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Phase and Dissipative Behaviour of Complex 2D Materials

by Andrea Silva

Being a relatively new field, the vast chemical space spanned by two-dimensional materials

has so far only seen limited exploitation to optimise properties. In the field of tribology,

layered materials have been used for decades as solid lubricants, but the design of optimised

surfaces for friction in a systematic way, which relies on a predictive model of friction

that scales from the nanoscale up to micro/macro-scales, remained elusive. This thesis

makes a step in exploring the chemical space and stacking possibilities of two-dimensional

materials, informing experimental efforts to design tribological contacts. Moreover, it

extends the fundamental understanding of lubrication mechanisms, on which the design of

solid lubricants can be built.

The materials design aspects of this thesis focus on the phase behaviour of monolayers

and the inter-layer phase stability of twisted heterostructures. A framework was developed

to identify novel compounds obtained from substitutional alloys on transition metal sites

in dichalcogenide crystals, yielding a road-map for experimental efforts. A generalised

theory of epitaxy developed here rationalises the behaviour of heterostructures observed as

a function of the twist angle introduced between the lattices.

To advance the fundamental understanding of solid lubrication, the dissipative behaviour

of two-dimensional materials has been studied both in hetero- and homo-structures. Super-

lubric behaviour in large-mismatched heterostructures has been rationalised in terms of

edge effects and identified as a promising road to robust superlubricity. A novel framework,

based on the Prandtl-Tomlinson model and stochastic thermodynamics, allows evaluation

of a set of thermodynamic quantities in homostructures, providing a clear picture of the

dissipation in the system and a straightforward way to test the model against experiments.

In conclusion, the phase behaviour analysis shows that alloyed transition metal dichalco-

genides offer many opportunities for material science research, thanks to the densely

populated chemical space. Flexural phonons play an important role in the stability of

misaligned heterostructures, with implications for novel twistronic devices. The analysis

of tribological contacts highlights the importance of potential energy surface topology,

in addition to simple energy barriers, and of edge effects in determining the dissipative

behaviour of the system.
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3.12 Thickness of G layer and moiré displacement patterns . . . . . . . . . . . . 75

4.1 Sketch of a mismatched alloyed heterostructure . . . . . . . . . . . . . . . . 80

4.2 Periodic table showing the elements selected . . . . . . . . . . . . . . . . . . 81

4.3 Formation energy of MS2 compound in the prototypes . . . . . . . . . . . . 83

4.4 Examples of solubility metric construction . . . . . . . . . . . . . . . . . . . 85

4.5 Stability metric in MoS2 prototype . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Behaviour of the goal function . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Behaviour of the goal function within the solubility windows dataset . . . . 88

4.8 Optimal prototype for TM pairs . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9 Frequency of optimal prototypes . . . . . . . . . . . . . . . . . . . . . . . . 91

4.10 Polymorphism of TMDs across prototypes considered . . . . . . . . . . . . . 91

4.11 Top view sketch of an ideal TMD hexagonal lattice used in the CE expansion 92

4.12 Ternary phase diagram for Mo-W-S elements . . . . . . . . . . . . . . . . . 94

4.13 Convex hull and correlation plot of the CE model of the Mo1−xWxS2 system 95

4.14 STM images of WxMo1−xS2 ML alloys . . . . . . . . . . . . . . . . . . . . . 95

4.15 Ternary phase diagram of Mo-Nb-S and Mo-Ta-S elements . . . . . . . . . . 97

4.16 Convex hull and correlation plot of the CE model of the Mo1−xNbxS2 system 97

4.17 Convex hull and correlation plot of the CE model of the Mo1−xTaxS2 system 98

4.18 Geometry and relaxation displacement of (Mo:Nb)S2 and (Mo:Ta)S2 binary

alloys systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.19 Atom-projected band structure of GS at x = 0.66 of Nb- and Ta-MoS2 alloys101



List of Figures xi

4.20 Convex hull of the the Ir1−xRuxS2 system in the NbTe2 and WTe2 prototypes102

4.21 Correlation plot of the DFT-training-set and CE-fitted energies in Ir1−xRuxS2

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 (Mo:Ti)S2 compounds in literature . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Ternary space of the Mo-Ti-S system . . . . . . . . . . . . . . . . . . . . . . 106

5.3 ECI in prismatic 2H host and octahedral hosts . . . . . . . . . . . . . . . . 109

5.4 Fitted versus DFT-computed formation energies in both hosts . . . . . . . . 110

5.5 DFT-computed energies for the H host in bulk and ML form and T host in

bulk and ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Distortion of all computed structure in 2H and 1T bulk system . . . . . . . 112

5.7 Phase diagram of the combined-host system . . . . . . . . . . . . . . . . . . 113

5.8 Azimuthal view of the starting, perfect octahedral Mo3/5Ti2/5S2 ordering at

x = 0.6 and sketch of CF splitting in the octahedral and prismatic hosts . . 114

6.1 Heterostructures considered and LF-AFM working principle . . . . . . . . . 118

6.2 Superlubricity of MoS2/graphite and MoS2/h-BN heterostructure interfaces 120

6.3 Source of friction for three different heterostructure interfaces . . . . . . . . 122

6.4 Top view of the MoS2-stripe/G heterostructure . . . . . . . . . . . . . . . . 123

6.5 Electronic distribution along z in heterostructure, MoS2 stripe and G substrate124

6.6 In-plane electronic distribution of MoS2 hemispace and G hemispace . . . . 125

6.7 Electronic distribution difference along the b lattice direction . . . . . . . . 125

6.8 PES of the MoS2/G heterostructure . . . . . . . . . . . . . . . . . . . . . . 126

6.9 G/G and MoS2 PES from literature . . . . . . . . . . . . . . . . . . . . . . 127

6.10 Charge difference between BLG and isolated G layers . . . . . . . . . . . . 127

6.11 MD simulation results of a MoS2 flake sliding on graphite . . . . . . . . . . 128

6.12 STEM image of MoS2 domain edge at various zoom levels . . . . . . . . . . 129

6.13 Prandtl-Tomlinson energy landscape . . . . . . . . . . . . . . . . . . . . . . 131

6.14 Time evolution of the PT energy . . . . . . . . . . . . . . . . . . . . . . . . 132

6.15 Energy barrier definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.16 PES for the selected lubricant systems . . . . . . . . . . . . . . . . . . . . . 138

6.17 PES for the selected non-lubricant systems . . . . . . . . . . . . . . . . . . 138

6.18 Angular dependence of the thermodynamic behaviour for different materials 139

6.19 Instantaneous thermodynamics observables for MoS2 sliding at 60◦, 90◦, and

150◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.20 Instantaneous thermodynamics quantities for three different substrates slid-

ing at 30◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.1 2D material lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-152

B.2 Example of reciprocal lattices G, τ and q . . . . . . . . . . . . . . . . . . . B-154

C.1 Graphical overview of the matching condition . . . . . . . . . . . . . . . . . C-158



xii List of Figures

C.2 Strain applied to MoS2 lattice versus angle imposed to the supercell for

different values of tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . C-160

D.1 Refining of LJ-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-166

D.2 Phonon band structure of G and MoS2 computed with LAMMPS and VASP167

E.1 Benchmark of VASP on Iridis5 supercomputer . . . . . . . . . . . . . . . . E-170

E.2 Ecut and k-points mesh convergence . . . . . . . . . . . . . . . . . . . . . . E-171

E.3 Convergence study for CrSe2 in octahedral (CdI2) coordination . . . . . . . E-171

E.4 The BE Ebind(d) of MoS2 and TiS2 . . . . . . . . . . . . . . . . . . . . . . . E-172

E.5 Band structure of 2H-MoS2 and TiS2 . . . . . . . . . . . . . . . . . . . . . . 173

F.1 The phonon dispersion relation and DOS of MoS2 2H and artificial MoS2

T1 crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

F.2 The phonon dispersion relation and DOS of TiS2 1T crystal computed with

SCAN+rVV10 and GGA and (GGA+U) . . . . . . . . . . . . . . . . . . . . 176

G.1 Variation of equilibrium concentration in MC simulations as function of the

system size in 2H and 1T hosts . . . . . . . . . . . . . . . . . . . . . . . . . 180



List of Tables

3.1 Sound velocity of transverse and longitudinal phonon branches in G and

monolayer MoS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Minimum and maximum thickness across θ . . . . . . . . . . . . . . . . . . 74

4.1 Prototypes of the form MnAm identified in Mounet database . . . . . . . . 81

4.2 Parameters of the CE models of the selected system . . . . . . . . . . . . . 93

5.1 Training set and convergence of the CE models . . . . . . . . . . . . . . . . 108

5.2 Intralayer a and interlayer c lattice parameters from simulations and experi-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Stochastic thermodynamic along trajectory n(t) in the PT model in the

transition state theory limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Materials ranked by average friction over all angles and temperature gradient

in silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.1 Parameters of the rotated supercells used in this work. The lines relative to

the four geometries shown in Figure 5 in the main text are highlighted in

bold font. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

D.1 Benchmark of structural parameters . . . . . . . . . . . . . . . . . . . . . . D-166

D.2 Optimized LJ Parameters for the interlayer interaction . . . . . . . . . . . . 167

E.1 Intralayer a and interlayer c lattice parameters from simulations and refer-
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1
Introduction

Since the discovery of graphene [3], low-dimensional materials have gained significant

attention from the scientific community. The reduced dimensionality of graphene compared

to its well-known bulk counterpart, graphite, yields exciting and unexpected changes in

the materials electronic and mechanical properties [3]. Shortly after, the same interest was

sparked by atomically flat sheets of transition metal dichalcogenides (TMDs) [4]. Beyond

the academic interest in this new and exotic polymorph, two-dimensional materials bring

the prospect of significant technological advancement. As showcased in Fig. 1.1, reduced

dimensionality is linked to properties sought after by engineers for real-life applications,

like superior flexibility and strength [5] or enhanced thermal transport [6].

Two-dimensional materials are critical players in the technological effort towards

miniaturisation that has accompanied human progress for ages. Fig. 1.2 sketches the

progress of human technology with time and the progressive reduction of the typical length-

scale, from macroscopic tools in the bronze age to microscopic transistors in the past century.

Nowadays, technology advancement stands on a figurative edge, only a few nanometers wide,

with progress towards atom-based technology in tribology [8], electronics [9], catalysis [10],

and energy-storage [11]. Understanding the thermodynamics of low-dimensional materials

and the laws of dissipation at the nanoscale scale is an essential step in advancing nanoscale

engineering.

In the field of electronics, 2D materials promise to help engineers to achieve ‘more-than-

Moore’ nanoelectronics [12]. Transistors can be built from atomically-thin sheets, as

shown by Schwierz [13] for graphene and by Radisavljevic et al. [9] for MoS2, sketched

in Fig. 1.3a. With improvements of traditional Si-based transistors starting to deviate

from the Moore’s law (the number of transistors on a chip doubles about every 18 to 24

1



2 Chapter 1 Introduction

efforts. To begin, the unique physical mechanisms will be sum-
marized in the context of the novel friction and wear behavior
of 2D materials. Based on the proposed mechanisms, we will
then discuss the key factors that control the tribological perfor-
mance of these atomically thin materials, which leads to various
friction tuning strategies. Subsequently, prospects toward practi-
cal applications of 2D materials in controlling friction and wear
in real mechanical systems will be presented.

General characteristics of 2D materials
Two-dimensional materials are sheet-like structures that are one
or a few atomic layers in thickness. Since the first identification
of graphene in 2004, various 2D materials (hexagonal BN, transi-
tion metal dichalcogenides, black phosphorous or phosphorene,
etc.) have been reported and extensively studied [17–20]. Due to
their unique planar structure, 2D materials often exhibit uncon-
ventional mechanical, electrical, thermal, and chemical proper-
ties [21–25], which result in many unusual frictional traits
(shown in Figure 1) [26–29].

Because 2D materials are atomically thin, they are typically
very flexible and can be easily perturbed in the out-of-plane
direction. For example, graphene, a mono-layer of carbon atoms,
can ripple by itself under thermal excitation at room temperature

[30]. When graphene is exfoliated on rough substrates, it can
readily conform to the substrates, reflecting the underlying sur-
face topography [31]. The extreme flexibility of 2D materials,
when they contact surrounding objects, also plays a crucial role
in determining the true contact area and the local frictional pin-
ning capability [28,32]. In addition to the high deformability,
the mechanical strengths of 2D materials are quite remarkable
due to strong in-plane chemical bonding. For example, despite
its thickness, graphene is one of the strongest materials, with
an intrinsic strength of 130 Gpa [33] and a toughness of 4.0
± 0.6 MPa

ffiffiffiffiffi
m

p
[34]. Furthermore, the dense and stable in-plane

bonding also makes graphene impermeable to liquid/gaseous
media [35] and relatively inert to harsh chemical environments
[36]. The super-high strength and stability of graphene render
it an ideal candidate for a host of nano/micro devices where
atomically thin solid lubricants with outstanding anti-wear per-
formance are desired.

It is widely believed that the kinetic energy during frictional
sliding is dissipated either electronically or phononically
[37,38]. Therefore, as opposed to bulk lubricants, the unique
electrical (or electron–phonon coupling) and thermal properties
of 2D materials may also have an impact on their frictional
behavior. For example, graphene is a zero-gap semiconductor

FIGURE 1

Overview of structural, mechanical, electrical, thermal, and chemical properties of 2D materials that are relevant to tribological performance.
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Figure 1.1: Showcase of enhanced properties of two-dimensional materials. Adapted from Ref.
[7].

months [14]), the need for next-generation devices is growing stronger. Because of this

need, the Graphene Flagship (the AC1 billion European investment into 2D-materials-based

technology) is supporting pilot projects to move graphene-based electronic devices from

laboratory testing to industrial reality [15]. The main goal is a graphene-CMOS technology

able to seamlessly integrate with existing electronics [12], like the processor prototype

shown in Fig. 1.3b.

In the field of tribology, the study of friction, layered bulk phases of graphene and

MoS2 have been used in industrial applications for many decades [17]. Devices based on

single layers have the potential to make superlubricity a reality. First introduced by Hirano

in the early 90s [18], superlubricity is a state of sliding without dissipation that would

eliminate dissipative energy leakage in tribological contact. The reliable realisation of

Figure 1.2: Length scales of human technologies throughout our history.
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performance characteristics, relatively high Earth abundance and 
high degree of electrostatic control could make MoS2 a viable candi-
date for low-power electronics98 .

Radisavljevic et al.35  recently demonstrated that they could build 
functional electronic circuits based on multiple 2D TMDC tran-
sistors capable of performing digital logic operations.  Up to six 

independently switchable transistors were fabricated on the same 
piece of monolayer MoS2 by lithographically patterning multiple 
sets of electrodes (Fig. 4c)35 . An integrated circuit composed of two 
transistors fabricated on a single flake of MoS2 was operated as a log-
ical inverter, which converts a logical 0 into a logical 1, and as a logi-
cal NOR gate35 , which is one of the universal gates that can be built 
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after October 2024 and include activities 
that pave the ground for transferring the 
know-how to an industrial production 
environment, such as addressing roadblocks 
to achieve a full industrial line, relevant cost 
issues and market perspectives”, says Andrea 
Ferrari, science and technology officer and 
chair of the Graphene Flagship management 
panel.

The body of expertise and deliverables the 
consortium is expected to cover is manifold, 
and encompasses industrially compatible 
manufacturing flows, reliability, versatility 
and process control. To be realistically 
sustainable, this certainly needs to be a 
common effort. The open call aims indeed at 
gathering a number of stakeholders willing 
to build a distributed platform and to work 
synergistically across shared equipment, 
materials and suppliers, in order to establish 
a competitive yet collaborative environment. 
The intellectual property (IP) model will 
follow the standard EU practices set for 
‘Horizon2020’ research and innovation 
projects, that is, partners own the IP they 
develop, but other consortium members 
have certain access rights.

Notably, there won’t be a unified 
fabrication facility that designs and 
manufactures products, as often happens 
in traditional semiconductor companies 
known as integrated device manufacturers 
(IDM). The initiative aims instead at 
adopting a foundry business model, 
whereby the steps of the process are 
delocalized across the fabrication plant 
(that is, the ‘fab’), and allocated amongst the 
consortium parties based on their expertise. 
The foundry approach looks naturally 
well positioned to allow the fostering of 
knowledge accumulation and its translation 
to the market. In the first place, it provides 
a solid ground and support to start-ups 
and spin-offs by enabling prototyping, pilot 
studies, and small-volume production of 
integrated systems. Furthermore, it offers 
the advantages of productivity optimization 
— including the possibility of tackling any 
existing pre-commercial manufacturing 
challenges — while minimizing the financial 
risks associated with full-scale production 
lines. “Only a large-scale partnership 
provides an ecosystem able to respond to the 
many questions arising during technology 
developments and to multiple fields of 
applications. The developed innovations 
are intended for wafer-scale production of 
graphene-based devices to be incorporated 
into applications ranging from consumer 
electronics to volume applications for small–
medium enterprises or even for multi-
project services”, says Marco Romagnoli, 
leader of the Graphene Flagship work 
package on Wafer-Scale System Integration. 

The consortium envisages the foundry to 
operate as any other semiconductor fab that 
offers a service for a fee to any users.

“Only a large-scale 
partnership provides an 
ecosystem able to respond 
to the many questions 
arising during technology 
developments.” — Marco 
Romagnoli, Graphene Flagship

However, the foundry model comes with 
its own challenges; a core prerequisite for 
its effective implementation is to ensure a 
strong alignment of protocols, design and 
production workflows among the involved 
manufacturers. Only if these processes  
are standardized across the board can the 
design of graphene-based nanodevices 
be split from their manufacture. Also, 
to be successful, the experimental pilot 
line consortium should build close-knit 
interactions with established European 
IDM that handle all processes — design, 
manufacturing and sale of final products —  
in house, to ensure that the technology 
being developed meets the customer 
requirements. “During the start-up phase, 
the foundry will establish baseline process 
flows or modules and make them available 
to EU and non-EU companies and academic 
institutions on a fee basis. During this 
phase, EU users will have a cost advantage 
and priority access, with non-EU users 
being charged full economic costs, to reflect 
the EU contribution to the establishment of 
the foundry”, says Ferrari.

A n industry-oriented strategy
The road towards embracing this industry-
oriented strategy has a number of crucial 
turning points. A fully functioning integrated 
circuit (IC) consists of an assembly of 
active and passive electronic components 
interconnected on a semiconductor chip 
— usually made of Si. However, graphene 
and related materials with high crystalline 
quality — hence high conductivity, 
suitable for consumer electronic devices 
— are generally synthesized on specific 
substrates (for example, Cu (ref. 9)) that do 
not necessarily coincide with the final Si 
platform within which devices are integrated. 
Thus, building a process infrastructure that 
enables the transfer of these atomically thin 
materials from the growth to the target 
substrate represents a key milestone. The 
manipulation of graphene and related 
materials is one of the most critical steps 
for their integration on Si, and should be 

carried out in a controlled environment 
during transfer, as it would otherwise result 
in contamination, uncontrolled charge 
traps and random strain fluctuations, which 
represent significant sources of disorder in 
electronic devices.

“The experimental pilot 
line open call provides 
a rare opportunity to 
explore the engineering 
aspects of graphene device 
preparation in an applicable 
manufacturing background.” 
— Mindaugas Lukosius, IHP 
GmbH-Innovations for High 
Performance Microelectronics

In order to approach a stage where device 
flows start to become nearly compatible with 
standard CMOS technology manufacturing 
scales, the experimental pilot line aims at 
employing, as target substrates, Si wafers 
with size of at least 200 mm. But because 
commercial ICs can eventually hold 
anywhere from hundreds to millions of 
electronic components that are expected 
to operate reproducibly, full on-chip 
monitoring of the process yield needs to take 
place both within a single wafer and across 
wafers, to track wafer-to-wafer variations. 
2D materials have a long way ahead to 
achieve such a dense level of integration: 
the most complex IC demonstrated so far is 
a 1-bit microprocessor10 consisting of 115 
atomically thin integrated transistors that 
can execute user-defined programs stored 
in an external memory, perform logical 

Fig. 1 | A  fully functional microprocessor based 
on an atomically thin material. The processor 
chip consists of 115 integrated transistors.  
Credit: Thomas Mueller, Vienna University of 
Technology

(b)

Figure 1.3: (a) A sketch of a single-layer MoS2 transistor. The MoS2 layer is not in scale. Adapted
from Ref. [16]. (b) A functional microprocessor comprising 115 integrated transistors based on
atomically thin material. Adapted from Ref. [12].

this state has proven elusive, but micro-scale boron-nitride and graphene contact recently

shown promising result [19].

The SOLUTION programme [20], of which this project is part, is a small-scale framework

with a similar ambition to the Graphene Flagship in the field of tribology. The ultimate

goal of the SOLUTION project is to advance the fundamental understanding of solid

lubrication and to bring innovations closer to industrial applications. At the core of the

project is a drive to familiarise a new generation of scientists with a cross-disciplinary

attitude and promote collaboration between the research groups involved. Thus, this

framework has encouraged, during this PhD, collaborations with other institutions and the

synergy between multi-scale simulation techniques and experiments.

1.1 2D Materials

Following the discovery of graphene, the number of 2D material proposed by computational

studies numbers in the thousands [21, 22], and dozens materials have been synthesised

[23, 24]. The proposed 2D materials span the whole periodic table: they include more than

300 binary compounds and more than 700 ternary ones, with different crystal structures

and electronic characteristics [21]. The chemical and structural complexity is expanded

even further if one considers heterostructures: the strong intralayer covalent bond and

weak van der Waals interlayer coupling make it relatively easy to manipulate 2D flakes

and stack them with a high degree of control [25].

The stacking process can be decorated with a twisting angle between the crystal planes,

introducing a novel continuous degree of freedom. This misalignment angle led Cao and

coworkers [26] to the discovery of a novel superconductive phase in bilayer graphene when

the two sheets are twisted at the magic angle of 1.1◦, as shown in Fig. 1.4. Understanding

the emergence of superconductivity in such a simple, carbon-only material promises to

shed light on the origin of unconventional superconductivity observed in more complex

high Tc cuprates [27, 28]. More generally, this rotational degree of freedom has led to
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Figure 1.4: Sketch of the
experimental setup of the
superconducting twisted bi-
layer graphene, adapted
from Ref. [26]. The inset
is a snapshot of a simula-
tion of the system showing
different stacking regions,
adapted from Ref. [27].

the flourishing field of twistronics, which aims to understand how to use this mismatch

angle to tune electronic properties [29] and optical emission properties [30] of homo- and

heterostructures.

Graphite and Graphene

Graphite is a layered material made solely from carbon atoms. The four carbon atoms per

unit cell are trigonally (sp2) bonded, resulting in the typical lamellar structure belonging

to the hexagonal P63/mmc space group [31]. The layers themselves are AB stacked, with

one carbon atom in each layer sitting over a corresponding one in the neighbouring layer

(full A and A’ circles in Fig. 1.5) and the other carbon atom in each layer placed over the

centres of the hexagons of the neighbouring layers (hollow B and B’ circles in Fig. 1.5).

In the other high-symmetry stacking, AA, both carbon atoms in each layer sit over their

counterparts in the neighbouring layer; this stacking results in higher energy. Whereas

the atoms within a layer are covalently bonded with a bond distance of 1.42 Å, van der

Waals interactions between the layers lead to a layer spacing of 3.35 Å [31]. The unit cell

of graphite contains four carbon atoms, has a planar lattice constant of a = b = 2.46 Å and

a perpendicular lattice constant of c = 6.71 Å [31]. While the basal planes are chemically

inert, edges show pronounced reactivity [31]. Graphene layers show armchair and zig-zag

termination, with the former having a lower formation energy [32].

Figure 1 The crystal structure of graphite. The primitive unit cell is
hexagonal, with dimensions a= 2.46 Å and c = 6.71 Å. The in-plane
bond length is 1.42 Å. There are four atoms per unit cell, namely A, A′,
B and B′. The atoms A and A′, shown with full circles, have neighbors
directly above and below in adjacent layer planes; the atoms B and B′,
shown with open circles, have neighbors directly above and below in
layer planes 6.71 Å away.

Figure 2 In-plane structure of graphite. The layer plane shown contains
atoms A and B (•). The positions of the atoms A′ and B′ ( ❡) on the
adjacent layer plane are also shown. The lattice translation vectors on a
layer plane are −→a1 and −→a2 .
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The structure factor is given by
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Figure 1.5: Crystal structure of
graphite. Adapted from Ref. [31]
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The discovery of graphene has led to a new chapter in the study of solid lubricants. Its

mechanical strength, among the best (tensile strength of 130 GPa), prevents wear of both

itself and the substrate, although the lifetime is reduced at higher loads and defects can

affect the strength [33].

Transition Metal Dichalcogenides

The discovery of graphene and its dimensionality-dependent properties sent ripples through

the scientific world [4]. Although graphene exhibits enormous potential, its chemical

inertness is not always desired. The material science community quickly started searching for

other atomically thin materials, leading to the discovery of transition metal dichalcogenide

monolayers, which are more chemically versatile [4].

264 NATURE CHEMISTRY | VOL 5 | APRIL 2013 | www.nature.com/naturechemistry

as trigonal-antiprismatic) as shown in Fig.  1b and c, respectively. 
Depending on the combination of the metal and chalcogen elements, 
one of the two coordination modes is thermodynamically preferred.

In contrast to graphite, bulk TMDs exhibit a wide variety of poly-
morphs and stacking polytypes (a specific case of polymorphism) 
because an individual MX2 monolayer, which itself contains three 

layers of atoms (X–M–X), can be in either one of the two phases. 
Most commonly encountered polymorphs are 1T, 2H and 3R where 
the letters stand for trigonal, hexagonal and rhombohedral, respec-
tively, and the digit indicates the number of X–M–X units in the unit 
cell (that is, the number of layers in the stacking sequence). There are 
three different polytypes (that is, three different stacking sequences) 
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The labels AbA and AbC represent the stacking sequence where the upper- and lower-case letters represent chalcogen and metal elements, respectively. 
d,e, Dark-field scanning transmission electron microscopy image of single-layer MoS2 showing the contrast variation of 1H (d) and 1T (e) phases. Blue 
and yellow balls indicate Mo and S atoms, respectively. f, Zigzag chain clusterization of W atoms due to Jahn–Teller distortion in single layer WS2. The 
clustered W atoms are represented by orange balls. The √3a x a unit cell of the superstructure is indicated with a white rectangle. Images in d and e 
reproduced with permission from ref. 12, © 2012 ACS. Image in f courtesy of T. Fujita. 
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Figure 1.6: Atom species forming the TMDs family. The slots colour-code refers to different groups.
Half-filled slots (Co, Rh, Ir and Ni) indicate that not all metal-dichalcogenides combinations form
layered structures, e.g. NiS2 crystallises in a pyrite structure while NiTe2 is a layered compound.
Adapted from Ref. [4]

Transition metal dichalcogenides (TMDs) are binary compounds with the general form

MX2, with M being a transition metal (TM) and X a chalcogenide. Fig. 1.6 reports the TMs

found to crystallise in layered structures that closely resemble graphite. Two-dimensional

sheets are formed by a metal layer sandwiched between two layers of chalcogenide atoms;

covalent bonds between metal and chalcogenide atoms hold these monolayers together.
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The transition-metal chalcogenides, MXz, X = S, Se, display 
a characteristic layered structure. Two-dimensional slabs are 
formed by two layers of close-packed chalcogenide atoms sand- 
wiching one metal layer between them. Then these MX2 slabs 
are stacked, with just van der Waals contacts between the slabs.' 
A schematic representation is shown in 1. The multitude of 
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structural types that is found in these compounds is a consequence 
of the complex registry of chalcogenide and metal layers relative 
to each other. 

There is one fundamental aspect of the structure that varies 
systematically through the transition series. The two chalcogenide 
layers forming a slab can be stacked directly above each other, 
making trigonal prismatic holes for the metals, 2. Alternatively 

the layers may stagger, forming octahedral holes 3. The 4B 
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metals all have octahedral structures. For 5B metals most have 
octahedral structures while some have trigonal-prismatic geom- 
etries, and for 6B the reverse is true. In group 7B we find again 
octahedral structures, albeit distorted ones. Why this variation 
in preferred solid-state geometry? 

The detailed nature of the deformations alluded to in group 
7B dichalcogenides is intriguing. For instance, in the structure 
of ReSez,2 4 the Re atoms slip off from their regular octahedral 
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infinite one-dimensional chains. Is there an electronic reason for 
this deformation? That ReSe, is a semiconductor with a gap of - 1.1 eV394 is suggestive of this. The presence of charge density 
waves in most 5B dichalcogenides is also an indication of insta- 
bilities in the electronic structure of some of these  system^,^^^ 
instabilities tied to certain electron counts. 

These regularities are the subject of this work. In what follows 
we first compare the band structures and total energies of the two 
different kinds of layers, trigonal-prismatic vs. octahedral, using 
a rigid band model; Le., we shall use the very same band structure 
for different compounds across the Periodic Table. The study of 
such an average band structure is necessarily not accurate in its 
details, and for the individual compounds a number of band 
structures have been done which compare more favorably with 
experiment.6 On the other hand, the rigid band model is, as we 
shall see, capable of accounting for the octahedral-trigonal- 
prismatic-octahedral trend as one moves across the transition 
series. 

In the second part of the paper we shall derive the distorted 
ReSe2 structure from the undistorted one. Throughout this work 
we shall employ simple tight-binding energy band structure 
calculations of the extended Hiickel type,7a with some technical 
details listed in the Appendix. 
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(b) Octahedral

Figure 1.7: Prismatic (a) and octahedral (b) coordination. Adapted from Ref. [34]

Figures 1.7a and 1.7b show two common coordinations within the mono-layers (MLs).

Fig. 1.7a shows the prismatic coordination, where chalcogenide planes are oriented in the
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same direction, and X atoms sit on top of each other. Fig. 1.7b shows the octahedral

coordination, where chalcogenides planes are mutually rotated by 180◦, leading to less steric

hindrance between X atoms compared to the prismatic solution [34]. The layers can then

organise themselves into many different polymorphs [35]. Fig. 1.8 reports the three most

common stacking patterns found in the TMDs family: 1T , 2H and 3R, where the digit

indicates the number of layers in the unit cell and the letter the symmetry [35]. The 1T

polymorph, in Fig. 1.8a, is constructed by piling up layers with octahedral geometry. The

TM sites are vertically aligned between layer, as shown in Fig. 1.8a. The stacking sequence

is /AbC/AbC/, where the letter refers to a position in the cell; uppercase letters refer to

chalcogen atoms, lowercase ones to metals. This results in a unit cell comprising three

atoms and belonging to P 3̄m1 (or D3
3d) layer group [35]. The 2H polymorph comprises of

prismatic coordinated layers stacked with a 180◦ misalignment between them, as shown

in Fig. 1.8b. The unit cell is composed of six atoms, and it belongs to the P63/mmc (or

D4
6h) space group. The 2H is found in two variations: 2Ha (/AbA/CbC/), in which metal

sites in one layer are on top of the metal sites in the next layer, and 2Hc (/CaC/AcA/),

in which the metal site is located on top of the chalcogenides atom in the neighbouring

layer (Fig. 1.8b) [35]. The 3R polymorph comprises prismatic layers stacked in the same

orientation, yielding the three-ML unit cell shown in Fig. 1.8c.32 3 Bulk TMDCs: Review of Structure and Properties

Fig. 3.3 Schematics of the structural polytypes of TMDC from left to right 1T (tetragonal sym-
metry, one layer per repeat, octahedral coordination of the metal), 2H (hexagonal symmetry, two
layers per repeat, trigonal prismatic coordination) and 3R (rhombohedral symmetry, three layers per
unit cell, trigonal prismatic coordination). The yellow-filled triangles highlight the spatial position
of the chalcogen atoms. For the 1T and 2H polytypes, top views are additionally shown. Note that
in these images the yellow triangles highlight spatial positions of the chalcogen species within just
one layer

While these polymorphs aremost common, other polymorphs also exist, as shown
in Fig. 3.4, which shows side views of 11 different polymorphs [4]. Note, that the
2H polymorph can exist in three different modifications, with 2Ha and 2Hc being
most common. These two forms have different stacking symmetries. In 2Ha (AbA
CbC) stacking, transition metal atoms in one layer are located on top of transition
metal atoms of the neighbouring layer. This polytype is reported to occur in NbSe2,
NbS2, TaS2, andTaSe2 crystals. The 2Hc polymorph is characterised by theCaCAcA
stacking, i.e. any transitionmetal atom is located on topof twochalcogenides atomsof
the subsequent layer. This polytype occurs inMoS2,WS2,MoSe2, andWSe2 crystals.
The 2Hb polytypes are obtained for the nonstoichiometric compounds Nb1+xSe2
and Ta1+xSe2, with the excess metal atoms intercalated in the vdW interlayer gap. It
should be noted that the notations for different 2H polytypes are not unique, which
can sometimes be confusing (see e.g. different notations used in [5]). Experimental
lattice parameters of selected TMDCs are summarised in Table3.1.

Sometimes, the same TMDC can be found in multiple polymorphs. For exam-
ple, natural MoS2 is usually found in the 2H phase, while synthetic MoS2 often

Figure 1.8: Side (upper row) and top (lower row) views of common stacking in the TMDs family.
Adapted from Ref. [35]

While the sizeable bandgap of single-layer TMDs make them attractive for electronic

applications [16], the interplay between the strong intra-layer covalent bonding and weak

inter-layer van der Waals interaction is the key feature that makes TMDs excellent solid

lubricants [36]. They have been widely used in those industrial applications where tradi-

tional oil lubrication is impossible, like space vehicles operating in vacuum, or when the
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risk of contamination discourages the use of oils.

1.1.1 Phase Behaviour

This thesis will focus on an aspect of first-principles material design often neglected: are

these materials with remarkable properties thermodynamically stable, and how feasible

it is to synthesise them? Can one develop a protocol and a deeper understanding of

structural changes and electronic effect determining stability in heterostructures and multi-

component ML systems? The description of the thermodynamics of a multi-component

crystalline material is a formidably difficult task. One crucial aspect is the complexity of

the configurational space of these materials, i.e. the combinatorial problem of describing

the energetics of different orderings of components within a given crystal. In order to

address this problem, a multi-scale approach is needed: knowledge is transferred from lower,

more advanced level approximation to simpler higher-level models, where some degrees

of freedom are averaged out. This approach allows building a consistent description of

processes happening on different scales.

Strong anisotropy of two-dimensional materials leads to a decoupling of properties be-

tween in-plane and out-of-plane directions. Thus, phase stability shows different behaviour

in these two directions, as outlined in the following.

Intralayer aspects of TM substitution Strong in-plane bonding leans towards tai-

loring of properties by chemical substitution of elements in the parent lattice. Alloy

and doping are helpful tools to tailor material properties for specific applications, like

adjusting the bandgap of 2D transistors [37] or creating magnetic materials suitable for

spintronic devices [38]. In tribology, experiments have found that mixing transition metals

in low-friction coatings may lead to an improvement in hardness and density, yielding

better performance [39].

Designing improved materials at an experimental level is often a costly trial-and-error

process. Layered materials are no exception: the space of possible chemical compounds for

pristine materials is already vast, adding doping possibilities and heterostructure stacking

makes it practically impossible for experimentalists to explore even a fraction of it. In this

scenario, input from theoretical studies identifying viable candidates and guiding synthesis

efforts are absolutely necessary.

The low-energy orderings in P3 shown in Figure 5a−e are
consistent with past studies of ground state orderings on the
honeycomb lattice. Using simple lattice model Hamiltonians,
Kanamori35 showed that repulsive nearest- and second-nearest-
neighbor pair interactions on the honeycomb lattice result in a
devil’s staircase of a countably infinite number of ground state
orderings consisting of APBs. The devil’s staircase starts with
full occupancy on one sublattice as in Figure 5a and continues
with orderings having triangular A and B island-like domains
separated by APBs, such as the ordering illustrated in Figure 6.

The A and B domains correspond to perfectly ordered regions
with Na occupying exclusively one sublattice. The APBs that
separate the domains are indicated by solid black lines. Such
large triangular islands are not present in enumerated orderings
calculated using DFT as these orderings require large
supercells.
At x = 1/2, the lowest energy ordering in the P3 host does

not consist of domains separated by APBs; instead, Na atoms
uniformly distribute themselves over the two available
sublattices of the honeycomb (Figure 5f). This configuration

is compared to x = 1/2 orderings in the O3 host in Figure 7.
We found two nearly degenerate, low-energy orderings for O3
at x = 1/2. One, shown in Figure 7a, is the zigzag line ordering
that is a common ground state in Na transition-metal oxides
having the O3 structure.58 The second ordering (Figure 7b),
which is the ground state of O3 at x = 1/2, consists of clusters
of four Na atoms and is less than 1 meV/atom more stable than
the zigzag ordering of Figure 7a. A comparison of the low
energy O3 orderings of Figure 7a,b with the x = 1/2 ground
state in P3 (Figure 7c) reveals that the Na ions in P3 have more
flexibility as to how they can order due to the availability of two
triangular sublattices. While nearest neighbors cannot be
avoided in the O3 structure at this composition, the additional
available sites on the honeycomb of the P3 host enable Na
atoms to be spaced farther apart from each other. This ability to
increase the distance between neighboring Na ions within P3
relative to O3 is likely a dominant factor making P3 more stable
than O3 at intermediate Na concentrations, despite the
unfavorable face-sharing repulsive interactions between pris-
matic Na sites and the TiS2 octahedra in P3.

Finite Temperature. First-principles DFT energies of
different Na-vacancy orderings were used to parametrize cluster
expansions for each host, which were subsequently subjected to
grand canonical Monte Carlo (MC) simulations to calculate
finite-temperature thermodynamic properties. Figure 8a shows
the calculated free energy curves as a function of Na
concentration at 300 K for the different host structures.
Application of the common-tangent construction reveals that
all of the stacking sequences that were on the DFT global hull
are still stable at 300 K, starting with O1 at x = 0 and
continuing to O1−O3, O1−P3, P3, and O3 upon Na
intercalation. At temperatures slightly above 300 K, the O1−
O3 phase is no longer stable relative to O1 and O1−P3. The
MC simulations predict that most ground-state orderings
undergo an order−disorder transition below room temperature.
One exception is the ground state ordering at x = 1/2 in P3. It
is predicted to disorder slightly above room temperature.
Figure 8b shows the predicted voltage curve at 300 K, which

is related to the slope of the free energy curves in Figure 8a.
Sloping regions in voltage signify single phase regions, while
plateaus, which arise from a constant chemical potential along a
common tangent, indicate a coexistence between two phases.
The predicted voltage curve also exhibits a small step at x = 1/2
due to the stability of Na ordering at that composition at 300 K.
The O1−P3 hybrid phase appears as a large step, while O1−O3
is predicted to be stable in a very narrow voltage window. Our
results align closely with the features observed experimen-
tally.19,30−32 These experiments show a region at high Na

Figure 6. Example of a ground state ordering on a honeycomb lattice
belonging to the devil’s staircase discovered by Kanamori.35

Occupancy of the two sublattices on the honeycomb lattice is
distinguished by use of green and yellow circles. Triangular island-like
domains are separated by antiphase boundaries (black lines).

Figure 7. Comparing (a,b) O3 and (c) P3 orderings at x = 1/2 shows that, while nearest-neighbor pairs cannot be avoided in O3, the 3NN sites on
the honeycomb lattice allow the Na atoms to be more spread out.

Chemistry of Materials Article

DOI: 10.1021/acs.chemmater.6b03609
Chem. Mater. 2016, 28, 8640−8650
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Figure 1.9: Ground-state order-
ing of Na ions between TiS2 planes.
Green and orange circles represent
Na ions and vacancies within the
honeycomb lattice formed by the
interstitial spaces. Adapted from
Ref. [40]
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First-principles alloy theory is a well-established field in metals [41, 42, 43] correctly

predicting the phase diagram of mixtures of two [44] and three [45] metals. In these

mixtures, the key to correctly describing the stability of competing phases is to accurately

describe the energy of different orderings of the ions on the lattice and to reliably estimate

the entropic contributions, which arise primarily from occupational degrees of freedom on

the parent lattice and vibrational effects [44]. Moreover, a modification of the alloy theory

has been successfully applied to transition metal oxides [46] and intercalation compounds

used in Li-ion batteries [40]. Only limited attempts to apply the same formalism to TMDs

are reported in the literature. For example, Raffone et al. [37] analysed Sn-alloyed MoS2

to stabilise the metallic 1T polymorph over the 2H stable configuration. The authors

identify a dependence of the bandgap from the TM-site impurity concentration, devising a

strategy to tune the electronic properties for tailored applications. In another example,

Burton and Singh [47] studied substitution on the chalcogenide site and computed the finite-

temperature phase diagram of the alloys MoS2−2xTe2x. The authors show an intriguing

coexistence of incommensurate orderings up to 600 K before disordered structures are

stabilised by entropy.

