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Phase and Dissipative Behaviour of Complex 2D Materials

by Andrea Silva

Being a relatively new field, the vast chemical space spanned by two-dimensional materials
has so far only seen limited exploitation to optimise properties. In the field of tribology,
layered materials have been used for decades as solid lubricants, but the design of optimised
surfaces for friction in a systematic way, which relies on a predictive model of friction
that scales from the nanoscale up to micro/macro-scales, remained elusive. This thesis
makes a step in exploring the chemical space and stacking possibilities of two-dimensional
materials, informing experimental efforts to design tribological contacts. Moreover, it
extends the fundamental understanding of lubrication mechanisms, on which the design of
solid lubricants can be built.

The materials design aspects of this thesis focus on the phase behaviour of monolayers
and the inter-layer phase stability of twisted heterostructures. A framework was developed
to identify novel compounds obtained from substitutional alloys on transition metal sites
in dichalcogenide crystals, yielding a road-map for experimental efforts. A generalised
theory of epitaxy developed here rationalises the behaviour of heterostructures observed as
a function of the twist angle introduced between the lattices.

To advance the fundamental understanding of solid lubrication, the dissipative behaviour
of two-dimensional materials has been studied both in hetero- and homo-structures. Super-
lubric behaviour in large-mismatched heterostructures has been rationalised in terms of
edge effects and identified as a promising road to robust superlubricity. A novel framework,
based on the Prandtl-Tomlinson model and stochastic thermodynamics, allows evaluation
of a set of thermodynamic quantities in homostructures, providing a clear picture of the
dissipation in the system and a straightforward way to test the model against experiments.

In conclusion, the phase behaviour analysis shows that alloyed transition metal dichalco-
genides offer many opportunities for material science research, thanks to the densely
populated chemical space. Flexural phonons play an important role in the stability of
misaligned heterostructures, with implications for novel twistronic devices. The analysis
of tribological contacts highlights the importance of potential energy surface topology,
in addition to simple energy barriers, and of edge effects in determining the dissipative

behaviour of the system.
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Introduction

Since the discovery of graphene [3], low-dimensional materials have gained significant
attention from the scientific community. The reduced dimensionality of graphene compared
to its well-known bulk counterpart, graphite, yields exciting and unexpected changes in
the materials electronic and mechanical properties [3]. Shortly after, the same interest was
sparked by atomically flat sheets of transition metal dichalcogenides (TMDs) [4]. Beyond
the academic interest in this new and exotic polymorph, two-dimensional materials bring
the prospect of significant technological advancement. As showcased in Fig. [I.1] reduced
dimensionality is linked to properties sought after by engineers for real-life applications,
like superior flexibility and strength [5] or enhanced thermal transport [6].

Two-dimensional materials are critical players in the technological effort towards
miniaturisation that has accompanied human progress for ages. Fig. sketches the
progress of human technology with time and the progressive reduction of the typical length-
scale, from macroscopic tools in the bronze age to microscopic transistors in the past century.
Nowadays, technology advancement stands on a figurative edge, only a few nanometers wide,
with progress towards atom-based technology in tribology [8], electronics [9], catalysis [10],
and energy-storage [I1]. Understanding the thermodynamics of low-dimensional materials
and the laws of dissipation at the nanoscale scale is an essential step in advancing nanoscale
engineering.

In the field of electronics, 2D materials promise to help engineers to achieve ‘more-than-
Moore’ nanoelectronics [I2]. Transistors can be built from atomically-thin sheets, as
shown by Schwierz [I3] for graphene and by Radisavljevic et al. [9] for MoSs, sketched
in Fig. [I.3a] With improvements of traditional Si-based transistors starting to deviate

from the Moore’s law (the number of transistors on a chip doubles about every 18 to 24

1



2 Chapter 1 Introduction

4 Ultra-thin & extremely flexible

£ Structural

Tribology of two-
dimensional materials

..al!ﬂm“\\ "o
B e T

Defects and chemical

modification
1

\2 0\\“3\\0

High strength

. |

H 1
! 1
8 '
\

Electron-phonon e
- 5 e Superior thermal
ntt 1 .
L -1 ~ - conductivity

Figure 1.1: Showcase of enhanced properties of two-dimensional materials. Adapted from Ref.

[7.

months [I4]), the need for next-generation devices is growing stronger. Because of this
need, the Graphene Flagship (the €1 billion European investment into 2D-materials-based
technology) is supporting pilot projects to move graphene-based electronic devices from
laboratory testing to industrial reality [15]. The main goal is a graphene-CMOS technology
able to seamlessly integrate with existing electronics [12], like the processor prototype
shown in Fig.

In the field of tribology, the study of friction, layered bulk phases of graphene and
MoS; have been used in industrial applications for many decades [17]. Devices based on
single layers have the potential to make superlubricity a reality. First introduced by Hirano
in the early 90s [I8], superlubricity is a state of sliding without dissipation that would

eliminate dissipative energy leakage in tribological contact. The reliable realisation of

Eam
m A “" e Weapons
am Mass production
mm
um
Agriculture
nm Industrialisation
IT revolution
A Bio-X revolution

stone age bronzeage  semi-conductorage nano-technology

Figure 1.2: Length scales of human technologies throughout our history.
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() (b)

Figure 1.3: (a) A sketch of a single-layer MoSs transistor. The MoS, layer is not in scale. Adapted
from Ref. [I6]. (b) A functional microprocessor comprising 115 integrated transistors based on
atomically thin material. Adapted from Ref. [12].

this state has proven elusive, but micro-scale boron-nitride and graphene contact recently
shown promising result [19].

The SOLUTION programme [20], of which this project is part, is a small-scale framework
with a similar ambition to the Graphene Flagship in the field of tribology. The ultimate
goal of the SOLUTION project is to advance the fundamental understanding of solid
lubrication and to bring innovations closer to industrial applications. At the core of the
project is a drive to familiarise a new generation of scientists with a cross-disciplinary
attitude and promote collaboration between the research groups involved. Thus, this
framework has encouraged, during this PhD, collaborations with other institutions and the

synergy between multi-scale simulation techniques and experiments.

1.1 2D Materials

Following the discovery of graphene, the number of 2D material proposed by computational
studies numbers in the thousands [21, 22], and dozens materials have been synthesised
[23, 24]. The proposed 2D materials span the whole periodic table: they include more than
300 binary compounds and more than 700 ternary ones, with different crystal structures
and electronic characteristics [2I]. The chemical and structural complexity is expanded
even further if one considers heterostructures: the strong intralayer covalent bond and
weak van der Waals interlayer coupling make it relatively easy to manipulate 2D flakes
and stack them with a high degree of control [25].

The stacking process can be decorated with a twisting angle between the crystal planes,
introducing a novel continuous degree of freedom. This misalignment angle led Cao and
coworkers [26] to the discovery of a novel superconductive phase in bilayer graphene when
the two sheets are twisted at the magic angle of 1.1°, as shown in Fig. Understanding
the emergence of superconductivity in such a simple, carbon-only material promises to
shed light on the origin of unconventional superconductivity observed in more complex

high T, cuprates [27, 28]. More generally, this rotational degree of freedom has led to
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Figure 1.4: Sketch of the
QV experimental setup of the

@ bias superconducting twisted bi-

= layer graphene, adapted

from Ref. [26]. The inset
is a snapshot of a simula-
tion of the system showing

different stacking regions,
adapted from Ref. [27].

the flourishing field of twistronics, which aims to understand how to use this mismatch
angle to tune electronic properties [29] and optical emission properties [30] of homo- and

heterostructures.

Graphite and Graphene

Graphite is a layered material made solely from carbon atoms. The four carbon atoms per
unit cell are trigonally (sp?) bonded, resulting in the typical lamellar structure belonging
to the hexagonal P63/mmc space group [31]. The layers themselves are AB stacked, with
one carbon atom in each layer sitting over a corresponding one in the neighbouring layer
(full A and A’ circles in Fig. and the other carbon atom in each layer placed over the
centres of the hexagons of the neighbouring layers (hollow B and B’ circles in Fig. .
In the other high-symmetry stacking, AA, both carbon atoms in each layer sit over their
counterparts in the neighbouring layer; this stacking results in higher energy. Whereas
the atoms within a layer are covalently bonded with a bond distance of 1.42 A, van der
Waals interactions between the layers lead to a layer spacing of 3.35 A [31]. The unit cell
of graphite contains four carbon atoms, has a planar lattice constant of a = b = 2.46 A and
a perpendicular lattice constant of ¢ = 6.71 A [3I]. While the basal planes are chemically
inert, edges show pronounced reactivity [3I]. Graphene layers show armchair and zig-zag

termination, with the former having a lower formation energy [32].

z Figure 1.5: Crystal structure of
graphite. Adapted from Ref. [31]

3358
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The discovery of graphene has led to a new chapter in the study of solid lubricants. Its
mechanical strength, among the best (tensile strength of 130 GPa), prevents wear of both
itself and the substrate, although the lifetime is reduced at higher loads and defects can
affect the strength [33].

Transition Metal Dichalcogenides

The discovery of graphene and its dimensionality-dependent properties sent ripples through
the scientific world [4]. Although graphene exhibits enormous potential, its chemical
inertness is not always desired. The material science community quickly started searching for
other atomically thin materials, leading to the discovery of transition metal dichalcogenide

monolayers, which are more chemically versatile [4].

H MX, He
M = Transition metal
I Be X = Chalcogen B C N (0] F Ne

Na Mg 3 4 5 6 7 8 9 10 1" 12 Al Si P S Cl Ar

Rb Sr Y Zr Nb Mo  Tc Ru Rh Pd Ag Cd In Sn  Sb Te | Xe

Cs Ba La-Lu Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Fr Ra Ac-Lr Rf Db  Sg Bh Hs Mt Ds Rg Cn  Uut FI' Uup Lv Uus Uuo

Figure 1.6: Atom species forming the TMDs family. The slots colour-code refers to different groups.
Half-filled slots (Co, Rh, Ir and Ni) indicate that not all metal-dichalcogenides combinations form
layered structures, e.g. NiSy crystallises in a pyrite structure while NiTe, is a layered compound.
Adapted from Ref. [4]

Transition metal dichalcogenides (TMDs) are binary compounds with the general form
MXs, with M being a transition metal (TM) and X a chalcogenide. Fig.[L.6|reports the TMs
found to crystallise in layered structures that closely resemble graphite. Two-dimensional
sheets are formed by a metal layer sandwiched between two layers of chalcogenide atoms;

covalent bonds between metal and chalcogenide atoms hold these monolayers together.

(a) Prismatic (b) Octahedral

Figure 1.7: Prismatic (a) and octahedral (b) coordination. Adapted from Ref. [34]

Figures and show two common coordinations within the mono-layers (MLs).
Fig. shows the prismatic coordination, where chalcogenide planes are oriented in the
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same direction, and X atoms sit on top of each other. Fig. shows the octahedral
coordination, where chalcogenides planes are mutually rotated by 180°, leading to less steric
hindrance between X atoms compared to the prismatic solution [34]. The layers can then
organise themselves into many different polymorphs [35]. Fig. reports the three most
common stacking patterns found in the TMDs family: 17, 2H and 3R, where the digit
indicates the number of layers in the unit cell and the letter the symmetry [35]. The 17
polymorph, in Fig. [I.8h, is constructed by piling up layers with octahedral geometry. The
TM sites are vertically aligned between layer, as shown in Fig. [1.8h. The stacking sequence
is /AbC/AbC/, where the letter refers to a position in the cell; uppercase letters refer to
chalcogen atoms, lowercase ones to metals. This results in a unit cell comprising three
atoms and belonging to P3m1 (or ng) layer group [35]. The 2H polymorph comprises of
prismatic coordinated layers stacked with a 180° misalignment between them, as shown
in Fig. . The unit cell is composed of six atoms, and it belongs to the P63/mmc (or
D¢, space group. The 2H is found in two variations: 2H, (/AbA/CbC/), in which metal
sites in one layer are on top of the metal sites in the next layer, and 2H. (/CaC/AcA/),
in which the metal site is located on top of the chalcogenides atom in the neighbouring
layer (Fig.[L.8pb) [35]. The 3R polymorph comprises prismatic layers stacked in the same
orientation, yielding the three-ML unit cell shown in Fig. [1.8c.

1T 2H 3R

Figure 1.8: Side (upper row) and top (lower row) views of common stacking in the TMDs family.
Adapted from Ref. [35]

While the sizeable bandgap of single-layer TMDs make them attractive for electronic
applications [16], the interplay between the strong intra-layer covalent bonding and weak
inter-layer van der Waals interaction is the key feature that makes TMDs excellent solid
lubricants [36]. They have been widely used in those industrial applications where tradi-

tional oil lubrication is impossible, like space vehicles operating in vacuum, or when the
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risk of contamination discourages the use of oils.

1.1.1 Phase Behaviour

This thesis will focus on an aspect of first-principles material design often neglected: are
these materials with remarkable properties thermodynamically stable, and how feasible
it is to synthesise them? Can one develop a protocol and a deeper understanding of
structural changes and electronic effect determining stability in heterostructures and multi-
component ML systems? The description of the thermodynamics of a multi-component
crystalline material is a formidably difficult task. One crucial aspect is the complexity of
the configurational space of these materials, i.e. the combinatorial problem of describing
the energetics of different orderings of components within a given crystal. In order to
address this problem, a multi-scale approach is needed: knowledge is transferred from lower,
more advanced level approximation to simpler higher-level models, where some degrees
of freedom are averaged out. This approach allows building a consistent description of
processes happening on different scales.

Strong anisotropy of two-dimensional materials leads to a decoupling of properties be-
tween in-plane and out-of-plane directions. Thus, phase stability shows different behaviour

in these two directions, as outlined in the following.

Intralayer aspects of TM substitution Strong in-plane bonding leans towards tai-
loring of properties by chemical substitution of elements in the parent lattice. Alloy
and doping are helpful tools to tailor material properties for specific applications, like
adjusting the bandgap of 2D transistors [37] or creating magnetic materials suitable for
spintronic devices [38]. In tribology, experiments have found that mixing transition metals
in low-friction coatings may lead to an improvement in hardness and density, yielding
better performance [39].

Designing improved materials at an experimental level is often a costly trial-and-error
process. Layered materials are no exception: the space of possible chemical compounds for
pristine materials is already vast, adding doping possibilities and heterostructure stacking
makes it practically impossible for experimentalists to explore even a fraction of it. In this
scenario, input from theoretical studies identifying viable candidates and guiding synthesis

efforts are absolutely necessary.

Figure 1.9: Ground-state order-
ing of Na ions between TiSs planes.
Green and orange circles represent
Na ions and vacancies within the
honeycomb lattice formed by the
interstitial spaces. Adapted from
Ref. [40]
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First-principles alloy theory is a well-established field in metals [41] [42], [43] correctly
predicting the phase diagram of mixtures of two [44] and three [45] metals. In these
mixtures, the key to correctly describing the stability of competing phases is to accurately
describe the energy of different orderings of the ions on the lattice and to reliably estimate
the entropic contributions, which arise primarily from occupational degrees of freedom on
the parent lattice and vibrational effects [44]. Moreover, a modification of the alloy theory
has been successfully applied to transition metal oxides [46] and intercalation compounds
used in Li-ion batteries [40]. Only limited attempts to apply the same formalism to TMDs
are reported in the literature. For example, Raffone et al. [37] analysed Sn-alloyed MoS,
to stabilise the metallic 1T polymorph over the 2H stable configuration. The authors
identify a dependence of the bandgap from the TM-site impurity concentration, devising a
strategy to tune the electronic properties for tailored applications. In another example,
Burton and Singh [47] studied substitution on the chalcogenide site and computed the finite-
temperature phase diagram of the alloys MoSo_o,Tes,. The authors show an intriguing
coexistence of incommensurate orderings up to 600 K before disordered structures are

stabilised by entropy.

While no coherent knowledge of substitutional alloys in TMDs is found in literature,
it is possible to adapt findings from oxides and metals, keeping in mind the different
type of bonding occurring in this system. While in metal alloys interactions shaping the
configurational landscape are defined mainly by the direct overlap of electron orbitals,
the situation in chalcogenides is different due to the small size of the d orbitals of cations
compared to distances between them in the anion framework. In compounds of the form
M, Ny_; X2, M and N being transition metals, the covalent nature of bonds between metals
and chalcogenides means interactions between metal cations in the sub-lattice is mainly
mediated by the chalcogenide anion framework. Thus, the direct overlap of metal orbitals is
expected to be less pronounced, albeit more than in oxides where marked electronegativity
of oxygen anions results in more ionic bonds [46]. Charge localisation resulting from the
covalent bonding, as opposite to delocalised metallic bonds, may result in electrostatic
interaction, as found in some perovskite systems [48], and magnetic effects [38]. While
these effects have a significant impact on the magnetic ground states in oxides [46], the
effect on the formation energy of alloys is of second order. Due to the less localised bonds
in chalcogenides compared to oxides, magnetic effects are expected to be less pronounced,
although they cannot be ruled out [38, 21]. On the other hand, less stiff chalcogenide-
metal bonds make them more prone to electron-lattice coupling effects, with anharmonic
effects like Jahn-Teller distortions potentially playing an important role in stabilising

orderings [49).

Interlayer The strong asymmetry in strength between intralayer and interlayer interac-
tions in layered materials makes it possible to play LEGO® on the atomic scale, stacking
different crystals on top of each other in heterostructures, as shown in Fig. Different

types of single layers can be mixed and matched to create new superstructures, termed
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heterostructures [25, 50, 51, 52]. A key feature affecting the behaviour of multi-layered
structures is the relative orientational mismatch between layers. While heterostructures
are intrinsically incommensurate due to the different lattice constants of the parent layers,
incommensurability can also arise in homostructrures due to relative misalignment of the
single layers [53].

Figure 1.10: Atomic scale LEGO®

with 2D materials heterostructures,
adapted from Ref. [25]

The relative mismatch between layers, both for homo- and heterostructures, has
been related to a range of electronic and mechanical properties [54], 55, 56, B3, BT, 5,
58]. A flourishing new branch in the field of condensed matter, known as twistronics,
promises to allow fine-tuning of the electronic properties using the rotational misalignment
between layers [56, 26]. A notable example is the recent discovery of unconventional
superconductivity in bilayer graphene twisted at the magic angle of 1.1° [26]. Another
study found that the vertical conductivity of bilayer MoSs/G heterostructures varies by a
factor of five when imposing an angle of 30° between the layers [59]. Finally, a pioneering
work [53] showed that, by switching from commensurate to incommensurate orientation
in graphite systems, it is possible to achieve a state in which the coefficient of friction
vanishes, the so-called superlubric regime.

An often overlooked question in these novel twisted heterostructures is whether this
orientational ordering is stable and what underpins the energy landscape as a function
of the mismatch angle. Chapter [3] explores this problem by means of classical MD and
first principles calculations. While calculations are carried out on a specific system
(MoSjy/graphene), the conclusions and the proposed generalisation of known epitaxy theory

are general in nature.

Synthesis of 2D Materials

Mono- and few-layer thick crystals are mostly obtained in two ways [60]: micromechan-
ical exfoliation and chemical vapour deposition (CVD). With the so-called Scotch-tape

exfoliation method [3], 61], crystalline flakes are removed from a bulk layered crystal and
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transferred to a substrate material. The method yields highly crystalline flakes, as the origin

is a fully crystalline bulk, but offers little control over the size and chemical composition.
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Figure 1.11: Sketch of the CVD techniques and resulting samples. Adapted from Ref. [23].

In CVD synthesis [62], sketched in Fig. material precursors are evaporated,
channelled into a high-temperature chamber (400 °C 900 °C), where they are then allowed
to recombine onto a substrate, usually silicon oxides. While samples obtained by CVD
are more prone to defects compared to exfoliated ones, high quality is achievable, and
using different precursors and protocols allows for great freedom in chemical composition
and sample sizes. In 2018, Zhou et al. [23] showed the power of CVD by compiling
an experimental library of known TMDs in monolayer form. The author showed how
having high level of control over the process allows for tuning between pm-sized high-
quality isolated flakes (right branch of Fig. and full-coverage poly-crystalline layers
up to a fraction of mm in the lateral dimension (left side of Fig. [I.11]).
authors show the capabilities of CVD to synthesise TMD alloys, e.g. Mo,Nbj_,So, albeit

experiments provide little information about exact stochiometry or ordering of stable alloy

Moreover, the

configurations. Shortly after the work by Zhou and coworkers, Shivayogimath et al. [63]
developed a modified CVD technique that could offer more control of TMD alloy synthesis.
The authors used an Au-M alloy as a substrate, where M is one of the metals in Fig.
and subsequently exposed it to the chalcogenide precursor. The authors show that, since
Au shows low reactivity with chalcogenides, high-quality TMD flakes are formed on the
substrate. In principle, by using an alloy as a substrate, based on the TM in Fig.

one could obtain TMD alloys using this technique. Preliminary tests are underway at a
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partner of the SOLUTION framework, the Forth laboratories in Patras, Greece, which
could validate the results shown in chapter

TMD-based coatings used in industrial applications are mainly obtained from physical
vapour deposition techniques, like magnetron sputtering [64, [65]. The process is based
on precursor targets ionised by accelerated Ar ions and subsequently accelerated towards
a heated substrate by an electric field. The process is highly kinetic: ions impact the
substrate with kinetic energy in the order of 10eV and have little time to diffuse and
recombine towards the thermodynamically stable phase. The result is the formation of
metastable amorphous films, like the one shown on the left of Fig. [[.12a] Since amorphous
films lack by definition periodicity, any model of such structures requires a large number
of atoms to be considered. The lack of periodicity puts amorphous film beyond the
reach of standard DFT techniques, requiring computationally more efficient approaches
like empirical potentials [66] or linear scaling DFT [67, [68]. Nonetheless, experiments
showed that amorphous coatings can re-organised in crystalline layers at the sliding
interface, see Fig. [39]. Computational analysis showed that the heat at the sliding
interface promotes crystallisation towards thermodynamically stable structures while out-
of-equilibrium effects due to the moving interface can be neglected. Thus, simulations

utilising highly crystalline interfaces have implications for amorphous contact as well.

Figure 1.12: (a) High-Resolution Transmission Electron Microscopy (HRTEM) of a sputtered
WSs coating at the sliding interface. The inset shows a magnification of the layered structure
emerging from the amorphous matrix at the contact; adapted from Ref. [39]. (b) Sketch of the
simulated re-crystallisation of MoSs, adapted from Ref. [66].

1.2 Tribology

In 1966, Jost et al. [69] coined the word tribology, which means the study of ‘rubbing’” when
two surfaces are in contact and in relative motion. It is estimated that 23% of the world’s
total energy consumption originates from tribological contacts [70], making the study of
friction a relevant field from an engineering perspective. While the classical way to address
this problem is via oil-based lubricants, these are linked to severe environmental problems
and are not suited for operating under demanding conditions, e.g. high temperature or

contact pressure [7]. A relevant example of an application of tribology, and specifically
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TMD-based lubricants, is spacecraft. In this context, the temperature can quickly shift from
a cryogenic regime to several hundred Kelvin, and the pressure ranges from atmospheric to
high vacuum, making conventional oil-based lubricants impractical [I7]. In this case, solid
lubricants, in the form of a thin layer, or coating, deposited on the surfaces in contact,
provide a better technical solution. Frictional behaviour of 2D material also relates to the
development of Micro-Electro-Mechanical Systems or MEMS. These microscale systems
operate at nanometer precision and find applications as micro-actuators and sensors [71].
Considering the scale of these devices, the presence of liquid and devices to control them, like
pumps, is not advisable due to capillary effects and limited space on the device itself [72] [73].
Thus, these devices often require atomically thin layers of crystalline materials to ease
the movement of different components and to extend their lifetime [71]. Of course, there
are several drawbacks to solid lubricants. In general, they have low wear resistance and
are sensitive to environmental conditions [73]. For example, MoS; is found to have an
increased coefficient of friction (CoF) in humid environments, whereas graphite requires
humidity to achieve low CoF's [73]. Moreover, applying and replenishing a solid lubricant

coating poses more difficulties than classical liquid-based counterparts [17].

To summarise, the ideal solid lubricant would have high wear resistance, low sensitivity
to environmental conditions, and a technologically convenient strategy for replenishing it
should be available [73]. The research for such materials is a material science problem,
as these problems and targets can be addressed by careful tuning of the chemistry and
structure of the materials [65] 64]. For example, it has been shown that Ti doping enhances
the tribological performances of MoSs-based coatings in humid environments [74], while
Ta additions help improve fatigue resistance [75]. While these two represent trial-and-error
experimental approaches, a theoretical investigation of underlying microscopic behaviour of
different dopants and alloys is lacking. The phase stability analysis presented in chapter
makes a step in this direction. The main aim of this first step is to provide experimentalists
with a guide in the chemical space of TMDs, identifying thermodynamically favoured
chemical orderings and crystal structures that are expected to form at the tribological

contact.

While the empirical laws of macroscopic friction are well known [76], the mechanisms
governing dissipation on the atomistic scale are still unclear [77, [78]. Moreover, a micro-
scopic understanding of the effect of chemical composition on friction is largely uncharted
territory [79,80]. These open questions make the quest for a coherent theoretical framework
of friction an exciting field of physics. Such a framework would allow bridging the empirical
description routinely deployed at different length-scales [81], as sketched in Fig. .
This thesis alone will not provide such a framework. Nonetheless, section [6.2] presents
an extension of a known model based on novel frameworks, which allow for a coherent
evaluation from microscopic variables of thermodynamic quantities during violent frictional

events.
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Figure 1.13: Approaches deployed at different scales to model frictional behaviour. Adapted from

Ref. [81]

Friction Laws From a scientific point of view, friction, and more specifically ‘dry’ friction,
is the thwarting force opposing the sliding motion between two solid surfaces in contact,
as a result of the dissipation of energy (e.g. mechanical energy that is transformed into
heat) and an irreversible loss of momentum [82]. In the empirical Amontons-Coulomb (AC)
model [83], [84], friction is defined as the force opposing the relative motion of two objects.
This is not a fundamental force, and it is artificially introduced in the equation of motion
with suitable empirical coefficients. The AC model defines two different kinds of frictional
forces: the static friction Fg and the dynamic friction Fy. The former describes the force
barrier that a body in contact with another must overcome to start moving. The threshold

to the body in motion depends linearly on the applied load:
Fs:,uana (1'1)

where pg is the static friction coefficient of the system, which depends on the materials in
contact, the temperature, the possible pressure and type of lubrication. A similar relation

holds for the dynamic friction, which applies when the two bodies are in relative motion:
Fy = paF,, (1.2)

where pq is the dynamic friction coefficient, found to be smaller than the static one. In
this simple model, both coefficients are constant. They are independent of the environment
in which the sliding takes place, e.g. temperature and contamination. Moreover, the
characteristics of the contact, i.e. sliding velocity and contact area, are not considered

either.
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1.2.1 Nanotribology

The familiar friction experienced at the macroscale arises from a set of different phenomena
occurring at the microscopic sliding interface. When zoomed in, the apparent flat surfaces
of the two macroscopic objects in contact appear as rough surfaces with multiple points of
contact, as illustrated by the yellow and grey regions in Fig. At this scale, processes
take place at a set of contact points, termed asperities, rather than a single contact.
Fig. illustrates the processes that are captured by the umbrella term tribology: from
fast quantum and electronic effects, happening on the order of picoseconds, to slower wear
and ageing processes, stretching up to seconds. Moreover, most of the phenomena are
out-of-equilibrium processes, where thermodynamics formalism finds limited applicability,

or its meaning is ambiguous.
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Figure 1.14: Phenomena occurring in a tribological contact formed by two rough surfaces (gray
and orange regions). Adapted from Ref. [81]

Whether the AC model applies at the nano- and micro-scale is an ongoing debate.
While it assumes the friction coefficients p; to be constant, it has been observed that they
can vary with contact characteristic [81) [82]. Moreover, the frictional force at nanoscale
has been shown to depend on the contact area [85] [86, [87], while the AC model assumes a
linear relationship between load and force, Eq. and , independent of the contact
area. In the case of static friction, ageing of the contact results in pg increasing [88]. In
the case of kinetic friction, g decreases with increasing sliding velocity [81, 82]. Ad hoc
corrections to the AC model can account for this [81I]. On the other hand, Mo et al. [85]
argued that the linear AC relation might be valid at the nanoscale given a correct definition
of the area of contact. The authors showed with numerical calculations that AC still
applies if the contact area is defined in terms of the atoms chemically interacting at the
contact, shown as red dots in Fig. m This yields the relation Fg = 7Y Aatom, Where
7 is an effective shear strength for the contact and Aatom is the average surface area per
atom (gray hexagons in Fig. , in contrast with the result of Bowden and Tabor [87]
Fq = 7)Y Aasp, where Ay, is the single asperity area, which is the region enclosed by the
black polygon in Fig. [1.15] clearly different from the sum of the hexagons representing the
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area per atom.

Figure 1.15: Asperity contact area (en-
closed by black line) and atoms forming
the real contact (red dots). Adapted from
Ref. [85]

@ Atoms in contact

@ surface area per atom

—— Contact edge

As hinted by this summary, the problem of surface roughness is a complex field, at
the interface between atomistic, nanoscale tribology (=~ 10~?m) and continuum, mesoscale
tribology (= 10~*m [89]). The common approach in nanotribology is to focus on a single
asperity contact, limiting the size of the system to 107 = 10~7 m and 107 = 10~* s. This
single asperity can be modelled as a point-like object sliding over a substrate, allowing
for an efficient description of the substrate and long-dynamical response [90} OT], or as
two locally flat crystalline surfaces, focusing on contribution to the friction of intrinsic
properties of the material [92] [93]. As sketched in Fig. phenomena in this realm
are described employing different techniques. Out-of-equilibrium effects are described by
classical Molecular Dynamics (MD) simulations, powered by carefully parametrised classical
potentials, termed Force Fields (FF), [94, [95], or by low-order models, such as the Prandtl-
Tomlinson (PT) model [96] [77]. Descriptors based on electronic structure calculations,
like Potential Energy Surfaces (PES) [93] 97] or phonon-based quantities [80), O8] tackle

intrinsic friction properties.

Friction Force Microscopy The most common methods to investigate nanoscale fric-
tion is Atomic Force Microscopy (AFM), first proposed in 1986 by G. Binnig et al. [99)] as
a modification of Scanning Tunnelling Microscopy. The working principle of AFM is shown
in Fig. an atomically sharp tip (~ 10nm [I00]) slides over a substrate, yielding A
resolution of the topography [99]. Shortly after the work of Binning and coworkers, Mate et
al. [I01] were the first to develop a modified version of the AFM to observe the atomic-scale
friction of a tungsten tip on a graphite surface. The authors’ Friction Force Microscopy
(FFM) exploits the lateral deflection of the tip to measure the force opposing the sliding of
the tip over the substrate [I01]. The simplest way to model FFM experiments is via a PT
model, which can qualitatively explain the bulk of the frictional behaviour [90} 102} 103].
Nowadays, large-scale atomistic simulations allow the explicit description of an entire AFM
tip explicitly, shedding light on mechanisms which are not describable by PT-like models.
For example, it is possible to investigate the role of the finite size of tips and mechanical

properties in the formation/rupture dynamics of contacts and as channels for dissipation
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and wear [104].

SAMPLE
(a) (b)

Figure 1.16: (a) Sketch of the AFM idea of a tip sliding at speed v over a substrate material.
Adapted from Ref. [99] (b) Finite AFM tip sliding at speed v over a graphene layer protecting a Pt
metal substrate. Adapted from Ref. [104]

Non-linear dynamics

As sketched in Fig. [[.14] a contribution to frictional dissipation is energy dissipation,
transforming the kinetic energy of the sliding bodies into forms of heat. These are out-
of-equilibrium processes challenging the classical thermodynamic framework. A vital
distinction runs between dissipative phenomena related to linear- or non-linear dynam-
ics [105)]. Linear dissipation can be addressed with linear response tools, which, in simple
cases, allow for analytical solution [78]. On the other hand, non-linear dynamics pose theo-
retical problems [105]. A classic example is the stick-slip dynamics observed in crystalline
interfaces: the contact alternates for long time periods around the energy minima (stick)
with sudden snaps over the energy barrier in the PES (slip). These decoupled time scales
between stick and slip mean the linear response theory hypothesis of smooth deviation
from equilibrium behaviour is broken [105]. The stick-slip dynamics is thus usually treated
by direct integration of the equation of motion of empirical models, most notably the
PT model [106], 90, 103], mimicking a single asperity sliding over a substrate as sketched
in Fig. and the Frenkel-Kontorova (FK) model [107, 108], describing an extended
contact (multiple asperities or a soft crystal) sliding over a rigid crystalline substrate.
Section [6.2] introduces a generalisation of the PT model based on state-rate theory and
stochastic thermodynamics [109] which provides a derivation of thermodynamic quantities

in non-equilibrium processes, e.g. entropy production, from microscopic variables.

Figure 1.17: One-dimensional Prandtl-
Tomlinson model. A point-like mass M is
connected via a spring of constant K to a
body moving at constant velocity v while and
interacting with a static potential V(x) of
amplitude U and periodicity a, mimicking the
sliding of an AFM tip over an atomic surface.
Adapted from Ref. [110].

(a)
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Structural Superlubricity

Within the AC model, frictional response is defined by the dimensionless parameters
ls > iiq. For example, the dynamic coefficient of friction for wood planks in relative motion
is of 0.2 and larger, whereas for two metal surfaces it is 1.0 and larger [57]. For interfaces
treated with solid lubricant coatings, this can be lowered to 0.05 [7]. Assuming the AC
captures the dissipation at this scale, one may wonder how small these coefficients can be.

Going even further, can they physically be ezactly zero, yielding dissipation-free interfaces?
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Figure 1.18: A sketch of the Frenkel-Kontorova model. A linear chain of point-like masses M
are connected via springs of constant K and equilibrium spacing I;,. The masses interact with a
periodic potential V' (z) of amplitude Uy and spacing [,.

In 1983, Peyrard and Aubry [I11] showed emergence of a state characterised by a van-
ishing static friction coefficient in the one-dimension incommensurate FK model, depicted
in Fig. [[.I8 The core idea behind this free-sliding state is an underlying cancellation
of forces opposing the motion of the atoms from the ground state: for every atom going
up the substrate potential, there is always another atom somewhere in the infinite chain
going down, resulting in an exact energy balance and an unconventional ‘effective’ transla-
tional invariance. Numerical simulations have shown that the vanishing static friction is
accompanied by a small yet finite dynamic friction dissipation [112]. From an operative
and experimental point of view, the onset of the structural superlubricity is defined as the
friction coefficient falling below 10~% <+ 1073 [72].
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Figure 1.19: (a) Adapted from Ref. [TI3]. (b) Friction signal in AFM experiments from graphene
flake on graphite as a function of the imposed rotation. Adapted from Ref. [114].

As a historical note, the term superlubricity was first introduced by Hirano and Shinjo

a decade after the Peyrard and Aubry paper, marking the official start of the quest to
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frictionless sliding, sketched in Fig. Another decade later, experimental validation
of these theoretical predictions was given by Dienwiebel et al. [53]. Using AFM in high
vacuum, the authors measured the coefficient of friction between a graphite substrate and
a graphite-covered tip as a function of misalignment angle. Fig. [I.19b| reports the frictional
signal versus the imposed angle. It shows how frictional forces away from the aligned
configuration, 0° and 60°, are reduced below the accuracy of the instrument [53].

The experiment by Dienwiebel and coworkers shows how the argument underpinning
the Aubry argument in the 1D model is extended to higher dimensions. Consider two
atomically flat layers, free of contaminants and dangling bonds. The PES that the sliding
layer experiences, due to the presence of the static one, is purely the result of interatomic
interactions [57]. These electrostatic and van der Waals interactions result in preferential

positions and orientations of one surface atop another.

R

Commensurate Incommensurate

Figure 1.20: Schematic representation of different ways to position periodic surfaces above each
other. a) Homogeneous commensurate minimum energy configuration. b) Homogeneous incommen-

surate structure through a mismatch angle between the layers. ¢) Heterogeneous incommensurate
contact where both surfaces have the same symmetry but different lattice constant. Adapted from

Ref. [115]

Fig. shows the possible ways in which the two atomic surfaces can be brought
into contact to form a tribological contact. Fig. [[.20p is a schematic of two identical,
aligned structures, positioned above each other, in a minimum energy configuration. This
orientation, where the bottom and top layer are aligned in the parallel plane, is called a
commensurate structure. As one might expect, this configuration is very stable, which
implies a relatively high resistance to making the top layer slide. This resistance is due to
the energy barriers resulting from the atomic interlayer interactions that all have to be
overcome simultaneously, causing high frictional forces in order to start sliding. Whenever a
misalignment angle between the relative orientation of the layers is introduced, as depicted
in Fig. [[.20p, the contact becomes incommensurate. As a result, pairs of atoms can be
found at any possible relative distance, bringing back the Aubry argument about cancelling
forces outlined at the beginning of the section. Rotating one of the two layers is not the only
way of achieving this symmetry breaking. If one, for example, considers a heterostructure
of two different materials, possibly with the same symmetry but with a different lattice
constant, the same effect can be achieved, see Fig. [[.20c. In conclusion, misalignment

angles or lattice mismatch introduce the structural incommensurability required by the
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Aubry theory and represent a possible pathway to achieving superlubricity in real contacts.

An example of robust superlubricity in mismatched heterostructures has been recently
reported by Song et al. [19]. The authors focused on hBN/graphene heterostructures,
which are characterised by a small mismatch of lypn/lg =~ 1.1. They tested the frictional
properties of extended contacts, (3 x 3 um?) flakes over a larger substrate obtained by
exfoliation methods, finding a vanishingly small frictional coefficient via AFM measurements.
MD simulations reproduced the observation and rationalised the finding. In commensurate
graphitic contacts, large dissipation is related to the stick-slip of the layers’ centre of mass
(CoM). On the other hand, in hBN/G heterostructures the CoM cruises over the substrate
undisturbed, while the small dissipation detected is due to internal degrees of freedom of
the layers [19]. Section further explores the pathway towards robust superlubricity
by focusing on the large mismatch limit. The dissipation of MoSs/G heterostructures
lhpN/lc =~ 0.8 is compared with the near-commensurate G/hBN case in a joint experimental
and computation work carried out in collaboration with groups in Prague, Czech Republic

and Beijing, China.

1.3 Aims

This project aims to study the phase behaviour and frictional properties of (novel) 2D
materials. Particular attention is given to the application of TMD as solid lubricants.
Numerical techniques can create fully controlled ‘in silico’ experiments, not only regarding
the environment but also the interactions within the system. They can thus act as
a magnifying lens for experiments and, by tuning the physics underpinning different
phenomena, test hypotheses in ways not possible in experiments. Thus, experiments and
theory do not exclude one another, but it is the synergy between them that creates real

scientific power.

The goal of the interlayer phase behaviour investigation is to understand the mechanisms
defining the energy landscape of heterostructures based on TMDs and other 2D materials.
In particular, the focus is on the dependence of energy on the imposed misalignment angle

at the base of the emerging twistronic field.

The in-plane phase behaviour investigation aims to develop a framework to understand
and predict the thermodynamic behaviour of substitutional alloys in TMDs. The knowledge
gained should help to identify possible binary alloys and predict their phase behaviour,
guiding synthesis efforts.

