support short- and mid-term

sales forecasting up to 12 months and represent an extension of knowledge in the area

of sales forecasting.
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Chapter 1

Introduction

This chapter serves as a general introduction and provides a brief overview of this thesis,

starting with a short background of artificial intelligence in Section 1.1, followed by an

overview of Rolls-Royce Motor Cars (which funded this research) as well as an introduc-

tion to their data in Section 1.2. Towards the end of this chapter, the research questions

resulting from the problems faced within this research are presented in Section 1.3. The

last section describes the contributions of this study as well as the published papers (in

Section 1.4).

1.1 Artificial Intelligence

Artificial intelligence, or AI, has become increasingly important in everyday life and is

being implemented in more daily applications, such as online searches, voice recognition,

face detection, and traffic sign detection (Garnham, 2017). Not long ago, algorithms of

machine learning (ML), one of the most prominent tools of AI, have managed to beat

the world champions in the game GO, which is considered the most difficult game for a

computer to win as the possible moves are nearly unlimited (Silver et al., 2016). Machine

learning conducts tasks in a way humans consider smart in that machines are given

specific data and learn for themselves (Michalski et al., 2013). Recently, self-driving

cars, in which ML algorithms decide the vehicle’s actions without a physical driver

acting, have not only become a highly discussed topic but also a strongly researched area

(Franke et al., 1998; Levinson et al., 2011; Chen et al., 2015). However, self-driving cars

are not the only application of ML for manufacturers. Current research in that area not

only focusses on autonomous driving but has also expanded to all areas of a business’s

value chain. As more data and computational power become available, ML is being

used in many parts of a manufacturer’s value chain, such as development, procurement,

logistics, production, marketing, sales, and after-sales, followed by a connected customer

after the purchase (Stock and Seliger, 2016).

1



2 Chapter 1 Introduction

Analysing past and current data to improve business is an important task, but predicting

the future is even more crucial as several of a company’s decision-making processes are

based on forecasts. Vital decisions such as strategic planning, production planning, sales

budgeting, marketing planning, and new product launches are influenced by forecasts.

Therefore, many practitioners and researchers have focussed on new forecasting methods

and improved forecasting accuracy as money can be saved and a business’s competitive

advantage could be improved (Wright et al., 1986; Armstrong, 2001).

Judgemental forecasts are based on human experience, which is applied to the time

series and related future expectations and can thus suffer from personal bias (Webby

and O’Connor, 1996). For that reason, companies use more data-driven approaches

which reduce human bias from and include more features in the forecast than a human

would be capable of. Machine learning models as well as traditional statistical models

can outperform judgemental forecasts approximated by employees as they utilise more

features of the available data with ease.

However, whilst emerging ML models increase accuracy, they also have challenges and

shortcomings from a practical perspective as they can have a dense black-box structure,

which often makes explanations difficult within a business environment. It is important

for companies to not only increase the accuracy of a forecast but also to focus on ex-

plainability for the wider business network. Indeed, accuracy and explainability are key

drivers within a business environment to ensure that the firm adopts new approaches

and that managers gain confidence in the prediction. Managers can often be sceptical

of new approaches like ML techniques, so they want evidence of improvements and an

understanding of the key drivers behind the predictions; otherwise, they may not adopt

new techniques into their daily work (Hagras, 2018; Holzinger et al., 2017).

Therefore, explainability in AI is an active area of research to make the black-box models

more understandable (Zhang et al., 2018; Zhou and Gan, 2008). This can help workers

better comprehend the logic behind models by recognising the patterns which drive a

prediction and can also support the adoption of AI within businesses. Understanding

the main features behind the prediction is not only essential for forecasting but also for

other departments to focus on these features and thereby increase future sales (Langley

and Simon, 1995).

Forecasting the buying process of a potential future customer supports short-term plan-

ning on a regional as well as a product-specific basis. Various techniques can model this

process, such as seasonal autoregressive integrated moving average (SARIMA) models,

but they suffer from drawbacks when being applied to real-world problems. For instance,

one setback of SARIMA models is that they are not capable of capturing nonlinear pat-

terns. For that reason, nonlinear models must be used alongside them (Gurnani et al.,

2017). To overcome these problems, a new approach has been developed for this study

based on a Markov model. Up to this point, Markov models have not been combined with
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a classification which has moving boundaries based on seasonal patterns for increased

sales forecasting accuracy as well as easier business interpretability.

The second part of this work proposes a new way for including the age of a product de-

fined over its product life cycle (PLC) into a forecast. Thus far, autoregressive integrated

moving average (ARIMA) models have not been combined with PLCs detrending based

on estimated parameters for increased sales forecasting accuracy as well as increased

business interpretability. The final model proposed in this work, SARIMA-LSTM, com-

bines both previously explained models as well as linear and nonlinear models to increase

forecasting accuracy even during the COVID-19 pandemic.

1.2 Car Sales Predictions

Challenges introduced in the previous section are faced by companies such as Rolls-

Royce Motor Cars (RRMC), which sponsored this research and provided the dataset

used for the applications presented later in this thesis. RRMC is a super-luxury car

manufacturer, with its factory and global headquarters located on the Goodwood Estate

on the south coast of the United Kingdom. The iconic RRMC brand was first born in

1906, with Rolls-Royce Motor Cars Ltd. established as a wholly owned subsidiary of

BMW in 1998. Their goal was, and still is, to take the best car in the world and make

it even better. The company is composed of technical, administrative, and commercial

departments, with the last group represented at market level by six regional teams,

which manage a franchise network of 135 dealerships across 48 countries worldwide.

Business data within RRMC is collected, stored, and processed by a number of legacy

systems which allow the organization to manage the flow of vehicles, parts, prospects,

and customer data. As well as facilitating operations, the systems provide data for

the measurement of business performance and, to a certain extent, to support decision

making. The legacy systems and data are segregated and reflective of the organisational

structure. The current system in RRMC for vehicle order to delivery is a software

provider called SAP. For the customer relationship management (CRM) tool, the key

system is Salesforce, a software company which provides an online tool to store all

customer data in the cloud with access given to all employees in RRMC headquarters as

well as dealers worldwide. These systems are not connected to each other and are thus

limited by many factors such as partly automated and different human inputs which

generate structured and unstructured datasets. Therefore, a promising goal is to enable

the business to undertake intelligent decision making by combining existing data sources

and using new ML techniques to improve current forecasting.

Up until now, RRMC’s forecasting has mainly been dependent on judgemental fore-

casting combined with business targets, which is not able to adapt when the external

environment undergoes rapid changes such as global economic crises or other events; it
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is also susceptible to introducing human bias into the predication (in that this type of

forecasting can affect a manager’s bonus, etc.). The results from this research will be

applied to business decisions with an aim to optimise company performance. Once im-

proved performance is demonstrated, the data-driven approaches will be automated and

made available to key stake holders within the business through a user-friendly interface.

The data provided by RRMC dates back to 2003, when they started selling their first

cars built in Goodwood. However, not all data sources go back that far; for example,

Salesforce (their CRM tool) was introduced in 2009 and also underwent a drastic change

in use in 2016, when dealers all over the world started using it as a business require-

ment to sell cars. For that reason, the data from Salesforce is only available from 2016

onwards, leading to a smaller dataset for the applications used in Chapters 4 and 6.

Nonetheless, their sales have been recorded on a daily basis from 2003 until today and

are broken down on a product as well as regional level. This breakdown is of special

importance to understand how the business reacts to external changes in some parts of

the world. In addition, understanding which products are of more or less interest to

customers is important to steer marketing in the right direction and allocate budgets in

the appropriate way.

Moreover, the sales data in the form of a time series is not linked to customer data at the

moment. Thus, customer-specific data must be extracted from the CRM system, which

can provide data on the location and features describing the customers. This data is

currently not used to forecast the future behaviour of customers. Additionally, the data

is different for all dealers globally because they are their own legal entity and follow their

own guidance. Therefore, they use the system in various ways, which makes the data

more difficult to use because the available information has different missing data points.

The dealer is intended to fill out all data points in the system, but they often leave these

blank for several reasons ranging from a lack of time to intentionally hiding information

from the headquarters so they can keep more details about their own customers.

Another issue is that individual dealership managers have different requirements about

what should or should not be in the system as some do not want their customers’ personal

data to be in the cloud or accessible to anyone outside their business. There are various

approaches to address missing data, which are explained further in the related sections

of this work. Regardless of missing data, the data fields filled in by dealers are used in

this work to make more accurate predictions on both product and regional levels, which

RRMC was not capable of before. This work provided the first approach at RRMC to

combine different data sources to make better predictions which are automated and do

not rely on judgemental forecasting.

The frameworks and models proposed in this research were created to deliver better

forecasting accuracy not just for automotive companies but other industries as well.
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The main research questions and contributions to the field are explained in more detail

below.

1.3 Research Questions

As mentioned, the current forecasting at RRMC (as well as other manufacturers) is

mainly based on judgemental forecasting without statistical or ML algorithms in place or

the ability to generate data-driven forecasting models (Sanders and Manrodt, 2003; Reza

et al., 2020). The reasons for this range from a lack of resources to the sheer quantity

of data (which can be overwhelming), as well as a company’s belief that judgemental

forecasting is better and easier to adjust for unforeseeable changes. Therefore, the goal

of this work is to increase forecasting capabilities whilst using all available data combined

with newly developed ML algorithms as well as statistical models and the combination

of both.

This research focusses in particular on improving sales and demand forecasting with the

help of ML and answering the following research questions, the first of which is aligned

with the future research of Niladri and Arun (2018):

1. In what way can ML enhance forecasting and demand estimation when the external

environment undergoes dynamic, rapid and unforeseen changes?

2. How can PLC information be used to improve traditional sales forecasting meth-

ods?

This research introduces the following contributions to address these questions:

• An improved dynamic cluster-based Markov model (DCBM) exploiting clustered

demand pipeline data, which is detailed in Chapter 4.

• A new approach to group demand data by clustering individuals’ sales probability

in combination with a conversion forecast to increase forecasting accuracy, which

is detailed in Section 4.3.

• An increase in forecasting accuracy through the integration of PLC information in

traditional forecasting methods, which is detailed in Chapter 5.

• A combination of both sales- and demand-affecting factors from the previous two

points combined with a recurrent neural network, described in 6.

The remainder of the report is structured as follows. The following Chapter 2 presents

an overview of previous work in the area of sales forecasting. Chapter 3 provides an
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overview of the technical background of statistical and ML models used within this work,

ranging from ARIMA models and neural networks to time series validation methods and

others, which are used as a foundation for the proposed approaches in later chapters.

Chapter 4 introduces a new approach to forecast demand, which is evaluated on a dataset

provided by RRMC. Chapter 5 introduces a new approach to detrend time series and

improve their accuracy. This approach is evaluated with one time series of sales data

from RRMC. A combination of the presented work from Chapters 4 and 5 is presented

in Chapter 6 by using a SARIMA-LSTM framework to further improve the forecasting

accuracy. Finally, in Chapter 7, conclusions are made based on the previous chapters,

and suggestions for future research are described in detail.

1.4 Contributions

The contributions of this work are described in three papers, three of which were peer

reviewed and published at international conferences in Dubai, Prague, and Spain in

July 2021. The first paper, entitled ‘Dynamic cluster based Markov model for demand

forecasting’, describes a new way of clustering the demand pipeline in a way that in-

creases forecasting accuracy (further described in Chapter 4). The results of the DCBM

model were presented at the 5th International Conference of Managing Value and Supply

Chains 2019 in Dubai (Lechner and Gunn, 2019).

Albert Lechner and Steve Gunn. Dynamic cluster based markov model for demand

forecasting. In 5th International Conference on Computer Science and Information

Technology (CSTY-2019), pages 83–96, 11 2019.

This work’s second contribution to the research field of time series forecasting is described

in ‘Product lifecycle de-trending for sales forecasting’. The main advantage of this

approach is that it estimates a product’s lifecycle by using ML techniques to include

the age and specific features of a product which affect the number of sales over time

into statistical time series forecasting methods. This new way of including external

information into a time series forecast was peer reviewed and presented at the 2020

Complexis conference in Prague (Lechner and Gunn, 2020).

Albert Lechner and Steve Gunn. Product lifecycle de-trending for sales forecasting.

In 5th International Conference on Complexity, Future Information Systems and Risk,

pages 25–33, 5 2020.

The third contribution of this work, entitled ‘SARIMA-LSTM for sales forecasting’,

is a combination of both previously mentioned approaches into one SARIMA-LSTM

model, which showed improved performance on the given dataset of car sales (also dur-

ing and after the initial outbreak of COVID-19). The SARIMA-LSTM also introduced
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uncertainty to the predictions of the previous models and was accepted at the 7th In-

ternational Conference on Time Series and Forecasting in Spain, where the conference

date was postponed to July 2021, due to COVID-19.





Chapter 2

Sales Forecasting

Time series forecasting is a frequently researched topic with many extended branches for

special cases. This topic solves problems in different areas such as forecasting financial

markets or sales for a supermarket. For all these cases, there are various models to choose

from, which also have different extensions and variables to improve their forecasting

capabilities (Montgomery et al., 2008).

This chapter starts with an overview of the differences between sales and demand in

section 2.1. Afterwards, this chapter provides an overview of related work in the area of

sales forecasting related to this thesis, starting with statistical models. Sections 2.2 and

2.3 present a brief background of where statistical and ML models started to get used

for forecasting and their evolution over time, followed by Section 2.4 which focusses on

hybrid models mainly combining statistical and ML models to further improve forecast-

ing. In Section 2.5, the current RRMC forecasting is explained in detail. The chapter

concludes with Section 2.6,where all discussed models are contextualised within the work

in this thesis. A deeper explanation of the foundation of the models used in this work is

provided in Chapter 3, and the new approaches are introduced in Chapters 4, 5 and 6.

2.1 Sales and Demand

As the terms ‘sales’ and ‘demand’ are often used synonymously, an overview of the

differences is introduced to better understand the distinct approaches used in this work.

The demand for a product is what the end-use customer wants. Depending on the

supply, demand can match the sales or be larger or smaller. Many products are not

sold directly from the manufacturer to the end-use customer as there are subsequent

businesses within the supply chain (Bernstein and Federgruen, 2005). Every supply chain

has an independent demand, which is defined by the supply chain’s end-use customer’s

demand for a product.

9
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Therefore, there is a difference in business-to-business demand and business-to-customer

demand. This is an important concept as the difference between demand and sales

leads to promotions, marketing campaigns, or other methods to sell the remaining prod-

ucts. An incorrect sales forecast can lead to undersupply or a missed sales opportunity

(Mentzer and Moon, 2005). By identifying the exact demand at the end-use customer

level, a company can reduce the amount of unsold stock at every point in the supply

chain and increase profit.

Also known as the bullwhip effect, every stage in the supply chain creates stock, which

decreases the profit at every stage; this could be minimised by a better demand forecast

(Lee et al., 1997). This unsold stock can only be sold by an effective marketing mix which

creates new demand but reduces the profit (Hanssens, 1998). Most sales forecasting

approaches consider the overall sold products, including even products sold through

promotions or marketing activities which were not profitable when they were sold.

Depending on the type of product, the price point, and the frequency of a product pur-

chase, identifying the demand at the end-use customer level can be difficult. Further-

more, many personal factors may play a role in an end-use customer’s buying decision.

Some personal factors can be determined through involvement; however, the involvement

for low-price items bought with high frequency is short. For instance, the involvement

for chewing gum is much shorter than that of expensive items bought infrequently, like

cars or houses (Zaichkowsky, 1985; Mittal, 1989). The more time the sales personnel

spend with possible future customers, the more information can be gained about the

consumer’s underlying decision process. With more interaction between salespeople and

potential new customers (prospects), the size of the dataset grows over time. Whilst the

interaction between the seller and buyer of chewing gum is short and cannot be used

to gather much data, the interaction between a car dealer or real estate agent and the

buyer contains much more information, leading to more data from the end-use customer

(Dwyer et al., 1987). This data can be used to forecast the real demand for the product.

To forecast future sales, companies use different strategies which differ between top-

down (TD) and bottom-up (BU). In the TD approach, the demand for the total sum

of items is forecasted; in the BU approach, each individual item is separately forecasted

and added to a total number (Schwarzkopf et al., 1988). There is no general agreement

on which of the two approaches is better. Some authors argue for the BU approach

(Dangerfield and Morris, 1992; Schwarzkopf et al., 1988), whilst others argue prefer TD

(Fogarty and Hoffmann, 1991; Grunfeld and Griliches, 1960; Narasimhan et al., 1995).

These findings lead to the assumption that the best approach depends on the data.

Williams and Waller (2011) have suggested that if point of sales (POS) data is not avail-

able, TD must be used, and if POS information is available, BU is the better option. As

the individual forecasting for a large product portfolio becomes more complex and com-

putationally expensive, and the amount of available data for each item becomes smaller,
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the accuracy of a prediction with the BU approach might decrease, unlike with the TD

approach, because dependencies between items are lost with the BU approach (Williams

and Waller, 2011). For many manufacturers, the individual dealer performance, as well

as the regions in which they sell products, are of interest, especially on a short-term

basis, where marketing can influence sales to achieve targets (Hanssens, 1998; Netzer

et al., 2008). There are a number of approaches which could be applied in a TD or BU

manner. The decision of which one to choose is dictated by the nature of the data. TD

is preferable when only overall sales numbers are available, and a BU approach is better

when individual customer data is available. In this work, TD is used in combination with

aggregated sales numbers which are available per region or product and are forecasted

using models like ARIMA; BU is used with a new Markov model (Chapter 4) where

individual customer data at the POS is available.