While no coherent knowledge of substitutional alloys in TMDs is found in literature,

it is possible to adapt findings from oxides and metals, keeping in mind the different

type of bonding occurring in this system. While in metal alloys interactions shaping the

configurational landscape are defined mainly by the direct overlap of electron orbitals,

the situation in chalcogenides is different due to the small size of the d orbitals of cations

compared to distances between them in the anion framework. In compounds of the form

MxN1−xX2, M and N being transition metals, the covalent nature of bonds between metals

and chalcogenides means interactions between metal cations in the sub-lattice is mainly

mediated by the chalcogenide anion framework. Thus, the direct overlap of metal orbitals is

expected to be less pronounced, albeit more than in oxides where marked electronegativity

of oxygen anions results in more ionic bonds [46]. Charge localisation resulting from the

covalent bonding, as opposite to delocalised metallic bonds, may result in electrostatic

interaction, as found in some perovskite systems [48], and magnetic effects [38]. While

these effects have a significant impact on the magnetic ground states in oxides [46], the

effect on the formation energy of alloys is of second order. Due to the less localised bonds

in chalcogenides compared to oxides, magnetic effects are expected to be less pronounced,

although they cannot be ruled out [38, 21]. On the other hand, less stiff chalcogenide-

metal bonds make them more prone to electron-lattice coupling effects, with anharmonic

effects like Jahn-Teller distortions potentially playing an important role in stabilising

orderings [49].

Interlayer The strong asymmetry in strength between intralayer and interlayer interac-

tions in layered materials makes it possible to play LEGO R© on the atomic scale, stacking

different crystals on top of each other in heterostructures, as shown in Fig. 1.10. Different

types of single layers can be mixed and matched to create new superstructures, termed
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heterostructures [25, 50, 51, 52]. A key feature affecting the behaviour of multi-layered

structures is the relative orientational mismatch between layers. While heterostructures

are intrinsically incommensurate due to the different lattice constants of the parent layers,

incommensurability can also arise in homostructrures due to relative misalignment of the

single layers [53].

PERSPECTIVE
doi:10.1038/nature12385

Van der Waals heterostructures
A. K. Geim1,2 & I. V. Grigorieva1

Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading
topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic
planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The
first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been
fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging
research area and identify possible future directions. With steady improvement in fabrication techniques and using
graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

G raphene research has evolved into a vast field with approxi-
mately ten thousand papers now being published every year
on a wide range of graphene-related topics. Each topic is covered

by many reviews. It is probably fair to say that research on ‘simple
graphene’ has already passed its zenith. Indeed, the focus has shifted
from studying graphene itself to the use of the material in applications1

and as a versatile platform for investigation of various phenomena.
Nonetheless, the fundamental science of graphene remains far from
being exhausted (especially in terms of many-body physics) and, as
the quality of graphene devices continues to improve2–5, more break-
throughs are expected, although at a slower pace.

Because most of the ‘low-hanging graphene fruits’ have already been
harvested, researchers have now started paying more attention to other
two-dimensional (2D) atomic crystals6 such as isolated monolayers and
few-layer crystals of hexagonal boron nitride (hBN), molybdenum
disulphide (MoS2), other dichalcogenides and layered oxides. During
the first five years of the graphene boom, there appeared only a few

experimental papers on 2D crystals other than graphene, whereas the
last two years have already seen many reviews (for example, refs 7–11).
This research promises to reach the same intensity as that on graphene,
especially if the electronic quality of 2D crystals such as MoS2 (refs 12, 13)
can be improved by a factor of ten to a hundred.

In parallel with the efforts on graphene-like materials, another
research field has recently emerged and has been gaining strength over
the past two years. It deals with heterostructures and devices made by
stacking different 2D crystals on top of each other. The basic principle is
simple: take, for example, a monolayer, put it on top of another mono-
layer or few-layer crystal, add another 2D crystal and so on. The resulting
stack represents an artificial material assembled in a chosen sequence—as
in building with Lego—with blocks defined with one-atomic-plane pre-
cision (Fig. 1). Strong covalent bonds provide in-plane stability of 2D
crystals, whereas relatively weak, van-der-Waals-like forces are sufficient
to keep the stack together. The possibility of making multilayer van
der Waals heterostructures has been demonstrated experimentally only

1School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK. 2 Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester M13 9PL, UK.

Graphene

hBN

MoS2

WSe2

Fluorographene

Figure 1 | Building van der Waals
heterostructures. If one considers
2D crystals to be analogous to Lego
blocks (right panel), the construction
of a huge variety of layered structures
becomes possible. Conceptually, this
atomic-scale Lego resembles
molecular beam epitaxy but employs
different ‘construction’ rules and a
distinct set of materials.
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Figure 1.10: Atomic scale LEGO R©

with 2D materials heterostructures,
adapted from Ref. [25]

The relative mismatch between layers, both for homo- and heterostructures, has

been related to a range of electronic and mechanical properties [54, 55, 56, 53, 57, 55,

58]. A flourishing new branch in the field of condensed matter, known as twistronics,

promises to allow fine-tuning of the electronic properties using the rotational misalignment

between layers [56, 26]. A notable example is the recent discovery of unconventional

superconductivity in bilayer graphene twisted at the magic angle of 1.1◦ [26]. Another

study found that the vertical conductivity of bilayer MoS2/G heterostructures varies by a

factor of five when imposing an angle of 30◦ between the layers [59]. Finally, a pioneering

work [53] showed that, by switching from commensurate to incommensurate orientation

in graphite systems, it is possible to achieve a state in which the coefficient of friction

vanishes, the so-called superlubric regime.

An often overlooked question in these novel twisted heterostructures is whether this

orientational ordering is stable and what underpins the energy landscape as a function

of the mismatch angle. Chapter 3 explores this problem by means of classical MD and

first principles calculations. While calculations are carried out on a specific system

(MoS2/graphene), the conclusions and the proposed generalisation of known epitaxy theory

are general in nature.

Synthesis of 2D Materials

Mono- and few-layer thick crystals are mostly obtained in two ways [60]: micromechan-

ical exfoliation and chemical vapour deposition (CVD). With the so-called Scotch-tape

exfoliation method [3, 61], crystalline flakes are removed from a bulk layered crystal and
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transferred to a substrate material. The method yields highly crystalline flakes, as the origin

is a fully crystalline bulk, but offers little control over the size and chemical composition.

LETTER
https://doi.org/10.1038/s41586-018-0008-3

A library of atomically thin metal chalcogenides
Jiadong Zhou1,15, Junhao Lin2,15*, Xiangwei Huang3, Yao Zhou4, Yu Chen5, Juan Xia5, Hong Wang1, Yu Xie6, Huimei Yu7,  
Jincheng Lei6, Di Wu8,9, Fucai Liu1, Qundong Fu1, Qingsheng Zeng1, Chuang-Han Hsu8,9, Changli Yang3,10, Li Lu3,10, Ting Yu5, 
Zexiang Shen5, Hsin Lin8,9,11, Boris I. Yakobson6, Qian Liu4, Kazu Suenaga2, Guangtong Liu3* & Zheng Liu1,12,13,14*

Investigations of two-dimensional transition-metal chalcogenides 
(TMCs) have recently revealed interesting physical phenomena, 
including the quantum spin Hall effect1,2, valley polarization3,4  
and two-dimensional superconductivity5, suggesting potential 
applications for functional devices6–10. However, of the numerous 
compounds available, only a handful, such as Mo- and W-based 
TMCs, have been synthesized, typically via sulfurization11–15, 
selenization16,17 and tellurization18 of metals and metal compounds. 
Many TMCs are difficult to produce because of the high melting 
points of their metal and metal oxide precursors. Molten-salt-assisted 
methods have been used to produce ceramic powders at relatively low 
temperature19 and this approach20 was recently employed to facilitate 
the growth of monolayer WS2 and WSe2. Here we demonstrate that 
molten-salt-assisted chemical vapour deposition can be broadly 
applied for the synthesis of a wide variety of two-dimensional 

(atomically thin) TMCs. We synthesized 47 compounds, including 
32 binary compounds (based on the transition metals Ti, Zr, Hf, V, 
Nb, Ta, Mo, W, Re, Pt, Pd and Fe), 13 alloys (including 11 ternary, one 
quaternary and one quinary), and two heterostructured compounds. 
We elaborate how the salt decreases the melting point of the reactants 
and facilitates the formation of intermediate products, increasing 
the overall reaction rate. Most of the synthesized materials in our 
library are useful, as supported by evidence of superconductivity in 
our monolayer NbSe2 and MoTe2 samples21,22 and of high mobilities 
in MoS2 and ReS2. Although the quality of some of the materials 
still requires development, our work opens up opportunities for 
studying the properties and potential application of a wide variety of  
two-dimensional TMCs.

Figure 1 proposes a general picture for the synthesis of two- 
dimensional (2D) TMCs using the chemical vapour deposition method, 
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of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore. 6Department of Materials Science and NanoEngineering and Department of Chemistry, Rice 
University, Houston, TX, USA. 7School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China. 8Centre for Advanced 2D Materials and Graphene 
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40 μm

Route I

Low growth rate

Route III

0.2 mm

Grain boundary

High growth rate

Route IIoute I Route II

SiO2

10 μm 50 μm

Route IVute III Route

SiO2

Evaporate

Metal precursor Chalcogen precursor

High mass flux Low mass flux

Oxygen Metal Chalcogen

Low growth rate High growth rate

Fig. 1 | Flow chart of the general growth 
process for the production of TMCs by the 
chemical vapour deposition method. The 
growth of 2D TMCs can be classified into four 
routes based on different mass flux of metal 
precursor and growth rate. High mass flux 
of metal precursor offers the opportunity to 
synthesize large-scale continuous monolayer 
polycrystalline films with small (route I) or 
large (route II) domains depending on the 
growth rate. On the other hand, low mass  
flux of metal precursor results in discrete 
single-crystalline monolayers with different 
sizes. Low growth rate leads to small crystal 
size with atom clusters decorated in the centre 
and edge of the monocrystal (route III),  
while high growth rate gives rise to large 
monocrystals (route IV).
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Figure 1.11: Sketch of the CVD techniques and resulting samples. Adapted from Ref. [23].

In CVD synthesis [62], sketched in Fig. 1.11, material precursors are evaporated,

channelled into a high-temperature chamber (400 ◦C÷900 ◦C), where they are then allowed

to recombine onto a substrate, usually silicon oxides. While samples obtained by CVD

are more prone to defects compared to exfoliated ones, high quality is achievable, and

using different precursors and protocols allows for great freedom in chemical composition

and sample sizes. In 2018, Zhou et al. [23] showed the power of CVD by compiling

an experimental library of known TMDs in monolayer form. The author showed how

having high level of control over the process allows for tuning between µm-sized high-

quality isolated flakes (right branch of Fig. 1.11) and full-coverage poly-crystalline layers

up to a fraction of mm in the lateral dimension (left side of Fig. 1.11). Moreover, the

authors show the capabilities of CVD to synthesise TMD alloys, e.g. MoxNb1−xS2, albeit

experiments provide little information about exact stochiometry or ordering of stable alloy

configurations. Shortly after the work by Zhou and coworkers, Shivayogimath et al. [63]

developed a modified CVD technique that could offer more control of TMD alloy synthesis.

The authors used an Au-M alloy as a substrate, where M is one of the metals in Fig. 1.6,

and subsequently exposed it to the chalcogenide precursor. The authors show that, since

Au shows low reactivity with chalcogenides, high-quality TMD flakes are formed on the

substrate. In principle, by using an alloy as a substrate, based on the TM in Fig. 1.6,

one could obtain TMD alloys using this technique. Preliminary tests are underway at a
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partner of the SOLUTION framework, the Forth laboratories in Patras, Greece, which

could validate the results shown in chapter 4.

TMD-based coatings used in industrial applications are mainly obtained from physical

vapour deposition techniques, like magnetron sputtering [64, 65]. The process is based

on precursor targets ionised by accelerated Ar ions and subsequently accelerated towards

a heated substrate by an electric field. The process is highly kinetic: ions impact the

substrate with kinetic energy in the order of 10 eV and have little time to diffuse and

recombine towards the thermodynamically stable phase. The result is the formation of

metastable amorphous films, like the one shown on the left of Fig. 1.12a. Since amorphous

films lack by definition periodicity, any model of such structures requires a large number

of atoms to be considered. The lack of periodicity puts amorphous film beyond the

reach of standard DFT techniques, requiring computationally more efficient approaches

like empirical potentials [66] or linear scaling DFT [67, 68]. Nonetheless, experiments

showed that amorphous coatings can re-organised in crystalline layers at the sliding

interface, see Fig. 1.12a [39]. Computational analysis showed that the heat at the sliding

interface promotes crystallisation towards thermodynamically stable structures while out-

of-equilibrium effects due to the moving interface can be neglected. Thus, simulations

utilising highly crystalline interfaces have implications for amorphous contact as well.

(a)

Structural Ordering of Molybdenum Disulfide Studied via Reactive
Molecular Dynamics Simulations
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ABSTRACT: Molybdenum disulfide (MoS2) is a well-known and effective lubricant that provides extremely low values of
coefficient of friction. It is known that the sliding process may induce structural transformations of amorphous or disordered
MoS2 to the crystalline phase with basal planes oriented parallel to the sliding direction, which is optimal for reducing friction.
However, the key reaction parameters and conditions promoting this structural transformation are still largely unknown. We
investigate, by employing reactive molecular dynamics simulations, the formation of MoS2 layers from an amorphous phase as a
function of temperature, initial sample density, and sliding velocity. We show that the formation of ordered crystalline structures
can be explained in the framework of classical nucleation theory as it predicts the conditions for their nucleation and growth.
These results may have important implications in the fields of coating and thin-film deposition, tribology, and in all technological
applications where a fast and effective structural transition to an ordered phase is needed.
KEYWORDS: molybdenum disulfide, ordering process, crystal formation, molecular dynamics simulations, classical nucleation theory

1. INTRODUCTION

Molybdenum disulfide (MoS2) is a material that has been
known since ancient times.1 It occurs in nature as the mineral
molybdenite. It has a characteristic layered structure, and within
the individual lamellae, the repetitive unit is a triangular
bipyramid with one molybdenum atom at the center and six
sulfur atoms on the vertices.2 Strong covalent bonds act within
the layers, whereas lamellae are held together with weak van der
Waals forces only.
The chemical and physical properties of molybdenum

disulfide have been exploited in many different fields. MoS2
has found wide application in catalysis (e.g., for the hydrogen
evolution,3 the hydrodesulfurization,4 the CO hydrogenation,5

and the photochemical water-splitting6 reactions), as a sensor
(for gases,7 proteins, and pH8), in the biomedicine area (e.g., as
an antibacterial agent9 and as a near-infrared photothermal-

triggered drug carrier for cancer therapy10), for the fabrication
of transistor devices11 and photovoltaic cells,12 and finally as a
solid lubricant under vacuum.13 For each application, a
particular structure is needed, including single- to few-layer
architectures, nanoobjects (e.g., fullerene-like or nanotube
particles), and materials exposing a large number of edge
sites. In this regard, different fabrication techniques have been
developed.14 Broadly speaking, for electronics, sensing, and
catalysis applications, wet chemistry or chemical vapor
deposition techniques are more often employed because they
allow us to produce materials with tailored structural properties.
On the other hand, in the tribological field, fabrication via

Received: November 24, 2017
Accepted: February 20, 2018
Published: February 20, 2018

Research Article

www.acsami.orgCite This: ACS Appl. Mater. Interfaces 2018, 10, 8937−8946

© 2018 American Chemical Society 8937 DOI: 10.1021/acsami.7b17960
ACS Appl. Mater. Interfaces 2018, 10, 8937−8946

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
SO

U
TH

A
M

PT
O

N
 o

n 
O

ct
ob

er
 1

6,
 2

01
8 

at
 1

6:
31

:4
1 

(U
TC

). 
Se

e 
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s. 

(b)

Figure 1.12: (a) High-Resolution Transmission Electron Microscopy (HRTEM) of a sputtered
WS2 coating at the sliding interface. The inset shows a magnification of the layered structure
emerging from the amorphous matrix at the contact; adapted from Ref. [39]. (b) Sketch of the
simulated re-crystallisation of MoS2, adapted from Ref. [66].

1.2 Tribology

In 1966, Jost et al. [69] coined the word tribology, which means the study of ‘rubbing’ when

two surfaces are in contact and in relative motion. It is estimated that 23% of the world’s

total energy consumption originates from tribological contacts [70], making the study of

friction a relevant field from an engineering perspective. While the classical way to address

this problem is via oil-based lubricants, these are linked to severe environmental problems

and are not suited for operating under demanding conditions, e.g. high temperature or

contact pressure [7]. A relevant example of an application of tribology, and specifically
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TMD-based lubricants, is spacecraft. In this context, the temperature can quickly shift from

a cryogenic regime to several hundred Kelvin, and the pressure ranges from atmospheric to

high vacuum, making conventional oil-based lubricants impractical [17]. In this case, solid

lubricants, in the form of a thin layer, or coating, deposited on the surfaces in contact,

provide a better technical solution. Frictional behaviour of 2D material also relates to the

development of Micro-Electro-Mechanical Systems or MEMS. These microscale systems

operate at nanometer precision and find applications as micro-actuators and sensors [71].

Considering the scale of these devices, the presence of liquid and devices to control them, like

pumps, is not advisable due to capillary effects and limited space on the device itself [72, 73].

Thus, these devices often require atomically thin layers of crystalline materials to ease

the movement of different components and to extend their lifetime [71]. Of course, there

are several drawbacks to solid lubricants. In general, they have low wear resistance and

are sensitive to environmental conditions [73]. For example, MoS2 is found to have an

increased coefficient of friction (CoF) in humid environments, whereas graphite requires

humidity to achieve low CoFs [73]. Moreover, applying and replenishing a solid lubricant

coating poses more difficulties than classical liquid-based counterparts [17].

To summarise, the ideal solid lubricant would have high wear resistance, low sensitivity

to environmental conditions, and a technologically convenient strategy for replenishing it

should be available [73]. The research for such materials is a material science problem,

as these problems and targets can be addressed by careful tuning of the chemistry and

structure of the materials [65, 64]. For example, it has been shown that Ti doping enhances

the tribological performances of MoS2-based coatings in humid environments [74], while

Ta additions help improve fatigue resistance [75]. While these two represent trial-and-error

experimental approaches, a theoretical investigation of underlying microscopic behaviour of

different dopants and alloys is lacking. The phase stability analysis presented in chapter 4

makes a step in this direction. The main aim of this first step is to provide experimentalists

with a guide in the chemical space of TMDs, identifying thermodynamically favoured

chemical orderings and crystal structures that are expected to form at the tribological

contact.

While the empirical laws of macroscopic friction are well known [76], the mechanisms

governing dissipation on the atomistic scale are still unclear [77, 78]. Moreover, a micro-

scopic understanding of the effect of chemical composition on friction is largely uncharted

territory [79, 80]. These open questions make the quest for a coherent theoretical framework

of friction an exciting field of physics. Such a framework would allow bridging the empirical

description routinely deployed at different length-scales [81], as sketched in Fig. 1.13.

This thesis alone will not provide such a framework. Nonetheless, section 6.2 presents

an extension of a known model based on novel frameworks, which allow for a coherent

evaluation from microscopic variables of thermodynamic quantities during violent frictional

events.
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away from the Hertzian theory of elastic contacting bodies and its limi-
tations (only accurate for small contact areas), progress has been made in
a number of other areas: these include, for example, layered and coated
systems, also in the presence of anisotropic and functionally graded
materials [53–61], contacts in the presence of sharp edges [62–65] and
conformal configurations [66]. Other examples of recent developments
in the field are the use of asymptotic analyses to study the stress fields and
sliding behavior associated with different contact configurations
[67–70], the study of contact in the presence of anisotropic and func-
tionally graded materials, and varying friction coefficient along the
interface in sliding and partial slip conditions [71]. In the case of the
normal contact of inelastic solids, significant developments have been
made since Johnson's core model of elasto-plastic indentation based, for
example, on the progress of instrumented nanoindentation in the last 25
years (see, e.g., [72–74]); issues of plasticity and material models are
discussed further in x3.4. Some progress has also been made on tangen-
tial loading and cyclic contact with the generalized solution of contact
problems characterized by time-dependent stick-slip transitions at the
macroscopic scale (see, e.g., Refs. [62,75–79]).

Somewhat in parallel to the above advances and studies, many de-
velopments in the study of nominally smooth contacts in the presence of
lubrication have also been made; these are discussed in x2.4 and x3.8.

On dynamic effects and impact, much work was published on the
rate-and-state friction (RSF) law (also discussed in x3.6.2) and Adams'
instability [80–82], while impact remains a somewhat separate and large
research area, with applications in different research areas and applica-
tions including powder technology, manufacturing processes and ballis-
tics [83–88]. Following the classical contributions by J.R. Barber on both
static and sliding contact reviewed in Johnson's book, new refined so-
lutions and finite element formulations have appeared on thermoelastic
contact (see, e.g., recent contributions [89,90] and further discussion in
x2.6).

Moving on to applications strongly linked to the development of
contact mechanics methodologies, various advances have been made. An
example is the development of various techniques used to individually or
simultaneously study various aspects of fretting fatigue, such as stress
gradients, fatigue, surface damage and wear [91–96]. Progress has also
been made in the study of rolling contact of elastic and inelastic bodies
(shakedown, ratchetting, etc.) and rolling contact fatigue (see, e.g.,
[97–104]). Calendering, i.e. the elastic-plastic rolling of strips have also
seen some developments [105].

On the topic of contact mechanics of rough surfaces, the seminal work
by Greenwood and Williamson (GW) [7] forms the basis for a number of
multi-asperity models (discussed critically in x2.1.2). Among many sub-
sequent analytical models, some were developed based on the analysis of
two or more scales, adding for example the periodic microgeometry of
multi-layered elastic or viscoelastic half spaces to study normal contact
and friction in the presence of coatings [106,107] or adhesion and
lubrication [108,109]. Interestingly, one of the most popular theories
after the GW is that of Majumdar and Bhushan [110], where Korcak's law
was used to define a power law distribution of contact spots, a “bearing
area” result very much in contrast with the present understanding of the
contact area being formed by “resolution-dependent” contact spot sizes.
This view of “magnification-dependent” solution is not too different from
the original Archard model [111] of spheres sitting on top of spheres, or
work on fractal description based on a Weierstrass series within the
elasticity assumption to obtain the result that the contact area decreases
without limit as the resolution (or magnification) is increased [112].

The alternative to the solutions proposed in the methodologies to
study rough contacts reviewed above is Persson's theory [8], which has
become the basis of another class of models, in which the stress proba-
bility distribution is considered as a function of the surface resolution
under examination. The tribology community still uses both the GW and
Persson approaches to model rough contact based on considerations of
accuracy and simplicity which may well reflect the corresponding
physics and engineering perspectives. The GW and Persson models are
introduced in more detail next; a comparison between them in the
context of the recent contact-mechanics challenge [113] is given in x3.5,
while the topic of roughness itself is described extensively in x3.2.

2.1.2. Multi-asperity models and Persson's theory: an introduction
The nature and various representations of surface roughness, dis-

cussed in more detail in x3.2, have been central to the prediction of
tribological quantities ranging from the true area of contact –in contrast
to the apparent or effective area– to the normal, friction and adhesion
forces, as well as phenomena such as electrical conductance and perco-
lation. Starting from the simplest problem definition of normal contact
between two rough surfaces in the absence of other phenomena, two
seminal works have formed the backbone of research in the field: the
Greenwood-Williamson (GW) model [7] and Persson's theory [8]. These
are introduced below, while the results of a recent contact-mechanics
challenge are summarized in x3.5, extending beyond predictions of the

Fig. 1. A time-vs. length-scales map of models developed in tribology highlighting the intrinsic link between multiscale/physics that needs to be captured to provide
predictive tools for engineering applications. Illustrations from simulations performed by the authors.

A.I. Vakis et al. Tribology International 125 (2018) 169–199

171

Figure 1.13: Approaches deployed at different scales to model frictional behaviour. Adapted from
Ref. [81]

Friction Laws From a scientific point of view, friction, and more specifically ‘dry’ friction,

is the thwarting force opposing the sliding motion between two solid surfaces in contact,

as a result of the dissipation of energy (e.g. mechanical energy that is transformed into

heat) and an irreversible loss of momentum [82]. In the empirical Amontons-Coulomb (AC)

model [83, 84], friction is defined as the force opposing the relative motion of two objects.

This is not a fundamental force, and it is artificially introduced in the equation of motion

with suitable empirical coefficients. The AC model defines two different kinds of frictional

forces: the static friction Fs and the dynamic friction Fd. The former describes the force

barrier that a body in contact with another must overcome to start moving. The threshold

to the body in motion depends linearly on the applied load:

Fs = µsFn, (1.1)

where µs is the static friction coefficient of the system, which depends on the materials in

contact, the temperature, the possible pressure and type of lubrication. A similar relation

holds for the dynamic friction, which applies when the two bodies are in relative motion:

Fd = µdFn, (1.2)

where µd is the dynamic friction coefficient, found to be smaller than the static one. In

this simple model, both coefficients are constant. They are independent of the environment

in which the sliding takes place, e.g. temperature and contamination. Moreover, the

characteristics of the contact, i.e. sliding velocity and contact area, are not considered

either.
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1.2.1 Nanotribology

The familiar friction experienced at the macroscale arises from a set of different phenomena

occurring at the microscopic sliding interface. When zoomed in, the apparent flat surfaces

of the two macroscopic objects in contact appear as rough surfaces with multiple points of

contact, as illustrated by the yellow and grey regions in Fig. 1.14. At this scale, processes

take place at a set of contact points, termed asperities, rather than a single contact.

Fig. 1.14 illustrates the processes that are captured by the umbrella term tribology: from

fast quantum and electronic effects, happening on the order of picoseconds, to slower wear

and ageing processes, stretching up to seconds. Moreover, most of the phenomena are

out-of-equilibrium processes, where thermodynamics formalism finds limited applicability,

or its meaning is ambiguous.

friction of rocks (as well as their fracture) is a very scale-dependent
phenomenon [334] that is intimately linked to the probability of pres-
ence of critical defects in a given volume. The related key question in this
example would be: what are the features of real earthquakes, which can
be reproduced in the lab? Also, can multiscale models tuned at the lab
scale, e.g., Ref. [335], be used at earthquake scales? Further research on
scale separation in contact interactions is required to guide the choice of
the most appropriate computational method preserving the accuracy of
the description of a given physical problem while considering the effect
of inherent uncertainties.

3. Research themes in tribology

The problem of normal contact between rough surfaces has been
studied extensively –for example, the reader is referred to a recent paper
on a contact-mechanics challenge whose results are summarized in x3.5–
and can be considered to be well understood, but almost all other issues
in tribology remain open for future research. While different theories,
techniques and models used to investigate these issues were reviewed in
x2, this section introduces active topics for modeling research in
tribology. As a foreword, let us emphasize that, since the global forces
acting on an interface are integral quantities along the interface (for
example, the friction force is the integral of the shear stress over the
contact area), various models can predict rather similar forces using
different assumptions. Comparisons of models to experiments are
therefore necessary, not only in terms of global forces but also in terms of
local measurements, for instance, of temperature, strains or the real area
of contact. Multiple successful examples of such comparisons can be
found in the literature [336–346]. Local measurements become
increasingly accessible due to the miniaturization of local probes and the
development of full-field evaluation techniques like Digital Image Cor-
relation (DIC) [347] or infrared imaging [348]. Imaging techniques are
especially interesting for performing local measurements at a contact
interface in a non-invasive way, but the choice of possible materials is
limited as they must be transparent to the radiation used (e.g., visible or
infrared light). In this context, wherever relevant, we will also present
experimental results that are amenable to direct comparison with
models.

3.1. Multiphysical phenomena in tribology

All tribological phenomena happening near interfaces between solids
are determined by the atomic interactions within and between solids, as
well as those between atoms of the substances present at the interface.
Since these interactions give rise to various physics described at the
macroscale by different theories and models, the tribological interface

can be considered a “paradise” of Multiphysics (coupled multiple fields;
see Fig. 2). The following types of phenomena may take place in such an
interface or in its immediate vicinity: mechanical (solid and fluid),
thermal, electro-magnetic, metallurgical, quantum and others.

Mechanical phenomena can refer to the mechanical deformation of
solids and their contact interaction including adhesion and friction. The
process of material removal or surface deterioration (micro-cracking,
abrasive and adhesive wear) can be also included within this type.
Thermal phenomena are related to heat transfer from one solid to
another, as well as to heat generation due to interfacial friction or due to
dissipation in the bulk (viscoelasticity, viscoelastoplasticity, damage
accumulation or micro-fractures): heat exchange can be either ballistic or
diffusive depending on the size of contact spots [349–351], while radi-
ative and convective heat exchange also contribute considerably to the
overall heat conductance [352]. The local heating of contacting asper-
ities up to the point of local melting, recognized in early tribological
studies [353] and known as flash-heating, has important implications for
friction, especially in dry contacts [354,355]. Metallurgical phenomena
happening in near-interface layers span various microstructural changes
that are, either, triggered by changes in temperature (e.g., because of
Joule or frictional heating) or by severe deformations, and include dy-
namic recrystallization and various phase transformations; an example is
the formation of the so-called “white layer,” a fine-grained and rather
brittle martensitic layer [356].

For materials experiencing glass transition, the local rise in temper-
ature can be critical for their mechanical performance [357]: in general,
mechanical properties are strongly dependent on the temperature, thus
making the thermo-mechanical problem one of the most natural and
strongly coupled multiphysical problems in tribology, especially in dry
contact or in the mixed lubrication regime. Because of excessive local
heating, the solids can reach their melting or sublimation point and
experience phase transition [353]; thus, melting, evaporation and sub-
limation appear to be important phenomena in dry and lubricated
micromechanical interactions. More complicated physics emerge for
composite and porous materials; examples of the latter are rocks expe-
riencing chemical decomposition, water evaporation, pressurization, and
so on [358,359]. A complex interaction of the aforementioned physics
with a fluid present in the interface is another strongly coupled multi-
physical problem, especially for EHL (see x2.4 and x3.8), sealing appli-
cations and saturated fractured media [360–362]. In most situations, the
interfacial fluid flow can be considered as a thin flow that can thus be
properly described by the Reynolds equation but, in the case of the fluid
viscosity depending on the pressure (piezoviscosity) or temperature, a
consistent development of the Navier-Stokes equations for thin flow
should be performed with a priori included pressure dependence in the
original equation and not directly into the Reynolds equation [363].

Fig. 2. A scheme representing the multiphysical nature of tribological interactions: two different solids with rough surfaces and relevant material microstructures are
brought into mechanical contact and exposed to various loads: mechanical, thermal, electric, and environmental.

A.I. Vakis et al. Tribology International 125 (2018) 169–199
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Figure 1.14: Phenomena occurring in a tribological contact formed by two rough surfaces (gray
and orange regions). Adapted from Ref. [81]

Whether the AC model applies at the nano- and micro-scale is an ongoing debate.

While it assumes the friction coefficients µi to be constant, it has been observed that they

can vary with contact characteristic [81, 82]. Moreover, the frictional force at nanoscale

has been shown to depend on the contact area [85, 86, 87], while the AC model assumes a

linear relationship between load and force, Eq. (1.1) and (1.2), independent of the contact

area. In the case of static friction, ageing of the contact results in µs increasing [88]. In

the case of kinetic friction, µd decreases with increasing sliding velocity [81, 82]. Ad hoc

corrections to the AC model can account for this [81]. On the other hand, Mo et al. [85]

argued that the linear AC relation might be valid at the nanoscale given a correct definition

of the area of contact. The authors showed with numerical calculations that AC still

applies if the contact area is defined in terms of the atoms chemically interacting at the

contact, shown as red dots in Fig. 1.15. This yields the relation Fd = τ
∑
Aatom, where

τ is an effective shear strength for the contact and Aatom is the average surface area per

atom (gray hexagons in Fig. 1.15), in contrast with the result of Bowden and Tabor [87]

Fd = τ
∑
Aasp, where Aasp is the single asperity area, which is the region enclosed by the

black polygon in Fig. 1.15, clearly different from the sum of the hexagons representing the
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area per atom.

sliding under a normal load and we determine the dependence of fric-
tion force on the applied load, contact area, and on the presence of
adhesion at the interface. We focus on amorphous carbon tips and
diamond samples (Fig. 1a), both terminated with hydrogen, because

of the availability of experimental data20 that can be used for compar-
ison. We use realistic force fields26, spherical tips that are allowed to
deform together with the sample and that have curvature radii R of up
to 30 nm (see Supplementary Fig. S1), and the simulations are per-
formed at the temperature of 300 K. The force fields consist of short-
range chemical interactions and long-range van der Waals interactions.

Defining contact area is one of the major challenges for understanding
friction in nanoscale contacts. Because fundamentally contact is formed
by atoms interacting across the interface (Fig. 1b), we define a real contact
area to be Areal~NatAat, where Nat is the number of atoms of the sample
within the range of chemical interactions from the tip atoms and Aat is the
average surfaceareaper atom. Incontinuummechanics Aasp isdefined by
the edge of the contact zone. The definition of the contact edge becomes
ambiguous when the atomistic nature of the interface dominates its
physical behaviour27,28. Here, we define Aasp to be the area enclosed by
a convex hull around atoms in contact, as shown in Fig. 1c.

We first perform molecular dynamics simulations of normal load-
ing and friction in the absence of van der Waals forces. Because both
the tip and the sample are passivated with hydrogen atoms, adhesion
due to short-range chemical forces is negligible. In this case a non-
adhesive single asperity (Hertz) model is expected to apply, that is,

Aasp~p 3R=4E!ð Þ2=3L2=3, where E!~ 1{n2
1

! "
=E1z 1{n2

2

! "
=E2

# ${1

is the effective modulus of the contact, E1 and E2 are the tip and the
sample Young’s moduli, and n1 and n2 are the tip and the sample
Poisson’s ratios, respectively. With the additional assumption of
Ff ~tAasp, the Hertz model predicts that Ff!L2=3. Our calculations
show that Aasp!L0:7 and Ff!L (Fig. 2a), which yields Ff=tAasp.
Additionally, even though Aasp obtained in simulations shows
approximately the same 2/3 power-law dependence on L as in the
Hertz theory, the effective modulus E* values calculated from fitting
the Hertz model to the simulation data are 61% smaller than the
value calculated directly from the definition of E* (see Supple-
mentary Methods). Our results confirm the conclusions of other
authors that single-asperity theories break down at the nanoscale1,5.
To account for the fact that Ff is not linear with Aasp, Wenning and
Müser25 suggested that t is not a constant, but varies with contact
pressure. Other authors proposed an empirical model in which
mechanics of a nanoscale non-adhesive contact is controlled by load,
that is, Ff ~mL and the contact area is undefined and unnecessary5,29.

We argue that the break-down of single-asperity theories of friction
is due to the fact that at these length scales the real contact area Areal is
different from Aasp (see Fig. 1c) and that friction laws should be defined
in terms of Areal. Our simulations show that Areal!L (Fig. 2b) and
Ff ~tAreal with constant t (Fig. 2c), which is consistent with the rela-
tion Ff!L (Fig. 2a). As shown in Table 1, friction force is now pro-
portional to contact area at all length scales as long as the contact area is
correctly defined at each length scale. Also, realizing that it is Areal (or,
more fundamentally, Nat) that controls friction at the nanoscale, we
can now understand why Ff!L. Such linear dependence is character-
istic of rough contacts (Table 1) and in our case is a result of atomic
roughness, as shown by the fact that Areal=Aasp. The above results
demonstrate that a nanoscale contact, which had been previously
viewed as a single entity, consists of yet smaller contacts of atomic size.
Macroscale roughness theories can be applied to describe the beha-
viour of nanoscale contacts (see Supplementary Methods).

We investigate the effect of van der Waals adhesion on contact beha-
viour by adding these forces to the tip–sample interactions and by
performing additional molecular dynamics simulations. As shown in
Fig. 3a, the relation Ff ~tAreal still holds, which demonstrates that
friction is controlled by the short-range (chemical) interactions even
in the presence of dispersive forces. However, unlike the non-adhesive
case, here Ff is a sublinear function of L (Fig. 3b), which is consistent with
predictions of adhesive single-asperity models (see Table 1). We fit Ff (L)
to the Maugis–Dugdale model using a convenient approximation pro-
posed by Carpick, Ogletree, and Salmeron (COS)30 and later physically
justified by Schwarz31. The fits show an excellent agreement with both

a

b

c

Atoms in contact

Surface area per atom

Contact edge

Figure 1 | Contact between an amorphous carbon tip and a diamond
sample. a, Far view, showing contact geometry. Golden and red atoms
correspond to C and H, respectively. b, Close view. Solid red and golden
sticks represent covalent bonds. Translucent pink sticks represent repulsive
interactions. c, Contact area definitions. Red circles represent sample atoms
within the range of chemical interactions from tip atoms. Contact area per
atom Aat is represented by grey hexagons. Real contact area Areal is the sum of
the areas of hexagons. The contact area Aasp of an asperity is enclosed by the
edge (solid line) of the contact zone.
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Figure 1.15: Asperity contact area (en-
closed by black line) and atoms forming
the real contact (red dots). Adapted from
Ref. [85]

As hinted by this summary, the problem of surface roughness is a complex field, at

the interface between atomistic, nanoscale tribology (≈ 10−9m) and continuum, mesoscale

tribology (≈ 10−4m [89]). The common approach in nanotribology is to focus on a single

asperity contact, limiting the size of the system to 10−9 ÷ 10−7 m and 10−9 ÷ 10−4 s. This

single asperity can be modelled as a point-like object sliding over a substrate, allowing

for an efficient description of the substrate and long-dynamical response [90, 91], or as

two locally flat crystalline surfaces, focusing on contribution to the friction of intrinsic

properties of the material [92, 93]. As sketched in Fig. 1.13, phenomena in this realm

are described employing different techniques. Out-of-equilibrium effects are described by

classical Molecular Dynamics (MD) simulations, powered by carefully parametrised classical

potentials, termed Force Fields (FF), [94, 95], or by low-order models, such as the Prandtl-

Tomlinson (PT) model [96, 77]. Descriptors based on electronic structure calculations,

like Potential Energy Surfaces (PES) [93, 97] or phonon-based quantities [80, 98] tackle

intrinsic friction properties.

Friction Force Microscopy The most common methods to investigate nanoscale fric-

tion is Atomic Force Microscopy (AFM), first proposed in 1986 by G. Binnig et al. [99] as

a modification of Scanning Tunnelling Microscopy. The working principle of AFM is shown

in Fig. 1.16a: an atomically sharp tip (≈ 10 nm [100]) slides over a substrate, yielding Å

resolution of the topography [99]. Shortly after the work of Binning and coworkers, Mate et

al. [101] were the first to develop a modified version of the AFM to observe the atomic-scale

friction of a tungsten tip on a graphite surface. The authors’ Friction Force Microscopy

(FFM) exploits the lateral deflection of the tip to measure the force opposing the sliding of

the tip over the substrate [101]. The simplest way to model FFM experiments is via a PT

model, which can qualitatively explain the bulk of the frictional behaviour [90, 102, 103].

Nowadays, large-scale atomistic simulations allow the explicit description of an entire AFM

tip explicitly, shedding light on mechanisms which are not describable by PT-like models.

For example, it is possible to investigate the role of the finite size of tips and mechanical

properties in the formation/rupture dynamics of contacts and as channels for dissipation



16 Chapter 1 Introduction

and wear [104].
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FIG. 1. Description of the principle operation of an STM
as well as that of an AFM. The tip follows contour B, in one
case to keep the tunneling current constant (STM) and in
the other to maintain constant force between tip and sample
(AFM, sample, and tip either insulating or conducting).
The STM itself may probe forces when a periodic force on
the adatom 3 varies its position in the gap and modulates
the tunneling current in the STM. The force can come from
an ac voltage on the tip, or from an externally applied mag-
netic field for adatoms with a magnetic moment.

A: AFM SAMPLF
B: AFM DIAMOND TIP
C: STM TII (Au)
LI: CANTILEVER,

STM SAMPLE
E: MODULATING PIEZO
F: VITON

.25 mm
DIAMOND

TIP
.8 mm

LEVER
{Au- FOIL)~

FIG. 2. Experimental setup, The lever is not to scale in
(a). its dimensions are given in (h). The STM and AFM
piezoelectric drives are facing each other, sandwiching the
diamond tip that is glued to the lever.

required to produce these displacements is 2&& 10 ' N
and this is reduced by 2 orders of magnitude when a
cantilever with a 0 of 100 is driven at its resonant fre-
quency.
AFM images are obtained by measurement of the

force on a sharp tip (insulating or not) created by the
proximity to the surface of the sample. This force is
kept small and at a constant level with a feedback
mechanism. %hen the tip is moved sideways it will
follow the surface contours such as the trace 8 in Fig.
1.
The experimental setup is shown in Fig. 2. The can-

tilever with the attached stylus is sandwiched between
the AFM sample and the tunneling tip. It is fixed to a
small piezoelectric element called the modulating
piezo which is used to drive the cantilever beam at its
resonant frequency.
The STM tip is also mounted on a piezoelectric ele-

ment and this serves to maintain the tunneling current
at a constant level. The AFM sample is connected to a
three-dimensional piezoelectric drive, i.e., the x,y, z
scanner. A feedback loop is used to keep the force
acting on the stylus at a constant level. Viton spacers
are used to damp the mechanical vibrations at high fre-
quencies and to decouple the lever, the STM tip, and
the AFM sample. The tip is brought in close proximi-
ty to the sample by mechanical squeezing of the Viton
layers. High-frequency ( ) 100 Hz) filtering of build-
ing vibrations is done as in the pocket-size STM' with
a stack of metal plates separated by Viton.
We have operated the AFM in four different modes

which relate to the connections of the two feedback
circuits, one on the STM and the other on the tip. All
four of these modes worked in principle. They each
served to maintain a constant force, fo, between the
sample and the diamond stylus while the stylus fol-
lowed the contours of the surface.