The goal of the investigation of nanoscale tribological contacts is to rationalise AFM
experiments, relating measured frictional forces to dissipation mechanism within the system
and with the surrounding. Thus, making a step in developing a fundamental understanding

of the lubrication mechanism, on which design of solid lubricants can be built.
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1.4 Thesis Outline

Most of this thesis represents a compilation of results presented or submitted to scientific
journals. It addresses the issues of phase stability and alloying in two-dimensional materials
and their frictional behaviour during dry sliding.

Chapter [2| presents the theoretical frameworks and numerical techniques deployed to
address these questions. Density Functional Theory was used to describe the electronic
structure and total energy of the crystalline system; it also represents the reference for
statistical mechanics models of formation energy and finite temperature behaviour.

Chapter [3] explores the problem of phase stability in heterostructures, focusing on the
rotational degree of freedom. The limits of a known theory of epitaxial stacking are tested
on a specific system. A novel argument rationalises the breakdown of the known theory,
and an extension of the known theory is outlined. This chapter is based on the publication
“Exploring the stability of twisted van der Waals heterostructures” by A. Silva, V. E. P.
Claerbout, T. Polcar, D. Kramer, and P. Nicolini, ACS Appl. Mater. Interfaces 12, 45214
(2020).

Chapter 4] reports a systematic analysis of phase behaviour of possible TMDs. Compu-
tational screening of selected TMs in known layered prototypes yields a bird-eye perspective
of possible alloys system. The chapter continues with a detailed analysis of selected stable
orderings and miscibility gaps in a set of ternary systems. This section is based on the
manuscript “High-throughput Design of TMDs Alloys” by A. Silva, T. Polcar, and D.
Kramer, in preparation for Npj Comput. Mater.

Chapter [5| builds on the protocol outlined in the previous chapter and presents an
in-depth analysis of the (Mo:Ti)Sy system, relevant to the tribology community. Zero- and
high-temperature behaviour is studied and rationalised in terms of electronic effects. This
chapter is based on the publication “Phase behaviour of (Ti:Mo)Sy binary alloys arising
from electron-lattice coupling” by A. Silva, T. Polcar, and D. Kramer, Comput. Mater.
Seci. 186, 110044 (2021).

Chapter [6] addresses the problem of simulating tribology experiments. Section
presents a joined experimental and computational characterisation of the frictional prop-
erties of large-mismatch heterostructures. The study focuses on describing scaling laws
of observed superlubricity, and the developed classical model rationalises the trends in
terms of enhanced flake-edge mobility. This section is based on the manuscript “Ultra-low
friction and edge pinning effect at large lattice mismatch van der Waals heterostructure
interfaces” by M. Liao, P. Nicolini, L. Du, J. Yuan, S. Wang, H. Yu, J. Tang, P. Cheng, K.
Watanabe, T. Taniguchi, L. Gu, V. E. P. Claerbout, A. Silva, D. Kramer, T. Polcar, R.
Yang, D. Shi and G. Zhang, under review in Nat. Mater.

Section [6.2] introduces a modified model for AFM measurements. The combination of
DFT-based material descriptions with stochastic thermodynamics allows for a coherent
description of the dissipation on single experimental trajectories. The results of the model
can be validated experimentally with known techniques. This section is based on the

manuscript “Multi-scale Model for Nano-friction Measurements” by P. C. Torche, A. Silva,
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T. Polcar, D. Kramer and O. Hovorka, in preparation for Phys. Rev. Mater.
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Methods

The first three sections of this chapter are dedicated to the theoretical frameworks used to
describe the physics underpinning materials behaviour at different length- and time-scales.

The last section introduces the approximate models used to describe materials properties.

2.1 Density Functional Theory

The Density Functional Theory (DFT) is a formulation of the quantum theory of electronic
structure, in which the electron density n(r), rather than the many-electron wave function
W, plays a central role. This alternative viewpoint, which earned Kohn and Pople the
Nobel Price in 1998 [116], is an exact formulation of the electron problem, but it also has
the advantage of providing a formalism that naturally lends itself to approximate solutions.

The starting point to introduce DFT is the standard formulation of the Schrédinger
equation for the wave function of a Ne-electron system within the Born-Oppenheimer

approximation:

2m

hv2,
> (- i —i—v(ri)) +) U(riry) | Uy, orn,) = E¥(ry,ry,),  (21)
ij

%

where v(r;) = >, ‘T_Q_i’“}ezk‘ is the external potential generated by the nuclei of charge

Q. at positions Ry, and U(r;,r;) = VL is the Coulomb electron-electron interaction

i— 5]
potential. In Dirac notation, Eq. (2.1)) can be understood as an eigenvalue problem for the
Hamiltonian operator

H|U) = E|T), (2.2)

23
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where H is composed of the terms in squared brackets in Eq. .

The widespread use of DFT compared to methods based on multiparticle wavefunc-
tions is rooted in the manageable scaling of the computational time Ti,,. The time
needed to obtain the electron density scales as Ty ~ N& with o« = 2 — 3, while, in a
wavefunction-based framework, the scaling is exponential with the number of electrons.
Recent developments are focusing on achieving true linear scaling, o = 1, making DFT
able to treat larger systems usually requiring classical mechanics methods [67]. Moreover,
the wave-function W(ry, ...,ry,) of N, electrons is an incredibly complex object going from
3N, space of electron coordinates to C, making it a difficult object to treat and store [116].
Physical quantities of interest are obtained by integrating degrees of freedom from ¥. As

an example, the electron density itself is given by
n(r) = Ne/|\Il*(r,r2,...,rNe)\I!(r,rg,...,rNe)|dr2...drNe, (2.3)

which is a scalar function of the 3D vector r.

The Hohenberg-Kohn Theorems

The Hohenberg-Kohn (HK) theorems are the foundation of DFT. They prove that ¥y and
all the other observables of the system can be computed in terms of ng(r). This means
that ng(r), a function of a single 3D vector variable r, contains the same information as a
function of ry,...,ry,. The apparent paradox is explained from considering that ¥ not
only yields the ground state density according to Eq. , but must also minimise the
energy as expressed by the variational formulation of Eq.

Egs, < (V[H|V), (2.4)

where Egg, indicates the ground state energy with external potential v(r). The Hamilto-

nian of the system can be divided as

H=T+U+V, (2.5)

~ 2v72
where T'= ), hmvni is the kinetic energy operator, U = )

e
i [ri—rj]

is the electron-electron
potential and V = >, v(r;) is the external potential energy. The T + U part of the
Hamiltonian is universal, and the specific system is defined only by the potential V. The

energy of the system can be expressed as a functional of the electron density as

Eln(r)] = / n(ryu(r)dr + Fln(r)], (2.6)

where F[n(r)] is an unknown, universal functional expression for the kinetic energy and
electron-electron interactions.
The first theorem states that the external potential v(7), and hence the total energy, is

uniquely determined by the electron density n(r). The proof of the theorem if found by
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reductio ad absurdum. Assume there are two different external potentials v1(r) and vy (7)
resulting in the same density n(r). In turn, the two Hamiltonians H, and H; associated
with the two potentials have different ground-state wave-functions ¥; and Ws, both yielding
n(r). The variational principle in Eq. and for the first Hamiltonian H; evaluated

on the second ground-state ¥y yields

Easu, <(Ua|H1| Vo) = (Vo Ho| Vo) + (Vo Hy — Ha|Uy) (2.7)

= Egs v, + /n(r)(vl(r) — va(r))dr. (2.8)

An equivalent relation is found for the opposite situation, i.e. H, evaluated on the

ground-state ¥;. Adding the two inequalities yields
Ecsu + Ecsw, < Easa + Ecs (2.9)

which is impossible, and thus the ground-state density uniquely determines the external
potential v(r).
The second theorem shows that the variational principle in terms of wave-functions,

Eq. (2.4)), holds for the density as well
n' # ng — E[ngly, < E[n’], (2.10)

This property is essential as it assures that by minimizing the energy from a trial density

one only gets closer and closer to the actual ground state.

The Kohn-Sham Equations

The HK theorem results can be implemented in different frameworks. A widely used choice
is the one created by Kohn and Sham [I17], as it casts the problem in a one-body formalism
and expresses the density n(r) in terms of single-particle orbitals {¢;(r)}, reducing the
problem to a set of coupled differential equations that can be solved iteratively. The kinetic
energy term in Eq. can be written as T = Ty + T, where T is the kinetic energy of
a non-interacting electronic systenﬂ The non-interacting kinetic energy is expressed in
orbitals {¢;(r)} by the functional

2 Qe

——Z/d 61 () V2, (r), (2.11)

and T, = T — Ty includes all the correlation effects not included in the non-interacting
system. Likewise, U = Uy + U,, where Uy is the mean-field Hartree potential for the

electrostatic Coulomb interaction, is expressed in terms of the density as

= q;//drdr’m. (2.12)

'We shall use the subscript s in the rest of the chapter to indicate quantities of non-interacting systems.
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The energy of the system then becomes
E[n] = Ts[{¢i[n]}] + Unn] + VIn] + Exc[n], (2.13)

where the functional E,.[n] is called ezchange-correlation (xc) energy and it contains
the neglected parts T'— 75 and U — Uy. Equation is still exact and equivalent to
the full Schrodinger equation, Eq. , but the exact expression for E,.[n] is unknown.
Nonetheless, the beauty of this scheme is that if E,.[n] is small compared to other terms (as
it usually is), then it is possible to rely on some approximation for this unknown functional
to obtain physical results. In order to obtain the celebrated Kohn-Sham (KS) equations,
Eq. is minimised with respect to n(r), yielding

_OE[n]  0T[n]
- on on

0 +v(r), (2.14)

which describes the full-interacting electron system with v(r) = v(r) + vy (r) + vee(r).

Consequently, the density of the interacting, many-body system of Eq. (2.1)) is obtained

by solving the set of coupled-equations

[_ V2

o ()] 61(r) = i), (2,15

together with
Ne
n(r) = filoi(r), (2.16)

where f; is the occupation number of the single-particle orbital ¢;(r). Because vs and
¢i(r) depend on each other through n, this is a set of non-linear equations and is solved
self-consistently: using an initial guess for n(?), a new density n(!) is obtained by solving
Eq. , which can be used as new starting point to solve the equations again. This
procedure is repeated until the new solution is not too different from the previous step, i.e.

the system has reached the desired level of convergence.

From Electrons to Ions: Hellmann-Feynman Theorem

It is time to deal with one side of the Born-Oppenheimer approximation: while DFT
yields the solution to the fast electron motion in the field of fixed ions, the positions of
the ions themselves must be updated. Together with the electron density n(r), the 3N
ionic coordinates R; define a hyper-surface, the PES, E = E[{R;},n(r)]. The total energy
of the system F is given by the sum of the electronic parts in Eq. and the ion-ion

interactions:

Q:Q;
Vion = _—. 2.17
; [Ri — R;| (217)

The force acting on the ions can be connected directly with the electron density via
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the Hellman-Feynman theorem [I18], which states that

dE)
= _ [y
dA <

The proof follows from the differentiation chain rule and the properties of normalised

I
dA

xp> . (2.18)

wave-functions:

(alon) = 1= = (aly) = 0. (219)

When the parameter A\ corresponds to the coordinates of the nuclei, Eq. (2.18) yields
the force acting on the ion [I1§]

OH
Fi_vRiE_—<\If R qf> — V&, Vien (2.20)
=— /n(r)VRiv(r)dr — VR, Vion, (2.21)

where only the electron-ion interaction v(r;) = >, |rfi’f£k| in Eq. depends on the
nuclei position. The forces acting on ions depends explicitly on the electron density and
how accurately this has been computed. Once forces are extracted from nggy(r), the
positions of the N ions can be updated in many ways: for example, via a minimization
algorithm if the goal is to find the minimal energy [I19] or using the Car-Parrinello scheme

if one is interested in the dynamics of the ion system [120].

2.1.1 Implementation

In the previous sections, the complex and numerically intractable problem Eq. has
been cast into the equivalent set of coupled differential equations Eq. . The exchange
does not come for free, as the new formalism does not have an explicit analytic form and
a set of approximations need to be implemented to find a solution of Eq. on a

computer, as outlined in Fig. [2.1

LDA
GGA Lagrange multipliers
non-relativistic: Schrédinger Hybrid band structure
relativistic: Dirac Meta-GGA

v |

——— + Vext (I') + UH(r) + ch(r)] ¢n(r) - €n¢n(r)

2m 1 [/.

nuclei pseudopotential
Mesh/Basis:

Plane Waves
Gaussians
Wannier Functions
LMTO

Poisson equation

Figure 2.1: Some possibilities used to approximate the exact KS problem. Adapted from Ref. [121].
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Basis Set

The Kohn orbitals ¢;(r) can be expanded onto a set of known functions, and the KS
equations can be written in terms of the expansion coefficients. The possible sets of
functions are usually divided into two categories: localized and plane-wave basis. These are
in principles equivalent. In practice, each one provides a better approximation of different
electronic behaviours, and one should choose the basis that better describes the system
under consideration.

In a localized basis set the electron density is described in terms of functions centred
on the atomic positions, like Gaussian- or Slater-type orbitals. Note that Gaussian-type
orbitals are a convenient representation from a numerical point of view, although they do
not represent a complete basis set and, thus, the precision might not increase with the
number of elements of the orbitals. Localized sets are the preferred choice when electrons
are confined around ions, like in the case of metal oxides and molecules.

In a plane-wave basis set, the density is expressed in terms of periodic, oscillatory wave
functions that form a complete representation of the Hilbert space. This set is the preferred
choice when electron wavefunctions are delocalized within periodic systems, like crystalline
metals.

Wannier functions [122], 123] represent a mid-point between these two approaches.
These functions represent a complete set and can be thought of as the Fourier transform of

Bloch states .
- _ = iRk
=Zn(r) = 5 2 o) (2.22)

where R are the direct lattice vectors, the sum in k is extended over the Brillouin Zone
(BZ) and v (r) = " Fuy(k) is a Bloch state function, which has the same periodicity as
the crystal structure. Because the set 1g(r) is defined up to a phase factor, the definition
of the Wannier functions remains somewhat arbitrary. ONETEP [67], a linear-scaling
implementation of DF'T, takes advantage of the hybrid character of Wannier functions. A set
of non-orthogonal generalized Wannier functions is optimized for the specific environment
simulated and used as a basis set for the electron density expansion. These functions are
then truncated outside a sphere of radius 7.y, preserving the overlap with neighbouring
Wannier functions. This approach allows the code to range in accuracy from plane-wave to

localized orbitals and yield linear scaling with the size of the system.

Pseudo Potentials

Due to the point-like positive charge of the nuclei, the ion potential around them is steep,
and the electron density in this region varies fast. Although this is a physical behaviour, it
can constitute a problem for a numerical solution of the problem, as a large number of
basis functions, e.g. plane-waves, is needed to describe the rapid variation in real space.
If the behaviour of the density close to the nuclei is not of interest, pseudo-potentials
(PP) are a way to overcome this numerical difficulty. Chemical binding is dominated by

the outer (valence) electrons of atoms, while inner (core) electrons retain an atomic-like
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configuration in different environments. The idea behind PP is to solve the problem of the
nucleus and core electrons once and then consider this part of the system as frozen. The
remaining valence electrons feel a softer potential vs(r) in Eq. and their density can
be described with fewer plane-waves, making the calculation faster.

The augmented-plane waves (APW) and projector augmented-plane waves (PAW) [124]
methods are generalizations of the PP concept. In the APW, space is divided into atom-
centred augmentation spheres, and inter-atomic space and the wavefunctions are described
differently in these two regions. In the PAW method, the valence wavefunctions rapidly
oscillating near the nuclei are transformed through a linear transformation 7 into smooth
functions. This transformation can be inverted, allowing for the calculation of all-electron
properties. In the PAW method, the creation of a PP consists of tabulating atom-specific

transformations 7.

Exchange Correlation Functional

Probably the most delicate step in the implementation of the KS equation is to define
an analytical form for the exchange-correlation functional. The simplest approximation
of vy is known as the local density approximation (LDA), in which the results of the
homogeneous electron gas are applied locally to the system under study. The LDA can
be regarded as an extension of the Thomas-Fermi electron model [125], 126], in which the

constant density of kinetic energy is artificially made local

3h
thom(n) & t, (n(r)) = M(37r2)2/3n(r)5/3. (2.23)
where ¢ is now a function of the density n(r). Once an analytical expression for the kinetic
energy is known, LDA exchange-correlation energy is then defined as

ELPA[] () — / dreom [ ()] (2.24)

xc

where o™ = ehom 4 chom

e , where the exchange part can be computed analytically, while

the correlation function is parametrised from quantum Monte Carlo simulations.

The natural step forward from LDA is to include information on the variation of the
density as well, much like in a Taylor expansion. The Generalized Gradient Approximation
(GGA) [127] also exploit the information of how the density varies through space, i.e.
Vn(r), to build the exchange correlation functional. The energy is written as a general

functional of the density and its gradient

ESSNul(r) = [ drf(n(r), ¥n(r) (2.25)

and different GGA flavours rely on different choices for f(n, Vn), based on fitting against
a reference set and/or satisfying known constraints for the real density ng(r).
Following the same reasoning, one could include more information in the functional form

of F... Meta-GGA functionals are an example of this approach, like Strongly Constrained
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and Appropriately Normed (SCAN) [128]. These functionals include kinetic energy density

Tkin explicitly in the functional:
Eﬂeta*GGA[n](r) = /drf(n(r),Vn(r),Tkin). (2.26)

The additional information used to compute the density improves the performance of
SCAN in describing complex systems, like metal oxides and layered materials, but results

in more expensive calculations and slower convergence [129].

van der Waals Interactions

It is challenging to capture van der Waals (vdW) interactions within the DFT framework
with local or semi-local functionals, due to their non-local and long-range nature.This
problem can be tackled in two ways: empirical correction and non-local functionals.

An empirical correction is added a posteriori to the solution of the KS equations. In
the case of DFT-D2, a popular choice implemented by Grimme [I30], the correction as a

function of the inter-atomic distances R;; reads

Epy=—s6Y C%]%(é])fdamp(l%ij), (2.27)
ij ij

where sg is a scaling factor, and Cg(ij) is the strength of the interaction between i and j
atom types. The function fyamp(Ri;) tempers the attractive interactions as the atoms get
close. This methods provides a computationally inexpensive solution but decouples the vdW
description from the electron density completely. Moreover, it can suffer from transferability
problems between different functionals, because it relies on the fine parametrization of the
empirical potential.

A non-local functional of the form
En = /drdr’n(r)@(r, r)n(r') (2.28)

based on the kernel ©(r,r’) can be included explicitly in the KS equation, thus providing
a vdW correction directly from the electron density [I31] [132]. In the case of rVV10
correction, proposed by Vydrov and Van Voorhis [I32], the kernel combines the local
plasma frequency of the electron gas wy(r), the local band gap given wg(r) and the local
Fermi velocity vp(r). The functional form of the kernel assures damping at a short distance
and vdW ~ 1/RS behaviour for R — oo. This method is computationally more expensive
but more transferable than the empirical approach.

Fig. reports the binding energy E(d) as a function of bilayer distance d for MoSs
and Tis bilayers, with and without vdW corrections. The curve with rVV10 correction,
solid lines, show a clear bounded state for both compounds, with negative formation energy
compared to isolated monolayers E(oc). In contrast, the curves obtained with a non-correct

GGA kernel, dashed ones, show no bounded state, only repulsion at a short distance. This
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Figure 2.2: Binding energy E(d), in meV/A as a function of bilayer distance d, in A. Compounds
and model are reported in the legend.

test confirms the need for vdW correction in layered materials.
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2.2 Cluster Expansion

DFT simulations are a powerful tool, providing a great amount of information about a
system relying on minimal approximations and almost no empirical parameters. This
accuracy, in turn, limits the size of the system one can treat: a few hundred of atoms for
standard DFT codes or thousands for linear-scaling solutions [67, [I33]. The time-scale
is also limited to pico- or nano-seconds. Classical MD simulations can reach hundreds
of thousands of atoms and a time-scale in the order of microseconds. While valuable
thermodynamics information can be gained at this level, rare events, like dopant diffusion
and phase transitions, are difficult to sample. A solution to this problem is found in
statistical mechanical tools, and the concept of coarse-grained models: information from
First Principles calculations is transferred to a classical model, simple enough to be
computationally cheap compared to DFT, but accurate enough to describe the property of

interest.

The Connolly-Williams or cluster expansion (CE) method falls into this idea of multi-
scale modelling [41]. It was initially developed to describe different phases of metal alloys
characterized by different arrangements of the species within a fixed underlying lattice.
It is thus suitable to handle configurational problems and discrete phase spaces. The

configurational energy of the system is mapped on a generalized Ising model
ECYI(Ry,...,Ry) = EC®)(0y,... o), (2.29)

where R; is position of ion ¢ in 3D space and o; is the occupancy of lattice sites ¢. In doing
so, the information about the exact position of the ions in space is discarded, and only
information about the atom type occupying each lattice site is retained. Fig. sketches
this approximation, with displaced positions of blue and white atoms mapped onto a square
lattice. A spin variable, +1 for blue atoms and -1 for white ones, is associated with each

lattice site. Any local relaxation of the lattice is treated implicitly [134].

Alloy system <———> Lattice model
E(l‘l ..... r, E(O'[,..._.Gn)

QO 000 @9dOH@
O@O00 00000
@00 Ce-—00@0@
OO0 Q@00
0P OO0 @000 ®

i=*l

Figure 2.3: Sketch of the CE mapping of a real crystal system onto a fixed-lattice Ising model.
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2.2.1 Cluster Algebra

The CE approach emerges from introducing a suitable change of basis for the functions
defined on a lattice [I35]. The goal is to be able to write any function defined on the
lattice as a series expansion onto a ‘convenient’ basis set, where convenient here means
that the series converges fast with respect to the number of basis functions considered and
is easy to parametrize. This section focuses on the binary system where each lattice site
can assume two distinct values and a brief comment about multi-component systems is

given at the end of the section.

Let L be a lattice of N sites. The configuration of the lattice is fully specified by the
vector o = (01,...,0N) assigning a value o; = +1 to each site. The phase space of the
system is thus composed of 2V configurations. The first step in developing a basis for the
space of functions on the lattice is to define an inner product on it. Let g(o) and f(o) be

general functions on L, the inner product is defined:

(9.1) =27 g(o)f(o), (2.30)
{o}

where the sum is take over the set of all possible configurations {o}.

Single site function Firstly, consider a lattice with a single site N = 1. Since the phase
space is composed of two configurations and two possible values of the site, consider an

ortho-normal basis of two functions:

It is readily verified that the set ¢;(o) satisfied ortho-normality and completeness under
the product defined in Eq. (2.30):

(pi(0), pj(0)) = % [i(+1) - i (+1) + @i(=1) - p;(—=1)] = d;; (2.33)
Z(ps(a)cps(a') =1-14+0-0 =26, (2.34)

For example, a function of the single lattice site can be expanded on this basis set:

flo) = asps(o) (2.35)

as = (f,ps)- (2.36)
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Explicitly, the coefficients are

@0 = 31/ (+1)go(+1) + f(~Dgo(~1)] = 5[fs + /] (237
a1 = (e (F1) + F(-Dpr(-1)] = 2 1f+ — f], (2:39)

where the subscript fi is shortcut for the value of the lattice site. Any function of the

single site can thus be written as

Zasws (f+ +f)+ (= fo)ol (2.39)

Cluster functions We shall now build a basis set for a lattice of arbitrary size. This

choice is not unique, and here we build the basis as the product of single-site functions:

Ds = @5, (01)Ps5(02) - - - Py (ON) H‘Psz i), (2.40)

where the vector s defines which function ¢, in Eq. (2.31)) is associated with each site o;.
The set of functions defined in Eq. (2.40) is ortho-normal

(Bs, p) =27 By(0)Dp(0) (2.41)

=277 Z Z 8051(01)---9031\,(01\/)'sopl(al)...gppN(JN) (2.42)

o1=—1 on=—1

+1 +1

=27 Z ©s1(01)pps (01) - - - Z Dsx (ON)py (ON) (2.43)
o1=—1 on=—1

=277 H(@si (0i)ep; (0i)) = dsp, (2.44)

7

where, in the last equality, Eq. (2.33) was used. The set of functions is also complete:

> ®s() s Z Z [T #s:(o: H%Z (2.45)

510 sy=0 1

= Z P51 (01) s, 01 Z Psn UN)@SN (UN) (2.46)
s1=0 sy=0
= 2600, (2.47)

where in the last equality Eq. (2.34) was used. Any function defined on the lattice can

thus be written as

= as04(0). (2.48)



Cluster Expansion 35

Because the identity with respect to the product ¢y = 1 is included in the basis set, the
expansion in Eq. (2.48)) can be re-interpreted as a sum over all possible sub-clusters « of
n=20,..., N sites of the lattice L:

flo)=ao+ Y asPa(0) (2.49)
aCL

ap = (f, 1), ag = (f, Py) (2.50)

O, =04, ---0a,, (2.51)

where now ¢q has effectively disappeared from the expansion. To better clarify the last

passage, consider as an example a lattice of two sites N = 2 and consider a function of the

pair sites
f(o1,00) = Zazj@z‘j(ahaz), (2.52)
]
where by Eq.
agp = i[f++ + o+ fm + ] (2.53)
ap1 = i[f++ +ft = S = ] (2.54)
aip = i[f++ = fer - = ] (2.55)
a1 = 3lfee = s = Foo ) (2.56)
and thus
Flov,00) = [(fos + foi + fom 4 1) (2.57)
+ [+t [+ — [+ — f-2)o1
+ (for = fov + [1= = [=)o2

+ (fo+ = fot = fo— + f--)o109],

Symmetry of the lattice Since the inner product Eq. retains the symmetry of
the lattice L [135] all sub-cluster 8 equivalent to « under a symmetry operation of the
lattice (including translations) will yield the same coefficient a,, in the expansion Eq. .
The set Qr () of clusters related to a by symmetry operation in the lattice point group
Q are termed orbit of a. We can thus write Eq. as

f(a) = ZpaJaHa(U)7 (2.58)

where « runs over symmetry distinct clusters, p, is the number of equivalent clusters, i.e.

the multiplicity of each term, and the expansions coefficients J,, termed Effective Cluster
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Interactions (ECI), and are related to the as in Eq. (2.49) by
Jo = Nas, (259)

where s identifies one cluster in the orbit (). The symmetry-averaged cluster function

I, (o) are called orbit average and are defined as

(o) = 1 (2.60)
Mae) = > (o) (261)

where the factor IV in the definition of II, accounts for the translational symmetry over the
lattice. As an example consider the N = 3 triangular lattice in Fig. In this example,
the lattice is composed of three isolated sites, so that no translational symmetry is present
in the system and only the point group is relevant. The lattice presents 3m point group
symmetry, highlighted by the axes mj, mg and mg in Fig. [2.4] The phase space contains
23 = 8 configurations o and thus the functional space of the lattice is spawned by the
eight cluster functions: the empty cluster &y = 1, three point function ®, = o;, three pair
functions ®, = 0;0; and one triplet ®, = 00,0}, as shown in Fig. The point and pair
cluster are equivalent under the reflections defined by the axes {m;}, yield multiplicity

s1,2 = 3 and, thus, from Eq. (2.58)) any function on this lattice has the form
f(a') = Jp + 3114 (0’) + 3J2H2(0') + JgHg(O’). (2.62)

For example, the pair symmetry-averaged function and the corresponding ECI read

(o) = 3 (B12(0) + 13(0) + Prs(0r) (2.63)

T =g (fr + Frve = oot = frt (2.64)
— [t e = f e+ )

=1 {fen) = (o) = () (), (265)

where the notation (fy) in Eq. (2.65) indicates an average over all the configurations in
which o1 = 41 and 02 = +1. Thus, the meaning of the term effective interactions for J,
is clear: the interaction is a result of “mean-field” approach, as the possible configurations

of the cluster see an average value of the remaining lattice.

Expansion Convergence The expansion in Eq. is written in terms of a complete,
orthogonal basis set and is therfore exact. However, in the thermodynamic limit of infinite
sites, the sum is infinite and thus of little practical utility. For any application, the series
must be truncated. The hope is that the sum converges rapidly and a satisfying description
of the system is retained when considering only a few clusters, deemed to be the dominant

terms, and neglecting the rest. The convergence of the series can only be tested numerically
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Figure 2.4: Example of symmetrically equivalent clusters in a three-points triangular lattice.

by checking that the ECI J, decay with the radius of the cluster and the number of sites in
them [42] [135]. As of now, the formalism has been developed in terms of general functions
on the lattice L. In most cases, the quantity expanded is the total energy of a configuration
E(o) in a substitutional alloy system. In this case, the convergence of the expansion in
Eq. is intuitively supported by the shortsightedness of the many-body interactions
between the ions [116]. On the other hand, the discrete nature of the model makes the

description of long-range elastic interaction challenging [136].

2.2.2 Hamiltonian Parametrisation

A common way to implement the theory outlined in the previous section is to fit the ECIs
of relevant m clusters against the energies of n configurations, obtained with high-quality,
expensive methods, e.g. DFT simulations, on small systems. Regardless of the choice of
specific basis functions ®, (o) and how the relevant figures are selected, the column vector

of n computed energies E and the vector J of the m ECI are related via the matrix Z :
By =Y Zsata- (2.66)
[e%

Each of the n rows Z; of the matrix represents the m correlation functions of the selected
cluster function for that configuration. The CE model fitting can be cast in the form of a

minimisation problem
Jy = mi E,—Z, - J)?*+R(\J 2.
A \in ;1 We(Ey o J) NI, (2.67)

where (E, — Zy - J )2 is the square distance between the computed energies and the fitted
ones, weighed by w; and R(\, J) is a regularisation function. The regularisation is useful

because the dimensionality of the inversion problem, n structure for m coefficients, makes
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the fitting an ill-posed problem [137]. Moreover, R(\, J) can also bias the minimization
according to physical intuition.

The selection of relevant clusters « to include is based on the concept of cross-validation
(CV) [134]. Different CEs models are trained via Eq. against a training set and their

predictive power is tested against a validation set, yielding a cross-validation score
1 _
oV ==Y (B - E)*, (2.68)

where E; are the reference energies of the testing sets and E; are the energies predicted by
the CE model. This protocol selects the CE model with the highest predictive power (best

CV score) rather than the lowest deviation from the training set (best fit).

2.2.3 Monte Carlo Simulations

The idea behind the vast class of Monte Carlo methods is to use random numbers to
obtain numerical results. Most of the time, in physics, Monte Carlo is associated with the
Metropolis algorithm and the purpose of sampling the Boltzmann distribution of a system
without relying on any knowledge of the partition function. Monte Carlo simulations are
used to sample Boltzmann distributions defined by the CE Hamiltonian on the lattice
model describing the alloy system.

The simulations are carried out in the semi-grand canonical ensemble: total energy E
and atom species concentration x on the fixed IV lattice sites vary during the evolution,
while temperature T and chemical potential i are kept fix. This ensemble has the advantage
of sampling only pure phases of the system: as the concentration is free to change, no
grain boundaries and phase coexistence can form in the system. Thus, the behaviour of
the properties considered arises from pure phases, without any signal from interfaces. The

evolution of the system is controlled by the following thermodynamic potential [138§]:

3(B, 1) = Biv log (Ze‘ﬁN(Ei%’) : (2.69)

where 8 = 1/kgT, E; and x; are, respectively, the energy and concentration associated
with micro-state i. The system properties are studied by carrying out equilibrations on
a grid of u and T values. Observables can be estimated by averaging over equilibrated
configurations. For example, by looking at the concentration itself, one can obtain the
stability window of different phases as a function of the temperature.

Simulations on the grid can be concatenated in two different ways, as sketched in
Fig. and the initial grand potential is obtained from either high- or low-temperature
expansions [I38]. In the high-temperature limit, the starting point is 7' = oo, where the
behaviour is well approximated as an ideal solid solution with entropy 5S(z) = —zlogx
and concentration z = 1/2. The system is started from a random configuration at this

concentration and cooled down at a fixed p mimicking an annealing process. Conversely,
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in the low-temperature limit, the temperature is kept fixed, and p is varied. The energy
and entropy costs are estimated in the single-spin-flip approximation, which is justified by
the low thermal energy available to the system. The limit of this approximation must be

determined case by case.

Figure 2.5: Example of paths of integration during a MC simulation in the p — T space. Adapted
from [138].

2.3 Classical Molecular Dynamics

Classical MD or Molecular Mechanics (MM) uses a classical approach to simulate atoms
and molecules. Atoms are considered to be a point-like object interacting with one another.

The total potential energy of the system of N atoms is expanded in many-body terms [139]:

U(rl, e ’I“N) = Z U1<7’Z‘) + Z UQ(TZ‘, ’I“j) Z +U3(7’i, Tj,’!’k) + ..., (2.70)
i @] 1,5,k

where r the Cartesian position and Vs are one-body, pair, triplet interactions.

Force Fields

FF is a functional description approximation of the atom interactions comprising the
potential energy in Eq. . The FF entails a set of parameters that is system dependent
and defines the behaviour of the functional form. These parameters are benchmarked on
experiments or more precise DFT calculations. In the most general sense, there are two
types of particle interactions, bonded and non-bonded [139), 140]. The bonded interactions
represent the covalent bonds between atoms. Three components usually approximate these
interactions: stretching of the bonds, the angle from bending of the bonds and the dihedral

from torsion of the bonds. The functional forms of these are [139]:

Ustretching(ri7 rk) = kb(Tij - 7'0)2 (2'71)
Ubending (Ti, 5> 7)) = ko(0ijx — 00) (2.72)

Vi
Utorsion('riv i, Tk, 7‘1) = 7”[1 + COS(Tijkl - 7'0)]7 (2~73)
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where r;; = |r; — |, ky is the harmonic constant for the bonds, 79 is the equilibrium
bond length, kg is the harmonic constant for the bending, €y is the equilibrium bond angle,
V, is the torsion constant, and 79 is the equilibrium dihedral angle. 6;;, identifies the
angle between the three atoms 1, j, k and 7;;;, is the dihedral angle between the four atoms
i, 7, k,1l.

The non-bonded interactions represent the van der Waals and electrostatic interactions[140],
139]. A common choice to represent van der Waals contribution is the Lennard-Jones (LJ)

potential, which has a short-range repulsive and long-range attractive character:

12 6
O34 O34
ULJ(ri,’I"j) = 461‘]‘ [<J> — (J> ] R (2.74)
’I“ij rij

where o0;; controls the equilibrium distance and ¢;; the strength of the interaction between
the atoms ij. A Coulomb potential represents the electrostatic term:
Uc(r,rj) = L9 (2.75)

)
E’I"ij

where ¢;; and o;; are empirical coefficients, r;; is inter-particle distance, ¢; and g; the

partial charges, and € the permittivity.

Computer Experiments

Using the FF described above, one can determine the instantaneous energy of a system.
However, almost always one would like to find the minimum energy configuration of a
system or perform some sort of dynamics on the system. Using the FF and Newtonian
dynamics (or a minimization algorithm), MD can simulate the conformation landscape and
simulate the system evolution. This evolution is assumed to resemble a real experiment
closely. Once the system is equilibrated, the “in-silico” experiment can start, and any
observable of interest A can be measured from its expression in terms of atom positions

and velocities.

The basic working scheme of an MD simulation is as follows[I40]. In the first step, to,
the system is initialized, providing the positions of all atoms. Velocities of all atoms are
assigned according to the Boltzmann distribution at the given temperature. Next follows
the central part of the program, the calculation of the forces, which scales with the number
of particles. In the case of Newton dynamics, the positions evolve according to [139, [140]

dr?

dt;‘ . (2.76)

Fi=-Vy,U=m;-

The equation above is, in general, not solvable analytically and is integrated numerically,
e.g. with the Verlet algorithm [I41]. Finally, the observable A(ty) is measured, the position
updated, and the system advanced to %;.

The expectation value of the observable A is obtained by thermodynamic sampling
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along the MD trajectory

ts —teq

(A);, = / o dtA(t) = > A, (2.77)

e ts — teq ,

=teq

where t is the total simulation time and t¢q is the equilibration time. This average is taken
to be representative of the true behaviour of the system under the ergodic assumption and,

thus, the time average is equivalent to the phase space average [142], i.e.

lim (A), = (A)r / / dpdqA(q, p), (2.78)

ts—o0

where I' is the volume phase space of the system generated by the conjugate variable
q,p. The finite time tg after which the limit in Eq. can be considered satisfied
needs to be carefully tested for each system to avoid under-sampling of the phase space.
Moreover, the initial condition of the system must be chosen carefully, as the system
could get trapped in subtle local minima in the potential energy manifold. To benchmark
against this problem, equivalent MD simulations with slightly different initial condition

are computed and compared.

2.4 Materials Descriptors

2.4.1 Equation of State

The first descriptor useful when dealing with phase stability of materials is the Equation
of State (EoS) of a crystalline phase, that is the energy of cohesion as a function of the
volume. The EoS describes the energy paid by shifting a crystalline system away from
its equilibrium volume, e.g. by applying pressure on a sample. Many empirical models
describe the relationship between thermodynamic quantities at varying pressure [143]. In
particular, the Birch-Murnaghan (BM) EoS equation is adopted [144], 145], which is based
on a third-order approximation of the free energy F' in the strain component and a linear

approximation of the bulk modulus as a function of pressure in isothermal processes [145]

oP
B(P)=-V — 2.79
(P) =~V 5p| (2.79)
0B
=B(0) + == P = By + BjP, (2.80)
OP|p_,
where the bulk modulus at zero pressure By = —V g—{; po Was defined, along with its
derivative with respect to pressure By = g—g‘;:o. At zero temperature, the energy-volume
relation as a function of the reduced volume 1 = (Vo/V)?/3 is given by [145]
9
E(n) = Eo + —=BoVo(n — 1)*(2+ (By — 4)(n — 1)), (2.81)

16
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where Fj is an arbitrary shift and Vj is the equilibrium volume. The model is expected to
be accurate only at moderate compression, as it is based on a linear expansion of the bulk
modulus [145]. The quantities appearing in Eq. can be computed from experiments
or DFT calculations or, provided a set of energy-volume pairs, they can be regarded as

free parameters in a fitting procedure, as shown in Fig.

MOSQ
Cdly
—16 7 O MoS; phase: VM = 202.69 A3
() MoS, phase: VPFT = 203.02 4°
:E s ) Cdly phase: VBM = 207.27 43
> Cdly phase: VPFT = 209.01 A3
o,
L
_20 _
—22

180 200 220 240 260 280 300

Volume [A4%]

120 140 160

Figure 2.6: EoS for MoSs in its stable trigonal prismatic phase, termed MoS, prototype, and in
the unstable octahedral phase, Cdls prototype. The coloured circles report DFT calculations while
the lines refer to BM fit of Eq. (2.81)).

2.4.2 Crystal Field Theory

The Crystal Field (CF) Theory is a simple electrostatic model that describes the effect of
charged ions on the energy levels of a TM. The model assumes a complete ionization of
the TM and the negatively charged ligands are regarded as point-like charges, i.e. purely
ionic bonding. While this is a drastic simplification, and CF is not adequate to describe
properties of real materials quantitatively, its physical interpretation is clear, and it can

lead to a qualitative understanding of phase stabilization mechanisms.

Atomic Orbitals

The single-electron atomic orbitals, i.e. the hydrogen atom energy levels, are used to
evaluate the CF Hamiltonian matrix elements. The starting point is the Schrodinger
equation for a single electron in the electric field generated by the nucleus, which in atomic

units reads

(—;W + V(r)) Ua(r) = Exipa(r), (2.82)
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where A labels the eigenvalues E) and eigenfunctions (7). The potential V (r) created

by the nuclei charge at the origin of the reference frame is
V(ir)=—-——, (2.83)

where ¢ is the unit charge and Z is the atomic number.