2.2 Statistical Models

One of the most prominent and widely used approaches to statistical time series forecast-

ing is presented in the work of Box and Jenkins (1976), which set a foundation for many

derived models. Their work marked a new epoch in time series analysis. In contrast

to the prevailing trend model, which assumed a deterministic process, Box and Jenkins

assume a stochastic process to model a time series. An important consequence of this

approach is that large increases or decreases in the time series can have a lasting effect

on later time series values. This is a more realistic assumption, especially for economic

time series. A significant amount of work was done after their study, resulting in many

extensions of their model to improve forecasting accuracy.

Already in the late 1980s, researchers found that American companies were using com-

puters and seasonal adjustments to make sales forecasts (Dalrymple, 1987). This trend

continued with time series forecasting methods increasingly being used to improve sales

forecasting accuracy within businesses.

As Webby and O’Connor (1996) found in their work in the beginning of statistical

forecasting, judgemental forecasting was used not only as a benchmark but also to

improve statistical forecasts and modify them according to the opinions of business

managers. Over time, statistical forecasting methods were used more as a benchmark,

comparing their results with state-of-the-art forecasting methods (Edmundson et al.,

1988). The modification of statistical forecasting by external factors such as judgemental

forecasting was the beginning of combined or hybrid models with the goal to improve

forecasting accuracy by including additional information.

Davis and Mentzer (2007) have focussed on the evolution of sales forecasting techniques

which more accurately reflect marketplace conditions. Their main focus is on the gap

between theory and practise as a significant issue for sales forecasting research. They
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argue that although research has found many improvements for forecasting methods in

theory, the practical improvements in forecasting accuracy did not increase by the same

margin. Thus, they have proposed a theory-based framework to include organisational

factors in sales forecasting by integrating research on organisational climate, capabilities,

and learning. They conducted an extensive field study including 516 practitioners at

18 global manufacturing firms, resulting in empirical evidence of the fit between sales

forecasting practises and the conceptual framework proposed in their work (Davis and

Mentzer, 2007).

Sagaert et al. (2018) used forecasting in supply chain management to support planning

for inventory, scheduling production, raw material purchases, and other functions. They

typically refer to forecasts up to 12 months in the future, where traditional forecasting

models consider univariate information which is extrapolated from the past but cannot

anticipate macroeconomic events such as steep increases or declines in national economic

activity. They use this additional information to increase the accuracy of the forecast,

which, in practise, is made by managerial expert judgement. However, this judgement

suffers from bias, is not scalable, and is expensive (Sagaert et al., 2018).

Fildes et al. (2019) have reviewed the research literature on forecasting retail demand.

They introduce forecasting problems which retailers face, from the strategic to the op-

erational, as sales of products are aggregated for stores and for the company overall.

The factors which influence demand (in particular, promotional information) add con-

siderable complexity so that forecasters potentially face the dimensionality problem of

too many variables and too little data. Their review shows the importance of including

various influential factors into a forecast (Fildes et al., 2019).

Out of many comparisons of statistical models with neural networks and other ML

models, the study by Ainscough and Aronson (1999) was one of the first to compare

them and find that neural networks outperform statistical methods based on a real-world

dataset. For that reason, the following section presents an overview of important work

in the area of ML-based forecasting techniques.

2.3 Machine Learning Models

Neural networks can model time series data and predict the future. However, after

surveying the considerable amount of research conducted using neural networks for fore-

casting, the results are inconclusive as to whether they are more suitable than classical

models such as ARIMA (Zhang et al., 1998). Poor performance could also result from

small datasets or no experience in the setup of neural networks, so care must be taken

in comparing various models on different or similar datasets.
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Early adopters of neural networks for time series forecasting were Tang and Fishwick

(1993). They studied neural networks as models for time series forecasting and compared

their research with the Box-Jenkins method for small and larger time series datasets.

They compared 16 different time series with different characteristics, finding similar

performance compared to the Box-Jenkins method. Their experiments indicated that

for time series with long memory, both methods produced comparable results. However,

for series with short memory, neural networks outperformed the Box-Jenkins model.

Because neural networks can be easily built for multiple-step-ahead forecasting, they

may present a better long-term forecast model than the Box-Jenkins method. Neural

networks are able to provide a promising alternative for time series forecasting (Tang

and Fishwick, 1993).

For example, Chu and Zhang (2003) compare the accuracy of different linear and non-

linear models for forecasting aggregate retail sales, focussing on seasonal fluctuations.

They compare several traditional seasonal forecasting methods with nonlinear versions

implemented via neural networks which are generalised nonlinear functional approxima-

tors. Their results show that nonlinear models outperform linear models if the right prior

seasonal adjustment of the data is conducted, which significantly improves forecasting

performance of the neural network model (Chu and Zhang, 2003).

He et al. (2008) applied support vector regression (SVR) successfully for financial time-

series forecasting. The challenge was to remove the noise from the data; therefore,

they proposed a two-stage model using independent component analysis (ICA)and SVR.

Their approach first uses ICA to generate the independent components of the forecast-

ing variables and identify and remove the independent components containing the noise.

After removing the components including noise, the residuals are used as an input for

the SVR forecasting model. They validated their approach using financial time series,

such as opening indexes, and the results show that their model outperformed the SVR

model with non-filtered forecasting variables (He et al., 2008).

Another approach to forecasting sales in the retail industry, where a good sales-forecasting

system is of high importance, is proposed by Sun et al. (2008). They applied a new neu-

ral network technique, named extreme learning machine, to examine the dependencies

between sales and other factors which affect demand, such as product-specific features.

Extreme learning machines are feed-forward neural networks without backpropagation

that can achieve increased learning rates and do not need weight tuning. By evaluating

the approach using real data from a fashion retailer in Hong Kong, they demonstrated

increased performance compared to several sales-forecasting methods based on back-

propagation neural networks (Sun et al., 2008).

Multi-layer perceptrons and other artificial neural networks have been widely used for

time series forecasting since the 1980s. For some problems that exist in applications,

such as initialization and local optima, however, the improvement of ANNs is (and will
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remain) the most interesting avenue not only for time series prediction, but also for

other areas of intelligent computing. Kuremoto et al. (2014) proposed a method of

time series prediction using Hinton and Salakhutdinov’s deep belief networks, which are

probabilistic, generative neural networks consisting of multiple layers of a constrained

Boltzmann machine. They use a three-layer-deep network of RBMs to capture the

features of the input space of the time series data. Then the RBMs, with their energy

functions, use gradient-descent training to fine-tune the connection weights between the

visible layers and the hidden layers of the RBMs (Kuremoto et al., 2014).

Various researchers and practitioners have used PLC curves to generate better sales

forecasts. These usually include products where individual forecasting is not feasible for

different reasons; therefore, clustering products into groups is an option developed by

researchers (Solomon et al., 2000; Hu et al., 2017). To improve the forecasting for new

products, researchers use an average PLC curve generated from sales numbers of clusters

which share similar products. This type of forecasting is often used for products with

short PLCs. Other related work uses different data sources to increase the accuracy of

monthly car sales forecasts by including economic variables and Google online search

data (Fantazzini and Toktamysova, 2015).

The ride-hailing service Uber used LSTM models to forecast extreme time series events

for cases, such as holidays, when demand peaks. Therefore, they proposed a new LSTM-

based architecture and trained a single model using heterogeneous time series. To model

uncertainty, they combined Bootstrap and Bayesian approaches to produce a simple,

robust and tight uncertainty bound, which was able to produce good coverage and

provable convergence properties. First, the model primes the network by automatic

feature extraction to capture complex time series dynamics. Then, feature vectors are

aggregated via an ensemble technique. Finally, the vector is concatenated with new input

and moved to the LSTM forecaster to predict demand. This procedure achieved over

14% improvement on average over the multilayer LSTM model they used for comparison

(Zhu and Laptev, 2017).

Loureiro et al. (2018) explored the use of deep neural networks for sales forecasting in

the fashion retail business. The deep learning approach was used to forecast sales in

the fashion industry, predicting the sales of new individual products in future seasons.

Lifecycles of fashion products are short and were quantified by large amounts of historical

data that were collected and stored in the database of the company which supported

the research. The model considered a wide range of variables, such as physical, product-

specific features and the opinions of domain experts. The predictions were compared

with different shallow techniques, such as decision trees, SVR, ANN and linear regression.

The results showed good performance but did not perform significantly better than

models such as random forest (Loureiro et al., 2018).
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A new functional forecasting method was proposed by González et al. (2018), that

attempts to universalise the standard seasonal ARMAX time series model to the L2

Hilbert space. The new model proposes a linear regression, in which functional pa-

rameters work on functional variables. The variables can be lagged values of the series

(autoregressive terms), historically occurring innovations (moving average terms) or ex-

ogenous variables. The functional parameters used are integral operators whose kernels

are modelled as linear combinations of sigmoid functions. Each sigmoid function is

tweaked using a Quasi-Newton algorithm that reduces the sum of squared errors of the

parameters. Their new model makes it possible to estimate the moving average terms

in functional time series models. The new model was evaluated by forecasting the daily

price profile of different electricity markets, showing improved capabilities (González

et al., 2018).

Recently, DeepAR was proposed: a methodology for producing accurate probabilistic

forecasts based on training an autoregressive recurrent neural network model on a large

number of related time series. The model learns a global model effectively from related

time series and is able, through rescaling and velocity-based sampling, to handle widely

varying scales and generate calibrated probabilistic forecasts with improved accuracy.

Furthermore, it is able to learn complex patterns, such as seasonality and growth in un-

certainty over time. Empirical evaluations of different real-world datasets demonstrated

that DeepAR generates improved accuracy compared to other state-of-the-art models

(Salinas et al., 2020).

2.4 Hybrid Models

The foundation for hybrid models combining auto-regressive models with neural net-

works was laid by Zhang in 2003. He proposed a novel hybrid methodology combining

both ARIMA and artificial neural network (ANN) models to use the advantages of both

their linear and nonlinear modelling capabilities. He evaluated his proposed model on

real datasets and showed an effective way of improving forecasting accuracy compared

to the individual models. Following this work, a number of extensions were developed,

some of which are explained below.

Dwivedi et al. (2013) evaluate the forecasting of sales data in the automobile industry

using monthly sales from the automotive company Maruti. They primarily used moving

average and exponential smoothing to forecast the past dataset and then used these

forecasts as inputs for an adaptive neuro-fuzzy inference system. Empirical findings

demonstrate that their model delivers better results than neural networks and linear

regression (Dwivedi et al., 2013).
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In addition, Arunraj and Ahrens (2015) extended their SARIMA model with external

variables which reflect demand-influencing factors by using linear regression. The result-

ing new model was evaluated using data from the daily sales of banana from a discount

retail store in Lower Bavaria, Germany. The results show improved forecasting accu-

racy than seasonal näıve forecasting, traditional SARIMA, and multi-layered perceptron

neural network models. Their model also provides better prediction intervals and in-

sights into the effects of demand-influencing factors for different quantiles (Arunraj and

Ahrens, 2015).

Omar et al. (2016) propose a hybrid neural network model for sales forecasting based on

the results of time series forecasting predictions and the popularity of new article titles.

Their model combines historical sales data, popularity of article titles, and the prediction

results of an ARIMA forecast, feeding into a back-propagation neural network forecasting

model. They compared their model with conventional sales prediction techniques, which

were outperformed by their new method (Omar et al., 2016).

Lu and Kao (2016) similarly introduced a new clustering-based sales forecasting method,

using an extreme learning machine which also assembles the results of linkage methods.

In a first step, they use the k-means algorithm to separate the training sales data into

multiple disjointed clusters. In a second step, they use the extreme learning machine to

construct a forecasting model. In a final step, they assign a test date to the best-suited

cluster, which is identified by the result of combining five linkage methods. The identified

cluster is then used to perform the final prediction. The proposed model is evaluated

using two real sales datasets, with empirical results showing that model statistically

outperforms eight benchmark models (Lu and Kao, 2016).

2.5 Historic Forecasting at RRMC

Forecasting at RRMC is done at the headquarters for all different regions and products,

and historic sales numbers are mainly used. The forecasted numbers are not only a

forecast, but they are also used as a target for the different regions and dealers. This

already introduces bias as dealers go to great efforts to achieve that number, but they

do not get any benefit from over-accomplishing. As RRMC is a business which aims to

be profitable, they set their financial targets based on cars they need to sell in order

to achieve profits. For setting the target, different external data sources such as wealth

reports which reflect the wealth of potential customers all over the world are used to

determine how many cars could be sold in total. The monthly forecasts are then broken

down based on historical sales. This forecasting is done on a yearly basis for 12-months-

ahead predictions, which are also used as a target.

During the year, these forecasts are adjusted by real sales numbers derived from the

regions, where the overall goal is to achieve the yearly target set at the beginning of
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the year. If certain regions do not deliver the forecasted numbers, the goal is to achieve

these numbers with sales from other regions to meet the yearly target. This procedure

does not reflect in advance a realistic view of how many cars could be sold out of pure

demand as it mainly includes historic data and current data from regions regarding how

much they sold.

The shortcomings of this approach are that targets and forecasts are combined, which

introduces bias towards the forecast. Currently, there is no ML or statistical approach

used to include other data sources in the predictions to reflect a realistic market situation

based on data. The reason for this is that, historically, the forecasting was always

combined with target setting, and no resources were available to combine different data

sources accessible to the business and use them to improve the forecasting to better

reflect the market situation.

Thus, the motivation for this work was to combine the available data which RRMC owns

in its different legacy systems to support better forecasting for the business. This work

has helped RRMC change towards data-driven decisions and especially sales forecasting

which includes sales and demand data as well as product-specific features which are

included in the forecast.

2.6 Discussion

Utilising additional information to improve forecast accuracy is not new and has been

undertaken by many researchers and practitioners (Sagaert et al., 2018; Omar et al.,

2016). Indeed, the importance of PLC information as an additional source for forecasting

was already proven by many researchers and is used in the approach of this work as well

(Chu and Zhang, 2003; Solomon et al., 2000; Hu et al., 2017). In addition, Chu and

Zhang (2003) have found that all forecasting methods, independent of statistical or ML,

can benefit from better pre-processing in the form of de-seasonalising the time series

prior to forecasting, which is also considered and implemented in this work.

These existing improvements have led to the idea of including product-specific factors

which influence a forecast and are also known for the future. For that reason, this work

focusses on including PLC-specific data known to a business in advance, thereby helping

to remove seasonal effects occurring from new product launches or the end of an old PLC

(further described in Chapter 5). The main advantages of this approach are improved

detrending of a time series whilst adding features of the product into the forecast.

Moreover, including live demand information updated every month from different dealers

worldwide can be useful to aggregate data and improve forecasting (Fildes et al., 2019).

However, such information is hard to implement from outside of a business as not all

data sources and their connections are available to the public, which was proven to be
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important in the past (Davis and Mentzer, 2007). Similarly, clustering time series data

is also not new, but depending on the use case, it can be applied for different purposes

(Lu and Kao, 2016) such as in the hybrid approach (Section 2.4), where it can help

to combine different data sources. For this reason, one goal of this work is to combine

both abovementioned models into one. Thus, this study identifies a promising area of

research by combining live demand data with clustering the predicted outcome in the

new proposed DCBM model (further described in Chapter 4).

2.7 Summary

Forecasting sales time series has attracted the attention of researchers in the area of

machine learning to address the limitations of traditional forecasting methods. The

work introduced in this chapter has already improved forecasting accuracy compared

to judgemental forecasts and the first statistical forecasting methodologies. However,

there is still room for improvement in different areas identified in this research. The

two main contributors to improved forecasting are PLC information and live sales data

from around the world. As both of these areas contribute to improved forecasting, it is

logical to combine these concepts into one model that includes product-specific features

and live sales data. This leads to a hybrid SARIMA-LSTM model (further explained

in Chapter 6). The theoretical background of the proposed ideas is further described

in the next chapter. This sets the foundation, from a technical point of view, for the

different methodologies used.



Chapter 3

Technical Background

This chapter describes the background of the technical approaches used in the newly

proposed models in this work. The three new approaches developed herein are separated

from the already existing background of various statistical and ML models.

An overview of time series forecasting is given in Section 3.1. Throughout this work,

nonlinear models are used for different purposes; therefore, as a starting point for non-

linear models, a brief overview of neural networks is provided in Section 3.2. A number

of nonlinear models were evaluated for the new models in this work, and an alternative

for neural networks is further evaluated using classification and regression trees (Section

3.3). The performance of various models is evaluated in Section 3.4, and this chapter

ends with a discussion of the technical background used for this work.

3.1 ARIMA Models

This section presents an overview of time series forecasting with a focus on ARIMA

models as they are used in Chapters 4 and 5 for forecasting time series.

To maximise the available data, the DCBM model, introduced in Chapter 4, includes

seasonal changes in sales, which can be forecasted by a time series of sales conversion

over time. This forecast is accomplished using ARIMA models, which originated from

the autoregressive moving average models. Autoregressive refers to the use of past values

in the regression equation for the series; moving average specifies the error of the model

as a linear combination of error terms which occurred at various times in the past (Ho

et al., 2002). An ARIMA model is described by its values (p, d, q), where p and q are

integers referring to the order of the autoregressive and moving average models, and d

is an integer which refers to the order of differencing (Zhang, 2003). The equation for

19
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an ARIMA(1, 1, 1) model is given by (Ho et al., 2002):

(1− φ1B)(1−B)Yt = (1− θ1B)εt (3.1)

where φ1 is the first order autoregressive coefficient, and B is a backwards shift operator

given by BYt = Y(t−1). The time series at time t is Yt, Θ1 is the first-order moving

average coefficient, and εt is the random noise at time t (Arunraj and Ahrens, 2015).

The ARIMA model can be used when the time series is stationary and there is no missing

data within it. In the ARIMA analysis, an specified underlying process is derived based

on observations of a time series to develop an accurate model which precisely illustrates

the process-generating mechanism (Box and Jenkins, 1976).