In the first mode we modulated the sample in the z
direction at its resonant frequency (5.8 kHz). The
force between the sample and the diamond stylus —the
small force that we want to measure —deflects the lev-
er holding the stylus. In turn, this modulates the tun-
neling current which is used to control the AFM-
feedback circuit and maintain the force fo at a constant
level.
In the second and third modes, the lever carrying the

diamond stylus is driven at its resonant frequency in
the z direction with an amplitude of 0.1 to 10 A. The
force, fo, between sample and stylus changes the
resonant frequency of the lever. This changes both
the amplitude and phase of the ac modulation of the
tunneling current. Either of these can be used as a sig-
nal to drive the feedback circuits.
In the fourth mode we used one feedback circuit. It

was connected to the AFM and it was controlled by the
tunneling current in the STM. This system maintained
the tunneling gap at a constant level by changing the
force on the stylus.
The fourth mode was further improved by reconnec-

tion of both feedback circuits in such a way that the
AFM sample and the STM tip were driven in opposite
directions with a factor n less in amplitude for the
STM tip. The value of a ranged from 10 to 1000.
In contrast to previous methods, the absolute value

of fo, the force on the stylus, was not well defined ex-
cept at the beginning of the measurement. The defor-
mation of the spring, 4z, is we11 calibrated at the start-
ing point, but as the measurement proceeds each com-
ponent of the system moves in an unknown way be-
cause of thermal drifts. These change the initial cali-
bration. Additionally, we know that the three-
dimensional motion of the AFM sample must produce
modest amounts of change in Az so as to compensate
for the simultaneous motion of the stylus as it follows
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ABSTRACT: We study nanoindentation and scratching of graphene-
covered Pt(111) surfaces in computer simulations and experiments. We
find elastic response at low load, plastic deformation of Pt below the
graphene at intermediate load, and eventual rupture of the graphene at
high load. Friction remains low in the first two regimes, but jumps to
values also found for bare Pt(111) surfaces upon graphene rupture. While
graphene substantially enhances the load carrying capacity of the Pt
substrate, the substrate’s intrinsic hardness and friction are recovered
upon graphene rupture.

KEYWORDS: Graphene, friction, nanoindentation, nanoscratch, rupture, wear protection

Carbon coatings (such as diamond-like carbon1,2 and
polycrystalline diamond films3,4) are frequently used to

achieve ultralow friction5,6 and enhance the lifetime of parts in
technological applications.7,8 In some devices (e.g., micro9- or
nano-10 electro-mechanical systems), space for protective
coatings is limited and therefore carbon coatings with only a
few nanometers thickness are needed. For instance, data
storage with information densities exceeding 1 TByte/inch2

requires extremely small gaps (<3 nm) between the soft
metallic magnetic stack and the read head.11 The trend for such
miniaturization culminates in the quest for the thinnest carbon
protective coating that still reduces friction and wear, functions
as oxidation barrier, and resists high enough temperatures (e.g.,
for heat-assisted magnetic recording12,13). Because of its atomic
thickness,14 its high thermal conductivity,15 and its superior
mechanical strength16 (with a Young’s modulus of 1 TPa and
breaking strength of 130 GPa), graphene can be considered the
thinnest tribological coating.17 Experimental studies have
investigated friction in tribo-systems with graphene (either
supported by a substrate,18− 20 as part of a composite material,21

or as an oil additive22,23) and most of them report ultralow
friction17,18,20,24,25 or even superlubricity26 sometimes accom-
panied by wear reduction.22,23 On the other hand, under higher
loads rapid degradation of graphene has been ob-
served17,20,27− 29 contrary to expectations based on its record-
breaking mechanical properties.
Because metallic tribocontacts are employed in the majority

of technological applications, it is especially interesting to
investigate the tribological properties of graphene in contact

with metal surfaces such as Cu30,31 or steel.22,23 On metals,
wear protection strongly depends on the experimental
conditions: graphene layers that have been grown on substrates
provide limited wear protection,30 while graphene dispersed in
a lubricant can act as antiwear additive.22,23 In order to
rationalize such controversial results a fundamental under-
standing of the atomistic processes governing the tribology of
metal-supported graphene is mandatory. Apart from a strongly
idealized molecular dynamics simulation that relates wear of
graphene on rigid substrates to its amorphization,32 a molecular
dynamics simulation of multilayer graphene on rigid substrates
that reports a decrease in contact stiffness with number of
layers,33 and some work on free-standing graphene,34 a faithful
atomistic modeling that elucidates the tribological behavior of
graphene on realistic metallic supports is still lacking.
This Letter intends to close this gap by reporting atomistic

nanoindentation and nanoscratch simulations of graphene
supported by a single crystal platinum substrate. In
combination with accompanying friction force microscopy
(FFM) experiments on the same materials system, we shed
light on the friction reduction, wear protection, and final failure
of metal supported graphene. Our simulations employ realistic
substrates (that can deform plastically) and a realistic
interaction model for the graphene sheet (that can fracture).
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Figure 1.16: (a) Sketch of the AFM idea of a tip sliding at speed v over a substrate material.
Adapted from Ref. [99] (b) Finite AFM tip sliding at speed v over a graphene layer protecting a Pt
metal substrate. Adapted from Ref. [104]

Non-linear dynamics

As sketched in Fig. 1.14 a contribution to frictional dissipation is energy dissipation,

transforming the kinetic energy of the sliding bodies into forms of heat. These are out-

of-equilibrium processes challenging the classical thermodynamic framework. A vital

distinction runs between dissipative phenomena related to linear- or non-linear dynam-

ics [105]. Linear dissipation can be addressed with linear response tools, which, in simple

cases, allow for analytical solution [78]. On the other hand, non-linear dynamics pose theo-

retical problems [105]. A classic example is the stick-slip dynamics observed in crystalline

interfaces: the contact alternates for long time periods around the energy minima (stick)

with sudden snaps over the energy barrier in the PES (slip). These decoupled time scales

between stick and slip mean the linear response theory hypothesis of smooth deviation

from equilibrium behaviour is broken [105]. The stick-slip dynamics is thus usually treated

by direct integration of the equation of motion of empirical models, most notably the

PT model [106, 90, 103], mimicking a single asperity sliding over a substrate as sketched

in Fig. 1.17, and the Frenkel–Kontorova (FK) model [107, 108], describing an extended

contact (multiple asperities or a soft crystal) sliding over a rigid crystalline substrate.

Section 6.2 introduces a generalisation of the PT model based on state-rate theory and

stochastic thermodynamics [109] which provides a derivation of thermodynamic quantities

in non-equilibrium processes, e.g. entropy production, from microscopic variables.
1.3 Stick-slip sliding 13

Figure 1.7: (a) The Prandtl-Tomlinson model. A mass M is connected to a spring of constant K
and is dragged at constant velocity v while interacting with a sinusoidal periodic potential V (x)
of amplitude U and periodicity a, mimicking the sliding of an AFM tip over a one dimensional
periodic arrangements of atoms. (b) For sufficiently soft spring or strong substrate interaction
strength U , the trajectory of the mass displays stick-slip motion, where the particle remains
stuck in one minimum of the periodic potential until the increasing elastic force Fx induces a
fast slip towards an adjacent minimum.

stress. Once the external force exceeds the static friction threshold, the surface slides with a
lower kinetic friction as the liquid turns in the molten state. If the shear rate is sufficiently high
the film is not able to solidify and stick-slip motion is replaced by smooth sliding. The simplest
phenomenological model able to describe this situation assumes the dynamic friction Fd to be
linearly dependent on the sliding velocity v, Fd(v) = Av, while static friction is assumed to be
constant, Fs = B. Stick-slip is observed at low shear rates, as long as Fd(v) stays below the static
friction threshold, and disappears as soon as Av > Fs.

In surface roughness models, adhesion is neglected, and sliding is simply assumed to be im-
peded any time two asperities collide. When two asperities touch, the ensuing force experienced
by the slider will generally have both a component normal to the interface, and a component
parallel to the interface, and opposing the slider motion. In order to advance, the slider must
first climb up the substrate asperity – corresponding to sticking – before slipping in an adjacent
valley. The regularity of stick-slip motion is directly correlated with the regularity of the surface
roughness. The controlling factors of this type of stick-slip are the surface topology, i.e., the
periodicity and amplitude of the protrusions, and the elastic and inertial properties of the slider,
which determine the rate of slip. Stiffer materials, corresponding to high K, will generally show
shorter slip at a high rate because of the shorter “effective-spring” recoil to elastic equilibrium.
This also allows sticking to smaller asperities, resulting in a richer stick-slip spectrum. In the lim-
iting case of infinite stiffness, plastic deformations disappear, and the frictional trace approaches
a contour-trace of the surface topology, with a sensitivity limited by the characteristic size of the
protrusions. Surface roughness induced stick-slip is observed in the sliding of macroscopic rough
surfaces as well as in AFM experiments. In the latter case the tip simulates a single nanoscopic
asperity, and stick-slip results in a periodic trace with a spacing set by the lattice periodicity
of the substrate. The simplest model to describe the sliding of an atomically sharp tip over a
crystalline surface is the Prandtl-Tomlinson [81] (PT) model, shown in Fig. 1.7a. The PT model
consists of a mass M connected to a spring of stiffness K, moving at constant velocity v, and
subject to a sinusoidal periodic potential of amplitude U . The dynamical behaviour at fixed slid-
ing speed is determined by the ratio η = U/K, and by a phenomenological viscous term which

Figure 1.17: One-dimensional Prandtl-
Tomlinson model. A point-like mass M is
connected via a spring of constant K to a
body moving at constant velocity v while and
interacting with a static potential V (x) of
amplitude U and periodicity a, mimicking the
sliding of an AFM tip over an atomic surface.
Adapted from Ref. [110].
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Structural Superlubricity

Within the AC model, frictional response is defined by the dimensionless parameters

µs ≥ µd. For example, the dynamic coefficient of friction for wood planks in relative motion

is of 0.2 and larger, whereas for two metal surfaces it is 1.0 and larger [57]. For interfaces

treated with solid lubricant coatings, this can be lowered to 0.05 [7]. Assuming the AC

captures the dissipation at this scale, one may wonder how small these coefficients can be.

Going even further, can they physically be exactly zero, yielding dissipation-free interfaces?

lb K

la
U0

Figure 1.18: A sketch of the Frenkel-Kontorova model. A linear chain of point-like masses M
are connected via springs of constant K and equilibrium spacing lb. The masses interact with a
periodic potential V (x) of amplitude U0 and spacing la.

In 1983, Peyrard and Aubry [111] showed emergence of a state characterised by a van-

ishing static friction coefficient in the one-dimension incommensurate FK model, depicted

in Fig. 1.18. The core idea behind this free-sliding state is an underlying cancellation

of forces opposing the motion of the atoms from the ground state: for every atom going

up the substrate potential, there is always another atom somewhere in the infinite chain

going down, resulting in an exact energy balance and an unconventional ‘effective’ transla-

tional invariance. Numerical simulations have shown that the vanishing static friction is

accompanied by a small yet finite dynamic friction dissipation [112]. From an operative

and experimental point of view, the onset of the structural superlubricity is defined as the

friction coefficient falling below 10−4 ÷ 10−3 [72].

PERSPECTIVERESEARCH

discuss the main achievements and the state of the art, and foresee the 
challenges that are yet to be overcome towards achieving this goal. We 
aim to turn the attention of the scientific community to this phenomenon 
and to trigger new fundamental and applied research for its scaling-up 
to the macroscale.

The birth of structural superlubricity
The first theoretical prediction of such a state of vanishing static friction 
in crystalline interfaces was given by Peyrard and Aubry28 for infinite 
incommensurate contacts in 1983 (see Fig. 1). The term superlubricity  
was coined by Hirano and co-workers29 almost a decade later (see 
Fig. 1), referring to the suppression of stick–slip motion via the elimina-
tion of a particular energy dissipation channel related to elastic instabil-
ities. Such stick–slip dynamics, commonly associated with the squeaky 
sound of opening unoiled doors (widely used in horror movies), is a 
major source of energy dissipation, hence its suppression results in 
considerable reduction of dynamic friction. Nevertheless, in practice, 
there always exist alternative energy dissipation routes (for instance, 
the excitation of lattice vibrations induced by variations of long-range 
interactions) and wear mechanisms resulting in residual friction even 
in the absence of stick–slip motion. Therefore, unlike other critical 
phenomena, such as superconductivity and superfluidity, frictional 
energy dissipation never truly vanishes. In light of this, the criterion 
for the onset of superlubricity is commonly chosen as the reduction of 
the friction coefficient (the derivative of the friction force with respect 
to the normal load) to below 10−3–10−4.

Insight into the phenomenon of structural superlubricity can be 
gained by considering the interactions between two surfaces made from 
plastic foam, each bearing an ‘egg-box’ pattern of peaks and troughs 
(see Fig. 2a, b). When the corrugated surfaces of the two foams are put 
in registry, one can hardly induce lateral sliding because many high 
barriers have to be crossed simultaneously over the entire interface. 
Nevertheless, when one foam is slightly laterally rotated with respect 
to the other, the lattices are taken out of registry. In this case, when one 
surface slides upon the other some of its peaks are forced to climb uphill 
while others go downhill. For sufficiently large interfaces these local 
opposite motions result in effective cancellation of the global friction 
force. A similar mechanism holds true for micro- and nanoscale inter-
faces, with the corrugated foam surfaces being replaced by the potential 
energy landscape of the inter-surface interactions (see Fig. 2c).

Naturally, realistic material interfaces are more complicated than 
implied by the rigid egg-box foam model. Specifically, the elasticity 

of contacting materials may affect superlubric behaviour. Such effects 
are already appearing in single-particle phenomenological treatments 
such as the Prandtl–Tomlinson model, where a point mass, dragged 
by an external support via an elastic spring of stiffness k, slides atop a 
periodic sinusoidal potential of periodicity a0 and amplitude V0, rep-
resenting the underlying surface30,31. Here, a transition from stick–slip 
motion to smooth sliding occurs when the dimensionless parame-
ter η = 4πV0/(ka0

2) exceeds the critical value η = 1. At this point the 
mechanical instability resulting from the competition between the 
driving spring force and the opposing frictional force, exerted by the 
potential energy landscape, is eliminated. A more realistic description 
of contacting surfaces requires extension to a multi-particle treatment, 
such as the Frenkel–Kontorova model32. This introduces intra-surface 
elasticity that allows the slider atoms to accommodate to the underlying 
potential, as directly demonstrated by a recent experiment using cold 
atom chains residing on an optical lattice33. As a result, above a critical 
contact size that depends on the ratio between the intra-surface elas-
ticity and interfacial stiffness, locally commensurate regions may form, 
leading to pinning effects and enhancement of friction25,34–36. Notably, 
this theoretical prediction was recently verified experimentally37 for 
antimony particles sliding atop MoS2. We note that such pinning effects 
are not limited to the context of tribology but are of rather general 
nature and well known to the superconductivity community25,38. An 
important advantage of layered materials is their extremely stiff intra-
layer structure and low inter-layer potential energy surface corrugation 
that may shift the critical length to macroscopic scales.

Experimental evidence of structural superlubricity was reported as 
early as in 1993, for homogeneous MoS2 interfaces39. This was further 
supported by experiments on nanoscale heterogeneous MoS2/MoO3 
junctions, which exhibited the anisotropic friction characteristic of 
these systems40. A decade later (see Fig. 1), the first detailed experi-
mental exploration of the mechanisms of structural superlubricity in 
nanoscale graphitic contacts was undertaken, demonstrating control-
lable and reproducible superlubric motion41. This triggered extensive 
experimental investigations that resulted in promising realizations of 
superlubricity in microscopic graphitic contacts as well as in centimetre- 
long carbon nanotubes, as detailed below42–45. These impressive recent 
advances constitute important milestones towards the achievement of 
macroscale superlubricity, which holds great technological promise 
for the reduction of friction and wear in actual mechanical devices. 
Nevertheless, with increasing contact size, factors such as in-plane 
elasticity and out-of-plane corrugation as well as surface defects and 

Facing the future …

Birth

2004

Microscale

2012

1983–1991

Nanoscale

2015

Heterojunctions

2013

Multi-contacts

Fig. 1 | Timeline of major milestones in structural superlubricity 
research. The timeline starts with the first theoretical prediction 
of vanishing static friction, made in 198328, and the computational 
study of ultralow kinetic friction states in 199129 (‘Birth’). This is 
followed by the pioneering experimental demonstration of nanoscale 
superlubricity in graphitic contacts in 200441, which led to the first 
observations of microscale superlubricity in 201242 and to the suggestion 
of heterojunctions86 in 2013 and of multi-contact configurations7 in 
2015 (multi-contacts schematic image adapted with permission from ref. 7, 

American Association for the Advancement of Science) as possible routes 
to achieve robust superlubricity at large length scales. This path taken by 
the scientific community in recent years opens the door to the scaling-up 
of structural superlubricity towards the macroscale, with substantial 
technological implications and applications, such as solid lubricants 
for satellite solar panel motors operating under the extreme conditions 
encountered in space (‘Facing the future …’; satellite image adapted from 
https://www.nasa.gov/multimedia/imagegallery/image_feature_1314.html,  
NASA).

4 8 6  |  N A T U R E  |  V O L  5 6 3  |  2 2  N O V E M B E R  2 0 1 8
© 2018 Springer Nature Limited. All rights reserved.

(a)

not aligned here, because the scan piezo rotates to-
gether with the sample. A typical force loop is
shown in Fig. 5d, which was measured at a normal
force of 18 nN. The lateral force in Fig. 5d displays
clearly resolved atomic-scale stick-slip sliding and
the average friction force parallel to the sliding
direction is 203.3 ± 20 pN. Fig. 5b,e and c,f show
FFM measurement measured with the graphite
substrate rotated +12! and !22! with respect to
5a,d around an axis normal to the surface, and
parallel to the tip. The rotation by 12! has caused
the average friction force to reduce by more than
one order of magnitude, to 15 ± 15 pN. Rotating
22! away from the first measurement in the oppo-
site direction also has caused a reduction to
8þ16!8 pN, which is equal to zero friction within
the detection limit of our instrument. This varia-
tion of the friction force with angle U was com-
pletely reversible. Notice that the ultra-low
lateral forces in Fig. 5e and f still exhibit regular
variations with the periodicity of the graphite
substrate.

Fig. 6 displays the average friction forces mea-
sured over a 100! range of substrate rotation an-
gles. We recognize two narrow angular regions
with high friction, separated by a wide angular
interval with nearly zero friction. The distance be-
tween the two friction peaks is 61 ± 2!, which cor-

responds well with the 60! symmetry of individual
atomic layers in the graphite lattice. This result
corresponds precisely with the expectation within
the scenario of superlubricity. After every 60!

Fig. 5. Lateral force images (forward direction) and friction loops measured in the X-direction at 60! (a,d), 72! (b,e) and 38! (c,f)
rotation angle U. Normal force (a,d,c,f) FN = 18 nN; (b,e) FN = 30.1 nN. Grey scale (a) 590 pN, (b) 270 pN, (c) 265 pN. Image size
3 nm · 3 nm.

Fig. 6. Average friction force versus rotation angle U of the
graphite sample around an axis normal to the sample surface.
Two narrow peaks of high friction are observed at 0! and 61!,
respectively. Between these peaks a wide angular range with
ultra-low friction, close the detection limit of the instrument, is
found. The first peak has a maximum friction force of 306 ±
40 pN, and the second peak has a maximum of 203 ± 20 pN.
The curve through the data points shows results from a
Tomlinson model for a symmetric 96-atom graphite flake
sliding over the graphite surface (for details about the calcu-
lation see [39]).

M. Dienwiebel et al. / Surface Science 576 (2005) 197–211 205

(b)

Figure 1.19: (a) Adapted from Ref. [113]. (b) Friction signal in AFM experiments from graphene
flake on graphite as a function of the imposed rotation. Adapted from Ref. [114].

As a historical note, the term superlubricity was first introduced by Hirano and Shinjo

a decade after the Peyrard and Aubry paper, marking the official start of the quest to
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frictionless sliding, sketched in Fig. 1.19a Another decade later, experimental validation

of these theoretical predictions was given by Dienwiebel et al. [53]. Using AFM in high

vacuum, the authors measured the coefficient of friction between a graphite substrate and

a graphite-covered tip as a function of misalignment angle. Fig. 1.19b reports the frictional

signal versus the imposed angle. It shows how frictional forces away from the aligned

configuration, 0◦ and 60◦, are reduced below the accuracy of the instrument [53].

The experiment by Dienwiebel and coworkers shows how the argument underpinning

the Aubry argument in the 1D model is extended to higher dimensions. Consider two

atomically flat layers, free of contaminants and dangling bonds. The PES that the sliding

layer experiences, due to the presence of the static one, is purely the result of interatomic

interactions [57]. These electrostatic and van der Waals interactions result in preferential

positions and orientations of one surface atop another.

Superlubricity and 2D atomic materials: observation,
robustness, and demise
There are many alternative strategies for achieving ultralow
friction4,5. The most common example is lubricated friction,
where lubricant additives, polymer brushes, ionic liquids, or
hydration layers are used to provide ultralow friction and
remarkable durability of interfaces6–9. Notably, ultralow friction
can be achieved also in the absence of such lubricants. Thus,
amorphous carbon coatings can provide ultralow friction coeffi-
cients10–13, and they are already used in industrial applications,
including razor blades, magnetic hard drives, microelec-
tromechanical systems and more.

When dealing with well-defined mating interfaces, the idea of
nearly frictionless sliding, in both soft and hard matter contacts,
relies on the possibility to predict the physical response of a
system under shear based on interface geometrical features more
than upon distinct system-dependent characteristics. Structural
incommensurability, arising from surface lattice mismatch or

misalignment as shown in Fig. 2, can prevent interlocking and
collective stick-slip motion of interface asperities, with a con-
sequent vanishingly small frictional force. Beyond the intrinsic
interest for basic science research, the quest and design of
superlubric materials constitute a subject of practical importance
in nano- and micro-mechanics, aimed to significantly reduce the
friction, energy dissipation and wear in hi-tech devices func-
tioning at various length scales.

A route toward frictionless and wearless sliding: theoretical
prediction and nanoscale experimental observation. Aubry’s
pioneering study of the Frenkel–Kontorova (FK) class of
models14–18 in the physical context of frustrated incommensurate
structures and its connection to the renowned Kolmogorov–
Arnold–Moser framework of the onset of chaos in dynamical
systems19,20, is cast as one of the deepest achievements in recent
theoretical mechanics and dynamical systems theory.

Single-asperity atomic friction Nano-scale friction Meso-scale friction Microscopic friction
e.g., AFM probing
and manipulation

e.g., physisorbed graphitic-like nano-objects
and physisorbed islands

e.g., ion traps and colloidal suspensions e.g., long carbon nanotubes and
2D layered exntended mesas

Driving

Shearing

~nm ~mm10 – 100 nm 10 – 100 µm

System characteristic length scales in nano/microtribology

Fig. 1 Systems and length scales of nano/micro tribology: from single-asperity atomic contacts to microscopic sliding interfaces. The multifaceted
discipline of tribology starts, at the shortest scale, by the investigation, via proximal-probe techniques, of a single atomistically small contact as that
realized, e.g., between a sharp atomic force microscope tip, or a deposited molecule (reprinted (adapted) with permission from ref. 144. Copyright (2016)
American Chemical Society), and an underlying reference substrate. Entering into the nanoscale range of tens-of-nanometer extended adsorbates, such as
AFM-manipulated graphitic ribbons (reprinted (adapted) with permission from ref. 30. Copyright (2018) American Chemical Society) and metallic clusters,
or rare-gas islands sheared by a quartz-crystal microbalance, interface geometry and incommensurability features rule the frictional response. With
unprecedented real-time resolution processed at the single-particle level, the novel experimental mesoscale techniques of driven trapped cold ions and
colloids have recently made crucial systematic inroads in the physics of frictional phenomena. State-of-the-art technology and fabrication procedures,
especially in the realm of 2D layered materials (e.g., graphitic tubes and mesas), have nowadays offered tribology the chance to investigate atomistically
well-characterized mechanical contacts up to the millimeter range and beyond. With the exponential boost of computer power in the last decades,
numerical modeling and atomistic simulations are jointly advancing our theoretical understanding across all these length scales.

Commensurate Incommensurate

a b c

Fig. 2 Geometrical configurations at crystalline interfaces. Mating identical surfaces with the same lattice spacing (red and blue) may give rise to both
a commensurate interfaces when aligned and b incommensurate ones when orientationally misaligned at a misfit generic angle. c Structural
incommensurability may also emerge when dealing with crystalline lattice-mismatched surfaces (red and green). The overall geometrical features of the
contacting interface are captured in terms of the superstructure of the moire’ interference pattern.
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Figure 1.20: Schematic representation of different ways to position periodic surfaces above each
other. a) Homogeneous commensurate minimum energy configuration. b) Homogeneous incommen-
surate structure through a mismatch angle between the layers. c) Heterogeneous incommensurate
contact where both surfaces have the same symmetry but different lattice constant. Adapted from
Ref. [115]

Fig. 1.20 shows the possible ways in which the two atomic surfaces can be brought

into contact to form a tribological contact. Fig. 1.20a is a schematic of two identical,

aligned structures, positioned above each other, in a minimum energy configuration. This

orientation, where the bottom and top layer are aligned in the parallel plane, is called a

commensurate structure. As one might expect, this configuration is very stable, which

implies a relatively high resistance to making the top layer slide. This resistance is due to

the energy barriers resulting from the atomic interlayer interactions that all have to be

overcome simultaneously, causing high frictional forces in order to start sliding. Whenever a

misalignment angle between the relative orientation of the layers is introduced, as depicted

in Fig. 1.20b, the contact becomes incommensurate. As a result, pairs of atoms can be

found at any possible relative distance, bringing back the Aubry argument about cancelling

forces outlined at the beginning of the section. Rotating one of the two layers is not the only

way of achieving this symmetry breaking. If one, for example, considers a heterostructure

of two different materials, possibly with the same symmetry but with a different lattice

constant, the same effect can be achieved, see Fig. 1.20c. In conclusion, misalignment

angles or lattice mismatch introduce the structural incommensurability required by the
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Aubry theory and represent a possible pathway to achieving superlubricity in real contacts.

An example of robust superlubricity in mismatched heterostructures has been recently

reported by Song et al. [19]. The authors focused on hBN/graphene heterostructures,

which are characterised by a small mismatch of lhBN/lG ≈ 1.1. They tested the frictional

properties of extended contacts, (3 × 3µm2) flakes over a larger substrate obtained by

exfoliation methods, finding a vanishingly small frictional coefficient via AFM measurements.

MD simulations reproduced the observation and rationalised the finding. In commensurate

graphitic contacts, large dissipation is related to the stick-slip of the layers’ centre of mass

(CoM). On the other hand, in hBN/G heterostructures the CoM cruises over the substrate

undisturbed, while the small dissipation detected is due to internal degrees of freedom of

the layers [19]. Section 6.1 further explores the pathway towards robust superlubricity

by focusing on the large mismatch limit. The dissipation of MoS2/G heterostructures

lhBN/lG ≈ 0.8 is compared with the near-commensurate G/hBN case in a joint experimental

and computation work carried out in collaboration with groups in Prague, Czech Republic

and Beijing, China.

1.3 Aims

This project aims to study the phase behaviour and frictional properties of (novel) 2D

materials. Particular attention is given to the application of TMD as solid lubricants.

Numerical techniques can create fully controlled ‘in silico’ experiments, not only regarding

the environment but also the interactions within the system. They can thus act as

a magnifying lens for experiments and, by tuning the physics underpinning different

phenomena, test hypotheses in ways not possible in experiments. Thus, experiments and

theory do not exclude one another, but it is the synergy between them that creates real

scientific power.

The goal of the interlayer phase behaviour investigation is to understand the mechanisms

defining the energy landscape of heterostructures based on TMDs and other 2D materials.

In particular, the focus is on the dependence of energy on the imposed misalignment angle

at the base of the emerging twistronic field.

The in-plane phase behaviour investigation aims to develop a framework to understand

and predict the thermodynamic behaviour of substitutional alloys in TMDs. The knowledge

gained should help to identify possible binary alloys and predict their phase behaviour,

guiding synthesis efforts.

The goal of the investigation of nanoscale tribological contacts is to rationalise AFM

experiments, relating measured frictional forces to dissipation mechanism within the system

and with the surrounding. Thus, making a step in developing a fundamental understanding

of the lubrication mechanism, on which design of solid lubricants can be built.
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1.4 Thesis Outline

Most of this thesis represents a compilation of results presented or submitted to scientific

journals. It addresses the issues of phase stability and alloying in two-dimensional materials

and their frictional behaviour during dry sliding.

Chapter 2 presents the theoretical frameworks and numerical techniques deployed to

address these questions. Density Functional Theory was used to describe the electronic

structure and total energy of the crystalline system; it also represents the reference for

statistical mechanics models of formation energy and finite temperature behaviour.

Chapter 3 explores the problem of phase stability in heterostructures, focusing on the

rotational degree of freedom. The limits of a known theory of epitaxial stacking are tested

on a specific system. A novel argument rationalises the breakdown of the known theory,

and an extension of the known theory is outlined. This chapter is based on the publication

“Exploring the stability of twisted van der Waals heterostructures” by A. Silva, V. E. P.

Claerbout, T. Polcar, D. Kramer, and P. Nicolini, ACS Appl. Mater. Interfaces 12, 45214

(2020).

Chapter 4 reports a systematic analysis of phase behaviour of possible TMDs. Compu-

tational screening of selected TMs in known layered prototypes yields a bird-eye perspective

of possible alloys system. The chapter continues with a detailed analysis of selected stable

orderings and miscibility gaps in a set of ternary systems. This section is based on the

manuscript “High-throughput Design of TMDs Alloys” by A. Silva, T. Polcar, and D.

Kramer, in preparation for Npj Comput. Mater.

Chapter 5 builds on the protocol outlined in the previous chapter and presents an

in-depth analysis of the (Mo:Ti)S2 system, relevant to the tribology community. Zero- and

high-temperature behaviour is studied and rationalised in terms of electronic effects. This

chapter is based on the publication “Phase behaviour of (Ti:Mo)S2 binary alloys arising

from electron-lattice coupling” by A. Silva, T. Polcar, and D. Kramer, Comput. Mater.

Sci. 186, 110044 (2021).

Chapter 6 addresses the problem of simulating tribology experiments. Section 6.1

presents a joined experimental and computational characterisation of the frictional prop-

erties of large-mismatch heterostructures. The study focuses on describing scaling laws

of observed superlubricity, and the developed classical model rationalises the trends in

terms of enhanced flake-edge mobility. This section is based on the manuscript “Ultra-low

friction and edge pinning effect at large lattice mismatch van der Waals heterostructure

interfaces” by M. Liao, P. Nicolini, L. Du, J. Yuan, S. Wang, H. Yu, J. Tang, P. Cheng, K.

Watanabe, T. Taniguchi, L. Gu, V. E. P. Claerbout, A. Silva, D. Kramer, T. Polcar, R.

Yang, D. Shi and G. Zhang, under review in Nat. Mater.

Section 6.2 introduces a modified model for AFM measurements. The combination of

DFT-based material descriptions with stochastic thermodynamics allows for a coherent

description of the dissipation on single experimental trajectories. The results of the model

can be validated experimentally with known techniques. This section is based on the

manuscript “Multi-scale Model for Nano-friction Measurements” by P. C. Torche, A. Silva,
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T. Polcar, D. Kramer and O. Hovorka, in preparation for Phys. Rev. Mater.



22 Chapter 1 Introduction



2
Methods

The first three sections of this chapter are dedicated to the theoretical frameworks used to

describe the physics underpinning materials behaviour at different length- and time-scales.

The last section introduces the approximate models used to describe materials properties.

2.1 Density Functional Theory

The Density Functional Theory (DFT) is a formulation of the quantum theory of electronic

structure, in which the electron density n(r), rather than the many-electron wave function

Ψ, plays a central role. This alternative viewpoint, which earned Kohn and Pople the

Nobel Price in 1998 [116], is an exact formulation of the electron problem, but it also has

the advantage of providing a formalism that naturally lends itself to approximate solutions.

The starting point to introduce DFT is the standard formulation of the Schrödinger

equation for the wave function of a Ne-electron system within the Born-Oppenheimer

approximation:


∑

i

(
−h

2∇2
ri

2m
+ v(ri)

)
+
∑

ij

U(ri, rj)


Ψ(r1, ..., rNe) = EΨ(r1, ..., rNe), (2.1)

where v(ri) =
∑

k
Qke
|ri−Rk| is the external potential generated by the nuclei of charge

Qk at positions Rk, and U(ri, rj) = e2

|ri−rj | is the Coulomb electron-electron interaction

potential. In Dirac notation, Eq. (2.1) can be understood as an eigenvalue problem for the

Hamiltonian operator

Ĥ|Ψ〉 = E|Ψ〉, (2.2)

23
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where Ĥ is composed of the terms in squared brackets in Eq. (2.1).

The widespread use of DFT compared to methods based on multiparticle wavefunc-

tions is rooted in the manageable scaling of the computational time Tsimul. The time

needed to obtain the electron density scales as Tsimul ≈ Nα
e with α = 2 − 3, while, in a

wavefunction-based framework, the scaling is exponential with the number of electrons.

Recent developments are focusing on achieving true linear scaling, α = 1, making DFT

able to treat larger systems usually requiring classical mechanics methods [67]. Moreover,

the wave-function Ψ(r1, ..., rNe) of Ne electrons is an incredibly complex object going from

3Ne space of electron coordinates to C, making it a difficult object to treat and store [116].

Physical quantities of interest are obtained by integrating degrees of freedom from Ψ. As

an example, the electron density itself is given by

n(r) = Ne

∫
|Ψ∗(r, r2, ..., rNe)Ψ(r, r2, ..., rNe)| dr2...drNe , (2.3)

which is a scalar function of the 3D vector r.

The Hohenberg-Kohn Theorems

The Hohenberg-Kohn (HK) theorems are the foundation of DFT. They prove that Ψ0 and

all the other observables of the system can be computed in terms of n0(r). This means

that n0(r), a function of a single 3D vector variable r, contains the same information as a

function of r1, ..., rNe . The apparent paradox is explained from considering that Ψ0 not

only yields the ground state density according to Eq. (2.3), but must also minimise the

energy as expressed by the variational formulation of Eq. (2.1)

EGS,v ≤ 〈Ψ|Ĥ|Ψ〉, (2.4)

where EGS,v indicates the ground state energy with external potential v(r). The Hamilto-

nian of the system can be divided as

Ĥ = T̂ + Û + V̂ , (2.5)

where T̂ =
∑

i
h2∇2

i
2m is the kinetic energy operator, Û =

∑
ij

e2

|ri−rj | is the electron-electron

potential and V̂ =
∑

i v(ri) is the external potential energy. The T̂ + Û part of the

Hamiltonian is universal, and the specific system is defined only by the potential V̂ . The

energy of the system can be expressed as a functional of the electron density as

E[n(r)] =

∫
n(r)v(r)dr + F [n(r)], (2.6)

where F [n(r)] is an unknown, universal functional expression for the kinetic energy and

electron-electron interactions.

The first theorem states that the external potential v(r), and hence the total energy, is

uniquely determined by the electron density n(r). The proof of the theorem if found by
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reductio ad absurdum. Assume there are two different external potentials v1(r) and v2(r)

resulting in the same density n(r). In turn, the two Hamiltonians Ĥ1 and Ĥ2 associated

with the two potentials have different ground-state wave-functions Ψ1 and Ψ2, both yielding

n(r). The variational principle in Eq. (2.4) and (2.5) for the first Hamiltonian Ĥ1 evaluated

on the second ground-state Ψ2 yields

EGS,v1 ≤〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2|Ψ2〉+ 〈Ψ2|Ĥ1 − Ĥ2|Ψ2〉 (2.7)

= EGS,v2 +

∫
n(r)(v1(r)− v2(r))dr. (2.8)

An equivalent relation is found for the opposite situation, i.e. Ĥ2 evaluated on the

ground-state Ψ1. Adding the two inequalities yields

EGS,v1 + EGS,v2 ≤ EGS,v1 + EGS,v1 , (2.9)

which is impossible, and thus the ground-state density uniquely determines the external

potential v(r).

The second theorem shows that the variational principle in terms of wave-functions,

Eq. (2.4), holds for the density as well

n′ 6= n0 → E[n0]v < E[n′]v (2.10)

This property is essential as it assures that by minimizing the energy from a trial density

one only gets closer and closer to the actual ground state.

The Kohn-Sham Equations

The HK theorem results can be implemented in different frameworks. A widely used choice

is the one created by Kohn and Sham [117], as it casts the problem in a one-body formalism

and expresses the density n(r) in terms of single-particle orbitals {φi(r)}, reducing the

problem to a set of coupled differential equations that can be solved iteratively. The kinetic

energy term in Eq. (2.4) can be written as T = Ts + Tc, where Ts is the kinetic energy of

a non-interacting electronic system1. The non-interacting kinetic energy is expressed in

orbitals {φi(r)} by the functional

Ts = − ~2

2m

Ne∑

i

∫
drφ∗i (r)∇2φi(r), (2.11)

and Tc = T − Ts includes all the correlation effects not included in the non-interacting

system. Likewise, U = UH + Uc, where UH is the mean-field Hartree potential for the

electrostatic Coulomb interaction, is expressed in terms of the density as

UH =
q2

2

∫ ∫
drdr′

n(r)n(r′)

|r − r′| . (2.12)

1We shall use the subscript s in the rest of the chapter to indicate quantities of non-interacting systems.
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The energy of the system then becomes

E[n] = Ts[{φi[n]}] + UH [n] + V [n] + Exc[n], (2.13)

where the functional Exc[n] is called exchange-correlation (xc) energy and it contains

the neglected parts T − Ts and U − UH . Equation (2.13) is still exact and equivalent to

the full Schrödinger equation, Eq. (2.1), but the exact expression for Exc[n] is unknown.

Nonetheless, the beauty of this scheme is that if Exc[n] is small compared to other terms (as

it usually is), then it is possible to rely on some approximation for this unknown functional

to obtain physical results. In order to obtain the celebrated Kohn-Sham (KS) equations,

Eq. (2.13) is minimised with respect to n(r), yielding

0 =
δE[n]

δn
=
δTs[n]

δn
+ v(r), (2.14)

which describes the full-interacting electron system with v(r) = v(r) + vH(r) + vxc(r).

Consequently, the density of the interacting, many-body system of Eq. (2.1) is obtained

by solving the set of coupled-equations

[
−~2∇2

2m
+ vs(r)

]
φi(r) = εiφi(r), (2.15)

together with

n(r) =

Ne∑

i

fi|φi(r)|2, (2.16)

where fi is the occupation number of the single-particle orbital φi(r). Because vs and

φi(r) depend on each other through n, this is a set of non-linear equations and is solved

self-consistently: using an initial guess for n(0), a new density n(1) is obtained by solving

Eq. (2.15), which can be used as new starting point to solve the equations again. This

procedure is repeated until the new solution is not too different from the previous step, i.e.

the system has reached the desired level of convergence.

From Electrons to Ions: Hellmann-Feynman Theorem

It is time to deal with one side of the Born-Oppenheimer approximation: while DFT

yields the solution to the fast electron motion in the field of fixed ions, the positions of

the ions themselves must be updated. Together with the electron density n(r), the 3N

ionic coordinates Ri define a hyper-surface, the PES, E = E[{Ri}, n(r)]. The total energy

of the system E is given by the sum of the electronic parts in Eq. (2.1) and the ion-ion

interactions:

Vion =
∑

i 6=j

QiQj
|Ri −Rj |

. (2.17)

The force acting on the ions can be connected directly with the electron density via
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the Hellman-Feynman theorem [118], which states that

dEλ
dλ

=

〈
Ψ

∣∣∣∣∣
dĤ

dλ

∣∣∣∣∣Ψ
〉
. (2.18)

The proof follows from the differentiation chain rule and the properties of normalised

wave-functions:

〈ψλ|ψλ〉 = 1⇒ d

dλ
〈ψλ|ψλ〉 = 0. (2.19)

When the parameter λ corresponds to the coordinates of the nuclei, Eq. (2.18) yields

the force acting on the ion [118]

Fi = ∇RiE = −
〈

Ψ

∣∣∣∣∣
∂Ĥ

∂Ri

∣∣∣∣∣Ψ
〉
−∇RiVion (2.20)

= −
∫
n(r)∇Riv(r)dr −∇RiVion, (2.21)

where only the electron-ion interaction v(ri) =
∑

k
Qke
|ri−Rk| in Eq. (2.1) depends on the

nuclei position. The forces acting on ions depends explicitly on the electron density and

how accurately this has been computed. Once forces are extracted from n{R}(r), the

positions of the N ions can be updated in many ways: for example, via a minimization

algorithm if the goal is to find the minimal energy [119] or using the Car-Parrinello scheme

if one is interested in the dynamics of the ion system [120].