Because of the central potential Eq. (2.83)) in the Schrodinger equation, Eq. (2.82))

factorises in a angular part and a radial part and, thus, the eigenfunctions () are:

wA(T) = wnlm(’r) = Rnl(”)Ylm(97 ¢)7 (2'84)

in spherical coordinates r € [0,00), inclination 6 € [0, 7], and azimuth ¢ € [0,27). The
index A has been decomposed into three quantum numbers: n is the energy level, emerging
from the conditions that the radial part R,; needs to satisfy [146], i.e. n =1,2,3,4,...;1
and m are the eigenvalues of the angular momentum operator 1=0,1,...,n—1 and
m=-1,;,—1,0,1,...,1.

The angular part of Eq. is a Laplace-type equation, and its eigenfunctions are
the spherical harmonics [146]E|:

Y"(6,6) = <—1>m\/ T Puncos )™ (2:85)

where P, (x) are associated Legendre polynomials. The spherical harmonics are orthogonal

under the following inner product [146]

2
m’Yl/ / / Yl Yl’ (0, ¢) sin 0d9d¢ = 5l,l’6m,m" (2.86)

The family of Y¥;* function is a basis for the space of functions defined on the sphere and,

thus, any function in this space might be represented in terms of series of harmonics:

¢) =Y oY (0,9). (2.87)
ml

The solution of the radial equation is the family of functions:

_ 27 3(n—l—1)! —Zr/n 27r\" 20+1 22r
R”‘\/<> e () e ()

where L$' are the generalized Laguerre polynomials. The behaviour of R, is characterized

by its n nodes. As |92, | represent the probability density of finding the particle of at a

given position, the nodes in R,,; represent points in space where the probability of finding

2Because [lfl , ﬁ] = 0, there is a complete set of eigenvalues that diagonalises both simultaneously.
3Following the usual definition for the spherical harmonics adopted in physics and chemistry, which
includes the Condon—Shortley (—1)™ phase factor
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Figure 2.7: (a) Representation of the spherical harmonic for [ = 3, m = 1. The upper row
shows the value of |Y?]2, R(Y;®) and 3(Y;?) as coloured regions on the unitary sphere. To better
appreciate the spatial variation of the harmonics, the bottom row shows the surface defined by
the same quantities, i.e. 7 = Y32, r = R(Y?), and I(Y?), respectively. (b) Radial distribution
function g(r) = 47r? Ry, (r) for 1 < n < 3 and corresponding allowed values of [.

an electron vanishes. Moreover, as the angular part Y;"(, ¢) is normalized, integration
over the solid angle ) = 47 yields the radial function, which thus represents the radial

distribution function g(r) of the system:

= / Y(r, 0, ¢)r? sin 0dfde = 4 Ry (r).
Q

The radial distribution function, reported in Fig. for a set of n, [ values, has a direct
physical interpretation: the probability of finding a particle at a distance r from the nucleus

at any possible angle.

Crystal Field Potential

The electrostatic potential acting on a charge at position r generated by the set of ions at

positions R is

R(r) = EJ: TR _quj” (2.88)

where R; are the positions of the ions and g; the corresponding charges. Since the crystal
potential in Eq. is a sum of central potentials centred on R;, it can be decomposed
in a radial and angular part, and the latter expressed in terms of spherical harmonics in
the form Eq. [147]. Thus, the crystal potential can be written in the form [147, 146]:

0o k
Vg(r,0,¢) = ZZ Vg Yy (6, ) (2.89)
k=0 g=—k

where the information about the ion lattice is embedded in

ions

a7 q; _
Tkq = Z 2% + 1 RkJJA (_1)qu q(eja ®5)- (2.90)
J J
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The symmetry of atomic orbitals and orthogonality of spherical harmonics reduces the
number of components in the infinite sum. For a fixed angular manifold [, the elements of

the CF Hamiltonian are
(Gt VR [tomimr) o (V™ [V21Y7™). (2.91)

Because of the orthogonality of spherical harmonics in Eq. (2.86), (Y/"|V,Z|Y;™) = 0 if k >
2[. Thus, for p orbitals k£ < 2, k < 4 for d orbitals and k£ < 6 for f orbitals.

Octahedral Coordination As an example, consider the case of a transition metal of
the d group in the six-fold octahedral coordination, i.e. cations of charge g¢ positioned at
the centre of the faces of a cube of side 2a centred on the TM, as shown in Fig. In
this case, the expansion in Eq. yields [147]

5

= Mifl <Y04(9, (J5) +A/ (Y44(t9, ¢) + Yf4(97 ¢))> : (2'92)

‘/OCt(T) 3 CL5

14
By evaluating (¥nim|Voct (7)|%nim) one obtains the split of the d-orbitals manifold. The
angular and radial parts factorize. The former describes how the manifold splits, while the

latter the magnitude of such splitting, Dgq:

<T4 > Rnl
6a® ’

Dg = —qo (2.93)

where (r4) R,, indicates the average of the crystal field according to the radial part of the
wavefunction.

The angular part Vot (ro, 0, ¢) in Eq. is reported in Fig. High energy regions
(blue) point toward the ions: Coulomb interaction penalize electrons occupying this region.
Lower energy regions (red), point in between the ions. The angular integrals evaluated on
the d manifold via the orthogonality relation Eq. yields the 5 x 5 matrix [146]

(V32m| Voot (7)[¢32m/) = 10Dg (2.94)
—4

0

g O O O =
o O o o O
= o o O o

The spectrum of Eq. is composed of two degenerate eigenvalues [146] [148]: triple-
degenerate low-energy E,, = —4Dq level and the double-degenerate high-energy F., = 6Dq
level. As one might see from the angular behaviour shown in Fig. the low-energy
orbitals are a linear combination of dg,, d., d,., that point in-between the negatively
charged ions, while the high-energy orbitals are a combination of the remaining ds,2_,2

and d2_,2 orbitals, which point towards the ions.

The CF theory thus provides an energy level structure. These energy levels are then
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Figure 2.8: (a) Octahedral coordination of the TM site, placed at the origin of the reference
frame. (b) Angular dependence of the CF generated by the octahedral crystals. The left plots
report the value of the potential on a sphere. The right plots highlight the angular dependence by
drawing the surface defined by r = Ve (10, 0, ¢).

populated according to Hund’s rules by the electrons retained on the TM site in a fully

ionic picture.

2.4.3 Sliding Potential Energy Surface

In a nanocontact between two layers, the sliding behaviour is determined by the shape of
the PES, which describes the interaction between two parts of the contact as a function of
the relative position of the two. PES has been shown to regulate the frictional behaviour
of several atomistic contacts [93], 149]. In the case of crystalline system, the PES can be
evaluated by directly sampling translated configurations within the primitive cell of the
system. Moreover, the underlying symmetry of each part can help reduce the number of
expensive quantum mechanical calculations needed to sample the PES. Finally, a suitable

interpolation protocol is developed, to allow evaluation of the PES at any given point.

Definition

Let S be a bilayer crystal defined in the unit cell (a, b, ¢) and the collection of N atomic
positions

§ == {Ti,l/l' }7

where r; ,, is the position of atom ¢ of type v;, amongst the set v = (v, ..., vy, ) of atom
species in the system. Because the bilayer system is periodic only in two directions, it is
always possible to arrange the unit cell so that a,b lie in only the zy plane and c is along
z. Defined by a cutting plane at height ¢, along the ¢ axis, the system is divided into a

top layer t of m atoms and bottom b one of n atoms:

b = {rjoj/ig € § : r.?:“j S Ccut}, (295)
L= {rjo'juj €5: r?,uj > Cout} (2.96)
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Figure 2.9: Example of
[} » » u point in the sliding PES.
The top layer (orange
A n grid) is translated with
respect to the bottom one
(blue grid) of a vector
B8 8 (06 05).

where index « runs over the 3 spatial components. The PES P(x), is then defined as

P(x) = E({t+ a:;lb}) — Eo (2.97)

where A is the area of the unit cell, Ey is the energy of the bilayer at equilibrium and
E({r;}) denotes the total energy of a configuration of atoms at position {¢t 4+ x,b}. The
argument of the energy function {t + x,b} is a shorthand denoting a bilayer geometry
with the top layer translated by @, i.e. {tou, + ,...,tmp,, +x}. Note it is assumed that
translation obeys the minimum image convention: atoms translated out of the unit cell are
mapped back to an equivalent position.

The PES P(x) is evaluated over a grid g = {x} of translation vectors inside the unit
cell. The translations of the top layer only break the symmetry of the bilayer system. On
the other hand, the symmetry of each separate ML is left unchanged: the translated top
layer ¢ retains the symmetry of its non-shifted, isolated counterpart, as global translation.
Thus, one cannot identify equivalent points in the translation grid g by applying the space
group symmetry operations of the bilayer crystal, e.g. as is done for k point sampling in

electronic structure calculations. A different definition of equivalency must be defined.

Symmetric equivalent sites

Two translation vectors in the grid (z,z’) € g are equivalent if the geometry with the top
layer ¢t translated at position & can be mapped onto the geometry with top layer translated
at ' and the stacking relative to the bottom layer is preserved. This mapping is done
via an operation O related to the space group of the top layer {2, as top layer geometries
translated at different positions need to be equivalent, while the bottom layer is a spectator.
Since the translation grid g is purely 2D, symmetry operations must be constrained to the
xy plane, e.g. reflections along the ¢ axis are not allowed. Defining the projector onto ab

sub-space and the identity along c as

1 00 0 00
Pp=10 10 I.=10 0 0 (2.98)
0 00 0 01

Any operation O can be restricted to the (ab) plane by

O = P,OP!, + 1,
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This leads to the following definition: any two points (x,x’) € g are equivalent © = ' if

there exists an operation O € €); such that

=0(t+2') (2.99)

Finally, atoms of the same type u lead to the same interaction and, thus, the energy is
invariant under same-species permutation of atoms in the system m, ({r;,,}). While this is
implicit in the energy, it needs to be explicitly included in the definition of equivalency.
The operation O is thus accompanied by a pair of permutation p;, pp acting separately on
the bottom b and top t layer. The condition in Eq. becomes

(z,2)eg,x=a < 30 €Q,p €m(t),p € m(b):
{ n(t)+x = Om(t) + ') (2.100)
+(b) = O(py(D)).

An example of this protocol applied to a MoSy bilayer is reported in Fig. Due to
rounding errors, the protocol is subject to false-positive errors, i.e. equivalent sites labelled
as distinct. This type of error is benign: it increases the number of calculations needed

but the PES shape and overall symmetry is described correctly.
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Figure 2.10: PES P(x) of MoS; bilayer system evaluated over a 15 x 15 grid within the unit cell,
shown as dotted line. The colour-code of each point shows the energy per area with respect to the
stable configuration. Each point is the results of a DFT relaxation with the bottom layer fix in zyz
and the top layer fixed in zy. The label sorts each point into the symmetrically distinct sites. The
font colour is a guide to the eye. Misplaced labels 52 (instead of 3) and 53 (instead of 1) are false
positives.
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Interpolation

In order to obtain a smooth surface to evaluate, PES P(x) evaluated on discrete grids

with DFT calculations are interpolated using radial basis functions:
Plx) = wid(lz — i), (2.101)
i

where the centres ¢; are the input points, i.e. DFT-computed grid, ¢(r) is the chosen
functional form of the radial basis function and w; the weight of the radial function centreed

on ¢;, computed via a least-square fit. The analytical form of the radial function chosen is

o(r) =4/1+ (2)2 (2.102)

where € is a shape factor regulating how localized the basis function is. Here, e = Ac, i.e.

the multi-quadratic:

the distance between input points.
The gradient of the PES governs the rigid sliding of the layers. This can be evaluated

directly from the expansion using the linearity of the gradient operator:

i

R . (2.104)
% 62 14+ (|$_c1‘)

€

VP(@) = Y wiVe(lz —el) = 3 wid!(ri) - (2.103)

where 7, = ¢ — ¢;. Fig. reports the expansion of P(x) along with VP (x) for the same

MoSs bilayer shown in the previous section.

2.4.4 Phonons

The normal modes of a crystal, or phonons, provide a convenient formalism to describe the
response of a crystal system near its equilibrium configuration. The process developed now
is valid for any crystal, and it shall be adapted to 2D materials later on. Here a classical
description of vibrations in a crystal is given. Consider a crystal of N sites and a basis set

of n atoms. The configuration of the crystal is given by the set of n/Vy vectors
=Ry + uy, (2.105)

where [ labels unit cells in the Bravais lattice and v atoms inside the unit cell. Thus, u,; is
the displacement vector, from equilibrium site R,;. Fig. shows lattice with N =4
and a basis with n = 2. The Bravais lattice points R; are shown in light blue, while atom
equilibrium positions within the cell R, are shown in blue. Following Eq. , the
position of the atom r,; is marked by a pink arrow, the sum of the displacement vector
u,; by a purple arrow The equilibrium lattice position are R,; = R; + R,.

The internal energy of a crystal is U(rqg ... 7TnN,), i.6. a mapping from the coordinate

space to the real numbers R3 — R. The internal energy around the equilibrium
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Figure 2.11: Radial basis function interpolated PES P(x) for MoSs bilayer evaluated over a
200 x 200 grid within the unit cell, shown as dotted line. The 15 x 15 grid in Fig. was used
for interpolation. The colour-code of each point shows the energy per area with respect to the
stable configuration. Gray-scale arrows show the gradient evaluated from the interpolation using
Eq. on a 20 x 20 grid . The legend reports the colour-code for different atom types. Larger
circles and black bond lines refer to the bottom layer, while smaller circles and dashed grey bonds
refer to the top layer.

configuration R = {R,;} can be expanded using a multivariate Taylor expansion of the

form 150, [143]

ou|l . 1 N

V) =UB)+ ) gua| it 52 whidas(vh pl gy + O (), (2.106)
L,v vl Ll
v,p

where «, § refer to Cartesian coordinates. The Einstein convention applies for Cartesian
indices: repeated indices imply summation, that is v*w® = " v*w® = v - w. To strike a
balance between clarity and overwhelming notation, the Einstein convention is applied to
Cartesian indices only, always labelled with Greek letters. The constant U(R) represents

the cohesive energy of the crystal. The linear term in Eq. (2.106) vanishes because of the

choice of expansion point: 387«—%'1 is the force acting on the (vl) atom of the crystal, which

must be zero by definition at the equilibrium position R,;. The matrix of force constants
bap(v, 1, 1,1") is defined as

2
bl pl) = —2 | (2.107)
87"313%1/ R

Retaining only terms quadratic in the displacement, the internal energy in Eq. (2.106))
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Figure 2.12: Definition of
the atom position vectors in
1.5 ° ° Eq. (2.105).
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becomes
1
Ur) = U(R) ~ 5 > Ul ibap(vil, l/)uﬁjl,. (2.108)

L
v,

The equations of motion induced by the quadratic form in Eq. (2.106]) are solved in
reciprocal space (k,w) by defining the dynamical matrix as [I51], [143]

1 4
Dap(win k) = ———  ¢up(v,0, i, 1) e Bu=Fvo) (2.109)

where m,, is the mass of the atom v in the unit cell. The sum in Eq. runs over a
single supercell index [ because the system is treated in PBC. For fixed v and p, Dy, (k)
records the force along a = x acting on the atom r,9 due to the displacement along y of
atoms p in all Ny unit cells; the amplitude (and phase) of this displacement varies between
different unit cells with wavelength A\ = 1/|k| and along the direction k. By definition
D is Hermitian, D(k)" = D(k), implying real eigenvalues, and, moreover, the following
properties hold

D*(k) = D(—k). (2.110)

The intrinsic vibrations of the system are found by diagonalising D:

> (€2 (v, k) Dap(vi, k)e) (11, k) = w2 (K)o, (2.111)

8,8’

The solution of each eigenvalue problem at fixed k is a set of 3n eigenvalues w(k), which
represent the frequency of the normal mode. The index s labels the so-called branches
of the dispersion curve, e.g. longitudinal and transverse acoustic branches, in which the
displacement is parallel and perpendicular to the wavevector, respectively. The set of

ws(k) characterises the response of the system to a perturbation of wave-vector k. The 3n
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complex eigenvectors €,(k) are themselves composed of n 3D vectors:

e2(0,k) €(0,k) €5(0,k)
e (k) = : . (2.112)

(k) k) n k)
Each of them represents the direction (real part) and phase (imaginary part) of the
displacement of the atom v in the unit cell. Because D is Hermitian and from Eq. (2.110)),

it follows that [143]:
(0, )" = €2(v, k). (2.113)

The set of vectors e,(k) is an orthogonal basis set. Thus, they satisfy the following
relations [143, [150]:
€(K) es(k) =0 (2.114)
€.(1,k) €s(v,k)) =059 (2.115)
S (€2 (1 k)2 (. K)) /Tt = B 360 (2.116)
S

Any configuration of the crystal can be written in terms of e,(k):

1 A
— > e (v R, (2.117)
(VLg% k,s

o
Uy =

VRom,

where each coeflicient of the linear expansion is defined as

1
Vs = ,7N0

Z Vo, - €5(v, —k)e” T, (2.118)
v,l

The complex numbers s are termed phonon [I43] or normal [I52] coordinates. From

Eq. (2.113) it follows that:
Vs = V—ks (2.119)

Substituting in Eq. (2.108|) the expansion of uf, in Eq. || and using the definition
of D in Eq. (2.109)), the internal energy of the crystal is approximated as

1 «
U(r) =5 D tsttes D 8 (v k) Dalvps, k) (1, —k) (2.120)
k U,
1 2 2
= izws(k)|7ks| ) (2'121)
k,s

where between the second and third lines Eq. (2.111) was used. Thus, if the small
displacement approximation in Eq. (2.108]) holds, the energy of a configuration r of the
system can be approximated by the energy of each phonon mode, weighted by the projection

of the current displacement on that mode.
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Figure 2.13: Sketch of the diatomic chain in Eq. (2.122]).

1D Example

Consider a mono-atomic 1D chain like the one sketched in Fig. The chain has a spacing
a and two atoms of mass mg and m; per unit cell at positions Ry, = na, Ri, = na + d.
Atoms within and outside the unit cell are connected via springs of different elastic constant,

yielding the energy

4{2 Uon — Uin)? + GZ U — U (1)) (2.122)
- Z W Dl iy (2.123)

n,l

wv

with spring constant K = ¢”(d), if ¢(x) is the potential energy between two atoms at
distance x, and G = ¢"(a — d). In Eq. , the interaction potential is cast into the
general kernel form v; M;;ju; reported in the definition of dynamical matrix Eq. ,
and the kernel D7 has the form

Dyt = Gnm WZ orT) — o (2.124)

and ony = Kpm+G0p—m 10— u,1- Inserting the interaction in Eq. (| in the definition
Eq. m, for each wavevector ¢ one obtains a 2 x 2 dynamical matrlx D( )

K+G __etad K+ Gefiqa
D(q) = igd . i ) : (2.125)
_ e K+ Gezqa) K+G
V/momy ( mi1
The eigenvalues of D(q) are given by
K+G 1 |K2+G? 1 4
2 —

wi(q) = . + 2\/ 2 +2KG P — (1 —cos(qa)) |, (2.126)
where % = mio + mil is often referred to as reduced mass. In the case of equal masses

m1 = mgy = m the physics become even easier to grasp, with the frequency of the system

being

K +d
m

wi(q) = + — \/K2 + G? 4+ 2KG cos(qa). (2.127)
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The dispersion relation, in this case, is illustrated in Fig. [2.14] The two solutions of the
eigenvalue problem yield one acoustic wa and one optical wo branch. The former describes
coherent modulation within the unit cell and is characterized by a vanishing behaviour
near the centre of the BZ ¢ — 0, corresponding to long-wavelength distortions (rigid
translation of the chain for ¢ = 0), as shown in the lower inset in Fig. In this region,

the dispersion can be approximated with a linear relation

lim wa (q) = cq,

q—0
where ¢ = ﬁ% is the speed of sound in the chain. The latter describes modulation
within the unit cell and retain a non-zero frequency wo(7/a) = W, and thus energy

cost, also in the limit of ¢ = 0, as atoms in all unit cells are vibrating coherently around
their equilibrium position, as shown in the upper inset in Fig. At the edge of the BZ,
the modulation changes sign between neighbouring cells, the shortest wavelength possible.
As a result, the displacements between neighbouring cells are in phase opposition, i.e. 7
phase, as shown in the insets on the left of Fig.

w(q) —-- Acoustic Mode

A — Opti
ptical Mode
wo(0) =/ Z(K,,:G)

|
e}
o
NE]

Figure 2.14: Dispersion relation of optical wo(gq) (solid purple line) and acoustic wa (¢) (dashed
red line) versus wavevector ¢ in a 1D chain with atoms of mass m per unit cell, orange circles and
blue squares in the insets. The intra-cell K and inter-cell G interactions between atoms define the
gap A(q) = wo(q) — wa(q) between acoustic and optical branches. Insets show the displacement
patterns at the centre ¢ = 0, edges ¢ = 7/a and intermediate wave vector ¢ = 27/5a in the unit
cell, as marked by grey circles. Dashed lines highlight the unit cell of the chain and the modulation
wavelength is reported in a solid grey line; at the centre, the wavelength diverges, thus the horizontal
line.

To show clearly the connection between the dispersion relation in Fig. and real-
space displacements, Fig. reports the expansion coefficients |yx4|? along the dispersion
curve for a periodic and non-periodic displacement of the chain. Whether the energy cost

associated with this expansion is meaningful depends on how well the small displacement
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hypothesis is satisfied.

(a) Plane-wave-pair displacement (b) Gaussian-shaped displacement
w(q) —— Acoustic Mode w(q) —— Acoustic Mode
Optical Mode Optical Mode
0.70 (BZ map 0.70) / \
. 4.59 (BZ map 1.70)

-3 0 z
—

-5 0 H
|
0 1 2 3 4 0.00000 0.00015 0.00030 0.00045
|V¢71|2 |Vql|2
e _
15 30 45 0.01 0.02 0.03 0.04
|VqO|Z |Vqﬂ|2
(c) Projection of plane-wave-pair displacement (d) Projection of Gaussian displacement

Figure 2.15: Projection example. The chain with a two-atom basis is shown as orange circles
and blue squares. (a) A portion of the chain with the displacement (black arrows) resulting from

the superimposition (solid grey line) of two plane waves (dotted lines) at ko = 2T, wavelength
larger than the unit cell, and k; = gr—a%, wavelength smaller than the unit cell. (¢) Projection

of the displacement pattern in (a) onto the phonon dispersion in Fig. Vertical grey lines
highlight the position in the BZ of the modulating wave kg, k1. The intra- and inter-cell character
of the displacements is correctly reproduced in the dispersion. (b) A portion of the chain with the
displacement (black arrows) resulting from a Gaussian-shaped displacement pattern (solid grey
line) centred at = 2 and of width o = 1.2a, a little over a single unit cell. (d) Projection of the
displacement pattern in (b) onto the phonon dispersion in Fig. The projection of this localized
in space is delocalized onto many wavevectors, as expected from the Fourier Transform definition.

Much of the physics shown by this simple example carries on to real crystals, where
higher dimension and directional-dependent interactions yield intricate band structures

with degeneracy and band-crossing points.

Phonons in layered materials

As an example of phonon dispersion in a real 3D crystal, Fig. a) reports the phonon
dispersion of bulk MoSs. The anisotropy of the crystal structure gives rise to a characteristic
structure of modes where high-energy intralayer branches are sharply separated from inter-
layer low energy eigenmodes. As shown by the blue curves in Fig. (a) from K to T,
wavevectors along in-plane lattice vectors result in high energy distortions while modulations
along the interlayer axis ¢, shown in as red curves between the BZ centre I' and A in
Fig. (a), occur at low energy cost due to the weak inter-layer van der Waals coupling
compared to strong in-plane bonds. The characteristic inter-layer modes are divided into
longitudinal, breathing modes [I53], representing the vibration of layers along the ¢ axis

around the minimum of the van der Waals potential, and transverse, shearing modes,
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representing the onset of sliding that have been linked to the frictional response of the

material [92] [154].

kemey

«
¢"(W In-plane
Bt e s, transverse
AR ! acoustic W
Longitudinal *_ . e
acoustic .
v *
a=(a. 0 0)
= Data (b)
64 —— VAz
~ - VBa? L: Y
Vv s ayer o
£ 44 As® + Bot breathing | = ¢ £ gl
3 Fit limit P22 A
2 o (00 a)
0.00 0.05 0.10 Layer }’M
q[A71] shearing « ¢ s & fy e
4 ) 2 < Ff 4
K l0,0.0 [ ] ool [Z]A L)
¢ 7 [<e Layer
GC, :
g S b s s Dending
(@) Lf '7""‘!','/‘%"%' (out-of-plane

transverse)

Figure 2.16: (a) Interlayer and acoustic phonon dispersion of MoS;. Blue curves refer to the
in-plane wavevector, in the xy, while red curves refer to out-of-plane wavevectors, along z. The
inset in the top left reports a schematic of the Brillouin, highlighting the high-symmetry points;
from Ref. [I55]. Other insets sketch the displacement pattern of different branches. (b) Fitting
of the dispersion relation for the bending modes according to Eq. . The dash-dotted and
dotted lines report the linear and quadratic parts, respectively.

Another unique characteristic of the phonon spectrum in layered materials is the
quadratic dispersion wg(q) o ¢® near T' of the out-of-plane transverse branch, usually
termed bending modes. This behaviour is characteristic of bending of 2D sheets in classical

mechanics [I53]. The dispersion is thus written as

;i_rflg wp(q)? = A¢* + B¢, (2.128)
where the slope v A dominates at small ¢ and further away from I' the parameter B,
known as bending stiffness constant, expresses the energy cost of creating ripples in the
material [I53]. The fit of Eq. for MoS, phonon dispersion is reported in the inset
Fig. [2.16{b). In the case of an isolated ML, e.g. a single graphene sheet, the interlayer
modes disappear, i.e. the spectrum between I' and A in Fig. (a) is flat, while only

bending, transverse and longitudinal acoustic modes are retained.
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Strong intralayer covalent bonds in Van der Waals (vdW) 2D materials complement the
weak vdW interlayer interactions which facilitate the lamellar structure of bulk crystals.
While the attractive properties of the pure compounds are widely known, recent efforts
have been focusing on the physics and properties emerging from the stacking degree of
freedom offered by these lamellar materials. Despite the interesting physics that results
from these relative mismatches, an often overlooked question is what determines their
rotational energy landscape and thus which geometries are stable. Indeed, experimental
studies are contradictory on this point, with a wide range of misfit angles found, even
for the same type of system [156] (157, 158 159]. Examples of heterostructures based on
MoSs on G are discussed below. This system may be regarded as the prototypical 2D
heterostructure, as it combines two well-known and extensively studied materials, widely
reported on in the literature. Moreover, it has been reported that MoSs /G heterostructures
show interesting electronic behaviour as a function of the mismatch angle [160} [161]. Using
CVD, Liu et al. [156] epitaxially grew triangles of MoSy on top of G, shown in Fig.
about 0.135 pum in size, with the majority of them (84%) aligned to the substrate and the
remainder rotated by 30°. Using the same technique, Shi et al. [I57] found mismatch angles
between MoS, and G, on top of a Cu foil, ranging from —11° to 18°, with a hexagonal
flake size of about 1 um, as shown in Fig. [3.Ib] For CVD-grown flakes of 9 um reported in
Fig. Lu et al. [158] found a mismatch with typical angles below 3°. Finally, using
an exfoliation protocol, Adrian et al. [I59] prepared multi-layered heterostructures and
observed a misfit angle of 7.3° using diffraction spectroscopy, as reported in Fig.
As well as different values for the observed mismatch angle, these studies offer different

explanations for its origin. Whereas some attribute the observed (mis)alignment to the

o7
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vdW epitaxy accommodating the mismatch in lattice constants [156l [I57], others use the

structural features of the underlying G and the edges [I58] as an explanation.

(©) (d)

Figure 3.1: (a) CVD-grown flakes adapted from Ref. [I56] (b) HRSTEM of misaligned MoS,
flakes grown on graphene. The insets show a spacial FFT of the highlighted region. Adapted from
Ref. [157]. (c) CVD-grown flakes adapted from Ref. [I58] (d) Electron diffraction image of the
multilayer heterostructures in Ref. [I59].

In a recent theoretical work, Zhu et al. [54] explained the orientational ordering of finite
size homostructures, e.g. MoSo flakes on an MoSy substrate, using a purely geometrical
argument: the lowest energy configuration is the one obtained by the roto-translation of
the rigid flake which maximizes the number of locally commensurate regions. Although this
argument is solely based on geometry, it provides a satisfactory approximation for finite
size systems but in the limit of infinite planes, i.e. for large enough flakes, commensurate
regions equal incommensurate ones. Therefore, in the limit of extended interfaces, other
theoretical frameworks are needed.

This chapter explores the energy landscape originating from the rotational degree of
freedom of edge-free, complex layered heterostructures and relate its fundamental origin to
incommensurability and layer deformation at imposed angles. This will provide guidance
for the design of vdW heterostructures and the control of the twisting degree of freedom. In
order to make a more general point about the relative importance of different contributions
in determining the total energy landscape, the following analysis focuses on a specific
but well-studied system, namely MoSy/G. While previous energy analysis focused on
commensurate MoS;/MoSe homostructures [162] or near-commensurate 2D-crystal G/hBN
heterostructures [163], the MoS2/G BL system has a mismatch ratio p = lg/Imos, =~ 0.8
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far away from the commensurate value p = 1 and it is composed of a mixture of 2D and 3D
crystal monolayers. This selected analysis shows the practical application of the argument
developed and will also allow one to comment on the apparently contradictory experimental

observations regarding this particular system.

3.1 Epitaxy Theory

An approximate theory for the orientational ordering of an incommensurate interface
was proposed by Novaco and McTague [164, [165]. Although developed in the context of
epitaxial growth of noble gas layers on metal surfaces, it has been successfully applied
to the behaviour of mesoscopic colloidal layers in optical lattices [166] and metal clusters
adsorbed on G [I67]. The assumption of the Novaco-McTague (NM) theory is that two ML
linked via an interface may be divided into two separate components, regarded as purely
2D systems: a soft adsorbate layer, treated within the harmonic approximation, atop a
rigid substrate.
The Hamiltonian of the system is decomposed into intralayer and interlayer inter-atomic
interactions
H = Hy, + Hy, + Hp,L,. (3.1)

The NM prescription means that the first intralayer term in Eq. (3.1)) is substituted by its
harmonic approximation, while the coordinates of the second layer are frozen at its initial

values, 7q, yielding a rigid substrate potentials for the first layer:

Hnn = HLl + HL2|T‘0 + HLng- (3.2)

|harm0nic

The system is frustrated if the substrate and the adsorbate lattices are mismatched: the
intralayer interactions within the adsorbate favour the intrinsic equilibrium lattice spacing,
while the interactions with the substrate drive the atoms toward the minima of the potential
generated by the frozen ML. The first term of Eq. is treated within the phonon
formalism described in section The second term Hy,|,, is a constant shift of the
energy, the cohesive energy of the ML. The third term of Eq. , Hi,1,(r), is the
interaction between the harmonic monolayer and the rigid substrate, generated by the
frozen atoms in the monolayer of lattice vectors b;. The interlayer interaction Hi,, 1, (r)
can be approximated in terms of monolayer geometries and harmonic response only. Here,
a generalisation of the model proposed in Ref. [164] [16§] is given and it is shown how the
results therein are recovered within the proposed formalism.

The geometry of the ML, described in Appendix[B] allows the position of the atoms to be
decomposed as in-plane vectors and out-of-plane coordinates, r,; = (pyiz,1). Considering
a plane perpendicular to the z, the potential generated by the frozen atoms in the
substrate is a periodic two-dimensional function, with the periodicity of the substrate
lattice V(p + B) = V(p), where B = l1b; + labs is a vector of the Bravais lattice of the
substrate. The interaction potential with rigid substrate Hy,, : RN — R is a 1-body
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potential for the particles in the harmonic ML. It can be decomposed into single-atom
contributions and expanded in a Fourier series over the reciprocal lattice of the frozen

monolayer G:

Hy, 1, (P00, - Tamvg) = 3 Vipw, 2u) = 3 Val(z)e? . (3.3)
v,l v,l,G

The coefficients appearing in Eq. (3.3) are defined as

Va(zy) = Z V(pui, z,,l)e_ip”l'G. (3.4)
vl

In the assumption of small displacements from the equilibrium positions, the Fourier
coefficients in Eq. (3.4) can be Taylor-expanded to the first order around the equilibrium

interlayer distance zg:

Va(zu) = Va(20) + Vi (20)020 + O(u?), (3.5)

where 02,; = (R, + uy;) - €3 — 20 and V5 (20) = d;/zc . To simplify the notation, in the
Z

following zp = 0 and dz,; = z,; and the expansion pgint will be dropped, Vg = Vg(0).
In an incommensurate heterostructure, atoms of the harmonic crystal a are found at all
possible positions in xy with respect to the substrate crystal b, i.e. the adsorbate-atoms
positions, mapped into the substrate unit cell, cover it densely, as shown in Fig. The
position of any adsorbate atom can be written in terms of the substrate lattice p = p '+ B,
where B is the appropriate lattice vector and p’ is confined in the unit cell of the substrate.
Using the expansion in Eq. , the sum in Eq. may then be converted into an
integral over the unit cell €, of the substrate potential at fixed height

Vo =Y V(pa'+ B, z)e (P HHE = Jim [ V(p,z)e™"Cdp,  (3.6)
vl o

which is independent of the position of the adsorbate atoms. The coefficients can thus be
evaluated providing an analytic form for the interaction V(r), without the need for the
exact atoms position in an extended geometry, which is usually out of reach for accurate
QM calculations. The same reasoning can be applied to V¢ in Eq. .

In the limit of small displacements u < [,, the plane-wave term in Eq. (3.3) can be

expanded at first order as
e = G (1 4G - uy) + O(u?). (3.7)
By substituting Eq. (3.5) and (3.7) in Eq. (3.3) and retaining only terms linear in w:

Hy,1, ~ Z VeG4 Z V&(0) 2,0 BG4 Z VG - uy G, (3.8)
v,l,G v,l,G v,l,G

By exploiting the periodicity of the adsorbate ML as explained in Appendix [B] the
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Figure 3.2: Graphical representation of the dense correspondence of lattice positions between
incommensurate lattices in Eq. (3.6)). Supercell with L = 60 of lattice b (left) mapped back in a
(right).

interlayer interactions can be approximated as

Hy,, = nNo Y Vafrda.r (3.9)
7,G

1 )
v/ No Y Vs Y = (es(v,k) i) M T6(G +k —7)  (3.10)
.Gk v VI

+iny/No D Vars ) \/:rT (es(.k) - G) ™ To(G +k—7).  (3.11)

v
.Gk v
s

The term in Eq. is a lock-in contribution: non-null elements occur when 7 = G, i.e.
substrate and adsorbate have commensurate lattice points. For aligned homostructures,
this is the only contribution, as 7 and G are always the same vectors. In the presence
of misalignment 6 or mismatched lattice spacings, the equality is never satisfied and this
contribution is null. The term in Eq. describes the coupling between the adsorbate
7 and substrate G lattices due to an out-of-plane part of the mass density wave with wave-
vector k. The scalar product €5(v, k) - ug selects only the eigenvectors with a components
along z and the coefficient V{, is related to the force recalling the atoms towards the
minimum of the binding potential between the layers, i.e. a LJ potential well. A similar
effect for the in-plane-part is described by the term in Eq. : the scalar product
projects the phonon eigenvectors €5, on the zy plane and couples them with the direction
(and magnitude) of the substrate lattice G, thus introducing an explicit dependence on the

mismatch angle €5(v, k) - G = €;G cos 0 .

Dirac’s ¢ functions in Eq. (3.10|) and (3.11)) dictate that the three vectors G, T, k, satisfy
the geometry sketched in Fig.|3.3] In an incommensurate system, each density wavevector

k identifies a single pair G(k), 7(k) of reciprocal lattice vectors [164], i.e. each triplet of

vectors is unique and the sums in Eq. (3.10) and (3.11) run over only one of these vectors.
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@) (b)

Figure 3.3: Example of geometry for the triplets appearing in Eq. and (3.11) at (a) 8 # 0
and (b) # = 0. Orange arrows represent substrate reciprocal lattice G, purple arrows represent
the adsorbate reciprocal lattice 7 and black arrows are phonon excitation vectors k. Grey arrows
show the direction of the polarization of the phonon excitation of a branch s, described by the
eigenvectors €4(k). The flexural branch is always perpendicular to plane where 7, G, k lie.

Total Energy

Adopting a second-quantisation formalism, as outlined in Appendix [B] the total energy of

the system is approximated by the following Hamiltonian operator

. 1
H=E.+ ) hwl(k) <aLsaks + 2) +nNo Y Vafroar (3.12)
k,s G

+nV/No Y g2 (k) (s + a1 y,) +iny/No Y g2 (k) (ks + ! y,).- (3.13)
ks k,s

The layer coupling and phonon amplitude have been grouped into

z _ h VC/T' ~  iR,-T _ z *

) =iy o R ™ T = (93K (3.14)
h Vi Ry, -T T *

o7 (k) = e k) G Tog iy = (g (R) . (315)

2ws(k) Lo, VI

where the relation with the complex conjugate follow from w(—k) = w(k), w(k) € R,
phonon eigenvectors properties discussed in section and the physical requirement for
the energy in Eq. (3.3]) to be a real number.

The Hamiltonian in Eq. 1| is not diagonal in &}; s Grs and the expectation value of
at and a operators on the ground state of the system is not null. Thus, the ground state of
the system present a permanent phonon excitation, a mass density wave. To diagonalise
the Hamiltonian in Eq. (3.12), new creation and annihilation operators are defined in terms

of complex order parameters &:

irs = v/ Noks + bis ab, = v/ Nokjs + bl (3.16)
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The Hamiltonian in terms of the new operators reads

H=E.+ Z <2’285ks + No&gsSks + ;) w3 (k) + nNo ZC; Vo fr (3.17)
+ \/1702 brs (hws(K)&ks + ngs (k) + ingg¥ (k)) (3.18)
+ JJVOZb k)ks + ngs (k)" + ings¥ (k)*) (3.19)

+nNo Z (Ers9s (k) + (Ersgi (K))*) +inNo Y (ks (k) + (rsgs? (R))*) . (3.20)

k,s k,s

The system is diagonalised by imposing that the coefficients of the linear terms in I;, I;T,

Eq. (3.18) and (3.19) are null [164]:

Sks = — (95 (k) +igs¥ (k) = & ks- (3.21)

hws (k)

Finally, substituting Eq. (3.21)) back into Eq. (3.17)) yields

H=E.+» hwi(k) (%Jyks + ;) +nNo Y Vaf- (3.22)
k,s .G
- nzNoZ o, ( ) [19Z(R)I* + |92 (k) |* — 2Im (g3 (k) *g2Y (K))] - (3.23)

Equations (3.22)) and (3.23)) represent a generalisation of eq. 13 in Ref. [168]: while the

original work by NM assumes simple Bravais crystals and a purely 2D system, this result

applies to real crystal systems, including distortions perpendicular to the ML surface. The
last term in Eq. represents the coupling between in- and out-of-plane distortions.
While the first two terms in Eq. always lower the energy of the system, the sign of the
coupling contribution is not fixed and its effect must be determined case by case. Finally,
equation Eq. and can be evaluated from pristine ML crystals and coupling
potentials. This characterisation is cheaper than running MD simulations on extended
systems and does not required a parametrisation of a material-specific force field. This
would allow the exploration of the rotational landscape of a large set of heterostructures in a
HT fashion, offering a way to tailor the energy landscape for twistronic application or nano-
scale devices. This would, for example, ensure that the desired rotational configuration is

thermodynamically stable.