An extension of this model is SARIMA, which relies on seasonal lags and differences to

fit the seasonal pattern (Yaffee and McGee, 2009). By including seasonal autoregres-

sive, seasonal moving average, and seasonal differencing operators, a SARIMA(p, d, q)

(P,D,Q)S can be stated as (Arunraj and Ahrens, 2015):

ϕp(B)φp(B
S)(1−B)d(1−BS)DYt = c+ Θq(B)ΘQ(BS)εt (3.2)

where S represents the seasonal length, and B the backwards shift operator of a time

series observation lag; k, symbolised by BkXt = Xt−k, ϕp(B), represents the autore-

gressive operator of p-order (1 − ϕ1(B) − ϕ2(B
2) − · · · − ϕp(B

p)), φp(B) represents

seasonal autoregressive operator with P -order (1 − φ1(B) − φ2(B2s) − · · · − φp(B2p)),

(1 − B)d represents the differencing operator of order d to remove non-seasonal sta-

tionarity, (1−BS)D represents the differencing operator of order D to remove seasonal

stationarity, c is a constant, Θq(B) represents the moving average operator of q-order

(1−Θ1(B)−Θ2(B
2)−· · ·−Θq(B

q), and ΘQ(B) represents the seasonal moving average

operator with Q-order (1−Θ1(B)−Θ2(B
2s)− · · · −ΘQ(BQS)).

There are various methods for model selection, with the most prominent ones being

Akaike information criterion (AIC) and Bayesian information criterion (BIC). Complex

models with a huge variety of parameters can lead to overfitting the data, which can in

turn lead to a worse generalisation for unseen data. To control the effect of overfitting,

an error measurement which includes the error itself and also the parameters to be

chosen is of importance. Measures computing the error of fit with penalising the number

of parameters are the AIC and BIC. Despite various theoretical differences, the main

difference is that BIC more heavily penalises a model’s complexity (Kuha, 2004). The

AIC is used for model comparison in the next chapter’s proposed models and is given

by (Kuha, 2004):

AIC(k) = −2l̂k + 2 |k| (3.3)

where k is the number of model parameters, and l̂ represents the log likelihood, a measure

of model fit.
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The forecasting horizon (used later in this work) was usually 12 months ahead in the

future. This timeframe was chosen for reasons described in chapters 4 and 5. To forecast

12 months ahead, which is equivalent to a full year from January to December, the model

was trained on a training dataset, and the prediction was made for the test set. To train

the model, the training data was re-divided into a training part and a validation part,

which consisted of the last 12 months of the full training dataset. This validation set

was used to determine the parameters of the SARIMA model, using the AIC criterion

described above. An illustrative example of the data is shown below in Figure 3.1.

Figure 3.1: Data split for training, validation, and test set

The available data is separated by years and subdivided by months, and the training

dataset consists of the first six years followed by the validation dataset, consisting of

one year, used for training the model’s parameters; this is followed by the test dataset,

consisting of the year seven in the example above. The data for the test set was unseen

for the model prior to the prediction, so it was only used for model evaluation after the

forecast was made, utilising different metrics defined in more detail in Section 3.4.

3.2 Artificial Neural Networks

The proposed DCBM model (introduced in Chapter 4) includes a new way of clustering

data, where an ANN classification is used. For this reason, a short introduction to ANNs

is provided in this section.

One of the most commonly used methods in ML is ANNs, which try to mimic the

biological brain (Bishop, 1995). The equation for a simple neural network, the multilayer

perceptron, is given by (Bishop, 1995):

y = ϕ(wTx+ b) (3.4)

where w is vector of weights, x denotes the input vector, b the bias, and ϕ is a non-

linear activation function. An ANN consists of several connected nodes, called neurons,

which receive input from other neurons and send their output to the next neurons. The

larger the network, the more input every neuron receives and the more neurons in the
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next layer receive their output (Bishop, 1995). An important feature of ANNs is that

they are nonlinear models as well as universal approximators which provide competitive

results by using effective training algorithms. Different training algorithms were used

and developed over time, from back-propagation by E. Rumelhart et al. (1986) to newer

methods which aim to accelerate the convergence of the algorithm.

Although ANNs do not need any prior assumption to build models, as a model is mainly

determined by the characteristics of the data, the architecture of the network must be

predefined (Zhang and Qi, 2005). In 1960, shallow neural networks with few neurons

were used due to the difficulty of training deeper neural networks. More recently, new

techniques have been found to train these networks and provide state-of-the-art perfor-

mance. Different neural network architectures have evolved over the years with some

adapted to specific applications. For example, convolutional neural networks are useful

for vision problems (Goodfellow et al., 2016).

Over time, many suitable extensions have been developed, especially for time series

forecasting, such as recurrent neural networks, which are designed to learn time varying

patterns by using feedback loops (Fausett, 1994). Long short-term memory (LSTM)

neural networks are an architecture of recurrent neural networks which essentially ex-

pand their memory. To know for how long information is to be stored in an LSTM

and how to connect it to other neurons, each LSTM neuron consists of four individual

components: the input gate, the memory and forgetting gate, the output gate and the

interior of the cell with its linking logic. The input gate determines how and to what

extent new values flow into a cell. The memory and forgetting gate determines whether

information remains in a cell or is forgotten again. The output gate determines the

extent to which values present or determined in the cell are output. Inside the cell,

the components’ interaction with each other is regulated to control information flow

and storage (Hochreiter and Schmidhuber, 1997). The logic is implemented via neural

functions with vector and matrix operations.

The input for the LSTM at time t is Xt with the hidden state from the previous time

step, St−1, introduced to the LSTM block and computed for the hidden state St (Sagheer

and Kotb, 2019). As a first step an LSTM decides which information is removed from

the cell state by the forget gate ft given by:

ft = σ(XtU
f + St−1W

f + bf ) (3.5)

Afterwards, the LSTM decides which new information will be stored in the cell state by

first deciding which values will be updated by the input gate it and, in a second step,

by a hyperbolic tangent (tanh) layer that creates a vector of new possible values given

by C̃t as follows

it = σ(XtU
i + St−1W

i + bi) (3.6)

C̃t = tanh(XtU
c + St−1W

c + bc) (3.7)
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The new cell state Ct is updated from the old cell state Ct−1, given by:

Ct = Ct−1 ⊗ ft ⊕ it ⊗ C̃t (3.8)

In the last step, the output is defined based on a filtered version of the cell state, where

the output gate ot chooses the parts of the cell state which are produced as the output

by going through the tanh layer in order to get a value between -1 and 1 and multiply

it by the output gate, given by:

ot = σ(XtU
o + St−1W

o + bo) (3.9)

St = ot ⊗ tanh(Ct) (3.10)

Figure 3.2 shows the functioning of the LSTM cell (Sagheer and Kotb, 2019).

Figure 3.2: Structure of one LSTM cell (Sagheer and Kotb, 2019)

3.3 Classification and Regression Trees

Especially within business environments, the explainability of algorithms and models is

of special importance. Neural networks are often referred to as black-box models which,

once trained, are opaque. Other models are easier to explain to business stakeholders,

and for that reason, this section introduces a widely applied model which provides an

explanation of its decision making.

Decision trees have their origin in ML theory and can be used for classification and

regression problems. They are based on a hierarchical decision scheme like a tree struc-

ture. Every tree has a root node, followed by internal nodes, which end at one point in

terminal nodes. Each of these nodes takes a binary decision to decide which route to

take in the tree until it ends in a leaf node. By splitting a complex problem into several
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Figure 3.3: Example of regression tree with three variables

binary decisions, a decision tree breaks down the complexity into several simpler deci-

sions. The resulting tree is easier to interpret and understand (Safavian and Landgrebe,

1991).

Classification and regression trees (CART) are a type of a decision tree which approx-

imates real-valued functions. A regression tree shares similarities with a classification

tree; however, the target variable takes ordered values with a regression model fitted

to each node to give the estimated values of the target variable. The regression tree is

constructed based on binary recursive partitioning in an iterative process. All training

data is used to select the structure of the tree. The sum of the squared deviations from

the mean is used to split the data into parts based on binary splits starting from the

top. This process is continued until a user-defined minimum node size is reached, which

leads to a terminal node (Breiman et al., 1984). Figure 3.3 illustrates a regression tree

structure with a numeric output, given several input variables (yearly income, age of

current car, and number of cars) and some nodes which take the binary decision, result-

ing in the leaf nodes if an individual buys a car or not. Within a business environment,

the visual structure of the tree is important as it helps managers to understand the key

drivers in the form of the sizes of all three variables to end with a certain prediction.

3.4 Time Series Validation

Different metrics are used throughout the literature by researchers as well as practitioners

to evaluate the performance of forecasting models. Especially for time series forecasting,

not all of them are of use as the temporal aspect of the data does not allow for the data

to shuffle at random. For this reason, methods such as cross-validation do not work

particularly well with all time series datasets due to the temporal aspect of the data.

Thus, various evaluation methods are used, with the most prominent being the walk-

forward validation, which maintains the temporal aspect of the data. The model is
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trained up to time t and then evaluated on t + 1. In a next step, the model is trained

up to t+ 1 and evaluated on t+ 2 and so on (Bergmeir and Beńıtez, 2012). Figure 3.4

shows how the time series is split up over time to evaluate model performance using the

walk-forward approach.

Figure 3.4: Walk forward validation for time series

Walk-forward validation is used for time series forecasting using models like ARIMA

models. If other models are used for time series forecasting, different approaches can be

used to evaluate their performance as well as choosing hyperparameters for the model.

For instance, cross-validation is a technique whereby the dataset is split in k different

splits, where k− 1 splits are used for training and the remaining part is used for testing

of the model. This is repeated k times until every split is used once for testing. One goal

of this procedure is to test the model’s ability to predict unseen data in order to prevent

overfitting or selection bias and thereby assess if the model is capable of generalising for

new unseen data. Another advantage of cross-validation is that it shows the stability of

a model and the sensitivity to training data. The results of the k different outcomes are

averaged to get an estimation of the model’s performance (Kohavi, 1995). An example of

a fourfold cross-validation is shown in Figure 3.5, where the test set is moved throughout

the whole dataset in four steps, covering all the available data.

Figure 3.5: Example of 4-fold cross validation over time

The grey boxes show that the test data is moved from the beginning of the dataset until

the end to test the model on the whole dataset. This procedure helps in understanding

if the model fits the overall dataset compared to only training it on one part of the data
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and testing it on the rest, which could lead to wrong predictions if the data changed

over time.

There are different methods of cross-validation; for instance, the one presented is suitable

for temporal data, but for nontemporal data, different cross-validation methods could

be considered as well (Roberts et al., 2017). Although cross-validation is hard to use for

classic time series data, some of the data used in this work is used for training in such

a way that cross-validation is feasible and used for model evaluation. This is true if the

time series data is converted to a supervised learning problem where the model receives

as input several lagged time series observations and as output the current timestamp.

In a next step, the performance of the different approaches presented must be evaluated

by error measurements, such as the ones presented in the following. The forecasting

evaluation can be done using different metrics which describe the error between the

predicted value pi and the observed value oi. Thus, the error is defined by ei = pi − oi.
The metrics used in this work are the root mean squared error (RMSE) and the mean

absolute error (MAE). The RMSE is given by (Murphy, 2013):

RMSE =

√√√√ 1

n

n∑
i=1

e2i (3.11)

In comparison, the MAE is given by (Murphy, 2013):

MAE =
1

n

n∑
i=1

|ei| (3.12)

As the RMSE squares the errors before they are averaged, it gives outliers a relatively

higher weight, which can be useful within time series, especially for sales forecasts, where

each over- or underestimation can cause financial risk. However, the downside is that

one outlying datapoint can potentially have a large influence on the model, and if that

datapoint is uncertain, it might be undesirable. The MAE also penalises large outliers

but to a lesser extent than the RMSE. Theory shows that the optimal error measure

can be determined by the additive noise distribution on the data, such that when it

is Gaussian (Chai and Draxler, 2014), the RMSE is optimal, and when it has larger

tails, the MAE (Willmott and Matsuura, 2005) is often more appropriate. However, in

practise, often the noise distribution is not known and may not even be additive.

This work adopts the RMSE in the training process but also compares the test results

under the MAE to highlight any large outliers in the predictions. The MAE is sometimes

preferred within business environments as it can be more intuitive. The error can also

be measured by dividing it with the reference value and thus defining the percentage

error to overcome scale dependency (Bergmeir and Beńıtez, 2012). This was not done

here because RRMC only uses total numbers for sales forecasting.
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3.5 Discussion

All models explained in this chapter have been used widely in many companies and

institutions all over the world. Although they improved forecasting over the years, there

is still room for improvement in many areas. In recent times, a common thought is

that neural networks and other universal approximators are able to solve all upcoming

questions if there is enough data, but this is not always the case, and one must be

very careful with using, for example, neural networks to solve new problems. For some

problems, other models suit the purpose better; thus, it is important to understand the

data and the problem that should be solved before applying any kind of algorithms.

There is a broad variety of algorithms, and there are always other ways of using data to

make predictions or support decision making.

Nonetheless, ML has emerged as a promising approach for many data modelling prob-

lems, but its application to many real-world issues within companies is a new endeavour.

Many of the algorithms are quite complex and require experts in ML applications to

apply them. Moreover, employees might be sceptical of any new approach until its

demonstrated and validated to perform well. They must be convinced that the ap-

proaches are robust and applied well so that they not only perform well in theory but

also on an ongoing basis.

To that end, this work has helped RRMC to break up the existing barriers which stopped

them before as the results of this study are explainable and made them more comfortable

adapting new ML techniques to their existing approaches. Thus, this research has helped

RRMC to implement previous research as well as new ideas generated from this work

into their daily forecasting and, with that, improve their sales forecasting capabilities.

This study has also assisted them in making better use of their existing data as well as

more fully understanding it. This was possible by combining different datasets retrieved

from various legacy systems and applying new proposed algorithms to them, which is

explained in the following chapter.

Different academics and practitioners have used the techniques presented in this chapter

to improve forecasting. Based on their previous work, this study identifies three new

approaches to improve forecasting accuracy. The forecasting methods range from classi-

fication algorithms to pure time series methods, like ARIMA models. The classification,

using neural networks, is used in this research to separate a single time series and cate-

gorise different customer groups into ones which share similar buying behaviour. Since

ARIMA models are appropriate for forecasting time series, they are used to separate

clusters. Findings from these models support sales and demand forecasting for a variety

of different businesses.



28 Chapter 3 Technical Background

3.6 Summary

This chapter has surveyed central ideas behind research in the areas of statistical fore-

casting and machine learning that can be used for time series forecasting and many other

applications. Many different approaches have been proposed, both in the statistical field

and the machine learning field. All can be used for different problems, but it is rare for

a single model to be the perfect fit for one problem. It is important to mention that the

same problem can be solved with different methodologies; for that reason, a range of

algorithms was introduced although not all can be listed here. There may be other algo-

rithms that could solve the challenges presented in this work in a similar way but which

were not listed here due to the large number of different algorithms available. Through-

out this thesis, the main focus is on improving sales and demand forecasting, building

on previous techniques and improving them to further enhance forecasting. Therefore,

combinations of existing knowledge were used to create a hybrid model resulting from

other new improvements in the area of time series forecasting, with a special focus on

sales and demand forecasting.



Chapter 4

Dynamic Cluster-Based Markov

Model

Thus far, to my knowledge, research has not applied multistage models to forecast

demand for unknown prospects in the database, possibly because the process of sales

is usually shorter than the prediction timeframe, and therefore this method cannot be

used. However, depending on the type of product, prospects can be included in the

data months before they actually buy. This data can then be used to model the process

through various stages to forecast the demand. For products like real estate, boats, or

luxury goods, the buying process can take weeks to several months. During this time,

the collected data can be used for forecasting.

The new DCBM approach can be used to predict the sales pipeline for the future, and it

includes a timeframe of conversion to the prediction’s cluster. This added information

can be used to improve forecasting. With the prediction, it is possible for a company

to focus the forecast on a product- as well as regional-specific level, which supports

short-term sales and marketing activities in order to sell more products. Furthermore,

the proposed approach scores sales opportunities in different clusters, which can be used

to influence the conversion by incorporating the resulting clusters into the business’s

marketing activities. The stages are used to represent an individual’s buying process,

and they are explained in Section 4.1. After modelling the stage transitions, the stages

are clustered, and therefore a brief introduction to clustering is given in Section 4.2.

The methodology of the DCBM model is introduced in Section 4.3, and its application

to RRMC’s sales pipeline is described in Section 4.4. The results of the new approach

are evaluated in Section 4.5, followed by a discussion in Section 4.6.

29
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4.1 Stage Transitions

Modelling transitions amongst stages and individuals’ transitions within a given frame-

work, like patients moving from the ‘alive’ to ‘dead’ stage, is a widely applied approach

as it helps in predicting future events. Especially for small datasets, it can be advan-

tageous to build domain knowledge about the underlying process of the individuals’

transitions into the prediction and thereby improve forecasting. Therefore, this work

investigates different stage transition modelling techniques for implementation into the

final model.

Patient transitions in a medical environment is the most common topic within multistate

modelling research, but other fields have been researched within similar frameworks (Cox

and Reid, 1984; Lee and Wang, 1971; Andersen and Keiding, 2002; Collett, 2014). For

example, Sullivan and Woodall (1994) used a Markov model to forecast educational

enrolments over time. Zhu and Ching (2010) used multivariate Markov chain models

for demand prediction, focussing on customers who already had a large individual sales

history within a company’s database. The transition between the two states can be

measured with a hazard rate (Cox and Reid, 1984). By adding more stages, such as

‘unwell’, to the two-stage model, the standard survival model must be extended with a

multistate model (MSM). An MSM is a time stochastic process which allows individuals

to move between finite numbers of states (Hougaard, 2000).The different stages can

be transient or absorbing, depending on whether a transition could emerge from the

state. The transition between the stages will often be incomplete due to left-censored

observation times, where the event occurred before the study started, or right-censored,

when the study ends before an event occurs. Incomplete data occurs when the process

is not observed from the origin or, for the right-censored case, if the individual is not

in an absorbing stage when the data was captured. The presence of incomplete data

must be captured when the likelihood functions are constructed (Meira-Machado et al.,

2009).