2.1.1 Implementation

In the previous sections, the complex and numerically intractable problem Eq. (2.1) has

been cast into the equivalent set of coupled differential equations Eq. (2.15). The exchange

does not come for free, as the new formalism does not have an explicit analytic form and

a set of approximations need to be implemented to find a solution of Eq. (2.15) on a

computer, as outlined in Fig. 2.1.

DFT approx eq
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Figure 2.1: Some possibilities used to approximate the exact KS problem. Adapted from Ref. [121].
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Basis Set

The Kohn orbitals φi(r) can be expanded onto a set of known functions, and the KS

equations can be written in terms of the expansion coefficients. The possible sets of

functions are usually divided into two categories: localized and plane-wave basis. These are

in principles equivalent. In practice, each one provides a better approximation of different

electronic behaviours, and one should choose the basis that better describes the system

under consideration.

In a localized basis set the electron density is described in terms of functions centred

on the atomic positions, like Gaussian- or Slater-type orbitals. Note that Gaussian-type

orbitals are a convenient representation from a numerical point of view, although they do

not represent a complete basis set and, thus, the precision might not increase with the

number of elements of the orbitals. Localized sets are the preferred choice when electrons

are confined around ions, like in the case of metal oxides and molecules.

In a plane-wave basis set, the density is expressed in terms of periodic, oscillatory wave

functions that form a complete representation of the Hilbert space. This set is the preferred

choice when electron wavefunctions are delocalized within periodic systems, like crystalline

metals.

Wannier functions [122, 123] represent a mid-point between these two approaches.

These functions represent a complete set and can be thought of as the Fourier transform of

Bloch states

ΞR(r) =
1

N

∑

k

eiR·kψk(r), (2.22)

where R are the direct lattice vectors, the sum in k is extended over the Brillouin Zone

(BZ) and ψk(r) = eir·kuk(k) is a Bloch state function, which has the same periodicity as

the crystal structure. Because the set ψk(r) is defined up to a phase factor, the definition

of the Wannier functions remains somewhat arbitrary. ONETEP [67], a linear-scaling

implementation of DFT, takes advantage of the hybrid character of Wannier functions. A set

of non-orthogonal generalized Wannier functions is optimized for the specific environment

simulated and used as a basis set for the electron density expansion. These functions are

then truncated outside a sphere of radius rcut, preserving the overlap with neighbouring

Wannier functions. This approach allows the code to range in accuracy from plane-wave to

localized orbitals and yield linear scaling with the size of the system.

Pseudo Potentials

Due to the point-like positive charge of the nuclei, the ion potential around them is steep,

and the electron density in this region varies fast. Although this is a physical behaviour, it

can constitute a problem for a numerical solution of the problem, as a large number of

basis functions, e.g. plane-waves, is needed to describe the rapid variation in real space.

If the behaviour of the density close to the nuclei is not of interest, pseudo-potentials

(PP) are a way to overcome this numerical difficulty. Chemical binding is dominated by

the outer (valence) electrons of atoms, while inner (core) electrons retain an atomic-like
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configuration in different environments. The idea behind PP is to solve the problem of the

nucleus and core electrons once and then consider this part of the system as frozen. The

remaining valence electrons feel a softer potential vs(r) in Eq. (2.15) and their density can

be described with fewer plane-waves, making the calculation faster.

The augmented-plane waves (APW) and projector augmented-plane waves (PAW) [124]

methods are generalizations of the PP concept. In the APW, space is divided into atom-

centred augmentation spheres, and inter-atomic space and the wavefunctions are described

differently in these two regions. In the PAW method, the valence wavefunctions rapidly

oscillating near the nuclei are transformed through a linear transformation T̂ into smooth

functions. This transformation can be inverted, allowing for the calculation of all-electron

properties. In the PAW method, the creation of a PP consists of tabulating atom-specific

transformations T̂ .

Exchange Correlation Functional

Probably the most delicate step in the implementation of the KS equation is to define

an analytical form for the exchange-correlation functional. The simplest approximation

of vxc is known as the local density approximation (LDA), in which the results of the

homogeneous electron gas are applied locally to the system under study. The LDA can

be regarded as an extension of the Thomas-Fermi electron model [125, 126], in which the

constant density of kinetic energy is artificially made local

thom
s (n) ≈ ts (n(r)) =

3~
10m

(3π2)2/3n(r)5/3. (2.23)

where ts is now a function of the density n(r). Once an analytical expression for the kinetic

energy is known, LDA exchange-correlation energy is then defined as

ELDA
xc [n](r) =

∫
drεhom

xc [n(r)], (2.24)

where εhom
xc = εhom

x + εhom
c , where the exchange part can be computed analytically, while

the correlation function is parametrised from quantum Monte Carlo simulations.

The natural step forward from LDA is to include information on the variation of the

density as well, much like in a Taylor expansion. The Generalized Gradient Approximation

(GGA) [127] also exploit the information of how the density varies through space, i.e.

∇n(r), to build the exchange correlation functional. The energy is written as a general

functional of the density and its gradient

EGGA
xc [n](r) =

∫
drf(n(r),∇n(r)) (2.25)

and different GGA flavours rely on different choices for f(n,∇n), based on fitting against

a reference set and/or satisfying known constraints for the real density n0(r).

Following the same reasoning, one could include more information in the functional form

of Exc. Meta-GGA functionals are an example of this approach, like Strongly Constrained
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and Appropriately Normed (SCAN) [128]. These functionals include kinetic energy density

τkin explicitly in the functional:

Emeta−GGA
xc [n](r) =

∫
drf(n(r),∇n(r), τkin). (2.26)

The additional information used to compute the density improves the performance of

SCAN in describing complex systems, like metal oxides and layered materials, but results

in more expensive calculations and slower convergence [129].

van der Waals Interactions

It is challenging to capture van der Waals (vdW) interactions within the DFT framework

with local or semi-local functionals, due to their non-local and long-range nature.This

problem can be tackled in two ways: empirical correction and non-local functionals.

An empirical correction is added a posteriori to the solution of the KS equations. In

the case of DFT-D2, a popular choice implemented by Grimme [130], the correction as a

function of the inter-atomic distances Rij reads

ED2 = −s6

∑

ij

C6(ij)

R6
ij

fdamp(Rij), (2.27)

where s6 is a scaling factor, and C6(ij) is the strength of the interaction between i and j

atom types. The function fdamp(Rij) tempers the attractive interactions as the atoms get

close. This methods provides a computationally inexpensive solution but decouples the vdW

description from the electron density completely. Moreover, it can suffer from transferability

problems between different functionals, because it relies on the fine parametrization of the

empirical potential.

A non-local functional of the form

Enlc =

∫
drdr′n(r)Θ(r, r′)n(r′) (2.28)

based on the kernel Θ(r, r′) can be included explicitly in the KS equation, thus providing

a vdW correction directly from the electron density [131, 132]. In the case of rVV10

correction, proposed by Vydrov and Van Voorhis [132], the kernel combines the local

plasma frequency of the electron gas ωp(r), the local band gap given ωg(r) and the local

Fermi velocity vF(r). The functional form of the kernel assures damping at a short distance

and vdW ∼ 1/R6 behaviour for R→∞. This method is computationally more expensive

but more transferable than the empirical approach.

Fig. 2.2 reports the binding energy E(d) as a function of bilayer distance d for MoS2

and Ti2 bilayers, with and without vdW corrections. The curve with rVV10 correction,

solid lines, show a clear bounded state for both compounds, with negative formation energy

compared to isolated monolayers E(∞). In contrast, the curves obtained with a non-correct

GGA kernel, dashed ones, show no bounded state, only repulsion at a short distance. This
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Figure 2.2: Binding energy E(d), in meV/Å as a function of bilayer distance d, in Å. Compounds
and model are reported in the legend.

test confirms the need for vdW correction in layered materials.
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2.2 Cluster Expansion

DFT simulations are a powerful tool, providing a great amount of information about a

system relying on minimal approximations and almost no empirical parameters. This

accuracy, in turn, limits the size of the system one can treat: a few hundred of atoms for

standard DFT codes or thousands for linear-scaling solutions [67, 133]. The time-scale

is also limited to pico- or nano-seconds. Classical MD simulations can reach hundreds

of thousands of atoms and a time-scale in the order of microseconds. While valuable

thermodynamics information can be gained at this level, rare events, like dopant diffusion

and phase transitions, are difficult to sample. A solution to this problem is found in

statistical mechanical tools, and the concept of coarse-grained models: information from

First Principles calculations is transferred to a classical model, simple enough to be

computationally cheap compared to DFT, but accurate enough to describe the property of

interest.

The Connolly-Williams or cluster expansion (CE) method falls into this idea of multi-

scale modelling [41]. It was initially developed to describe different phases of metal alloys

characterized by different arrangements of the species within a fixed underlying lattice.

It is thus suitable to handle configurational problems and discrete phase spaces. The

configurational energy of the system is mapped on a generalized Ising model

E(DFT)(R1, . . . ,RN )→ E(CE)(σ1, . . . , σN ), (2.29)

where Ri is position of ion i in 3D space and σi is the occupancy of lattice sites i. In doing

so, the information about the exact position of the ions in space is discarded, and only

information about the atom type occupying each lattice site is retained. Fig. 2.3 sketches

this approximation, with displaced positions of blue and white atoms mapped onto a square

lattice. A spin variable, +1 for blue atoms and -1 for white ones, is associated with each

lattice site. Any local relaxation of the lattice is treated implicitly [134].

Figure 2.3: Sketch of the CE mapping of a real crystal system onto a fixed-lattice Ising model.
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2.2.1 Cluster Algebra

The CE approach emerges from introducing a suitable change of basis for the functions

defined on a lattice [135]. The goal is to be able to write any function defined on the

lattice as a series expansion onto a ‘convenient’ basis set, where convenient here means

that the series converges fast with respect to the number of basis functions considered and

is easy to parametrize. This section focuses on the binary system where each lattice site

can assume two distinct values and a brief comment about multi-component systems is

given at the end of the section.

Let L be a lattice of N sites. The configuration of the lattice is fully specified by the

vector σ = (σ1, . . . , σN ) assigning a value σi = ±1 to each site. The phase space of the

system is thus composed of 2N configurations. The first step in developing a basis for the

space of functions on the lattice is to define an inner product on it. Let g(σ) and f(σ) be

general functions on L, the inner product is defined:

〈g, f〉 = 2−N
∑

{σ}
g(σ)f(σ), (2.30)

where the sum is take over the set of all possible configurations {σ}.

Single site function Firstly, consider a lattice with a single site N = 1. Since the phase

space is composed of two configurations and two possible values of the site, consider an

ortho-normal basis of two functions:

ϕ0(σ) = 1 (2.31)

ϕ1(σ) = σ. (2.32)

It is readily verified that the set ϕi(σ) satisfied ortho-normality and completeness under

the product defined in Eq. (2.30):

〈ϕi(σ), ϕj(σ)〉 =
1

2
[ϕi(+1) · ϕj(+1) + ϕi(−1) · ϕj(−1)] = δij (2.33)

∑

s

ϕs(σ)ϕs(σ
′) = 1 · 1 + σ · σ′ = 2δσσ′ (2.34)

For example, a function of the single lattice site can be expanded on this basis set:

f(σ) =
∑

s

asϕs(σ) (2.35)

as = 〈f, ϕs〉. (2.36)



34 Chapter 2 Methods

Explicitly, the coefficients are

a0 =
1

2
[f(+1)ϕ0(+1) + f(−1)ϕ0(−1)] =

1

2
[f+ + f−] (2.37)

a1 =
1

2
[f(+1)ϕ1(+1) + f(−1)ϕ1(−1)] =

1

2
[f+ − f−], (2.38)

where the subscript f± is shortcut for the value of the lattice site. Any function of the

single site can thus be written as

f(σ) =
∑

s

asϕs(σ) =
1

2
[(f+ + f−) + (f+ − f−)σ]. (2.39)

Cluster functions We shall now build a basis set for a lattice of arbitrary size. This

choice is not unique, and here we build the basis as the product of single-site functions:

Φs = ϕs1(σ1)ϕs2(σ2) . . . ϕsN (σN ) =

N∏

i=1

ϕsi(σi), (2.40)

where the vector s defines which function ϕsi in Eq. (2.31) is associated with each site σi.

The set of functions defined in Eq. (2.40) is ortho-normal

〈Φs,Φp〉 = 2−N
∑

σ

Φs(σ)Φp(σ) (2.41)

= 2−N
+1∑

σ1=−1

· · ·
+1∑

σN=−1

ϕs1(σ1) . . . ϕsN (σN ) · ϕp1(σ1) . . . ϕpN (σN ) (2.42)

= 2−N
+1∑

σ1=−1

ϕs1(σ1)ϕp1(σ1) . . .

+1∑

σN=−1

ϕsN (σN )ϕpN (σN ) (2.43)

= 2−N
∏

i

〈ϕsi(σi)ϕpi(σi)〉 = δsp, (2.44)

where, in the last equality, Eq. (2.33) was used. The set of functions is also complete:

∑

s

Φs(σ)Φs(σ
′) =

1∑

s1=0

· · ·
1∑

sN=0

∏

i

ϕsi(σi)
∏

i

ϕsi(σ
′
i) (2.45)

=
1∑

s1=0

ϕs1(σ1)ϕs1(σ′1) · · ·
1∑

sN=0

ϕsN (σN )ϕsN (σ′N ) (2.46)

= 2Nδσσ′ , (2.47)

where in the last equality Eq. (2.34) was used. Any function defined on the lattice can

thus be written as

f(σ) =
∑

s

asΦs(σ). (2.48)
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Because the identity with respect to the product ϕ0 = 1 is included in the basis set, the

expansion in Eq. (2.48) can be re-interpreted as a sum over all possible sub-clusters α of

n = 0, . . . , N sites of the lattice L:

f(σ) = a0 +
∑

α⊆L
aαΦα(σ) (2.49)

a0 = 〈f, 1〉, aα = 〈f,Φα〉 (2.50)

Φα = σα1 . . . σαn , (2.51)

where now ϕ0 has effectively disappeared from the expansion. To better clarify the last

passage, consider as an example a lattice of two sites N = 2 and consider a function of the

pair sites

f(σ1, σ2) =
∑

ij

aijΦij(σ1, σ2), (2.52)

where by Eq. (2.36)

a00 =
1

4
[f++ + f−+ + f+− + f−−] (2.53)

a01 =
1

4
[f++ + f−+ − f+− − f−−] (2.54)

a10 =
1

4
[f++ − f−+ + f+− − f−−] (2.55)

a11 =
1

4
[f++ − f−+ − f+− + f−−], (2.56)

and thus

f(σ1, σ2) =
1

4
[(f++ + f−+ + f+− + f−−) (2.57)

+ (f++ + f−+ − f+− − f−−)σ1

+ (f++ − f−+ + f+− − f−−)σ2

+ (f++ − f−+ − f+− + f−−)σ1σ2],

Symmetry of the lattice Since the inner product Eq. (2.30) retains the symmetry of

the lattice L [135] all sub-cluster β equivalent to α under a symmetry operation of the

lattice (including translations) will yield the same coefficient aα in the expansion Eq. (2.49).

The set ΩL(α) of clusters related to α by symmetry operation in the lattice point group

ΩL are termed orbit of α. We can thus write Eq. (2.49) as

f(σ) =
∑

α

pαJαΠα(σ), (2.58)

where α runs over symmetry distinct clusters, pα is the number of equivalent clusters, i.e.

the multiplicity of each term, and the expansions coefficients Jα, termed Effective Cluster
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Interactions (ECI), and are related to the as in Eq. (2.49) by

Jα = Nas, (2.59)

where s identifies one cluster in the orbit ΩL(α). The symmetry-averaged cluster function

Πα(σ) are called orbit average and are defined as

Π0(σ) = 1 (2.60)

Πα(σ) =
1

Npα

∑

β∈ΩL(α)

Φβ(σ), (2.61)

where the factor N in the definition of Πα accounts for the translational symmetry over the

lattice. As an example consider the N = 3 triangular lattice in Fig. 2.4. In this example,

the lattice is composed of three isolated sites, so that no translational symmetry is present

in the system and only the point group is relevant. The lattice presents 3m point group

symmetry, highlighted by the axes m1, m2 and m3 in Fig. 2.4. The phase space contains

23 = 8 configurations σ and thus the functional space of the lattice is spawned by the

eight cluster functions: the empty cluster Φ0 = 1, three point function Φα = σi, three pair

functions Φα = σiσj and one triplet Φα = σiσjσk, as shown in Fig. 2.4. The point and pair

cluster are equivalent under the reflections defined by the axes {mi}, yield multiplicity

s1,2 = 3 and, thus, from Eq. (2.58) any function on this lattice has the form

f(σ) = J0 + 3J1Π1(σ) + 3J2Π2(σ) + J3Π3(σ). (2.62)

For example, the pair symmetry-averaged function and the corresponding ECI read

Π2(σ) =
1

3
(Φ12(σ) + Φ13(σ) + Φ23(σ)) (2.63)

J2 =
1

8
(f+++ + f++− − f+−+ − f−++ (2.64)

− f+−− + f−−+ − f−+− + f−−−)

=
1

4
(〈f++〉 − 〈f+−〉 − 〈f−+〉+ 〈f−−〉), (2.65)

where the notation 〈f++〉 in Eq. (2.65) indicates an average over all the configurations in

which σ1 = +1 and σ2 = +1. Thus, the meaning of the term effective interactions for Jα

is clear: the interaction is a result of “mean-field” approach, as the possible configurations

of the cluster see an average value of the remaining lattice.

Expansion Convergence The expansion in Eq. (2.58) is written in terms of a complete,

orthogonal basis set and is therfore exact. However, in the thermodynamic limit of infinite

sites, the sum is infinite and thus of little practical utility. For any application, the series

must be truncated. The hope is that the sum converges rapidly and a satisfying description

of the system is retained when considering only a few clusters, deemed to be the dominant

terms, and neglecting the rest. The convergence of the series can only be tested numerically



Cluster Expansion 37

13

2

m1

m 2

m3

3

p1  = 3 p2  = 3 p3  = 1

Figure 2.4: Example of symmetrically equivalent clusters in a three-points triangular lattice.

by checking that the ECI Jα decay with the radius of the cluster and the number of sites in

them [42, 135]. As of now, the formalism has been developed in terms of general functions

on the lattice L. In most cases, the quantity expanded is the total energy of a configuration

E(σ) in a substitutional alloy system. In this case, the convergence of the expansion in

Eq. (2.58) is intuitively supported by the shortsightedness of the many-body interactions

between the ions [116]. On the other hand, the discrete nature of the model makes the

description of long-range elastic interaction challenging [136].

2.2.2 Hamiltonian Parametrisation

A common way to implement the theory outlined in the previous section is to fit the ECIs

of relevant m clusters against the energies of n configurations, obtained with high-quality,

expensive methods, e.g. DFT simulations, on small systems. Regardless of the choice of

specific basis functions Φη(σ) and how the relevant figures are selected, the column vector

of n computed energies E and the vector J of the m ECI are related via the matrix Z :

Eσ =
∑

α

ZσαJα. (2.66)

Each of the n rows Zi of the matrix represents the m correlation functions of the selected

cluster function for that configuration. The CE model fitting can be cast in the form of a

minimisation problem

Jλ = min
J

[
n∑

σ=1

wσ(Eσ −Zσ · J)2 +R(λ,J)

]
, (2.67)

where (Eσ −Zσ · J)2 is the square distance between the computed energies and the fitted

ones, weighed by wi and R(λ,J) is a regularisation function. The regularisation is useful

because the dimensionality of the inversion problem, n structure for m coefficients, makes
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the fitting an ill-posed problem [137]. Moreover, R(λ,J) can also bias the minimization

according to physical intuition.

The selection of relevant clusters α to include is based on the concept of cross-validation

(CV) [134]. Different CEs models are trained via Eq. (2.67) against a training set and their

predictive power is tested against a validation set, yielding a cross-validation score

CV =
1

n

n∑

i=1

(
Ei − Ēi

)2
, (2.68)

where Ei are the reference energies of the testing sets and Ēi are the energies predicted by

the CE model. This protocol selects the CE model with the highest predictive power (best

CV score) rather than the lowest deviation from the training set (best fit).

2.2.3 Monte Carlo Simulations

The idea behind the vast class of Monte Carlo methods is to use random numbers to

obtain numerical results. Most of the time, in physics, Monte Carlo is associated with the

Metropolis algorithm and the purpose of sampling the Boltzmann distribution of a system

without relying on any knowledge of the partition function. Monte Carlo simulations are

used to sample Boltzmann distributions defined by the CE Hamiltonian on the lattice

model describing the alloy system.

The simulations are carried out in the semi-grand canonical ensemble: total energy E

and atom species concentration x on the fixed N lattice sites vary during the evolution,

while temperature T and chemical potential µ are kept fix. This ensemble has the advantage

of sampling only pure phases of the system: as the concentration is free to change, no

grain boundaries and phase coexistence can form in the system. Thus, the behaviour of

the properties considered arises from pure phases, without any signal from interfaces. The

evolution of the system is controlled by the following thermodynamic potential [138]:

φ(β, µ) = − 1

βN
log

(∑

i

e−βN(Ei−µxi)
)
, (2.69)

where β = 1/kBT , Ei and xi are, respectively, the energy and concentration associated

with micro-state i. The system properties are studied by carrying out equilibrations on

a grid of µ and T values. Observables can be estimated by averaging over equilibrated

configurations. For example, by looking at the concentration itself, one can obtain the

stability window of different phases as a function of the temperature.

Simulations on the grid can be concatenated in two different ways, as sketched in

Fig. 2.5, and the initial grand potential is obtained from either high- or low-temperature

expansions [138]. In the high-temperature limit, the starting point is T =∞, where the

behaviour is well approximated as an ideal solid solution with entropy βS(x) = −x log x

and concentration x = 1/2. The system is started from a random configuration at this

concentration and cooled down at a fixed µ mimicking an annealing process. Conversely,
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in the low-temperature limit, the temperature is kept fixed, and µ is varied. The energy

and entropy costs are estimated in the single-spin-flip approximation, which is justified by

the low thermal energy available to the system. The limit of this approximation must be

determined case by case.
524 A van de Walle and M Asta

Figure 1. Example of paths of integration to determine the potential φ(β, µ) of every phase. The
starting points are given by either the LTE or the high-temperature expansion (HTE).

Using the LTE for each ground state of the system as a starting point to evaluate
equation (3), one can map out the whole potential surface φα(β, µ) associated with any given
ordered phase α. Similarly, the high-temperature limit can be used as a starting point to obtain
φα(β, µ) for the disordered phase. This process is illustrated in figure 1. Once φα(β, µ)

has been determined for all phases, the boundary between two given phases α and γ can be
located by identifying the locus %αγ = {(β, µ) : φα(β, µ) = φγ (β, µ)} where the potential
surfaces intersect. At such intersections (β, µ) ∈ %αγ , the concentrations xα and xγ of the
two phases in equilibrium are simply given by the slopes of the potential surface at the point
of intersection:

xα = − ∂φα(β, µ)

∂µ
, (6)

xγ = − ∂φγ (β, µ)

∂µ
. (7)

The calculations of thermodynamic quantities based on semi-grand-canonical MC
simulations offer several advantages over their canonical counterparts.

(a) For a given value of the control variables (β, µ), the thermodynamic equilibrium of
the system is never a phase-separated mixture, implying that the calculated quantities
always reflect the properties of pure phases, free of interfacial contributions that would
otherwise not be negligible due to the finite size of the simulation cell. (Note that the MC
simulation cell must be commensurate with the periodicity of the equilibrium structure
for this property to hold.)

(b) The potential φ can be very directly determined through a simple thermodynamic
integration procedure (equation (3)) where each required quantity takes the form of a
thermodynamic average of computationally inexpensive quantities (E, which must already
be computed in order to perform the simulation, and x, which is trivial to obtain).

(c) Phase boundaries can be located by looking for intersections between curves, a criterion
which is somewhat simpler to implement than the common tangent construction (although
both methods are formally equivalent).

3. Algorithms

While the methods described in the previous section, in principle, enable the determination
of thermodynamic quantities from MC simulations, a number of practical issues need to be
addressed before this process can be fully automated.

Figure 2.5: Example of paths of integration during a MC simulation in the µ−T space. Adapted
from [138].

2.3 Classical Molecular Dynamics

Classical MD or Molecular Mechanics (MM) uses a classical approach to simulate atoms

and molecules. Atoms are considered to be a point-like object interacting with one another.

The total potential energy of the system of N atoms is expanded in many-body terms [139]:

U(r1, . . . , rN ) =
∑

i

U1(ri) +
∑

i,j

U2(ri, rj)
∑

i,j,k

+U3(ri, rj , rk) + . . . , (2.70)

where r the Cartesian position and Vis are one-body, pair, triplet interactions.

Force Fields

FF is a functional description approximation of the atom interactions comprising the

potential energy in Eq. (2.70). The FF entails a set of parameters that is system dependent

and defines the behaviour of the functional form. These parameters are benchmarked on

experiments or more precise DFT calculations. In the most general sense, there are two

types of particle interactions, bonded and non-bonded [139, 140]. The bonded interactions

represent the covalent bonds between atoms. Three components usually approximate these

interactions: stretching of the bonds, the angle from bending of the bonds and the dihedral

from torsion of the bonds. The functional forms of these are [139]:

Ustretching(ri, rk) = kb(rij − r0)2 (2.71)

Ubending(ri, rj , rk) = kθ(θijk − θ0)2 (2.72)

Utorsion(ri, rj , rk, rl) =
Vn
2

[1 + cos(τijkl − τ0)], (2.73)
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where rij = |ri − rj |, kb is the harmonic constant for the bonds, r0 is the equilibrium

bond length, kθ is the harmonic constant for the bending, θ0 is the equilibrium bond angle,

Vn is the torsion constant, and τ0 is the equilibrium dihedral angle. θijk identifies the

angle between the three atoms i, j, k and τijkl is the dihedral angle between the four atoms

i, j, k, l.

The non-bonded interactions represent the van der Waals and electrostatic interactions[140,

139]. A common choice to represent van der Waals contribution is the Lennard-Jones (LJ)

potential, which has a short-range repulsive and long-range attractive character:

ULJ(ri, rj) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
, (2.74)

where σij controls the equilibrium distance and εij the strength of the interaction between

the atoms ij. A Coulomb potential represents the electrostatic term:

UC(ri, rj) =
qiqj
εrij

, (2.75)

where εij and σij are empirical coefficients, rij is inter-particle distance, qi and qj the

partial charges, and ε the permittivity.

Computer Experiments

Using the FF described above, one can determine the instantaneous energy of a system.

However, almost always one would like to find the minimum energy configuration of a

system or perform some sort of dynamics on the system. Using the FF and Newtonian

dynamics (or a minimization algorithm), MD can simulate the conformation landscape and

simulate the system evolution. This evolution is assumed to resemble a real experiment

closely. Once the system is equilibrated, the “in-silico” experiment can start, and any

observable of interest A can be measured from its expression in terms of atom positions

and velocities.

The basic working scheme of an MD simulation is as follows[140]. In the first step, t0,

the system is initialized, providing the positions of all atoms. Velocities of all atoms are

assigned according to the Boltzmann distribution at the given temperature. Next follows

the central part of the program, the calculation of the forces, which scales with the number

of particles. In the case of Newton dynamics, the positions evolve according to [139, 140]

Fi = −∇riU = mi ·
dr2

i

dt2
. (2.76)

The equation above is, in general, not solvable analytically and is integrated numerically,

e.g. with the Verlet algorithm [141]. Finally, the observable A(t0) is measured, the position

updated, and the system advanced to t1.

The expectation value of the observable A is obtained by thermodynamic sampling
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along the MD trajectory

〈A〉ts =

∫ +∞

−∞
dtA(t) ≈ 1

ts − teq

ts−teq∑

ti=teq

A(ti), (2.77)

where ts is the total simulation time and teq is the equilibration time. This average is taken

to be representative of the true behaviour of the system under the ergodic assumption and,

thus, the time average is equivalent to the phase space average [142], i.e.

lim
ts→∞

〈A〉t ≡ 〈A〉Γ
∫ ∫

dpdqA(q,p), (2.78)

where Γ is the volume phase space of the system generated by the conjugate variable

q,p. The finite time ts after which the limit in Eq. (2.78) can be considered satisfied

needs to be carefully tested for each system to avoid under-sampling of the phase space.

Moreover, the initial condition of the system must be chosen carefully, as the system

could get trapped in subtle local minima in the potential energy manifold. To benchmark

against this problem, equivalent MD simulations with slightly different initial condition

are computed and compared.

2.4 Materials Descriptors

2.4.1 Equation of State

The first descriptor useful when dealing with phase stability of materials is the Equation

of State (EoS) of a crystalline phase, that is the energy of cohesion as a function of the

volume. The EoS describes the energy paid by shifting a crystalline system away from

its equilibrium volume, e.g. by applying pressure on a sample. Many empirical models

describe the relationship between thermodynamic quantities at varying pressure [143]. In

particular, the Birch-Murnaghan (BM) EoS equation is adopted [144, 145], which is based

on a third-order approximation of the free energy F in the strain component and a linear

approximation of the bulk modulus as a function of pressure in isothermal processes [145]

B(P ) = −V ∂P

∂V

∣∣∣∣
T

(2.79)

= B(0) +
∂B

∂P

∣∣∣∣
P=0

P = B0 +B′0P, (2.80)

where the bulk modulus at zero pressure B0 = −V ∂P
∂V

∣∣
P=0,T

was defined, along with its

derivative with respect to pressure B0 = ∂B
∂P

∣∣′
P=0

. At zero temperature, the energy-volume

relation as a function of the reduced volume η = (V0/V )2/3 is given by [145]

E(η) = E0 +
9

16
B0V0(η − 1)2(2 + (B′0 − 4)(η − 1)), (2.81)
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where E0 is an arbitrary shift and V0 is the equilibrium volume. The model is expected to

be accurate only at moderate compression, as it is based on a linear expansion of the bulk

modulus [145]. The quantities appearing in Eq. (2.81) can be computed from experiments

or DFT calculations or, provided a set of energy-volume pairs, they can be regarded as

free parameters in a fitting procedure, as shown in Fig. 2.6.
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Figure 2.6: EoS for MoS2 in its stable trigonal prismatic phase, termed MoS2 prototype, and in
the unstable octahedral phase, CdI2 prototype. The coloured circles report DFT calculations while
the lines refer to BM fit of Eq. (2.81).

2.4.2 Crystal Field Theory

The Crystal Field (CF) Theory is a simple electrostatic model that describes the effect of

charged ions on the energy levels of a TM. The model assumes a complete ionization of

the TM and the negatively charged ligands are regarded as point-like charges, i.e. purely

ionic bonding. While this is a drastic simplification, and CF is not adequate to describe

properties of real materials quantitatively, its physical interpretation is clear, and it can

lead to a qualitative understanding of phase stabilization mechanisms.

Atomic Orbitals

The single-electron atomic orbitals, i.e. the hydrogen atom energy levels, are used to

evaluate the CF Hamiltonian matrix elements. The starting point is the Schrödinger

equation for a single electron in the electric field generated by the nucleus, which in atomic

units reads (
−1

2
∇2 + V (r)

)
ψλ(r) = Eλψλ(r), (2.82)
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where λ labels the eigenvalues Eλ and eigenfunctions ψλ(r). The potential V (r) created

by the nuclei charge at the origin of the reference frame is

V (r) = −qZ
r
, (2.83)

where q is the unit charge and Z is the atomic number.

Because of the central potential Eq. (2.83) in the Schrödinger equation, Eq. (2.82)

factorises in a angular part and a radial part and, thus, the eigenfunctions ψλ(r) are:

ψλ(r) = ψnlm(r) = Rnl(r)Y
m
l (θ, φ), (2.84)

in spherical coordinates r ∈ [0,∞), inclination θ ∈ [0, π], and azimuth φ ∈ [0, 2π). The

index λ has been decomposed into three quantum numbers: n is the energy level, emerging

from the conditions that the radial part Rnl needs to satisfy [146], i.e. n = 1, 2, 3, 4, . . . ; l

and m are the eigenvalues of the angular momentum operator L̂2, l = 0, 1, . . . , n− 1 and

m = −l, ,̇− 1, 0, 1, . . . , l.

The angular part of Eq. (2.82) is a Laplace-type equation, and its eigenfunctions are

the spherical harmonics [146]3:

Y m
l (θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Plm(cos θ)eimφ (2.85)

where Plm(x) are associated Legendre polynomials. The spherical harmonics are orthogonal

under the following inner product [146]

〈Y m
l |Y m′

l′ 〉 =

∫ 2π

0

∫ π

0
Y m
l (θ, φ)Y m′

l′ ∗ (θ, φ) sin θdθdφ = δl,l′δm,m′ . (2.86)

The family of Y m
l function is a basis for the space of functions defined on the sphere and,

thus, any function in this space might be represented in terms of series of harmonics:

f(θ, φ) =
∑

ml

cmlY
m
l (θ, φ). (2.87)

The solution of the radial equation is the family of functions:

Rnl(r) =

√(
2Z

n

)3 (n− l − 1)!

2n(n+ l)!
e−Zr/n

(
2Zr

n

)l
L2l+1
n−l−1

(
2Zr

n

)

where Lαi are the generalized Laguerre polynomials. The behaviour of Rnl is characterized

by its n nodes. As |ψ2
nlm| represent the probability density of finding the particle of at a

given position, the nodes in Rnl represent points in space where the probability of finding

2Because [Ĥ, L̂] = 0, there is a complete set of eigenvalues that diagonalises both simultaneously.
3Following the usual definition for the spherical harmonics adopted in physics and chemistry, which

includes the Condon–Shortley (−1)m phase factor
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Figure 2.7: (a) Representation of the spherical harmonic for l = 3, m = 1. The upper row
shows the value of |Y 3

1 |2, <(Y 3
1 ) and =(Y 3

1 ) as coloured regions on the unitary sphere. To better
appreciate the spatial variation of the harmonics, the bottom row shows the surface defined by
the same quantities, i.e. r = |Y 3

1 |2, r = <(Y 3
1 ), and =(Y 3

1 ), respectively. (b) Radial distribution
function g(r) = 4πr2Rnl(r) for 1 ≤ n ≤ 3 and corresponding allowed values of l.

an electron vanishes. Moreover, as the angular part Y m
l (θ, φ) is normalized, integration

over the solid angle Ω = 4π yields the radial function, which thus represents the radial

distribution function g(r) of the system:

g(r) =

∫

Ω
ψ(r, θ, φ)r2 sin θdθdφ = 4πr2Rnl(r).

The radial distribution function, reported in Fig. 2.7b for a set of n, l values, has a direct

physical interpretation: the probability of finding a particle at a distance r from the nucleus

at any possible angle.

Crystal Field Potential

The electrostatic potential acting on a charge at position r generated by the set of ions at

positions R is

VR(r) =
∑

j

qj
|r −Rj |

, (2.88)

where Rj are the positions of the ions and qj the corresponding charges. Since the crystal

potential in Eq. (2.88) is a sum of central potentials centred on Rj , it can be decomposed

in a radial and angular part, and the latter expressed in terms of spherical harmonics in

the form Eq. (2.87) [147]. Thus, the crystal potential can be written in the form [147, 146]:

VR(r, θ, φ) =

∞∑

k=0

k∑

q=−k
rkγkqY

q
k (θ, φ) (2.89)

where the information about the ion lattice is embedded in

γkq =
ions∑

j

4π

2k + 1

qj

Rk+1
j

(−1)qY −qk (θj , φj). (2.90)
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The symmetry of atomic orbitals and orthogonality of spherical harmonics reduces the

number of components in the infinite sum. For a fixed angular manifold l, the elements of

the CF Hamiltonian are

〈ψnlm|VR|ψnlm′〉 ∝ 〈Y m
l |Y q

k |Y m′
l 〉. (2.91)

Because of the orthogonality of spherical harmonics in Eq. (2.86), 〈Y m
l |Y

q
k |Y m′

l 〉 = 0 if k >

2l. Thus, for p orbitals k ≤ 2, k ≤ 4 for d orbitals and k ≤ 6 for f orbitals.

Octahedral Coordination As an example, consider the case of a transition metal of

the d group in the six-fold octahedral coordination, i.e. cations of charge qC positioned at

the centre of the faces of a cube of side 2a centred on the TM, as shown in Fig. 2.8a. In

this case, the expansion in Eq. (2.89) yields [147]

Voct(r) =
7
√
π

3

q

a5
r4

(
Y 4

0 (θ, φ) +

√
5

14

(
Y 4

4 (θ, φ) + Y 4
−4(θ, φ)

)
)
. (2.92)

By evaluating 〈ψnlm|Voct(r)|ψnlm〉 one obtains the split of the d-orbitals manifold. The

angular and radial parts factorize. The former describes how the manifold splits, while the

latter the magnitude of such splitting, Dq:

Dq = −qC
〈r4〉Rnl

6a5
, (2.93)

where 〈r4〉Rnl indicates the average of the crystal field according to the radial part of the

wavefunction.

The angular part Voct(r0, θ, φ) in Eq. (2.92) is reported in Fig. 2.8b. High energy regions

(blue) point toward the ions: Coulomb interaction penalize electrons occupying this region.

Lower energy regions (red), point in between the ions. The angular integrals evaluated on

the d manifold via the orthogonality relation Eq. (2.86) yields the 5× 5 matrix [146]

〈ψ32m|Voct(r)|ψ32m′〉 = 10Dq




1 0 0 0 5

0 −4 0 0 0

0 0 6 0 0

0 0 0 −4 0

5 0 0 0 1



. (2.94)

The spectrum of Eq. (2.94) is composed of two degenerate eigenvalues [146, 148]: triple-

degenerate low-energy Et2g = −4Dq level and the double-degenerate high-energy Eeg = 6Dq

level. As one might see from the angular behaviour shown in Fig. 2.8b, the low-energy

orbitals are a linear combination of dxy, dxz, dyz, that point in-between the negatively

charged ions, while the high-energy orbitals are a combination of the remaining d3z2−r2

and dx2−y2 orbitals, which point towards the ions.

The CF theory thus provides an energy level structure. These energy levels are then
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Figure 2.8: (a) Octahedral coordination of the TM site, placed at the origin of the reference
frame. (b) Angular dependence of the CF generated by the octahedral crystals. The left plots
report the value of the potential on a sphere. The right plots highlight the angular dependence by
drawing the surface defined by r = Voct(r0, θ, φ).

populated according to Hund’s rules by the electrons retained on the TM site in a fully

ionic picture.

2.4.3 Sliding Potential Energy Surface

In a nanocontact between two layers, the sliding behaviour is determined by the shape of

the PES, which describes the interaction between two parts of the contact as a function of

the relative position of the two. PES has been shown to regulate the frictional behaviour

of several atomistic contacts [93, 149]. In the case of crystalline system, the PES can be

evaluated by directly sampling translated configurations within the primitive cell of the

system. Moreover, the underlying symmetry of each part can help reduce the number of

expensive quantum mechanical calculations needed to sample the PES. Finally, a suitable

interpolation protocol is developed, to allow evaluation of the PES at any given point.

Definition

Let S be a bilayer crystal defined in the unit cell (a, b, c) and the collection of N atomic

positions

S = {ri,νi},

where ri,νi is the position of atom i of type νi, amongst the set ν = (ν0, . . . , νnν ) of atom

species in the system. Because the bilayer system is periodic only in two directions, it is

always possible to arrange the unit cell so that a, b lie in only the xy plane and c is along

z. Defined by a cutting plane at height ccut along the c axis, the system is divided into a

top layer t of m atoms and bottom b one of n atoms:

b = {rαj,µj ∈ S : r3
j,µj ≤ ccut}, (2.95)

t = {rαj,µj ∈ S : r3
j,µj > ccut}, (2.96)
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~x

Figure 2.9: Example of
point in the sliding PES.
The top layer (orange
grid) is translated with
respect to the bottom one
(blue grid) of a vector
x = (0.6, 0.5).

where index α runs over the 3 spatial components. The PES P(x), is then defined as

P(x) =
E({t+ x, b})− E0

A
(2.97)

where A is the area of the unit cell, E0 is the energy of the bilayer at equilibrium and

E({ri}) denotes the total energy of a configuration of atoms at position {t+ x, b}. The

argument of the energy function {t + x, b} is a shorthand denoting a bilayer geometry

with the top layer translated by x, i.e. {t0µ0 + x, . . . , tmµm + x}. Note it is assumed that

translation obeys the minimum image convention: atoms translated out of the unit cell are

mapped back to an equivalent position.

The PES P(x) is evaluated over a grid g = {x} of translation vectors inside the unit

cell. The translations of the top layer only break the symmetry of the bilayer system. On

the other hand, the symmetry of each separate ML is left unchanged: the translated top

layer t retains the symmetry of its non-shifted, isolated counterpart, as global translation.