3.1.1 Simple Crystal in the Long-wavelength Limit

From the result in Eq. and (3.23)), the NM approximation (eq. 21 in Ref. [L68]) can be
recovered. When considering a simple Bravais crystal, i.e. a single n = 1 atom of mass m per
unit cell, the sum over v disappears and the system presents only acoustic phonon branches.
The eigenvector geometry neatly resembles the ML nature of the system: e 7 lie in the G
plane and ep L G. This yields the geometrical relations e7-G = (R(7/2)er)-G = Grsinf/k



64 Chapter 3 Structural Properties of Heterostructures

and k? = |G — 7|> = G%? + 72 — 2G7 cosf). Moreover, the coupling term Im(g*g™¥) is
identically null: only one of the scalar products in Eq. (3.14) and (3.15)), €5(v, k) - 43 or
€s(v, k) - G, respectively, can be non-null. In the long-wave limit, the phonon dispersion

relations can be approximated as

w? (k) ~ cLk (3.24)
wa (k) ~ erk (3.25)
wh(k) ~ AK?, (3.26)

where cr, v are the longitudinal and transverse sound velocities, respectively, and A is the

bending rigidity of the layer [I53]. Starting from Eq. (3.22)) and (3.23), the energy gain per

atom granted by the GS density wave compared to the isolated adsorbate ML equilibrium

geometry reads

<ﬁ>0 — E.
A ="~ 2
T (3.27)
1 o 1 5 G? 5 G212sin? 0 (2
= om [VéA?k:‘*JFVGc%k:?JrVGcik‘i 2 1)) (3.28)

The definition of gs(k) in Eq. (3.14) and (3.15)) were used. The delta functions in gs(k)
reduce the sum to a single vector, k; the dependency on this vector 7 = 7(k) and G = G(k)
is implicit.

The energy minima as a function of the misalignment angle is found by setting the
derivative of Eq. (3.27) with respect to 6 to be null

OAE  —VZ o [Grsin® 4, (sinfcosf 2GTsin’0

R D T Al B G Ty

(Vi) \? Grsind
A kS 7

(3.29)

where o = ((cr,/cr)? — 1) and an implicit dependence on  is contained in k™ at the

denominators.

Dividing Eq. (3.29) by sinf, § = 0 emerges as a solution. From the physical point of
view, # = 0 must be a solution: the energy cannot depend on the sign of the misalignment
and, thus, § = 0 must be an extrema point, either maximum or minimum. The energy

scales of in-plane and out-of-plane contributions to the position of the energy minima are

2
separated in Eq. (3.29). The in-plane deformations are scaled by the prefactors ‘C/—QGGQ,

which is the ratio between the energy gain from matching the substrate periodicity (ngG)
and the cost of elastic deformation (cr), and 72((cr,/cT)? — 1), which expresses the lower
energy cost of transverse phonon branch compared to longitudinal one. The contribution
of out-of-plane deformation is governed by (W){ which is the ratio between out-
of-plane interlayer coupling (V€% (k)) and cost of layer bending (A). In contrast with

the 2D case presented in the following section, Eq. (3.29) retains a dependency from the
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reciprocal lattice vectors 7 and G. This is rooted in the different dependence from G
of the in- and out-of-plane contributions: the energy contribution related to the flexural
phonons couples with the z axis rather than with the Bravais lattice of the adsorbate. No
simple analytical solution is found for the limiting case in Eq. and while it could be
evaluated numerically, the non-approximated model in Eq. and would yield a

better description of the system.

Purely 2D Monolayer

To recover eq. 21a in [168], the adsorbate ML is regarded as a 2D object, i.e. only L and
T phonon branches are present. Moreover, it is assumed that by symmetry there are p
equivalent triplets T, G, k that satisfy the construction in Fig.|3.3|[164], 168]. Equation (3.29)

becomes

B _pVéGQ 1 72sin” 0
M = =580 |+ o) (3.30)
Solving OAFE;p /060 = 0 for 0 yields eq. (21a) in Ref. [168]
2
cos Onm = L+ p(L+20) (3.31)

p2+o(l+p?)]

where p = 7/G. The trigonometric function imposes the following limits on the parameters

in Eq. (3:31):

0<p<lvp>1 (3.32)

c, >V 1+ p~ler. (3.33)

The first condition correctly implies that for commensurate bilayers (p = 1) the minimum-
energy angle is always 6 = 0, i.e. aligned lattices. The second condition states that the
transverse branch must be lower enough in energy compared to the longitudinal one to
justify the shift from § = 0 which coincides with the shortest k& value and thus lower
frequency w. In ref. [I68], ignoring the out-of-plane displacements in Eq. is justified
by the experimental observation that V' ~ 0.

To summarise the physics of the NM model, a computational result from the following
analysis of MoSs/G system is anticipated here. As illustrated in Fig. as function
of the misalignment angle 6 the relative alignment of the the substrate lattice G (blue
arrow) and the phonon acoustic eigenvectors (gray arrows) changes. Since flexural phonons
are perpendicular to the xy plane, and thus to G, they can never participate to this
energy term. As Fig. [3.3(b) show, at # = 0 G L er and thus only longitudinal phonon
modes contribute to the in-plane interaction with the substrate. Instead, when 6 # 0 like
Fig. [3.3(a) both transverse and longitudinal eigenvectors have a non-null projection on
G. The macroscopic effect of the different excited branches at different angles is shown

in the displacement maps in Fig. In the aligned case # = 0° only compression and
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extension of the bonds are found and all displacements lie along the lattice parameters.
In the misaligned case 6 # 0° displacements have components along and perpendicular
to the bonds, signalling the excitation of the transverse band as well. According to NM
approximation [164} (168] in Eq. (3.31]), the non-null amplitude of the transverse branch
can lead to a lower total energy of the system, despite § # 0 implies a larger |k|, thus
larger energy penalty proportional to w(k); this is because the transverse branch lies lower
in energy than the longitudinal one. This model does not take into account the complex
structure of the unit cell crystal and the out-of-plane deformation, whose effect is analysed

in the remainder of this chapter.
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Figure 3.4: In plane relaxation of graphene layer in the potential generated by MoSs. In (a) 6 =0
and the two Bravais lattices are aligned: the only contribution to the distortion comes from ¢y, - G,
parallel to Bravais lattice vectors. In (b) € # 0 and the two Bravais lattices are misaligned: both
er, -G # 0 and er - G # 0 and displacements are both along and perpendicular to Bravais lattice
vectors. To enhance visibility, arrows report the direction of the displacement of each C atom, while
the colour-code reports the length.

3.2 Computational Methods

This section introduces the computational protocols and methods used to study the system
of MoSy/G heterostructure, taken as a case study for the epitaxy theory outlined in
section In order to avoid finite-size effects and harvest information solely from the
relaxation of the atoms in the layers, edge-free geometries are adopted. The resulting
supercells are simultaneously compatible with the lattice mismatch and a relative imposed
angle between the lattices. As a result, periodic boundary conditions (PBC) can be applied
to such cells. The starting interface geometry is described by a pair of 2D lattices defined
by vectors (l,ai,laa2) and (zbﬁl, lbf)g), where [, and [, represent the lattice constants and
the b; vectors are rotated by an angle 6 with respect to a;. Two layers will be compatible

if they satisfy the matching condition

la(nlél + ngég) = lb(mlf)l + mQE)Q), (334)
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where the integer numbers ny, no, m1, my are supercell indices representing the repetition
along each lattice vector. In practice, for incommensurate lattice constants, the matching
condition yielding PBC-compliant supercells can only be satisfied approximately, i.e. the
lattice spacing I’ of one of the two components needs to deviate from its equilibrium value
[ . Here, in order to obtain suitable structures with imposed angles between 0° and 60°,
only supercells satisfying |’ — | <5 x 10~7 A are accepted. The strain is applied to the
MoS, layer, which leads to a maximum strain € = VT_Z within the same order of magnitude,
four orders less than reported strains in other computational studies [169] 170, 171]. This
protocol yields a set of supercells, each of which has a different number of atoms up to
343893, created according to the four supercell indices resulting in an unique twisting angle,

satisfying the matching condition. Details of this protocol and all the parameters of the

supercells used are reported in Appendix [C}

Side View

=C
}REBO ¢

Figure 3.5: Schematic overview of computational setup displayed for a mismatch angle of 9.75°.
(a) Top view, including a sketch of moiré tiling resulting from the geometrical interference between
the two lattices. The mismatch angle between the lattice direction of MoSy (blue line) and G (green
line) lattices is reported as well. (b) Side view, including the corresponding force fields that have
been used.

The bilayer system is described using the force field reported in Appendix [D} G layer
is modelled using Reactive empirical bond order (REBO) potential [172], MoSs layer is
modelled using Stilling-Weber (SW) potential [I71], and the interlayer interactions are
modelled with LJ dispersion term, whose parametrisation is reported in Appendix [D] This

yields the following Hamiltonian for the bilayer system:
REBO SW LJ
H=HS" + HGW + B oo s (3.35)

Energy minimizations of Eq. (3.35]) for large supercell geometries were performed using
the conjugate gradient algorithm available within the LAMMPS package [173], with the

convergence tolerance on the total energy value set to 1 x 107, An overview of the
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computational setup can be found in Figures and Appendix [D] reports a
benchmark of the intralayer part of the FF, comparing lattice parameter and phonon
dispersion with DFT calculations, and a refinement of the interlayer part, since the

parametrisation found in literature was not deemed satisfactory.

Sound Velocity Estimation The NM approximation in Eq. (3.31]) requires an esti-

mation of the linear dispersion regime limy_,ow;(k) = v;k, where i = L, T labels either

the transverse (T) or longitudinal (L) branch and v; = 8"52’“) ‘F is the speed of sound of

corresponding branch. Fig. [3.6]shows the longitudinal and transverse branches close to I' of

G and MoSs, extracted from the phonon dispersion reported in Appendix D] The plot also
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Figure 3.6: Sound velocity fits from the phonon dispersion in G (shades-of-blue symbols) and in
MoS; monolayer (shades-of-red symbols). The y axis reports the frequency v in THz and the x
axis the distance from I" in A~!. The colour-matching lines report the linear fit of that branch, i.e.
Vv, = Uik.

shows the linear fits obtained from the points, including their fitted slopes representing
the sound velocities, as reported in Table This leads to the values o = 2.235 and

OMos, = 2.968 used to evaluate Eq. (3.31]).

Material v, [km/s] v, [km/s]
G 18.9403 £ 0.0005 10.5298 £ 0.0005
MoS, 0.2608 £+ 0.0005 0.131 +£ 0.002

Table 3.1: Sound velocity of transverse and longitudinal phonon branches in G and monolayer
MoS, extracted from Fig. [3.6] The uncertainty arises from the linear fitting procedure.

3.3 Results

The reminder of the chapter tests the NM model and long-wavelength limit on the
prototypical complex heterostructure: MoSo ML on G. The analysis will highlight the limit

of the NM approximation and the direction in which an advanced model should go.
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3.3.1 Constrained 2D Simulations

In this section, MoS2/G system is constrained to meet the assumption of the NM limit in
section Following the model presented in section the intralayer term in Eq.
is substituted by its harmonic approximation, while the coordinates of the second layer are
frozen at its initial values, ro. The theoretical misalignment angle minimising the energy is
given by Eq. . There are two possible scenarios covered by NM theory: G can be
treated as the rigid substrate, while MoSy acts as a soft adsorbate, or vice versa. In the first

case, the theory predicts 9%&82 = 8.0°

, while if G is the adsorbate, the minimum-energy
angle is QEM = 8.6°. The prediction of the NM model can be verified by minimizing the
total energy of the twisted geometries described above under suitable constraints. The
atoms of the heterostructures are constrained in the direction perpendicular to the surface,
i.e. the z axis, effectively reducing the dimensionality of the system to 2D. Furthermore,
the atoms of the substrate layer are frozen in the in-plane directions « and y, enforcing
a fully rigid substrate. As mentioned at the beginning of this chapter and explained in
detail in the Appendix [C] the edge-free geometries used in this work inevitably retain
a degree of stress resulting from the matching condition for the two lattices in order
to be able to apply PBC. The slightly different strains applied to each geometry result
in different offsets in the starting energies. It was found that this offset is comparable
with the energy gain arising from in-plane movements of the atoms, even in the biggest
supercell within computational limits. This artifact leads to a significant noise in the
signal of the energy as a function of the imposed angle. To overcome this problem and
to obtain a clear signal in these simulations, the LJ-coupling strength between the MoSq
and G layers was enhanced. During the geometry optimization, the LJ-parameters ¢;; in
Eq. |D are set to e;j = 100 - ;. Next, the resulting energy profile is scaled back, as if
simulated with the original value e;j = €;;. As is shown in the Figures and this
computational trick reduces the noise without affecting the actual physics of the problem.
The LJ-coupling between the layers of MoS, and G was enhanced during the constraint
simulations as mentioned in the main text. This was done because the strain posed on the
MoSs lattice, in order to create a supercell suitable for the application of PBC, results in a
noise significantly affecting the energy profile upon rotating the lattices. Fig. reports
the energy profile F(0) for different values of the scaling factor f in € = fe. It can be seen
that this computational trick does not alter the physics but purely amplifies the energy
trends that otherwise get progressively hidden by the noise. Fig. [3.7b| reports the scaling
relation at 8 = 30°, showing an almost quadratic behaviour. In order to make comparison
between Fig. and Fig. easier, the values computed at €} ; = 100e,; are scaled back,
according to E'%(30°)/E'(30°) = 1751.57. In other words, both the minima and maxima
remain located at the same angle, however, their absolute energy value is scaled according
to the LJ-coupling.

Fig. shows the optimized energy per atom, E(#), of the bilayer system as a function
of the angle, 6, with respect to the energy of the aligned structures, E(0). The two curves
refer to the following models: 2D-adsorbed G atop rigid MoSs (red) and 2D-adsorbed MoS,
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Figure 3.7: (a) Enhancement of the LJ-coupling. The plot reports the energy F(6) in meV/atom
versus angle 6 for rigid MoS, and soft G for increasing values of LJ coupling f, as reported in the
legend. (b) Scaling relation between the maximum energy ratio and the LJ coupling parameter
€. Blue circles represent the energy at # = 30° computed at a given enhancement factor f, with

respect to f = 1, versus the scaling factor f. The light-blue line shows the fitted power law reported
in the legend with parameters a = 0.217837 and b = 1.9572.

atop rigid G (blue). Both cases reveal a minimum at a non-zero angle: for the adsorbed
G case, the minimum is found at Hgin = 4.2° while for the adsorbed MoSs case it is at
Grl\r/llﬁlsz = 12.3°. The simulations show that the physics described by the approximation of
Eq. is still valid, i.e. a non-zero minimum angle is observed for both cases. However,
the absolute values of the predicted and observed angles are not in agreement, yielding a
discrepancy of 8. —60%,; = —4.4° in the case of 2D-adsorbed G and 9%&82 — 9%&82 =4.3°
in the case of 2D-adsorbed MoSs.

A previous study [163], dealing with G and h-BN, showed that the NM model quanti-
tatively describes the relaxation of the constrained system of these purely 2D materials.
Here, the NM theory captures the basics of the physics, i.e. non-zero minimum-energy
misalignment, but is not able to describe satisfactorily the complex geometry of the bilayer
system, especially in the case of the flexible MoSs layer. The poor prediction of the theory
in this case is attributed to the internal 3D structure of the MoSs monolayer, which indeed
is unaccounted for in the NM model. This suggests that the NM theory is generally of
limited utility for any bilayer comprising TMDs or other systems with a multi-atom thick
single layer. Another difference between the results here and the ones found for G/hBN
heterostructures [163] is the quantitative difference in the energy values. In fact, the results
here report energy differences of one order of magnitude less. This difference is explained
by the earlier mentioned MoSs/G BL system mismatch ratio p =1/l =~ 0.8. Due to this
significant incommensurability between the MoSo and G, present for all rotations, the atom
displacements and energy difference is expected to be less pronounced. In fact, a similar
observation has been done experimentally by Diaz et al. [160] and Pierucci et al. [161]. For
example, Diaz et al. found that the moiré pattern obtained from AFM measurements from
MoS,/G was less pronounced compared to the one of hBN/G. Finally, a BL system with
constraints between the pure NM theory and free system was considered: atoms in each
MoS3 /G ML are free to move in the equilibrium zy plane but constrained along z. This

corresponds to lifting the rigid substrate assumption of the NM theory, while enforcing
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Figure 3.8: Energy per atom E(f), in meV, as a function of the imposed angle € in degrees
for different 2D models: red squares refer to flexible G on top of rigid MoS,, blue circles refer to
flexible MoSs on top of rigid G and gray triangles refer to flexible MoSs on top of flexible G. The
label in the legend indicate the flexible ML. The reference value of the energy scale is set to E(0).
The minimum-energy point along each curve is highlighted by a dashed line and a label. Red and
blue crosses (accompanied by a label) mark the minimum angle predicted by the NM theory for
the first and second case, respectively. The minimum-energy and NM-predicted angles for flexible
MoS, are reported starting from 60° for ease of reading.

a constant interlayer distance. The black symbols in Fig. report the results of this
case. As a result, the two layers can mutually influence and distort each other, reaching
configurations not included in the NM model. A minimum at § = 7.94° is clearly visible
in Fig. midway between the two rigid substrate approximations. Note that the the
model does not describe the mutual interaction between the layers and does not provide
a prediction for the minimum-energy angle in this case. The behaviour of the system
is thus qualitatively different from the h-BN/G heterostructures studied by Guerra et
al [163]. In that case the NM theory was found to explain quantitatively the energetics
of the rigid and z-frozen scenario, i.e. blue and red lines in Fig. but removing the
rigid substrate constraint changed the behaviour qualitatively: the minimum-energy angle
predicted by NM disappeared from the energy profile of the system. From this observation,
one can conclude that relaxing the constraint of a rigid substrate in this system with a

3-dimensional single layer does not contradict the physics described by the NM model.

3.3.2 Free bilayer 3D

Indeed, the NM theory is even qualitatively inadequate if all degrees of freedom are
considered, i.e. all atoms are free to move in the 3D space. Fig. [3.9|shows the energy
per atom as a function of the angle of the system with no rigid substrate, but two soft,
interacting layers. Naturally, the LJ-coupling between the two layers has been restored to
the values obtained from fitting against the DFT data to correctly reproduce interlayer

forces. The behaviour is both quantitatively and qualitatively different from the constrained
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Figure 3.9: Energy per atom E(6), in meV, as a function of the imposed angle 6. Each point
in the energy landscape represents a distinct geometry at a different imposed angle and the blue
line is a Bézier fit. The small oscillations at # = 0°,60° are due to numerical noise in the energy
simulations. The circular insets show a top views within a distance d = 15 A from the origin of
relaxed geometries at 6 ~ 0° (bottom left), § ~= 50° = 10° (bottom right) and 6 ~ 30° (top centre).
The atoms are coloured according to the scheme in Fig. [3:5] The pink hexagons sketch the moiré
tile in each configuration.

system presented previously. The introduction of the out-of-plane dimension (z) changes
the response qualitatively. The energy minima at non-zero angles have disappeared and
E(0) rises symmetrically from the global minima at the aligned cases (0°,60°) towards
the global maximum at the mismatch angle of 30°. From Fig. [3.9] one can thus deduce
that at 0 K, the fully flexible bilayer system will be stable when aligned at 0° or 60°. The
energy profile around the mis-alignment of 30° is flat and the misaligned geometry at this
angle could therefore be characterized as metastable, as a vanishing force F' = —dFE(0)/dé
drives the system toward the global minima at 0° or 60°. In the thermodynamic limit
this orientation should not occur, considering its maximum character. The fact that it
is observed experimentally [I56] can be explained by the fact that this geometry can be

stabilized by a small internal friction, e.g. due to defects.

The NM theory does not hold when structural distortions perpendicular to the interface
are allowed. Results indicate that these are important for MoS2/G heterostructures and
there is reason to believe that this is more widely the case. The core of the NM argument
is that the collective misalignment arises from the excitation of the transverse phonon
branch in the xy plane, which lies lower in energy than the longitudinal one. This static
distortion, which raises the internal energy of the adsorbate layer, is counterbalanced by
a better interdigitation of the two lattices, that is, the displaced atoms are shifted to
more favourable stacking with respect to the interlayer potential [164] [165]. If out-of-plane
distortions, unaccounted for in NM theory, lead to a better interplay between the two
layers, i.e. a gain in the interlayer coupling energy that is larger than the intralayer energy
penalty from the modulation itself, the system will lower its total energy. Differently

from the NM theory, the lowest-energy distortion in this scenario would not result in a
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misalignment between the components but in the formation of ripples keeping the locally

commensurate zones at the equilibrium distance and pushing away incommensurate ones.

3.4 Discussion

Out-of-plane displacements magnitude This section compares the out-of-plane
displacement of G layer with the MoSy one. The thickness of a ML is defined as
7(0) = Zmax — Zmin in the relaxed geometry. Since MoSs comprises three atomic lay-
ers, the analysis has been carried out on the separate components: bottom S layer, Mo
layer and top S layer, as reported in Fig.[3.10] The thickness of the bottom S layer, shown
as an orange dashed line in Fig. [3.10] shows the larger displacements amongst the atomic
layers comprising MoSs and the trend mirroring G displacement (blue solid line in Fig. [3.10
This behaviour can be explained as the bottom S layer is the closest atomic layer of MoSs
to G and, thus, is the most affected by the interlayer potential. As the misalignment angle
0 grows, the less convenient it becomes for G to modulate and the more important the
contribution from MoSo modulation becomes, albeit still small compared to G signal. The
Mo layer shows a level of modulation only after § = 20°, when G starts to flatten. Finally,
the top S layer, furthest from the interface with G, remains essentially flat throughout the

spectrum and the small fluctuation can be regarded as numerical noise.
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Figure 3.10: Thickness 7(0) of the atomic layers as a function of the mismatch angle 6. The y
axis is in logarithmic scale for better comparison.

The total variation A between all values 6 are reported in Table [3.2] The last column
reports the variation with respect to the one occurring in G (Ag): the modulation in MoSs
is at least 2 orders of magnitude less than in G. The structural distortion representing
the leading order in the system energy economy occurs mostly in the G layer. Thus the

following discussion will focus on this part of the system only.

Phonon dispersion in G The out-of-plane deformations disregarded in NM theory

are characterized here in terms of the flexural phonon branch, which described excitation
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Atom layer ‘ ming(7) [A] ‘ maxy (1) [4] ‘ A [A] ‘ A/Ag

G 0.0026 0.0291 0.0265 1

Bottom S 0.0007 0.0013 0.0006 | 0.021
Mo 0.0003 0.0008 0.0005 | 0.018
Top s 0.0001 0.0004 0.0002 | 0.009

Table 3.2: Minimum and maximum thickness across . Variation of thickness A = maxy(7) —
ming (7). Variation relative to the one occurring in G.

perpendicular to the ML plane. In line with the edge-free geometries adopted, the phonon
picture is independent of size of sample and since the phonon eigenvectors represent
a complete basis set [143], any distortion in the crystal may be expressed as a linear
combination of phonons. Moreover, treating the distortions of a layer in terms of its phonon
spectrum decouples the intralayer energetics from interlayer interaction. As shown by the
blue solid line in Fig. the flexural band is flat near the centre of the BZ (I" point), i.e.
the long-wave modulations perpendicular to the basal plane can occur essentially without
an energy penalty. Transverse (dashed grey in Fig. and longitudinal (dash-dotted
gray in Fig. bands, at the base of the argument given by NM theory, are higher in

energy, resulting in more expensive modulations of the G layer.
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Figure 3.11: Phonon band structure of the G monolayer. The y axis reports the phonon energy,
while the x axis marks the distance from the origin along the path I' = M — K — I', shown in the
top right inset and marked along the x axis by gray dashed lines. The flexural branch is reported
by a solid blue line, transverse branch by dashed gray line and longitudinal branch by dash-dotted
grey line while other branches are shown in dotted black lines. Coloured segments along z raising
from y = 0 to the flexural branch mark wavevectors matching the moiré spacing Ly (6) for the
geometries in the insets of Fig. as highlighted by the colour-code. The moiré wavevector ki
corresponding to real-space wavelength Ly is shown in the top-right inset following the colour-code
in the legend in top left.

Moiré pattern While the phonon spectrum describes the energy penalty compared

to an isolated ML at equilibrium, the energy gain from interlayer interactions can be
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quantified in terms of moiré patterns. The moiré superlattice is a geometrical construction
describing the interference between two lattices and can be used to identify geometrical
correspondence between lattices, i.e. zones of local commensuration versus incoherent
stacking. The symmetry of the moiré superlattice reflects the one underlying Bravais

lattices and its lattice parameter Ly is given by [112]

la
Lyi(0) = . 3.36
(6) V1+p2—2pLcosh (3.36)

Fig. shows the correlation between out-of-plane modulations in the G sheet, i.e.
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Figure 3.12: Thickness of G layer 7(6) resulting from the displacement of C atoms (black circles,
left axis) and spacing of the moiré pattern Ly(6) (coloured dotted line, right axis) as a function
of 6 for equivalent configurations at 0° and 60° rotating towards 30°. The insets show the local
distortion following the moiré lattice in a square of sides 60 A at the nearest configuration having
approximately an angle of § = 0° (0.23°, dark purple), 10° (9.75°, purple), 20° (19.89°, dark pink),
30° (29.17°, pink). The colour of each triangle reports change in height Az = z — z.q coordinate of
the corresponding C atom (black points) following the colour code reported in top left. For example,
the moiré pattern can be seen in the inset for Ly (0°) as the lattice defined by the red regions.

rippling in the z dimension quantified by the layer thickness 7(6), and the moiré pattern.
The thickness of the G layer 7(6) originates from local ripples of the carbon sheet. This
thickness is, therefore, a global descriptor defined for each misaligned geometry and
represents a useful tool to quantify the behaviour of the system. At 6 = 0, the moiré
spacing and the thickness 7(6) are at a maximum and they both decrease as the misalignment
increases. As 6 increases, the length of the pattern shrinks with the displacement along z:
at @ = 30° the moiré shrinks to a couple of unit cells and the monolayer remains basically
flat. The ripple patterns, i.e. local geometry, follow perfectly the moiré superlattice, as
shown in the insets of Fig. for selected values of 6.
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Moiré-Phonon interplay Combining the geometrical construction shown in Fig. [3.12
and the G phonon dispersion in Fig. the energy profile in Fig. [3.9) can be explained.
The moiré spacing Lyi(#) can be mapped to wavevectors into the BZ by ky(0) = m.
The wavevectors ky; corresponding to the spacing Ly; of the geometries in the insets of
Fig. [3.12] are highlighted, following the same colour-code, in Fig. by vertical segments
along the path and as circles in the inset, showing all wave-vectors in the BZ at the
moiré spacing. A modulation of the G sheet with wavelength Ly;(#) can be represented
as a combination of phonon modes of matching wavevectors ky(6). Since the modulation
of G layer takes place essentially in the z direction only, the major contribution in the
decomposition onto phonon modes arises from the flexural branch, which point in this
direction, and, to a lesser extent, from the high-energy optical branches. Within small
displacements from the equilibrium positions, the energy price of such modulations can
be estimated by the corresponding phonon energy. As 6 varies from 0° to 30° and the
moiré shrinks as shown in Fig. the associated wavevector ky(6) assumes the values
between kjs(0°) = 0.09 A=' (dark-purple lines in Fig. and kps(30°) = 0.24 A=1 (pink
lines in Fig. , at increasing flexural-phonon energies. These limiting cases are the
most instructive. At § = 0°, the spacing of the moiré is Ly = 12.5 A, which is the distance
between the locally commensurate patches, and the red regions in Fig. As signaled
by the dark-purple line in Fig. flexural phonon modes of this length in G are close
enough to the flat region around I' and are therefore energetically inexpensive. This allows
commensurate regions to stay at the equilibrium interlayer position while incommensurate
ones are pushed away from MoS,; ML perpendicular to the basal planes. As 6 increases
to 30°, Ly decreases and thus the distance between locally commensurate areas reduces,
something which is also observed experimentally [58]. As a result, the deformation needs
to occur over a shorter distance and its energy cost therefore increases. At 6 = 30°,
Ly = 4.88 A, which is about 2 G unit cells. As shown by the pink line in Fig. [3.11
deformations of this length scale are described by phonons at the edges of the BZ and
are energetically more expensive than the gain coming from the interdigitation with the
substrate. Therefore the G sheet remains flat, at the expense of the interlayer coupling,
resulting in a higher total energy of the heterostructure compared to the aligned case. The
flattening of the flexural branch near the edges of the BZ, as shown by the solid blue line
between M and K in Fig. [3.11] is mirrored by the plateau in the energy profile in Fig. [3.9
around 6 = 30°: in the whole region moiré modulations are too expensive and the system

cannot obtain any energy gain.

To sum up, the unconstrained 3D heterostructure lowers its energy by out-of-plane
distortions according to the moiré pattern. This is particularly convenient at 8 = 0, where
Ly = 12.5A: here the flexural distortion is almost without any energy penalty and the
system lowers its energy by improving the interdigitation between the G and the MoSs
layer. As 0 increases, Ly; decreases and the cost of the ripples overtakes the gain in energy
due to local commensuration, yielding flat G and an increased total energy. Finally, the

region of the BZ spanned by the moiré spacing as a function of 6 (the region between
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purple and pink segments in Fig. shows that the approximation of long-wavelength
used to derive Eq. is unsuited in the large-mismatched heterostructures. As even
phonon excitations near the border of the BZ are involved in the energy economy of the
system, a modified epitaxy theory is needed in these cases to predict and understand the

phase stability of imposed twist angles.

3.5 Final Remarks

Although often overlooked, the stability of twisted vdW heterostructures is of particular
importance in the emerging field of twistronics, as it can be a decisive factor in the real-life
application of such systems. The energy as a function of imposed angle determines whether
a device is at risk of rotating away from a prepared angle even if it can be prepared in a
metastable state. The analysis of MoSs/G heterostructures helps to clarify the scattered
experimental data. A single global minimum is found at 8 = 0° and 60°: i.e. only epitaxial
stacking is expected for the system at 0 K. However, experiments always present defects
or intrinsic friction that might result in the emergence of activation energies, potentially
trapping a system in a metastable (or even unstable) state. In the limit where such effects
become negligible, i.e. activation energy approaching zero, one would mostly observe aligned
at § = 0° and 60° and few 30°-rotated heterostructures, in agreement with the results
of Liu et al. [I56]. A possible experiment to test the validity of these results would be a
systematic repetition of the aforementioned experiments, focused upon reducing deviations
resulting from working conditions, e.g. annealing temperature. Hopefully, the results of
such an effort will confirm these findings: with a high enough annealing temperature and
large enough flakes of significant quality, the bilayer system should be found in the aligned
configuration, with possibly some outlier around 30°. The relevance of the results presented
here becomes clear when considering the fact that interesting physics is observed at certain
unstable mismatch angles [161]. Our findings show that care must be taken when designing
nanodevices as properties observed in studies at a specific angle might fade out due to
the system spontaneously rotating toward the real thermodynamic equilibrium. In fact,
others [55] also suggest that commensurate structures are most suitable.

Finally, the origin of the observed energy economy is explained in terms of the interplay
between flexural phonon modes of the pristine compounds and the moiré superlattice. This
insight is general in nature and can be applied to all layered materials and heterostructures,
serving as a design tool for twistronic devices. Stiffness in the out-of-plane direction should
be considered a critical property in the design of such devices. It is for example known that
rippling can affect the Schottky junctions, which are directly related to the performance of
optoelectronic devices such as photodetectors and solar cells [174]. Soft flexural phonon
modes might be a lower energy route out of frustration than twisting, hindering the
possibility of stable rotated configurations. Furthermore, the observed behaviour shows the
need for a novel theory of epitaxy for layered materials, incorporating the flexural branches

ignored in the NM theory and taking into account all phonon wavelengths. The insights
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presented here can serve as a starting point for developing such a theory of the epitaxial

growth for vdW heterostructures.



High-throughput Alloy Design

Since the discovery of graphene, 2D materials have been at the forefront of materials science
discovery. Aside from fundamental research, recently their unique properties and reduced
dimensionality have sparked an interest for nanoscale engineering application and ideas for
2D-materials-based devices can be found in tribology [175], electronics [9, [176] [177] and
catalysis [I78), 179, [I80]. In this relatively new field, there have been so far only limited
attempts to exploit the vast chemical space to optimise properties. Up to now, most
research effort has focused on identifying 2D unaries and binaries both theoretically [21], 22]
and experimentally [23] [63]. However, little is known about their thermodynamic behaviour.
The structures and ordering of possible alloys are virgin territories [I81]. Only a handful of
2D ternaries have been reported by experiments [182] [183] [184] [I85] and, while a handful of
binary alloys have been studied [186], 113], 187, [I88] [189], no systematic analysis has been
carried out. Knowledge of thermodynamic behaviour is fundamental in developing the
engineering application of 2D materials. When properties such as bandgap and electronic
transport need to be tuned to desired values by chemical doping, the presence of miscibility
gaps and competing ternaries is fundamental [I90]. In tribology, one can imagine designing
mismatched heterostructures via single-layer alloying. Consider a BL like the one reported
in Fig. composed of a hypothetical single-TM CSq layer, dotted-edge blue circles, and
an alloyed layer (A:B)Sq, dashed-edge red circles and solid-edge grey ones. The single-TM
CS2 layer acts as substrate with lattice constant lo. Over this substrate is grown or
transferred a second alloyed layer A,Bi_;Ss. The lattice parameter can be tuned between
extremal values Iap(x) = xls + (1 —x)l},, assuming a linear dependency of lattice parameter
on concentration, for the sake of argument. Ideally, A and B should mix well but not mix

with C, to allow maximum control of the lattice parameter. A device of this kind would

79
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allow study of the effect of the lattice mismatch in real nanoscale contacts systematicly,
whereas this has only been done in toy systems as of now, like colloids or cold ions in
optical lattices [191].

Figure 4.1: Sketch of a mismatched
alloyed heterostructure.

The vast crystallographic and chemical spaces cannot be explored by experiments
alone. Computational tools can provide guidelines to experimental synthesis, reducing
the number of possible candidates by orders of magnitude. As an example, Mounet et
al. [21] reduced a dataset of 1 x 10° bulk geometries from experimental databases to 256
easily exfoliable ML candidates. As a comparison, large-scale experimental studies usually
deal with dozens of candidates [23], [63]. Here, a framework is developed to explore alloy
possibilities and to compile a dataset for the TMD family, the most widely studied 2D
material family for engineering application. The first section defines the chemical and
coordination spaces considered. Secondly, a hierarchy of approximate descriptions of the
structure and thermodynamics of doped systems is developed. Finally, the formalism
outlined in section is used to explore ordering in a select number of TMD-allowed

binaries.

4.1 Chemical and Coordination Spaces Definition

The starting point to build the space of possible compounds is the 2D-materials database
compiled by Mounet and coworkers [21]. The database comprises 258 mechanically stable
ML structures identifies from experimental bulk compounds. Thus, the following phase
stability study is conducted on ML geometries only. From these, one can extrapolate to bulk
structures, assuming that the phase behaviour of each layer is independent. Extrapolating
from monolayer formation energies to bulk without information on interlayer interactions
yields errors in the prediction of the order of stacking fault energies. Stacking fault energies
are typically around 10 meV /atom for TMDs [192] 7] and other 2D sheets bounded by
vdW dispersion [193] 93] and 50 meV /atom for layered transition metal oxides [194].

The selection of the possible prototypes and the elements to mix into them must be
guided by chemical and geometrical intuition, e.g. one can assume with confidence that
metallic Mo is unstable in the graphene prototype and the same holds for N atoms in place
of a TM in the MoSs prototype. Thus, the original database is filtered according to the

class of materials of interest. While the Mounet database spans the whole periodic table,
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Figure 4.2: (a) Periodic table showing the elements selected. TM boxes are coloured according to
the MXs GS prototype, as reported in Fig. [4.3] (b-1) The sides and top views of the eight MXy
prototypes.

this search focuses on TMDs. The database is scanned for compounds of the form M, A,,,
where M is a TM cation, and A is the anion oxidising the TM. The search is not limited
to chalcogenide anions, as there are relevant prototype geometries not expressed in the
database, e.g. NbTe2 prototype is expressed by the CrBry compound. This search yields
the 13 prototypes reported in Table The selection of TM to consider in the exploration
is based on the review by Chhowalla et al. [4] (reported in Fig.[1.6). Most pristine materials
in this group have been synthesised in their ML form in the works in Ref. [63] and Ref. [23],
including CrSe and CoS,. Intermediate TMs (Cr, Mn, Fe, Ru, Os) are added to this
selection. While these do not form layered materials on their own, they might form alloys
in combination with other TMs, e.g. Fe-doped MoSy ML [38], 195]. Late transition metals
from group XI onward are excluded as they do not bind with chalcogenide to form layered
materials [63, [196]. This yields the 21 TMs highlighted in Fig. as possible cations
in the M, A,, stochiometry; the anion site can be occupied by a chalcogenide S, Se, Te,

highlighted in yellow and orange in Fig.

Stochiometry | Prototypes

M3Xs HisTey

MX ZrCl, FeSe

MyX3 W3N3

MX2 CI"IQ, PdClQ, MOSQ, WT62
CdIg, NbTeg, PdSQ, FeOQ

MX4 Sl’lF4

Table 4.1: Prototypes of the form M, A,, identified in Mounet database [2I]. The 13 prototypes are
grouped according to the stoichiometry and displayed for decreasing metal fraction, i.e. decreasing
n/m ratio.
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This selection results in TM X prototypes x chalcogenides = 21 x 13 x 3 = 819
compounds as a starting point for TM; x TMs x prototypes x chalcogenides = 17199
possible combinations for TM-site substitutional alloys. While the methodology outlined
below is valid for any stochiometry and anion, this section will focus on MSs compounds, as
an illustrative example. Sulphides are the easiest to synthesise, and most studied compounds
of the family and the MSs stochiometry represents eight of the 13 prototypes, which are
sketched in Fig. [£.2b-i. This further selection yields 168 binaries as a starting point for
3528 substitutional alloys on the TM site, allowing for an exhaustive analysis rather than

relying on approximate methods based on a statistical sampling of configurational space.

Lattice Stability The formation energy of each compound MS, in all prototypes p,
i.e. pairs (M, p) is obtained from the EoS calculations, as outlined in section First
principles calculations of the total energy are carried out with the Vienna ab initio
Software Package (VASP) [197, 119, 198| 199], within the PAW framework for pseudo-
potentials [124], 200]. As benchmarked in Appendix [El the electron density is described
with a cutoff of E.uof = 650eV and the BZ is sampled with a 17 x 17 x 1 mesh.