The following section provides an overview of MSMs, which incorporates more than two

stages (Andersen et al., 1993; Hougaard, 2000). Within this research, the stages repre-

sent a company’s sales pipeline and are defined by a company’s customer relationship

management (CRM) system, which could vary by company and with the system used.

A multi-state process is stochastic and has a finite state space where T is a time interval,

and the state occupied at that time is represented by the value of the process at time t.

Over time, a history H is generated containing the previously visited states up to time

t. The multi-state process is defined through transition probabilities between states h

and j by (Andersen et al., 1993):

phj(s, t) = p(X(t) = j | X(s) = h,Hs−) (4.1)
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for h, jεS, s, tεT, s ≤ t where s = s1 < · · · < si−1 < · · · < si = t is a part of the distance

from s to t (Andersen et al., 1993). The transition rates’ dependence on time leads

to different model assumptions, including time homogeneous models, Markov models,

and semi-Markov models. Time homogeneous models assume that the intensities are

constant over time, which is independent of t. In Markov models, only the history of

the process through the current stage is important for the transition intensities (Chiang,

1968).

Markov models are frequently used because of their simplicity. A Markov chain is a

sequence of random variables (X1, X2, X3) where the probability of moving from one

state to another only depends on the previous state, the so-called Markov property. The

Markov property is formulated as (Schweitzer, 1996):

p(Xt+1 = s | Xt = st, Xt−1 = st−1, . . . , X0 = s0) = p(Xt+1 = s | Xt = st) (4.2)

for all times t = 1, 2, 3, . . . and for all states s0, s1, . . . , st, s. In Markov models, the

transition probabilities can be computed from the intensities by calculating the forward

Kolmogorov differential equation (Kolmogoroff, 1931). Markov models can be differenti-

ated into time homogeneous models and non-time homogeneous models. In time homo-

geneous Markov models, all transition intensities are supposed to be constant functions

of time, however in some cases, the assumption of homogeneity may be unrealistic, and

a nonhomogeneous model is needed (Gardiner, 2009).

To make the previous approach more explainable within a business environment and

include many features without suffering from the curse of dimensionality, the new DCBM

model (introduced in Chapter 4) is based on clustering the data. There are a number

of ways to cluster data, and the following section presents a brief overview of these

approaches.

4.2 Clustering

Clustering is an unsupervised learning problem which aims to segment a heterogeneous

dataset into homogeneous clusters. As clusters are usually unknown before, it is different

than the supervised learning problem classification. The data clustering problem has

been addressed by different researchers in many contexts and is an important task in

exploratory data analysis (Hartigan, 1975; Spath, 1980; Jain et al., 1999; Berkhin, 2006).

To assign data points to a cluster, it is essential to measure their distance to other

data points. Different similarity measures, like the Euclidean distance, are used in the

literature and are explained further below. Various clusters are formed so the distances

between data points in the same cluster are minimal and distances between data points
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of different clusters are maximal. Clustering techniques can broadly be categorised

between partitional and hierarchical clustering (Jain et al., 1999).

To cluster data, a measurement for similarity between two data points, drawn from the

same feature space, is essential. Usually, one calculates the dissimilarity between two

data points using a measurement carefully chosen depending on the feature space. The

most popular metric for continuous features is the Euclidean distance, which takes the

ordinary distance between two points and is calculated by (Danielsson, 1980)

d(xi, xj) =

√√√√ k∑
i=1

(xi − xj)2 = ‖xi − xj‖2 (4.3)

The Euclidean distance calculates the distance by taking the root of square differences

between the coordinates of a pair of data points. However, depending on the probability

density function, which describes the pattern representation, other measurements are

more suitable than the Euclidean distance (Cha, 2007), especially in a higher dimen-

sional space. To cluster the data by their similarity or dissimilarity, different clustering

techniques can be used. These techniques are explained in the following.

At a top level, differentiations can be made between hierarchical clustering (which pro-

duces a nested series of partitions) and partitional clustering (which only produces one).

The literature compares clustering in different ways, so Figure 4.1 was chosen, in ac-

cordance with Saxena et al. (2017) to provide an overview of the clustering techniques’

taxonomy.

Figure 4.1: Taxonomy of clustering approaches

Hierarchical clusters are formed by iterative divisions of the data using either a TD or

BU approach. The technique behind the TD approach is called divisive hierarchical

clustering and breaks up larger clusters into smaller ones until every data point is its

own cluster. The BU approach, called agglomerative clustering, starts with a single data

point and merges the data points into increasingly larger clusters until all data points

are in a single cluster (Murtagh, 1983). The two methods lead to a dendrogram which

represents the split of the clusters. Both techniques can be further split into single,
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complete, or average linkage based on the similarity measures (Jain et al., 1999). As

hierarchical clustering computes the distance between all data points for every cluster,

it is computationally expensive and does not scale well with large datasets, resulting in

O(N2) compared to partitional clustering with O(N) (Steinbach et al., 2000).

Another technique, partitional clustering, scales better with large datasets. Partitional

clustering assigns the data into k-clusters, which must be predefined without any hier-

archical structure like in hierarchical approaches. The most common algorithm here is

the k-means algorithm, which uses a squared error criterion like the Euclidean distance

(Jain, 2010). Given a set of data points and the number of k clusters, the algorithm

iterates with an expectation maximisation approach and splits the points into k clusters

so that the total sum of the distances between the points within one cluster is minimised.

The initialisation of the k points in this approach is random, potentially leading to dif-

ferent results over time. Further challenges are the choice of k and the vulnerability

to outliers in the dataset (MacQueen, 1967; Saxena et al., 2017).When prelabelled data

is available, the k-means algorithm can be initialised using a small amount of labelled

data to generate an initial seed and thus create a semi-supervised learning problem

(Basu et al., 2002).

As the algorithm will be trained on historic sales transactions, approaches like hierar-

chical modelling would take too much time and computational power to execute. Most

of the described clustering techniques are unsupervised, but within the new approach,

a combination of supervised approaches is used for grouping the data into different

clusters. The new approach is introduced in the following section.

4.3 New Forecasting Approach

Within the given dataset, potential customers can go through various stages (introduced

in Figure 4.4). Within the stage process, individuals can go from one stage to another

but only in one direction as the system which manages the transitions does not allow

going back to a previous stage. Not every individual starts the stage process in the first

stage as this depends on the sales personnel and how they create the opportunity. Based

on current knowledge from within the business, the stage transitions of an individual

mainly depend on their current state and the information behind every opportunity, such

as the time the customer has been known to the brand. Markov models are dependent

on the last stage in the chain of different stages and therefore are a reasonable model

for this problem.

A possible solution to the problem of applying a Markov process onto new unknown

prospects is to compare them with existing customers who share similarities. For CRM

data, Markov models are used to model the transitions between the recently observed

purchase states to capture customer dynamics. Thereby, a key feature of the company’s
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relationship with the potential customer is that the future prospects for that relationship

are a function only of the current state of the relationship, which is defined by the

potential customer’s recent activity and not the particular path the opportunity took

to reach its current stage (Pfeifer and Carraway, 2000). The information behind every

opportunity which goes through different stages rarely changes over time, so the decision

about which cluster an opportunity belongs to does not change over time. For that

reason, a Markov models supports simplifying the stage transitions as the transition to

a next stage only depends on the previous stage. If the opportunities would go through

every stage and enrich the data behind them in this process, it could be possible to build

a more complex model, which was not the case in the car sales dataset used in this work.

The Markov model factorises the problem in that the number of different models to train

does not explode. If more data between potential customer and manufacturer interaction

would have been available hidden Markov models could be useful to determine their effect

on the impact on shifting potential customers to different unobservable stages (Netzer

et al., 2008).

When information can be gained about the prospect during the buying process, this

can be used to forecast, for example, buying a house or selecting features of a car or a

boat. Here, the potential customer is usually known in the CRM system before he or she

actually buys. All the information retrieved in this process could be used to forecast,

on an individual level, if the prospect will buy or not and thereby support the demand

forecasting on an individual level.

Thus far, sales and demand forecasting approaches have been mainly based on time

series forecasting approaches, like ARIMA models, if only historic sales numbers are

available. Machine learning was used to predict the outcome of the sales pipeline in the

past but without an estimated timeframe of when the sales opportunities convert (Yan

et al., 2015). In their research, Yan et al. (2015) assumed that the opportunities within

the pipeline are more likely to convert by the end of the quarter, as business targets, and

have only predicted the conversion for a two-week future period using a profile-specific

two-dimensional Hawkes processes model.

In survival analysis, however, an occurrence of an event can be seen as a transition from

one state to another, for example, from enquiry to retailed in a sales funnel. Within

this research, Markov models are used to forecast sales out of the manufacturer’s sales

pipeline. The different stages which prospects go through in their buying process can

be modelled as described in Chapter 3. The new DCBM is suggested for this: instead

of modelling a covariate Z for every prospect, the approach here is to cluster the new

incoming opportunities in the sales pipeline, described further in stage 3 of the DCBM

algorithm. This approach was developed because many prospects in the pipeline have

no sales, or even stage, history, but their features can be used to cluster them according

to features from people who already went through the pipeline. To better explain the
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final model within a business environment and to reduce the curse of dimensionality, a

problem occurring due to too many covariates, the DCBM is proposed (Meira-Machado

et al., 2009). Each cluster is then modelled with a non-time homogenous Markov model

to forecast the number of opportunities which convert over different timeframes. The

time of conversion information can be gained by calculating the transition matrix for

different timeframes. For a monthly forecast, the transition matrix for every cluster is

broken down on a monthly basis for the next months, depending on the chosen time-

frame.

All clustering approaches in Chapter 3 require the number of clusters to be predefined.

This requirement leads to the question of how many clusters are suitable for the proposed

approach. Since this question can be a whole research topic itself, it is not discussed

in full detail. Nonetheless, clustering the data based on similarity is possible with ap-

proaches like k-means (mentioned in Chapter 3). As the purpose of every transition

matrix is to represent similar buying probability, the clusters should be related to cus-

tomer groups which are similar in their buying behaviour. Therefore, the main difference

between every cluster should be the sale probability instead of pure similarities in the

raw data. Thus, a new approach for dividing data into different clusters is proposed,

which starts by estimating the sales probability (described further in stage 2 of the

DCBM algorithm). Afterwards, the data is clustered by their sales probability. This ap-

proach has the same problem with the number of clusters compared to other clustering

approaches but can improve the prediction of the Markov-based transition model.

Another approach to splitting the data based on sales probability is binary classification,

which naturally results in two clusters. To improve the two-cluster system and the

accuracy in a sales forecast, it is possible to split the first cluster which is likely to sell

by using a forecast of the conversion number out of opportunities and divide it into two

clusters, which is described further in stage 1 of the DCBM algorithm. The motivation

for the second split is that most sales teams have targets by month, quarter, and year

which drive their sales, and if there is no additional bonus for selling more than the

target, sales teams tend to move potential sales to the next month, quarter, or year if

they are close to or have fulfilled their quotas (Bouwens and Kroos, 2010). Splitting the

first cluster supports the seasonal aspect of conversion and adds that information to the

forecast. Therefore, the first group is separated into two clusters. One is the size of the

prediction from the historic conversion, and the other is defined by the rest of the first

cluster: potential sales which are moved to the future to fulfil the next month’s target

or are not treated at all.

Figure 4.2 describes the three clusters and their relationships to car sales per month.

The blue line represents opportunities created by month as well as their conversion

to a sold car on a rolling three-month basis after the opportunity was created (shown

in yellow). The orange line represents the classification boundary, where everything

above it represents a total number of opportunities likely not to convert, and below
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the orange line represents a total number of opportunities likely to convert to a sale.

The new idea here is to split the opportunities below the orange line to create two

further groups, divided by the yellow line. Everything below the yellow line represents

opportunities highly likely to convert even more than the ones between orange and

yellow. For comparison, the grey line represents car sales.

Figure 4.2: Amount of created opportunities (blue) compared to the binary classifica-
tion boundary (orange), sales (grey), and converted opportunities within three months

(yellow) from January to December

The size of the first cluster is defined by a time series forecast of historic opportunity

conversion within a predefined timeframe, in this case, three months as this is the chosen

forecasting timespan. The number of historic conversions can be forecasted by classical

time series approaches like seasonal ARIMA models, which also contain information

about seasonally driven sales by targets. The calculation between the factors above is

provided in the DCBM algorithm, consisting of three stages as shown in Figure 4.3. This

diagram shows the data used for training and the flow of information passing between

each stage.

Figure 4.3: Three stages of the DCBM algorithm and their inputs (coming from
above) and outputs (directing to the right)

Stage 1 describes a seasonal ARIMA model used for forecasting the future conversion

of created opportunities per month within the next three months. The model selection
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is based on AIC of parameters between 0 and 2. The output of stage 1 is a forecast

for the next month of opportunities which will be converted within three months. This

output is used in stage 2 to split the opportunities into three separate groups which are

predicted to convert.

DCBM algorithm stage 1: SARIMA opportunity conversion forecast

Input
Time series Tn = historic sales conversions out of opportunities per month
(2015 to today)

Create Construct SARIMA(p, d, q)(P,D,Q)m

Initialise Set SARIMA parameters based on grid search of AIC result between 0 and 2

Algorithm Time series forecast for following three months

Output Threshold γ

Stage 2 of the DCBM describes a neural network-based clustering which gives every

opportunity a probability to convert. Opportunities with a probability over 0.5 are

predicted to convert, and opportunities below 0.5 are predicted not to convert. The

first group of the new DCBM model is defined by opportunities with a probability up to

0.5. The DCBM approach categorises the group likely to convert another time with the

output of stage 1. Ordering the opportunities by their probability with the highest first,

the third group consists of the top γ opportunities, and the second group consists of

opportunities greater than or equal to 0.5; probabilities lower than that form the third

group. All three groups are used in stage 3 of the DCBM algorithm as for every single

group, a Markov transition model is applied.

DCBM algorithm stage 2: neural network-based opportunity clustering

Input Opportunities O = (x1, y1), . . . , (xn, yn)

Create
Construct neural network with specified number of inputs, hidden nodes,
and outputs

Initialise Randomly initialise weights for neural network

Algorithm

Use gradient descent algorithm to optimise ωMP

Obtain predictions y = f(x;ωMP
)

Cluster Opportunities O into three groups based on predictions
N (not likely to convert): 0 ≤ f(x;ωMP

) < 0.5
L (likely to convert in more than three months): 0.5 ≤ f(x;ωMP

) < γ
L3 (likely to convert within three months): γ ≤ f(x;ωMP

) < 1

Output N,L,L3

All three groups from DCBM algorithm stage 2 are now used to create a Markov tran-

sition model for all various stages of the opportunities. Stages 1 and 2 are applied to

opportunities older than 12 months as they will not convert anymore in order to get

OShistoric and on all new incoming opportunities to get OScurrent. The final goal is to

calculate the outcome of ys,current, representing which stages the opportunities will be

in within the next three months.
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DCBM algorithm stage 3: time homogeneous Markov transitioning model

Input
Historic monthly opportunity stage transitions OShistoric = (s1, s2, sn, y)
Current month opportunity stage transitions OScurrent = (s1, s2, sn)

Initialise

Construct historic transition matrix φOS

φOS
=

s1s2 s1s3 s1y
s2s3 s2y

s3y

Algorithm For all three groups N,L,L3 from DCBM algorithm stage 2:
ys = OScurrent × φOS

Output ys,current for N,L,L3

If the number of opportunities categorised as a sale in the binary classification is lower

than the forecasted number of conversions, the target of the next period likely cannot

be achieved from pure demand.

As there is a difference between the demand and actual sales, one can use the demand

information to improve the sales forecast. An ARIMA ANN (Zhang, 2003) can be used

to model the residual errors of the SARIMA model with the demand information given

above. This solution can also address the potential problem of information asymmetry

between dealer and manufacturer as there can be delayed or missing information within

the data. The transition from demand to sales forecast was not applied in the proposed

approach but is included in the work done in Chapter 6.

The result of the different approaches is compared in the next section using an example

dataset.

4.4 Application and Data Pre-processing

The main focus of this application is to improve the sales and demand forecasting on

a regional as well as model-specific level. This gives the sales and marketing teams

worldwide a chance to steer sales by using marketing tools to reach their sales targets.

The following sections describe the car sales channel data from RRMC and the features

and their pre-processing.

RRMC’s cars are sold exclusively through a dealer network of over 100 dealers worldwide.

To sell a car, a dealer must create an opportunity in the system, either through converting

a lead or manually creating a new opportunity. Therefore, before selling a car, there

must be an opportunity in the system. If the dealer only creates the opportunity to

directly sell the car or the prospect walks into the showroom and directly orders the

car, the conversion time from an opportunity to an order is under one month. About

40% of opportunities are created within the same month as the orders. In this case,

using opportunities to model individual transitions is difficult as they are created within
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the last stage. Because every opportunity is created by a human, the quality of the

opportunity is much better than online-generated leads, which are not prequalified.

However, if the manufacturer creates opportunities as intended, then it is possible to

model the transition amongst the stages from enquiry (En), qualification (Qu), configure

(Co), test drive (TD), negotiate (Ne), commitment (Co), and ordered (Or) to closed

(Close), which can either be a sold car or a lost opportunity and can transit from stage

to stage. Figure 4.4 illustrates this concept but does not depict all possible transitions,

only including those from the first enquiry stage and all possible stage transitions to the

last stage (Close) for easier understanding.

Figure 4.4: Opportunity stage transitions from enquiry to a closed opportunity

Based on all possible transitions, the stages proceed as illustrated in Table 4.1 between

opportunity stages created in 2016 and 2017, in which every value above a diagonal line

between the top left corner and the bottom right corner displays transitions forwards

and every value below transitions backwards. The darker the cell, the more transitions

occurred from and to that stage. The company has sold cars for over a decade, but the

stages of the opportunities changed over time as a new CRM system was introduced.