Thus, one cannot identify equivalent points in the translation grid g by applying the space

group symmetry operations of the bilayer crystal, e.g. as is done for k point sampling in

electronic structure calculations. A different definition of equivalency must be defined.

Symmetric equivalent sites

Two translation vectors in the grid (x,x′) ∈ g are equivalent if the geometry with the top

layer t translated at position x can be mapped onto the geometry with top layer translated

at x′ and the stacking relative to the bottom layer is preserved. This mapping is done

via an operation O related to the space group of the top layer Ωt, as top layer geometries

translated at different positions need to be equivalent, while the bottom layer is a spectator.

Since the translation grid g is purely 2D, symmetry operations must be constrained to the

xy plane, e.g. reflections along the c axis are not allowed. Defining the projector onto ab

sub-space and the identity along c as

Pab =




1 0 0

0 1 0

0 0 0


 Ic =




0 0 0

0 0 0

0 0 1


 . (2.98)

Any operation O can be restricted to the (ab) plane by

Õ = PabOP
†
ab + Ic,
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This leads to the following definition: any two points (x,x′) ∈ g are equivalent x ≡ x′ if

there exists an operation O ∈ Ωt such that

t+ x = Õ(t+ x′) (2.99)

b = Õ(b),

Finally, atoms of the same type µ lead to the same interaction and, thus, the energy is

invariant under same-species permutation of atoms in the system πν({ri,νi}). While this is

implicit in the energy, it needs to be explicitly included in the definition of equivalency.

The operation O is thus accompanied by a pair of permutation pt, pb acting separately on

the bottom b and top t layer. The condition in Eq. (2.99) becomes

(x,x′) ∈ g, x ≡ x′ ⇐⇒ ∃O ∈ Ωt, pt ∈ πν(t), pb ∈ πν(b) :
{
pt(t) + x = Õ(pt(t) + x′)

pt(b) = Õ(pb(b)).

(2.100)

An example of this protocol applied to a MoS2 bilayer is reported in Fig. 2.10. Due to

rounding errors, the protocol is subject to false-positive errors, i.e. equivalent sites labelled

as distinct. This type of error is benign: it increases the number of calculations needed

but the PES shape and overall symmetry is described correctly.

Figure 2.10: PES P(x) of MoS2 bilayer system evaluated over a 15× 15 grid within the unit cell,
shown as dotted line. The colour-code of each point shows the energy per area with respect to the
stable configuration. Each point is the results of a DFT relaxation with the bottom layer fix in xyz
and the top layer fixed in xy. The label sorts each point into the symmetrically distinct sites. The
font colour is a guide to the eye. Misplaced labels 52 (instead of 3) and 53 (instead of 1) are false
positives.
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Interpolation

In order to obtain a smooth surface to evaluate, PES P(x) evaluated on discrete grids

with DFT calculations are interpolated using radial basis functions:

P(x) =
∑

i

wiφ(|x− ci|), (2.101)

where the centres ci are the input points, i.e. DFT-computed grid, φ(r) is the chosen

functional form of the radial basis function and wi the weight of the radial function centreed

on ci, computed via a least-square fit. The analytical form of the radial function chosen is

the multi-quadratic:

φ(r) =

√
1 +

(r
ε

)2
, (2.102)

where ε is a shape factor regulating how localized the basis function is. Here, ε = ∆c, i.e.

the distance between input points.

The gradient of the PES governs the rigid sliding of the layers. This can be evaluated

directly from the expansion using the linearity of the gradient operator:

∇P(x) =
∑

i

wi∇φ(|x− ci|) =
∑

i

wiφ
′(ri)

ri
ri

(2.103)

=
∑

i

wi
x− ci

ε2

√
1 +

(
|x−ci|
ε

)2
, (2.104)

where ri = x− ci. Fig. 2.11 reports the expansion of P(x) along with ∇P(x) for the same

MoS2 bilayer shown in the previous section.

2.4.4 Phonons

The normal modes of a crystal, or phonons, provide a convenient formalism to describe the

response of a crystal system near its equilibrium configuration. The process developed now

is valid for any crystal, and it shall be adapted to 2D materials later on. Here a classical

description of vibrations in a crystal is given. Consider a crystal of N sites and a basis set

of n atoms. The configuration of the crystal is given by the set of nN0 vectors

rνl = Rνl + uνl, (2.105)

where l labels unit cells in the Bravais lattice and ν atoms inside the unit cell. Thus, uνl is

the displacement vector, from equilibrium site Rνl. Fig. 2.12 shows lattice with N = 4

and a basis with n = 2. The Bravais lattice points Rl are shown in light blue, while atom

equilibrium positions within the cell Rν are shown in blue. Following Eq. (2.105), the

position of the atom rνl is marked by a pink arrow, the sum of the displacement vector

uνl by a purple arrow The equilibrium lattice position are Rνl = Rl +Rν .

The internal energy of a crystal is U(r00 . . . rnN0), i.e. a mapping from the coordinate

space to the real numbers R3nN0 → R. The internal energy around the equilibrium
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Figure 2.11: Radial basis function interpolated PES P(x) for MoS2 bilayer evaluated over a
200× 200 grid within the unit cell, shown as dotted line. The 15× 15 grid in Fig. 2.10 was used
for interpolation. The colour-code of each point shows the energy per area with respect to the
stable configuration. Gray-scale arrows show the gradient evaluated from the interpolation using
Eq. (2.104) on a 20× 20 grid . The legend reports the colour-code for different atom types. Larger
circles and black bond lines refer to the bottom layer, while smaller circles and dashed grey bonds
refer to the top layer.

configuration R = {Rνl} can be expanded using a multivariate Taylor expansion of the

form [150, 143]

U(r) = U(R) +
∑

l,ν

∂U

∂rανl

∣∣∣∣
R

uανl +
1

2

∑

l,l′
ν,µ

uανlφαβ(νl, µl′)uβµl′ +O(u3
νl), (2.106)

where α, β refer to Cartesian coordinates. The Einstein convention applies for Cartesian

indices: repeated indices imply summation, that is vαwα =
∑

α v
αwα = v ·w. To strike a

balance between clarity and overwhelming notation, the Einstein convention is applied to

Cartesian indices only, always labelled with Greek letters. The constant U(R) represents

the cohesive energy of the crystal. The linear term in Eq. (2.106) vanishes because of the

choice of expansion point: ∂U
∂rανl

is the force acting on the (νl) atom of the crystal, which

must be zero by definition at the equilibrium position Rνl. The matrix of force constants

φαβ(ν, l, µ, l′) is defined as

φαβ(νl, µl′) =
∂2U

∂rανl∂r
β
µl′

∣∣∣∣∣
R

. (2.107)

Retaining only terms quadratic in the displacement, the internal energy in Eq. (2.106)
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Figure 2.12: Definition of
the atom position vectors in
Eq. (2.105).

becomes

U(r)− U(R) ≈ 1

2

∑

l,l′
ν,µ

uαν,lφαβ(ν, l, µ, l′)uβµ,l′ . (2.108)

The equations of motion induced by the quadratic form in Eq. (2.106) are solved in

reciprocal space (k, ω) by defining the dynamical matrix as [151, 143]

Dαβ(νµ,k) =
1

√
mνmµ

∑

l

φαβ(ν, 0, µ, l)eik·(Rµl−Rν0), (2.109)

where mν is the mass of the atom ν in the unit cell. The sum in Eq. (2.109) runs over a

single supercell index l because the system is treated in PBC. For fixed ν and µ, Dxy(k)

records the force along α = x acting on the atom rν0 due to the displacement along y of

atoms µ in all N0 unit cells; the amplitude (and phase) of this displacement varies between

different unit cells with wavelength λ = 1/|k| and along the direction k̂. By definition

D is Hermitian, D(k)† = D(k), implying real eigenvalues, and, moreover, the following

properties hold

D∗(k) = D(−k). (2.110)

The intrinsic vibrations of the system are found by diagonalising D:

∑

s,s′

(εαs (ν,k))∗Dαβ(νµ,k)εβs′(µ,k) = ω2
s(k)δs,s′ . (2.111)

The solution of each eigenvalue problem at fixed k is a set of 3n eigenvalues ωs(k), which

represent the frequency of the normal mode. The index s labels the so-called branches

of the dispersion curve, e.g. longitudinal and transverse acoustic branches, in which the

displacement is parallel and perpendicular to the wavevector, respectively. The set of

ωs(k) characterises the response of the system to a perturbation of wave-vector k. The 3n
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complex eigenvectors εs(k) are themselves composed of n 3D vectors:

εs(k) =




εxs (0,k) εys(0,k) εzs(0,k)
...

εxs (n,k) εys(n,k) εzs(n,k)


 . (2.112)

Each of them represents the direction (real part) and phase (imaginary part) of the

displacement of the atom ν in the unit cell. Because D is Hermitian and from Eq. (2.110),

it follows that [143]:

(εαs (ν,k))∗ = εαs (ν,−k). (2.113)

The set of vectors εs(k) is an orthogonal basis set. Thus, they satisfy the following

relations [143, 150]:

ε∗s(k
′) · εs′(k)) = 0 (2.114)

ε∗s(ν,k) · εs′(ν,k)) = δs,s′ (2.115)
∑

s

√
mµ(εαs (µ,k))∗εβs (µ,k))

√
mν = δα,βδν,µ. (2.116)

Any configuration of the crystal can be written in terms of εs(k):

uανl =
1√
N0mν

∑

k,s

γksε
α
s (ν,k)eik·Rνl , (2.117)

where each coefficient of the linear expansion is defined as

γks =
1√
N0

∑

ν,l

√
mνuνl · εs(ν,−k)e−ik·Rνl . (2.118)

The complex numbers γks are termed phonon [143] or normal [152] coordinates. From

Eq. (2.113) it follows that:

γ∗ks = γ−ks (2.119)

Substituting in Eq. (2.108) the expansion of uαν,l in Eq. (2.117) and using the definition

of D in Eq. (2.109), the internal energy of the crystal is approximated as

U(r) =
1

2

∑

k
s,s′

γksγ−ks′
∑

ν,µ

εαs (ν,k)Dαβ(νµ,k)εβs′(µ,−k) (2.120)

=
1

2

∑

k,s

ω2
s(k)|γks|2, (2.121)

where between the second and third lines Eq. (2.111) was used. Thus, if the small

displacement approximation in Eq. (2.108) holds, the energy of a configuration r of the

system can be approximated by the energy of each phonon mode, weighted by the projection

of the current displacement on that mode.
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Figure 2.13: Sketch of the diatomic chain in Eq. (2.122).

1D Example

Consider a mono-atomic 1D chain like the one sketched in Fig. 2.13. The chain has a spacing

a and two atoms of mass m0 and m1 per unit cell at positions R0n = na, R1n = na+ d.

Atoms within and outside the unit cell are connected via springs of different elastic constant,

yielding the energy

U =
1

2
K
∑

n

[u0n − u1n]2 +
1

2
G
∑

n

[u0n − u1(n−1)]
2 (2.122)

=
∑

n,l
µ,ν

uµnD
νm
µn uνm, (2.123)

with spring constant K = φ′′(d), if φ(x) is the potential energy between two atoms at

distance x, and G = φ′′(a− d). In Eq. (2.123), the interaction potential is cast into the

general kernel form viMijuj reported in the definition of dynamical matrix Eq. (2.109),

and the kernel Dνm
µn has the form

Dνm
µn = δn,mδν,µ

∑

r,π

(
ϕr,πn,µ

)
− ϕm,νn,µ (2.124)

and ϕm,νn,µ = Kδn,m+Gδn−m,1δν−µ,1. Inserting the interaction in Eq. (2.124) in the definition

Eq. (2.109), for each wavevector q one obtains a 2× 2 dynamical matrix D(q)

D(q) =

(
K+G
m0

− eiqd√
m0m1

(
K +Ge−iqa

)

− e−iqd√
m0m1

(
K +Geiqa

)
K+G
m1

)
. (2.125)

The eigenvalues of D(q) are given by

ω2
s(q) =

K +G

µ
± 1

2

√
K2 +G2

µ2
+ 2KG

(
1

µ2
− 4

m1m0
(1− cos(qa))

)
, (2.126)

where 1
µ = 1

m0
+ 1

m1
is often referred to as reduced mass. In the case of equal masses

m1 = m0 = m the physics become even easier to grasp, with the frequency of the system

being

ω2
s(q) =

K +G

m
± 1

m

√
K2 +G2 + 2KG cos(qa). (2.127)
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The dispersion relation, in this case, is illustrated in Fig. 2.14. The two solutions of the

eigenvalue problem yield one acoustic ωA and one optical ωO branch. The former describes

coherent modulation within the unit cell and is characterized by a vanishing behaviour

near the centre of the BZ q → 0, corresponding to long-wavelength distortions (rigid

translation of the chain for q = 0), as shown in the lower inset in Fig. 2.14. In this region,

the dispersion can be approximated with a linear relation

lim
q→0

ωA(q) = cq,

where c =
√

KG
2m(K+G) is the speed of sound in the chain. The latter describes modulation

within the unit cell and retain a non-zero frequency ωO(π/a) =

√
2(K+G)

M , and thus energy

cost, also in the limit of q = 0, as atoms in all unit cells are vibrating coherently around

their equilibrium position, as shown in the upper inset in Fig. 2.14. At the edge of the BZ,

the modulation changes sign between neighbouring cells, the shortest wavelength possible.

As a result, the displacements between neighbouring cells are in phase opposition, i.e. π

phase, as shown in the insets on the left of Fig. 2.14.

Figure 2.14: Dispersion relation of optical ωO(q) (solid purple line) and acoustic ωA(q) (dashed
red line) versus wavevector q in a 1D chain with atoms of mass m per unit cell, orange circles and
blue squares in the insets. The intra-cell K and inter-cell G interactions between atoms define the
gap ∆(q) = ωO(q)− ωA(q) between acoustic and optical branches. Insets show the displacement
patterns at the centre q = 0, edges q = π/a and intermediate wave vector q = 2π/5a in the unit
cell, as marked by grey circles. Dashed lines highlight the unit cell of the chain and the modulation
wavelength is reported in a solid grey line; at the centre, the wavelength diverges, thus the horizontal
line.

To show clearly the connection between the dispersion relation in Fig. 2.14 and real-

space displacements, Fig. 2.15 reports the expansion coefficients |γks|2 along the dispersion

curve for a periodic and non-periodic displacement of the chain. Whether the energy cost

associated with this expansion is meaningful depends on how well the small displacement
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hypothesis is satisfied.

(a) Plane-wave-pair displacement (b) Gaussian-shaped displacement

a 0 a

(q) Acoustic Mode
Optical Mode
0.70 (BZ map 0.70)
4.59 (BZ map 1.70)

15 30 45
| q0|2

0 1 2 3 4
| q1|2

(c) Projection of plane-wave-pair displacement

a 0 a

(q) Acoustic Mode
Optical Mode

0.01 0.02 0.03 0.04
| q0|2

0.00000 0.00015 0.00030 0.00045
| q1|2

(d) Projection of Gaussian displacement

Figure 2.15: Projection example. The chain with a two-atom basis is shown as orange circles
and blue squares. (a) A portion of the chain with the displacement (black arrows) resulting from
the superimposition (solid grey line) of two plane waves (dotted lines) at k0 = 2π

9a , wavelength
larger than the unit cell, and k1 = π

9a
73
50 , wavelength smaller than the unit cell. (c) Projection

of the displacement pattern in (a) onto the phonon dispersion in Fig. 2.14. Vertical grey lines
highlight the position in the BZ of the modulating wave k0, k1. The intra- and inter-cell character
of the displacements is correctly reproduced in the dispersion. (b) A portion of the chain with the
displacement (black arrows) resulting from a Gaussian-shaped displacement pattern (solid grey
line) centred at x = 2 and of width σ = 1.2a, a little over a single unit cell. (d) Projection of the
displacement pattern in (b) onto the phonon dispersion in Fig. 2.14. The projection of this localized
in space is delocalized onto many wavevectors, as expected from the Fourier Transform definition.

Much of the physics shown by this simple example carries on to real crystals, where

higher dimension and directional-dependent interactions yield intricate band structures

with degeneracy and band-crossing points.

Phonons in layered materials

As an example of phonon dispersion in a real 3D crystal, Fig. 2.16(a) reports the phonon

dispersion of bulk MoS2. The anisotropy of the crystal structure gives rise to a characteristic

structure of modes where high-energy intralayer branches are sharply separated from inter-

layer low energy eigenmodes. As shown by the blue curves in Fig. 2.16(a) from K to Γ,

wavevectors along in-plane lattice vectors result in high energy distortions while modulations

along the interlayer axis c, shown in as red curves between the BZ centre Γ and A in

Fig. 2.16(a), occur at low energy cost due to the weak inter-layer van der Waals coupling

compared to strong in-plane bonds. The characteristic inter-layer modes are divided into

longitudinal, breathing modes [153], representing the vibration of layers along the c axis

around the minimum of the van der Waals potential, and transverse, shearing modes,
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representing the onset of sliding that have been linked to the frictional response of the

material [92, 154].
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Figure 2.16: (a) Interlayer and acoustic phonon dispersion of MoS2. Blue curves refer to the
in-plane wavevector, in the xy, while red curves refer to out-of-plane wavevectors, along z. The
inset in the top left reports a schematic of the Brillouin, highlighting the high-symmetry points;
from Ref. [155]. Other insets sketch the displacement pattern of different branches. (b) Fitting
of the dispersion relation for the bending modes according to Eq. (2.128). The dash-dotted and
dotted lines report the linear and quadratic parts, respectively.

Another unique characteristic of the phonon spectrum in layered materials is the

quadratic dispersion ωB(q) ∝ q2 near Γ of the out-of-plane transverse branch, usually

termed bending modes. This behaviour is characteristic of bending of 2D sheets in classical

mechanics [153]. The dispersion is thus written as

lim
q→Γ

ωB(q)2 = Aq2 +Bq4, (2.128)

where the slope
√
A dominates at small q and further away from Γ the parameter B,

known as bending stiffness constant, expresses the energy cost of creating ripples in the

material [153]. The fit of Eq. (2.128) for MoS2 phonon dispersion is reported in the inset

Fig. 2.16(b). In the case of an isolated ML, e.g. a single graphene sheet, the interlayer

modes disappear, i.e. the spectrum between Γ and A in Fig. 2.16(a) is flat, while only

bending, transverse and longitudinal acoustic modes are retained.
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Structural Properties of Heterostructures

Strong intralayer covalent bonds in Van der Waals (vdW) 2D materials complement the

weak vdW interlayer interactions which facilitate the lamellar structure of bulk crystals.

While the attractive properties of the pure compounds are widely known, recent efforts

have been focusing on the physics and properties emerging from the stacking degree of

freedom offered by these lamellar materials. Despite the interesting physics that results

from these relative mismatches, an often overlooked question is what determines their

rotational energy landscape and thus which geometries are stable. Indeed, experimental

studies are contradictory on this point, with a wide range of misfit angles found, even

for the same type of system [156, 157, 158, 159]. Examples of heterostructures based on

MoS2 on G are discussed below. This system may be regarded as the prototypical 2D

heterostructure, as it combines two well-known and extensively studied materials, widely

reported on in the literature. Moreover, it has been reported that MoS2/G heterostructures

show interesting electronic behaviour as a function of the mismatch angle [160, 161]. Using

CVD, Liu et al. [156] epitaxially grew triangles of MoS2 on top of G, shown in Fig. 3.1a,

about 0.135µm in size, with the majority of them (84%) aligned to the substrate and the

remainder rotated by 30◦. Using the same technique, Shi et al. [157] found mismatch angles

between MoS2 and G, on top of a Cu foil, ranging from −11◦ to 18◦, with a hexagonal

flake size of about 1µm, as shown in Fig. 3.1b. For CVD-grown flakes of 9µm reported in

Fig. 3.1c, Lu et al. [158] found a mismatch with typical angles below 3◦. Finally, using

an exfoliation protocol, Adrian et al. [159] prepared multi-layered heterostructures and

observed a misfit angle of 7.3◦ using diffraction spectroscopy, as reported in Fig. 3.1d.

As well as different values for the observed mismatch angle, these studies offer different

explanations for its origin. Whereas some attribute the observed (mis)alignment to the

57
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vdW epitaxy accommodating the mismatch in lattice constants [156, 157], others use the

structural features of the underlying G and the edges [158] as an explanation.

(a) (b)

(c) (d)

Figure 3.1: (a) CVD-grown flakes adapted from Ref. [156] (b) HRSTEM of misaligned MoS2

flakes grown on graphene. The insets show a spacial FFT of the highlighted region. Adapted from
Ref. [157]. (c) CVD-grown flakes adapted from Ref. [158] (d) Electron diffraction image of the
multilayer heterostructures in Ref. [159].

In a recent theoretical work, Zhu et al. [54] explained the orientational ordering of finite

size homostructures, e.g. MoS2 flakes on an MoS2 substrate, using a purely geometrical

argument: the lowest energy configuration is the one obtained by the roto-translation of

the rigid flake which maximizes the number of locally commensurate regions. Although this

argument is solely based on geometry, it provides a satisfactory approximation for finite

size systems but in the limit of infinite planes, i.e. for large enough flakes, commensurate

regions equal incommensurate ones. Therefore, in the limit of extended interfaces, other

theoretical frameworks are needed.

This chapter explores the energy landscape originating from the rotational degree of

freedom of edge-free, complex layered heterostructures and relate its fundamental origin to

incommensurability and layer deformation at imposed angles. This will provide guidance

for the design of vdW heterostructures and the control of the twisting degree of freedom. In

order to make a more general point about the relative importance of different contributions

in determining the total energy landscape, the following analysis focuses on a specific

but well-studied system, namely MoS2/G. While previous energy analysis focused on

commensurate MoS2/MoS2 homostructures [162] or near-commensurate 2D-crystal G/hBN

heterostructures [163], the MoS2/G BL system has a mismatch ratio ρ = lG/lMoS2 ≈ 0.8



Epitaxy Theory 59

far away from the commensurate value ρ = 1 and it is composed of a mixture of 2D and 3D

crystal monolayers. This selected analysis shows the practical application of the argument

developed and will also allow one to comment on the apparently contradictory experimental

observations regarding this particular system.

3.1 Epitaxy Theory

An approximate theory for the orientational ordering of an incommensurate interface

was proposed by Novaco and McTague [164, 165]. Although developed in the context of

epitaxial growth of noble gas layers on metal surfaces, it has been successfully applied

to the behaviour of mesoscopic colloidal layers in optical lattices [166] and metal clusters

adsorbed on G [167]. The assumption of the Novaco-McTague (NM) theory is that two ML

linked via an interface may be divided into two separate components, regarded as purely

2D systems: a soft adsorbate layer, treated within the harmonic approximation, atop a

rigid substrate.

The Hamiltonian of the system is decomposed into intralayer and interlayer inter-atomic

interactions

H = HL1 +HL2 +HL1L2 . (3.1)

The NM prescription means that the first intralayer term in Eq. (3.1) is substituted by its

harmonic approximation, while the coordinates of the second layer are frozen at its initial

values, r0, yielding a rigid substrate potentials for the first layer:

HNM = HL1 |harmonic + HL2 |r0 +HL1L2 . (3.2)

The system is frustrated if the substrate and the adsorbate lattices are mismatched: the

intralayer interactions within the adsorbate favour the intrinsic equilibrium lattice spacing,

while the interactions with the substrate drive the atoms toward the minima of the potential

generated by the frozen ML. The first term of Eq. (3.2) is treated within the phonon

formalism described in section 2.4.4. The second term HL2 |r0 is a constant shift of the

energy, the cohesive energy of the ML. The third term of Eq. (3.2), HL1L2(r), is the

interaction between the harmonic monolayer and the rigid substrate, generated by the

frozen atoms in the monolayer of lattice vectors bi. The interlayer interaction HL1L2(r)

can be approximated in terms of monolayer geometries and harmonic response only. Here,

a generalisation of the model proposed in Ref. [164, 168] is given and it is shown how the

results therein are recovered within the proposed formalism.

The geometry of the ML, described in Appendix B, allows the position of the atoms to be

decomposed as in-plane vectors and out-of-plane coordinates, rνl = (ρνlzνl). Considering

a plane perpendicular to the z, the potential generated by the frozen atoms in the

substrate is a periodic two-dimensional function, with the periodicity of the substrate

lattice V (ρ+B) = V (ρ), where B = l1b1 + l2b2 is a vector of the Bravais lattice of the

substrate. The interaction potential with rigid substrate HL1L2 : R3nN0 → R is a 1-body
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potential for the particles in the harmonic ML. It can be decomposed into single-atom

contributions and expanded in a Fourier series over the reciprocal lattice of the frozen

monolayer G:

HL1L2(r00, . . . , rnN0) =
∑

ν,l

V (ρνl, zνl) =
∑

ν,l,G

VG(zνl)e
iρνl·G. (3.3)

The coefficients appearing in Eq. (3.3) are defined as

VG(zνl) =
∑

νl

V (ρνl, zνl)e
−iρνl·G. (3.4)

In the assumption of small displacements from the equilibrium positions, the Fourier

coefficients in Eq. (3.4) can be Taylor-expanded to the first order around the equilibrium

interlayer distance z0:

VG(zνl) = VG(z0) + V ′G(z0)δzνl +O(u2), (3.5)

where δzνl = (Rν + uνl) · ê3 − z0 and V ′G(z0) = dVG
dz

∣∣∣
z0

. To simplify the notation, in the

following z0 = 0 and δzνl = zνl and the expansion point will be dropped, VG = VG(0).

In an incommensurate heterostructure, atoms of the harmonic crystal a are found at all

possible positions in xy with respect to the substrate crystal b, i.e. the adsorbate-atoms

positions, mapped into the substrate unit cell, cover it densely, as shown in Fig. 3.2. The

position of any adsorbate atom can be written in terms of the substrate lattice ρ = ρ ′+B,

where B is the appropriate lattice vector and ρ ′ is confined in the unit cell of the substrate.

Using the expansion in Eq. (3.5), the sum in Eq. (3.4) may then be converted into an

integral over the unit cell Ωb of the substrate potential at fixed height

VG =
∑

νl

V (ρνl
′ +B, zνl)e

−i(ρνl ′+B)·G = lim
L→∞

∫

Ωb

V (ρ, z0)e−iρ·Gdρ, (3.6)

which is independent of the position of the adsorbate atoms. The coefficients can thus be

evaluated providing an analytic form for the interaction V (r), without the need for the

exact atoms position in an extended geometry, which is usually out of reach for accurate

QM calculations. The same reasoning can be applied to V ′G in Eq. (3.5).

In the limit of small displacements u � la, the plane-wave term in Eq. (3.3) can be

expanded at first order as

eirνl·G = eiRνl·G(1 + iG · uνl) +O(u2). (3.7)

By substituting Eq. (3.5) and (3.7) in Eq. (3.3) and retaining only terms linear in u:

HL1L2 ≈
∑

ν,l,G

VGe
iRνl·G +

∑

ν,l,G

V ′G(0)zνle
iRνl·G + i

∑

ν,l,G

VGG · uνleiRνl·G. (3.8)

By exploiting the periodicity of the adsorbate ML as explained in Appendix B, the
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Figure 3.2: Graphical representation of the dense correspondence of lattice positions between
incommensurate lattices in Eq. (3.6). Supercell with L = 60 of lattice b (left) mapped back in a
(right).

interlayer interactions can be approximated as

HL1L2 = nN0

∑

τ,G

VGfτδG,τ (3.9)

+ n
√
N0

∑

τ ,G,k
s

V ′Gγks
∑

ν

1√
mν

(εs(ν,k) · û3) eiRν ·τ δ(G+ k − τ ) (3.10)

+ in
√
N0

∑

τ ,G,k
s

VGγks
∑

ν

1√
mν

(εs(ν,k) ·G) eiRν ·τ δ(G+ k − τ ). (3.11)

The term in Eq. (3.9) is a lock-in contribution: non-null elements occur when τ = G, i.e.

substrate and adsorbate have commensurate lattice points. For aligned homostructures,

this is the only contribution, as τ and G are always the same vectors. In the presence

of misalignment θ or mismatched lattice spacings, the equality is never satisfied and this

contribution is null. The term in Eq. (3.10) describes the coupling between the adsorbate

τ and substrate G lattices due to an out-of-plane part of the mass density wave with wave-

vector k. The scalar product εs(ν,k) · û3 selects only the eigenvectors with a components

along z and the coefficient V ′G is related to the force recalling the atoms towards the

minimum of the binding potential between the layers, i.e. a LJ potential well. A similar

effect for the in-plane-part is described by the term in Eq. (3.11): the scalar product

projects the phonon eigenvectors εsν on the xy plane and couples them with the direction

(and magnitude) of the substrate lattice G, thus introducing an explicit dependence on the

mismatch angle εs(ν,k) ·G = εsG cos θ .

Dirac’s δ functions in Eq. (3.10) and (3.11) dictate that the three vectors G, τ ,k, satisfy

the geometry sketched in Fig. 3.3. In an incommensurate system, each density wavevector

k identifies a single pair G(k), τ (k) of reciprocal lattice vectors [164], i.e. each triplet of

vectors is unique and the sums in Eq. (3.10) and (3.11) run over only one of these vectors.
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Figure 3.3: Example of geometry for the triplets appearing in Eq. (3.10) and (3.11) at (a) θ 6= 0
and (b) θ = 0. Orange arrows represent substrate reciprocal lattice G, purple arrows represent
the adsorbate reciprocal lattice τ and black arrows are phonon excitation vectors k. Grey arrows
show the direction of the polarization of the phonon excitation of a branch s, described by the
eigenvectors εs(k). The flexural branch is always perpendicular to plane where τ ,G,k lie.

Total Energy

Adopting a second-quantisation formalism, as outlined in Appendix B, the total energy of

the system is approximated by the following Hamiltonian operator

Ĥ =Ec +
∑

k,s

~ω2
s(k)

(
â†ksâks +

1

2

)
+ nN0

∑

τ,G

VGfτδG,τ (3.12)

+ n
√
N0

∑

k,s

gzs(k)(âks + â†−ks) + in
√
N0

∑

k,s

gxys (k)(âks + â†−ks). (3.13)

The layer coupling and phonon amplitude have been grouped into

gzs(k) =

√
~

2ωs(k)

∑

τ ,G,ν

V ′G√
mν
εs(ν,k) · û3e

iRν ·τ δG+k,τ = (gzs(−k))∗ (3.14)

gxys (k) =

√
~

2ωs(k)

∑

τ ,G,ν

VG√
mν
εs(ν,k) ·GeiRν ·τ δG+k,τ = −(gxys (−k))∗, (3.15)

where the relation with the complex conjugate follow from ω(−k) = ω(k), ω(k) ∈ R,

phonon eigenvectors properties discussed in section 2.4.4 and the physical requirement for

the energy in Eq. (3.3) to be a real number.

The Hamiltonian in Eq. (3.12) is not diagonal in â†ks, âks and the expectation value of

â† and â operators on the ground state of the system is not null. Thus, the ground state of

the system present a permanent phonon excitation, a mass density wave. To diagonalise

the Hamiltonian in Eq. (3.12), new creation and annihilation operators are defined in terms

of complex order parameters ξ:

âks =
√
N0ξks + b̂ks â†ks =

√
N0ξ

∗
ks + b̂†ks. (3.16)
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The Hamiltonian in terms of the new operators reads

H =Ec +
∑

k,s

(
b̂†ksb̂ks +N0ξ

∗
ksξks +

1

2

)
ω2
s(k) + nN0

∑

τ,G

VGfτ (3.17)

+
√
N0

∑

k,s

b̂ks (~ωs(k)ξ∗ks + ngzs(k) + ingxys (k)) (3.18)

+
√
N0

∑

k,s

b̂†ks (~ωs(k)ξks + ngzs(k)∗ + ingxys (k)∗) (3.19)

+ nN0

∑

k,s

(ξksg
z
s(k) + (ξksg

z
s(k))∗) + inN0

∑

k,s

(ξksg
xy
s (k) + (ξksg

xy
s (k))∗) . (3.20)

The system is diagonalised by imposing that the coefficients of the linear terms in b̂, b̂†,

Eq. (3.18) and (3.19) are null [164]:

ξ∗ks = − n

~ωs(k)
(gzs(k) + igxys (k)) = ξ−ks. (3.21)

Finally, substituting Eq. (3.21) back into Eq. (3.17) yields

H =Ec +
∑

k,s

~ω2
s(k)

(
b̂†ksb̂ks +

1

2

)
+ nN0

∑

τ,G

VGfτ (3.22)

− n2N0

∑

k,s

1

~ωs(k)

[
|gzs(k)|2 + |gxys (k)|2 − 2Im (gzs(k)∗gxys (k))

]
. (3.23)

Equations (3.22) and (3.23) represent a generalisation of eq. 13 in Ref. [168]: while the

original work by NM assumes simple Bravais crystals and a purely 2D system, this result

applies to real crystal systems, including distortions perpendicular to the ML surface. The

last term in Eq. (3.23) represents the coupling between in- and out-of-plane distortions.

While the first two terms in Eq. (3.23) always lower the energy of the system, the sign of the

coupling contribution is not fixed and its effect must be determined case by case. Finally,

equation Eq. (3.22) and (3.23) can be evaluated from pristine ML crystals and coupling

potentials. This characterisation is cheaper than running MD simulations on extended

systems and does not required a parametrisation of a material-specific force field. This

would allow the exploration of the rotational landscape of a large set of heterostructures in a

HT fashion, offering a way to tailor the energy landscape for twistronic application or nano-

scale devices. This would, for example, ensure that the desired rotational configuration is

thermodynamically stable.

3.1.1 Simple Crystal in the Long-wavelength Limit

From the result in Eq. (3.22) and (3.23), the NM approximation (eq. 21 in Ref. [168]) can be

recovered. When considering a simple Bravais crystal, i.e. a single n = 1 atom of mass m per

unit cell, the sum over ν disappears and the system presents only acoustic phonon branches.

The eigenvector geometry neatly resembles the ML nature of the system: εL,T lie in the G

plane and εF ⊥ G. This yields the geometrical relations εT ·G = (R(π/2)εL)·G = Gτ sin θ/k
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and k2 = |G − τ |2 = G2 + τ2 − 2Gτ cos θ). Moreover, the coupling term Im(gzgxy) is

identically null: only one of the scalar products in Eq. (3.14) and (3.15), εs(ν,k) · û3 or

εs(ν,k) ·G, respectively, can be non-null. In the long-wave limit, the phonon dispersion

relations can be approximated as

ω2
L(k) ≈ cLk (3.24)

ω2
T (k) ≈ cTk (3.25)

ω2
F (k) ≈ Ak2, (3.26)

where cL,T are the longitudinal and transverse sound velocities, respectively, and A is the

bending rigidity of the layer [153]. Starting from Eq. (3.22) and (3.23), the energy gain per

atom granted by the GS density wave compared to the isolated adsorbate ML equilibrium

geometry reads

∆E =
〈Ĥ〉0 − Ec

N0
(3.27)

=− 1

2m

∑

k

[
V ′2G

1

A2k4
+ V 2

G

G2

c2
Lk

2
+ V 2

G

G2τ2 sin2 θ

c2
Lk

4

(
c2

L

c2
T

− 1

)]
. (3.28)

The definition of gs(k) in Eq. (3.14) and (3.15) were used. The delta functions in gs(k)

reduce the sum to a single vector, k; the dependency on this vector τ = τ (k) and G = G(k)

is implicit.

The energy minima as a function of the misalignment angle is found by setting the

derivative of Eq. (3.27) with respect to θ to be null

∂∆E

∂θ
= 0 =

∑

k

V 2
G

c2
L

G2

[
Gτ sin θ

k4
+ τ2σ

(
sin θ cos θ

k4
− 2Gτ sin3 θ

k6

)]
(3.29)

−
(
V ′Gε

z
F (k)

A

)2 Gτ sin θ

k6
,

where σ = ((cL/cT)2 − 1) and an implicit dependence on θ is contained in kn at the

denominators.

Dividing Eq. (3.29) by sin θ, θ = 0 emerges as a solution. From the physical point of

view, θ = 0 must be a solution: the energy cannot depend on the sign of the misalignment

and, thus, θ = 0 must be an extrema point, either maximum or minimum. The energy

scales of in-plane and out-of-plane contributions to the position of the energy minima are

separated in Eq. (3.29). The in-plane deformations are scaled by the prefactors
V 2
G

c2L
G2,

which is the ratio between the energy gain from matching the substrate periodicity (VGG)

and the cost of elastic deformation (cL), and τ2((cL/cT)2 − 1), which expresses the lower

energy cost of transverse phonon branch compared to longitudinal one. The contribution

of out-of-plane deformation is governed by
(
V ′Gε

z
F (k)
A

)2
, which is the ratio between out-

of-plane interlayer coupling (V ′Gε
z
F (k)) and cost of layer bending (A). In contrast with

the 2D case presented in the following section, Eq. (3.29) retains a dependency from the
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reciprocal lattice vectors τ and G. This is rooted in the different dependence from G

of the in- and out-of-plane contributions: the energy contribution related to the flexural

phonons couples with the z axis rather than with the Bravais lattice of the adsorbate. No

simple analytical solution is found for the limiting case in Eq. (3.29) and while it could be

evaluated numerically, the non-approximated model in Eq. (3.22) and (3.23) would yield a

better description of the system.

Purely 2D Monolayer

To recover eq. 21a in [168], the adsorbate ML is regarded as a 2D object, i.e. only L and

T phonon branches are present. Moreover, it is assumed that by symmetry there are p

equivalent triplets τ ,G,k that satisfy the construction in Fig. 3.3 [164, 168]. Equation (3.29)

becomes

∆E2D = −pV
2
GG

2

2mc2
L

[
1

k2
+
τ2 sin2 θ

k4
σ

]
, (3.30)

Solving ∂∆E2D/∂θ = 0 for θ yields eq. (21a) in Ref. [168]

cos θNM =
1 + ρ2(1 + 2σ)

ρ[2 + σ(1 + ρ2)]
, (3.31)

where ρ = τ/G. The trigonometric function imposes the following limits on the parameters

in Eq. (3.31):

0 < ρ < 1 ∨ ρ > 1 (3.32)

cL ≥
√

1 + ρ−1cT. (3.33)

The first condition correctly implies that for commensurate bilayers (ρ = 1) the minimum-

energy angle is always θ = 0, i.e. aligned lattices. The second condition states that the

transverse branch must be lower enough in energy compared to the longitudinal one to

justify the shift from θ = 0 which coincides with the shortest k value and thus lower

frequency ω. In ref. [168], ignoring the out-of-plane displacements in Eq. (3.29) is justified

by the experimental observation that V ′ ≈ 0.

To summarise the physics of the NM model, a computational result from the following

analysis of MoS2/G system is anticipated here. As illustrated in Fig. 3.3, as function

of the misalignment angle θ the relative alignment of the the substrate lattice G (blue

arrow) and the phonon acoustic eigenvectors (gray arrows) changes. Since flexural phonons

are perpendicular to the xy plane, and thus to G, they can never participate to this

energy term. As Fig. 3.3(b) show, at θ = 0 G ⊥ εT and thus only longitudinal phonon

modes contribute to the in-plane interaction with the substrate. Instead, when θ 6= 0 like

Fig. 3.3(a) both transverse and longitudinal eigenvectors have a non-null projection on

G. The macroscopic effect of the different excited branches at different angles is shown

in the displacement maps in Fig. 3.4. In the aligned case θ = 0◦ only compression and
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extension of the bonds are found and all displacements lie along the lattice parameters.

In the misaligned case θ 6= 0◦ displacements have components along and perpendicular

to the bonds, signalling the excitation of the transverse band as well. According to NM

approximation [164, 168] in Eq. (3.31), the non-null amplitude of the transverse branch

can lead to a lower total energy of the system, despite θ 6= 0 implies a larger |k|, thus

larger energy penalty proportional to ω(k); this is because the transverse branch lies lower

in energy than the longitudinal one. This model does not take into account the complex

structure of the unit cell crystal and the out-of-plane deformation, whose effect is analysed

in the remainder of this chapter.

Figure 3.4: In plane relaxation of graphene layer in the potential generated by MoS2. In (a) θ = 0
and the two Bravais lattices are aligned: the only contribution to the distortion comes from εL ·G,
parallel to Bravais lattice vectors. In (b) θ 6= 0 and the two Bravais lattices are misaligned: both
εL ·G 6= 0 and εT ·G 6= 0 and displacements are both along and perpendicular to Bravais lattice
vectors. To enhance visibility, arrows report the direction of the displacement of each C atom, while
the colour-code reports the length.