Direct calculation of the EoS is necessary as benchmark calculations showed that
minimisation with VASP cannot locate the minimum-energy volume of the 2D material
and might drive the system away from the prototype coordination considered. The volume
range considered in the EoS is determined using the notion of covalent radius rc; of the
element F;. The bond length between two elements Fy, Fa, i.e. a TM and the chalcogenide,
is estimated as

Ay =17re1 +7Te2- (4.1)

Values for the covalent radius are tabulated in the Mendeleev package [201] according to
Bragg [202] rg, Coredo [203] rc, Pyykko [204] rp and Slater [205] rg models. The minimum
and maximum values among these models, plus a buffer ¢ = 0.05, are chosen as bounds for

the EoS.

In building the geometries for the EoS calculations, the anisotropic geometry of the

ML is enforced by the following transformation matrix of the unit cell:

f 00
M=10 f 0 (4.2)
00 1

Isotropic stretching of the cell would needlessly increase the vacuum in the unit cell,
reducing the accuracy of the DFT calculation. In order to span the right range of bond
distances, f must be chosen appropriately. Using the shortest bond vector A in a prototype

structure, the stretch factor f of the unit cell is chosen according to

| A2 — A2
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in order to scale the bond length |[A| = Ay y — Al 5.

The formation energy of each M'Ss compound in a given prototype p, also known as
lattice stability [200], is given by the energy per site with respect to the ground state (GS)
prototype, i.e.

Fe(M,p) = ZO0LP) L B (ML), (4.4)
n n p
where E(M, P) is the minimum-volume energy of MSs compound in prototype p and n is
the number of the TM site in the unit cell.

Fig. reports the formation energy defined in Eq. for the selection of TM and
prototypes shown in Fig. [4.2l The ground state of known compounds are labelled by
green squares: d?-metal TMDs (TiSs, ZrSy and HfSs) show octahedral Cdly coordination,
Fig. 4.2d. The MoSs tetragonal prototype, Fig. 4.2(g), is the preferred GS of d* TMDs
and the d' metals Ni, Pd and Pt are found in the PdSs prototype, Fig. . Moreover,
the larger steric hindrance of heavier TM in the same group raises the formation energy of
the unstable prototype. This can be observed by following in Fig. the rows of PdSs,
Er(Ti,PdSs) = 2.47eV, Ep(Zr,PdSs) = 2.99eV and Ey(Hf,PdS;) = 3.26eV, and Cdl,,
Er(Cr,Cdly) = 0.42eV, Ep(Mo, Cdly) = 0.84eV and Er(W, Cdly) = 0.99eV.
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Figure 4.3: Formation energy of MSy compound in the prototypes according to Eq. (4.4)). Green
squares mark GS prototypes, defined by Fr = 0.

4.2 Ideal Solid Solution Limit

Starting from the stability matrix in Fig. 4.3] a question arises naturally: do different metals
mix in a given prototype? The most straightforward approach to explore this question is
the ideal solid solution limit, a non-interacting model based on the formation energies of
pristine TMDs defined in Eq. . Given a binary alloy prototype p, M;Ni_;Sa|p, in the
ideal solution model represents a model with negligible interactions between the fraction x
of sites occupied by M and the remaining 1 — x N sites. In the energy-composition space,
the system behaviour is represented by the line connecting the formation energy of NSo

in prototype p, i.e. the element M, p of the formation energy matrix Fig. 4.3] at x = 0
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with the formation energy for M at x = 1. Thus, in the ideal solid solution model, the

formation energy of a mixed configuration at concentration x is given by:

By construction, this energy is exactly zero everywhere if M and N share the same ground
state structure and thus Er(M,p) = Er(M,p) = 0. In any other case the formation energy
will be positive: suppose the metal N has a ground state geometry p’ # p, the fraction
1 — z of material NSs|, would transform into p’ to reach equilibrium. Even though this
model cannot predict stable orderings, it offers a first step in discriminating possible mixing
materials from the ones most likely to phase-separate: the higher the energy of the solid
solution model, the more substantial any entropic or chemical stabilising mechanisms must
be. In the solid solution limit, the substitutional entropy of a binary alloy is a function of

the concentration z only, and not of the composition:
S(z) = —(zlogx + (1 — x)log(l — x)), (4.6)

which counts possible arrangements of the two atom types on the metal sub-lattice [207].
Therefore, it cancels, and the simpler linear energy model in Eq. (4.5 can be used.
In order to make this discrimination quantitative, a metric in the composition-energy

space is needed to compare different combinations.

Solubility Metric

Given a prototype p and two metals M and N, the solubility window of the (p, N, M)
triplet is defined as the range of concentration z where the mixing energy in Eq.
within the prototype p is lower or equal to the mixing energy within the ground-state
structures of MSo and NSg, as shown in Figures and

Fig. [f.4a] reports an example of a possible large miscibility window in the Tcq_;Pt;So
system: formation energy in the Crly prototype lies lower in energy than the formation
energy within either GS prototypes, WTes and PdSs, over most of the concentration
range. The stability window might not exist for a given triplet, as shown in Fig. the
formation energy within the FeOs prototype lies higher than the one in either ground state
prototypes for the whole concentration range. In this case, the formation of an alloy within
this prototype is unlikely. When the prototype p is the ground-state for one of the metals,
then the stability window extends from the extremal concentration £ = 0 or x = 1 up the
intercept with the other prototype solid solution, as shown in Fig. Finally, when the
two TMDs share the same prototype ground state, the formation energy in that prototype
is zero everywhere, like in Fig. This case indicates that the solid solution can occur
at no energy cost.

Applying the construction depicted in Fig. yields a n X n symmetric matrix, for
each prototype p. Each entry of this solubility matriz is a 2 X 2 matrix with the bounds of
the solubility window and the formation energy in Eq. evaluated there, i.e. minimum
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Figure 4.4: Solubility metric construction (blue lines) for (Tc:Pt)Ss in (a) Crly and (b) FeOq
prototypes, (¢) (Zr:Nb)Sy in Cdly prototype, and (d) (Mo:W)Ss in MoSs prototype. A blue-shaded
area highlights the extent of the solubility window. A blue circle marks the centroid of the area
below the solid solution energy within the solubility window. Red dashed lines show the energy in
the prototype of the left end-member, z = 0. Green dashed lines show the energy in the prototype

of the right end-member, z = 1.

and maximum energy cost of the window. The matrices associated with each prototype
are reported in Appendix [A] As an example, Fig. [£.5 reports the solubility matrix within
the MoSs host, where the marker size shows the width of the solubility window and the
colour-code in upper and lower triangles shows the minimum and maximum energy penalty,
respectively.

Groups of favourable solubility windows (large blue marks) can be seen around group
V and group VI elements, which according to Fig. prefer this coordination. This
observation is in agreement with the experimental realisation of a few alloys of this
type [189, 208]. A large energy penalty (red marks) is associated with group VI and
group X transition metal mixtures, e.g. Mo,Pd;_;S2|Mos,, indicating MoSy prototype as a
poor candidate for mixing. Indeed, only Ni-doped MoSs MLs with isolated impurities are
reported by experiments [180], and Ni shows the lowest mixing energy with MoSs among
group X elements. Finally, a narrow solubility window (small marks) suggest that other
prototypes are preferred for the corresponding mixture, even when MoSs is the prototype

of one TM; an example of this is Ti,V1_;S2|Mos,, Wwhich favours the Cdly prototype, as
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Figure 4.5: Stability metric in MoS, prototype. The colour-code shown by the colour-bar on
the right marks the energy cost, in eV, of the stability window. The upper triangle of the matrix
reports the upper limit of the energy cost in the stable window, while the lower triangle, the lower
one. The size of the marker encodes the stability window size, as reported by the legend on the

right. Circles mark metal pairs whose GS prototype is MoS,, square pairs in which only one metal
has MoS, as GS.

shown below.

Goal Function

The most promising candidates for alloys can be identified by comparing the solubility
windows reported in Appendix [A] To rank candidates, a function to associate a score to
each solubility window needs to be defined. This ranking needs to assign a single value to
the solubility windows of TM;-TMs-prototype triplets. The following parametric function

is chosen as the goal function

o

fC(w76) = ngg T2

(4.7)

where w is the width of the solubility window and the energy penalty € is the height of the
centroid defined by the stable window in energy-concentration space, e.g. blue points in
Fig. [£:4 Thus, the function encourages large solubility windows w and discourages large
energy penalties e. This goal function f¢(w,€) : w € [0,1] € € [0,00] — [0, 1] associates zero
to "bad” candidates and one to “good” candidate. In detail, all zero-width windows are
mapped to zero, f¢(0,€) =0 Ve. Moreover, as shown in section , fc¢ is a monotonically
decreasing function of the energy penalty e. Finally, f¢(1,0) =1, i.e. the highest score is
assigned to the combination of maximum width and lowest energy penalty.

The parameter (, measured in the same unit as the energy penalty € (here eV), sets the
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Figure 4.6: Sections of the surface in Eq. (4.7): (a) f at fixed energy penalty €y and (b) f at
fixed solubility window width wy. The examples are computed at ¢ = 0.1.

relative importance of the two arguments. Its effect is evident by the limiting behaviours.
For small ¢, lim¢_,o ~ CQQ, a large energy penalty lowers the score, within the upper-limit
given by the window size \/w. On the other hand, for large ¢, lim¢_,o, & y/w the largest
window is always selected regardless of the energy price. The parameters ¢ must be tuned
according to the dataset studied in order to achieve the right sensitivity, achieving a
trade-off between large, but costly windows and low energy solutions defined on a narrow

concentration range.

4.2.1 Optimal Host Matrix

Using the goal function defined in Eq. , the solubility windows in the matrices in
Appendix [A] can be ranked, yielding an optimal prototype for each metal pair. The first step
is to tune the ¢ parameter in the goal function f:(w,€) in Eq. for the dataset at hand.
Left plots in Fig. place all the solubility windows in all the matrices in Appendix [4] in
the w, e space. Each point in Figures [1.7a] to is colour according to increasing values of
¢ in Eq. , while coloured lines report isolines of f¢(w,€). The two limiting behaviours
mention in the previous section are well pictured. For small ( = 1 x 1073 eV, Fig.
all windows with non-zero energy penalty are assigned a low score, dark element on the
right plots, while only TM pairs with (w,€) = (1,0) show the maximum scores, yellow
entries on the right plots. On the other hand, for ¢ = 1 x 102eV, Fig. the isolines of
f divide the data points in vertical stripes. Thus, only the window width determines the
score, resulting in the largest windows being picked as optimal prototypes, as shown in
the right plots. The value adopted in this work is ¢ = 0.080eV, which achieves a balance
between low energy cost and wide solubility window, as shown in Fig. [£.7b] Somewhat
surprisingly, the ranking is quite robust against the value of ¢: going from ¢ =1 x 1073 eV
to ¢ =1 x 10%2eV only 12% of prototypes change.

The optimal prototype for each pair of transition metals, selected by f: with ¢ =
0.080eV, are shown in Fig. [4.8 The symbol assigned to each entry refers to the optimal
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Figure 4.7: Behaviour of the goal function within the solubility windows dataset for (a) ¢ =
1x1073eV, (b) ¢ =8 x1072eV, and (c) ¢ = 1 x 10%2eV. Left plots, scatter plot of solubility
windows in width w and energy cost e space. Marker colours are assigned by f¢(w,€). Coloured
lines are isolines of f:(w,e€). Right plots show the value of f for the highest-scoring prototype for
each TM pair.

prototype, as shown in the lower legend; symbols on the diagonal refer to the stable
prototype for that transition metal. The size of each marker shows the width of the
stability window associated with that metal pair in that prototype. The colour code of the
upper and lower triangles follows the one in Fig.

Fig. [4.§ provides a visual tool to navigate the possible mixings of transition metals in
sulphur planes and highlights trends across the periodic table. Broad, large blue marks
in Fig. indicate a favourable mixing and therefore a large miscibility is likely. For
example, MoSs and WS, share the same prototype GS, prismatic MoSs. Thus, Fig. [4.8
indicates the solid solution can occur at no cost throughout the whole concentration
range. In the case of TiSe, GS prototype octahedral Cdls, and NbSs, GS prototype
prismatic MoSs, Fig. indicates that a good miscibility in the Cdly prototype, that can
be traced back to the relatively low formation energy of NbSy in TiSs native prototype,
Er(Nb, Cdly) = 0.1eV/site, in Fig. On the other hand, a high mixing energy is likely
to result in narrow miscibility regions and a phase separating system, like group X TMs
with any group IV, e.g. Pderl_wSQICdIQ, whose optimal energy cost is still 0.6 eV /site.

As a first benchmark, the information in Fig. can be compared with alloys reported
in the literature. Zhou and coworkers [23] recently reported synthesis of ML of (Mo:W)Tes,
(Nb:Mo)Sa, (W:Nb)Sq, which are all shown as likely to mix in Fig. On the other hand,
the same work reports a MoReSo ML alloy, while the stability window of this TM pair
is small and high in energy in Fig. Another recent work reports the experimental
characterisation of (V:Mo)Sy ML, which is also a highly mixable TM pair according to

our analysis. Many alloys have been suggested by computational works as well. Rama-
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Figure 4.8: Optimal prototype for TM pairs. The colour-code and size of the markers follow
convention in Fig. [I.5] as reported by the legends on the right. Marker-prototype correspondence is
reported in the legend at the bottom. Markers on the diagonal report the GS prototype.

subramaniam et al. [38] proposed Mn-doped MoS; ML as a possible diluted magnetic
superconductor. The authors report study configurations at concentration x = 0.06 and
x = 0.12 in 1H-Mo;_,Mn,Ss. While the authors report these configurations to be mechan-
ically stable within the DFT framework, they would separate into elemental compounds if
not thermodynamically stable. According to the stability metric reported in Fig. the
upper formation energy is 0.2eV, which suggests that some miscibility is possible but the
possibility of high concentration ordering, like reported in Ref. [38], should be investigated
in more detail. In another computational study, Onofrio and coworkers [209] compile
possible substitutional alloys of 1H-MoSo ML throughout the whole periodic table, on both
metal and chalcogenide site. According to the authors’ analysis, based on substitution in
the smallest possible unit cell (roughly 2 = 0.5), all early TMs between group III and group
VI have negative formation energy. These observations agree with the stability metric
predictions for metals of group V and group VI, while group IV elements, i.e. Ti, Zr and
Hf, show low miscibility according to Fig.

Furthermore, using the data in Fig. one can design the mismatched alloyed bilayer
proposed in Fig. For example, MoSs in MoSs prototype, with lattice spacing Iy, =
3.182 A, can be used as a substrate and coupled with an Mn,Zr;_Ss alloyed ML in the
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CdI, prototype. Given Iz, = 3.684 A and Iy, = 3.172 A, the mismatch can be tuned
between Iyo/lzy = 0.864 to Ino/Ivm = 1.068, assuming a simple linear dependence of
the lattice spacing on the concentration. According to Fig. Zr and Mn ions display
high miscibility, as they share the same CdIy ground-state prototype. On the other hand,
both Zr and Mn show poor solubility in MoSs crystal, and, according to Fig. the
energy prices within the MoSs prototype are e = 0.23 eV /site, at the Mn-rich side, and
e = 0.34eV/site, at the Zr-rich side. While a system of this type could be synthesized
with known protocols [63], 59], they are challenging from a computational point of view.
The analysis here combined with the CE methodology can provide stable orderings of
the alloyed ML part of the heterostructures. However, representing the heterostructure
geometries would require a large supercell, as discussed in chapter 3] beyond the possibilities
of standard DFT codes, like VASP. MD simulation would also pose a problem, as no general
FF for TMDs alloyed ML are available, to the best of the author’s knowledge. A possible
solution to study this system could come from linear-scaling DFT: considering thousands
of atoms in the unit cell with the protocol outlined in Appendix [C] can reduce the residual

strain enough to allow an accurate description of the PES of the system, as outlined in

section [2.4.3]

Prototype Frequency Information in Fig. readily answers another question as well:
what is the frequency of optimal prototypes? Fig. .9 reports the fraction of each prototype
in the optimal matrix Fig. [f.8] The distorted octahedral coordination of WTey and Crly,
shown in Fig. f.2],e, are the prototypes that more often yield the optimal solution. A
possible explanation for this lies in the low-symmetry coordination of these. When neither
of these two prototypes is the ground state of the TMD considered, the broken-symmetry
coordination still allows for a favourable redistribution of the charge density, in contrast
with other high-symmetry prototypes, e.g. MoSy and Cdly. Moreover, the PdS, prototype
with its unique ‘puckered’ 2D layers depicted in Fig. [f-2h is supported almost only by
group X elements and few high-energy solutions. Finally, no metal pair exhibits the binary

FeOs as the preferred prototype, which can thus be excluded from any further analysis.

Polymorphism The information in Fig. can help understand the tendency of TMDs
to form metastable polymorphs in ML synthesis. Purple shaded marks in Fig. [£.10] reports,
for each TMj-p pair, the minimum centroid energy across all possible combinations TM;-
TMs-p. For example, for group IV TMDs, TiSy, ZrSy, and HfS5, whose GS is the perfect
octahedral Cdls, a low energy penalty is found for the distorted octahedral coordination
of WTey (light purple crosses in Fig. 4.10). For group VI TMDs, CrSs, MoSs, and
W.S,, the first metastable prototypes are distorted WTes and perfect Cdls octahedral, at
almost degenerate energy. The WTes and Cdly polymorphs have indeed been observed
experimentally [I80] and in simulations [66] in MoSs layers. An even lower energy penalty,
WTesy and Cdls prototype is observed for group V TMDs, VSo, NbSs, and TaSs, suggesting
that polymorphism observed in group VI TMDs should be even stronger in this case.
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Figure 4.9: Frequency of prototypes in candidate TMDs binaries alloys in Fig.
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legend on the right reports marker and colour associated with each prototype. Black marks left of
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4.3 Metal Site Orderings

Promising systems in Fig. [4.8) can be further analysed by exploring the stability of possible
orderings and miscibility regions across the concentration range. The formation energy
of the pseudo-binary system M, Ni_,So considered is modelled with the CE formalism
presented in section The interaction between different species on the TM site of
the sub-lattice, like the triangular one formed by orange and blue circles in Fig. is
modelled via a set of many-body interactions, termed clusters, e.g. the pairs o and 8 and
the triplet v in Fig. 4.11} The sulphur atoms (yellow circles in Fig. are spectators, i.e.

they are considered in the DFT calculations but not in the CE interaction figures.
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Figure 4.11: Top view sketch of a ideal TMD hexagonal lattice, e.g. MoSy prototype, used in the
CE expansion. The TM sub-lattice comprises of the large, black-edge circles. Two different species,
blue and orange circles, occupy the sub-lattice, by a two-value spin variable +1. The two species are
here arranged in a striped pattern, whose unit cell is highlighted by grey, dashed lines. Small yellow
circles show the spectator chalcogenide atoms. Coloured shapes show few cluster: nearest-neighbour
(a black line), next-nearest-neighbour (S green line) and a triplet (y red triangle).

The solid solution limit is take as reference to compute the formation energy of the

interacting, ordered structures o(x):
Enmp(z) = E(MyN1-2S2)|, — 2E(M,pm) — (1 — 2)E(N, pN), (4.8)

where E(M;N1_;S2)|, is the total energy of the configuration o(x) in the host lattice p.
E(M,pyr) and E(N,py) are the total energies of MSe and NSy in their GS prototypes,
pyr and py, respectively. This chemical reference assures that the formation energy in
Eq. at end member concentration x = 0 and = 1 formally corresponds to the one
reported in Fig. [£.3] Moreover, no interaction between the fraction x of M sites and the
remaining N sites, Eq. corresponds to the ideal solid solution limit in Eq. .
The set of geometrically distinct orderings is generated using CASM [210], 2111 212] 213].

The geometries are then fully relaxed (including cell shape and volume) using the DFT
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methodology outlined in section and benchmarked in Appendix [E] The set is used to
parameterise a CE model using the framework presented in section The dataset is
updated iteratively with stable orderings suggested by the CE model until predicted and

computed convex hulls coincide.

The fitting procedure is carried out within the CASM API. Each configuration o; is

weighted according to its distance from the convex hull:

Er(0;) — Emu(fﬂ)) (4.9)

vt = EHlT)

where Ep(i) is the formation energy of the configuration i, Fy(z;) is the formation energy
of the convex hull at the concentration x; of the configuration considered and kg7 is a
fictitious temperature set according to the energy scale of the problem. These weights bias
the fitting towards more accurate reproduction of low-energy configurations, which are
the relevant ones to capture the phase behaviour of the system. Orbits included in the
CE model are selected with a genetic algorithm based on the Distributed Evolutionary
Algorithm in Python suite [214]. A population of 100 individuals, each starting with five
randomly selected orbits, evolves for 20 generations. The best 50 models are selected from
five repetitions of the evolution process. The evolution is driven by the cross-validation
score of each individual, computed using the ten-split K-fold algorithm as implemented in
Scikit-learn [215]. In order to favour low-complexity models with fewer orbits ¢, a penalty
p(c) = vX. is added to the cross-validation score of each individual ¢. ¥, denotes all the
cluster functions defining the model ¢, i.e. all the orbits associated with non-null effective
cluster interaction Jo in Eq. . A value v = 1 x 1075 has been found to yield a good
compromise between reducing the number of orbits in the selected models and retaining
satisfying accuracy. Table reports the details of the CE models.

System #DFT | CE size | CV [eV/site] | pa2 03 ps | ps
(Mo:W)|vos, | 304 6 7.2x10°° | 14.01 | 10.61 | 8.52 | -
(Mo:Nb)|mos, 613 169 0.001 25.0 15.0 | 13.0 | 9.0
(Mo:Ta)|vos, | 423 137 0.002 25.0 | 15.0 | 13.0 | 9.0
(IrRu)|vos, | 542 253 0.090 19.0 | 11.0 | 9.0 | -
(IRu)|vos, | 207 122 0.018 190 | 11.0 | 9.0 | -

Table 4.2: Parameters of the CE models of the selected system, reported in the first column.
The notation (M:N)|, is a shorthand for M, N7_;Ss|,, indicating the two species occupying the
TM sub-lattice, defined by the prototype indicated in the subscript. The second column, #DFT,
reports the number of ab-initio calculations comprising the training set. The third column, CE Size
3, reports the number of orbits comprising each model, i.e. the orbits with J, # 0 in Eq. .
The orbits ¢ represent interaction figures up to the maximum radii, in A, reported in the columns
02, P3, P4, and ps; the subscript indicates the number of vertices in the clusters, i.e. pairs, triples
and so on.



94 Chapter 4 High-throughput Alloy Design

4.3.1 Mo-W-S Binary Alloy

The first benchmark of the miscibility predicted by Fig. is the Mo, W1_,So system.
The system has recently attracted attention as experiments showed that the value of
the bandgap of an ML could be finely tuned as a function of the ratio between the two
metals [IR9, 208].

Mo w

Figure 4.12: Ternary phase diagram for Mo-W-S elements. Obtained from the MP database [216]
2171].

Fig. shows the ternary phase field computed by the Materials Project (MP) [216],
217]. The only stable compounds (green circles in Fig. are pure elements and the
TMDs WSg and MoS,. All alloy configurations in the tie line between the TMD MoS9
and WSs are reported as unstable (red squares) in Fig. by the MP. These calculations
consider only layers of pure WSs and MoSs in different stacking orders and are not therefore
related to this analysis. Moreover, the formation energy is of the order of 1 meV /atom,
suggesting that the stacking order does not play a significant role in the phase stability of
TMD alloys, as assumed here.

According to the optimal prototype matrix in Fig. the end-members MoS, and WSq
share the same ground-state prototype, prismatic MoSs, which is thus the parent lattice
for the CE. The details of the expansion are reported in Table Fig. shows, as
orange crosses, the formation energies of the DFT training-set geometries. The solid orange
line shows a convex hull of the ab-initio data. All points across the concentration range
have negative formation energy, confirming the perfect solubility in Fig. [4.8 Although
the system shows ordered ground states, the formation energy is considerably lower than
kT room temperature Fr =~ 1meV < kTioom =~ 25 meV. Thus, at room temperature,
the entropic term in the free energy of the system F' = E — T'S represents the dominant
contribution and an ideal solid-solution behaviour should be observed, with Mo and W
ions occupying lattice sites at random.

Fig. reports the formation of energy for the same DFT structures (orange crosses)
as predicted by the CE model (blue circles). Moreover, light blue crosses show the formation

energy predicted by the CE for geometries, and not in the DFT training-set. The computed
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Figure 4.13: (a) Formation energy Ep, in eV /site, versus concentration x of the Mo;_, WS
system. Orange symbols and lines refer to DFT-computed energies, while blue-shaded ones refer
to CE-predicted energies, as reported in the legend on the top right. (b) Correlation plot of
DFT-training-set and CE-fitted energies. The red line marks x = y, i.e. perfect correspondence
between the two sets. The shade of grey of each marker shows the distance from the DFT hull
(orange line in (a) panel).

(orange line) and predicted (light-blue line) convex hulls in Fig. match: no new
ground states are predicted by the CE, which is, thus, a reliable description of the phase
behaviour of the system. The correlation plot in Fig. [4.13b shows remarkable agreement
between DFT energies and CE-predicted ones, meaning that the CE formalism accurately
describes the system. Finally, one can note from Table that only six clusters are needed
to describe the behaviour of the system, as no subtle electronic effects (W and Mo have
the same electronic configuration) or long-range elastic interactions are present (MoSy and

WSs have the same lattice parameter).

Mo, WS,

x=0.22 x=041 x=0.63
() oY

Figure 4.14: STM images of W,Mo;_, S, ML alloys at concentration reported in the top right
corner of each plot. Bright dots represent W atoms, dim dots Mo atoms. Adapted from Ref. [208]

The result of this analysis is in line with experimental synthesis, where the bandgap
varies between 1.82eV and 1.99eV for increasing W concentration x in Moj_, W, So [189].

Another recent study focused on spintronic applications of Moj_,W,Ss, showing how the
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spin-orbit splitting of the valence band varies with the W content. The work by Xia and
coworkers [208] confirms the solid-solution behaviour and shows the ability of experiments
to produce high-quality samples with CVD deposition at any alloy concentration, as shown
in Fig. 4.14] The trained CE model presented here can be used as Hamiltonian in MC
simulations to generate realistic, finite-temperature configurations that could serve as a
starting point for theoretical characterisation of the system.

From a tribology point of view, this system offers an interesting possibility to explore
the effect of disorder on the sliding interface. It has been shown in a toy model [2I§] that
dopants at low concentration act as defects and worsen frictional response, as they act as
pinning centres during the sliding. As concentration approaches x = 0.5, this argument
may lose validity, as the alloying element is no longer a localised defect but a considerable
fraction of the sliding layer. In light of this, it would be interesting to study the possible
coupling between different solid-solution arrangements in two adjacent layers and how this

affects dissipation.

4.3.2 Mo-group V-S Binary Alloy

The similar electronic structure of group V elements make them an interesting alloy
possibility for MoSs-based devices. In particular, (Nb:Mo)S, alloys have been indicated
as a viable p-doping solution for MoSs ML transistors [176} [I86]. On the other hand, Ta
has been used to enhance electrical conductivity in SnOs-based catalytic supports [190],
while Nb doping fails to deliver the same results. Ta-doped MoSs composite coatings have
been identified as a promising fatigue-resistant material for tribological applications [75].
Moreover, Ta-based TMDs attracted attention for the peculiar CDW behaviour [219, 220],
which is also associated with unusual non-contact frictional dissipation [221]. One would
expect similar behaviour from Nb and Ta dopants, as the two have the same covalent radii,
electronic configuration [201] and the same lattice parameter in TMD compounds H A
good understanding of the phase behaviour of these systems is needed, especially as the
doping concentration needed in p-doped devices may reach 20% [I86] and the competition
with ternary phases might make synthesis problematic.

Fig. shows the ternary phase fields for Mo-Nb-S and Fig. the corresponding
one for Mo-Ta-S, computed from MP [216], 217]. No stable compound is reported in
the Mo-Nb-S except Mo,,S,, and Nb,S,,, binaries. Apart from the binaries, the ternary
2H-Tas;MoSjo, shown in Fig. [.I5b] is reported as stable in the Mo-Ta-S phase field.
2H-TasMoS;( is a ground state in the Mo, Ta;_,So bulk alloy, with formation energy
Er = —5x 1073 eV /atom in the reference frame of the end members, within the MP
dataset [216, 217]. As shown in Fig. each layer is composed of single rows of Mo
alternated by four rows of Ta, for a concentration of x = 0.8. To the best of our knowledge,
the only experimentally reported ternary in the pseudo-binary alloy is MoTaS, [184], for

which no structure is reported.

!Spin-orbit coupling differs between Nb and Ta, but it is not included here and rarely influences the
phase behaviour of the material.
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(a) (b)

Figure 4.15: Ternary phase diagram for (a) Mo-Nb-S and (b) Mo-Ta-S elements. The structure
on the top right in (b) is the ordering in the tie line MoS3-TaSs reported as stable. Obtained from
the MP database [216] 217].
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Figure 4.16: (a) Formation energy Er, in eV /site, versus concentration z of the Mo;_,Nb, S
system and (b) CE model correlation plot. Colours and symbols as in Fig. [4.13

Mo;_,Nb,S,> pseudo-binary According to Fig. the end members MoSs and NbSq
share the same ground state prototype, prismatic MoSy, which is the parent lattice for the
CE. The details of the expansion are reported in Table Fig. shows, as orange
crosses, the formation energies of the DFT training-set geometries. The solid orange line
shows a convex hull of the ab-initio data. The simple SS hull (dashed gray line at Er = 0)
is broken by a GS at = 0.66, with formation energy Er = —3 meV /site. Blue circles in
Fig. show the formation energy for the DFT set (orange crosses) as predicted by
the CE model. Light-blue crosses show the CE-predicted formation energy for geometries
not in the DFT training-set. The computed (orange line) and predicted (light-blue line)
convex hulls in Fig. match: CE provides a reliable description of the phase behaviour
of the system. The correlation plot in Fig. shows good agreement between DFT
energies and CE-predicted ones. The slight spread around the x = y red line in Fig. [4.16p
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compared to Fig. is a signal of the more complex chemical and mechanical interactions
underpinning the phase behaviour in Fig. 4.16h. More quantitatively, 169 five-vertex orbits
are needed to achieve a good description of the Moj_,Nb,So system, whereas the W-based

alloys only required six, as shown in Table [4.2]
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Figure 4.17: (a) Formation energy EF, in eV /site, versus concentration x of the Moj_,Ta,Ss
system and (b) CE model correlation plot. Colours and symbols as in Fig. [4.13

Mo;_,Ta,S; pseudo-binary According to Fig. the end members MoS, and TaSs
share the same ground state prototype, prismatic MoSsy, which is the parent lattice for
the CE expansion. The details of the expansion are reported in Table Fig. E17h
reports the convex hull of DFT-computed orderings (orange crosses) for the Mo, Taj_;S2
pesudo-binary alloys. The hull is dominated by the ground-state orderings at x = 0.667,
with Fr = 18 meV/site and at x = 0.889, Er = 11meV/site. The system shows two
stable ternaries, with formation energy comparable with room temperature, which should
therefore be within experimental synthesis capabilities. The ground state at x = 0.667
identified by the CE-DFT tandem search comprises of two Ta rows and one Mo row; the
one at x = 0.889 comprises of two Ta rows alternated by Mo-Ta sequenced rows. The
correlation plot in Fig. 4.17b shows a degree of spreading around the ideal behaviour (red
line y = x) and few outliers, as expected from the more complex behaviour displayed
by the system. Nonetheless, since predicted and computed hull (yellow and blue lines in
Fig. ) match, the description of the system is still well-captured by the CE model.

Discussion A more detailed analysis of the ground state is warranted to understand the

origin of the phase behaviour. Figures [4.18a] and [4.18b| shows the geometries of the GS at
x = 0.66 for Moy ;5Nby /382 and Moy /3Tay/3S2, respectively; Fig. shows the geometry

for Moy /9 Tag/9S2. The arrows show the displacement of the TM sites, with starting position

marked by smaller grey circles and final position by larger pink circles. The displacement

of the S ions follows the direction of the closest TM and is negligible in magnitude; hence
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they are not shown here. In all cases, the cell expands, increasing the distance between Nb
or Ta ions, approaching their equilibrium lattice parameter, I, = Inp = 3.33 A, larger than
the MoSs lattice spacing, Iyvio = 3.18 A, which is the starting point for the CASM-generated

geometries.
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Figure 4.18: Geometry and relaxation displacement (magnified by a factor 1.1) of the ground-
states in (a) Fig. and (b,c) Fig. Atom types are reported in the legend; S atoms are
not shown. The starting geometry, perfect MoS, prototype, is reported with small, grey-edged
circles, and the relaxed position is reported with larger, pink-edged circles. Dotted grey lines show
the starting supercell and black dashed ones the final cell.

Modelling these alloys presents a double challenge. One needs to capture, at the same
time, the many-body, non-local character of phase stability, and the long-range elastic
interactions due to lattice mismatch. The CE formalism is well suited to efficiently handle
the first task, while the description of elasticity is problematic [136]. Since the sum in
Eq. is a complete representation of the energy landscape of the lattice model, the CE
can describe such elastic effects, at the cost of increased complexity and features included.
Indeed, to appropriately describe the convex hull in Figures and more than a
hundred orbits must be included in the model, up to five-vertex clusters, far more than for
the (Mo:W)Ss case, as reported in Table

A possible way to efficiently describe this behaviour might arise from a toy-model
suggested by Frechette et al. [222, [223] 224]. TMs are placed on a flexible lattice, whose
spacing is a function of the local composition [222]. Each lattice site R can be occupied by
the metal M, og = 1, or the other metal N, o = —1. The elastic energy penalty in terms
of the displacements u; of the flexible-lattice sites is described by the Hamiltonian [222]

’H:% S (IR R +up —up| - lon o))’ (4.10)

(R,R)
where the sum is over nearest neighbour sites R, R’. K is a positive constant representing
the stiffness of the lattice. The term l(o g, og/) in Eq. encodes the different equilibrium
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lattice spacing of the two elements

Ivy, or = o =1
Wor,or) = luN, OrR # OR/ (4.11)

INN, oR = op = —1,

where a simple mixing rule is used for ly;n = |lprar — Inn|/2. The core idea of Eq. is
that the displacements ug, up distort lattice bond-vector R — R’ to match the equilibrium
lattice spacings l(oR,or/) and, thus, minimise the difference in square brackets. In this
frustrated system, the end-members x = 0,1 are the only ground states, while intermediate
compositions at low temperature favour same-type strips and clusters that release local
stress via underlying lattice distortions [222]. Hence, one could think of an extended CE
formalism that includes this elastic contribution explicitly. This extended theory could
result in a two-fold improvement. On a physical ground, decoupling the elastic contribution
could make it easier to understand the remaining effects determining the phase behaviour
of the system. Moreover, from a modelling point of view, the stiffness K and equilibrium
spacings [;; in Eq. could be easily obtained from DFT. Hypothetically, subtracting
the elastic contribution from Figures and could reduce the spread of the points,
resulting in a more accurate fit and less complex CE model.

The argument at the base of this model helps to understand the displacements of Ta and

Nb ions in Figures [4.18] |4.18b| and [4.18¢] but since any displacement from the end-members

lattice parameter results in an energy penalty, it cannot explain the origin of the negative
formation energy of these orderings. Quantifying this electronic effect is a challenging

task, but a simple qualitative argument can be made in terms of the interaction between

the TMs. Figures [4.19a] and [4.19b] report the atom-projected electronic band-structure of

Moy /3Nby /352 and Moy /3Tay /359, respectively. Point colour represents the overlap between
the Mo and Nb, or the Ta character of each band eigenvalue. A non-zero overlap is an
indicator of a level of bonding between the two atoms. As shown in Fig. this overlap
is larger where the bands are curved and therefore the electron density is more de-localised,
consistent with a possible bond between Mo and the group V metal. The delocalisation
of the extra electron of Mo ions lowers the total energy of the system, compared to the
separate Mos and Tay. Finally, the more negative formation energy of Mo-Ta alloys arises
from the fact that the overlapping d manifold lies slightly lower in energy compared to the

Mo-Nb case, consistently with similar observation in Nb- and Ta-doped SnOs.

4.3.3 Ir-Ru-S Binary Alloy

The last case study shows the limit of the CE formalism. The system considered combines
two chalcogenides interesting for ammonia catalysis applications: IrSe and RuSs. No
ternary is reported in the phase-field within the MP database.

Dark-blue hexagons and red crosses show the DFT-computed convex hull for the
Irl — xRu,Ss alloys in the NbTey and WTes prototype, which, as in Fig. [4.3] are the
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Figure 4.19: Atom-projected band structure of GS at x = 0.66 of Nb- and Ta-MoS, alloys. The
colour-code reports the product of the projection onto the TM atoms, i.e. (a) ps mo(k)ps b (k) and
(b) ps Mo (Kk)ps Ta(k), where s is the band index and k a vector in the BZ. The high-symmetry path
is generated with the SeeK-path suite [225], and each line is interpolated over 60 points.

low-energy ML configuration of IrSy and RuSs, respectively. The reference energies are
given by the pyrite RuSq, z = 0, and non-layered IrSy, © = 1, shown by figures with black
edges at the left and right of the plot respectively. As shown in Fig. the CE formalism
fails to capture the energy landscape of the system even with the extensive training set
and basis size reported in Table The predicted convex hulls (light blue and orange
dashed lines) differ significantly from the DFT-computed one (blue and solid red lines).
Moreover, as shown in Fig. the fitted and computed energies display low correlation.
The poor performance of the CE model is rooted in the large relaxation undergone by many
structures. Different orderings relax to the same final structure, breaking mapping between
geometrical ordering on a fixed lattice and energies underpinning the CE formalism [136].
This system is a reminder that coarse-graining is a delicate process, and special attention

must be paid to structures displaying large relaxation when deploying the CE formalism.
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Figure 4.20: (a) Formation energy Er, in eV/site, versus concentration x of the Ir;_,Ru,Ss
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mathced solid lines show the DFT convex-hull within each host and dashed lines the one predicted
by CE. Insets on the left of the plot show IrSy polymorphs: GS non-layered geometry (black-edge
inset), NbTey ML (blue-edge inset) and WTey ML (orange-edge inset). Insets on the right show
RuS; polymorphs following the same colour-code.
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Figure 4.21: Correlation plot of the DFT-training-set and CE-fitted energies. The red line marks
x =y, i.e. perfect correspondence between the two sets. The grey-scale of each marker shows the

distance from the DFT hull (solid lines in Fig. {4.20).
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4.4 Final Remarks

This chapter represents a systematic analysis of possibilities to alloy in TMD families.
The ideal solution limit provides the first guideline for in-depth computational studies
and experimental synthesis. Comparison between the ideal solid solution results and the
literature suggests the description is a reliable starting point. Moreover, ordering on the
metal site of promising candidates identified from the ISS data has been explored with
CE formalism for a few case studies. The CE analysis agrees in (Mo:W)Ss, (Nb:Mo)S,
and (Ta:Mo)Sy cases with the ISS prediction, which predicts maximum solubility in these
cases. In the case of (Nb:Mo)Ss and (Ta:Mo)Ss, the ISS predicts the same behaviour for
both systems. Conversely, the CE analysis can capture the different behaviour of the two
alloys systems, which show quantitative different formation energies and a different shape
of the convex hull. Nonetheless, the ISS correctly predicts the qualitative character of the
systems, as both Nb and Ta show good miscibility with Mo within the MoSs prototype.
These results show that the ISS model and CE analysis can be a good guideline for CVD
synthesis and the search for new alloys and ternary in the TMD chemical space.