Thus, for this study, only data from 2016 onwards is used. Data used for training was

gathered on a monthly basis between January 2016 and the end of December 2017, for

24 months of total data. In total, the forwards transitions for the years 2016 and 2017

add up to over 100,000, whereas the transitions backwards, displayed under the grey

diagonal line, total around 3,500.

Enquiry Qualification Configure Test Drive Negotiate Commitment/Order Retailed/Delivered Lost/Cancelled Total

Enquiry 566 1237 58 6801 289 560 694 17235 27440
Qualification 77 653 531 923 454 188 335 2934 6095
Configure 10 60 76 415 100 104 45 422 1232
Test Drive 80 115 97 1099 718 485 545 12289 15428
Negotiate 47 99 133 215 148 1549 248 982 3421
Commitment/Order 24 38 33 39 500 686 7381 471 9182
Retailed/Delivered 264 181 29 202 96 563 4492 121 5953
Lost/Cancelled 45 77 18 51 68 65 117 33529 33970

Total 22341 7182 1614 18849 3548 9146 14483 68163 102721

Table 4.1: Transitions from and to opportunity stages created in 2016 and 2017, with
darker grey highlighting more transitions

This matrix is not time dependent, and the transitions from and to the same stage

reflect a problem within the system, which has since been fixed. The stages moving

backwards were excluded because the system rules prevent them from occurring again,

and as there are few, the bias created by deleting them is acceptable. Therefore, these
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transitions were not included, and the final used data is shown in Table 4.2. As the

CRM system changed over time, over 62,000 opportunities could be used out of approx-

imately 170,000 created thus far. This reduction in usable opportunities is due to the

changes within the CRM system occurring before 2016. In addition, around 1% of the

opportunities are aftersales related and are not used as they are not related to new car

sales. Approximately 5% of opportunities could not be used due to a problem within

the system as every opportunity should go from one stage to the next and not back to

the stage at which the opportunity originated. This mistake happened for around 5%

of the opportunities because users sometimes employed the system incorrectly, and no

rule within the system blocked opportunities from moving backwards. With new rule

implementations within the system, this error can no longer happen. Therefore, the

opportunities moving backwards were excluded. Of the 62,000 opportunities, around

13,000 converted to a sale. The first three months of 2018 were used as a test set, and

the results were compared on a monthly basis.

Qualification Configure Test Drive Negotiate Commitment/Order Retailed/Delivered Lost/Cancelled Grand Total

Enquiry 1160 48 6721 242 536 430 17190 26327
Qualification 471 808 355 150 154 2857 4795
Configure 318 33 71 16 404 842
Test Drive 503 446 343 12238 13530
Negotiate 1039 152 914 2105
Commitment/ Order 13599 694 14293
Retailed/ Delivered 13 13

Grand Total 1160 519 7847 1133 2242 14694 34310 61905

Table 4.2: Cleaned transitions amongst opportunity stages created in 2016 and 2017

Giving the transitions from Table 4.1 (a temporal aspect of the transitions), it takes,

on average, 57 days to change from one stage to another. As many opportunities are

located in a stage but are in reality lost, every opportunity which did not retail or was

cancelled is assumed to be lost after six months. The goal of modelling the transitions

is to improve forecasting on a short-term basis (within the next three months) on both

a regional and product level.

The dataset consisted of the features displayed in Table 4.3 for all opportunities, which

were pre-processed (as described in the following section) before use in the algorithm

from Section 4.3.

The categorical variables region, product and lead source were pre-processed by using

one-hot encoding, where the categorical variable is replaced with a new binary variable

added for each unique categorical value. related contact type was converted to either a

0 for prospect or a 1 for existing customers. description, primary campaign source, and

secondary campaign source were converted to a 0 if they were blank and a 1 if they were

filled in. As sale probability had missing values, these values were replaced with either

the average of probabilities for retailed opportunities or the average probability of lost

opportunities. This approach makes best use of sale probability compared to leaving

it out completely or replacing it with zero. stage was converted from a categorical

variable to a numerical variable between 0 and 1 with steps of 0.1, starting from enquiry
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with (0.1) and ending with sold with a value of (1) as this is the natural ordering of

the stages. An additional feature, days known, was created to replace created date and

contact created date and is calculated by using the difference in days between the day the

opportunity was created and the day the contact behind the opportunity was created.

This new feature was created to determine whether the person behind the opportunity

was known to the business before and, if so, for how long.

Feature Example Data type Missing data

Region North America Categorical 0%

Related Contact Type Prospect Categorical 0%

Contact Created Date 03/10/2017 Numerical 0%

Created Date 03/10/2018 Numerical 0%

Days Known 365 Numerical 0%

Product Range Categorical 0%

Stage Test drive Categorical 0%

Lead Source locator.com Categorical 36%

Last Stage Change Date 03/10/2018 Numerical 0%

Description Wants to buy coupe Categorical 0%

Primary Campaign Source 2018 CRE campaign Categorical 31%

Secondary Campaign Source Launch campaign Categorical 78%

Sale Probability(%) 50% Numerical 32%

Table 4.3: Overview of used features with examples, data type and % of missing data

4.5 Results

The prediction aims to discover how many cars out of the opportunities will sell in the

following three months. This prediction can support the sales team on a short-term basis

and reflects a live view of sales on a regional and product level. With that information,

the sales team can allocate a budget to the regions and products which struggle with

future sales, helping them to achieve their targets.

The regression, used for clustering the opportunities, was initially done using a neural

network. This approach has the drawback of being a black-box model where the impor-

tance of features is not identifiable. Within a business environment, it is important to

understand the key features which drive the prediction to understand the process better

and influence it in the future. For that reason, tree-based methods were used within

the DCBM model to make the approach more explainable to business stakeholders. The

results of tree-based methods also showed slightly better performance. The ANN model

results for 12 months MAE is 19.25% compared to the tree model with 18.71%. As both

models are universal function approximators, they are able to model the regression with

the difference that the tree model can output the feature importance as well, which is
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an important advantage within this framework. For that reason, from this point on, the

DCBM model is based on a decision tree regression.

The DCBM utilises three clusters with dynamic boundaries. Other cluster sizes are

compared in Table 4.4 to determine whether the results could be improved by increasing

the cluster size. In theory, splitting it in more than one cluster should give better

results as every single cluster represents the different buying processes which prospective

customers go through. Therefore, more clusters could result in a better prediction in

theory, but it was shown that for the given dataset, this was not the case. This creates

a trade-off between the cluster size and the gained forecasting accuracy. An increasing

number of clusters enables one to investigate an increasing number of behaviours, but

it also gives the algorithm less data to estimate the behaviour of each group. In the

limiting case with a single data point per ‘cluster’, it is not possible to estimate the

behaviour of new individuals anymore.

Table 4.4 compares the results for different cluster sizes ranging from one cluster, which

represents a traditional Markov model, up to 20 clusters. The first row shows the yearly

error for the prediction when adding all 12 months of individual forecasts together. The

second row shows the mean absolute error of all 12 individual months. The cluster

size was equally distributed within the prediction range from zero to one. The results

indicate that the DCBM with its three dynamic clusters showed increased performance

compared to the other equally distributed clusters with sizes ranging from 1, 2, 3, 5,

and 10 to 20. With the given data, more than 20 clusters lead to an error as there were

clusters with little to no data.

DCBM 1 cluster 2 clusters 3 clusters 5 clusters 10 clusters 20 clusters

Yearly error -1.06% 29.25% 35.82% 27.79% 25.49% 20.48% 20.48%
Monthly error 18.71% 39.08% 43.55% 37.03% 36.42% 31.27% 31.27%

Table 4.4: Comparison of the three-cluster DCBM approach to different cluster sizes
ranging from 1 to 20, compared on a yearly as well as monthly error basis

A more detailed comparison of the 12 months for the year 2018 (from Table 4.4) is shown

in Figure 4.5. The conversion to a retailed/delivered car is shown in numbers on the

left axis through all 12 months of 2018, represented on the bottom axis. It is shown

that the DCBM performs better for seven months and shows comparable results for the

remaining months.

Month four shows an especially large difference in the prediction between the dynamic

boundary and a fixed boundary. The reason here is that in month four, more oppor-

tunities were created than usual, and the fixed boundary approach from a traditional

Markov model cannot adapt to the high number of opportunities and predicts a higher

conversion as well. Using a tenfold cross-validation it was illustrated that the DCBM

provides stable results. By randomly leaving out 10% of the data and using it as a test

set, the predictions stay within a range of 5% deviation.
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Figure 4.5: Comparison of the three-cluster DCBM approach (green) to different
cluster sizes ranging from 1 to 20 (different shades of grey) predicting future demand

in total car sales on the vertical axis compared on a monthly basis

Using a decision tree model, it was possible to identify the most important features

which were reported back to the business. The features sale probability, model and days

between contact and opportunity were proven to be the main drivers behind predicting

the conversion of opportunities into sold products. This enables RRMC to focus on

these three important drivers when evaluating their incoming opportunities.

4.6 Discussion

A drawback of the DCBM is that the time conversion is not completed at the opportu-

nity level. Because it is completed on a cluster level, the approach cannot track when

each opportunity will convert. However, the DCBM supports the regions and products

potentially at risk and can be supported by marketing activities. Clustering the pipeline

as proposed can also be beneficial for marketing purposes, especially the proposed model

which splits the binary classified opportunities based on a time series forecast. For ex-

ample, one could immediately approach the second stage of the cluster and wait on the

first cluster for two months if the opportunities did not convert by then. As the first

cluster has the highest probability to convert to a sale, no immediate additional action

is required since the customer is predicted to buy. In contrast, in the second cluster,

whilst the probability for a sale is still over the cut-off of 0.5, the realistic chances of

a sale are lower and could benefit from marketing activities towards the prospects to
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increase the chance of a sale. The effect of such clusters on marketing could be a future

research question related to the marketing department.

The proposed approach was introduced at the RRMC Motor Cars sales channel develop-

ment conference in January 2019. Afterwards, one sales region requested the approach

to be introduced at every dealer in their region to start a cleaning process based on

which clusters the existing opportunities belonged to. This was also used to gain further

insights into how the data is created and used for the proposed algorithm and to evalu-

ate the reasoning behind the new three-cluster approach. The three clusters were found

useful within this framework. Although the proposed approach was designed for fore-

casting and not cleaning data, splitting opportunities into three groups was appreciated

by sales personnel as this approach made targets and promotions easier to understand

and manage on a monthly basis. In addition, after a maximum of six months, dealer-

ships tend to open new opportunities for those which already exist, which supports the

assumption that an opportunity is lost after six months.

As the proposed approach uses opportunities, it does not cover all sales as some of them

happen before the opportunity is created in the system. To address this, a new approach

of forecasting a total sales number is proposed in Chapter 6, where a SARIMA-LSTM

is applied to solve this. This approach was chosen as it is more straightforward from

a technical point of view to first forecast the opportunities and afterwards use them to

forecast overall sales numbers.

The car sales data for the application in this chapter used information from previous

years to predict the outcome of future years. This was subject to the assumption that

the training data comes from the same distribution as the test data and does not change

over time. However, this assumption is not always true. If training and test data are

not in the same feature space and are differently distributed, standard classifiers cannot

perform well (Pan and Yang, 2010). This might be the case for the given data if all

dealers would change all sales personnel and use the system in a completely new way.

For other datasets, this might also be the case if, for example, no data for some regions

or products are available. To make predictions outside of the training data, there are

ways which address the change in data distribution, such as transfer learning.

Transfer learning is a subfield of ML which tries to solve the question of how a classifier

is able to generalise from a source to a target domain (Kouw, 2018). There are different

solutions for how to use training data which does not come from the same feature space,

and might be differently distributed, to predict future targets. To use the DCBM model

for such data, it is necessary to make use of transfer learning techniques to obtain

accurate predictions. Transfer learning was used for this dataset to initialise the ANN

with older data from times when the system was used in a slightly different way and not

in all regions. This did not improve the final results, so it was not used in the final model
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as there was no significant improvement, and the potential exists to add additional bias

and issues to the model.

The results of the DCBM model show better forecasting accuracy mainly through a

closer interaction with the end customer via the dealer’s sales personnel. As Figure 4.6

shows, the data used is close to the customer but was not directly taken from the

customer. Instead, information is collected through the dealer’s staff, who interact with

the customers and afterwards store the gathered information into the CRM system,

where the arrows represent the data flow for the current approach and a possible future

approach.

Figure 4.6: Comparison of current (left) and potential future (right) data gathering
of the DCBM model

However, there are several potential downfalls with this approach as it is not ensured that

the dealer’s staff input all gathered information into the CRM system, and also different

dealers all over the world use the system in various ways. To get direct customer data,

it would be necessary to gather live data directly from the consumer. Therefore, a

possible alternative would be contact with the customer directly from the headquarters

or through other personal communication such as email or user-friendly options like

an application on smartphones, which create more touch points over time with the

customer. This would enhance the DCBM model to make even better predictions which

could also include more personalised predictions such as preferred customisation of the

product (e.g. colour or trim of the vehicle). This would not only help to forecast what

and when the customer will purchase, but it could also assist in not losing the customer

to a competitor, which might occur due to a missed opportunity to sell a new or revised

product which the customer would not be aware of by themselves or through the dealer.

With a closer connection to the customer, privacy of the customer’s data must always

be kept in mind to apply with the law (GDPR) and also with ethical constraints which

might occur by tracking all interactions between the customer and the company.
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4.7 Summary

This chapter introduced a new approach to cluster demand data into three clusters with

dynamic boundaries. The DCBM gathers global sales pipeline data to build a short-term

sales forecast. Evaluating its accuracy based on a dataset from RRMC shows that the

prediction of future sales for the next three months is improved compared to a regular

Markov transition model. The boundaries between the clusters depend on a SARIMA

forecast to include the seasonal aspect of sales throughout the year. The new model

can support short-term planning, supporting regional and product-specific forecasting

to steer business activities to achieve their targets and remain profitable. The DCBM

model is further used in Chapter 6 to model the residuals of the PLC model introduced

in Chapter 5.



Chapter 5

Product Lifecycle Detrending

A new approach developed in this chapter is based on PLCs (introduced in Section 5.1),

and Section 5.2 explains how PLC information can be used to improve sales forecasting.

The parameters are estimated using a new ML approach (explained further in Section

5.3), and the improvements are outlined in Section 5.4, based on an application using car

sales data from RRMC. Results of the proposed approach are evaluated in Section 5.5,

and implications and future improvements are discussed in Section 5.6. For statistical

models like ARIMA models, there is no extension, to my knowledge, which includes

PLC into the prediction based on an ML estimation of its future sales. For that reason,

an overview about time series forecasting with a focus on ARIMA models is presented

in Section 3.1, an introduction to neural networks in Section 3.2, and decision trees in

Section 3.3.

5.1 Product Lifecycle

To include domain knowledge in small-sales time series datasets, the new PLC detrending

approach is introduced in this chapter. It is based on the PLCs which every manufac-

turer’s products go through. Figure 5.1 depicts this process over time. After a product

idea goes through research, development, production, and market rollout, it is in the

introduction phase. If the product is successful, sales increase in the second growth

phase. When the product is widely available on the market and sales stop increasing,

the product is in the maturity stage. The demand for the product eventually declines,

and the product reaches its last phase: decline (Vernon, 1966).

If the product is successful or the manufacturer sees it becoming more successful with

improvements, a new product will replace the old one, which restarts the first phase.

The restarts of PLC curves result in an up and down movement in sales for a particular

product over time. The timeframe of a PLC varies and depends on product, market,

47
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Figure 5.1: PLC curve over time

and industry aspects (Meyer, 1997). If a manufacturer produces more than one product,

this information is hard to include and filter out in classic time series approaches like

ARIMA models.

5.2 Sales Detrending

This section introduces a new way to improve the forecasting accuracy of time series

models using PLC information. Bringing a product to market requires a business plan,

which must contain not only an estimated production number over time to justify finan-

cial costs but also an estimated timeframe of production until a new product launches

(Stark, 2015). Both numbers are based on forecasts and have limitations, but the im-

portant factor is that they tend to be consistent over time and give a rough estimate

about the time and volume of the product. The proposed approach leverages this infor-

mation and uses it to detrend the time series, consisting of all products offered by the

manufacturer.

There is no clear definition of detrending a time series as there are various approaches

(Fritts, 1976; Anderson, 1977; Chatfield, 1975). The most common approach is to fit

a straight line to the data and then remove it to yield a zero-mean residue. Another

commonly used procedure is to take the moving mean of the time series and remove

it. This operation needs a predefined time scale, which is often difficult to determine.

Regression analysis or Fourier-based filtering are examples of more sophisticated trend

extraction methods, which share the problem of justifying their usage as they are based

on many assumptions (Wu et al., 2007).

With the new approach introduced herein, every product needs a lifecycle curve to be

fitted based on the expected production number and the timeframe of production as well

as two shape parameters. Figure 5.2 visualises the effect of the different shape parameters

p, q with values of 0.01, 0.05, 0.1, and 0.5 on the Bass curve. m stays constant as it

represents the area under the curve. The coefficient of innovation p represents external
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influences like advertising and is typically very low with values ranging from 0.01 to

0.05. The larger p gets, the steeper is the initial increase in sales in the beginning of the

Bass curve. The coefficient of imitation q typically ranges from 0.3 to 0.5 (Bass et al.,

1994). With q increasing the height of the Bass curve increases.