3.2 Computational Methods

This section introduces the computational protocols and methods used to study the system

of MoS2/G heterostructure, taken as a case study for the epitaxy theory outlined in

section 3.1. In order to avoid finite-size effects and harvest information solely from the

relaxation of the atoms in the layers, edge-free geometries are adopted. The resulting

supercells are simultaneously compatible with the lattice mismatch and a relative imposed

angle between the lattices. As a result, periodic boundary conditions (PBC) can be applied

to such cells. The starting interface geometry is described by a pair of 2D lattices defined

by vectors (laâ1, laâ2) and (lbb̂1, lbb̂2), where la and lb represent the lattice constants and

the b̂i vectors are rotated by an angle θ with respect to âi. Two layers will be compatible

if they satisfy the matching condition

la(n1â1 + n2â2) = lb(m1b̂1 +m2b̂2), (3.34)
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where the integer numbers n1, n2, m1, m2 are supercell indices representing the repetition

along each lattice vector. In practice, for incommensurate lattice constants, the matching

condition yielding PBC-compliant supercells can only be satisfied approximately, i.e. the

lattice spacing l′ of one of the two components needs to deviate from its equilibrium value

l . Here, in order to obtain suitable structures with imposed angles between 0◦ and 60◦,

only supercells satisfying |l′ − l| < 5× 10−7 Å are accepted. The strain is applied to the

MoS2 layer, which leads to a maximum strain ε = l′−l
l within the same order of magnitude,

four orders less than reported strains in other computational studies [169, 170, 171]. This

protocol yields a set of supercells, each of which has a different number of atoms up to

343893, created according to the four supercell indices resulting in an unique twisting angle,

satisfying the matching condition. Details of this protocol and all the parameters of the

supercells used are reported in Appendix C.

SW

REBO

LJ 

Top View

Side View
= S
= Mo
= C

9.75°

(a) (b)

Figure 3.5: Schematic overview of computational setup displayed for a mismatch angle of 9.75◦.
(a) Top view, including a sketch of moiré tiling resulting from the geometrical interference between
the two lattices. The mismatch angle between the lattice direction of MoS2 (blue line) and G (green
line) lattices is reported as well. (b) Side view, including the corresponding force fields that have
been used.

The bilayer system is described using the force field reported in Appendix D: G layer

is modelled using Reactive empirical bond order (REBO) potential [172], MoS2 layer is

modelled using Stilling-Weber (SW) potential [171], and the interlayer interactions are

modelled with LJ dispersion term, whose parametrisation is reported in Appendix D. This

yields the following Hamiltonian for the bilayer system:

H = H
(REBO)
C +H

(SW)
MoS2

+H
(LJ)
C−MO,C−S. (3.35)

Energy minimizations of Eq. (3.35) for large supercell geometries were performed using

the conjugate gradient algorithm available within the LAMMPS package [173], with the

convergence tolerance on the total energy value set to 1× 10−15. An overview of the
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computational setup can be found in Figures 3.5a and 3.5b. Appendix D reports a

benchmark of the intralayer part of the FF, comparing lattice parameter and phonon

dispersion with DFT calculations, and a refinement of the interlayer part, since the

parametrisation found in literature was not deemed satisfactory.

Sound Velocity Estimation The NM approximation in Eq. (3.31) requires an esti-

mation of the linear dispersion regime limk→0 ωi(k) = vik, where i = L,T labels either

the transverse (T) or longitudinal (L) branch and vi = ∂ω(k)
∂k

∣∣∣
Γ

is the speed of sound of

corresponding branch. Fig. 3.6 shows the longitudinal and transverse branches close to Γ of

G and MoS2, extracted from the phonon dispersion reported in Appendix D. The plot also

 0

 4

 8

 12

 16

 0  0.02  0.04  0.06  0.08  0.1

ν
 
[T
H
z
]

k [A
-1
]

G L Branch
G T Branch

MoS2 L Branch
MoS2 T Branch

Figure 3.6: Sound velocity fits from the phonon dispersion in G (shades-of-blue symbols) and in
MoS2 monolayer (shades-of-red symbols). The y axis reports the frequency ν in THz and the x
axis the distance from Γ in Å−1. The colour-matching lines report the linear fit of that branch, i.e.
νi = vik.

shows the linear fits obtained from the points, including their fitted slopes representing

the sound velocities, as reported in Table 3.1. This leads to the values σG = 2.235 and

σMoS2 = 2.968 used to evaluate Eq. (3.31).

Material vL[km/s] vL[km/s]

G 18.9403 ± 0.0005 10.5298 ± 0.0005
MoS2 0.2608 ± 0.0005 0.131 ± 0.002

Table 3.1: Sound velocity of transverse and longitudinal phonon branches in G and monolayer
MoS2 extracted from Fig. 3.6. The uncertainty arises from the linear fitting procedure.

3.3 Results

The reminder of the chapter tests the NM model and long-wavelength limit on the

prototypical complex heterostructure: MoS2 ML on G. The analysis will highlight the limit

of the NM approximation and the direction in which an advanced model should go.
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3.3.1 Constrained 2D Simulations

In this section, MoS2/G system is constrained to meet the assumption of the NM limit in

section 3.1.1. Following the model presented in section 3.1.1, the intralayer term in Eq. (3.1)

is substituted by its harmonic approximation, while the coordinates of the second layer are

frozen at its initial values, r0. The theoretical misalignment angle minimising the energy is

given by Eq. (3.31). There are two possible scenarios covered by NM theory: G can be

treated as the rigid substrate, while MoS2 acts as a soft adsorbate, or vice versa. In the first

case, the theory predicts θMoS2
NM = 8.0◦, while if G is the adsorbate, the minimum-energy

angle is θG
NM = 8.6◦. The prediction of the NM model can be verified by minimizing the

total energy of the twisted geometries described above under suitable constraints. The

atoms of the heterostructures are constrained in the direction perpendicular to the surface,

i.e. the z axis, effectively reducing the dimensionality of the system to 2D. Furthermore,

the atoms of the substrate layer are frozen in the in-plane directions x and y, enforcing

a fully rigid substrate. As mentioned at the beginning of this chapter and explained in

detail in the Appendix C, the edge-free geometries used in this work inevitably retain

a degree of stress resulting from the matching condition for the two lattices in order

to be able to apply PBC. The slightly different strains applied to each geometry result

in different offsets in the starting energies. It was found that this offset is comparable

with the energy gain arising from in-plane movements of the atoms, even in the biggest

supercell within computational limits. This artifact leads to a significant noise in the

signal of the energy as a function of the imposed angle. To overcome this problem and

to obtain a clear signal in these simulations, the LJ-coupling strength between the MoS2

and G layers was enhanced. During the geometry optimization, the LJ-parameters εij in

Eq. (D.1) are set to ε′ij = 100 · εij . Next, the resulting energy profile is scaled back, as if

simulated with the original value ε′ij = εij . As is shown in the Figures 3.7a and 3.7b, this

computational trick reduces the noise without affecting the actual physics of the problem.

The LJ-coupling between the layers of MoS2 and G was enhanced during the constraint

simulations as mentioned in the main text. This was done because the strain posed on the

MoS2 lattice, in order to create a supercell suitable for the application of PBC, results in a

noise significantly affecting the energy profile upon rotating the lattices. Fig. 3.7a reports

the energy profile E(θ) for different values of the scaling factor f in ε′ = fε. It can be seen

that this computational trick does not alter the physics but purely amplifies the energy

trends that otherwise get progressively hidden by the noise. Fig. 3.7b reports the scaling

relation at θ = 30◦, showing an almost quadratic behaviour. In order to make comparison

between Fig. 3.8 and Fig. 3.9 easier, the values computed at ε′LJ = 100εLJ are scaled back,

according to E100(30◦)/E1(30◦) = 1751.57. In other words, both the minima and maxima

remain located at the same angle, however, their absolute energy value is scaled according

to the LJ-coupling.

Fig. 3.8 shows the optimized energy per atom, E(θ), of the bilayer system as a function

of the angle, θ, with respect to the energy of the aligned structures, E(0). The two curves

refer to the following models: 2D-adsorbed G atop rigid MoS2 (red) and 2D-adsorbed MoS2
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Figure 3.7: (a) Enhancement of the LJ-coupling. The plot reports the energy E(θ) in meV/atom
versus angle θ for rigid MoS2 and soft G for increasing values of LJ coupling f , as reported in the
legend. (b) Scaling relation between the maximum energy ratio and the LJ coupling parameter
ε. Blue circles represent the energy at θ = 30◦ computed at a given enhancement factor f , with
respect to f = 1, versus the scaling factor f . The light-blue line shows the fitted power law reported
in the legend with parameters a = 0.217837 and b = 1.9572.

atop rigid G (blue). Both cases reveal a minimum at a non-zero angle: for the adsorbed

G case, the minimum is found at θG
min = 4.2◦ while for the adsorbed MoS2 case it is at

θMoS2
min = 12.3◦. The simulations show that the physics described by the approximation of

Eq. (3.31) is still valid, i.e. a non-zero minimum angle is observed for both cases. However,

the absolute values of the predicted and observed angles are not in agreement, yielding a

discrepancy of θG
min− θG

NM = −4.4◦ in the case of 2D-adsorbed G and θMoS2
min − θMoS2

NM = 4.3◦

in the case of 2D-adsorbed MoS2.

A previous study [163], dealing with G and h-BN, showed that the NM model quanti-

tatively describes the relaxation of the constrained system of these purely 2D materials.

Here, the NM theory captures the basics of the physics, i.e. non-zero minimum-energy

misalignment, but is not able to describe satisfactorily the complex geometry of the bilayer

system, especially in the case of the flexible MoS2 layer. The poor prediction of the theory

in this case is attributed to the internal 3D structure of the MoS2 monolayer, which indeed

is unaccounted for in the NM model. This suggests that the NM theory is generally of

limited utility for any bilayer comprising TMDs or other systems with a multi-atom thick

single layer. Another difference between the results here and the ones found for G/hBN

heterostructures [163] is the quantitative difference in the energy values. In fact, the results

here report energy differences of one order of magnitude less. This difference is explained

by the earlier mentioned MoS2/G BL system mismatch ratio ρ = l/l ≈ 0.8. Due to this

significant incommensurability between the MoS2 and G, present for all rotations, the atom

displacements and energy difference is expected to be less pronounced. In fact, a similar

observation has been done experimentally by Diaz et al. [160] and Pierucci et al. [161]. For

example, Diaz et al. found that the moiré pattern obtained from AFM measurements from

MoS2/G was less pronounced compared to the one of hBN/G. Finally, a BL system with

constraints between the pure NM theory and free system was considered: atoms in each

MoS2/G ML are free to move in the equilibrium xy plane but constrained along z. This

corresponds to lifting the rigid substrate assumption of the NM theory, while enforcing
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Figure 3.8: Energy per atom E(θ), in meV, as a function of the imposed angle θ in degrees
for different 2D models: red squares refer to flexible G on top of rigid MoS2, blue circles refer to
flexible MoS2 on top of rigid G and gray triangles refer to flexible MoS2 on top of flexible G. The
label in the legend indicate the flexible ML. The reference value of the energy scale is set to E(0).
The minimum-energy point along each curve is highlighted by a dashed line and a label. Red and
blue crosses (accompanied by a label) mark the minimum angle predicted by the NM theory for
the first and second case, respectively. The minimum-energy and NM-predicted angles for flexible
MoS2 are reported starting from 60◦ for ease of reading.

a constant interlayer distance. The black symbols in Fig. 3.8 report the results of this

case. As a result, the two layers can mutually influence and distort each other, reaching

configurations not included in the NM model. A minimum at θ = 7.94◦ is clearly visible

in Fig. 3.8, midway between the two rigid substrate approximations. Note that the the

model does not describe the mutual interaction between the layers and does not provide

a prediction for the minimum-energy angle in this case. The behaviour of the system

is thus qualitatively different from the h-BN/G heterostructures studied by Guerra et

al [163]. In that case the NM theory was found to explain quantitatively the energetics

of the rigid and z-frozen scenario, i.e. blue and red lines in Fig. 3.8, but removing the

rigid substrate constraint changed the behaviour qualitatively: the minimum-energy angle

predicted by NM disappeared from the energy profile of the system. From this observation,

one can conclude that relaxing the constraint of a rigid substrate in this system with a

3-dimensional single layer does not contradict the physics described by the NM model.

3.3.2 Free bilayer 3D

Indeed, the NM theory is even qualitatively inadequate if all degrees of freedom are

considered, i.e. all atoms are free to move in the 3D space. Fig. 3.9 shows the energy

per atom as a function of the angle of the system with no rigid substrate, but two soft,

interacting layers. Naturally, the LJ-coupling between the two layers has been restored to

the values obtained from fitting against the DFT data to correctly reproduce interlayer

forces. The behaviour is both quantitatively and qualitatively different from the constrained
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Figure 3.9: Energy per atom E(θ), in meV, as a function of the imposed angle θ. Each point
in the energy landscape represents a distinct geometry at a different imposed angle and the blue
line is a Bézier fit. The small oscillations at θ = 0◦, 60◦ are due to numerical noise in the energy
simulations. The circular insets show a top views within a distance d = 15 Å from the origin of
relaxed geometries at θ ≈ 0◦ (bottom left), θ ≈ 50◦ ≡ 10◦ (bottom right) and θ ≈ 30◦ (top centre).
The atoms are coloured according to the scheme in Fig. 3.5. The pink hexagons sketch the moiré
tile in each configuration.

system presented previously. The introduction of the out-of-plane dimension (z) changes

the response qualitatively. The energy minima at non-zero angles have disappeared and

E(θ) rises symmetrically from the global minima at the aligned cases (0◦,60◦) towards

the global maximum at the mismatch angle of 30◦. From Fig. 3.9, one can thus deduce

that at 0 K, the fully flexible bilayer system will be stable when aligned at 0◦ or 60◦. The

energy profile around the mis-alignment of 30◦ is flat and the misaligned geometry at this

angle could therefore be characterized as metastable, as a vanishing force F = −dE(θ)/dθ

drives the system toward the global minima at 0◦ or 60◦. In the thermodynamic limit

this orientation should not occur, considering its maximum character. The fact that it

is observed experimentally [156] can be explained by the fact that this geometry can be

stabilized by a small internal friction, e.g. due to defects.

The NM theory does not hold when structural distortions perpendicular to the interface

are allowed. Results indicate that these are important for MoS2/G heterostructures and

there is reason to believe that this is more widely the case. The core of the NM argument

is that the collective misalignment arises from the excitation of the transverse phonon

branch in the xy plane, which lies lower in energy than the longitudinal one. This static

distortion, which raises the internal energy of the adsorbate layer, is counterbalanced by

a better interdigitation of the two lattices, that is, the displaced atoms are shifted to

more favourable stacking with respect to the interlayer potential [164, 165]. If out-of-plane

distortions, unaccounted for in NM theory, lead to a better interplay between the two

layers, i.e. a gain in the interlayer coupling energy that is larger than the intralayer energy

penalty from the modulation itself, the system will lower its total energy. Differently

from the NM theory, the lowest-energy distortion in this scenario would not result in a
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misalignment between the components but in the formation of ripples keeping the locally

commensurate zones at the equilibrium distance and pushing away incommensurate ones.

3.4 Discussion

Out-of-plane displacements magnitude This section compares the out-of-plane

displacement of G layer with the MoS2 one. The thickness of a ML is defined as

τ(θ) = zmax − zmin in the relaxed geometry. Since MoS2 comprises three atomic lay-

ers, the analysis has been carried out on the separate components: bottom S layer, Mo

layer and top S layer, as reported in Fig. 3.10. The thickness of the bottom S layer, shown

as an orange dashed line in Fig. 3.10, shows the larger displacements amongst the atomic

layers comprising MoS2 and the trend mirroring G displacement (blue solid line in Fig. 3.10.

This behaviour can be explained as the bottom S layer is the closest atomic layer of MoS2

to G and, thus, is the most affected by the interlayer potential. As the misalignment angle

θ grows, the less convenient it becomes for G to modulate and the more important the

contribution from MoS2 modulation becomes, albeit still small compared to G signal. The

Mo layer shows a level of modulation only after θ = 20◦, when G starts to flatten. Finally,

the top S layer, furthest from the interface with G, remains essentially flat throughout the

spectrum and the small fluctuation can be regarded as numerical noise.
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Figure 3.10: Thickness τ(θ) of the atomic layers as a function of the mismatch angle θ. The y
axis is in logarithmic scale for better comparison.

The total variation ∆ between all values θ are reported in Table 3.2. The last column

reports the variation with respect to the one occurring in G (∆G): the modulation in MoS2

is at least 2 orders of magnitude less than in G. The structural distortion representing

the leading order in the system energy economy occurs mostly in the G layer. Thus the

following discussion will focus on this part of the system only.

Phonon dispersion in G The out-of-plane deformations disregarded in NM theory

are characterized here in terms of the flexural phonon branch, which described excitation
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Atom layer minθ(τ) [Å] maxθ(τ) [Å] ∆ [Å] ∆/∆G

G 0.0026 0.0291 0.0265 1
Bottom S 0.0007 0.0013 0.0006 0.021
Mo 0.0003 0.0008 0.0005 0.018
Top s 0.0001 0.0004 0.0002 0.009

Table 3.2: Minimum and maximum thickness across θ. Variation of thickness ∆ = maxθ(τ) −
minθ(τ). Variation relative to the one occurring in G.

perpendicular to the ML plane. In line with the edge-free geometries adopted, the phonon

picture is independent of size of sample and since the phonon eigenvectors represent

a complete basis set [143], any distortion in the crystal may be expressed as a linear

combination of phonons. Moreover, treating the distortions of a layer in terms of its phonon

spectrum decouples the intralayer energetics from interlayer interaction. As shown by the

blue solid line in Fig. 3.11, the flexural band is flat near the centre of the BZ (Γ point), i.e.

the long-wave modulations perpendicular to the basal plane can occur essentially without

an energy penalty. Transverse (dashed grey in Fig. 3.11) and longitudinal (dash-dotted

gray in Fig. 3.11) bands, at the base of the argument given by NM theory, are higher in

energy, resulting in more expensive modulations of the G layer.
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Figure 3.11: Phonon band structure of the G monolayer. The y axis reports the phonon energy,
while the x axis marks the distance from the origin along the path Γ→M → K → Γ, shown in the
top right inset and marked along the x axis by gray dashed lines. The flexural branch is reported
by a solid blue line, transverse branch by dashed gray line and longitudinal branch by dash-dotted
grey line while other branches are shown in dotted black lines. Coloured segments along x raising
from y = 0 to the flexural branch mark wavevectors matching the moiré spacing LM(θ) for the
geometries in the insets of Fig. 3.12, as highlighted by the colour-code. The moiré wavevector kM
corresponding to real-space wavelength LM is shown in the top-right inset following the colour-code
in the legend in top left.

Moiré pattern While the phonon spectrum describes the energy penalty compared

to an isolated ML at equilibrium, the energy gain from interlayer interactions can be
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quantified in terms of moiré patterns. The moiré superlattice is a geometrical construction

describing the interference between two lattices and can be used to identify geometrical

correspondence between lattices, i.e. zones of local commensuration versus incoherent

stacking. The symmetry of the moiré superlattice reflects the one underlying Bravais

lattices and its lattice parameter LM is given by [112]

LM(θ) =
lG√

1 + ρ−2 − 2ρ−1 cos θ
. (3.36)

Fig. 3.12 shows the correlation between out-of-plane modulations in the G sheet, i.e.

LM(0°) LM(10°)

LM(20°)
LM(30°)

Figure 3.12: Thickness of G layer τ(θ) resulting from the displacement of C atoms (black circles,
left axis) and spacing of the moiré pattern LM(θ) (coloured dotted line, right axis) as a function
of θ for equivalent configurations at 0◦ and 60◦ rotating towards 30◦. The insets show the local
distortion following the moiré lattice in a square of sides 60 Å at the nearest configuration having
approximately an angle of θ = 0◦ (0.23◦, dark purple), 10◦ (9.75◦, purple), 20◦ (19.89◦, dark pink),
30◦ (29.17◦, pink). The colour of each triangle reports change in height ∆z = z − zeq coordinate of
the corresponding C atom (black points) following the colour code reported in top left. For example,
the moiré pattern can be seen in the inset for LM(0◦) as the lattice defined by the red regions.

rippling in the z dimension quantified by the layer thickness τ(θ), and the moiré pattern.

The thickness of the G layer τ(θ) originates from local ripples of the carbon sheet. This

thickness is, therefore, a global descriptor defined for each misaligned geometry and

represents a useful tool to quantify the behaviour of the system. At θ = 0, the moiré

spacing and the thickness τ(θ) are at a maximum and they both decrease as the misalignment

increases. As θ increases, the length of the pattern shrinks with the displacement along z:

at θ = 30◦ the moiré shrinks to a couple of unit cells and the monolayer remains basically

flat. The ripple patterns, i.e. local geometry, follow perfectly the moiré superlattice, as

shown in the insets of Fig. 3.12 for selected values of θ.
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Moiré-Phonon interplay Combining the geometrical construction shown in Fig. 3.12

and the G phonon dispersion in Fig. 3.11, the energy profile in Fig. 3.9 can be explained.

The moiré spacing LM(θ) can be mapped to wavevectors into the BZ by kM(θ) = 2√
3LM(θ)

.

The wavevectors kM corresponding to the spacing LM of the geometries in the insets of

Fig. 3.12 are highlighted, following the same colour-code, in Fig. 3.11 by vertical segments

along the path and as circles in the inset, showing all wave-vectors in the BZ at the

moiré spacing. A modulation of the G sheet with wavelength LM(θ) can be represented

as a combination of phonon modes of matching wavevectors kM(θ). Since the modulation

of G layer takes place essentially in the z direction only, the major contribution in the

decomposition onto phonon modes arises from the flexural branch, which point in this

direction, and, to a lesser extent, from the high-energy optical branches. Within small

displacements from the equilibrium positions, the energy price of such modulations can

be estimated by the corresponding phonon energy. As θ varies from 0◦ to 30◦ and the

moiré shrinks as shown in Fig. 3.12, the associated wavevector kM(θ) assumes the values

between kM (0◦) = 0.09 Å−1 (dark-purple lines in Fig. 3.11) and kM (30◦) = 0.24 Å−1 (pink

lines in Fig. 3.11), at increasing flexural-phonon energies. These limiting cases are the

most instructive. At θ = 0◦, the spacing of the moiré is LM = 12.5 Å, which is the distance

between the locally commensurate patches, and the red regions in Fig. 3.12. As signaled

by the dark-purple line in Fig. 3.11, flexural phonon modes of this length in G are close

enough to the flat region around Γ and are therefore energetically inexpensive. This allows

commensurate regions to stay at the equilibrium interlayer position while incommensurate

ones are pushed away from MoS2 ML perpendicular to the basal planes. As θ increases

to 30◦, LM decreases and thus the distance between locally commensurate areas reduces,

something which is also observed experimentally [58]. As a result, the deformation needs

to occur over a shorter distance and its energy cost therefore increases. At θ = 30◦,

LM = 4.88 Å, which is about 2 G unit cells. As shown by the pink line in Fig. 3.11,

deformations of this length scale are described by phonons at the edges of the BZ and

are energetically more expensive than the gain coming from the interdigitation with the

substrate. Therefore the G sheet remains flat, at the expense of the interlayer coupling,

resulting in a higher total energy of the heterostructure compared to the aligned case. The

flattening of the flexural branch near the edges of the BZ, as shown by the solid blue line

between M and K in Fig. 3.11, is mirrored by the plateau in the energy profile in Fig. 3.9

around θ = 30◦: in the whole region moiré modulations are too expensive and the system

cannot obtain any energy gain.

To sum up, the unconstrained 3D heterostructure lowers its energy by out-of-plane

distortions according to the moiré pattern. This is particularly convenient at θ = 0, where

LM = 12.5 Å: here the flexural distortion is almost without any energy penalty and the

system lowers its energy by improving the interdigitation between the G and the MoS2

layer. As θ increases, LM decreases and the cost of the ripples overtakes the gain in energy

due to local commensuration, yielding flat G and an increased total energy. Finally, the

region of the BZ spanned by the moiré spacing as a function of θ (the region between
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purple and pink segments in Fig. 3.11) shows that the approximation of long-wavelength

used to derive Eq. (3.31) is unsuited in the large-mismatched heterostructures. As even

phonon excitations near the border of the BZ are involved in the energy economy of the

system, a modified epitaxy theory is needed in these cases to predict and understand the

phase stability of imposed twist angles.

3.5 Final Remarks

Although often overlooked, the stability of twisted vdW heterostructures is of particular

importance in the emerging field of twistronics, as it can be a decisive factor in the real-life

application of such systems. The energy as a function of imposed angle determines whether

a device is at risk of rotating away from a prepared angle even if it can be prepared in a

metastable state. The analysis of MoS2/G heterostructures helps to clarify the scattered

experimental data. A single global minimum is found at θ = 0◦ and 60◦: i.e. only epitaxial

stacking is expected for the system at 0 K. However, experiments always present defects

or intrinsic friction that might result in the emergence of activation energies, potentially

trapping a system in a metastable (or even unstable) state. In the limit where such effects

become negligible, i.e. activation energy approaching zero, one would mostly observe aligned

at θ = 0◦ and 60◦ and few 30◦-rotated heterostructures, in agreement with the results

of Liu et al. [156]. A possible experiment to test the validity of these results would be a

systematic repetition of the aforementioned experiments, focused upon reducing deviations

resulting from working conditions, e.g. annealing temperature. Hopefully, the results of

such an effort will confirm these findings: with a high enough annealing temperature and

large enough flakes of significant quality, the bilayer system should be found in the aligned

configuration, with possibly some outlier around 30◦. The relevance of the results presented

here becomes clear when considering the fact that interesting physics is observed at certain

unstable mismatch angles [161]. Our findings show that care must be taken when designing

nanodevices as properties observed in studies at a specific angle might fade out due to

the system spontaneously rotating toward the real thermodynamic equilibrium. In fact,

others [55] also suggest that commensurate structures are most suitable.

Finally, the origin of the observed energy economy is explained in terms of the interplay

between flexural phonon modes of the pristine compounds and the moiré superlattice. This

insight is general in nature and can be applied to all layered materials and heterostructures,

serving as a design tool for twistronic devices. Stiffness in the out-of-plane direction should

be considered a critical property in the design of such devices. It is for example known that

rippling can affect the Schottky junctions, which are directly related to the performance of

optoelectronic devices such as photodetectors and solar cells [174]. Soft flexural phonon

modes might be a lower energy route out of frustration than twisting, hindering the

possibility of stable rotated configurations. Furthermore, the observed behaviour shows the

need for a novel theory of epitaxy for layered materials, incorporating the flexural branches

ignored in the NM theory and taking into account all phonon wavelengths. The insights
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presented here can serve as a starting point for developing such a theory of the epitaxial

growth for vdW heterostructures.



4
High-throughput Alloy Design

Since the discovery of graphene, 2D materials have been at the forefront of materials science

discovery. Aside from fundamental research, recently their unique properties and reduced

dimensionality have sparked an interest for nanoscale engineering application and ideas for

2D-materials-based devices can be found in tribology [175], electronics [9, 176, 177] and

catalysis [178, 179, 180]. In this relatively new field, there have been so far only limited

attempts to exploit the vast chemical space to optimise properties. Up to now, most

research effort has focused on identifying 2D unaries and binaries both theoretically [21, 22]

and experimentally [23, 63]. However, little is known about their thermodynamic behaviour.

The structures and ordering of possible alloys are virgin territories [181]. Only a handful of

2D ternaries have been reported by experiments [182, 183, 184, 185] and, while a handful of

binary alloys have been studied [186, 113, 187, 188, 189], no systematic analysis has been

carried out. Knowledge of thermodynamic behaviour is fundamental in developing the

engineering application of 2D materials. When properties such as bandgap and electronic

transport need to be tuned to desired values by chemical doping, the presence of miscibility

gaps and competing ternaries is fundamental [190]. In tribology, one can imagine designing

mismatched heterostructures via single-layer alloying. Consider a BL like the one reported

in Fig. 4.1, composed of a hypothetical single-TM CS2 layer, dotted-edge blue circles, and

an alloyed layer (A:B)S2, dashed-edge red circles and solid-edge grey ones. The single-TM

CS2 layer acts as substrate with lattice constant lC . Over this substrate is grown or

transferred a second alloyed layer AxB1−xS2. The lattice parameter can be tuned between

extremal values lAB(x) = xlA +(1−x)lb, assuming a linear dependency of lattice parameter

on concentration, for the sake of argument. Ideally, A and B should mix well but not mix

with C, to allow maximum control of the lattice parameter. A device of this kind would

79
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allow study of the effect of the lattice mismatch in real nanoscale contacts systematicly,

whereas this has only been done in toy systems as of now, like colloids or cold ions in

optical lattices [191].

C C CCC

AA BB

lAB

lC

Figure 4.1: Sketch of a mismatched
alloyed heterostructure.

The vast crystallographic and chemical spaces cannot be explored by experiments

alone. Computational tools can provide guidelines to experimental synthesis, reducing

the number of possible candidates by orders of magnitude. As an example, Mounet et

al. [21] reduced a dataset of 1× 105 bulk geometries from experimental databases to 256

easily exfoliable ML candidates. As a comparison, large-scale experimental studies usually

deal with dozens of candidates [23, 63]. Here, a framework is developed to explore alloy

possibilities and to compile a dataset for the TMD family, the most widely studied 2D

material family for engineering application. The first section defines the chemical and

coordination spaces considered. Secondly, a hierarchy of approximate descriptions of the

structure and thermodynamics of doped systems is developed. Finally, the formalism

outlined in section 2.2 is used to explore ordering in a select number of TMD-allowed

binaries.

4.1 Chemical and Coordination Spaces Definition

The starting point to build the space of possible compounds is the 2D-materials database

compiled by Mounet and coworkers [21]. The database comprises 258 mechanically stable

ML structures identifies from experimental bulk compounds. Thus, the following phase

stability study is conducted on ML geometries only. From these, one can extrapolate to bulk

structures, assuming that the phase behaviour of each layer is independent. Extrapolating

from monolayer formation energies to bulk without information on interlayer interactions

yields errors in the prediction of the order of stacking fault energies. Stacking fault energies

are typically around 10 meV/atom for TMDs [192, 97] and other 2D sheets bounded by

vdW dispersion [193, 93] and 50 meV/atom for layered transition metal oxides [194].

The selection of the possible prototypes and the elements to mix into them must be

guided by chemical and geometrical intuition, e.g. one can assume with confidence that

metallic Mo is unstable in the graphene prototype and the same holds for N atoms in place

of a TM in the MoS2 prototype. Thus, the original database is filtered according to the

class of materials of interest. While the Mounet database spans the whole periodic table,
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(b) PdS2

(a)

(c) NbTe2(d) CdI2

(e) CrI2 (f) FeO2(g) MoS2 (h) PdCl2

(i) WTe2

Figure 4.2: (a) Periodic table showing the elements selected. TM boxes are coloured according to
the MX2 GS prototype, as reported in Fig. 4.3. (b-i) The sides and top views of the eight MX2

prototypes.

this search focuses on TMDs. The database is scanned for compounds of the form MnAm,

where M is a TM cation, and A is the anion oxidising the TM. The search is not limited

to chalcogenide anions, as there are relevant prototype geometries not expressed in the

database, e.g. NbTe2 prototype is expressed by the CrBr2 compound. This search yields

the 13 prototypes reported in Table 4.1. The selection of TM to consider in the exploration

is based on the review by Chhowalla et al. [4] (reported in Fig. 1.6). Most pristine materials

in this group have been synthesised in their ML form in the works in Ref. [63] and Ref. [23],

including CrS2 and CoS2. Intermediate TMs (Cr, Mn, Fe, Ru, Os) are added to this

selection. While these do not form layered materials on their own, they might form alloys

in combination with other TMs, e.g. Fe-doped MoS2 ML [38, 195]. Late transition metals

from group XI onward are excluded as they do not bind with chalcogenide to form layered

materials [63, 196]. This yields the 21 TMs highlighted in Fig. 4.2 as possible cations

in the MnAm stochiometry; the anion site can be occupied by a chalcogenide S, Se, Te,

highlighted in yellow and orange in Fig. 4.2.

Stochiometry Prototypes

M3X2 Hf3Te2

MX ZrCl, FeSe
M2X3 W2N3

MX2 CrI2, PdCl2, MoS2, WTe2

CdI2, NbTe2, PdS2, FeO2

MX4 SnF4

Table 4.1: Prototypes of the form MnAm identified in Mounet database [21]. The 13 prototypes are
grouped according to the stoichiometry and displayed for decreasing metal fraction, i.e. decreasing
n/m ratio.
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This selection results in TM × prototypes × chalcogenides = 21 × 13 × 3 = 819

compounds as a starting point for TM1 × TM2 × prototypes × chalcogenides = 17 199

possible combinations for TM-site substitutional alloys. While the methodology outlined

below is valid for any stochiometry and anion, this section will focus on MS2 compounds, as

an illustrative example. Sulphides are the easiest to synthesise, and most studied compounds

of the family and the MS2 stochiometry represents eight of the 13 prototypes, which are

sketched in Fig. 4.2b-i. This further selection yields 168 binaries as a starting point for

3528 substitutional alloys on the TM site, allowing for an exhaustive analysis rather than

relying on approximate methods based on a statistical sampling of configurational space.

Lattice Stability The formation energy of each compound MS2 in all prototypes p,

i.e. pairs (M,p) is obtained from the EoS calculations, as outlined in section 2.4.1. First

principles calculations of the total energy are carried out with the Vienna ab initio

Software Package (VASP) [197, 119, 198, 199], within the PAW framework for pseudo-

potentials [124, 200]. As benchmarked in Appendix E, the electron density is described

with a cutoff of Ecutoff = 650 eV and the BZ is sampled with a 17× 17× 1 mesh.

Direct calculation of the EoS is necessary as benchmark calculations showed that

minimisation with VASP cannot locate the minimum-energy volume of the 2D material

and might drive the system away from the prototype coordination considered. The volume

range considered in the EoS is determined using the notion of covalent radius rc,i of the

element Ei. The bond length between two elements E1, E2, i.e. a TM and the chalcogenide,

is estimated as

∆1,2 = rc,1 + rc,2. (4.1)

Values for the covalent radius are tabulated in the Mendeleev package [201] according to

Bragg [202] rB, Coredo [203] rC, Pyykko [204] rP and Slater [205] rS models. The minimum

and maximum values among these models, plus a buffer ε = 0.05, are chosen as bounds for

the EoS.

In building the geometries for the EoS calculations, the anisotropic geometry of the

ML is enforced by the following transformation matrix of the unit cell:

M =



f 0 0

0 f 0

0 0 1


 . (4.2)

Isotropic stretching of the cell would needlessly increase the vacuum in the unit cell,

reducing the accuracy of the DFT calculation. In order to span the right range of bond

distances, f must be chosen appropriately. Using the shortest bond vector ∆ in a prototype

structure, the stretch factor f of the unit cell is chosen according to

f =

√
∆′2 −∆2

z

∆2
x + ∆2

z

, (4.3)
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in order to scale the bond length |∆| = ∆1,2 → ∆′1,2.

The formation energy of each MS2 compound in a given prototype p, also known as

lattice stability [206], is given by the energy per site with respect to the ground state (GS)

prototype, i.e.

EF(M,p) =
E(M,p)

n
− 1

n
min
p
E(M,p), (4.4)

where E(M,P ) is the minimum-volume energy of MS2 compound in prototype p and n is

the number of the TM site in the unit cell.

Fig. 4.3 reports the formation energy defined in Eq. (4.4) for the selection of TM and

prototypes shown in Fig. 4.2. The ground state of known compounds are labelled by

green squares: d2-metal TMDs (TiS2, ZrS2 and HfS2) show octahedral CdI2 coordination,

Fig. 4.2d. The MoS2 tetragonal prototype, Fig. 4.2(g), is the preferred GS of d4 TMDs

and the d10 metals Ni, Pd and Pt are found in the PdS2 prototype, Fig. 4.2b. Moreover,

the larger steric hindrance of heavier TM in the same group raises the formation energy of

the unstable prototype. This can be observed by following in Fig. 4.3 the rows of PdS2,

EF(Ti,PdS2) = 2.47 eV, EF(Zr,PdS2) = 2.99 eV and EF(Hf,PdS2) = 3.26 eV, and CdI2,

EF(Cr,CdI2) = 0.42 eV, EF(Mo,CdI2) = 0.84 eV and EF(W,CdI2) = 0.99 eV.
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Figure 4.3: Formation energy of MS2 compound in the prototypes according to Eq. (4.4). Green
squares mark GS prototypes, defined by EF = 0.

4.2 Ideal Solid Solution Limit

Starting from the stability matrix in Fig. 4.3, a question arises naturally: do different metals

mix in a given prototype? The most straightforward approach to explore this question is

the ideal solid solution limit, a non-interacting model based on the formation energies of

pristine TMDs defined in Eq. (4.4). Given a binary alloy prototype p, MxN1−xS2|p, in the

ideal solution model represents a model with negligible interactions between the fraction x

of sites occupied by M and the remaining 1− x N sites. In the energy-composition space,

the system behaviour is represented by the line connecting the formation energy of NS2

in prototype p, i.e. the element M,p of the formation energy matrix Fig. 4.3, at x = 0
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with the formation energy for M at x = 1. Thus, in the ideal solid solution model, the

formation energy of a mixed configuration at concentration x is given by:

E0
N,M,p(x) = xEF(M,p) + (1− x)EF(N, p). (4.5)

By construction, this energy is exactly zero everywhere if M and N share the same ground

state structure and thus EF(M,p) = EF(M,p) = 0. In any other case the formation energy

will be positive: suppose the metal N has a ground state geometry p′ 6= p, the fraction

1− x of material NS2|p would transform into p′ to reach equilibrium. Even though this

model cannot predict stable orderings, it offers a first step in discriminating possible mixing

materials from the ones most likely to phase-separate: the higher the energy of the solid

solution model, the more substantial any entropic or chemical stabilising mechanisms must

be. In the solid solution limit, the substitutional entropy of a binary alloy is a function of

the concentration x only, and not of the composition:

S(x) = −(x log x+ (1− x) log(1− x)), (4.6)

which counts possible arrangements of the two atom types on the metal sub-lattice [207].

Therefore, it cancels, and the simpler linear energy model in Eq. (4.5) can be used.

In order to make this discrimination quantitative, a metric in the composition-energy

space is needed to compare different combinations.

Solubility Metric

Given a prototype p and two metals M and N , the solubility window of the (p,N,M)

triplet is defined as the range of concentration x where the mixing energy in Eq. (4.5)

within the prototype p is lower or equal to the mixing energy within the ground-state

structures of MS2 and NS2, as shown in Figures 4.4a and 4.4c.

Fig. 4.4a reports an example of a possible large miscibility window in the Tc1−xPtxS2

system: formation energy in the CrI2 prototype lies lower in energy than the formation

energy within either GS prototypes, WTe2 and PdS2, over most of the concentration

range. The stability window might not exist for a given triplet, as shown in Fig. 4.4b: the

formation energy within the FeO2 prototype lies higher than the one in either ground state

prototypes for the whole concentration range. In this case, the formation of an alloy within

this prototype is unlikely. When the prototype p is the ground-state for one of the metals,

then the stability window extends from the extremal concentration x = 0 or x = 1 up the

intercept with the other prototype solid solution, as shown in Fig. 4.4c. Finally, when the

two TMDs share the same prototype ground state, the formation energy in that prototype

is zero everywhere, like in Fig. 4.4d. This case indicates that the solid solution can occur

at no energy cost.

Applying the construction depicted in Fig. 4.4 yields a n × n symmetric matrix, for

each prototype p. Each entry of this solubility matrix is a 2× 2 matrix with the bounds of

the solubility window and the formation energy in Eq. (4.5) evaluated there, i.e. minimum
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Figure 4.4: Solubility metric construction (blue lines) for (Tc:Pt)S2 in (a) CrI2 and (b) FeO2

prototypes, (c) (Zr:Nb)S2 in CdI2 prototype, and (d) (Mo:W)S2 in MoS2 prototype. A blue-shaded
area highlights the extent of the solubility window. A blue circle marks the centroid of the area
below the solid solution energy within the solubility window. Red dashed lines show the energy in
the prototype of the left end-member, x = 0. Green dashed lines show the energy in the prototype
of the right end-member, x = 1.

and maximum energy cost of the window. The matrices associated with each prototype

are reported in Appendix A. As an example, Fig. 4.5 reports the solubility matrix within

the MoS2 host, where the marker size shows the width of the solubility window and the

colour-code in upper and lower triangles shows the minimum and maximum energy penalty,

respectively.

Groups of favourable solubility windows (large blue marks) can be seen around group

V and group VI elements, which according to Fig. 4.3 prefer this coordination. This

observation is in agreement with the experimental realisation of a few alloys of this

type [189, 208]. A large energy penalty (red marks) is associated with group VI and

group X transition metal mixtures, e.g. MoxPd1−xS2|MoS2 , indicating MoS2 prototype as a

poor candidate for mixing. Indeed, only Ni-doped MoS2 MLs with isolated impurities are

reported by experiments [180], and Ni shows the lowest mixing energy with MoS2 among

group X elements. Finally, a narrow solubility window (small marks) suggest that other

prototypes are preferred for the corresponding mixture, even when MoS2 is the prototype

of one TM; an example of this is TixV1−xS2|MoS2 , which favours the CdI2 prototype, as
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Figure 4.5: Stability metric in MoS2 prototype. The colour-code shown by the colour-bar on
the right marks the energy cost, in eV, of the stability window. The upper triangle of the matrix
reports the upper limit of the energy cost in the stable window, while the lower triangle, the lower
one. The size of the marker encodes the stability window size, as reported by the legend on the
right. Circles mark metal pairs whose GS prototype is MoS2, square pairs in which only one metal
has MoS2 as GS.

shown below.