A more in-depth analysis will be carried out on the (Mo:Ti)Ss alloys. This family of
compounds has captured the interest of the tribology community, as both experimental [74]
and computational studies [80] suggest it as a promising candidate for solid lubrication. In
the following chapter, the CE model will be developed to describe the phase behaviour of
the system. This model, coupled with MC simulation, will be used to predict the system

high-temperature behaviour and compare the results with available literature.
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Phase Stability of (Mo:Ti)S; Alloys

Building on the protocol outlined in chapter [4} an in-depth analysis is reported here of the
phase behaviour of a compound that has captured the interest of the tribology community.
(Mo:Ti)S; alloys have been identified as a promising material with enhanced tribological
properties both by experimental and computational investigations. Experiments on a
mesoscale report that Ti-doped composite coatings show better resistance to oxidation com-
pared to pristine MoSy while preserving low friction coefficients [74]. Recent computational
work [80] 226] has put forward an argument to rationalise the good frictional behaviour in
terms of the vibrational properties: the low frequency optical phonon modes taken to be
associated with the perfect shear of two layers are extrapolated along the sliding path and
taken as an indication of low energy barriers for sliding modes. By studying this descriptor
across the transition-metal dichalcogenide (TMD) chemical space, the authors identified
layered 2H-Ti; 4Mo3 /4S9, shown in Fig. where a quarter of TM sites within the TM-Ss
layers are occupied by Ti, as a candidate material with enhanced frictional properties
compared with other analysed TMDs. Despite the interest attracted by this compound,
the exact structure and chemistry is still debated. In order to experimentally realise this
computationally engineered chemistry, it would be advantageous for Ti; ,;Mog,/4S2 to be
thermodynamically stable within the Ti-Mo-S chemical space. However, the reported
mechanically stability in DFT calculations [80] is by itself insufficient to assess the thermo-
dynamic viability. Experiments do not provide a definite answer either. On the one hand,
studies on thin films synthesised via magneto-sputtering suggest Ti is not fully integrated
within the TM-Sg planes [74, 227]. On the grounds of the measured ratio between chemical
composition and film hardness, the authors conclude that if Ti were fully incorporated into

the layered structure, the resulting properties of the material, including hardness, should

105
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(b)

Figure 5.1: (a) Tribological-enhanced compound proposed in Ref. [80]. (b) HRTEM image of
a Ti doped MoSs nanostructure from Ref. [228]. The layering structure of TMDs compound is
clearly visible.

deviate more from pristine MoSy than is observed. On the other hand, a separate study of
Ti doped MoSs nanostructures, reported in Fig. [5.1b|, concluded that Ti is incorporated
within the TM-So planes. The authors disregarded a possible intercalation between the
layers due to the absence of distortion along the interlayer ¢ axis, suggesting that Ti is
embedded in the planes.

In an attempt to elucidate the thermodynamic viability of layered (Mo:Ti)S compounds
including 2H-Ti; ,4Mo3/4So, the energetics and thermodynamics of metal-site substitutions
are investigated with computational techniques to identify ordered phases and solubility

limits along the full (Mo:Ti)Ss pseudo-binary line within the Mo-Ti-S phase space.

S

Ti TiMo, Mo

Figure 5.2: Ternary space of the Mo-Ti-S system. Insets on the left and right show the
coordination of the pristine compounds, 1T-TiSy and 2H-MoSs, respectively. The binary alloy
system studied here is represented by the dashed line and the substitutional process is sketched at
the bottom.
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Fig. [5.2] visualises the considered part of the ternary phase space. Only compounds
TizMoj_;So within the two end members prototypes are considered. The ternary plot in
Fig. [5.2] reports stable configurations and tie lines in the chemical space according to the
Materials Project Database [2106], 217]. The only ternary compound reported, TiMoSs, is
an unstable non-layered structure, with a formation energy of Er = 0.04eV above the
convex Hull. To the best of our knowledge, there are no stable ternaries reported in the
phase field MoS9-TiS9-Ti7S12 relevant here, and no attempt was made to computationally
search for unknown ternaries in this region of the chemical space.

The two end-members are:

1. 1T-TiSy is a semi-metal that crystallises in a layered compound with space group
P3m1. The structure is depicted on the left side in Fig. [5.2] Each layer shows Cdls
prototype: triangular Ti layers are sandwiched by triangular chalcogenide planes,
mutually rotated by 60°, resulting in octahedrally coordinated Ti. The 1T prefix
indicates that TiSs planes are stacked in an AA fashion [35].

2. 2H-MoSs is a semiconductor with an indirect bandgap of 1.3eV and crystallises in a
layered structure with space group P63/mmec. Each layer presents the coordination
of the MoSs prototype: Mo planes are sandwiched by S planes that are not rotated
relative to each other, resulting in a prismatic coordination of Mo, as sketched on
the right side in Fig. The 2H prefix designates an AB stacking order of MoSs
layers [35].

In order to explore the effects of system dimensionality on the phase stability, the systems
are also studied in purely ML form, as done in chapter [} No stacking order is present in

the ML case and the pristine compounds are referred to as 1T-TiSs and 1H-MoS,.

5.1 Methodology

Cluster Expansion method The combinatorial problem of cation ordering within a
crystal structure is addressed using the CE formalism [41], described in detail in section
The Alloy Theory Automated Toolkit (ATAT) [I36] has been used to construct cluster
expansions. The series Eq. is truncated at figures of four vertices and cross-validation
is used to select the most predictive model over a training set. The expansion is considered
converged once the ground states predicted by the CE agree with DFT calculations and

the error on predicted energies is deemed negligible.

First-principles calculations Total energy calculations of geometries along the Ti,Mo;_,Ss
tie-line are performed using DFT within the PAW framework [124] as implemented in
the VASP software [198], [199]. Exchange-correlation effects are modelled using the SCAN
functional [128]. The subtle van der Waals interactions coupling the layers in bulk systems

are described using the non-local kernel correction rVV10 [229]. This combination has
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proven to accurately describe layered materials and complex geometries [129] and is further
benchmarked in Appendix

A plane wave cut-off of 800 eV was adopted for all DFT calculations; the Brillouin zone
of the pristine compounds in their primitive cell was sampled using a 11 x 11 x 11 mesh
and the number of k£ points per reciprocal atom was kept constant for larger supercells.
These parameters were evaluated via a convergence study for the current DFT setup in
Appendix [E| For the ML geometries, layers of TMD are separated by 20 A, ensuring there
is no interaction between periodic images. In order to obtain accurate total energies, cell
vectors and atomic positions were relaxed until the energy between iterations is less than
0.5 meV /atom.

Monte Carlo simulations To investigate the effect of temperature and configurational
entropy on the system, Monte Carlo simulations were performed using the CE Hamiltonians
and the EMC routine of the ATAT package [I138]. The simulations are carried out in the
semi grand-canonical ensemble, where the chemical potential u, number of lattice sites N
and temperature T' are fixed while concentration x and energy E can fluctuate.

The supercells used in the calculations are reported in Table All ground states
of the system are stabilized within the chosen chemical potential range, spanned in steps
of Ap = 0.01eV. Temperature is varied as function of its inverse 5 = 1/T between
B1 =1/100K and 3; = 1/8000K in steps AB = 1 x 10~*. This ensures a high sampling
density at low temperatures while conveniently enabling the ideal solid solution case as
a high temperature starting point. Each MC simulation is considered converged once

concentration fluctuations are less than the threshold of Az = 5 - 1073.

Host | Training set size Clusters ®, CV [eV] MC cell size

2H bulk 57 19 0.009 37x37x8
1T bulk 113 31 0.052 21x21x11
1H ML 39 8 0.016 -
1T ML 46 37 0.083 -

Table 5.1: Training set and convergence of the CE in the trigonal prismatic 2H and octahedral
1T hosts, for bulk and ML geometries.

5.2 Results

5.2.1 Crystallography and Cluster Expansion

The DFT-SCAN with rVV10 correction describes the in-plane bonding accurately and
stacking lattice constants are in good agreement with experiment, which indicates that
the rVV10 kernel accurately captures the cohesive inter-layer interactions. The lattice
parameters of the pristine compounds 2H-MoS, and 1T-TiSs as obtained from calculations
are reported in Table and are compared with experimental crystallographic data.
Separate CE Hamiltonians were built for the trigonal-prismatic (H) and the octahedral

(T) hosts. Two datasets of total energy calculations, one per host, were used to train
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Compound‘ alA]  c[A] Method Reference
2H-MoSs 3.168 12.5 DFT-SCAN This work

3.161 12.3 experimental [230]
1T-TiS9 3.409 5.75 DFT-SCAN This work
3.410 5.70 experimental [231]

Table 5.2: Intralayer a and interlayer c lattice parameters from simulations and experiments.
Bulk lattice parameter a is within 0.03% and 0.2% of the experimental measured value, while the
interlayer one c is within 0.7% and 1.8% for TiS, and MoSs, respectively.
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Figure 5.3: ECI in prismatic 2H host (red circles) and octahedral hosts (blue squares) as defined
in Eq. (2.58)). The dashed lines connecting the points are a guide to the eye.

the ECIs, which are reported in Fig. [5.3] A dataset comprising around 50 structures was
sufficient to bring CE and DFT into agreement for the trigonal-prismatic host, while a little
over a hundred configurations were needed for the octahedral host as reported in Table
While the CE for the trigonal-prismatic host was built using the full concentration range
x € [0, 1], within the octahedral host, it was decided to bias the CE model to accurately
reproduce the ground-states only in x € [0, 0.6] as explained in section As reported in
Fig. energies predicted by CE models agree well with the DFT-computed ones: average
error is 0.8 + 6.9 meV /site for the 2H host and —2 4 24 meV /site for 1T host. Considering
that the energy landscape is dominated by the formation energy of end-members in the
non-native host, which is of the order of 0.5 €V, this error is negligible in the description of
the energetics in most of the phase diagram. The error in 1T host is in the order of thermal
energy at room temperature kpTioom = 25 meV, making it relevant for low-temperature
simulations at low concentration z, near the 1T-TiSs end-member. In turn, in the high-
temperature portion of the phase diagram, which is the one of interest here, this error

becomes negligible.
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Figure 5.4: Fitted versus DFT-computed formation energies in both hosts. In a perfect fit all
points would lie on the bisector, shown as a dashed black line. Empty squares refer to configuration
x > 0.6, which have a different weight in the fit as explained in section

5.2.2 Convex Hull

In order to understand stability across the two hosts p, the formation energy defined in
Eq. (4.8]) is adopted and, for this system, reads

EMO,Ti,p(:L') = E(MOxTilfzS2)|p
— zE (Mo, pmo) — (1 — 2)E(Ti, pry) = E{;(:U), (5.1)

where E(MogTi1—;S2)|, is the energy per TM site of the configuration o(x) at concentration
x, and remaining terms are the total energy of the pristine compound in the ground-state
hosts, i.e. pumo is prismatic MoSy and pry is octahedral Cdl,. ER(z) is introduced as
a short-hand, as in the remaining of the chapter the TM will not change. Formation
energies from Eq. are reported in Fig. for bulk and ML in both octahedral 1T
and trigonal prismatic 1H and 2H hosts. The line connecting the end-member in each
host (solid red for H host and dashed grey for T host in Fig. represents the energy of
the ideal solid-solution limit with negligible interactions between the fraction x of sites
occupied by Mo and the remaining Ti sites. Points lying below this line represent stable
configurations in the given host while points over it mark energetically unfavourable regions,
where Mo-rich and Ti-rich parts are segregated within the same host geometry. Finally,
stable structures across both hosts would show negative formation energies, lying below
the black dotted line in Fig. but no such configuration has been found.

The prismatic host is not receptive to alloying. All training set configurations lie
above the line connecting the end-members (red symbols in Fig. , indicating a high

energy penalty for Ti in prismatic coordination. Since no ordered arrangement of the two
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Figure 5.5: DFT-computed energies for the H host in bulk (red circles) and ML form (red
crosses) and T host in bulk (blue squares) and ML (blue diamonds). Hollow symbols mark the
1T configuration at = > 0.6, where the CE model is not required to reproduce the right ground
state. The dashed gray line connects the end-members formation energies of the T host. Red and
blue solid lines show the convex hull within the H and T hosts, respectively. The black dotted line
marks the zero-formation energy limit.

species yield an energy gain, at 0 K Mo and Ti ions within the 2H host are segregated into
separate regions. Conversely, energy favourable orderings are found within the octahedral
host. Several training set configurations lie below the ideal solid-solution line, as shown by
blue marks below the gray dotted line in Fig. In particular the CE iterative search
identifies ground-state orderings at = = 0.60 (Mog/5Tiy/5S2) and at x = 0.83 (Mos 5 Ti; /652).
According to the convex hull in Fig. the octahedral T host is favourable until x = 0.5,
after which the prismatic H host becomes more stable. This concentration-dependant
stability between the two hosts at 0 K and the large distortions occurring in the T host for
x > 0.6 motivated the decision to constrain the selection of the 1T model: CE Hamiltonians
are required to correctly reproduce the 1T ground-state only within the range x € [0, 0.6].
This is in light of the fact that at higher concentrations the system will prefer the H host
and the CE cannot reproduce large lattice distortions [136], as shown in section m
Fig. [5.6] reports the distortion from the native geometry occurring upon relaxation as a
function of concentration x. The host distortion is defined as the strain needed to transform
the original cell into the relaxed one, apart from isotropic scaling and rotations. Values
larger than 0.1 are usually considered too large for the CE formalism to be applied [136],

as the mapping of the relaxed configuration to the perfect lattice breaks down.

The 1T host observed in other TMD compounds, e.g. WTes, has been considered but

is not relevant for the present system. The formation energy of several orderings within
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this host is reported as orange crosses in Fig. along with the convex hull of the 2H and
1T hosts. The formation energy within 1T’ host is comparable with the results obtained
within the 1T host. Within 1T’ host, relaxed geometries in the Ti-rich portion of the
composition axis revert to perfect-octahedral 1T coordination while Mo-rich configurations
reach distorted geometries similar to the ones obtained within the 1T host (blue hollow
symbols in Fig. . Thus, the phase behaviour of the system is unchanged, as the relaxed
configuration from 1T’ and 1T are equivalent in the range = € [0,0.6] and the 2H host lies
lower in energy for higher concentrations of Mo.

Since no part of either convex hulls lies below the zero-formation energy line of the
composite-host system (black dotted line in Fig. , the system is deemed phase-separating
at 0 K: the lowest-energy configuration at any concentration comprises two separate regions
of 1T-TiSy and 2H-MoS,. Only at finite temperature can entropic effects stabilise the

presence of a mixed-concentration configuration within a single host.
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Figure 5.6: Distortion of all computed structure in 2H (circles) and 1T (squares) bulk systems.
The y axis reports the formation energy per site versus the concentration xz, like in Fig. [5.5]
The colour of each point shows the distortion value, increasing from no distortion (green) to the
maximum distortion observed (red).

5.2.3 Miscibility at High Temperature

The CE Hamiltonians for the 2H and 1T bulk system trained with the data-points in
Fig. 5.5 was used to run finite-temperature MC simulations. Free-energy curves for each
host are built from MC simulations, allowing the understanding of the stability of the
system once temperature and configurational entropy are introduced. Since the MC
simulations are carried out in a semi grand-canonical ensemble, only single phase regions
of the phase diagram are directly explored by the simulations and two-phase equilibrium

regions are inferred. Then the multi-host free-energy surface is obtained by a double
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tangent construction: at fixed temperature, the free energy surface of each host is built
with the two-tangent construction and the convex hull of the resulting two surface yields
the total free energy F'(x,T).

The phase diagram of the system across 2H and 1T hosts is thus divided in phase
separating and solid-solution regions. The colour scheme in Fig. shows the value of the
multi-host Helmholtz free-energy F'(x,T) as function of concentration z and temperature 7.
The T host shows solid-solution behaviour already at room temperature, while in the 2H
system a phase-separation of Ti and Mo within the prismatic host dominates the diagram
up to T'=3000K at = = 0.5. The solid black lines in Fig. show the phase boundaries
between multi-host phase separation (central region) and solid solution in a single host
(left-most and right-most regions). In a realistic temperature range the system is completely
phase separating, with configurational entropy stabilizing only small-percentage doping

around the two end-members.
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Figure 5.7: Phase diagram of the combined-host system showing temperature T" versus equilibrium
concentration x in MC simulations. The colours report the value of the free energy F'(x,T), linearly
interpolated between the MC points. The solid black line highlights the phase boundary between
solid solution in T and H hosts from phase separation into 2H-MoSs and 1T-TiSs. The dash-dotted
gray line indicates the separation between the 1T-host stability and 2H-host stability, as indicated by
the gray labels. The white region between dash-dotted and dashed gray lines indicates a two-phase
equilibrium within the 2H host not accessible by semi-grand canonical MC simulation.

5.3 Discussion

Stabilisation mechanism in octahedral host Even though it does not lead to overall-
stable geometries, it is interesting to understand the origin of the stabilization mechanism
leading to the ground state Mos/5Tiy/5S2 at © = 0.6 in the 1T host. Fig. reports

a top view of the starting geometry of this ground-state ordering. This configuration is
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composed of three staggered rows of Mo and two rows of Ti. As shown by the displacement
arrows in Fig. Ti cations retain their starting position, locally preserving octahedral
CdI, prototype coordination, while Mo clusters distort the host, locally breaking the
symmetry. This distortion around Mo ions can be understood qualitatively with the
Kramer theorem [148] and the CF theory, outlined in section The CF description has
an intuitive physical interpretation, but only leads to a qualitative description of the present
system: while the CF model assumes purely ionic bonds, the transition metal-chalcogenide
bond shows a degree of covalency. According to CF theory, the degenerate five d orbitals
of the isolated TM are split into two energy manifolds for Cdls octahedral coordination
and into three manifolds for MoSy prismatic coordination, as reported on the left hand
side of Fig. [5.8b

Assigning Ti a formal valence of 4+, the trice-degenerate low energy 3, states of the
d" ions are empty. Hence, octahedral coordination is favoured as it provides the most
efficient packing [34]. On the other hand, Mo** is a d? ion leading to partial occupation of
the to, manifolds. According to the Kramer theorem, the system will lower its symmetry
through Jahn-Teller (JT) distortion: this breaks the degeneracy of ta, and lowers the total
energy. The lattice is thus divided in non-JT-active sites, i.e. Ti rows, and JT-active
sites, composed of the Mo triplets clustering together, as shown in Fig. The same
mechanism cannot occur in the MoSy native prismatic coordination, as the d° configuration
of Ti** ions and the low-energy CF level is non-degenerate and hence Kramer’s theorem

cannot be applied.
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Figure 5.8: (a) Azimuthal view of the starting, perfect octahedral Mos,;Tis/5S2 ordering at
z = 0.6 . Purple, blue and yellow circles represent Mo, Ti and S ions, respectively. The distortion
stabilising the geometry is shown with arrows, whose length and shade are proportional to the
magnitude of the displacement. (b) Sketch of the octahedral (left) and prismatic (right) energy
levels in the CF splitting picture. Insets beside energy levels depict the corresponding hydrogen-like
orbitals on the transition metal sites, surrounded by sulfur ions in the respective coordination.

Generalised principle for 2D TMDs design The dimensionality and vdW interac-
tions do not affect the phase stability of the alloy system. As Fig. 5.5 reports, in both hosts,

the convex hull of the bulk system and their ML counterpart present the same character.
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This result validates the assumption in chapter [4 since the phase behaviour is unchanged
from the bulk case, one could extrapolate from ML phase diagrams to the bulk.
Moreover, the electron-lattice stabilisation mechanism presented in section could
occur in other TMD-based compounds and must be taken into account when designing
similar alloys. The JT-based distortion lowers the energy of the ground-state configurations
at £ = 0.60 in Fig. by about 100 meV compared to the ideal solid-solution limit. Even
though this energy gain is not enough to redefine the multi-host convex hull in the (Mo:Ti)Ss
system, it could lead to ground-state orderings in other similar alloys, if the formation
energy of the end-members in both host is low enough or zero, when end-members share

the same ground-state host [190].

Comparison with experimental data The phase diagram in Fig. contains useful
information from a synthesis point of view, allowing estimation of the maximum doping
fraction at a given temperature. For example, at T' = 1200 K the maximum fraction of
substituted Ti should be around 1%. Considering that the melting point of pristine MoSs
and Mo-Ti metallic alloys are reported to be around 1700 K and 2000 K [232], respectively,
it should be in principle possible to observe such doped configurations experimentally
by quenching the results of a high-temperature synthesis, in order to inhibit the phase
segregation mechanism shown to occur at lower temperature. This prediction is consistent
with the results by Hsu et al. [228], where energy dispersive X-ray analysis detected the
presence of a small amount of Ti in 2H-MoSs-based nanostructures obtained by mixing
Mo-Ti powder and HoS at 1200 K, while the inter-layer lattice constant measured from the
High-Resolution Transmission Electron Microscopy and X-ray diffraction fails to show an

expansion, which would be indicative of Ti ions intercalated between MoSsy sheets.

5.4 Final Remarks

The (Ti:Mo)S2 phase diagram originating from TM substitutions within the native hosts
of the pristine compounds has been computed using the methods outlined in chapter
and section The model predicts full phase separation in the system across hosts and the
solubility limits inferred from our MC simulations are in agreement with high-temperature
synthesis of Ti-doped 2H-MoS; reported by Hsu and coworkers [22§)].

The phase behaviour of the system is understood in terms of a general electron-lattice
coupling mechanism that could apply to the other members of the TMD family and, if
strong enough, lead to stable ordering in other binary compounds. Comparison between
3D bulk and 2D convex hulls reveals interlayer coupling and system dimensionality, at
the origin of sought-after exotic electronic behaviour, are negligible in regard to phase
stability of the binary alloys. This result should be valid for most 2D materials in which
phase stability is governed by the similar in-plane electron-lattice effect, while more subtle

behaviour could arise in presence of magnetic or Coulombic interactions [38], 233].
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Digital Tribology

6.1 Superlubricity in Large-Mismatch Heterostructure

The concept of superlubricity was proposed by K. Shinjo and M. Hirano in the 1990s [1§],
which describes the phenomenon of vanishing friction between two contact surfaces (also
known as structural lubricity later). Superlubricity has been widely found in van der
Waals (vdW) materials, as their crystalline structures are kept together by weak vdW
forces. However, superlubricity in two dimensional (2D) homostructures shows a strong
twist-angle dependence [53, [I77]. Layers prefer to rotate and lock in the commensurate
state when sliding occurs, leading to the disappearance of superlubricity [234], 235]. The
lattice mismatch between the two contact materials in VAW heterojunctions may reduce
the commensuration problem. Micro-scale superlubricity has been uncovered in the
graphene/hexagonal boron nitride (h-BN) heterostructure with a significant reduction of
twist-angle dependence [29, [19] 236], 175]. However, the twist-angle dependence is still
present in graphene/h-BN heterostructure, perhaps due to the small lattice mismatch.
Therefore, it is crucial to explore the lattice mismatch influence on the superlubricity of 2D
heterostructures. Furthermore, the effect of widespread domain edges on the superlubricity
of the finite-size 2D interfaces is largely unexplored [175].

Two-dimensional heterojunctions with different lattice mismatches were characterized
with Lateral Force Atomic Force Microscope (LF-AFM) and simulations. Experiments
presented here show that the coefficient of friction of the large lattice mismatch heterojunc-
tion interfaces is below 1 x 1075, and twist-angle dependence is suppressed. Friction forces
of these large-mismatch heterojunctions are dominated by pinned edges effects rather than

resistance to interface sliding, e.g. from potential energy corrugation, while interface sliding
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resistance dominates the friction process in sliding of small mismatch lattices. Classical
MD simulations indicate that atoms near the edges of the flake play a distinctive role
during the sliding dynamics, presenting enhanced structural distortions with respect to the
rest of the flake.

Experiments reported in this chapter were performed by Prof. Guangyu Zhang group
at Beijing National Laboratory for Condensed Matter Physics and Institute of Physics
(Beijing, China) and the simulations were performed in collaboration with Prof. Tomas
Polcar group at Czech Technical University in Prague (Prague, Czech Republic). The main
contributions carried out in Southampton were the design of the MD simulation, the FF

benchmark and the analysis of electronic effects at the edges.

b c
_______ graphene

graphite h-BN h-BN

w
=]
1

g Lateral signal
. ]

L)
=]
1

Lateral force (nN)
-
e

]
:

Time (s)

(=]
=
=
o

———
Move direction

Lateral force (nN)

Time (s)

Figure 6.1: (a-c) Sketches of the heterostructures considered: MoSs/graphite, MoSs /h-BN, and
graphene/h-BN| respectively. (d-f) AFM images of the corresponding heterostructures. (g) Working
principle of the lateral-force AFM. Two manipulation techniques adopted and corresponding force
signal: edge-pushing method (h) and top-dragging method.

6.1.1 Experimental Results

The VAW heterostructures experimentally investigated are: MoSs/graphite, MoS,/h-BN,
and graphene/h-BN, with lattice mismatches of 26.8%, 24.6%, and 1.8%, respectively.
Fig.[6.Ih-c show the structures of these three heterostructures, prepared by a CVD epitaxial
growth technique [25] 237] and characterised by AFM topography as shown in Fig. ff.
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In Fig. a faint moiré superlattice of ~ 16 nm can be seen, suggesting a 0° twist angle
between G and h-BN. Electron diffraction images confirm the flakes and substrate lattices
are aligned. AFM topography finds lattice parameters in line with the literature and
confirm that the flakes in Fig. [6.1h-c are composed of a single layer while Raman and
photo-luminescence demonstrate a high sample quality.

Friction force measurements were performed by AFM in dry Ny atmosphere to reduce
airborne contaminations. Fig. [6.1lg shows a schematic of the measurement process. Ma-
nipulation techniques [236], [59] allow to slide atop epitaxial domains on the substrate by
using an AFM tip and monitor the lateral force during the sliding simultaneously. Two
approaches to slide on-top domains over substrates by using AFM tips are deployed. The
first is illustrated in Fig. [6.1h, where the edge of the top domain is pushed laterally and the
difference of lateral force before and after on-top domain sliding is detected. The second
way is shown in Fig. [6.1}, where the domain is anchored to the tip end and dragged over the
substrate. For MoSs /graphite and MoSs/h-BN heterostructures, the top domains could
slide back and forth laterally by engaging the tip onto the centre of the domain, with a
load from 0.4 to 5uN, since the adhesion and the friction force between the tip and MoSs
is greater than that between MoSs and graphite (or h-BN).

Superlubric Behaviour

As outlined in section the AC model prescribes that the dependence of the dynamic

friction force F, on the load L is expressed by
Fo=pa-L, (61)

where pq is the dynamic CoF. Combining the edge-pushing and top-dragging methods, the
applied tip load Ly, can be varied from zero to a few uN (near zero tip load achieved by
pushing the edge). The normal force experienced by the flake can be decomposed into two
contributions

L = Lo + Lyip, (6.2)

with Lo being the adhesion between the flake and the substrate and Ly, the load applied
to the tip. It follows that:

Fy = pa - (Lo + Ltip) = pta - Lo + pa - Liip = Fro + pta - Liip- (6.3)

As shown in Fig. and b, under Ny, the friction forces of MoSs/graphite and MoSsy /h-
BN heterostructures are almost the same for different values of Ly, which indicates
constant F,, and ultra-low CoF. As shown in Fig. the coeflicient of friction of both
MoS,/graphite and MoS;/h-BN heterostructure interfaces is well below 1 x 1073, which
is considered the threshold for superlubricity [89]. To calculate the friction coefficient
precisely from the slope in Fig. and b, a much higher resolution and noise reduction
of the AFM signal would be needed.
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Nevertheless, an alternative approach can be used to estimate the CoF. The adhesive
force between MoSy domains and graphite or h-BN represents the major contribution to

the load L [238]. Thus, we can estimate the magnitude of the CoF, pq4, by using:

o Fro
Ha =7 (6.4)
Lo=G-A (6.5)

where G = 1.130(14) GPa is the adhesive pressure between graphite and MoSs sheets [239]
and A is the area of the domain. The area of the largest MoSy domain on graphite is A =
15.00 um? and the friction force is F,, = 44.15nN giving the adhesive force Ly = 16.97 mN
and the CoF of the MoSy/graphite heterostructure interfaces as pgvug = 2.60 x 1076,
This value is almost two orders of magnitude smaller than those reported in previous
studies [238| 240, 241]. For the MoSs/h-BN heterostructure the CoF value is around
pavc = 2.29 x 1079 similar to MoSs /graphite.

To further explore the twist-angle dependence of superlubricity in large lattice mis-
match heterostructures, anisotropy friction test are conducted on the MoSy/graphite
heterostructure. As shown in Fig. , the measured friction forces from MoSs/graphite
heterostructures show no dependence from the twist angle can be detected within experi-
mental resolution. This phenomenon is attributed to the fact that the in-plane interface
friction force is almost zero even at 0° due to incommensurability, and the influence of the

twist angle on the friction force has a negligible contribution to the total friction force.
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Figure 6.2: Superlubricity of MoSy/graphite and MoSs /h-BN heterostructure interfaces. (a) and
(b) Friction force under Ny gas environment as a function of the tip load of MoSs /graphite and
MoSs /h-BN heterostructures. (c) The ratio of friction forces between twisted Fryisteq and aligned
Fyo MoSs/graphite heterostructure. The red dashed lines are the fit. Error bars are standard
deviation of data points.

Although the interface CoF's of MoSy/graphite and MoSs/h-BN heterostructure inter-
faces are small, there is still a constant friction force Fyg independent of load. Previous
results pointed out that the friction force could be affected by many parameters, such
as edges, interface steps, and contaminations [242] 243, [244]. The origin of this constant
friction force is rationalised in terms of two descriptors, the shear strength S and the

domain edge pinning strength FE. Considering the finite size of the samples, S and F are



Superlubricity in Large-Mismatch Heterostructure 121

defined as follows:

S =Fy/A (6.6)
E = F;/P, (6.7)

where A and P are the area and the perimeter of domains, respectively. Three situations

are expected:

1. the in-plane interface sliding resistance predominantly contributes to the friction

force and S is thus constant.

2. The in-plane interface friction is negligible and the edge pinning effect dominates the

friction process and E is constant.

3. if both effects contribute significantly to the friction force, then both S and E cannot

be constant.

Friction force of different samples are measured using various contact areas under a dry
Ny atmosphere. The results are consistent even though different tips were used, suggesting
good consistency and repeatability of the calibration method. Fig. shows a plot of
the shear strength (S) of the MoSs/graphite heterostructure as a function of domain area
(A), clearly revealing a non-constant S. In contrast, when E vs. P is plotted, as shown
in Fig. , the edge pinning strength E is constant, with £ = 1.99(30) nN/um. These
results indicate that the interface (in-plane) friction within MoSy/graphite is negligible,
and the edges of the MoS; domains are pinned to the surface of graphite. MoSs/h-BN
exhibits similar behaviour, as shown in Fig. ,d, where E = 1.94(80) nN/um, close to
that of MoSy/graphite. Note that all edges of MoSs domains in our experiment have
the same zig-zag direction. Thus, the E reported is actually the zig-zag edge pinning
strength, as edges with different directions may have different edge pinning strength. As
described above, the friction force of large lattice mismatch MoSy/graphite and MoSs /h-BN
heterostructures mainly comes from the pinned edges. Therefore, the friction coefficient of
infinite interfaces should be significantly lower than 1 x 1076.

The behaviour of the aligned graphene/h-BN heterostructure, which has a small lattice
mismatch (1.8%), is different from the large-mismatch heterostructures. As shown in
Fig. ,f, the shear strength of the graphene/h-BN heterostructure is constant and
equal to S = 2.20(39) MPa, suggesting that the in-plane interface friction is dominant.
The dominance of in-plane friction in graphene/h-BN can be understood considering its
near-commensurate nature at small twist angles. The period of moiré superlattice is larger
than in the MoSs-based heterostructures and, while the centre of mass moves smoothly,

the dissipation arises from internal degrees of freedom of the flake [237] 245, 246, 19].

6.1.2 Electronic Structure of the MoS, Flake Edges

This section reports an analysis of the electron density at the MoSs edge sites. The study

of non-periodic geometries, like edges, requires a careful balance between simulation cost
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Figure 6.3: Source of friction for three different heterostructure interfaces. (a) and (b) are plots
of friction characterization of MoSs/graphite as a function of domain area A and perimeter P,
respectively. (c) and (d) are similar plots for MoSy/h-BN. (e) and (f) Friction characterization of
graphene/h-BN as a function of A and P. Dash lines are the fits. Error bars are standard deviation
of data points.

and geometries in DFT to ensure negligible self-interaction between periodic images is
present. This balance is obtained here using the ribbon geometry reported in Fig.
where dashed a line shows the unit cell of the heterostructure system. The starting system
is a bilayer system comprising of a 7x7 MoSy supercell epitaxially stacked on a 9x9 G
supercell, for a total of 309 atoms. As explained in Appendix [C] to apply periodic boundary
conditions, the residual strain of 0.49% is applied to the MoSs layer. Removing three
rows of MoSs, S-terminated zig-zag are obtained, termed here ZZ-S1, top edge in Fig.
and ZZ-S2, bottom edge in Fig. The edges are more than 8 A apart, ensuring no
chemical interaction between them. The zig-zag edges are the only ones observed in our
CVD-synthesized samples. Moreover, analysis on MoSs 2D flakes reported in Ref. [247]
reports the lowest formation energy for ZZ-S1 and a slightly higher formation energy for
77-S2 edge, while armchair and Mo-terminated edges show higher formation energy. The
geometry proposed here can be thought of as a portion of the side of the larger experimental
or MD-simulated flakes, which exhibits only ZZ-S2 edges. No edge in the carbon plane
was studied here as the flake slides above larger, high-quality G substrates. The electron
density is obtained from DFT calculation using the parameters reported in Appendix

To investigate chemical interaction between the two subsystems, we compute the charge
density along the c lattice vector, parallel z. The geometry along this direction is reported

in Fig. [6.4h. The charge along the lattice direction is obtained by direct integration along

the other lattice directions:
a b
~ [ [ oty 2paay. (6.9)
0o Jo
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Figure 6.4: Top view of the MoSsy-stripe/G heterostructure. Carbon, molybdenum and sulfur
atoms are reported in gray, cyan and yellow respectively.

Fig. shows the electron distribution in the MoSs stripe (cyan thin line), G substrate
(gray thin line) and heterostructure (black thick line). The vertical lines show position
along z of each C (gray), Mo (cyan), and S (yellow) atom, respectively. Fig. shows

the difference between the distribution in the heterostructure and the subsystems, namely

Ap. = pit —

occurs between the edges and G, the heterostructure electronic distribution in Fig. is

(pMoSz 4 pG). Confirming our assumption that no strong chemical interaction

almost a perfect superposition of that of the isolated subsystems. No charge accumulation is
seen in the interlayer space suggesting no covalent bonds are forming. The charge difference
in Fig. supports this observation, showing in-plane polarization in the G layer, with
in-plane accumulation and depletion from the out-of-plane p, manifolds. Charge also
accumulates on the lower S atoms. The positive-defined profile in MoSs space in Fig.
indicates a level of charge transfer from G to MoS,. To obtain a quantitative estimation of
the electrons transferred per atom, the Ap, is integrated in the two hemispaces defined by
the interface ¢ (orange dash-dotted line in Fig. [6.5p,c):

ApMos: —/ Ap.dz (6.9)
¢

and X
ApS = / Ap,.dz. (6.10)

MoSg
z

This yields 52 = 0.012e™ /atom and Apd

Nnos, Nc
transfer rules out the formation of covalent bonds between MoSs stripe and the G substrate.

= —0.0071 e~ /atom. This minimal electronic

Instead, the slight charge transfer is ascribed to the necessary alignment of Fermi level
between the two subsystems. Note that the interface height ¢ is chosen to maximize the

computed charge transfer between the upper (MoS3) and lower (G) hemispaces.

To further characterize the electronic behaviour of the edges, Fig. [6.6p,c show the
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Figure 6.5: (a) Side view of the MoSs-strip/G heterostructure. (b) Electronic distribution along z
in heterostructure, MoSs stripe and G substrate, as reported in the legend. (c) Difference between
the distributions reported in (b). The vertical lines mark atom positions, as reported in the legend.
The orange dash-dotted line is the position of the ideal interface height (.

in-plane electron density of the heterostructure obtained by integration along z

¢
i) = [ play iz (6.11)
P (,y) = /COO p(z,y,z)dz. (6.12)

As shown in Fig. [6.6h, charge outside the MoS; stripe vanishes, confirming that no spurious
self-interaction or charge sloshing are present. Fig. [6.6b,d report the charge difference as
defined above. The effect of the stacking on the G substrate is seen in Fig. [6.6p, as charge
is depleted in correspondence of the MoS, stripe edges. The different nature of the two
S-edges is reflected in the charge reconstruction promoted by the G substrate. As shown
in Fig. [6.6p, charge depletion is stronger in the Mo atoms of the upper ZZ-S1 edge, while
the lower ZZ-S2 edge presents a double-lobed reconstruction and less pronounced charge

depletion on the metal ion.

The localized effect of the G on the MoSy edges is well summarized in Fig. which
shows the charge in Fig. [6.6] projected on the b axis, i.e integrated along x. Compared to
the isolated MoSs stripe, a fractional charge is transferred to the terminating S atoms from

the underlying C atoms, while the rest of the system is unaffected.

To sum up, the main effect occurring at the MoSs strip/G interface is a polarization of
the G layer and bottom S atoms. The negligible charge transfer across the interface rules
out any covalent bonding between the two subsystems and confirms the validity of the

classical, non-reactive approach used in MD simulations.
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Figure 6.7: Electronic distribution difference along the b lattice direction, shown as purple arrow
in Fig. @ Vertical lines mark the position of atoms, according to the legend, along b.

6.1.3 Sliding Barrier Force Field Benchmark

The benchmark in the previous section justifies the use of non-reactive FF and the simula-
tions are expected to correctly reproduce the trends found in experiments. As reported in
Appendix |§|, the intralayer interactions are described by means of Stillinger-Weber [171]
and AIREBO [I72] potentials for MoSs and graphene, respectively. The interlayer interac-
tions are modeled via a Lennard-Jones potential, parameterised in Appendix [D| against
DFT data. In order to test the performance of classical FF to describe sliding events in
the heterostructures, MD-computed PES are compared with DFT-level data. Since the
computational cost of computing PES at DF'T level in large heterostructures is prohibitive,
a commensurate supercell comprising 4x4 MoSs unit cells over 5x5 G unit cells is used. The
residual strain of 2.6% resulting from lattice mismatch is applied to MoSs. In computing

the PES, the G substrate is constrained in xyz and the top S layer in xy. This protocol
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prevents the system from relaxing back to minima geometries while allowing relaxation

along z, mimicking the constant load experimental setup.