Figure 5.2: Different shape parameters and their effects on the Bass curve

By adding all PLC numbers together, the PLC detrending curve is created and, in a

second step, is removed from the sales time series history. As this information is also

available for a limited time in the future as well, the new approach also adds the lifecycle

information to the forecast. There are various ways to fit the PLC curve to the sales

data. For instance, in a different approach using the PLC for new product forecasting,

Hu et al. (2017) have used three ways to fit a curve to the sales numbers. They compare

piecewise linear curves with polynomial approaches and with the Bass diffusion model

(Bass, 1969). Since their approach clusters the resulting PLC curves, they choose a

piecewise linear model over a polynomial or Bass curve. However, for this research, the

Bass diffusion model fits the data best as there are fewer products (five compared to
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hundreds) on the market which have longer lifecycles (seven to 15 years compared to

half a year). The Bass curve was chosen in this work as it is a simple two-parameter

model which can be estimated with small amounts of data.

Other approaches could be used with more parameters to fit a more complex model,

but the downside is a higher chance for overfitting the data. Piecewise linear curves

and polynomial approaches were explored as well but have not delivered better results

than the Bass curve. In addition, the estimation of parameters is not as straightforward

as the ML Bass curve parameter estimation described later in this section. The Bass

diffusion curve draws a smooth diffusion curve, including the slow rise of sales in the

beginning and a saturation after the demand increases over time (Massiani and Gohs,

2016).

The Bass diffusion curve is fitted to the available yearly sales numbers from 2003 to today.

Yearly sales numbers, instead of monthly, were used because of the large seasonality of

car sales, which is not caused by a product’s lifecycle but instead is the result of targets

within the business. The seasonality for demand is much flatter throughout the year as

the main impulse for demand is new model introductions, which vary in time around the

world, thus flattening the real demand. There is also seasonality within the demand;

for example, convertibles have higher demand in summer, but summer varies around

the world. The resulting Bass curve is then split per month for the proposed approach

by converting the sales numbers from a yearly to a monthly basis, based on the Bass

function. The Bass curve consists of three parameters, m, p, q where m represents the

lifetime sales volume, and p, q are shape parameters which represent the coefficient of

innovation and imitation. Sales at time T are given by (Bass, 1969) as:

S(T ) = pm+ (q − p)Y (T )− q

m
[Y (T )]2 (5.1)

Given the yearly sales numbers, the curve was fitted using a nonlinear least squares

fitting. As the cars used for training were already sold, m was calculated by the sum of

all past sales. For the years when no sales numbers were available as a new product was

launching, the Bass curve was calculated using the parameters predicted by the newly

developed approach (explained later in this section). The sales, m, for new products

were calculated using lifecycle business plan sales numbers (LCBPSN), which are only

available to the business itself. The LCBPSN are used to calculate the business case of

a new car over its entire lifecycle and are a good approximation of how many cars will

be sold from this model.

Figure 5.3 depicts the monthly sales numbers in dark grey as well as the PLC curves

fitted with the Bass diffusion model for two products in blue and orange. The green

curve represents the sum of all PLC curves for 10 years and is used later for division

of the sales numbers to generate a new time series for forecasting with improved PLC
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information by car sales:

PLC detrended time series =
Car sales∑
Bass curves

(5.2)

Figure 5.3: PLC curves for monthly sales data with total sales/Bass curves on the
vertical axis and years on the horizontal axis

5.3 Bass Parameter Estimation

Although the bass curve can be fitted based on assumptions, as described above, there

is a new way of estimating the parameters p and q developed within this research. An

innovative approach of fitting the Bass curve for new products is proposed. By using

sales data from sold products with features like size and weight, it is possible to predict

the parameters of the Bass curve for new products by using ML.

The data used in this research is a combination of all car models’ sales numbers, Bass

parameters calculated for every model based on past sales numbers, and car-specific

features from Car Database API Seo and Ltd. (2019) for more than 1000 different

car models. The Car Database API features of power, length, width, height, weight,

wheelbase, and displacement are numeric, and minimal pre-processing was necessary;

coupe and drive features were pre-processed by using one-hot encoding. In total, these

features are available for over 28,000 car models. Yearly sales numbers are taken from a

dataset available within the company, which consists of all car models sold since 1990.

Of these sales numbers, the Bass parameters m, p, q were calculated as described in

Section 5.2. Table 5.1 shows an extract from the combined datasets, historic car sales,

and car features from Car Database API for two different car models.
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Table 5.1: Data extract for Bass curve fitting for two different car models from historic
car sales (grey), calculated fields (light grey), and Car Database API (grey)

Historic car sales
name year 1 year 2 year 3 year 4 year 5 year 6 year 7

Suzuki Ertiga 59467 62220 61154 60194 63850 68355 56408
Subaru Legacy 219945 280027 244614 244749 228710 198540 187271

sum year 1-7 least-squares fitting from year 1-7 Car Database API
m p q power rpm coupe length

Suzuki Ertiga 431648 0.055 0.112 105 4500 1 4395
Subaru Legacy 1603856 0.089 0.208 156 5000 4 4685

Car Database API
Name width height displacement fuelsystem drive weight

Suzuki Ertiga 1735 1690 1462 1 2 1180
Subaru Legacy 1745 1415 2457 2 4 1589

The resulting dataset consists of over 1,000 car models. The decrease in total car models

from 28,000 is due to merging both datasets and removing entries with missing values.

The internal dataset containing car model sales numbers only has around 1,400 car

models, whereas the Car Database API data is larger because it lists cars with different

engines as separate models. By fitting a Bass curve to the yearly sales numbers of

products already sold, it is possible to use them as a desired output for the model. As

input, the features of the car models described above are used.

For the prediction of p and q, a multi-regressor approach using a random forest regressor

was compared to a neural network. The results indicate that the underlying problem

can be modelled with a simple neural network with one hidden layer consisting of 20

neurons. Table 5.2 compares the mean absolute error (MAE) for the neural network and

the multi-regressor approach with 100 estimators and a maximal depth of 30, where the

multi-regressor approach shows slightly better performance.

Table 5.2: MAE comparison for ANN and multi-regressor modelling of Bass curve
parameters

MAE ANN MAE Multi-regressor

p 0.06 0.02
q 0.29 0.11

Within the business environment where this model is used, it is also vital to obtain the

feature importance for every single feature as this information is useful for stakeholders

to understand the model and use the data for the product development of future cars.

This could be delivered from the multi-regressor approach (Section 5.4). Table 5.3

summarises the steps of the new PLC approach and gives a broad overview of all stages.

All of the stages explained above are conducted on a real-world application described in

further detail in the next section.
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Table 5.3: PLC algorithm steps with the needed input for the performed algorithm
and its output

Step Input Algorithm Output

1. Features of over 1,000 cars Decision tree regression p and q for Bass curve
2. Company’s car model features Decision tree regression (1) p and q for company’s car model
3. p and q (2) + m from business plan Bass curve PLC curve (cumulated Bass curves)
4. Sales time series/ PLC curve (3) SARIMA model Forecast of PLC de-trended time series
5. Forecast (4) Multiplication with PLC curve (3) Final forecast

5.4 Application

The proposed approach of PLC detrending is presented for several different time horizon

sales forecasts of RRMC which made the data available. The total sales numbers are

aggregated through the sales of five different products through 135 dealers worldwide in

six regions (shown in Figure 5.4).

Figure 5.4: Global sales numbers by aggregation over region, dealer and model

To better understand the distribution of the sold products, Figures 5.5 and 5.6 present an

overview of the products sold per product and region. Both figures show the distribution

of sales per month for the years 2003 until the end of 2018, either split per region in

Figure 5.5 or product in Figure 5.6. The regional split shows increased sales over time

for all regions as well as the seasonality of the sales always peaking in December. It is

also apparent that not all regions share similar behaviour as some markets are bigger

than others, and their cultural and climatic differences affect the seasonality in various

ways. All regions sell the same products but with a different number of dealers. This

is clear in Region 6, with less than 10 dealers, compared to Region 2, with more than

three times the number of dealerships. All regions increased dealerships over time and

also sold more cars over time; therefore, the trend of sales rose over time.

Figure 5.6 shows four products the manufacturer sold from 2003 to 2019. It is apparent

that the overall sales are affected by new products entering the market; especially in the

beginning of 2010, sales doubled with the introduction of Product 2. Similar behaviour
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Figure 5.5: Monthly car sales split per sales region from 2003 to 2018

is apparent for the other product launches. In addition, the age of a product influences

its sales over time as older products tend to sell less after a certain period.

Figure 5.6: Monthly car sales split per car model from 2003 to 2018

Following this data overview, the next section further details the results delivered by

the new PLC approach for the monthly car sales dataset described above.
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5.5 Results

The proposed approach outperforms detrending by differencing, which is a common

method to detrend a time series (Solo, 1984). The sales data used ranges from May

2003 to December 2018. To build a reasonable SARIMA model, a minimum of 50

observations was needed, so more than four years’ worth of historical monthly data

was used (Wei, 1990); hence, only predictions for years after 2007 were considered in

the evaluation. The SARIMA model creation itself was completed following the classic

Box-Jenkins methodology (Box and Jenkins, 1976).

The model’s hyper parameters p, d, q, P,D, andQ were chosen from a grid search between

zero and 3 based on the AIC score. The forecasts are compared in Table 5.4 using the

RMSE and MAE for the years from 2008 to 2018, where the lower error is highlighted

in bold. As the business which generated the sales numbers measures their forecasting

accuracy in absolute terms, the MAE was used for comparison. As the MAE does not

penalise huge outliers as much as other metrics, the RMSE was used as well, so both

measurements are in the same units as the forecasted values of car sales.

As Figure 5.3 shows, the company introduced a new product at the end of Year 7, which

led to an increase in sales. Additionally, in 2013, 2015, and 2018, new products were

released. Table 5.4 compares the RMSE and MAE of a classic SARIMA forecast with

detrending by differencing to the proposed approach, highlighting the lower error in bold.

All years indicate an improvement with the proposed PLC detrending approach. For

2010, a large difference is also apparent because it was the year in which the PLC of one

product started with the introduction of a new product, resulting in higher sales, which

were covered within the new approach. The monthly sales per product are described

in the previous section in Figure 5.6, which shows the new product starting at the end

of 2009/ beginning of 2010 in grey. For all 11 years, the new approach resulted in an

increased accuracy for the MAE as well as the RMSE.

Table 5.4: PLC detrending error compared to normal detrending (NDT) from 2008
to 2018

Error\Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

PLC RMSE 30.6 32.7 188.5 57.5 69.1 65.2 56.8 25.9 85.9 76.2 80.9
PLC MAE 22.7 25.1 167.5 49.2 49.7 55.5 50.9 22.1 73.3 68.9 61.7

NDT RMSE 46.1 119.2 2205.2 145.3 124.1 70.9 71.7 46.5 96.8 103.9 192.1
NDT MAE 35.2 77.2 1949.6 117.6 109.7 64.5 62.7 41.9 84.1 89.5 183.6

For all years combined, the improvement of the PLC model for the RMSE is 77% and for

the MAE is 78%. Implications for the business include not only increased accuracy in

their monthly forecasting, but it also delivered new insights into which features were most

predictive within the decision tree regression and how they affect shape parameters. The

most predictive features are length, height, and weight, displayed in Table 5.5, where the
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percentage on the right side indicates how much each feature contributes to decreasing

the weighted impurity.

Table 5.5: Feature importance in the decision tree regression
Feature Feature importance

length 18.0%
height 17.0%
curb weight 14.1%
engine displacement 12.4%
width 12.2%
powerHp 11.8%
powerRpm 7.6%
coupe 4.5%
drive 1.4%
fuel system 1.1%

With the features potentially having a correlation amongst themselves, one must be

careful arguing that changing one feature might have a large effect on the overall out-

come. Several, like the features referring to the overall size of the car, may correlate in

such a way that their effect depends on the changes of other features as well.

For illustration purposes, a simplified version of the chosen tree with a depth of only

two is shown in Figure 5.7, which also helps to visualise the effect of certain features,

compared to other ML models which lack explainability. The tree shows the splits based

on the different features (first line), the error (second line), and also the samples per

split and their respective predictions.

Trees like in Table 5.7 can support the adoption of emerging ML algorithms by companies

as they support an easy understanding of the decisions taken by the algorithm at every

point. Most managers are not experts in the field of ML and struggle to understand

more complex models in a short timeframe, so they naturally chose simpler models

over complex ones like neural networks. Thereby, the decision is mainly influenced by

supporting models they understand compared to those they do not understand and also

cannot describe to their supervisors. The tree above is one example of a simplified model

which managers may prefer over other models.

Finally, newer body types, such as sport utility vehicles, have different lifecycle curves

than traditional sedan models. They result in a steeper increase at the beginning of the

PLC, which was also felt in reality. As a side effect of the new model, this information

can be used for the future planning of new products and support other business decisions

based on the predicted PLC curve.
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height <= 0.315

mse = 0.059

samples = 976

value = [[0.059]

[0.094]

[0.558]]

powerRpm <= 0.357

mse = 0.065

samples = 182

value = [[0.021]

[0.144]

[0.648]]

True

powerHp <= 0.045

mse = 0.057

samples = 794

value = [[0.067]

[0.083]

[0.538]]

False

mse = 0.002

samples = 9

value = [[0.01]

[0.014]

[0.971]]

mse = 0.066

samples = 173

value = [[0.022]

[0.151]

[0.631]]

mse = 0.052

samples = 47

value = [[0.081]

[0.078]

[0.394]]

mse = 0.057

samples = 747

value = [[0.066]

[0.083]

[0.547]]

Figure 5.7: Simplified decision tree with a depth of two

5.6 Discussion

The proposed approach has the advantage of including information on PLCs in a sales

forecast. Other methods also include new product information to improve forecast accu-

racy. However, these methods are often based on the marketing department’s forecasts

(Kahn, 2002). Hierarchical procedures, like those proposed by Lenk and Rao (1990)

and Neelamegham and Chintagunta (1999), use a Bayesian modelling framework to in-

clude various information sources to make new product forecasts but focus more on new

products than existing ones, unlike the new PLC approach proposed in this work.

Forecasting every product is also possible, but this approach has two drawbacks. The

first is the limited amount of historic data for a new product, and the second is that new

products influence other products, so forecasting the total number of sales includes the

influence of a new product on other products. In particular, cannibalisation from one

product to another product from the same manufacturer is not included, which is an

issue which could further improve the accuracy. As products from other manufacturers

influence the sales of a product as well, a general PLC curve containing information about

the lifecycles of all products in the same market could improve forecast accuracy even

more. Typically, start and end dates for competitor’s PLCs and their business cases are

not publicly available, and therefore including this information was not possible. Other

approaches to fit the PLC curve could be considered as well, such as extended Bass
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diffusion models which include supply constraints, which have not been accounted for

so far (Kumar and Swaminathan, 2003).

Overall sales numbers reflected by parameter m were determined from the business

case, which makes it difficult for people outside of a business to use the same approach.

Therefore, an approach which estimated m using a similar approach to the estimation for

p and q was attempted, but the estimate had a large error which is a consequence of the

limited available data. Further work is required to establish whether the sales numbers

can be estimated reliably from new car features, which would make the approach more

widely applicable. This work would need to explore larger feature sets as well as suitable

modelling approaches. Although the dataset used car sales data, it should also work for

other products if there is enough data about their features. As the required data contains

confidential information, it was not possible to access datasets from other industries and

products which could open the proposed approach to a wider variety of implementations.

Moreover, one potential drawback of tree models is that their accuracy could be im-

proved by more splits, which at some point can potentially decrease the explainability.

Neural networks do not suffer from this issue regarding accuracy; however, in general,

they lack explainability. This imposes the problem of a trade-off between accuracy and

explainability (Frosst and Hinton, 2017). Therefore, both neural networks and tree mod-

els were considered in this work to provide the opportunity to choose the preferred one.

From a business point of view, the resulting feature importance given by the decision

tree regression is more important than the accuracy; therefore, the decision tree was

used. As the data contains confidential features unique to each business, it was not

possible to obtain different datasets on which the algorithms could be compared and

tested. For that reason, the time series given by the car manufacturer was reversed and

then forecasted from the opposite side. The results were even better when comparing

the PLC approach to the classic detrending by differencing.

Neural networks can also be used to forecast time series and not only for modelling the

shape parameters of the Bass curve. However, they are not well suited for capturing

seasonal or trend variations for data which were not pre-processed, but by detrending

or de-seasonalisation, their performance could be increased drastically (Zhang and Qi,

2005). This could be another approach to change the used SARIMA model into a neural

network model to improve its forecast accuracy even more with the proposed PLC de-

trending as a pre-processing step. Nonetheless, the problem of de-seasonalisation would

not be solved here, so this would need a different pre-processing step. Furthermore, other

forecasting methods could be considered as the model is not limited to ARIMA models

in general, which makes it easier to implement for other researchers and practitioners in

their current way of forecasting.
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Although the proposed approach performed better than the present forecasting by

RRMC, there is room for improvement, especially in how the code is currently exe-

cuted. Running the system in a cloud-based environment would decrease the time spent

running the code with extracting all the data from different sources. This would allow

outsourcing of the work into the cloud, which has proven to be more efficient for data

scientists within a company (Aulkemeier et al., 2016). This would not only save time,

but it could also be run more often throughout the month to obtain an actual live status

from all regions, including updated features of new car models.

5.7 Summary

This chapter introduced a new way of improving the sales forecasting accuracy of time

series models using product lifecycle information. Most time series forecasts utilize

historical data for forecasting because there is no data available for the future. The PLC

model changes this process and utilizes a product’s lifecycle-specific data to obtain future

information, including product lifecycle changes. Therefore, a decision tree regression

was used to predict the shape parameters of the bass curve, which reflects a product’s

lifecycle over time. This curve is used to detrend the time series to exclude the underlying

trend created by the age of a product. The sales forecasts’ accuracy was increased

for all 11 years of RRMC’s forecasts, comparing the newly developed product lifecycle

detrending approach to a common detrending by differencing approach in a seasonal

autoregressive integrated moving average framework.