Goal Function

The most promising candidates for alloys can be identified by comparing the solubility

windows reported in Appendix A. To rank candidates, a function to associate a score to

each solubility window needs to be defined. This ranking needs to assign a single value to

the solubility windows of TM1-TM2-prototype triplets. The following parametric function

is chosen as the goal function

fζ(w, ε) = ζ2

√
w

ζ2 + ε2
, (4.7)

where w is the width of the solubility window and the energy penalty ε is the height of the

centroid defined by the stable window in energy-concentration space, e.g. blue points in

Fig. 4.4. Thus, the function encourages large solubility windows w and discourages large

energy penalties ε. This goal function fζ(w, ε) : w ∈ [0, 1] ε ∈ [0,∞]→ [0, 1] associates zero

to ”bad” candidates and one to “good” candidate. In detail, all zero-width windows are

mapped to zero, fζ(0, ε) = 0 ∀ε. Moreover, as shown in section 4.2b, fζ is a monotonically

decreasing function of the energy penalty ε. Finally, fζ(1, 0) = 1, i.e. the highest score is

assigned to the combination of maximum width and lowest energy penalty.

The parameter ζ, measured in the same unit as the energy penalty ε (here eV), sets the
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Figure 4.6: Sections of the surface in Eq. (4.7): (a) f at fixed energy penalty ε0 and (b) f at
fixed solubility window width w0. The examples are computed at ζ = 0.1.

relative importance of the two arguments. Its effect is evident by the limiting behaviours.

For small ζ, limζ→0 ≈ ζ2
√
w
ε2

, a large energy penalty lowers the score, within the upper-limit

given by the window size
√
w. On the other hand, for large ζ, limζ→∞ ≈

√
w the largest

window is always selected regardless of the energy price. The parameters ζ must be tuned

according to the dataset studied in order to achieve the right sensitivity, achieving a

trade-off between large, but costly windows and low energy solutions defined on a narrow

concentration range.

4.2.1 Optimal Host Matrix

Using the goal function defined in Eq. (4.7), the solubility windows in the matrices in

Appendix A can be ranked, yielding an optimal prototype for each metal pair. The first step

is to tune the ζ parameter in the goal function fζ(w, ε) in Eq. (4.7) for the dataset at hand.

Left plots in Fig. 4.7 place all the solubility windows in all the matrices in Appendix A in

the w, ε space. Each point in Figures 4.7a to 4.7c is colour according to increasing values of

ζ in Eq. (4.7), while coloured lines report isolines of fζ(w, ε). The two limiting behaviours

mention in the previous section are well pictured. For small ζ = 1× 10−3 eV, Fig. 4.7a,

all windows with non-zero energy penalty are assigned a low score, dark element on the

right plots, while only TM pairs with (w, ε) = (1, 0) show the maximum scores, yellow

entries on the right plots. On the other hand, for ζ = 1× 102 eV, Fig. 4.7c, the isolines of

f divide the data points in vertical stripes. Thus, only the window width determines the

score, resulting in the largest windows being picked as optimal prototypes, as shown in

the right plots. The value adopted in this work is ζ = 0.080 eV, which achieves a balance

between low energy cost and wide solubility window, as shown in Fig. 4.7b. Somewhat

surprisingly, the ranking is quite robust against the value of ζ: going from ζ = 1× 10−3 eV

to ζ = 1× 102 eV only 12% of prototypes change.

The optimal prototype for each pair of transition metals, selected by fζ with ζ =

0.080 eV, are shown in Fig. 4.8. The symbol assigned to each entry refers to the optimal
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(a) (b)

(c)

Figure 4.7: Behaviour of the goal function within the solubility windows dataset for (a) ζ =
1× 10−3 eV, (b) ζ = 8× 10−2 eV, and (c) ζ = 1× 102 eV. Left plots, scatter plot of solubility
windows in width w and energy cost ε space. Marker colours are assigned by fζ(w, ε). Coloured
lines are isolines of fζ(w, ε). Right plots show the value of f for the highest-scoring prototype for
each TM pair.

prototype, as shown in the lower legend; symbols on the diagonal refer to the stable

prototype for that transition metal. The size of each marker shows the width of the

stability window associated with that metal pair in that prototype. The colour code of the

upper and lower triangles follows the one in Fig. 4.5.

Fig. 4.8 provides a visual tool to navigate the possible mixings of transition metals in

sulphur planes and highlights trends across the periodic table. Broad, large blue marks

in Fig. 4.8 indicate a favourable mixing and therefore a large miscibility is likely. For

example, MoS2 and WS2 share the same prototype GS, prismatic MoS2. Thus, Fig. 4.8

indicates the solid solution can occur at no cost throughout the whole concentration

range. In the case of TiS2, GS prototype octahedral CdI2, and NbS2, GS prototype

prismatic MoS2, Fig. 4.8 indicates that a good miscibility in the CdI2 prototype, that can

be traced back to the relatively low formation energy of NbS2 in TiS2 native prototype,

EF(Nb,CdI2) = 0.1 eV/site, in Fig. 4.3. On the other hand, a high mixing energy is likely

to result in narrow miscibility regions and a phase separating system, like group X TMs

with any group IV, e.g. PdxZr1−xS2|CdI2
, whose optimal energy cost is still 0.6 eV/site.

As a first benchmark, the information in Fig. 4.8 can be compared with alloys reported

in the literature. Zhou and coworkers [23] recently reported synthesis of ML of (Mo:W)Te2,

(Nb:Mo)S2, (W:Nb)S2, which are all shown as likely to mix in Fig. 4.8. On the other hand,

the same work reports a MoReS2 ML alloy, while the stability window of this TM pair

is small and high in energy in Fig. 4.8. Another recent work reports the experimental

characterisation of (V:Mo)S2 ML, which is also a highly mixable TM pair according to

our analysis. Many alloys have been suggested by computational works as well. Rama-
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Figure 4.8: Optimal prototype for TM pairs. The colour-code and size of the markers follow
convention in Fig. 4.5, as reported by the legends on the right. Marker-prototype correspondence is
reported in the legend at the bottom. Markers on the diagonal report the GS prototype.

subramaniam et al. [38] proposed Mn-doped MoS2 ML as a possible diluted magnetic

superconductor. The authors report study configurations at concentration x = 0.06 and

x = 0.12 in 1H-Mo1−xMnxS2. While the authors report these configurations to be mechan-

ically stable within the DFT framework, they would separate into elemental compounds if

not thermodynamically stable. According to the stability metric reported in Fig. 4.8, the

upper formation energy is 0.2 eV, which suggests that some miscibility is possible but the

possibility of high concentration ordering, like reported in Ref. [38], should be investigated

in more detail. In another computational study, Onofrio and coworkers [209] compile

possible substitutional alloys of 1H-MoS2 ML throughout the whole periodic table, on both

metal and chalcogenide site. According to the authors’ analysis, based on substitution in

the smallest possible unit cell (roughly x = 0.5), all early TMs between group III and group

VI have negative formation energy. These observations agree with the stability metric

predictions for metals of group V and group VI, while group IV elements, i.e. Ti, Zr and

Hf, show low miscibility according to Fig. 4.8.

Furthermore, using the data in Fig. 4.8 one can design the mismatched alloyed bilayer

proposed in Fig. 4.1. For example, MoS2 in MoS2 prototype, with lattice spacing lMo =

3.182 Å, can be used as a substrate and coupled with an MnxZr1−xS2 alloyed ML in the
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CdI2 prototype. Given lZr = 3.684 Å and lMn = 3.172 Å, the mismatch can be tuned

between lMo/lZr = 0.864 to lMo/lMn = 1.068, assuming a simple linear dependence of

the lattice spacing on the concentration. According to Fig. 4.8, Zr and Mn ions display

high miscibility, as they share the same CdI2 ground-state prototype. On the other hand,

both Zr and Mn show poor solubility in MoS2 crystal, and, according to Fig. 4.5, the

energy prices within the MoS2 prototype are ε = 0.23 eV/site, at the Mn-rich side, and

ε = 0.34 eV/site, at the Zr-rich side. While a system of this type could be synthesized

with known protocols [63, 59], they are challenging from a computational point of view.

The analysis here combined with the CE methodology can provide stable orderings of

the alloyed ML part of the heterostructures. However, representing the heterostructure

geometries would require a large supercell, as discussed in chapter 3, beyond the possibilities

of standard DFT codes, like VASP. MD simulation would also pose a problem, as no general

FF for TMDs alloyed ML are available, to the best of the author’s knowledge. A possible

solution to study this system could come from linear-scaling DFT: considering thousands

of atoms in the unit cell with the protocol outlined in Appendix C can reduce the residual

strain enough to allow an accurate description of the PES of the system, as outlined in

section 2.4.3.

Prototype Frequency Information in Fig. 4.8, readily answers another question as well:

what is the frequency of optimal prototypes? Fig. 4.9 reports the fraction of each prototype

in the optimal matrix Fig. 4.8. The distorted octahedral coordination of WTe2 and CrI2,

shown in Fig. 4.2i,e, are the prototypes that more often yield the optimal solution. A

possible explanation for this lies in the low-symmetry coordination of these. When neither

of these two prototypes is the ground state of the TMD considered, the broken-symmetry

coordination still allows for a favourable redistribution of the charge density, in contrast

with other high-symmetry prototypes, e.g. MoS2 and CdI2. Moreover, the PdS2 prototype

with its unique ‘puckered’ 2D layers depicted in Fig. 4.2a is supported almost only by

group X elements and few high-energy solutions. Finally, no metal pair exhibits the binary

FeO2 as the preferred prototype, which can thus be excluded from any further analysis.

Polymorphism The information in Fig. 4.8 can help understand the tendency of TMDs

to form metastable polymorphs in ML synthesis. Purple shaded marks in Fig. 4.10 reports,

for each TM1-p pair, the minimum centroid energy across all possible combinations TM1-

TM2-p. For example, for group IV TMDs, TiS2, ZrS2, and HfS2, whose GS is the perfect

octahedral CdI2, a low energy penalty is found for the distorted octahedral coordination

of WTe2 (light purple crosses in Fig. 4.10). For group VI TMDs, CrS2, MoS2, and

WS2, the first metastable prototypes are distorted WTe2 and perfect CdI2 octahedral, at

almost degenerate energy. The WTe2 and CdI2 polymorphs have indeed been observed

experimentally [180] and in simulations [66] in MoS2 layers. An even lower energy penalty,

WTe2 and CdI2 prototype is observed for group V TMDs, VS2, NbS2, and TaS2, suggesting

that polymorphism observed in group VI TMDs should be even stronger in this case.
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Figure 4.9: Frequency of prototypes in candidate TMDs binaries alloys in Fig. 4.8.

0.0 0.1 0.2 0.3 0.4 0.5

Centroid energy [eV]

Ti
V

Cr
Mn
Fe
Co
Ni

Zr –
Nb –
Mo –
Tc –
Ru –
Rh –
Pd –

Hf – –
Ta – –
W – –
Re – –
Os – –

Ir – –
Pt – –

Prototypes markers

CrI2

CdI2

PdCl2

MoS2

PdS2

FeO2

WTe2

NbTe2
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4.3 Metal Site Orderings

Promising systems in Fig. 4.8 can be further analysed by exploring the stability of possible

orderings and miscibility regions across the concentration range. The formation energy

of the pseudo-binary system MxN1−xS2 considered is modelled with the CE formalism

presented in section 2.2. The interaction between different species on the TM site of

the sub-lattice, like the triangular one formed by orange and blue circles in Fig. 4.11, is

modelled via a set of many-body interactions, termed clusters, e.g. the pairs α and β and

the triplet γ in Fig. 4.11. The sulphur atoms (yellow circles in Fig. 4.11) are spectators, i.e.

they are considered in the DFT calculations but not in the CE interaction figures.

α γ

β
+1

-1

Figure 4.11: Top view sketch of a ideal TMD hexagonal lattice, e.g. MoS2 prototype, used in the
CE expansion. The TM sub-lattice comprises of the large, black-edge circles. Two different species,
blue and orange circles, occupy the sub-lattice, by a two-value spin variable ±1. The two species are
here arranged in a striped pattern, whose unit cell is highlighted by grey, dashed lines. Small yellow
circles show the spectator chalcogenide atoms. Coloured shapes show few cluster: nearest-neighbour
(α black line), next-nearest-neighbour (β green line) and a triplet (γ red triangle).

The solid solution limit is take as reference to compute the formation energy of the

interacting, ordered structures σ(x):

EN,M,p(x) = E(MxN1−xS2)|p − xE(M,pM )− (1− x)E(N, pN ), (4.8)

where E(MxN1−xS2)|p is the total energy of the configuration σ(x) in the host lattice p.

E(M,pM ) and E(N, pN ) are the total energies of MS2 and NS2 in their GS prototypes,

pM and pN , respectively. This chemical reference assures that the formation energy in

Eq. (4.8) at end member concentration x = 0 and x = 1 formally corresponds to the one

reported in Fig. 4.3. Moreover, no interaction between the fraction x of M sites and the

remaining N sites, Eq. (4.8) corresponds to the ideal solid solution limit in Eq. (4.5).

The set of geometrically distinct orderings is generated using CASM [210, 211, 212, 213].

The geometries are then fully relaxed (including cell shape and volume) using the DFT
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methodology outlined in section 4.1 and benchmarked in Appendix E. The set is used to

parameterise a CE model using the framework presented in section 2.2. The dataset is

updated iteratively with stable orderings suggested by the CE model until predicted and

computed convex hulls coincide.

The fitting procedure is carried out within the CASM API. Each configuration σi is

weighted according to its distance from the convex hull:

w(σi) = exp

(
−EF(σi)− Ehull(xi)

kBT

)
(4.9)

where EF(i) is the formation energy of the configuration i, Ehull(xi) is the formation energy

of the convex hull at the concentration xi of the configuration considered and kBT is a

fictitious temperature set according to the energy scale of the problem. These weights bias

the fitting towards more accurate reproduction of low-energy configurations, which are

the relevant ones to capture the phase behaviour of the system. Orbits included in the

CE model are selected with a genetic algorithm based on the Distributed Evolutionary

Algorithm in Python suite [214]. A population of 100 individuals, each starting with five

randomly selected orbits, evolves for 20 generations. The best 50 models are selected from

five repetitions of the evolution process. The evolution is driven by the cross-validation

score of each individual, computed using the ten-split K-fold algorithm as implemented in

Scikit-learn [215]. In order to favour low-complexity models with fewer orbits φ, a penalty

p(c) = γΣc is added to the cross-validation score of each individual c. Σc denotes all the

cluster functions defining the model c, i.e. all the orbits associated with non-null effective

cluster interaction Jα in Eq. (2.58). A value γ = 1× 10−6 has been found to yield a good

compromise between reducing the number of orbits in the selected models and retaining

satisfying accuracy. Table 4.2 reports the details of the CE models.

System #DFT CE size CV [eV/site] ρ2 ρ3 ρ4 ρ5

(Mo:W)|MoS2 304 6 7.2× 10−5 14.01 10.61 8.52 -
(Mo:Nb)|MoS2 613 169 0.001 25.0 15.0 13.0 9.0
(Mo:Ta)|MoS2 423 137 0.002 25.0 15.0 13.0 9.0
(Ir:Ru)|MoS2 542 253 0.090 19.0 11.0 9.0 -
(Ir:Ru)|MoS2 207 122 0.018 19.0 11.0 9.0 -

Table 4.2: Parameters of the CE models of the selected system, reported in the first column.
The notation (M :N)|p is a shorthand for MxN1−xS2|p, indicating the two species occupying the
TM sub-lattice, defined by the prototype indicated in the subscript. The second column, #DFT,
reports the number of ab-initio calculations comprising the training set. The third column, CE Size
Σc, reports the number of orbits comprising each model, i.e. the orbits with Jα 6= 0 in Eq. (2.58).
The orbits φ represent interaction figures up to the maximum radii, in Å, reported in the columns
ρ2, ρ3, ρ4, and ρ5; the subscript indicates the number of vertices in the clusters, i.e. pairs, triples
and so on.
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4.3.1 Mo-W-S Binary Alloy

The first benchmark of the miscibility predicted by Fig. 4.8 is the MoxW1−xS2 system.

The system has recently attracted attention as experiments showed that the value of

the bandgap of an ML could be finely tuned as a function of the ratio between the two

metals [189, 208].

Figure 4.12: Ternary phase diagram for Mo-W-S elements. Obtained from the MP database [216,
217].

Fig. 4.12 shows the ternary phase field computed by the Materials Project (MP) [216,

217]. The only stable compounds (green circles in Fig. 4.12) are pure elements and the

TMDs WS2 and MoS2. All alloy configurations in the tie line between the TMD MoS2

and WS2 are reported as unstable (red squares) in Fig. 4.12 by the MP. These calculations

consider only layers of pure WS2 and MoS2 in different stacking orders and are not therefore

related to this analysis. Moreover, the formation energy is of the order of 1 meV/atom,

suggesting that the stacking order does not play a significant role in the phase stability of

TMD alloys, as assumed here.

According to the optimal prototype matrix in Fig. 4.3, the end-members MoS2 and WS2

share the same ground-state prototype, prismatic MoS2, which is thus the parent lattice

for the CE. The details of the expansion are reported in Table 4.2. Fig. 4.13a shows, as

orange crosses, the formation energies of the DFT training-set geometries. The solid orange

line shows a convex hull of the ab-initio data. All points across the concentration range

have negative formation energy, confirming the perfect solubility in Fig. 4.8, Although

the system shows ordered ground states, the formation energy is considerably lower than

kBT room temperature EF ≈ 1 meV � kBTroom ≈ 25 meV. Thus, at room temperature,

the entropic term in the free energy of the system F = E − TS represents the dominant

contribution and an ideal solid-solution behaviour should be observed, with Mo and W

ions occupying lattice sites at random.

Fig. 4.13a reports the formation of energy for the same DFT structures (orange crosses)

as predicted by the CE model (blue circles). Moreover, light blue crosses show the formation

energy predicted by the CE for geometries, and not in the DFT training-set. The computed
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Figure 4.13: (a) Formation energy EF, in eV/site, versus concentration x of the Mo1−xWxS2

system. Orange symbols and lines refer to DFT-computed energies, while blue-shaded ones refer
to CE-predicted energies, as reported in the legend on the top right. (b) Correlation plot of
DFT-training-set and CE-fitted energies. The red line marks x = y, i.e. perfect correspondence
between the two sets. The shade of grey of each marker shows the distance from the DFT hull
(orange line in (a) panel).

(orange line) and predicted (light-blue line) convex hulls in Fig. 4.13a match: no new

ground states are predicted by the CE, which is, thus, a reliable description of the phase

behaviour of the system. The correlation plot in Fig. 4.13b shows remarkable agreement

between DFT energies and CE-predicted ones, meaning that the CE formalism accurately

describes the system. Finally, one can note from Table 4.2 that only six clusters are needed

to describe the behaviour of the system, as no subtle electronic effects (W and Mo have

the same electronic configuration) or long-range elastic interactions are present (MoS2 and

WS2 have the same lattice parameter).
 Xia et al  

 11  
 

 
Figure 2. Atomic structure of monolayer Mo1-xWxS2 revealed 
by STEM-ADF. (a) STEM-ADF images of monolayers with 
x=0.22, 0.41 and 0.63 as labelled. (b) Magnified image of the 
area highlighted by the red rectangle in (a). (c) Simulated ADF 
image for the region in (b). (d) Intensity profiles along the red 
and blue line in experimental and simulated ADF images, 
respectively.  
 
 
  

Figure 4.14: STM images of WxMo1−xS2 ML alloys at concentration reported in the top right
corner of each plot. Bright dots represent W atoms, dim dots Mo atoms. Adapted from Ref. [208]

The result of this analysis is in line with experimental synthesis, where the bandgap

varies between 1.82 eV and 1.99 eV for increasing W concentration x in Mo1−xWxS2 [189].

Another recent study focused on spintronic applications of Mo1−xWxS2, showing how the
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spin-orbit splitting of the valence band varies with the W content. The work by Xia and

coworkers [208] confirms the solid-solution behaviour and shows the ability of experiments

to produce high-quality samples with CVD deposition at any alloy concentration, as shown

in Fig. 4.14. The trained CE model presented here can be used as Hamiltonian in MC

simulations to generate realistic, finite-temperature configurations that could serve as a

starting point for theoretical characterisation of the system.

From a tribology point of view, this system offers an interesting possibility to explore

the effect of disorder on the sliding interface. It has been shown in a toy model [218] that

dopants at low concentration act as defects and worsen frictional response, as they act as

pinning centres during the sliding. As concentration approaches x = 0.5, this argument

may lose validity, as the alloying element is no longer a localised defect but a considerable

fraction of the sliding layer. In light of this, it would be interesting to study the possible

coupling between different solid-solution arrangements in two adjacent layers and how this

affects dissipation.

4.3.2 Mo-group V-S Binary Alloy

The similar electronic structure of group V elements make them an interesting alloy

possibility for MoS2-based devices. In particular, (Nb:Mo)S2 alloys have been indicated

as a viable p-doping solution for MoS2 ML transistors [176, 186]. On the other hand, Ta

has been used to enhance electrical conductivity in SnO2-based catalytic supports [190],

while Nb doping fails to deliver the same results. Ta-doped MoS2 composite coatings have

been identified as a promising fatigue-resistant material for tribological applications [75].

Moreover, Ta-based TMDs attracted attention for the peculiar CDW behaviour [219, 220],

which is also associated with unusual non-contact frictional dissipation [221]. One would

expect similar behaviour from Nb and Ta dopants, as the two have the same covalent radii,

electronic configuration [201] and the same lattice parameter in TMD compounds 1. A

good understanding of the phase behaviour of these systems is needed, especially as the

doping concentration needed in p-doped devices may reach 20% [186] and the competition

with ternary phases might make synthesis problematic.

Fig. 4.15a shows the ternary phase fields for Mo-Nb-S and Fig. 4.15b the corresponding

one for Mo-Ta-S, computed from MP [216, 217]. No stable compound is reported in

the Mo-Nb-S except MonSm and NbnSm binaries. Apart from the binaries, the ternary

2H-Ta4MoS10, shown in Fig. 4.15b, is reported as stable in the Mo-Ta-S phase field.

2H-Ta4MoS10 is a ground state in the MoxTa1−xS2 bulk alloy, with formation energy

EF = −5× 10−3 eV/atom in the reference frame of the end members, within the MP

dataset [216, 217]. As shown in Fig. 4.15b, each layer is composed of single rows of Mo

alternated by four rows of Ta, for a concentration of x = 0.8. To the best of our knowledge,

the only experimentally reported ternary in the pseudo-binary alloy is MoTaS4 [184], for

which no structure is reported.

1Spin-orbit coupling differs between Nb and Ta, but it is not included here and rarely influences the
phase behaviour of the material.
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Figure 4.15: Ternary phase diagram for (a) Mo-Nb-S and (b) Mo-Ta-S elements. The structure
on the top right in (b) is the ordering in the tie line MoS2-TaS2 reported as stable. Obtained from
the MP database [216, 217].
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Figure 4.16: (a) Formation energy EF, in eV/site, versus concentration x of the Mo1−xNbxS2

system and (b) CE model correlation plot. Colours and symbols as in Fig. 4.13.

Mo1−xNbxS2 pseudo-binary According to Fig. 4.3 the end members MoS2 and NbS2

share the same ground state prototype, prismatic MoS2, which is the parent lattice for the

CE. The details of the expansion are reported in Table 4.2. Fig. 4.16a shows, as orange

crosses, the formation energies of the DFT training-set geometries. The solid orange line

shows a convex hull of the ab-initio data. The simple SS hull (dashed gray line at EF = 0)

is broken by a GS at x = 0.66, with formation energy EF = −3 meV/site. Blue circles in

Fig. 4.16a show the formation energy for the DFT set (orange crosses) as predicted by

the CE model. Light-blue crosses show the CE-predicted formation energy for geometries

not in the DFT training-set. The computed (orange line) and predicted (light-blue line)

convex hulls in Fig. 4.16a match: CE provides a reliable description of the phase behaviour

of the system. The correlation plot in Fig. 4.16b shows good agreement between DFT

energies and CE-predicted ones. The slight spread around the x = y red line in Fig. 4.16b
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compared to Fig. 4.13b is a signal of the more complex chemical and mechanical interactions

underpinning the phase behaviour in Fig. 4.16a. More quantitatively, 169 five-vertex orbits

are needed to achieve a good description of the Mo1−xNbxS2 system, whereas the W-based

alloys only required six, as shown in Table 4.2.
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Figure 4.17: (a) Formation energy EF, in eV/site, versus concentration x of the Mo1−xTaxS2

system and (b) CE model correlation plot. Colours and symbols as in Fig. 4.13.

Mo1−xTaxS2 pseudo-binary According to Fig. 4.3 the end members MoS2 and TaS2

share the same ground state prototype, prismatic MoS2, which is the parent lattice for

the CE expansion. The details of the expansion are reported in Table 4.2. Fig. 4.17a

reports the convex hull of DFT-computed orderings (orange crosses) for the MoxTa1−xS2

pesudo-binary alloys. The hull is dominated by the ground-state orderings at x = 0.667,

with EF = 18 meV/site and at x = 0.889, EF = 11 meV/site. The system shows two

stable ternaries, with formation energy comparable with room temperature, which should

therefore be within experimental synthesis capabilities. The ground state at x = 0.667

identified by the CE-DFT tandem search comprises of two Ta rows and one Mo row; the

one at x = 0.889 comprises of two Ta rows alternated by Mo-Ta sequenced rows. The

correlation plot in Fig. 4.17b shows a degree of spreading around the ideal behaviour (red

line y = x) and few outliers, as expected from the more complex behaviour displayed

by the system. Nonetheless, since predicted and computed hull (yellow and blue lines in

Fig. 4.17a) match, the description of the system is still well-captured by the CE model.

Discussion A more detailed analysis of the ground state is warranted to understand the

origin of the phase behaviour. Figures 4.18a and 4.18b shows the geometries of the GS at

x = 0.66 for Mo1/3Nb2/3S2 and Mo1/3Ta2/3S2, respectively; Fig. 4.18c shows the geometry

for Mo1/9Ta8/9S2. The arrows show the displacement of the TM sites, with starting position

marked by smaller grey circles and final position by larger pink circles. The displacement

of the S ions follows the direction of the closest TM and is negligible in magnitude; hence
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they are not shown here. In all cases, the cell expands, increasing the distance between Nb

or Ta ions, approaching their equilibrium lattice parameter, lTa = lNb = 3.33 Å, larger than

the MoS2 lattice spacing, lMo = 3.18 Å, which is the starting point for the CASM-generated

geometries.
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Figure 4.18: Geometry and relaxation displacement (magnified by a factor 1.1) of the ground-
states in (a) Fig. 4.18a and (b,c) Fig. 4.18b. Atom types are reported in the legend; S atoms are
not shown. The starting geometry, perfect MoS2 prototype, is reported with small, grey-edged
circles, and the relaxed position is reported with larger, pink-edged circles. Dotted grey lines show
the starting supercell and black dashed ones the final cell.

Modelling these alloys presents a double challenge. One needs to capture, at the same

time, the many-body, non-local character of phase stability, and the long-range elastic

interactions due to lattice mismatch. The CE formalism is well suited to efficiently handle

the first task, while the description of elasticity is problematic [136]. Since the sum in

Eq. (2.58) is a complete representation of the energy landscape of the lattice model, the CE

can describe such elastic effects, at the cost of increased complexity and features included.

Indeed, to appropriately describe the convex hull in Figures 4.16 and 4.17 more than a

hundred orbits must be included in the model, up to five-vertex clusters, far more than for

the (Mo:W)S2 case, as reported in Table 4.2.

A possible way to efficiently describe this behaviour might arise from a toy-model

suggested by Frechette et al. [222, 223, 224]. TMs are placed on a flexible lattice, whose

spacing is a function of the local composition [222]. Each lattice site R can be occupied by

the metal M, σR = 1, or the other metal N, σR = −1. The elastic energy penalty in terms

of the displacements ui of the flexible-lattice sites is described by the Hamiltonian [222]

H =
K

4

∑

〈R,R′〉

[
|R−R′ + uR − uR′ | − l(σR, σR′)

]2
, (4.10)

where the sum is over nearest neighbour sites R, R′. K is a positive constant representing

the stiffness of the lattice. The term l(σR, σR′) in Eq. (4.10) encodes the different equilibrium
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lattice spacing of the two elements

l(σR, σR′) =





lMM , σR = σR′ = 1

lMN , σR 6= σR′

lNN , σR = σR′ = −1,

(4.11)

where a simple mixing rule is used for lMN = |lMM − lNN |/2. The core idea of Eq. (4.10) is

that the displacements uR,uR′ distort lattice bond-vector R−R′ to match the equilibrium

lattice spacings l(σR, σR′) and, thus, minimise the difference in square brackets. In this

frustrated system, the end-members x = 0, 1 are the only ground states, while intermediate

compositions at low temperature favour same-type strips and clusters that release local

stress via underlying lattice distortions [222]. Hence, one could think of an extended CE

formalism that includes this elastic contribution explicitly. This extended theory could

result in a two-fold improvement. On a physical ground, decoupling the elastic contribution

could make it easier to understand the remaining effects determining the phase behaviour

of the system. Moreover, from a modelling point of view, the stiffness K and equilibrium

spacings lij in Eq. (4.10) could be easily obtained from DFT. Hypothetically, subtracting

the elastic contribution from Figures 4.16 and 4.17 could reduce the spread of the points,

resulting in a more accurate fit and less complex CE model.

The argument at the base of this model helps to understand the displacements of Ta and

Nb ions in Figures 4.18, 4.18b and 4.18c, but since any displacement from the end-members

lattice parameter results in an energy penalty, it cannot explain the origin of the negative

formation energy of these orderings. Quantifying this electronic effect is a challenging

task, but a simple qualitative argument can be made in terms of the interaction between

the TMs. Figures 4.19a and 4.19b report the atom-projected electronic band-structure of

Mo1/3Nb2/3S2 and Mo1/3Ta2/3S2, respectively. Point colour represents the overlap between

the Mo and Nb, or the Ta character of each band eigenvalue. A non-zero overlap is an

indicator of a level of bonding between the two atoms. As shown in Fig. 4.19, this overlap

is larger where the bands are curved and therefore the electron density is more de-localised,

consistent with a possible bond between Mo and the group V metal. The delocalisation

of the extra electron of Mo ions lowers the total energy of the system, compared to the

separate Mo2 and Ta2. Finally, the more negative formation energy of Mo-Ta alloys arises

from the fact that the overlapping d manifold lies slightly lower in energy compared to the

Mo-Nb case, consistently with similar observation in Nb- and Ta-doped SnO2.

4.3.3 Ir-Ru-S Binary Alloy

The last case study shows the limit of the CE formalism. The system considered combines

two chalcogenides interesting for ammonia catalysis applications: IrS2 and RuS2. No

ternary is reported in the phase-field within the MP database.

Dark-blue hexagons and red crosses show the DFT-computed convex hull for the

Ir1− xRuxS2 alloys in the NbTe2 and WTe2 prototype, which, as in Fig. 4.3 are the
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(a) Mo1/3Nb2/3S2 (b) Mo1/3Ta2/3S2

Figure 4.19: Atom-projected band structure of GS at x = 0.66 of Nb- and Ta-MoS2 alloys. The
colour-code reports the product of the projection onto the TM atoms, i.e. (a) ps,Mo(k)ps,Nb(k) and
(b) ps,Mo(k)ps,Ta(k), where s is the band index and k a vector in the BZ. The high-symmetry path
is generated with the SeeK-path suite [225], and each line is interpolated over 60 points.

low-energy ML configuration of IrS2 and RuS2, respectively. The reference energies are

given by the pyrite RuS2, x = 0, and non-layered IrS2, x = 1, shown by figures with black

edges at the left and right of the plot respectively. As shown in Fig. 4.20, the CE formalism

fails to capture the energy landscape of the system even with the extensive training set

and basis size reported in Table 4.2. The predicted convex hulls (light blue and orange

dashed lines) differ significantly from the DFT-computed one (blue and solid red lines).

Moreover, as shown in Fig. 4.21, the fitted and computed energies display low correlation.

The poor performance of the CE model is rooted in the large relaxation undergone by many

structures. Different orderings relax to the same final structure, breaking mapping between

geometrical ordering on a fixed lattice and energies underpinning the CE formalism [136].

This system is a reminder that coarse-graining is a delicate process, and special attention

must be paid to structures displaying large relaxation when deploying the CE formalism.
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Figure 4.20: (a) Formation energy EF, in eV/site, versus concentration x of the Ir1−xRuxS2

system in the NbTe2 (blue-shaded symbols) and WTe2 (red-shaded symbols) prototypes. Colour-
mathced solid lines show the DFT convex-hull within each host and dashed lines the one predicted
by CE. Insets on the left of the plot show IrS2 polymorphs: GS non-layered geometry (black-edge
inset), NbTe2 ML (blue-edge inset) and WTe2 ML (orange-edge inset). Insets on the right show
RuS2 polymorphs following the same colour-code.
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Figure 4.21: Correlation plot of the DFT-training-set and CE-fitted energies. The red line marks
x = y, i.e. perfect correspondence between the two sets. The grey-scale of each marker shows the
distance from the DFT hull (solid lines in Fig. 4.20).
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4.4 Final Remarks

This chapter represents a systematic analysis of possibilities to alloy in TMD families.

The ideal solution limit provides the first guideline for in-depth computational studies

and experimental synthesis. Comparison between the ideal solid solution results and the

literature suggests the description is a reliable starting point. Moreover, ordering on the

metal site of promising candidates identified from the ISS data has been explored with

CE formalism for a few case studies. The CE analysis agrees in (Mo:W)S2, (Nb:Mo)S2

and (Ta:Mo)S2 cases with the ISS prediction, which predicts maximum solubility in these

cases. In the case of (Nb:Mo)S2 and (Ta:Mo)S2, the ISS predicts the same behaviour for

both systems. Conversely, the CE analysis can capture the different behaviour of the two

alloys systems, which show quantitative different formation energies and a different shape

of the convex hull. Nonetheless, the ISS correctly predicts the qualitative character of the

systems, as both Nb and Ta show good miscibility with Mo within the MoS2 prototype.

These results show that the ISS model and CE analysis can be a good guideline for CVD

synthesis and the search for new alloys and ternary in the TMD chemical space.

A more in-depth analysis will be carried out on the (Mo:Ti)S2 alloys. This family of

compounds has captured the interest of the tribology community, as both experimental [74]

and computational studies [80] suggest it as a promising candidate for solid lubrication. In

the following chapter, the CE model will be developed to describe the phase behaviour of

the system. This model, coupled with MC simulation, will be used to predict the system

high-temperature behaviour and compare the results with available literature.
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5
Phase Stability of (Mo:Ti)S2 Alloys

Building on the protocol outlined in chapter 4, an in-depth analysis is reported here of the

phase behaviour of a compound that has captured the interest of the tribology community.

(Mo:Ti)S2 alloys have been identified as a promising material with enhanced tribological

properties both by experimental and computational investigations. Experiments on a

mesoscale report that Ti-doped composite coatings show better resistance to oxidation com-

pared to pristine MoS2 while preserving low friction coefficients [74]. Recent computational

work [80, 226] has put forward an argument to rationalise the good frictional behaviour in

terms of the vibrational properties: the low frequency optical phonon modes taken to be

associated with the perfect shear of two layers are extrapolated along the sliding path and

taken as an indication of low energy barriers for sliding modes. By studying this descriptor

across the transition-metal dichalcogenide (TMD) chemical space, the authors identified

layered 2H-Ti1/4Mo3/4S2, shown in Fig. 5.1a where a quarter of TM sites within the TM-S2

layers are occupied by Ti, as a candidate material with enhanced frictional properties

compared with other analysed TMDs. Despite the interest attracted by this compound,

the exact structure and chemistry is still debated. In order to experimentally realise this

computationally engineered chemistry, it would be advantageous for Ti1/4Mo3/4S2 to be

thermodynamically stable within the Ti-Mo-S chemical space. However, the reported

mechanically stability in DFT calculations [80] is by itself insufficient to assess the thermo-

dynamic viability. Experiments do not provide a definite answer either. On the one hand,

studies on thin films synthesised via magneto-sputtering suggest Ti is not fully integrated

within the TM-S2 planes [74, 227]. On the grounds of the measured ratio between chemical

composition and film hardness, the authors conclude that if Ti were fully incorporated into

the layered structure, the resulting properties of the material, including hardness, should

105



106 Chapter 5 Phase Stability of (Mo:Ti)S2 Alloys

splitting of those vibrational modes that were degenerate in the
parent MoS structure. However, the displacement pattern of
those modes that are relevant to the tribological properties is
unvaried, and a direct comparison of the corresponding
frequencies can be done without ambiguities. In the Ti:MoS
system, the vibrational frequencies are found to be lower than
those of the undoped counterpart, as expected according to the
lower M−S cophonicity (Table 1); in particular, we note that
the frequency values are close to those found in the WSe and
WTe systems. According to the present results, the bulk
contribution to the friction coefficient of the Ti:MoS, WSe, and
WTe systems are expected to be similar and the lowest among
those of the TMDs compounds considered in this work.

■ CONCLUSIONS
Six transition metal dichalcogenides with general stoichiometry
MX2 have been studied by means of ab initio techniques. The
frequency analysis suggests that the WSe and WTe compounds
are expected to display the lowest bulk contribution to the
friction coefficient among those of the considered systems. A
new lattice dynamic metric, named cophonicity, has been
proposed, to capture the effect of the electronic features of the
ion environment on the stability of the lattice distortions. We
find that cophonicity of the M−X pair in MX2 TMDs is related
to the vibrational frequencies of the distortion modes relevant
to the microscopic friction. In particular, we find that, as
cophonicity tends to zero, the stability of layer sliding modes is
lowered, favoring the relative shift of two subsequent MX2
layers; in correspondence, a lower macroscopic friction
coefficient is expected.
Cophonicity in the studied TMDs is found to be related to

the covalency of the M−X bond. Increasing structural
distortions in MoX systems induces a lowering of the Mo−X
bond covalency, and the Mo−X pair approaches the perfect
cophonicity. Following these outcomes, we design the Ti:MoS
compound, a new material derived from the MoS2 TMD by
partial Mo→Ti substitution. The analysis of the vibrational
frequencies suggests that the Ti:MoS system is expected to
have a bulk contribution to the friction coefficient comparable
to that of the WSe and WTe compounds.
The cophonicity metric here proposed, combined with

electro-structural analyses, constitutes a new tool to finely tune
the dynamic properties of a system at the atomic scale; thanks
to the generality of its definition, this new lattice dynamic

descriptor can be universally applied to any A−B atomic pair,
irrespective of the geometric environment in which the pair is
embedded.
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Titanium-Doped Molybdenum Disulfide Nanostructures**

ByWen Kuang Hsu, Yan Qiu Zhu, Nan Yao, Steven Firth, Robin J. H. Clark, Harold W. Kroto, and
David R. M. Walton*

1. Introduction

Since the discovery of carbon nanotubes,[1] inorganic fuller-
ene-like nanostructures such as MoS2 and WS2 have become
the subject of great interest in nanotechnology research.[2,3]

The interlayer separation in MoS2 is ca. 6.2 ä, compared with
3.4 ä in graphite and, as a consequence, the van der Waals
forces between adjacent MoS2 layers are very weak. The intra-
layer bonding in MoS2 is primarily covalent and ca. 100 times
stronger than the interlayer interactions.[4] This phenomenon is
also exhibited by graphite, although the interlayer interactions
in this case are relatively stronger than in the sulfides. Recently,
WS2 nanotubes intercalated with gold and silver have been
produced and exhibit a ca. 6% expansion along the c axis.[5] It
is known that some of the carbon atoms in the hexagonal
graphite lattice, and in carbon nanotubes, can be partly
replaced by B and N[6±8] but, to date, similar replacements in
inorganic-layered structures have not been documented. In this
paper, we describe the partial replacement of Mo by Ti in the
MoS2 lattice.

2. Results and Discussion

2.1. High-Resolution Transmission Electron Microscopy

Analyses

Short multiwalled nanotubes (1±2 lm in length, 20±50 nm in
diameter), often connected to bulk particles, were observed

(Fig. 1). Individual nanotubes exhibited: a) a well-defined
layered structure, distinguished by an interlayer separation of
ca. 6.2 ä corresponding to 2H±MoS2,[3] b) open-ended tubes
(e.g., Fig. 1a and b), and c) tubes with (Fig. 1c) and without
(Fig. 1a and b) encapsulated material. Most of the encapsu-
lated material (Fig. 1c) appears to be crystalline, as revealed by
the presence of lattice fringes. Some nanotubes are slightly
bent (Fig. 1a). It is noteworthy that nanotube closure is
achieved by bending the three outermost layers (top right to
lower left, Fig. 1c). Lattice defects are completely absent from
these three layers.

±
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Ti-doped MoS2 nanotubes are produced by pyrolyzing a H2S/N2 mixture over an oxidized Ti±Mo alloy powder at elevated tem-
peratures. Partial substitution of Mo by Ti does not significantly alter the 2H±MoS2 lattice.

Fig. 1. HRTEM images of a,b) individual short hollow nanotubes, connected to
large irregular particles (not shown here); c) a short tube that contains an encap-
sulated oxide crystallite.