1 _\\_ —- --‘- - -\ 0.7
10 \_.Q o0 O‘ U 149 60 . ®)
8 \\ 0.5 o ‘
I 6 :Doo Oocg QQ 124 0e) |
~ 4] ’QSQ‘@OOO«Q Lo o
2 ‘D'ﬁaobﬁ = 011
(a) ,_ Q _. g 0.0 +—— . . —
0 - 0._0__0__0 S g 00 01 02 03 04 o5
. : 2 :
-5 0 5 10 ;
x [A] [}
€ 61
L
4_
G/G DFT
MoS,/MoS, DFT 2
—— MoS,/G DFT
MoS,/G LAMMPS
——————— MoS,/G DFT Wang et al. (2017) 0.0 0.2 0.4 0.6 0.8 1.0

Y/Ymax

Figure 6.8: (a) Top view of the MoS2 /G heterostructure (same colouring as in Fig. [6.4). The
orange crosses represent the points considered in the heterostructure PES calculations. (b) PE as a
function of the dimensionless displacement y/ymax. (b1) Magnification of the plot in (b).

The PES is sampled over 50 points along the path following the y direction in the
geometry shown in Fig. by orange crosses. The resulting PES from DFT and MD
are shown in Fig. [6.8b, as blue and orange lines, respectively. For comparison, the plot
reports DFT-computed PES for MoSs/MoSs and G/G contacts, as red and gray dotted
curves, respectively. The inset is a zoom on the energy scale showing the heterostructure
PES in the first half of the path. Sliding barriers in the heterostructures are in the order of
fraction of meV /atom, one order of magnitude lower than in homo contacts. The DFT-MD
comparison reported in the inset in Fig. [6.8b1 shows that the “double-humped” shape of
the PES is correctly reproduced by the LJ FF, but the DFT barrier is underestimated by

AE
a factor of AEDFT =3.7.

Interestingly, this agreement is far better than what is reported in the literature for
LJ-based FF: Fig. from Ref. [93] reports for G/G contact an underestimation of

AAETDLFT = 10 and Fig. in Ref. [94] shows that the shapes of the PES in MoS;/MoSs

contact is not reproduced correctly even qualitatively. The good performance of LJ

interlayer coupling here is not a coincidence: interlayer interactions are substantially
different in this heterostructure system compared to pristine compounds. As shown in
Fig. in Ref. [93], in bilayer graphene charge is accumulated in the interface region,
compared to isolated G layers. Thus, p, orbitals of C atoms are more populated. The
repulsion between these orbitals is the fundamental idea underpinning the anisotropic term
in Kolmogorov-Crespi (KC) interlayer potentials and the failure of LJ ones in this system.

As shown in Fig. in the previous section, the main effect of the interaction between
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Figure 6.9: Lateral potential energy surfaces obtained translating a graphene (a) or MoSs (b)
layer above a fixed one along the long diagonal of the hexagonal unit cell. In each figure differnt
curves refer to different models, as reported in the legends. In (b), the relevant comparison is
between DFT curve (black crosses) and LI curve (pink circles). Adapted from Ref. [93] (a) and
from Ref. [94] (b).

MoS, and G on electronic density is to move charge from the interlayer region into the
C plane. Thus, p, orbitals are depopulated and the anisotropic contribution motivating
KC is weakened. Moreover, exact quantitative agreement between DFT and classical FF
cannot be expected as the energy scale observed here is at the accuracy limit of ab initio
methods as well. The green dashed line in Fig. shows the sliding barrier reported
in Ref. [248], based on a DFT protocol similar to the one deployed here. The nominal
value the authors report is 0.046 meV /atom, putting the FF PES between the two DFT
results. To sum up, a level of discrepancy between experiments and MD simulations is
expected, but this should be limited to a scaling factor, while qualitative trends should be

reproduced truthfully.
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Figure 6.10: Charge difference between BLG and isolated G layers. Adapted from Ref. [93].
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6.1.4 Simulation of Edge Pinning Effect

The origin of the edge pinning effect in the MoSs/G heterostructure is unveiled by per-
forming a set of MD simulations. The computational setup is illustrated in Fig. and
b. Triangular MoSs flakes are considered, with side lengths ranging from 2 to 20nm. The
adhesive pressure between MoSy and graphite is G = 1.20 GPa, which is in good agreement
with both experiment and ab-initio calculations [239]. All systems have been equilibrated
at room temperature, after which non-equilibrium simulations have been performed by

applying a constant speed protocol and calculating the lateral force acting on the flake.
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Figure 6.11: MD simulation results of a MoS, flake sliding on graphite. (a) and (b) Side and top
views of the MD computational setup, respectively. (¢) Calculated shear strength as a function of
MoS; flake area; the inset shows the calculated edge pinning strength as a function of MoS, flakes’
perimeter. Dash lines are the fits. Error bars are standard deviation of data points. (d) Root mean
square displacement maps of different atomic layers in the MoSs flake calculated with respect to
the optimized geometry for a typical trajectory (flake size &~ 16nm). (e) and (f) Per-atom average
potential energy fluctuation and kinetic energy maps of different atomic layers in the MoS, flake,
respectively. For the potential energy, values are reported as the difference with respect to the
optimized system.

Fig. summarizes the simulation results. The shear strength (5) and the edge
pinning strength (E) are reported as a function of MoS; domain area (A) and perimeter
(P), respectively. As shown in Fig. , S presents a decreasing profile as a function of
A, while FE is almost constant, resembling the experimental results in Fig. We also
calculate the shear strength of an infinite heterostructure, Sinanite = 4.95 kPa, which is at
least one order of magnitude smaller than that of our finite heterostructures. Despite this
scaling, the trends are consistent with the experimental observations.

To get a more in-depth insight into the underlying mechanisms, Fig. |6.11d reports
the map of the atomic root mean square displacement with respect to the equilibrium

positions for different atomic layers of MoSs, and averaged over the MD trajectory. The
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0.5

Figure 6.12: Scanning Transmission Electron Microscopy (STEM) image of MoSs domain edge
at various zoom levels. Red dash line in c outlines the arrangement of molybdenum atoms in the
body and at the edge, highlighting the distortion of the latter.

mean displacement of edge atoms is significantly larger than for centre atoms. Potential
energy maps of different atom types within the MoSs layer (Fig. [6.11p) show that the
edge S atoms have a higher potential energy than S centre atoms. For the kinetic energy
maps in Fig. [6.11f, there is no apparent difference between edge atoms and centre atoms.
The MD simulations indicate that, during sliding, the edge atoms are more “active” and
present more energetic distortions, absorbing and dissipating more energy than the centre
atoms, providing the greatest contribution to the friction force. Indeed, in Fig.
high-resolution transmission electron microscopy analysis shows more pronounced lattice
distortions at the edges, which supports the simulation results.

This behaviour is rationalised in terms of a different scaling of the properties between
the two system. While in the near-commensurate system friction arises from surface effect,
i.e. magnitude of dissipation scales with the area of the flakes, in the large-mismatch
system frictional events occur at localised regions on the edges of the flakes, i.e. friction is
determined by pinning at the edges sites. The generality of the result is confirmed by the

experimental observation of the same behaviour for MoSy/hBN heterostructures.

6.1.5 Final Remarks

In conclusion, large lattice mismatch MoSy/graphite and MoSy/h-BN heterojunction
interfaces provide ultra-low coefficients of friction, ~ 1 x 1076, without any twist angle
dependence. Both experiments and molecular dynamics calculations indicated that pinned
edges dominate the friction process, whereas in small lattice mismatch, e.g. graphene/h-BN,
a significant contribution to the interface friction arises from surface-wise effects. These
results show that the large lattice mismatch of two contact surfaces is a promising route to

designing a near-frictionless sliding pair.

6.2 Multi-scale Prandtl-Tomlinson Model

Friction results in significant energy losses and system failures in a wide range of tech-
nologies [70]. The design of optimised surfaces for friction in a systematic way relies

on a predictive model of friction, scalable from the nano-scale up to micro/macro-scales.
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Challenges for a complete description of friction include non-linearity, the complexity of
the many processes, and the different scales involved [81]. Attempts to model microscopic
friction include First principle calculations, Molecular Dynamics, and low-order models.
First principle calculations and Molecular dynamics modelling are highly accurate, but
limited to time and length scales smaller than those in experiments of friction. On the
other hand, low-order models, such as the PT model [96] 106, 102, 249], approximate
atomistic interactions by simple potential energy surfaces, thus allowing to access time
and length scales in the nano-scale that match those of experiments using Lateral-Force
Atomic Force Microscope (LF-AFM), at the cost of losing quantitative correlation with
real materials. Such low order models are able to describe the stick-slip behaviour of
nano-scale friction, and capture the velocity, load, and temperature dependencies observed
in experiments [250] 2511, 102} 252] 253], which are not included in the standard Coulomb
model [83], [84].

The multi-scale model of nano-scale friction presented comprises of a modified PT
model and electronic structure calculations, linked via a controlled set of approximations to
achieve a more realistic description of friction between a single asperity-tip and a substrate,
as measured in LF-AFM. This novel approach addresses the qualitative nature of the
standard PT-based approaches found in literature [90, 91]. Atomic scale contacts in these
models are approximated with an analytical function resembling the symmetry of the
crystal under study. DFT is used to model the energy of interaction between a coated
tip and a substrate of the same material, e.g. MoSy on MoS;. The computed energy
surface is used as a parameter in the two-dimensional PT model of friction. The frictional
behaviour arising from their respective electronic structure is compared between a set of
different crystals. In addition, the framework of stochastic thermodynamics [109, 254, [77]
allows insights to be gained in the non-equilibrium thermodynamics during friction for the

different crystals and for different sliding directions.

The Prandtl-Tomlinson Model

The PT model of friction describes a point-like object, the AFM tip, connected by a spring
to a much larger slider moving at a constant speed in one direction, the AFM cantilever,
on a static substrate, the atomic corrugation of the substrate. The model is defined by the

general potential energy:
C 9
U(r,t) = Us(r) + 5(7‘ — vt) (6.13)

where the variable r is the position of the tip, Us the static potential generated by the
substrate, C the elasticity constant of the spring, v the velocity of the slider, and vt the
position of the slider. The potential Us(r) produced by the interaction of specific substrate

material and the coated tip is modelled at DFT level as described in section [6.2.1

To better grasp the physics behind this model, consider, as an example, the following
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Figure 6.13: (a) Cartoon of the PT model. The total energy U in Eq. is shown in red and
blue, with C' = 1, and substrate potential described in Eq. is shown in black and white, with
I =1 and Uy = 1 and The position of the cantilever (higher red sphere) is vty = (0, 1/2). The
tip, lower red sphere, sits at the global minimum and local minima by pink circles. (b) Substrate
potential in Eq. with { = 1. Three isolines are shown: within the minimum well Uy = —2/9
(white)), around the maxima Us = —1/90 (black) and along the saddle energy Us = —1/9 (gray).
Crosses mark the saddle points, as in Eq. , and circles mark the substrate minima, as in
Eq. (c) Cantilever elastic energy with C' = 1 overlaid over substrate isolines defined in (a). (d)
Total energy in Eq. (6.13). Gray hexagons show the shift at the linear order of the substrate minima,
as in Eq. (6.17)). (d) Three-dimensional representation of the surface energy in (b). BW surface
shows the substrate potential in Eq. . The global minimum is marked by an orange circle and
local minima by purple circles. The green hexagon marks the slider position vty = (0, 1/2).

analytical form for the substrate Us [255]

) = g |3+ dcos (Ton Y oos () 2eos (En )| 60

Since Us(r) € [0, 1], the spring constant C' defines the energy scale of the system. The
energy landscape comprises of minima, arranged in a triangular lattice, each surrounded
by six maxima, similar to the graphene on graphene potential surface [91]. The minima lie

on the Bravais lattice G = n1 A1 + na Ay generated by the vectors

ai=i(10) =1~} B ). (6.15)
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In terms of the lattice in Eq. (6.15]), saddle points of Uy are located at

ag as a; + az
81:? 52:7 S3 = 9 )

(6.16)

which forms the honeycomb lattice marked by gray crosses in Fig. [6.13] This potential
depends explicitly on time, and the position and depth of minima and saddle points evolve

as the slider translates in space, as shown by the synthetic snapshot reported in Fig. [6.14

(a) U(r,to) \ 7 (b) U(r,ty)

Figure 6.14: Time evolution of the total potential in Eq. 1'

The effect of the cantilever parabolic potential in Eq. (6.13)) in the main text on the
substrate, can be qualitatively understood by linearising the problem around the substrate
minima, which form a Bravais lattice A = ajn + ag, where a; are the vectors in Eq. (6.15)).

In the limit of small displacement u, the total energy can be approximated to the linear

order as
¢ 2
U(A +u,t) :Us(u)—l—E(A—ku—vt) (6.17)
2
~ (g + (?) > u? — 2%u7 cos(buy) + %72 -1, (6.18)

where trigonometric functions in Eq. were expanded to the lowest order and Us(A +
u) = Us(u) is implied by symmetry. The vector v = vt — A points from the lattice point
A to the position of the cantilever vt. Thus, the minimum always lies in the direction
connecting the lattice point A with vt, as shown by the arrows in Fig. [6.13f. The minimum
is shifted along this direction of the quantity

Ui = ——2———. (6.19)

In the limit of soft spring % < 1, Umin ~ %Z% — 0, i.e.the minimum is located at the
substrate lattice point. In the limit of a hard spring % > 1, the position of the minima is
given by umin ~ (1 — %), i.e. the minimum is almost at the cantilever position.

Minimisation of the energy in Eq. (6.13) yields the stable states m of the system,
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accommodating the tip in the absence of external driving forces and thermal fluctuations,
but also in the presence of external driving forces in the over-damped limit. The over-
damped limit refers to the case of fast dissipation of the kinetic energy of tip compared
to the sliding velocity such that the tip is found, in practice, always in a minima of the
energy. The energy at a minimum is E,, = U(ry,,t), where 7, = r,,(t) is the position of
the minimum.

The position, energy, as well as the number of states, are time-dependent quantities,
due to the relative motion of the tip. In the over-damped limit, the tip follows a stick-slip
motion, if the energy has more than one minimum [250} 256, 102]. The stick-slip movement
of the tip consists of a periodic alternation of the tip sitting on a minimum of the energy
for a relatively long time time (stick) and a consecutive fast movement to a new position
(slip). At finite temperature, slips to a new state can also occur due to thermal activation,
which is modelled here by using transition state theory as described in section In
this framework, the over-damped dynamics of frictional processes is viewed as a Markovian
random hopping process over energy barriers separating the different states m promoted
by thermal fluctuations [249].

6.2.1 Atomistic Contact Model

First principles calculations. At the DE'T level, the atomic scale corrugation is modelled as
two flat crystalline surfaces sliding adiabatically. Thus, the PES is obtained from a set of
translated geometries as explained in detail in section Each grid point is obtained
from a DFT calculation of a bilayer system of the given crystal, e.g. MoSy on MoSs, where
the top layer has been translated by a vector x with respect to the bottom layer. The
geometry is relaxed keeping the bottom layer fixed in zyz and letting the top layer relax
in z only, to avoid it sliding back to the minimum position. From a thermodynamic point
of view, allowing relaxation along z corresponds to the sliding interface at constant zero
pressure.

First principles calculations were carried out using DFT as implemented in VASP [198]
199] within the PAW framework [124]. The exchange-correlation potential is approximated
using the PBE functional [127] and the vdW dispersion is described by DFT-TS method,
a local-geometry-corrected empirical model developed by Tkatchenko and Scheffler [257].
A plane wave cut-off of 650eV is adopted and the Brillouin zone was sampled using a
17 x 17 x 1 mesh.

Finite tip model. The PT model describes a finite-size tip sliding, while the PES
from DFT represents the sliding interface between infinite planes. Thus, the next step
to construct the multi-scale model is to estimate the contact area between the tip and
substrate. Mimicking experimental protocols [258], the system is a spherical tip, coated
with a thin crystalline layer, in contact with a thin layer of the same crystalline material,
deposited over a substrate. Usually both tip and substrate are silica in experiments [259].

Atomic-scale sliding interface and tip deformation determining the contact area are

assumed to be decoupled. The sliding interface arises from short-range interaction and,
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thus, is determined by properties of the 2D layers in contact [93, 91, 260]. On the other
hand, the contact area is determined by the deformation of the large tip and the substrate
and is usually modelled by continuum mechanics, which explicitly disregards the discrete
nature of nanoscale contacts [260]. An accurate description of the contact area in nanoscale
tribology remains subject of current debate [85, 261]. Here the Hertz model is used to
estimate the contact area. For fixed load, the contact area represents a scaling factor of
the DFT-computed PES and is independent of the coating ML crystal. Its value cannot
change the relative amplitude and geometry of corrugation between different materials.
Thus, while the Hertz model may not describe the contact area exactly, with deviation of
up to 20% [260, [86], it is suitable for the phenomena studied here.

In the Hertz model, the radius a of the contact area is expressed in terms of the applied

load L and mechanical properties of the tip [262] by

3LR\?
a= <4E*> , (6.20)

where R is the curvature radius of the tip and the effective elastic modulus is given by

1 1—-v? 112

I + ,

E* Ey Es
The quantities E7, Es are the elastic moduli and v, the Poisson’s ratios associated
with each body. The quantities appearing in Eq. (6.20) are evaluated for silicon, a
common material for tip and substrates. Thus, F1 = Fy = E and 11 = 1o = v. The
parameters £ = 151.34 GPa and v = 0.19732 are obtained from DFT calculations, tabulated
in the Materials Project [2I7].The radius R = 10nm of the AFM tip is taken from

experiments [100].

6.2.2 Dynamics and Thermodynamic Evolution

The dynamics of the PT system is modelled based on transition state theory as a Markovian
random hopping process over energy barriers separating the different stable states m of
the total energy U in Eq. (6.13). The rate of the transition from a state n to a state m is

given by the Arrhenius law:

Wmn = foexp ( — BAumn> (6.21)

where Au,,, denotes the energy barrier for the transition from state n to state m, and fy is
the attempt frequency setting the characteristic timescale of thermal relaxation processes,
B =1/kgT, T is the temperature, and kp the Boltzmann constant. The energy barriers
Aty as well as the rates wy,, are time-dependent.

Single- and multi-lattice hops are considered, so m and n do not necessarily refer to
nearest-neighbour sites. The energy barrier for a transition from state n to another state

m is here defined as follows. A sketch in Fig. [6.15] shows the calculated path of the tip in
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transitioning from an arbitrary state n to a different state m, and how the energy barrier
along this path is calculated. This is done first, by using the string method [263] to find
the least energy path between state n and m over the two-dimensional total energy U
defined in Eq. (6.13). Second, all local maxima and local minima are found along the path
using a peak detection algorithm [264]. Next, the energy at the local maxima are summed,
and the energy at the local minima subtracted. This quantity is referred to as up. Finally,
the energy barrier Au,,, for the transition is defined as ug — u,, where u,, = u(ry,t) is
the energy of state n. Similarly, the energy barrier for the reverse transition, i.e. from
state m to state n is Aupm = up — Uy In other words, the total energy barrier is defined
as the sum of partial energy barriers in the path separating the two states, which naturally
implies higher energy barriers between further away states than between nearest neighbour

states. Note that up is time dependent, as well as the energy of the states.
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Figure 6.15: Example of energy barrier between two states in MoSsy at time ¢y = 0. (a) The
least energy path for the transition between two states m (orange circle) and n (green circle) is
found using the string method. (b) Partial energy barriers along the path are defined by the orange
dotted lines and green dot-dashed ones. The energy barrier from m to n is calculated as the sum of
the partial energy barriers along the path (dotted, orange). Equivalently, the energy barrier from n
to m is the sum of barriers in the opposite direction (dot-dashed, green).

Each state m has an associated probability of occupation p,,, the evolution of which is

given by the Master equation for Markovian dynamics:

dpm

dt = Zwmnpn — WnmPm (622)
n

The stochastic trajectories followed by the tip given a specific energy of the form of
Eq. and an initial condition can be found from Monte Carlo sampling of discrete
states. The evolution of the PT system can be described alternatively with Langevin
dynamics, by integrating Newton’s equation of movement over the whole energy surface,

instead of Monte Carlo sampling over the stable points of the energy.
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The thermodynamic evolution of the system for single stochastic trajectories can
be evaluated by applying stochastic thermodynamics. The field of stochastic thermo-
dynamics extends the concepts of macroscopic thermodynamics to the level of single
stochastic trajectories in microscopic out-of-equilibrium systems [109] 265}, 266]. Stochastic
thermodynamics has been applied to microscopic systems such as elastic molecular sys-
tems [267, 268, 269, 109], nanomotors [270} 271, [109], colloidal particles in non-harmonic
potentials [272], and to AFM in vertical harmonic oscillator mode [273]. Only recently
has stochastic thermodynamics been applied to nanoscale friction, such as in a recent
study investigating the validity of the Jarzynski equality in Friction Force Microscopy
trajectories [274].

Explicit expressions for the entropy are given within the stochastic thermodynamics
framework and applied to the trajectories n(t) followed by the tip for the Hamiltonian
in Eq. , found from Monte Carlo sampling. The starting point for the derivation
of such expressions is the derivative of the energy in Eq. evaluated on a given
stochastic trajectory followed by the system. It has been shown that the derivative can
be split into work and heat in the same way as by the first law of thermodynamics for
macroscopic closed systems [275]. In the derivative of the energy in Eq. two terms
arise, that are then associated to the work of the cantilever and to the heat transferred
to the surroundings during the stick-slip friction process. The work w is the term with
the explicit time dependence of the energy, and the heat ¢ the term with the hopping
between states. A term for the entropy s along a trajectory is defined in stochastic
thermodynamics [276]. The derivative of the stochastic entropy can be split into two
terms, entropy production s; and entropy flow to the surroundings s, [276], in the same
way as given by non-equilibrium thermodynamics for macroscopic systems [277]. Entropy
production measures irreversibly, while entropy flow is related to heat flow by ¢ = T's.
Thermodynamic expressions applied are summarised in Table The complete derivation
of the expressions has been described in detail in [276] for general systems and, in particular,

in our earlier work for time-dependent potentials [77].

6.2.3 Results
Crystalline Interfaces

Figures and report the PES for the BLs considered. The selection represents
a collection of different geometries and chemistry within the 2D materials family, highly
interesting for solid lubrication technologies. This variety allows to evaluate the impact of
interface complexity on dissipation.

The first distinction in the dataset is between between purely 2D materials, GBL and
h-BN, and the remaining ”extended ML” compounds, whose geometry extends in 3D. As
shown in Figures [6.16a] and [6.16d] the former are composed of flat sheets of atoms arranged

in a honeycomb lattice. Within this class, the presence of a single-component crystal,

GBL, and a binary, h-BN, allows to evaluate the effect of chemical composition. The
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Stochastic thermodynamics in the PT model
Variable Expression Notes
Entropy s s(n,t) = —kp Inp, 4 (t) From definition in [278], 276].
d d. d;
Entropy change ds @5 _ fes + dis From non-equilibrium thermo-
dt dt dt dynamics [277].
dis s Py, ()w, (1)
Entropy  production | —— = — +kp >_, §(t — t;) In —————7——— | As defined in [279] for systems
d;s dt ot pn;r (t; )wn;r ny (t5) governed by a Master equation.
des Wotn= (t])
Entropy flow des =kp> 6@t —t;)ln — Defined as ds/dt — d;s/dt.
dt J w - +(tj)
n. n.
J J
Energy u u=U(Tp),t) Energy in Eq. 1 in the main
text evaluated over trajectory
n(t).
d d d
Energy change du u_ + & First law of thermodynamics
dt dt dt for stochastic trajectories and
close systems [275].
d 0
Work w W__ . (Pn@) — 1) Where 7,(;) is the position of
dt ot the tip along the trajectory
and f = —C(ryy) — vt) the
force of the spring.
—(t;)
dq _ Oud Wt~
Heat g de _ quan kT Zj 5(t—tj)In njn; Derived from from non-
¢t Ondt wn; nt (t;) equilibrium  thermodynamics
dq/dt = T'des/dt |277].

Table 6.1: Stochastic thermodynamic along trajectory n(t) in the PT model in the transition
state theory limit. The special notation in Table using the @ symbol is to emphasise that work
and heat are not state variables and depend on the path connecting the starting and the end states
associated with the trajectory. The notation for the heat, entropy flow, and entropy production are
defined in [109], which is n; = n(t;) and n;r =n(t; +dt).

extended ML compounds include two binaries from the TMD family, MoS; in Fig. [6.16D]
and WTey in Fig. and the single component black phosphorous in Fig. recently
indicated as a promising solid lubricant [193]. On the other hand, as shown in Fig.
black P comprises of staggered rows of three-fold coordinated P atoms, with two in-plane
neighbours and one in the neighbouring plane. Lastly, a bilayer composed of two slabs of
NaCl, shown in Fig. [6.17D] is considered as an example of non-lubricant material. This

crystal has been used in AFM experiments to acquire high-contrast frictional maps [280].

The simplest energy landscape is found for GBL, where the 2D nature and single
composition of the layer result in a global maximum and a global minimum divided by
a saddle point, as shown in Fig. Increasing the complexity by including different
species in the unit cell, like in h-BN shown in Fig. results in the appearance of
a local minimum in place of a single global one. The same structures is found in MoSs
PES, albeit with a higher barrier around 10 meV compared to ~ 3meV in h-BN. The two
systems characterised by an orthorhombic cell, WTes and black P, show the most complex
PES, with a local minimum and a local maximum accompanying the global ones. The
PES respect the symmetry of the unit cell, giving rise to triangular lattices of maxima and
minima for hexagonal crystals, Figures [6.16a], [6.16b| and [6.16d], and rectangular lattices
for orthorhombic cells, Figures |6.16c| and [6.16e} Finally, note that the energy barrier for
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Figure 6.16: PES for the selected lubricant systems evaluated over a 15x15 grid at DFT level
and interpolated over 200x200 points, with the protocol outlined in section Ball-and-stick
images on the right of each plot report the crystal structure of each ML system. On the right of
each plot, the PES for the BL system is reported. Smaller, gray-edged circles represent atoms in
the bottom layer, while larger, black-edged circles represent atoms in the top layer.
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Figure 6.17: PES for the selected non-lubricant systems evaluated over a 15x15 grid at DFT level
and interpolated over 200x200 points, with the protocol outlined in section Ball-and-stick
images on the right of each plot report the crystal structure of each ML system. On the right of
each plot, the PES for the BL system is reported.

the non-lubricant example, square lattice of NaCL bilayer in Fig. shows an energy

barrier one order of magnitude higher than the layered materials, linked to higher friction
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as seen in experiments [280]. Note that the PES reported in Figures and refer to
the relative sliding of two infinite crystal planes; thus, they are measured in energy per
area, meV/ A%, These will be transformed to the substrate corrugation Us, energy per tip,
as outlined in section

Thermodynamics and Anisotropy

The thermodynamic variables described in section [6.2.2] are evaluated using the definitions
reported in Table on single stochastic trajectories for the seven potential energy surfaces,
as obtained from First principle calculations shown in section [6.2.3

The friction system is described for each substrate energy by a PT model with the
corresponding energy surface and fixed parameters C' = 3N/m, v = 10nm/s, T'= 300K,
fo = 10kHz, in the range of typical values for LF-AFM [281]. The load is fixed at
L = 10nN, yielding a contact area of ma? = 3.04 nm?, according to the protocol outlined
in section The sliding distance is set between 10 — 20 nm, to ensure that the steady

state is reached.
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Figure 6.18: Angular dependence of the thermodynamic behaviour for different materials. The
quantities shown are the time average of the lateral force after the first stick-slip event (f), the work
of the lateral force (Aw), heat flow into the heat bath (Agq), entropy production (As;), entropy
change (As), and energy change (Au). All quantities, except f are integrated over enough sliding
length (10 —20nm) and then normalised in units of eV/nm. The two entropies are given multiplied
by temperature. All quantities are averaged over 50 trajectories.

The polar plots of Fig. report friction f, work Aw, heat transferred to the
surroundings Agq, entropy production As;, entropy change in the system As, and energy
change As during sliding as a function of the sliding direction, in steps of 10°, between the
lattice direction and the cantilever velocity v. The work is the typical variable used to
quantify dissipation during friction. Stochastic thermodynamics allows us to quantify a

range of thermodynamic variables, providing a more detailed description of the anisotropy
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and the response of each material during sliding compared to the work of the force only.
For the materials NaCl and P As-type, the simulations do not reach the steady-state of
consecutive stick-slip events for reasonable simulation times of sliding distance of up to
50 nm, while the rest of the materials reach the stick-slip regime after 10 —20nm. Thus
the results of NaCl and P As-type in Fig. [6.18] are not the actual dissipation during stick
slip, but the dissipation after sliding a distance of 20 nm, corresponding to a lower bound
of static friction. This is because the ratio between the recall force of the cantilever spring
C and the energy barrier in Eq. is too low: the tip is stuck at the first minimum

and the spring elongates as the cantilever translates away.

6.2.4 Discussion

Integrating the profiles in Fig. [6.18| over the angles, the lubrication character of the crystal
considered can be ranked as in Table [6.2] by the average value of the lateral force, yielding
h-BN and GBL as the bests solid lubricants, followed by P black, WTes, and MoSs.
Consistently with the theoretical expectation and experimental observation [280], NaCl is
identified as the worst lubricant of the selection, as well as P As-type.

One possible application of the thermodynamic framework is the calculation of tem-
perature gradient due to heating during sliding. The quantity Agq in Fig. [6.18]is the heat
leaving the system which can be used to calculate the increase in temperature in the
surroundings. For instance, the temperature gradient as V1" caused by the heat transferred
to the silicon in the core of the tip and in the under-layers substrate can be computed.
Using the thermal conductivity of silicon of A = 8.11 x 10! eV - nm/(s - K) through an
area of 1nm?, the relation

VT =Vq/\, (6.23)

where Vq = Aqv. The resulting gradients are shown in Table for the seven materials.

The average friction force predicted by the model over all angles in Table is
compared to the ideal shear strength 7, an estimation of friction behaviour based only on
First Principles quantities. In an infinite-plane geometry, 7 is defined as the maximum
value of the gradient along the least energy path in the potential energy surface [282],
yielding a force per unit area. This quantity represents an upper bound for friction,
as it is computed at 0 K and in static calculations. Here, multiplying by the contact
area, yields the ideal lateral force, fy, exerted on the finite tip, reported in Table [6.2]
These estimations are higher than the ones found with the PT model, coherent with the
absence of thermal energy. However, the estimation from the gradient does not allow us to
differentiate between different sliding directions as in Fig. [6.18} neither allows to evaluate
thermodynamic variables.

Two examples are helpful in understanding the anisotropy behaviour of the thermody-
namic variables in Fig. [6.18] and gain insights on the relation between the crystal PES and
lubricating properties. In the first example, the instantaneous thermodynamics observables

are compared in MoSy for three different directions. In the second example, the behaviour



Multi-scale Prandtl-Tomlinson Model 141

Material (f) nN] | fm [nN] | VT in Si [10~ 1K /nm]
h-BN 0.2940.03 1.6 22 4+0.3
GBL 0.33£0.03 1.5 2.5 +£0.2
P black 0.914+0.24 1.5 6.7+ 1.8
WTeq 1.30+0.31 3.4 94 4+ 2.1
MoS-2 1.67+0.43 3.7 9.0 £ 2.5
NaCl 9.00+£0.00 | 15.6 69.2 + 0.7
P As-type | 9.00£0.00 | 16.9 69.2 £ 04

Table 6.2: Materials ranked by average friction over all angles and temperature gradient in silicon
with thermal conductivity of A = 8.11 x 101 eV -nm/(s - K). The quantity fy is the maximum
lateral force obtained from the maximum shear strength in the material specific energy surface.

of three crystals are compared for a fixed sliding direction.
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Figure 6.19: Instantaneous thermodynamics (a) substrate energy along the sliding direction, (b)
work, (c) heat, (d) energy, (e) entropy production, (f) entropy, for MoS, sliding at 60° (green
continuous), 90° (orange dashed) and 150° (blue dotted). All quantities are averaged over 50
trajectories.

For the MoS, PES, Fig. shows three sliding directions, 60°, 90°, and 150°. The
shape of the substrate energy along the sliding direction is shown in panel (a), and the
energy of the substrate along the actual path taken by the tip on the two-dimensional
energy surface is shown in (b). Panels (c)-(f) show the instantaneous behaviour of work
(c), heat flow (d), energy (e), entropy production (f), and entropy of the system (g), as the
cantilever slides on each of the directions.

The figure shows a clear difference between the three directions, with 90° being the
worst in terms of dissipation. The large energy barriers in the substrate at 90° (dashed
line in Fig. ,b) yield large spikes in the work, heat flow, and entropy production
reported in Fig. [6.19c,d,f. Note that the PES energy in Fig. along 90° and 150° are of

similar shape but exhibit different thermodynamic behaviour, showing that the dissipation
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is sensitive to small differences in the underlying potential surface.

Fig. 6.19e,g shows the periodic behaviour of the energy and entropy of the system,
after the initial transient period. This is due to the periodicity of the energy surface and
the simple modelling of the tip and substrate as constant entities with no internal degrees
of freedom that would break the time periodicity of the state variables. The result are
periodic state variables during sliding. The same is seen in Fig. [6.18] where work Aw,
heat flow Aq, and entropy production As; are very similar in Fig. The difference
between work and heat flow is the change in energy Au (bottom right panel), and the
difference between heat flow and entropy production is the entropy change of the system As
(bottom left panel), which are both very small for all cases. The small change in internal
energy and entropy observed is due to the starting and ending point of the sliding being
at non-equivalent positions in the substrate energy, and it tends to zero with increasing
sliding distance. However, it is not the general case that entropy and energy of system will
be periodic, but a feature of the PT model assuming a point-like tip, rigid cantilever and a
rigid substrate without internal degrees of freedom. On a more realistic model, entropy
and energy of the system would not necessarily be periodic. Such model would include
internal degrees of freedom in the tip, cantilever or substrate, which would decouple the
distribution of the heat and entropy production in the different parts of the system. For
example, one could imagine an explicit coupling of slider motion to the vibrational degrees
of freedom of the substrate [78], allowing for a better description of how sliding energy is

dissipated into the bulk.
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Figure 6.20: Instantaneous thermodynamics (a) substrate energy along the sliding direction, (b)
work, (c) heat, (d) energy, (e) entropy production, (f) entropy, for three different substrates, h-BN
(blue continuous), P black (gray dashed), and WTey (green dotted) sliding at 30°. All quantities
are averaged over 50 trajectories.

The next example in Fig. [6.20] shows the same thermodynamics variables as before
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for three crystals h-BN, P black, and WTes, during sliding, at a fixed sliding angle at
30° and with the rest of the parameters as before. From the example, lower lubricating
behaviour is observed for WTey compared to h-BN and P black, as measured by work in
Fig. [6.20k, heat flow in Fig. [6.20d, and entropy production in Fig. [6.20f. It is interesting
to note the highly non-linear character of dissipation in the model. The height of the
peaks in the energy landscapes along the sliding direction for P black and WTes shown
in Fig. are of similar magnitude, coherent with the ideal frictional force fy; in
Table However, dissipation events for WTey are approximately double than those for P
black, as shown in Fig. [6.20p,c,e. This observation means that care must be taken when
extrapolating from PES computed statically with DFT to dissipation in out-of-equilibrium
sliding contact [193],149]. Both magnitude and distribution of peaks in the energy landscape
play a role in the dynamics and thermodynamics of the system. For instance, in the length
of ‘stick’ events, e.g. double length stick events while equal magnitude of peaks in PES
along sliding direction for 90° compared to 150° in Fig.[6.19b. The influence of the geometry

of the PES on dissipation needs further analysis, left for future work.

6.2.5 Final Remarks

A multi-scale model of stick-slip friction has been developed to quantify dissipation through
different thermodynamic variables on real materials in experiments of Friction Force
Microscopy. The material specific response is achieved by Density Functional Theory
calculations of the energy surface for the specific electronic structure. The dynamics and
thermodynamics during sliding is modelled by a modified Prandtl-Tomlinson model and
stochastic thermodynamics in the limit of transition state theory.

The model has been applied to a set of seven crystals, but the model can be applied
to any material, provided that the material specific potential energy surface is available
or can be computed from DFT. While standard DFT is able to model the PES of simple
homostructures, like the ones reported here, linear scaling DFT or MD are needed in
the case of mismatched heterostrcutres, whose geometry can only be approximated with
supercells of thousands of atoms. The combined model allows us to link electronic structure
calculations to thermodynamics models able to describe dissipation on time and length
scales accessible by experiments.

The observed dissipation does not depend on the height of energy peaks on the crystal
energy surface only, but also on the distribution of such peaks.

The framework adopted allows for an easy and controlled introduction of new degrees
of freedom, while the stochastic thermodynamics formalism underpinning evaluation of
dissipated energy would still be valid. For example, a better description of how sliding
energy is dissipated into the different parts of the system could be achieved by adding to
the model possible vibrations in the substrate, in the cantilever, and inside the tip [78].

The results presented here could be validated by LF-AFM with relatively little effort.
A recently developed experimental protocol [258] allows to wrap flakes around AFM tips

yielding the homostructure contact modelled here. By changing the orientation between
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the flakes and the tip before the wrapping processes, the mismatch angle between sliding
direction and crystal orientation can be varied and anisotropy maps like the ones presented

in Fig. |6.18| could be measured experimentally.



Conclusions

This thesis shows that computational techniques can effectively describe both in-plane and
interlayer phase behaviour of two-dimensional materials. Moreover, the physically rigorous
models developed here can rationalise experimental results and provide a full thermodynamic
description of dissipation events. The arguments developed in chapter [3| provide general
insights into the physics underpinning mechanical relaxation in heterostructure systems.
The general theory therein provides a starting point to make this general argument
quantitative. The outlined generalised epitaxy theory can serve as a basis for a high-
throughput screening of the vast space of possible twistronic devices based on different
2D materials, aiming to estimate the stability of imposed misalignment angles. Such
predictions could be validated experimentally with CVD synthesis and transfer protocols
already found in the literature [23], 59].

The original aim of systematicly charting the chemical space of TMDs has been
addressed in chapters 4] and [5] The methodology outlined in chapter [4] is a promising way
to provide starting configurations for more in-depth computational studies and inform
synthesis, suggesting highly soluble TMD candidates to novel CVD-based techniques [63].
Moreover, a possible way to improve the accuracy and efficiency of alloy models is suggested
in the case of long-range elastic interactions by combining the CE framework [41] and the
elastic lattice model [222]. In-depth analysis of a specific system in chapter |5 shows that
the finite temperature phase-behaviour, obtained within the CE framework, agrees with
experiments [228§].

The last chapter focuses on the characterisation of 2D materials for tribology. The
relevant physics of sliding has been modelled in both heterogeneous and homogeneous

nanoscale contact. In particular, sliding simulations in heterostructure systems agree
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with experimental results, providing a general argument for little-studied large-mismatch
heterostructures. The generalised PT model of homostructure systems provides a coherent
and in-depth thermodynamic description of the sliding behaviour. The prediction of the
model could be validated experimentally using LF-AFM with protocols already developed
in literature [258].

The results obtained in this thesis provide a solid starting point for future analysis in
both phase stability of 2D materials and their sliding behaviour. Experimental validation
of in-plane phase behaviour synthesis and homostructure sliding could be carried out
within the SOLUTION framework via CVD synthesis at FORTH, Greece and AFM
measurements at the University of Southampton, respectively. High-throughput screening
of heterostructure twisting behaviour based on the generalised epitaxy theory could be
carried out soon with the SOLUTION group at CVUT, Prague, and with the Condensate
Matter group at SISSA, Trieste.