Chapter 6

SARIMA-LSTM

As described, sales and demand forecasts are of high value for businesses. Thus, this

thesis has developed two new approaches to demand and sales forecasts. Both have

improved forecasting accuracy, so it is logical to assess whether combining them can

further improve a sales forecast by using PLC information and live sales pipeline data.

This chapter synthesises ML and statistical forecasting methods to increase the accuracy

of forecasting. The new approach combines linear and nonlinear forecasting models to

create a SARIMA-LSTM model. The linear part is provided by a SARIMA forecast of a

detrended PLC time series with improved forecasting abilities due to the included prod-

uct features. The nonlinear part of the model takes the output of a demand forecasting

model, which creates different clusters varying in size, describing the demand. Combin-

ing both approaches into one hybrid SARIMA-LSTM model results in improved fore-

casting accuracy when data is limited by incorporating a seasonal model. The approach

was evaluated on a real-world dataset and was shown to improve accuracy. Furthermore,

the model was also able to predict the changes in sales due to COVID-19.

The final model should use the three clusters from the DCBM model as well as the

residuals from the SARIMA forecast of the PLC model to predict even closer to the

actual sales numbers than either model on its own. The residuals are calculated by the

actual sales minus the forecasted values generated from the SARIMA-PLC forecast. A

reasonable approach to utilise both models is a combination of the PLC model with

a long short-term memory neural network (LSTM) which models the residuals of the

SARIMA model.

The following section more closely examines the combination and architecture of the

SARIMA-LSTM model (Section 6.1). Not only is the accuracy of a model important to

business stakeholders, but the model’s certainty of the prediction also plays a key role in

the adaptation of ML approaches within companies. Therefore, the model uncertainty is

approximated within the SARIMA-LSTM framework (explained further in Section 6.2).

61
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The dataset used in the previous work is also applied here and described in Section 6.3,

with the results presented in Section 6.4. A discussion of the SARIMA-LSTM model is

presented in Section 6.5.

6.1 SARIMA-LSTM Framework

This section describes the new architecture of the SARIMA-LSTM model, which com-

bines two approaches which provide complementary information about the PLC and

live sales pipeline data to include demand and sales factors in the forecasts. This is

achieved by synthesising both key drivers behind changing trends in the sales numbers

by combining the information from the PLC and the DCBM model. The final model

uses the three clusters from the DCBM model as well as the residuals from the SARIMA

forecast of the PLC model to provide an enhanced prediction of actual sales numbers

compared to both models applied individually.

Both approaches have unique information about either demand or product specific fea-

tures, both of which affect the overall sales numbers; thereby, combining them is crucial

for a sales forecast to reflect the current situation between products on the market and

the market situation itself. Whilst the SARIMA can capture seasonality, a nonlinear

model is needed to include nonlinear patterns into the prediction. Therefore, LSTM

was chosen as it can not only incorporate nonlinear patterns but also add memory by

including a feedback loop. In the case of an LSTM cell, it is able to create both a short-

and long-term memory component which supports predictions on sequential predictions

like time series (Gers et al., 1999). The LSTM models the residuals of the PLC model

given the three clusters from the DCBM model and afterwards adjusts the SARIMA

forecast, with the resulting prediction of the residuals, as depicted in Figure 6.1.

Figure 6.1: Newly proposed SARIMA-LSTM pipeline model

The sales time series is detrended by the PLC detrending approach, and afterwards a

SARIMA model generates a forecast for the linear part of the newly proposed approach

as well as residuals of the forecast compared to the actual sales. The residual data is

then used as a target variable for the LSTM part of the model. The input variables

for the LSTM model are generated by the DCBM model, resulting in three different

clusters. The predicted values from the LSTM are used to adjust the given SARIMA
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forecast for a final forecast combining live demand data and PLC information. Table

6.1 summarises the data flow within the proposed new SARIMA-LSTM framework.

Step Input Algorithm Output

1. Sales time series PLC detrending Detrended time series
2. Detrended time series SARIMA Sales forecast + residuals
3. Demand data DCBM Three clusters
4. Residuals + three clusters LSTM Forecasted residuals
5. Sales forecast (2) + forecasted residuals (4) Addition Final forecast

Table 6.1: SARIMA-LSTM framework

To execute step number four from Table 6.1 to forecast a multivariate time series with an

LSTM, the moving window approach is used for input and output. Figure 6.2 describes

the multivariate forecasting using moving windows. The red box shows the used input

and the green box the output; both are moved whilst training to include the whole time

series.

Figure 6.2: Moving window forecasting

The size of the window can be defined to include only one timestamp or increased to

include more timestamps for the input as well as the output. Moving window forecasting

is further described in Section 6.3.

6.2 Model Uncertainty

Section 3.1 discussed how to control model parameters using errors such as the BIC.

This is used to specify the fit of the model to the data. The resulting model is then able
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to make a prediction. However, it can be useful to also have an estimate of the model

uncertainty in the prediction. Therefore, various approaches were developed over time

to not only make predictions for time series forecasting but to also provide a confidence

interval of the model prediction. This can be achieved in different ways, but for neural

networks, this process is not as straightforward as for ARIMA or tree models. For this

reason, an overview of estimating the model uncertainty for neural networks is provided.

This can be done using standard deviation and relating the model uncertainty to it (Gal

and Ghahramani, 2016).

One approach to the uncertainty problem employs Bayesian inference by using the poste-

rior distribution p(W |X,Y ). Monte Carlo dropout is utilised to approximate the model’s

uncertainty in the prediction. Dropout randomly drops units and their connections from

the neural network during the training process with a certain predefined dropout rate

p (Srivastava et al., 2014). The idea here is for a new input x∗; the neural network

computes the output with stochastic dropouts at every hidden layer with probability p.

This process is repeated N times, and from that we obtain ŷ∗1, ..., ŷ
∗
N predictions. With

that, we can approximate the model uncertainty by the sample variance given by:

ˆV ar(fW (x∗)) =
1

N

N∑
n=1

(ŷ∗(n) − ¯̂y∗)2 (6.1)

where ¯̂y∗ = 1
N

∑N
n=1 ŷ

∗
(n). Choosing the optimal dropout probability p is not straight-

forward, but in practise, a range around 0.1 tends to be robust (Zhu and Laptev, 2017).

Ideally, the uncertainty interval is as small as possible but still contains all targeted

values in between the lower and upper boundaries. To quantify the accuracy of the

uncertainty interval, there are many different properties to choose from; the coverage

probability and width are chosen here. The prediction interval coverage probability

(PICP) describes the total number of points which lie within the uncertainty interval ci

divided by the total number of forecasted points n and is calculated by:

PICP =
1

n

n∑
i=1

ci (6.2)

The mean prediction interval width (MPIW) describes the average width of the uncer-

tainty interval over the forecasted time horizon and is given by:

MPIW =
1

n

n∑
i=1

(U(Xi)− L(Xi)) (6.3)

where U(Xi) and L(Xi) describe the upper and lower boundaries of the uncertainty

interval corresponding to the respective sample (Shrestha and Solomatine, 2006).
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6.3 Application and Data Pre-processing

The dataset used in the following section was provided by RRMC and reflects their

available sales data for all products and all regions worldwide. As the demand data

used dates back only to 2016, the data used here are the three clusters from mid-2016

to mid-2020 as well as the residuals of the PLC model from the same timeframe. This

observation timeframe adds up to 48 data points in total. An extract of the data used

herein is shown in Table 6.2.

Date Cluster 1 Cluster 2 Cluster 3 Residuals

June 2016 57.67 88.75 42.92 -77.87
July 2016 46.45 160.62 138.31 13.18
August 2016 42.47 180.96 140.43 4.3

Table 6.2: Data extract for SARIMA-LSTM

As the first output in the series cannot be used for the new proposed moving window

approach, both approaches have different dataset sizes. The classic moving average

version has 48 observations available, with 42 for training and 6 for testing. The following

passages explain in more detail how the data is pre-processed for the neural network.

In a first step, the time series is converted into a supervised learning problem of one

month as input and one as output. This is done for all three clusters as well as the

residuals and is presented in Table 6.3. The three clusters and their respective residuals

from the previous month (t-1) are used to predict the current month(t) clusters and

residuals. With the shift of the moving window approach, the input from month two

becomes the output of month one as the past values are used to forecast the current

values.

Input

Month Cluster 1 (t-1) Cluster 2 (t-1) Cluster 3 (t-1) Residual(t-1)

1 57.67 88.76 42.93 -77.87
2 46.46 160.63 138.32 13.19
3 42.47 180.96 140.44 4.30

Output

Month Cluster 1 (t) Cluster 2 (t) Cluster 3 (t) Residual (t)

1 46.46 160.63 138.32 13.19
2 42.47 180.96 140.44 4.30
3 43.49 192.42 104.73 64.29

Table 6.3: Conversion of time series data into supervised learning problem

In the previous case, it was chosen to take one timestamp in the past (t-1) as an input and

the current timestamp as output (t). This could be changed to include more timestamps

in the past and future, depending on the application and available data. As the dataset

has only a limited amount of data, the windows were chosen to be as small as possible

as with an increasing size of the moving window, observations are lost due to the shift of

observations into the window. If more data were available, the moving window size would
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have been increased and tested for performance increase. Moreover, the features have

different value ranges, which can introduce bias for neural networks. For this reason, the

data is scaled to similar range values using the MinMaxScaler from sklearn in Python

(Pedregosa et al., 2011). MinMaxScaler scales each feature individually so it is in the

range [−1, 1] in order to improve the neural network performance. Scaling is important

when training neural networks as unscaled data can lead to a slow or unstable learning

process or result in exploding gradients for regression problems (Bishop, 1995). Scaling

was used to transform the input and output of the given dataset where -1 and 1 were

used, although other intervals could be chosen, zero to 1.

As a next step, the scaled dataset was split into a training and test set (87.5%:12.5%)

before training up the LSTM architecture. The LSTM neural network was chosen be-

cause of its ability to include a feedback loop which serves as a kind of memory as it

belongs to the class of recurrent neural networks. The LSTM extends the abilities by

including a short- as well as long-term memory part in its model. This is of special

importance for time series forecasting problems (Gers et al., 1999; Greff et al., 2017).

The model is sequential, containing one LSTM input layer with seven neurons followed

by two hidden LSTM layers consisting of 14 neurons. A dense layer was used as an

output layer consisting of one neuron, providing the model output. The loss function

used was the MAE, and the optimiser used was the Adam optimiser (Kingma and Ba,

2014). The application was programmed using Python 3.5, utilising the Keras library

for the LSTM models and the Statsmodels package for the SARIMA models.

To validate the performance of the proposed framework, the next section evaluates the

results of the SARIMA-LSTM model on the real-world car sales dataset.

6.4 Results

Depending on the business objective, different time horizons might be of varying impor-

tance. For instance, forecasting can be done by predicting one step ahead or multiple

steps ahead if the aim is to predict more steps into the future (Boné and Crucianu,

2002). This section evaluates the performance of the SARIMA-LSTM framework for

the application explained in the previous section for 12 months using multistep ahead

forecasts. Twelve months was chosen as it is the most important timeframe from a

business perspective to plan a full year ahead. However, it can also easily be adapted

to other forecasting horizons or throughout-the-year forecasts. A broader view into the

future supports different purposes such as production planning, sales channel develop-

ment, or product development. For that reason, the SARIMA-LSTM framework was

used for multistep ahead forecasting.
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To create a multi-step forecast, one can rely on one-step forecasts iterated for one step

after another, always including the latest prediction into the dataset or directly forecast-

ing several steps into the future in one prediction (Marcellino et al., 2006). The model

used here predicts multiple steps ahead by iterating over one-step ahead forecasts for a

full 12-month ahead prediction, where the model only received data up until the pre-

vious December. This could be changed to a 12-month forecast without iterating over

one-step forecasts if more data were available, which was not the case for the dataset

used here.

The results of the proposed SARIMA-LSTM model are compared to a SARIMA fore-

cast with normal detrending by differencing (SARIMA NDT) and the already proposed

SARIMA PLC detrended approach (SARIMA PLC). All models are compared using the

RMSE and MAE as evaluation metrics, shown in the following table.

Month Sales SARIMA NDT SARIMA PLC SARIMA-LSTM

January 289 250.20 312.20 329.90
February 343 287.90 373.84 333.48
March 415 399.28 404.16 396.33
April 365 359.45 363.59 344.46
May 414 405.40 433.62 421.26
June 435 466.26 486.85 456.13
July 356 325.47 359.12 312.45
August 342 321.11 363.16 360.95
September 420 430.48 470.76 437.01
October 414 439.35 483.49 449.53
November 516 488.60 551.45 513.82
December 758 652.85 775.86 776.58

RMSE 40.62 34.30 24.48
MAE 31.24 27.97 21.15

Table 6.4: RMSE and MAE comparison of sales to predictions of SARIMA NDT,
SARIMA PLC, and SARIMA-LSTM from January to December 2019

The results indicate that the SARIMA model influences about 80% of the forecast,

whereas the LSTM part of the new hybrid model accounts for about 20% of the fore-

cast as it only makes smaller corrections to the SARIMA forecast by incorporating live

sales data from all over the world into the model. The proposed SARIMA-LSTM model

improves forecasting accuracy over SARIMA-PLC and traditional SARIMA-NDT fore-

casting whilst including demand data from the DCBM model (combining worldwide

live data with current PLC information). The SARIMA-LSTM was evaluated on a

real dataset and finds a reduction in RMSE and MAE for multistep ahead forecasting

over the PLC forecasting process and an overall average reduction for one-step ahead

forecasting.

The results show an increase in performance of the SARIMA-LSTM model for the last

year, but it is also important to evaluate how the algorithm performs on other parts

of the dataset; for that reason, an eightfold cross-validation was performed (further
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explained in Section 3.4). This was done by splitting the dataset into eight folds with

all splits consisting of six months of data. Thereby, the RMSE of the training and test

set was compared using the standard deviation (STD) and mean of the eight different

folds. Table 6.5 shows the different RMSEs for the training and test sets through the

different folds and their STD as well as their mean.

Fold RMSE training RMSE test

1 77.4 95.7
2 14.9 80.1
3 55.0 81.1
4 64.9 76.4
5 75.7 78.4
6 81.6 76.0
7 65.7 157.0
8 70.4 140.6

STD 19.9 30.1
Mean 63.2 98.2

Table 6.5: Comparison of RMSE, STD, and mean for the training and test sets of the
SARIMA-LSTM model through eight folds

The results show that the training error is lower than the test error, which is typically

the case within a reasonable range; this holds true for the STD and mean of the different

folds as well. This procedure ensures that the algorithm does not overfit the data in the

training process and thus makes worse predictions on the different test sets.

As stated, an important factor in sales forecasting and in forecasting in general is the

model certainty in the prediction. For this reason, the SARIMA-LSTM model’s uncer-

tainty interval was approximated using dropout (Gal and Ghahramani, 2016). For the

model uncertainty, a fourfold cross-validation was used to compare the results. The 48

months of data were split in a way that the test set always consisted of one full year

from July to June, and the training set contained the other three years of data. Figure

6.3 illustrates the results of the different uncertainties in the prediction for two standard

deviations, which equal 95% certainty over 12 months for four different folds, or four full

years. The numbers shown reflect the error band which represents the certainty in the

prediction of sales numbers per month. The results of the LSTM model predictions are

shown as well as the lower and upper boundaries of the uncertainty interval from the

LSTM prediction and the actual residuals from the SARIMA-PLC prediction.

The model successfully captures the trends of the data, and the uncertainty band is accu-

rate in bounding the confidence. The few cases where the prediction just pushes outside

the confidence interval coincide with production line problems; this was especially the

case for the peaks in month five, when a new product was launched, and months 45 to

47, when a global pandemic affected sales and the production plant was closed for six

weeks. To account for these problems, the model would need to include data from the

production to determine if production constraints occur.
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Figure 6.3: LSTM prediction (red) with uncertainty interval (dotted red) of SARIMA
residuals (green) for four years with the residuals on the vertical axis and the months

on the horizontal axis

Due to the pandemic, the production plant of RRMC shut down from mid-March to the

beginning of May, which resulted in stopping production for new cars, so dealers could

only sell cars they had in stock. They could also only sell cars when they were open,

which was not always the case during the lockdown in different countries for various

timeframes. This resulted in all-time low sales numbers, especially for April, when

the model was able to predict nearly half of the shortcomings in sales. If the overall

production numbers were included, this would have probably increased the model’s

prediction accuracy as no new cars were available for sale. This data was not available

for this work and is also hard to obtain as production constraints often occur without

any lead time.

The following figure (6.4) illustrates the model uncertainty and how it matches with

the predictions using a scatter plot. The vertical axis shows the difference between

the residuals and the prediction in absolute terms, whereas the horizontal axis reflects

the uncertainty calculated by the difference of the upper boundary of the prediction

and the prediction itself. Everything below the blue line from the bottom left to top

right corresponds to where the residual error falls outside of the uncertainty interval,

and everything above the blue line corresponds to predictions within the uncertainty

interval.
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Figure 6.4: Absolute residuals on the vertical axis compared to uncertainty on the
horizontal axis in cars per month

Data points outside of the uncertainty interval are close to the interval with the exception

of one point, also due to production problems which the model was not able to capture

as well as no production at all due to COVID-19. Although the model could not fully

predict the massive drop in sales due to COVID-19 and the closed dealers and production

stoppage, it did predict the underlying trend in sales throughout this pandemic. As the

model was not trained on production shortages or global crises, such the one the world

faced in 2020, the overall performance of the model shows that incorporating live sales

data on a global level helps to forecast even such dramatic changes in sales.

The SARIMA-LSTM model was used to forecast 12 months ahead from June to July

of the consecutive year and showed improved results. To assess whether the data split

affected the prediction, the same framework was used again with a full year, including

all 12 months from January to December, for three years. This was done to check

whether this affects the predictions, and it was found that the model is not sensitive to

the timeframe itself.

A common approach to dealing with limited data is to use bootstrapping to determine

how resampling affects the predictions and their corresponding uncertainty intervals.

Bootstrapping was performed whereby 48 datapoints were chosen at random with sam-

pling, with replacement resulting in a new dataset of 48 data points (one datapoint can

be picked twice or more, and some of the initial datapoints might not be in the new

dataset). The chosen datapoints were used for training, and the ones not chosen were

used for testing (Chernick et al., 2011). This was done 100 times to create different

datasets. The results of the bootstrapping are illustrated in Figure 6.5, which shows

only the LSTM part of the prediction modelling the residuals, and Figure 6.6, which

shows the combined SARIMA-LSTM modelling the sales.
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Figure 6.5: LSTM results of 100 runs bootstrapping with the LSTM prediction (blue),
the uncertainty band (up in orange and down in grey), and the residuals (yellow)

Figure 6.6: SARIMA-LSTM results of 100 runs bootstrapping with the combined
SARIMA-LSTM prediction (blue), the uncertainty band (up in orange and down in

grey), and the real sales (yellow)

The data for training was not in the initial temporal order as it was mixed through the

bootstrapping. For time series forecasting, it can be advantageous if the temporal order

is not mixed up in order to maximise the accuracy of the model. The results indicate

that even through resampling of the data, most of the predicted points lie within the

uncertainty interval and the peaks and troughs are captured within the model even for
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extreme cases such as sales during the outbreak of COVID-19.

The bootstrapping approach was compared with the one from the beginning of this

section, where the dataset was divided by a fourfold cross-validation, using the PICP and

MPIW. The cross-validation approach resulted in a PICP of 85.1% and MPIW of 177.7,

compared to the bootstrapping approach with a PICP of 83% and MPIW of 150.8. The

PICP of the cross-validation performed slightly better, which is reasonable as the data

was in the right temporal order compared to the bootstrapping. As the bootstrapping

approach could utilise more data, it is also reasonable that the uncertainty interval is

smaller compared to the cross-validation result.

Through the combination of the DCBM and PLC models depicted in Figure 6.1, it

was possible to enhance the ability of the PLC model even further. In summary, the

SARIMA-LSTM model increased the forecasting accuracy on a yearly basis for four

consecutive years compared to a SARIMA-NDT model and SARIMA-PLC model, as

depicted in Table 6.6.

Year SARIMA-NDT SARIMA-PLC SARIMA-LSTM

2017 (last six months) 96.5 (82) 74.9 (68.7) 30.6 (27.3)
2018 174.5 (166.4) 68.2 (49.3) 47.7 (32.1)
2019 40.6 (31.2) 34.3 (27.9) 24.5 (21.2)
2020 (first six months) 119.8 (116.2) 107.7 (82.7) 83.1 (72.8)

Mean RMSE (MAE) 107.7 (99) 71.3 (57.2) 46.5 (38.4)

Table 6.6: Error comparison of the SARIMA-NDT, SARIMA-PLC, and the SARIMA-
LSTM for 2017-2020 using RMSE and MAE (in brackets)

In summary, the RMSE and MAE of the SARIMA-NDT can be improved by using the

PLC model for every year from mid-2017 until mid-2020. Furthermore, the SARIMA-

LSTM showed even more improvement over the PLC model and, with that, increased

the performance, equating it to the initial NDT model. Comparing the results of the

RMSE and MAE of all models shows that the SARIMA-NDT has potentially more large

outliers in the prediction as the MAE is closer to the RMSE in all cases, whereas for the

PLC and SARIMA-LSTM models, the MAE is significantly lower than the RMSE.

6.5 Discussion

In addition to improved accuracy, another advantage of the model is that it is able to

include more features into the prediction without much effort if the data is available on

a monthly basis for the given time horizon. However, one must be careful as just adding

new data does not mean that the accuracy of the forecast is automatically improved. As

different features are brought together within the SARIMA-LSTM, it would be possible

to include external factors such as economic data to make the forecast more robust for

external changes. As an example, this would especially be a benefit during economic

crises occurring due to pandemic diseases like the corona virus spreading all over the
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world in the beginning of 2020. Within the setup of the model, the following economic

variables were used without success: the global economic policy uncertainty index, which

is a GDP-weighted average of national indices for 20 countries, as well as the crude

oil prices. A suggestion for future research would be to also include several economic

indicators on a regional level to better reflect economic changes. As under 50 months

were used for the whole model, it would also be interesting to find if this would increase

the accuracy for a larger dataset.

The dataset had 48 months of observations in total; however, if larger datasets were

available, it would be interesting to investigate whether the LSTM model could po-

tentially learn the seasonal aspect of the data and compete with the SARIMA-LSTM

model. Nonetheless, such large datasets for monthly sales data are often hard to obtain

as most companies do not have them. For RRMC, the SARIMA-LSTM model provides

a combination of different data sources which were not juxtaposed before, thus enabling

the business to combine different data sources into one prediction. This is an innovative

approach as, in the past, their forecasts were mainly judgemental and not automated.

The automation and aggregation of the data through CRM systems as well as product-

specific sources not only improve the current forecasting accuracy but also save valuable

time.

However, the proposed SARIMA-LTSM model also has the drawbacks of both the PLC

and DCBM models, and within the current framework, it does not include external

car market data sources as this data is not publicly available except from the past

sales numbers used to train the PLC model. In addition, including economic variables

did not improve the forecasting for the given dataset, which cannot be generalised for

other datasets. Therefore, the SARIMA-LSTM framework should be applied to different

datasets to determine whether the same results are reproducible on other datasets. This

should be possible not only for other car manufacturers but also for different industries

where lead times of products are longer than those for daily purchased products like

chewing gum or other fast-moving consumer goods.

In general, ML algorithms need a significant amount of data to perform well, but there

is no general size to assess what is sufficient (Stephen, 2009). As the used dataset

covers 48 months of data, it is nearer the lower boundary of what is too small or too

large. Nevertheless, as the SARIMA-LSTM increased forecasting ability, it would be

interesting to note how much more accuracy the model would gain with more data.

However, with additional data, the computational resources needed to run the algorithm

would increase as well. This was tested to determine how the computational expense

would change by doubling the amount of data through appending the original dataset

to itself and thus resulting in 96 observations. The model uncertainty approximation

using dropout and running several times especially increased the computational cost for

a larger dataset size, requiring a linear computational cost rise of O(n). Nonetheless,
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as increased sales forecasting saves the business money, and the added required cost for

running the algorithms is manageable, the additional time and money are worth it from a

business perspective since the savings are much greater. Thus, for the SARIMA-LSTM,

the algorithmic scalability is worth the effort if more data becomes available.

Finally, the uncertainty in the prediction reflects the uncertainty of the LSTM part of

the model, estimated using dropout as a Bayesian approximation. The SARIMA model’s

uncertainty is already reflected in the residuals of the LSTM models. In this way, the

uncertainty approximated by the LSTM reflects the overall uncertainty of the model as

the residuals capture the uncertainty of the SARIMA aspect. As the LSTM models the

residuals of the SARIMA prediction, the overall uncertainty is incorporated within this

approach.

6.6 Summary

The new approach presented combines linear and nonlinear forecasting elements within

one SARIMA-LSTM model. The linear part is a SARIMA forecast of a product lifecycle

detrended time series with improved forecasting abilities due to the inclusion of product

features. The nonlinear part of the model takes the output of a demand-forecasting

model that creates different clusters, varying in size, which describe the demand. It

has been shown that the SARIMA-LSTM framework can improve upon the individual

performances of SARIMA and LSTM models and exploit the additional domain knowl-

edge provided by the DCBM and PLC approaches. Combining both approaches into a

hybrid SARIMA-LSTM model resulted in improved forecasting accuracy, evaluated on

RRMC’s dataset. It was able to improve the forecasting accuracy and was robust even

in the extreme period of the COVID-19 pandemic.
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Conclusions and Future Research

7.1 Conclusions

In most retail industries, sales forecasts are important for many reasons, from budgeting

to production planning. This research has thus developed new approaches to improve the

sales and demand forecasting by using global live data as well as PLC information. The

results indicate that forecasting accuracy can be improved on a regional and product-

specific level. The two proposed approaches are new ways of implementing a Markov

transition model by clustering the data beforehand to boost performance and using a

PLC detrending approach, where the launch of new products and the age of the product

influence the forecast. This research also combined both proposed models into one

SARIMA-LSTM model, which further improved forecasting accuracy.

For a company selling products globally, gaining accurate live forecasts from all countries

for different products is difficult, but it is important for reaching business targets. Using

sales pipeline data, which includes stage transitions reflecting the buying process, the

DCBM performed better than a common Markov transition approach. Within this

approach, a new way of clustering sales data was proposed, which creates three clusters,

each differentiated by the customers’ likelihood to buy a product. The novelty of this

approach is that the boundary between the first and second cluster varies based on a

time series forecast of conversion, which includes seasonal variations in buying behaviour,

present in most sales businesses which receive sales targets from top management.

The first research question regarding whether ML can enhance forecasting and demand

estimation when the external environment undergoes dynamic, rapid, and unforeseen

changes can indeed be answered positively as this can be predicted with the DCBM

model. Through evaluation, the DCBM approach demonstrated an increased perfor-

mance over a traditional Markov model on the car sales dataset.

75
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The second research question regarded how PLC information can be used to improve

traditional sales forecasting methods, and a new PLC approach was proposed. More-

over, classic time series forecasting provides strong results for most cases, but it has

one major drawback: only considering historic data in the forecast. The new PLC de-

trending approach improves sales forecasting by using information about the products’

lifecycles, which is also available for the future, thereby increasing forecast accuracy. For

years when new products are launched and old products run out of production, the PLC

approach outperformed a SARIMA forecast with common detrending by differencing.

For a 12-month sales forecast for RRMC, all 11 years were improved. The PLC ap-

proach detrends the time series by dividing it through the PLC curve, which represents

a product’s lifecycle, which was fitted by several Bass diffusion curves. The Bass model

parameters were estimated by a new ML framework. Thus far, research in that area

has focussed on forecasting sales for completely new products on the market, where no

data was available. The main difference with the new approach is that the forecasting

of existing products can also be improved. This can be applied by any business selling

luxury and expensive goods as the buying process is usually longer for these items than

for cheaper, fast-selling products.

Given the complementary strengths of the DCBM and PLC models, it was logical to

find a way to combine both. The solution was to create a SARIMA-LSTM to model

the linear and nonlinear parts of both models and thereby further increase forecasting

accuracy. Not only was the accuracy improved, but it also made it possible to include

other external variables which influence the forecast, such as economic factors.

This work further found that the hyperparameter tuning of the various models can

result in different findings; however, the focus was not on tuning hyperparameters or

the architecture of the models. Instead, the focus was on the methods behind the

models. Thus, for different datasets or problems, it might be useful to further explore

other architectures and their parameter estimation to optimise results.

On a field trip to different countries, the live sales data was analysed with the help of

local dealers, which supported previous assumptions made from the data and provided

new insights into how RRMC’s data is collected. Feedback was used to better adapt the

model to the problems occurring in real data applications. The findings demonstrate,

in theory as well as the actual business case, that the forecasting was improved and

supports the company’s planning for upcoming months and years.

Nevertheless, whilst this work was being written, a global pandemic started and spread

all over the world, affecting sales in all markets, ranging from cars to nearly all consumer

goods (Kim, 2020). Companies could not sell cars whilst their dealers or sales outlets

were closed, so the DCBM model was able to predict that sales would drop (dealers still

had some enquiries during this time, which lead to several sales). The SARIMA-LSTM

model predicted the change in sales regarding the direction of overall sales per region
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and model. The results show that the model not only reflects changes in sales but could

predict a large drop in sales during the outbreak of COVID-19, which was not built into

the model. This finding illustrates the power of ML for sales forecasting if the right input

is selected concerning the levers which drive sales and demand. SARIMA-LSTM makes

accurate sample predictions, indicating the robustness of the architecture combined with

the chosen input of PLC and global live sales pipeline data.

The initial research questions focussed in particular on improving sales and demand

forecasting with the help of ML. These questions have been answered by showing how

ML can enhance forecasting and demand estimations when the external environment

undergoes dynamic, rapid, and unforeseen changes as well as how PLC information

can be used to improve traditional sales forecasting methods. Both questions were

investigated, and evidence from practical experiments on real data from RRMC Motor

Cars showed improved results compared to their current forecasting methods. The

proposed models were also compared to current statistical and ML approaches.

The DCBM model improved clustering the demand data and making predictions from

it, which was later used in the SARIMA-LSTM model; however, the DCBM model

also improved forecasting on its own. The PLC model included new data into classical

statistical models by using ML techniques which generate product-specific information,

already available for the future, into a forecast. The final contribution of this work is the

SARIMA-LSTM model, which combines both the DCBM and PLC models and improves

forecasting in general, as well as forecasting the direction of sales during the COVID-19

pandemic within the uncertainty band of the model. Predicting sales affected by this

pandemic is an extreme case which clarifies the model’s ability to predict sales with the

external environment undergoing dynamic, rapid, and unforeseen changes.

7.2 Future Research

The proposed models in this research all showed improved accuracy on the given car

sales dataset. The approaches would also benefit from comparison to other datasets, but

such data contains confidential company information, so this was not possible to obtain.

However, it would be insightful for future research to apply the approaches introduced

in this work to other datasets currently not available.

Moreover, the DCBM and PLC models also have limitations for the existing car sales

dataset. For instance, the PLC will most likely not change, but with the introduction

of competitors’ products or new laws, the sales dynamic could change. Technological

leaps, like combustion engine to electric propulsion, could interfere with the past sales

behaviour and PLCs. Additionally, the DCBM approach uses live sales data, which is

dependent on the end user, in this case, every dealer’s sales teams using the system as
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intended. These limitations are beyond the scope of this research but might be addressed

in future studies.

Sa-ngasoongsong et al. (2012) have forecasted sales in the automotive world with similar

timeframes (from six to 24 months) as this research but with a focus on the economic

indicators and their effect on sales and demand. This current research touched on

the effect of economic variables, but these were not used for the proposed models as

their impact was not significant on the given dataset. However, especially for the rise of

alternative propulsion systems such as electric cars, government subsidies can affect sales

and demand more than any promotions or marketing activities by car manufacturers

themselves. This will be an important topic in the future of car sales and demand

forecasting and thus should be included in future research in that specific area.

Furthermore, Fildes et al. (2019) already raised the issue of changes in retail shopping for

store locations as well as the size of the individual stores. Especially in the automotive

market, where nearly all cars are currently sold via a dealer network, location is key to a

successful sales strategy. The DCBM model could be extended in the future to not only

include which regions perform best, but it could also include the location of the potential

customers to determine if the distance from their home to the dealer affects the sales

outcome and, if so, propose a better location for future dealers. Another point that could

be addressed in future research is that the DCBM model is based on a Markov model,

which only utilises the current stage to predict future stages. It would be interesting to

investigate whether the performance could be improved by using higher-order models

which include more than the previous stage in their predictions. To test this hypothesis

robustly, a greater quantity of data would be required than what was available for this

work.

Another consideration is that much work in the forecasting area focusses on stock keep-

ing units which are hard to sell and remain too long in sales outlets (Özden Gür Ali

et al., 2009; Ma et al., 2016). This area of forecasting research was not included in this

research but could be an important future research field as many car dealerships strug-

gle with expensive cars in their courtyard which do not sell and tie up large amounts of

money which could depreciate over time. This is especially the case if successor models

are released by the car manufacturer. Such information could be added through the

DCBM model into a company’s CRM system to promote already produced cars to other

dealerships which would have potential customers for them. As for the given dataset,

all dealers are their own legal entity and do not send customers to other dealerships in

most cases, so this was not investigated further. However, such a study could be applied

to other companies which have a different legal system in order to decrease the time

which products stay at the dealerships.

Other important factors are production capacities as well as logistics. Neither aspect

was considered in this work as the data was not available or was too complex to include.



Chapter 7 Conclusions and Future Research 79

However, both are limiting factors which could affect sales on a global level. If there

are production shutdowns, or unexpected maintenance is needed on the production

lines, sales will be affected by limited supply. Throughout a year, this effect might be

flattened, but for specific months, this will affect the forecasts. Nonetheless, obtaining

this kind of data is not straightforward as production or logistical problems may occur

due to unforeseeable external changes with suppliers or other factors such as climate

changes, which can impact production and logistic capabilities, especially for a small

manufacturer like RRMC, which has only one production line.

As a last consideration, future data sources should be discussed briefly as they will

increase in size and variety. Looking forwards, there will be more communication chan-

nels amongst customer, dealer, manufacturer, and everyone in between this supply chain.

Currently, most forecasting methods make use of the data of one of these channels to

forecast certain outcomes, and this work combined different data sources to improve

forecasting.

In the future, there will be more channels such as mobile apps or websites which will

gather more data about customer interactions, which might improve the overall knowl-

edge about a customer or potential customer. Due to legal restrictions like GDPR,

it is not straightforward to combine the data of different communication channels and

to identify specific individuals amongst different datasets and collect their information

under one customer ID. Therefore, it will be increasingly important to establish com-

munication channels with customers in a way that makes it possible to identify them

as a specific user (whilst respecting their fundamental right to anonymity if they do

not want to be identified and traced). This creates a new challenge for businesses from

a technical perspective but also gives them the opportunity to learn more about their

customers and their behaviour.

The implementation of new technologies and communication channels can gather data

to make better future predictions not only about sales but also for other important areas

such as predictive maintenance. Different communication channels such as WhatsApp

and WeChat or mobile applications like BMW Connected or Mercedes Me are just the

start of new ways to generate more data. Live production data from the production

machines could also be included in forecasts and predictions, supporting better decision

making for businesses. These channels generate new touchpoints between customers and

companies, and future forecasting models could benefit from the data generated from

them. Therefore, an important future research topic will be how to include all different

data streams into one prediction, and the proposed SARIMA-LSTM model could be

used as a starting point.
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