Single Prototype Solubility Metric

All the solubility metric matrices obtained with the formalism in section [4.2
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Epitaxy Theory Detalils

Consider crystalline ML surrounded by vacuum. It is always possible to orient the system
so that the ML is periodic in the zy plane and two lattice vectors, e.g. a1 and as, are
contained in this plane. In turn, the ag lattice vector is parallel to z. The unit cell is thus

described by vectors of the form

A1y A2y 0
a) = A1y as = A2y a3 = 0 . (B.l)
0 0 a3z

If the ML unit cell is repeated L times along each xy-plane lattice directions, the result is
a Bravais lattice of the form
R; =lia1 + lxas, (B.Q)

where the index [ runs over all possible integers pairs (l;, l3) in the range —L/2, L/2.
Fig. shows examples of such a 2D lattice. The internal structure of the crystal is
described by the basis, i.e. n vectors R, describing the position of each atom in the unit
cell, added to each Bravais lattice pointﬂ No assumption on the dimensionality of the
basis vectors is made: they may yield a 3D monolayer, like MoSs, or be purely 2D, like in
the case of graphene. An example of a 2D internal structure is shown in Fig. [BI] Basis

and Bravais vectors can be combined into a single one

R,=R+R,, (B.3)

! Bravais lattice vectors are indexed by Roman letters while Greek letters label degrees of freedom within
the unit cell.
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which describes the equilibrium position of each atom in the ML. Deviation from the
equilibrium positions are described by the displacement vectors w,; = r,; — R,;, as shown
in Fig. Consider now a second ML placed on top of the first one with a misalignment

30

25 1.

20 1

Yy

15 1

10 1

Figure B.1: (a) a lattice: hollow, blue squares mark Bravais lattice points, defined in Eq. ,
and filled, blue circles mark atoms. The generating vectors are a; = I, ( 1 00 ) and ay =
lo( —1/2 V/3/2 0 ) (gray arrows). The two atoms (n = 2) basis is Ry = 1/3a1 + 2/3a and
Ry =2/3a1 +1/3as. The unit cell is repeated L = 2 times (dotted lines). (b) b crystal lattice (red
symbols), superimposed on the a one (blue symbols). The b crystal shares the same geometry as a
one, but lattice spacing I, = l,7/3, making the resulting bilayer incommensurate. The b lattice is
rotated of @ = 2.86° according to Eq. (B.4). (c) Detail of the twisted bilayer supercell (L = 30)
showing the optical interference typical of mismatched heterostructures.

angle, to form an incommensurate heterostructure. If this second ML lattice b has the
same symmetry as the first lattice a, then the vector generating its lattice can be defined

in terms of the a lattice vectors:

bl' = RZ(Q) - a; (B.4)
cosf —sinf 0

R.(0)=| sin@ cos® 0 |. (B.5)
0 0 1

In other words, the lattice of the second layer, b, is rotated around the z axis with respect
to the first one, as shown in Fig. b,c). Finally, given the direct Bravais lattice a
generated by Eq. , its dual lattice is the set of vectors T satisfying 7 =1 for all r
in Eq. , which implies

R-7=21M, M € Z. (B.6)

The set of vectors 7 form a Bravais lattice themselves

T =mqt1 + moto, (B.7)
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whose primitive vectors are defined by

a; X ag

t; =27 (B.8)

a; - (aj X ak)’

where i, j, k cycle through 1,2,3 [143, [I150]. The same holds for the b lattice.

The geometry of the ML allows the position of the atoms to be decomposed as

e () (R rmeon) g,

2yl (RV + uul) ' é37

where é; is a versor along a Cartesian axis.

Interlayer Potential Expasion

The expression in Eq. (3.8) can be further simplified by taking into account the periodicity
of the adsorbate ML. The plane-wave terms in Eq. (3.8) are expanded like in Eq. (3.3) in

terms of the adsorbate reciprocal lattice vectors 7:

ZeiR"l'G _ Ni Z (Z oiRT ZeiRl~r> Z et Ry (G—7) (B.10)
ol 0 v l 78]
Y Y el (B11)
T 3

where R, = R; + R, and the definition of reciprocal lattice Eq. were used. In
Eq. (B.11) the geometrical structure factors was defined [I50]:

fr=) BT, (B.12)

The geometrical structure factor f; expresses the modulation of plane waves due to internal
structure of the unit cells and in X-ray experiments of Bragg diffraction are the origin of
extinction of lattice peaks [I50]. Due to the parity of the lattices, the sums over p,! of
oscillatory functions in Eq. can only be non-zero if the argument of the exponential

is null for all terms, yielding

Z i (G=7) — p N, Z oG-, (B.13)

T,

where 6(G — T) = dg, . Substituting Eq. (B.11)) and (B.13)) in Eq. (3.8) yields

Hy, 1, = nNo Z Ve frdar + Z Véz B G Z VaG - u e G, (B.14)
G v,l,G v,l,G

To tackle the two right-most terms of Eq. (B.14]), the displacements w,,; are written in
terms of phonon eigenvalues €5, in Eq. (2.117)). The latter expansions introduces a third

wave-vector k spanning the BZ of the adsorbate. The displacement perpendicular to the
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monolayer plane is expanded as

2 =y - U3 = - GigetFr vt (B.15)

1
T~ Z ’Yk:ses(l/a k)
\ Nom,, ks

Substituting the expansions Eq. , and in Eq. and following
the same reasoning leading to Eq. (B.13), one obtains the linearised substrate-adsorbate
potential energy in Eq. to The geometrical construction obeyed by the vectors
G, 7, and k, sketched in Fig. [3.3] is shown for extended lattices in Fig. [B.2h. Moreover,

Fig. [B:2b shows how the allowed phonon vectors k resulting from the construction span
the whole BZ.
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Figure B.2: Reciprocal lattices T, G, evaluated on a Ny = 60 x 60 grid. Arrows show an example
of the construction in Fig. (b) Allowed phonon wave-vectors k = 7 — G (black dots) build
from all possible black arrows in (a) and mapped into the BZ of 7 lattice.

Classical Total Potential Energy

Summing the internal elastic energy of the harmonic layer Eq. (2.121)) and the terms
comprising the interaction between this and the substrate Eq. (3.9) to (3.11]), the total
energy of the harmonic-substrate bilayer system in Eq. (3.2 reads:

1
E = Ec+nNo) Vafroar+ ) 5wl(k) sl (B.16)
.G k,s
VC/J ~  iR,T
+ Zn NoVes Z €s(v, k) - Uz oGk - (B.17)

k,s Guv VY My

. Va
+1 Z
T,Gyv V My

es(,k) -G gy |, (B.18)
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The terms describing lattices coupling and internal structure of the unit cell in Eq.
and depend only characteristics of the pristine layers, e.g. phonon dispersion and
inter-layer coupling, and can thus be computed in a small supercell with accurate methods
and plugged into this results. Note that, as expected, the interaction relative to a different
wavelength is modulated by the amplitude of the corresponding phonon mode ~gs, defined
in Eq. . Finally note that Eq. to depends on configuration of the
system via 4. Thus, it can be useful to analyse results of classical MD runs with extended
geometries or regard the amplitude 7, as coefficient in a ”fake-dynamics” minimisation

problem.

Second Quantization Framework

In order to overcome completely the dependency on configurations in extended geometries
contained in Eq. (B.16|) to (B.1§)), the problem must be addressed according to second

quantisation formalism. Following Ref. [I50} [143], the total energy, sum of kinetic and

potential, is transformed into an Hamiltonian operator, which needs to be diagonalised in
order to study the energy spectrum of the system. Normal-modes momentum is introduced
as the analogous of Eq. (2.117) for velocities [143]

1 . ik- :
Pho = 3mSR = (5.19)
j?y

where the dot above a quantity indicates the derivative with respect of time. The pair
and p constitutes the conjugate variables for the system. The total energy of the isolated
harmonic ML will then be the sum of kinetic and potential energy stored in the normal

modes

1
Ey=5 D Ipksl® + @il (k). (B.20)
ks

In the second quantisation formalism, the Hamiltonian is written in terms of creation
and annihilation operators dL s Gks. The operators d;; s> Gks represent the creation and
destruction of a phonon of momentum k in the branch s, respectively. Phonons are the
quasi-particle equivalent of the classical normal modes. Phonons operators obey bosonic

commutation rules [150]:

[dkm d};lsl] - 5k,k’5s,s’ (B21)
la)- iyl = 0. (B.22)

The atomic displacements are expressed in terms of these operators as [143], 150, 151]

h I o kR,
i = V2Nom,, jzu ws(k) (Gks + a’ g )es (v, k)e™ ™, (B.23)
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while the conjugate variables read [143]

_ ot

Vis = 20k (Gps + QL g,) (B.24)
. Jhws(k) . .

Pks =1 2( )(a;t,s — Q_ks). (B.25)

Using Eq. (B.24]) and (B.25) and the commutation rules, the energy in Eq. (B.16)
to (B.18) can be transformed into the Hamiltonian operator in Eq. (3.12]).



Supercells for Twisted Lattices

Here, we explain the procedure to obtain the twisted lattices supercells. Let [, and [}, be
the spacing of the Bravais lattices of layer a and layer b, respectively and a; = () be one
of the primitive versors of the first lattice, aligned with the = axis; the lattice with the
desired periodicity is generated by a primitive vector a; = [,a1. The matrix representing

the discrete rotational symmetry of the lattice by an angle 2 = 7/3 is:

R — cosm/3 —sinm/3 _ /2 —/3/3 . 1)
= sint/3 cosm/3 V3/3  1/2
Thus, the second versor defining the lattice is as = @le. Since the second lattice, b,

has the same symmetry but is rotated with respect to the first one by an angle 6, versors
defining it are (by, by) = (R a1, R R, a1) where

R — (cos@ —sinﬁ) (C2)

sinf cosf

describes the misalignment between the lattices. A heterostructure supercell will be
compatible with both periodicities if the individual lattice cells match exactly at the edges,

in other words, if the following matching condition is satisfied
la<n1€l1 + ngdg) = lb(mlf)l + mgi)g), (CS)

where n1,n9,m1, mo represent the repetition along the corresponding versor of the unit

cell of the first and second lattice, respectively. An overview of the matching condition is
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given in Fig. This condition can be rewritten with a matrix formalism to:

C =a(na +n,a,))

Figure C.1: Graphical overview of the matching condition Eq. (C.3)) for unit cells with different
lattice constant a and b at imposed angles 6. Coloured arrows refer to primitive, repeated and
supercell lattices, as indicated by the labels. The low-opacity lines connect the points of the Bravais
lattice described by the primitive vectors.

l . . .
i(nlal + na R, - a) = miR, - a1 +meR, - R, - a,

(rm)(0)-Cm)(m)s e

where I is the identity matrix, we used the definition of the lattice vectors, introduced the
mismatch ratio p = l,/lp, grouped the matrices and the indexes in vectors and simplified

ai from both sides.

Albeit that the mismatch ratio of a system is fixed by the equilibrium values of the
lattice parameters, it would be impractical to approximate a real number using integers, as
the size of the supercells would easily exceed our computational capabilities. We follow the
reverse procedure: given the four indexes {m;, n;}i=1,2, we can invert the system and find
the mismatch ratio p and the misalignment angle 6 that satisfy the matching condition of
Eq. . This means that now {m;,n;}i=1 2 are fixed parameters of Eq. while p is
a variable, along with 6. Next, we find an expression for p and 6 in terms of {m;, n;}i=12
that satisfies Eq. . In the following paragraph, we address the problem of selecting
sets of indices whose corresponding p, is close enough the real value fixed by the system pg.
We solve Eq. for the matrix §9 and for p under the constraint that R, is a rotation
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matrix, namely:

ﬁezp(mleQ@Q)*l(ﬂ R, ) "

=0 no (C.5)
det R, =1
The first line in Eq. is readily solved by
R — N <m1n1 + mang + 1/2(ming + many) —/3/2(m1ng — many) )
=0 Ny V3/2(ming — many) miny + mang + 1/2(ming + many)
=4 (C.6)

where Ny, = m? +m3 + myma is the number of Bravais lattice points in the b lattice E| and
A, implicitly defined in the last step, is a shorthand for the matrix of known coefficients.
Substituting Eq. into the second line of Eq. m yields an expression for p: det R, =
]@—Edeté = 1. Substituting this back into Eq. (C.6) gives us the solution of (p,0) of

Eq. (C.3) at chosen {m;, n;}i=12:

Ny

A (C.7)
0 = (Z,)n = arccos <\/dleﬂA11)

Finally, the first vector of the supercell is given by the one of the members of the
equality in Eq. (C.3) and the second is obtained by symmetry, namely

C, = la(nldl + 712&2) (08)
C,; = EQ -C1 = —lyniay + la(nl + nz)dz. (C.g)

In order to obtain a system with the desired misalignment 6 and a p that is an acceptable
approximation of the equilibrium mismatch pg, we consider all combinations of integers
n;, m; within the range (—200,200) and select the supercells which satisfy 6 € [0°,60°] and
a mismatch p satisfying |Ap| = [p — po| < 1 x 1077. We then bin the resulting supercells
with a spacing of Af = 0.01° and select the cell with the smaller number of Bravais point
within each bin. Note that this procedure does not guarantee that the resulting supercell
will be evenly spaced according to the mismatch angle.

The indices defining the supercells used in this work for the MoSs /G heterostructures
are reported in Table along with the misalignment angle, p — pg and number atoms in
each layer. For this system py = lq/los, = 2.460 1878 A/3.0936827 A = 0.7952295, the
number of atoms in each lattice is given by the number of Bravais lattice points times the
number of atoms in the crystal basis, i.e. Niot = NBravais * Pbasis With npasis is 2 and 3 for

G and MoSs, respectively. In creating the supercell, the strain due to the approximated

TAn equivalent relation holds for the other lattice N, = n% + n% + nineo
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log1o(€)

1= Ivos,

max(Ap) =107
max(Ap) = 107>
—6x1075 max(Ap) =10-°
—8x107° max(Ap) = 1077

0 10 20 30 40 50 60
erl

Figure C.2: Strain applied to MoSs lattice versus angle imposed to the supercell according to
Eq. for different values of tolerance. The tolerance value used in the work is Ap =1 x 1077,
The value of the lattice parameters is obtained as | = lg/p, where p is the solution of the Eq. .
The inset in the upper right corner reports the logarithm of the absolute value of the strain € and
shows clearly that the spread is the magnitude of the residual strain.

mismatch p is applied to MoS,. The residual strain for different value of the tolerance
Ap = p — po are reported in Fig.

0[°] n n2 my | ma P — Po Ng NMos,
0.23 -135 | -104 | -108 | -82 9.8e-08 86162 81732
0.58 -192 61 -153 50 8.1e-08 57744 54774
0.79 -184 -41 -148 -30 9.8e-08 86162 81732
1.01 -113 | -182 -86 -148 | -6.2e-08 132916 126081
1.24 -176 -59 -137 | -51 4.3e-09 89682 85071
1.39 -109 39 -87 33 -5.7e-08 18300 17361
1.60 -141 | -128 | -107 | -107 2.6e-08 108626 103038
2.11 -138 -99 -104 -85 -2.2e-08 85012 80640
2.88 -184 -41 -140 -42 9.8e-08 86162 81732
3.05 -118 12 -96 15 9e-08 25302 24000
3.21 -182 | -113 | -134 | -102 | -6.2e-08 132916 126081
4.17 -184 33 -142 15 8.1e-08 57744 54774
4.93 -191 -48 -140 -55 3.5e-08 95904 90972
5.30 -192 61 -155 62 8.1e-08 57744 54774
5.34 -185 63 -149 63 4.6e-08 53076 50349
5.95 -164 -41 -118 -50 1.5e-08 70600 66969
6.23 -164 | -115 | -110 | -113 6.2e-08 117960 111894
6.64 -123 | -185 -71 -169 | -8.8e-08 144216 136800
6.75 -164 | -145 | -154 -89 4.4e-08 143402 136029
7.18 -152 -99 -140 -55 3.5e-08 95906 90972
7.94 -172 169 | -146 122 -8.3e-08 58152 55164
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58152
117960
176484
117960
143402
176484
43740
132916
53076
57744
86162
25302
57744
88904
57744
53076
86162
132916
86162
125136
18300
57744
25302
86162
144216
77232
128114
95906
75678
86162
43740
86162
89682
57744
57744

24000
118704
39885
80640
54774
85071
55161
111894
167409
111894
136029
167409
41493
126081
50349
54774
81732
24000
54774
84333
54774
50349
81732
126081
81732
118704
17358
54774
24000
81729
136800
73263
121527
90972
71784
81732
41493
81732
85071
54774
54774
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24.25 | -148 | -132 | -185 | -15 | -4.9e-08 | 117728 | 111675
24.67 | -184 | -41 -82 | -108 | 9.8e-08 86162 81732
25.00 | -113 | -182 | -174 | -52 | -6.2e-08 | 132916 | 126081
25.23 | -135 | -104 | -30 | -148 | 9.8e-08 86162 81732
26.82 | -191 | -48 | -195 95 3.5e-08 95904 90972
26.86 | -185 63 -119 | -19 4.6e-08 53076 50349
27.05 | -144 | -98 -31 | -150 | 1.7e-10 88904 84333
2774 | -164 | -41 | -168 50 1.5e-08 70600 66969
28.03 | -148 | -132 | -15 | -185 | -4.9e-08 | 117728 | 111675
28.22 | -184 | -23 -79 | -101 | -7.1e-08 77232 73263
28.37 | -184 33 -103 | -50 8.1e-08 57744 54774
29.17 | -176 | -59 | -188 | 51 4.3e-09 | 89682 | 85071
30.83 | -176 | -59 -51 | -137 | 4.3e-09 89682 85071
31.63 | -184 33 -153 | 103 8.1e-08 57744 54774
31.78 -23 | -184 79 -180 | -7.1e-08 77232 73260
31.97 | -148 | -132 | -200 15 -4.9e-08 | 117728 | 111675
32.26 | -164 | -41 -50 | -118 | 1.5e-08 70600 66969
3295 | -144 | -98 | -181 31 1.7e-10 88904 84333
33.14 | -185 63 -138 | 119 4.6e-08 53076 50349
34.77 | -104 | -135 30 -178 | 9.8e-08 86162 81729
35.33 -41 | -184 82 -190 | 9.8e-08 86162 81729
35.75 | -148 | -132 15 -200 | -4.9e-08 | 117728 | 111675
36.37 | -192 61 -142 | 127 8.1e-08 57744 54774
36.80 | -192 61 -103 | -50 8.1e-08 07744 04774
36.97 -09 | -176 76 -193 | 4.3e-09 89682 85068
3742 | -184 | -41 -42 | -140 | 9.8e-08 86162 81732
37.76 | -170 71 -99 -31 -4.5e-08 43740 41493
38.45 | -135 | -104 | -182 42 9.8e-08 86162 81732
38.53 -23 | -182 | -125 | -48 | -8.3e-08 75678 71784
3892 | -152 | -99 | -195 95 3.5e-08 95906 90972
39.85 -23 | -184 | 101 | -180 | -7.1e-08 77232 73260
41.09 | -184 | -41 -30 | -148 | 9.8e-08 86162 81732
41.26 | -118 12 -99 75 9e-08 25302 24000
41.53 | -192 61 -93 -62 8.1e-08 07744 54774
42,74 | -109 39 -54 -33 | -5.7e-08 18300 17361
43.34 | -135 | -104 30 -178 | 9.8e-08 86162 81729
44.37 -41 | -184 | 108 | -190 | 9.8e-08 86162 81729
44.47 | -185 63 -86 -63 4.6e-08 53076 50349
44.80 | -184 33 -142 | 127 8.1e-08 57744 54774
4548 | -144 | -98 31 -181 1.7e-10 88904 84333
46.27 | -184 33 -62 -93 8.1e-08 57744 54774
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46.35
47.01
47.40
47.73
48.63
50.31
50.99
51.20
51.25
51.36
51.86
52.06
52.82
54.05
54.66
55.07
55.83
56.95
57.12
57.89
58.61
58.76
59.21
59.42
59.77

-118
-135
-192
-185
-170
-172
-184
-104
-138
-145
-118
-172
-152
-164
-185
-191
-184
-118
-184
-138
-109
-176
-184
-192
-135

12
-104
61
63
71
169
33
-135
-99
145
12
169
-99
-41
63
-48
33
12
-41
-99
39
-99
-41
61
-104

-96
42
-127
-119
-99
-146
-50
82
-189
-124
-24
-24
95
-168
-63
-195
-127
-15
-182
-189
-33
-188
30
-50
82

81
-182
142
138
130
24
-103
-190
85
20
=75
146
-195
118
-86
140
142
-81
140
104
-04
137
-178
-103
-190

9e-08
9.8e-08
8.1e-08
4.6e-08
-4.5e-08
-8.3e-08
8.1e-08
9.8e-08
-2.2e-08
1.2e-08

9e-08
-8.3e-08
3.5e-08
1.5e-08
4.6e-08
3.5e-08
8.1e-08

9e-08
9.8e-08
-2.2e-08
-5.7e-08
4.3e-09
9.8e-08
8.1e-08
9.8e-08

25302
86162
07744
53076
43740
58152
57744
86162
85012
42048
25302
58152
95906
70600
53076
95904
07744
25302
86162
85012
18300
89682
86162
07744
86162

24000
81732
04774
50349
41493
55164
54774
81729
80640
39885
24000
55161
90972
66969
50349
90972
04774
24000
81732
80640
17358
85071
81729
04774
81729

Table C.1: Parameters of the rotated supercells used in this work. The lines relative to the four

geometries shown in Figure 5 in the main text are highlighted in bold font.
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Force-Field Parametrization and

Benchmark

The G layer is modelled with the REBO potential [172], while the 3-body Stillinger-Weber
(SW) potential [I71] is used for MoSs. Interlayer coupling is described by the Lennard-Jones
(LJ) potential

_ (L)

HyL, = C—(Mo,S)
_ o\ _ (o
1€C Y Y
jE€Mo,S

The intralayer force fields were benchmarked against experimental results and first principle
calculations at DFT level. DFT calculations were performed using using the Vienna
Ab initio Simulation Package (VASP) [198], [199] within the Projector Augmented-Wave
(PAW) framework [124]. The exchange-correlation potential is approximated using the
PBE functional [127] and the vdW dispersion is described by the DFT-D2 method [130)].
A plane wave cut-off of 800eV is adopted and the Brillouin zone was sampled using
a 13 x 13 x 1 mesh. The results on lattice parameters were deemed satisfactory. Since
interlayer interactions are especially relevant for the aim of this work and the LJ parameters
reported in Ref. [I7I] yield unsatisfactory results, it was deemed necessary to conduct a

more accurate parametrisation, reported in the following section.
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SW | REBO | DFT Experimental
Lattice constant graphene(A) - 2.4602 | 2.4668 | 2.4589 [283],2.464(2) [284]
Lattice constant MoSs (A) | 3.0937 - 3.1901 3.15 [285],3.1625 [286]
C-C bond distance (A) - 1.4204 | 1.4242 -
Mo-S bond distance (A) 2.3920 - 2.4112 s

Table D.1: Structural parameters obtained using the SW model for MoSs, the REBO model for
graphene together with reference data from X-ray diffraction experiments and density functional
theory (DFT) calculations. The DFT results were obtained using the computational details reported

in Appendix g
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s? 40 -
> L
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Figure D.1: Refining of LJ-parameters. Energy, in meV /area versus the interlayer distance, in A.
The black line is the reference BEP from DFT, whereas the red and the blue line are the starting
and final binding energies obtained with LAMMPS, respectively. The dashed line represents the
weight function around the energy minimum enhanced by a factor of 50, as guide for the eye. The
inset shows the goal function x? versus the number of the iterations of the optimization algorithm.

Force Field refinement

In order to improve the unsatisfactory inter-layer description, binding energy profiles (BEP)
of the MoS3/G bilayer system were computed at DFT level used as reference set for the
minimisation protocol. The parameters provided in Ref. [I71] were used as starting point
for the minimisation.

The Simplex algorithm [287] as implemented in SciPy [288] was used as a non-gradient-
based minimisation method. This algorithm samples the N-dimensional (N=number of
LJ parameters) phase space using a convex polygon. This algorithm acts on the following

goal function:

il = [ oer) - St (02

which is a squared distance combined with a weight function w(r). The function fppp is

the reference, in our case the Lennard-Jones binding energy profile from DFT, whereas fr,
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is same binding energy profile computed with LAMMPS using the current € and . The
weight function w(r) = exp[—(%)ﬂ ensures that the most relevant part, the minimum
of the Lennard-Jones at 79 = 4.94 A and its directs surroundings, are represented correctly.
The amplitude of the relevant interval around the minimum is tuned with the ¢ parameter.
In the computation of binding energy profiles the interlayer distance between G and MoSs
is fixed by freezing in the z direction C atoms and the outermost S layer of MoSs. The
heterostructure used as reference comprises 4 x 4 MoSs unit cell repetition and a 5 x 5 G
unit cell repetition, where the residual stress of 2.6% is applied to MoSs. The optimised
parameters are reported in Table Fig. shows the optimised BEP, along with

reference and starting point, and the minimisation performance.

Optimized LJ Parameters
Atoms € [meV] o [4] ¢ [4]
C-S 1.64 3.640 0.30
C-Mo 4.55 4.391 0.30

Table D.2: Optimized LJ Parameters for the interlayer interaction between G and MoSs.

Phonon band structure

Phonon bands were computed with the aid of Phonopy [I5I], which was coupled to
LAMMPS using phonoLAMMPS [289]. In both DFT and classical cases the phonon

dispersion was computed using the frozen method employing a 5x5x1 supercell.

350
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Figure D.2: Phonon band structure of (a) G and (b) MoSs computed with LAMMPS (solid
lines) and VASP (dashed lines). The y axis reports the phonon energy, while the x axis marks the
distance from the origin along the pathI' - M — K — T.
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Fig. reports the phonon band structure along the path I' - M — K — T of G
and MoS,, panels Fig. [D:2a] and Fig. [D.2h] respectively, allowing one to compare phonon
dispersion computed from quantum forces, at the DFT level, and from classical forces.
Acoustic models from quantum and classical dispersion are in good agreement around I,
the centre of the Brillouin zone. Thus, the long wavelength distortions at the base of NM
theory are well-described by the classical force fields. Moving towards the edge of the cell,

i.e. distortions occurring over shorter wavelength, the two dispersion deviate. For example,
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the splitting of quantum-computed transverse and longitudinal branches observed at M
point in G is shifted to a different k in the classical results. Similar observations can be
made for the region around K and for the MoSy phonon bands. The general trend is that
the classical treatment underestimates the energy of acoustic branches and overestimates
the optical ones. However, strong quantitative agreement is not needed for the qualitative
statements developed in the following discussion and, in order to obtain the sound velocity
needed as input of the NM theory, only an accurate description around the I' point is

required.



Software: VASP

Many softwares with different implementations of DFT outlined section [2.1| are available,
each one characterised by its “dialect”. In this work DFT are carried out using the Vienna
ab initio Software Package (VASP) [197, 119] 198 199], which is based on a plane-wave
expansion of KS orbitals, relies on PP and provides a selection of difference exchange-
correlation functionals adn vdW corrections. In this section we report the parameters and
technical details used in this work.

All simulations are spin polarised. The tetrahedron smearing with Bloch corrections
of amplitude 0.05¢eV is used with semiconductors to avoid discontinuity in the energy
level occupancy and ease the integration in the BZ. In chapter [4, a Gaussian smearing
of 0.05eV is used, as the metal or semiconductor nature of the large set of compounds
studied is unknown. The Pseudo-Potential problem is treated in the augmented-plane wave
(PAW) formalism [124] 200]. For the sulfur atoms only the outer p orbitals are considered
as valence and for the transition metals the outer s, p and d electron orbital constitute
the valence shell. In relaxations, ions positions are optimised using a conjugate gradient
algorithm. Depending on the calculations, either all the degrees of freedom, i.e. ions
position, cell shape and cell volume, or ions positions only are relaxed; this difference is

specified case by case in the main text.

Parallelization Benchmark on Iridis5 HPC In order to test the parallel perfor-
mances of VASP and define the optimal setup for our machine, we perform a self consistent
cycle of fixed length varying the input parameter controlling the numerical aspect of the
code. Fig. shows the N3 scaling with the system size while Fig. shows the scaling

at fixed system size with the number of cores. Even though in principles there would be
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Figure E.1: (a) Simulation time versus system size in number of ions. The green dashed line
represents a scaling behaviour N2. (b) Simulation time as function of the number of cores allocated
for the computation. (c¢) Simulation time as function of the number of orbitals treated in parallel.

no limit to the number of cores one could use, the time required to share information
between the threads limits this number: on the University of Southampton HCP Iridis5 a
Parallelization over 80-120 cores yields the best results for system of 10-30 atoms, while
single node jobs (40 cores) suffice for smaller systems of up to 10 atoms. At fixed system
size and core number, Fig. shows the simulation time as function of the number of
cores working in parallel on each orbital. Spreading each orbital over = 10 cores yields the

best results.

Exchange-correlation Functional Convergence

Following the works by Perdew et al. [129] and Bjorkamn et al. [290], we use SCAN meta-
GGA functional in combination with rVV10 correction for long-ranged vdW interactions.
We adopt the values for Cyy19 = 0.0093 and byy19 = 15.6 used in the Ref. [129]. Being
semiconductors with covalent bonds but small bandgaps, TMDs are in between the localised
picture implemented in local basis sets, suitable for ionic materials like rock-salts, and
the delocalised one of the plane-wave set, suitable for metals. Li et al. [291] studied the
properties of TMDs and transition metal oxides as function of the functional and the basis
set used. They found that, while there is a strong dependence on the functional used,
plane-wave are suitable to describe TMDs. Since we want to resolve vdW interaction, which
are in the order of 10meV, we set the tolerance on electrons energy at 1 meV per atom.

We found that a tolerance of 1 x 10~% eV yields satisfying results on the ions minimisation.

SCAN+rVV10 Convergence We test our protocol on two element of the TMDs
family: MoSs and TiSs. Experimental results are taken as starting configuration for our
calculations. Before optimising the structures, we study the convergence of the total energy
with respect to the size plane-wave basis set used in the expansion of the Kohn orbitals
and the density of the grid used to sample the reciprocal space. We adopt a cutoff of
Ecutot = 800eV in accordance with Fig. [E.2a], which shows difference in total energy
between the two systems as function of the energy cutoff of the plane wavesﬂ Fig. [E.2b

shows the convergence of total energy against the number of division in the BZ along each

IThe error in truncating the basis set is a systematic one and thus it is relevant to check the relative
convergence over different systems instead of the absolute one
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Figure E.2: (a) Total energy difference between H2 MoS, and T1 TiSs versus the energy cutoff
E.yt. (b) Total energy versus the number of divisions along each direction in the BZ within a unit
cell of prismatic 2H-MoSs and octahedral 1T-TiSs.
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Figure E.3: Convergence study for CrSes in octahedral (Cdls) coordination. (a) Total energy
as a function of the energy cutoff E . for various sampling densities, as reported in the legend.
The dashed horizontal line report a threshold value for the total energy accuracy of Fi, = 0.2meV.
The dashed vertical line marks the adopted value E.,; = 650eV. (b) Total energy as a function of
the sampling density for various E,¢, as reported in the legend. The dashed vertical line marks
the adopted value Ny = 17.

direction. The total energy does not vary appreciably for more than 11 division EL which is

the value adopted in this work.

PBE Convergence In exploring vast class of materials in HT approach and a coherent
DFT parametrisation is needed. Thus, we performed a similar convergence study on a
simpler function, PBE [127]. The analysis was carried out on 60 ML reported in Ref.
[21]. Fig. reports an example of this convergence study for CrSes in octahedral (Cdls)
coordination. We adopt a cutoff of F.uoq = 650eV and sample the BZ with a 17 x 17 x 1
mesh. The larger mesh compared to the SCAN parameters is required as some material
show a metallic character. The absence of repetition in the k, direction is dictated by the

ML geometry studied.

2This correspond to 6600 k-point-per-atom
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Compound a Reference c Reference
MoSy 3.168 3.161 [230] | 12.522 | 12.295 [230]
TiSo 3.4085 | 3.4097 [231] | 5.7471 | 5.7052 [231]

Table E.1: Intralayer a and interlayer ¢ lattice parameters from simulations and references in A.
Intralayer lattice parameter a is within 0.03% and 0.2% of the experimental measured value for
TiS, and MoSs, respectively, while the interlayer one c is within 0.7% and 1.8% for TiSs and MoS,,
respectively.
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Figure E.4: The BE Fhina(d) of MoS; and TiS,.

Material Properties Benchmark

A relaxation of both ions positions and cell vectors yields the parameters reported in

Table [E1l

Binding Energy Profile To estimate the accuracy of our vdW description, we check
the binding energy profile defined as Fpina(d) = E(d) — E(co) and reported in Fig. [E.4
Our protocol is to fix the distance between the layer by rigidly shifting the layers and
freezing the z coordinate of the metal ion while all the remaining degrees of freedom are let
free to relax. Table reports the minimum of this profile, which is the binding energy
keeping the layers together in the bulk system.

Band Structure Once we have a relaxed structure, we can check that the electronic

properties of the system. Fig. and Fig. report the band structure and density of
state (DOS) of 2H-MoSy and 1T-TiSs, respectively. As a general remark, we note that

overlap in the DOS between d metal orbitals and p chalcogenides ones confirms the covalent

Compound | Eping(dmin) | Reference
MoSs, -19.86 -20.53
TiS, -18.98 -18.88

Table E.2: Minimum of the BE in meV as computed in this work and reference values from RPA
calculation [129].
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DOS and Band Structure

DOS and Band Structure
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Figure E.5: (a) The BZ relative to the hexagonal primitive cell of MoSs (space group n. 194)
and TiSs (space group n. 164). Band structure along the pathT' - M — K - T — A — L (each
point is marked by a vertical line) within the cell reported in Fig. and DOS obtained with the
SCAN+1rVV10 protocol for (b) 2H-MoSs and (c) TiSe. The red and green points represent the
projection of the states onto the Mo and S atoms, respectively.

nature of the interaction.

The computed band gap for bulk 2H-MoSs of 1eV underestimate the experimental
value of 1.29eV [16]. The value bandgap of TiSs is still debated varying from 0.05eV
to 2.5eV depending on the experimental technique used [292) 293]. From computational
investigation, the material is predicted to be semimetallic and a semiconductor, when
going from LDA to hybrid functional. In our simulations TiSs is semimetallic, with a small
overlap between the minimum of the conduction band at M and the maximum of the

valence band at T'.
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Software: Phonopy

Phonons dispersion are obtained using the Parlinksi-Li-Kawazoe method [294] as imple-
mented in the Phonopy package [I51]. This method is a numerical approach to fit force
constants P from forces F' and displacements A. The relation for a pair of atoms i and j

can be cast in the matrix form

F=-A-P, (F.1)
where F', A and P are given by
¢xa: ¢$y ¢:cz
P = ¢y:p ¢yy Qbyz (F3)
¢zx ¢zy ¢zz
A=(Ar, Ar, Ar). (F.4)
This relation can then be inverted to obtain the force constants P = —ATF. The number of

displacements needed by the fitting procedure is reduce by exploiting the symmetry crystal
and the force constants are then used to compute the dynamical matrix D in Eq.
and from there the dispersion relation between k and w and all other properties.

Fig. reports the dispersion relation for a MoSs bulk crystal in the H2 configuration.
The dispersion is in agreement with literature [80, 295]: all frequencies are positive,
indicating a stable structure, acoustic modes vanish at I point and we find the “sliding
modes”, with frequencies at I' between 1 THz and 2.4 THz. To test ability to predict

unstable structures of this protocol, we computed the phonon dispersion of MoSs bulk

F-175



176 Chapter F Software: Phonopy

Bl

e~
==
W

i

W

) <;//\§

zf 'S
< 4:%\

[3 H K 0 05 10 MK A HoK 00 025 050 075
DOS

=

(a) 2H (b) 1T

Figure F.1: The phonon dispersion relation and DOS of (a) MoSs 2H ans (b) artificial MoS, T1
crystals computed with SCAN+rVV10 protocol. The path is along the symmetry point of the BZ
in Fig. Forces are computed in a 2 x 2 x 2 supercell. The dispersion is interpolated on a
41 x 41 x 41 grid.
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Figure F.2: The phonon dispersion relation and DOS of TiSs T1 crystal computed with (a)
SCAN+1rVV10 and (b) GGA functional and Hubbard correction (GGA+U) U = 2eV protocols.
The path is along the symmetry point of the BZ in Fig. The phonon displacements are relative
to the primitive cell of the T1 polytope but forces are computed in a 2 x 2 x 1 supercell to improve
the accuracy on the forces. The lack of replicas along the z direction yields the flat behaviour
I' — A; this choice was made to study the CDW instability in the x-y plane. The dispersion is
interpolated on a 20 x 20 x 20 grid. Note that in (b) the instability at the M point is gone, but
the branch curvature changes sing at this point and the phonon frequencies are lowered, an effect
known as Kohn anomaly.

crystal in the T1 configuration, known to be unstable at 0 K. Negative frequenciesﬂ in
Fig. [F.1D] signal that the structure is indeed unstable: if one were to displace the atoms
along the polarisation vector relative to negative frequencies, there would be no recoil force
bringing them back to the equilibrium position, and they would be attracted by the real
minimum in the configurational space, the prismatic configuration.

Fig. reports the dispersion relation for a TiSo bulk crystal in the H2 configuration.
The negative frequencies around the I' and M points suggest this is an unstable structure.
This is in contrast with experimental observation of octahedral coordination of TiSs.

How do we explain this? This soft mode was previously reported in literature only
by Dolui and Sanvit [292], to our knowledge. The authors attribute the instability to
a CDW: layered TMDs show strong electron-phonon coupling and CDW ground state

'Negative frequencies correspond to imaginary frequency coming from the square root of a negative
eigenvector of the dynamical matrix
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are found for TaSes and NbSes. The soft mode at M corresponds to a CDW wave
vector gopw = 7/a (1 /2 0 0). Using the LDA functional, the authors found that the
system gets stabilised in a 2x2 supercell with the distorted geometry found at the M
point: imaginary frequencies disappear and CDW configuration sits 0.85 meV lower than
undistorted one. We are currently running simulation to confirm that these results holds
with the SCAN+rV V10 protocol. This distortion might be important in all range of TMDs
[296] and one should look out for this kind of dynamic instabilities while carrying out DFT
simulations. Dolui and coworkers also noted that this instability is stabilised by localising
the electrons. As shown in Fig. we find as well that the addition of a Hubbard
correction U = 2eV that localises the electrons on the Ti atoms removes the instability:
electrons are forced to stay around the metal ion, the long range distortion cannot take
place and, as a result, all frequencies are positive. This is in agreement with the observation
that Khon anomalies, a lowered phonon frequency at a specific k point, can only appear in

metallic systems, while the Hubbard correction opens a gap in the electronic structure.
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Software: ATAT

Since the parametrisation of the CE involves supercell of different size, to be consistent
we kept the number of k point per atom constant to 6600 through the work. CE models
presented in section [2.2] comprise clusters of maximum four points. Bulk models are trained
with 113 and 57 structures for 1T and 2H, respectively. Models of the 2D counterparts are
trained using 46 and 39 structures for 1T and 2H cases.

Accuracy of the Monte Carlo simulations is affected by finite size effects and it is

necessary to study the convergence of quantities of interest against the size of the system.

Figures [G.1a) and [G.1Db| report the convergence study in the two hosts: for MC simulation

in the 1T host we adopt a cell containing 4851 atoms and one containing 21904 atoms for
the 2H host.
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