Adv. Funct. Mater. 2001, 11, No. 1, February ”WILEY-VCH Verlag GmbH, D-69469 Weinheim, 2001 1616-301X/01/0102-0069 $ 17.50+.50/0 69

FU
LL

PA
P
ER

(b)

Figure 5.1: (a) Tribological-enhanced compound proposed in Ref. [80]. (b) HRTEM image of
a Ti doped MoS2 nanostructure from Ref. [228]. The layering structure of TMDs compound is
clearly visible.

deviate more from pristine MoS2 than is observed. On the other hand, a separate study of

Ti doped MoS2 nanostructures, reported in Fig. 5.1b, concluded that Ti is incorporated

within the TM-S2 planes. The authors disregarded a possible intercalation between the

layers due to the absence of distortion along the interlayer c axis, suggesting that Ti is

embedded in the planes.

In an attempt to elucidate the thermodynamic viability of layered (Mo:Ti)S2 compounds

including 2H-Ti1/4Mo3/4S2, the energetics and thermodynamics of metal-site substitutions

are investigated with computational techniques to identify ordered phases and solubility

limits along the full (Mo:Ti)S2 pseudo-binary line within the Mo-Ti-S phase space.

2H-MoS2

TiS3
1T-TiS2
Ti7S12
Ti5S8
Ti2S3

TiS

Ti2S

Ti

S

MoTiMo3

TiMoS3

Figure 5.2: Ternary space of the Mo-Ti-S system. Insets on the left and right show the
coordination of the pristine compounds, 1T-TiS2 and 2H-MoS2, respectively. The binary alloy
system studied here is represented by the dashed line and the substitutional process is sketched at
the bottom.
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Fig. 5.2 visualises the considered part of the ternary phase space. Only compounds

TixMo1−xS2 within the two end members prototypes are considered. The ternary plot in

Fig. 5.2 reports stable configurations and tie lines in the chemical space according to the

Materials Project Database [216, 217]. The only ternary compound reported, TiMoS3, is

an unstable non-layered structure, with a formation energy of EF = 0.04 eV above the

convex Hull. To the best of our knowledge, there are no stable ternaries reported in the

phase field MoS2-TiS2-Ti7S12 relevant here, and no attempt was made to computationally

search for unknown ternaries in this region of the chemical space.

The two end-members are:

1. 1T-TiS2 is a semi-metal that crystallises in a layered compound with space group

P 3̄m1. The structure is depicted on the left side in Fig. 5.2. Each layer shows CdI2

prototype: triangular Ti layers are sandwiched by triangular chalcogenide planes,

mutually rotated by 60◦, resulting in octahedrally coordinated Ti. The 1T prefix

indicates that TiS2 planes are stacked in an AA fashion [35].

2. 2H-MoS2 is a semiconductor with an indirect bandgap of 1.3 eV and crystallises in a

layered structure with space group P63/mmc. Each layer presents the coordination

of the MoS2 prototype: Mo planes are sandwiched by S planes that are not rotated

relative to each other, resulting in a prismatic coordination of Mo, as sketched on

the right side in Fig. 5.2. The 2H prefix designates an AB stacking order of MoS2

layers [35].

In order to explore the effects of system dimensionality on the phase stability, the systems

are also studied in purely ML form, as done in chapter 4. No stacking order is present in

the ML case and the pristine compounds are referred to as 1T-TiS2 and 1H-MoS2.

5.1 Methodology

Cluster Expansion method The combinatorial problem of cation ordering within a

crystal structure is addressed using the CE formalism [41], described in detail in section 2.2.

The Alloy Theory Automated Toolkit (ATAT) [136] has been used to construct cluster

expansions. The series Eq. (2.58) is truncated at figures of four vertices and cross-validation

is used to select the most predictive model over a training set. The expansion is considered

converged once the ground states predicted by the CE agree with DFT calculations and

the error on predicted energies is deemed negligible.

First-principles calculations Total energy calculations of geometries along the TixMo1−xS2

tie-line are performed using DFT within the PAW framework [124] as implemented in

the VASP software [198, 199]. Exchange-correlation effects are modelled using the SCAN

functional [128]. The subtle van der Waals interactions coupling the layers in bulk systems

are described using the non-local kernel correction rVV10 [229]. This combination has
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proven to accurately describe layered materials and complex geometries [129] and is further

benchmarked in Appendix E.

A plane wave cut-off of 800 eV was adopted for all DFT calculations; the Brillouin zone

of the pristine compounds in their primitive cell was sampled using a 11× 11× 11 mesh

and the number of k points per reciprocal atom was kept constant for larger supercells.

These parameters were evaluated via a convergence study for the current DFT setup in

Appendix E. For the ML geometries, layers of TMD are separated by 20 Å, ensuring there

is no interaction between periodic images. In order to obtain accurate total energies, cell

vectors and atomic positions were relaxed until the energy between iterations is less than

0.5 meV/atom.

Monte Carlo simulations To investigate the effect of temperature and configurational

entropy on the system, Monte Carlo simulations were performed using the CE Hamiltonians

and the EMC routine of the ATAT package [138]. The simulations are carried out in the

semi grand-canonical ensemble, where the chemical potential µ, number of lattice sites N

and temperature T are fixed while concentration x and energy E can fluctuate.

The supercells used in the calculations are reported in Table 5.1. All ground states

of the system are stabilized within the chosen chemical potential range, spanned in steps

of ∆µ = 0.01 eV. Temperature is varied as function of its inverse β = 1/T between

β1 = 1/100 K and β1 = 1/8000 K in steps ∆β = 1× 10−4. This ensures a high sampling

density at low temperatures while conveniently enabling the ideal solid solution case as

a high temperature starting point. Each MC simulation is considered converged once

concentration fluctuations are less than the threshold of ∆x = 5 · 10−3.

Host Training set size Clusters Φα CV [eV] MC cell size

2H bulk 57 19 0.009 37x37x8
1T bulk 113 31 0.052 21x21x11
1H ML 39 8 0.016 -
1T ML 46 37 0.083 -

Table 5.1: Training set and convergence of the CE in the trigonal prismatic 2H and octahedral
1T hosts, for bulk and ML geometries.

5.2 Results

5.2.1 Crystallography and Cluster Expansion

The DFT-SCAN with rVV10 correction describes the in-plane bonding accurately and

stacking lattice constants are in good agreement with experiment, which indicates that

the rVV10 kernel accurately captures the cohesive inter-layer interactions. The lattice

parameters of the pristine compounds 2H-MoS2 and 1T-TiS2 as obtained from calculations

are reported in Table 5.2 and are compared with experimental crystallographic data.

Separate CE Hamiltonians were built for the trigonal-prismatic (H) and the octahedral

(T) hosts. Two datasets of total energy calculations, one per host, were used to train
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Compound a[Å] c[Å] Method Reference

2H-MoS2 3.168 12.5 DFT-SCAN This work
3.161 12.3 experimental [230]

1T-TiS2 3.409 5.75 DFT-SCAN This work
3.410 5.70 experimental [231]

Table 5.2: Intralayer a and interlayer c lattice parameters from simulations and experiments.
Bulk lattice parameter a is within 0.03% and 0.2% of the experimental measured value, while the
interlayer one c is within 0.7% and 1.8% for TiS2 and MoS2, respectively.
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Figure 5.3: ECI in prismatic 2H host (red circles) and octahedral hosts (blue squares) as defined
in Eq. (2.58). The dashed lines connecting the points are a guide to the eye.

the ECIs, which are reported in Fig. 5.3. A dataset comprising around 50 structures was

sufficient to bring CE and DFT into agreement for the trigonal-prismatic host, while a little

over a hundred configurations were needed for the octahedral host as reported in Table 5.1.

While the CE for the trigonal-prismatic host was built using the full concentration range

x ∈ [0, 1], within the octahedral host, it was decided to bias the CE model to accurately

reproduce the ground-states only in x ∈ [0, 0.6] as explained in section 5.2.2. As reported in

Fig. 5.4, energies predicted by CE models agree well with the DFT-computed ones: average

error is 0.8± 6.9 meV/site for the 2H host and −2± 24 meV/site for 1T host. Considering

that the energy landscape is dominated by the formation energy of end-members in the

non-native host, which is of the order of 0.5 eV, this error is negligible in the description of

the energetics in most of the phase diagram. The error in 1T host is in the order of thermal

energy at room temperature kBTroom = 25 meV, making it relevant for low-temperature

simulations at low concentration x, near the 1T-TiS2 end-member. In turn, in the high-

temperature portion of the phase diagram, which is the one of interest here, this error

becomes negligible.
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Figure 5.4: Fitted versus DFT-computed formation energies in both hosts. In a perfect fit all
points would lie on the bisector, shown as a dashed black line. Empty squares refer to configuration
x > 0.6, which have a different weight in the fit as explained in section 5.2.2.

5.2.2 Convex Hull

In order to understand stability across the two hosts p, the formation energy defined in

Eq. (4.8) is adopted and, for this system, reads

EMo,Ti,p(x) = E(MoxTi1−xS2)|p
− xE(Mo, pMo)− (1− x)E(Ti, pTi) = EpF(x), (5.1)

where E(MoxTi1−xS2)|p is the energy per TM site of the configuration σ(x) at concentration

x, and remaining terms are the total energy of the pristine compound in the ground-state

hosts, i.e. pMo is prismatic MoS2 and pTi is octahedral CdI2. EpF(x) is introduced as

a short-hand, as in the remaining of the chapter the TM will not change. Formation

energies from Eq. (5.1) are reported in Fig. 5.5 for bulk and ML in both octahedral 1T

and trigonal prismatic 1H and 2H hosts. The line connecting the end-member in each

host (solid red for H host and dashed grey for T host in Fig. 5.5) represents the energy of

the ideal solid-solution limit with negligible interactions between the fraction x of sites

occupied by Mo and the remaining Ti sites. Points lying below this line represent stable

configurations in the given host while points over it mark energetically unfavourable regions,

where Mo-rich and Ti-rich parts are segregated within the same host geometry. Finally,

stable structures across both hosts would show negative formation energies, lying below

the black dotted line in Fig. 5.5, but no such configuration has been found.

The prismatic host is not receptive to alloying. All training set configurations lie

above the line connecting the end-members (red symbols in Fig. 5.5), indicating a high

energy penalty for Ti in prismatic coordination. Since no ordered arrangement of the two
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Figure 5.5: DFT-computed energies for the H host in bulk (red circles) and ML form (red
crosses) and T host in bulk (blue squares) and ML (blue diamonds). Hollow symbols mark the
1T configuration at x > 0.6, where the CE model is not required to reproduce the right ground
state. The dashed gray line connects the end-members formation energies of the T host. Red and
blue solid lines show the convex hull within the H and T hosts, respectively. The black dotted line
marks the zero-formation energy limit.

species yield an energy gain, at 0 K Mo and Ti ions within the 2H host are segregated into

separate regions. Conversely, energy favourable orderings are found within the octahedral

host. Several training set configurations lie below the ideal solid-solution line, as shown by

blue marks below the gray dotted line in Fig. 5.5. In particular the CE iterative search

identifies ground-state orderings at x = 0.60 (Mo3/5Ti2/5S2) and at x = 0.83 (Mo5/6Ti1/6S2).

According to the convex hull in Fig. 5.5, the octahedral T host is favourable until x ≈ 0.5,

after which the prismatic H host becomes more stable. This concentration-dependant

stability between the two hosts at 0 K and the large distortions occurring in the T host for

x > 0.6 motivated the decision to constrain the selection of the 1T model: CE Hamiltonians

are required to correctly reproduce the 1T ground-state only within the range x ∈ [0, 0.6].

This is in light of the fact that at higher concentrations the system will prefer the H host

and the CE cannot reproduce large lattice distortions [136], as shown in section 4.3.3.

Fig. 5.6 reports the distortion from the native geometry occurring upon relaxation as a

function of concentration x. The host distortion is defined as the strain needed to transform

the original cell into the relaxed one, apart from isotropic scaling and rotations. Values

larger than 0.1 are usually considered too large for the CE formalism to be applied [136],

as the mapping of the relaxed configuration to the perfect lattice breaks down.

The 1T’ host observed in other TMD compounds, e.g. WTe2, has been considered but

is not relevant for the present system. The formation energy of several orderings within
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this host is reported as orange crosses in Fig. 5.5 along with the convex hull of the 2H and

1T hosts. The formation energy within 1T’ host is comparable with the results obtained

within the 1T host. Within 1T’ host, relaxed geometries in the Ti-rich portion of the

composition axis revert to perfect-octahedral 1T coordination while Mo-rich configurations

reach distorted geometries similar to the ones obtained within the 1T host (blue hollow

symbols in Fig. 5.5). Thus, the phase behaviour of the system is unchanged, as the relaxed

configuration from 1T’ and 1T are equivalent in the range x ∈ [0, 0.6] and the 2H host lies

lower in energy for higher concentrations of Mo.

Since no part of either convex hulls lies below the zero-formation energy line of the

composite-host system (black dotted line in Fig. 5.5), the system is deemed phase-separating

at 0 K: the lowest-energy configuration at any concentration comprises two separate regions

of 1T-TiS2 and 2H-MoS2. Only at finite temperature can entropic effects stabilise the

presence of a mixed-concentration configuration within a single host.
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Figure 5.6: Distortion of all computed structure in 2H (circles) and 1T (squares) bulk systems.
The y axis reports the formation energy per site versus the concentration x, like in Fig. 5.5.
The colour of each point shows the distortion value, increasing from no distortion (green) to the
maximum distortion observed (red).

5.2.3 Miscibility at High Temperature

The CE Hamiltonians for the 2H and 1T bulk system trained with the data-points in

Fig. 5.5 was used to run finite-temperature MC simulations. Free-energy curves for each

host are built from MC simulations, allowing the understanding of the stability of the

system once temperature and configurational entropy are introduced. Since the MC

simulations are carried out in a semi grand-canonical ensemble, only single phase regions

of the phase diagram are directly explored by the simulations and two-phase equilibrium

regions are inferred. Then the multi-host free-energy surface is obtained by a double
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tangent construction: at fixed temperature, the free energy surface of each host is built

with the two-tangent construction and the convex hull of the resulting two surface yields

the total free energy F (x, T ).

The phase diagram of the system across 2H and 1T hosts is thus divided in phase

separating and solid-solution regions. The colour scheme in Fig. 5.7 shows the value of the

multi-host Helmholtz free-energy F (x, T ) as function of concentration x and temperature T .

The T host shows solid-solution behaviour already at room temperature, while in the 2H

system a phase-separation of Ti and Mo within the prismatic host dominates the diagram

up to T = 3000 K at x = 0.5. The solid black lines in Fig. 5.7 show the phase boundaries

between multi-host phase separation (central region) and solid solution in a single host

(left-most and right-most regions). In a realistic temperature range the system is completely

phase separating, with configurational entropy stabilizing only small-percentage doping

around the two end-members.

Figure 5.7: Phase diagram of the combined-host system showing temperature T versus equilibrium
concentration x in MC simulations. The colours report the value of the free energy F (x, T ), linearly
interpolated between the MC points. The solid black line highlights the phase boundary between
solid solution in T and H hosts from phase separation into 2H-MoS2 and 1T-TiS2. The dash-dotted
gray line indicates the separation between the 1T-host stability and 2H-host stability, as indicated by
the gray labels. The white region between dash-dotted and dashed gray lines indicates a two-phase
equilibrium within the 2H host not accessible by semi-grand canonical MC simulation.

5.3 Discussion

Stabilisation mechanism in octahedral host Even though it does not lead to overall-

stable geometries, it is interesting to understand the origin of the stabilization mechanism

leading to the ground state Mo3/5Ti2/5S2 at x = 0.6 in the 1T host. Fig. 5.8a reports

a top view of the starting geometry of this ground-state ordering. This configuration is
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composed of three staggered rows of Mo and two rows of Ti. As shown by the displacement

arrows in Fig. 5.8a, Ti cations retain their starting position, locally preserving octahedral

CdI2 prototype coordination, while Mo clusters distort the host, locally breaking the

symmetry. This distortion around Mo ions can be understood qualitatively with the

Kramer theorem [148] and the CF theory, outlined in section 2.4.2. The CF description has

an intuitive physical interpretation, but only leads to a qualitative description of the present

system: while the CF model assumes purely ionic bonds, the transition metal-chalcogenide

bond shows a degree of covalency. According to CF theory, the degenerate five d orbitals

of the isolated TM are split into two energy manifolds for CdI2 octahedral coordination

and into three manifolds for MoS2 prismatic coordination, as reported on the left hand

side of Fig. 5.8b.

Assigning Ti a formal valence of 4+, the trice-degenerate low energy t3g states of the

d0 ions are empty. Hence, octahedral coordination is favoured as it provides the most

efficient packing [34]. On the other hand, Mo4+ is a d2 ion leading to partial occupation of

the t2g manifolds. According to the Kramer theorem, the system will lower its symmetry

through Jahn-Teller (JT) distortion: this breaks the degeneracy of t2g and lowers the total

energy. The lattice is thus divided in non-JT-active sites, i.e. Ti rows, and JT-active

sites, composed of the Mo triplets clustering together, as shown in Fig. 5.8a. The same

mechanism cannot occur in the MoS2 native prismatic coordination, as the d0 configuration

of Ti4+ ions and the low-energy CF level is non-degenerate and hence Kramer’s theorem

cannot be applied.
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Figure 5.8: (a) Azimuthal view of the starting, perfect octahedral Mo3/5Ti2/5S2 ordering at
x = 0.6 . Purple, blue and yellow circles represent Mo, Ti and S ions, respectively. The distortion
stabilising the geometry is shown with arrows, whose length and shade are proportional to the
magnitude of the displacement. (b) Sketch of the octahedral (left) and prismatic (right) energy
levels in the CF splitting picture. Insets beside energy levels depict the corresponding hydrogen-like
orbitals on the transition metal sites, surrounded by sulfur ions in the respective coordination.

Generalised principle for 2D TMDs design The dimensionality and vdW interac-

tions do not affect the phase stability of the alloy system. As Fig. 5.5 reports, in both hosts,

the convex hull of the bulk system and their ML counterpart present the same character.
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This result validates the assumption in chapter 4: since the phase behaviour is unchanged

from the bulk case, one could extrapolate from ML phase diagrams to the bulk.

Moreover, the electron-lattice stabilisation mechanism presented in section 5.3 could

occur in other TMD-based compounds and must be taken into account when designing

similar alloys. The JT-based distortion lowers the energy of the ground-state configurations

at x = 0.60 in Fig. 5.5 by about 100 meV compared to the ideal solid-solution limit. Even

though this energy gain is not enough to redefine the multi-host convex hull in the (Mo:Ti)S2

system, it could lead to ground-state orderings in other similar alloys, if the formation

energy of the end-members in both host is low enough or zero, when end-members share

the same ground-state host [190].

Comparison with experimental data The phase diagram in Fig. 5.7 contains useful

information from a synthesis point of view, allowing estimation of the maximum doping

fraction at a given temperature. For example, at T = 1200 K the maximum fraction of

substituted Ti should be around 1%. Considering that the melting point of pristine MoS2

and Mo-Ti metallic alloys are reported to be around 1700 K and 2000 K [232], respectively,

it should be in principle possible to observe such doped configurations experimentally

by quenching the results of a high-temperature synthesis, in order to inhibit the phase

segregation mechanism shown to occur at lower temperature. This prediction is consistent

with the results by Hsu et al. [228], where energy dispersive X-ray analysis detected the

presence of a small amount of Ti in 2H-MoS2-based nanostructures obtained by mixing

Mo-Ti powder and H2S at 1200 K, while the inter-layer lattice constant measured from the

High-Resolution Transmission Electron Microscopy and X-ray diffraction fails to show an

expansion, which would be indicative of Ti ions intercalated between MoS2 sheets.

5.4 Final Remarks

The (Ti:Mo)S2 phase diagram originating from TM substitutions within the native hosts

of the pristine compounds has been computed using the methods outlined in chapter 4

and section 2.2. The model predicts full phase separation in the system across hosts and the

solubility limits inferred from our MC simulations are in agreement with high-temperature

synthesis of Ti-doped 2H-MoS2 reported by Hsu and coworkers [228].

The phase behaviour of the system is understood in terms of a general electron-lattice

coupling mechanism that could apply to the other members of the TMD family and, if

strong enough, lead to stable ordering in other binary compounds. Comparison between

3D bulk and 2D convex hulls reveals interlayer coupling and system dimensionality, at

the origin of sought-after exotic electronic behaviour, are negligible in regard to phase

stability of the binary alloys. This result should be valid for most 2D materials in which

phase stability is governed by the similar in-plane electron-lattice effect, while more subtle

behaviour could arise in presence of magnetic or Coulombic interactions [38, 233].
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6
Digital Tribology

6.1 Superlubricity in Large-Mismatch Heterostructure

The concept of superlubricity was proposed by K. Shinjo and M. Hirano in the 1990s [18],

which describes the phenomenon of vanishing friction between two contact surfaces (also

known as structural lubricity later). Superlubricity has been widely found in van der

Waals (vdW) materials, as their crystalline structures are kept together by weak vdW

forces. However, superlubricity in two dimensional (2D) homostructures shows a strong

twist-angle dependence [53, 177]. Layers prefer to rotate and lock in the commensurate

state when sliding occurs, leading to the disappearance of superlubricity [234, 235]. The

lattice mismatch between the two contact materials in VdW heterojunctions may reduce

the commensuration problem. Micro-scale superlubricity has been uncovered in the

graphene/hexagonal boron nitride (h-BN) heterostructure with a significant reduction of

twist-angle dependence [29, 19, 236, 175]. However, the twist-angle dependence is still

present in graphene/h-BN heterostructure, perhaps due to the small lattice mismatch.

Therefore, it is crucial to explore the lattice mismatch influence on the superlubricity of 2D

heterostructures. Furthermore, the effect of widespread domain edges on the superlubricity

of the finite-size 2D interfaces is largely unexplored [175].

Two-dimensional heterojunctions with different lattice mismatches were characterized

with Lateral Force Atomic Force Microscope (LF-AFM) and simulations. Experiments

presented here show that the coefficient of friction of the large lattice mismatch heterojunc-

tion interfaces is below 1× 10−6, and twist-angle dependence is suppressed. Friction forces

of these large-mismatch heterojunctions are dominated by pinned edges effects rather than

resistance to interface sliding, e.g. from potential energy corrugation, while interface sliding

117
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resistance dominates the friction process in sliding of small mismatch lattices. Classical

MD simulations indicate that atoms near the edges of the flake play a distinctive role

during the sliding dynamics, presenting enhanced structural distortions with respect to the

rest of the flake.

Experiments reported in this chapter were performed by Prof. Guangyu Zhang group

at Beijing National Laboratory for Condensed Matter Physics and Institute of Physics

(Beijing, China) and the simulations were performed in collaboration with Prof. Tomas

Polcar group at Czech Technical University in Prague (Prague, Czech Republic). The main

contributions carried out in Southampton were the design of the MD simulation, the FF

benchmark and the analysis of electronic effects at the edges.

Figure 6.1: (a-c) Sketches of the heterostructures considered: MoS2/graphite, MoS2/h-BN, and
graphene/h-BN, respectively. (d-f) AFM images of the corresponding heterostructures. (g) Working
principle of the lateral-force AFM. Two manipulation techniques adopted and corresponding force
signal: edge-pushing method (h) and top-dragging method.

6.1.1 Experimental Results

The VdW heterostructures experimentally investigated are: MoS2/graphite, MoS2/h-BN,

and graphene/h-BN, with lattice mismatches of 26.8%, 24.6%, and 1.8%, respectively.

Fig. 6.1a-c show the structures of these three heterostructures, prepared by a CVD epitaxial

growth technique [25, 237] and characterised by AFM topography as shown in Fig. 6.1d–f.
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In Fig. 6.1f a faint moiré superlattice of ≈ 16 nm can be seen, suggesting a 0◦ twist angle

between G and h-BN. Electron diffraction images confirm the flakes and substrate lattices

are aligned. AFM topography finds lattice parameters in line with the literature and

confirm that the flakes in Fig. 6.1a-c are composed of a single layer while Raman and

photo-luminescence demonstrate a high sample quality.

Friction force measurements were performed by AFM in dry N2 atmosphere to reduce

airborne contaminations. Fig. 6.1g shows a schematic of the measurement process. Ma-

nipulation techniques [236, 59] allow to slide atop epitaxial domains on the substrate by

using an AFM tip and monitor the lateral force during the sliding simultaneously. Two

approaches to slide on-top domains over substrates by using AFM tips are deployed. The

first is illustrated in Fig. 6.1h, where the edge of the top domain is pushed laterally and the

difference of lateral force before and after on-top domain sliding is detected. The second

way is shown in Fig. 6.1i, where the domain is anchored to the tip end and dragged over the

substrate. For MoS2/graphite and MoS2/h-BN heterostructures, the top domains could

slide back and forth laterally by engaging the tip onto the centre of the domain, with a

load from 0.4 to 5µN, since the adhesion and the friction force between the tip and MoS2

is greater than that between MoS2 and graphite (or h-BN).

Superlubric Behaviour

As outlined in section 1.2, the AC model prescribes that the dependence of the dynamic

friction force Fr on the load L is expressed by

Fd = µd · L, (6.1)

where µd is the dynamic CoF. Combining the edge-pushing and top-dragging methods, the

applied tip load Ltip can be varied from zero to a few µN (near zero tip load achieved by

pushing the edge). The normal force experienced by the flake can be decomposed into two

contributions

L = L0 + Ltip, (6.2)

with L0 being the adhesion between the flake and the substrate and Ltip the load applied

to the tip. It follows that:

Fd = µd · (L0 + Ltip) = µd · L0 + µd · Ltip = Fr0 + µd · Ltip. (6.3)

As shown in Fig. 6.2a and b, under N2, the friction forces of MoS2/graphite and MoS2/h-

BN heterostructures are almost the same for different values of Ltip, which indicates

constant Fr0 and ultra-low CoF. As shown in Fig. 6.2, the coefficient of friction of both

MoS2/graphite and MoS2/h-BN heterostructure interfaces is well below 1× 10−3, which

is considered the threshold for superlubricity [89]. To calculate the friction coefficient

precisely from the slope in Fig. 6.2a and b, a much higher resolution and noise reduction

of the AFM signal would be needed.
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Nevertheless, an alternative approach can be used to estimate the CoF. The adhesive

force between MoS2 domains and graphite or h-BN represents the major contribution to

the load L [238]. Thus, we can estimate the magnitude of the CoF, µd, by using:

µd =
Fr0

L0
(6.4)

L0 = G ·A (6.5)

where G = 1.130(14) GPa is the adhesive pressure between graphite and MoS2 sheets [239]

and A is the area of the domain. The area of the largest MoS2 domain on graphite is A =

15.00µm2 and the friction force is Fr0 = 44.15 nN giving the adhesive force L0 = 16.97 mN

and the CoF of the MoS2/graphite heterostructure interfaces as µdMG = 2.60× 10−6.

This value is almost two orders of magnitude smaller than those reported in previous

studies [238, 240, 241]. For the MoS2/h-BN heterostructure the CoF value is around

µdMG = 2.29× 10−6, similar to MoS2/graphite.

To further explore the twist-angle dependence of superlubricity in large lattice mis-

match heterostructures, anisotropy friction test are conducted on the MoS2/graphite

heterostructure. As shown in Fig. 6.2c, the measured friction forces from MoS2/graphite

heterostructures show no dependence from the twist angle can be detected within experi-

mental resolution. This phenomenon is attributed to the fact that the in-plane interface

friction force is almost zero even at 0◦ due to incommensurability, and the influence of the

twist angle on the friction force has a negligible contribution to the total friction force.

Figure 6.2: Superlubricity of MoS2/graphite and MoS2/h-BN heterostructure interfaces. (a) and
(b) Friction force under N2 gas environment as a function of the tip load of MoS2/graphite and
MoS2/h-BN heterostructures. (c) The ratio of friction forces between twisted FTwisted and aligned
F0◦ MoS2/graphite heterostructure. The red dashed lines are the fit. Error bars are standard
deviation of data points.

Although the interface CoFs of MoS2/graphite and MoS2/h-BN heterostructure inter-

faces are small, there is still a constant friction force Fr0 independent of load. Previous

results pointed out that the friction force could be affected by many parameters, such

as edges, interface steps, and contaminations [242, 243, 244]. The origin of this constant

friction force is rationalised in terms of two descriptors, the shear strength S and the

domain edge pinning strength E. Considering the finite size of the samples, S and E are
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defined as follows:

S = Fd/A (6.6)

E = Fd/P, (6.7)

where A and P are the area and the perimeter of domains, respectively. Three situations

are expected:

1. the in-plane interface sliding resistance predominantly contributes to the friction

force and S is thus constant.

2. The in-plane interface friction is negligible and the edge pinning effect dominates the

friction process and E is constant.

3. if both effects contribute significantly to the friction force, then both S and E cannot

be constant.

Friction force of different samples are measured using various contact areas under a dry

N2 atmosphere. The results are consistent even though different tips were used, suggesting

good consistency and repeatability of the calibration method. Fig. 6.3a shows a plot of

the shear strength (S) of the MoS2/graphite heterostructure as a function of domain area

(A), clearly revealing a non-constant S. In contrast, when E vs. P is plotted, as shown

in Fig. 6.3b, the edge pinning strength E is constant, with E = 1.99(30) nN/µm. These

results indicate that the interface (in-plane) friction within MoS2/graphite is negligible,

and the edges of the MoS2 domains are pinned to the surface of graphite. MoS2/h-BN

exhibits similar behaviour, as shown in Fig. 6.3c,d, where E = 1.94(80) nN/µm, close to

that of MoS2/graphite. Note that all edges of MoS2 domains in our experiment have

the same zig-zag direction. Thus, the E reported is actually the zig-zag edge pinning

strength, as edges with different directions may have different edge pinning strength. As

described above, the friction force of large lattice mismatch MoS2/graphite and MoS2/h-BN

heterostructures mainly comes from the pinned edges. Therefore, the friction coefficient of

infinite interfaces should be significantly lower than 1× 10−6.

The behaviour of the aligned graphene/h-BN heterostructure, which has a small lattice

mismatch (1.8%), is different from the large-mismatch heterostructures. As shown in

Fig. 6.3e,f, the shear strength of the graphene/h-BN heterostructure is constant and

equal to S = 2.20(39) MPa, suggesting that the in-plane interface friction is dominant.

The dominance of in-plane friction in graphene/h-BN can be understood considering its

near-commensurate nature at small twist angles. The period of moiré superlattice is larger

than in the MoS2-based heterostructures and, while the centre of mass moves smoothly,

the dissipation arises from internal degrees of freedom of the flake [237, 245, 246, 19].

6.1.2 Electronic Structure of the MoS2 Flake Edges

This section reports an analysis of the electron density at the MoS2 edge sites. The study

of non-periodic geometries, like edges, requires a careful balance between simulation cost
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Figure 6.3: Source of friction for three different heterostructure interfaces. (a) and (b) are plots
of friction characterization of MoS2/graphite as a function of domain area A and perimeter P,
respectively. (c) and (d) are similar plots for MoS2/h-BN. (e) and (f) Friction characterization of
graphene/h-BN as a function of A and P. Dash lines are the fits. Error bars are standard deviation
of data points.

and geometries in DFT to ensure negligible self-interaction between periodic images is

present. This balance is obtained here using the ribbon geometry reported in Fig. 6.4,

where dashed a line shows the unit cell of the heterostructure system. The starting system

is a bilayer system comprising of a 7x7 MoS2 supercell epitaxially stacked on a 9x9 G

supercell, for a total of 309 atoms. As explained in Appendix C, to apply periodic boundary

conditions, the residual strain of 0.49% is applied to the MoS2 layer. Removing three

rows of MoS2, S-terminated zig-zag are obtained, termed here ZZ-S1, top edge in Fig. 6.4,

and ZZ-S2, bottom edge in Fig. 6.4. The edges are more than 8 Å apart, ensuring no

chemical interaction between them. The zig-zag edges are the only ones observed in our

CVD-synthesized samples. Moreover, analysis on MoS2 2D flakes reported in Ref. [247]

reports the lowest formation energy for ZZ-S1 and a slightly higher formation energy for

ZZ-S2 edge, while armchair and Mo-terminated edges show higher formation energy. The

geometry proposed here can be thought of as a portion of the side of the larger experimental

or MD-simulated flakes, which exhibits only ZZ-S2 edges. No edge in the carbon plane

was studied here as the flake slides above larger, high-quality G substrates. The electron

density is obtained from DFT calculation using the parameters reported in Appendix D.

To investigate chemical interaction between the two subsystems, we compute the charge

density along the c lattice vector, parallel z. The geometry along this direction is reported

in Fig. 6.4a. The charge along the lattice direction is obtained by direct integration along

the other lattice directions:

ρz(z) =

∫ a

0

∫ b

0
ρ(x, y, z)dxdy. (6.8)
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Figure 6.4: Top view of the MoS2-stripe/G heterostructure. Carbon, molybdenum and sulfur
atoms are reported in gray, cyan and yellow respectively.

Fig. 6.5b shows the electron distribution in the MoS2 stripe (cyan thin line), G substrate

(gray thin line) and heterostructure (black thick line). The vertical lines show position

along z of each C (gray), Mo (cyan), and S (yellow) atom, respectively. Fig. 6.5c shows

the difference between the distribution in the heterostructure and the subsystems, namely

∆ρz = ρhet
z − (ρMoS2

z + ρG
z ). Confirming our assumption that no strong chemical interaction

occurs between the edges and G, the heterostructure electronic distribution in Fig. 6.5b is

almost a perfect superposition of that of the isolated subsystems. No charge accumulation is

seen in the interlayer space suggesting no covalent bonds are forming. The charge difference

in Fig. 6.5c supports this observation, showing in-plane polarization in the G layer, with

in-plane accumulation and depletion from the out-of-plane pz manifolds. Charge also

accumulates on the lower S atoms. The positive-defined profile in MoS2 space in Fig. 6.5c

indicates a level of charge transfer from G to MoS2. To obtain a quantitative estimation of

the electrons transferred per atom, the ∆ρz is integrated in the two hemispaces defined by

the interface ζ (orange dash-dotted line in Fig. 6.5b,c):

∆ρMoS2
z =

∫ ∞

ζ
∆ρzdz (6.9)

and

∆ρG
z =

∫ ζ

−∞
∆ρzdz. (6.10)

This yields ∆ρ
MoS2
z

NMoS2
= 0.012 e−/atom and ∆ρGz

NC
= −0.0071 e−/atom. This minimal electronic

transfer rules out the formation of covalent bonds between MoS2 stripe and the G substrate.

Instead, the slight charge transfer is ascribed to the necessary alignment of Fermi level

between the two subsystems. Note that the interface height ζ is chosen to maximize the

computed charge transfer between the upper (MoS2) and lower (G) hemispaces.

To further characterize the electronic behaviour of the edges, Fig. 6.6a,c show the
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Figure 6.5: (a) Side view of the MoS2-strip/G heterostructure. (b) Electronic distribution along z
in heterostructure, MoS2 stripe and G substrate, as reported in the legend. (c) Difference between
the distributions reported in (b). The vertical lines mark atom positions, as reported in the legend.
The orange dash-dotted line is the position of the ideal interface height ζ.

in-plane electron density of the heterostructure obtained by integration along z

ρC
ζ (x, y) =

∫ ζ

−∞
ρ(x, y, z)dz (6.11)

ρMoS2
ζ (x, y) =

∫ ∞

ζ
ρ(x, y, z)dz. (6.12)

As shown in Fig. 6.6a, charge outside the MoS2 stripe vanishes, confirming that no spurious

self-interaction or charge sloshing are present. Fig. 6.6b,d report the charge difference as

defined above. The effect of the stacking on the G substrate is seen in Fig. 6.6b, as charge

is depleted in correspondence of the MoS2 stripe edges. The different nature of the two

S-edges is reflected in the charge reconstruction promoted by the G substrate. As shown

in Fig. 6.6b, charge depletion is stronger in the Mo atoms of the upper ZZ-S1 edge, while

the lower ZZ-S2 edge presents a double-lobed reconstruction and less pronounced charge

depletion on the metal ion.

The localized effect of the G on the MoS2 edges is well summarized in Fig. 6.7, which

shows the charge in Fig. 6.6 projected on the b axis, i.e integrated along x. Compared to

the isolated MoS2 stripe, a fractional charge is transferred to the terminating S atoms from

the underlying C atoms, while the rest of the system is unaffected.

To sum up, the main effect occurring at the MoS2 strip/G interface is a polarization of

the G layer and bottom S atoms. The negligible charge transfer across the interface rules

out any covalent bonding between the two subsystems and confirms the validity of the

classical, non-reactive approach used in MD simulations.
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a b

c d

Figure 6.6: In-plane electronic distribution of (a) MoS2 hemispace and (c) G hemispace. (c)
and (d) report the difference of in-plane distribution between heterostructures and subsystems in
respective hemispaces. White dashed lines show the unit cell of the heterostructure.

Figure 6.7: Electronic distribution difference along the b lattice direction, shown as purple arrow
in Fig. 6.4. Vertical lines mark the position of atoms, according to the legend, along b.

6.1.3 Sliding Barrier Force Field Benchmark

The benchmark in the previous section justifies the use of non-reactive FF and the simula-

tions are expected to correctly reproduce the trends found in experiments. As reported in

Appendix D, the intralayer interactions are described by means of Stillinger-Weber [171]

and AIREBO [172] potentials for MoS2 and graphene, respectively. The interlayer interac-

tions are modeled via a Lennard-Jones potential, parameterised in Appendix D against

DFT data. In order to test the performance of classical FF to describe sliding events in

the heterostructures, MD-computed PES are compared with DFT-level data. Since the

computational cost of computing PES at DFT level in large heterostructures is prohibitive,

a commensurate supercell comprising 4x4 MoS2 unit cells over 5x5 G unit cells is used. The

residual strain of 2.6% resulting from lattice mismatch is applied to MoS2. In computing

the PES, the G substrate is constrained in xyz and the top S layer in xy. This protocol
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prevents the system from relaxing back to minima geometries while allowing relaxation

along z, mimicking the constant load experimental setup.

Figure 6.8: (a) Top view of the MoS2/G heterostructure (same colouring as in Fig. 6.4). The
orange crosses represent the points considered in the heterostructure PES calculations. (b) PE as a
function of the dimensionless displacement y/ymax. (b1) Magnification of the plot in (b).

The PES is sampled over 50 points along the path following the y direction in the

geometry shown in Fig. 6.8a by orange crosses. The resulting PES from DFT and MD

are shown in Fig. 6.8b, as blue and orange lines, respectively. For comparison, the plot

reports DFT-computed PES for MoS2/MoS2 and G/G contacts, as red and gray dotted

curves, respectively. The inset is a zoom on the energy scale showing the heterostructure

PES in the first half of the path. Sliding barriers in the heterostructures are in the order of

fraction of meV/atom, one order of magnitude lower than in homo contacts. The DFT-MD

comparison reported in the inset in Fig. 6.8b1 shows that the “double-humped” shape of

the PES is correctly reproduced by the LJ FF, but the DFT barrier is underestimated by

a factor of ∆EDFT
∆ELJ

= 3.7.

Interestingly, this agreement is far better than what is reported in the literature for

LJ-based FF: Fig. 6.9a from Ref. [93] reports for G/G contact an underestimation of
∆EDFT
∆ELJ

= 10 and Fig. 6.9b in Ref. [94] shows that the shapes of the PES in MoS2/MoS2

contact is not reproduced correctly even qualitatively. The good performance of LJ

interlayer coupling here is not a coincidence: interlayer interactions are substantially

different in this heterostructure system compared to pristine compounds. As shown in

Fig. 6.10 in Ref. [93], in bilayer graphene charge is accumulated in the interface region,

compared to isolated G layers. Thus, pz orbitals of C atoms are more populated. The

repulsion between these orbitals is the fundamental idea underpinning the anisotropic term

in Kolmogorov-Crespi (KC) interlayer potentials and the failure of LJ ones in this system.

As shown in Fig. 6.5 in the previous section, the main effect of the interaction between
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REGUZZONI, FASOLINO, MOLINARI, AND RIGHI PHYSICAL REVIEW B 86, 245434 (2012)

the strength of the dispersion correction by means of a scaling
factor and cuts it off at short interatomic separations. We use
a scaling factor s6 = 0.65, C6 coefficients, and vdW radii for
the carbon atoms given by Grimme.30 Pairwise interactions
are summed within a radius of 200 a.u.

In the vdW-DF method,31 the energy functional is written
as Etot = E0 + Enl

c , where E0 is obtained from the DFT-
revPBE33 energy and Enl

c describes the nonlocal part of the
correlation energy, according to the analytical expression
given in Ref. 31. We performed plane-wave/pseudopotential
calculations.34 On the basis of test calculations for bulk
graphite, we adopted a kinetic energy cutoff Ecut = 60 Ry for
wave functions, and 4Ecut for charge density. In calculations
where the ionic species are described by ultrasoft pseudopo-
tentials, we use 6Ecut for the charge density cutoff. We use a
hexagonal cell with (1×1) in-plane size and vertical axis 32 Å
long. The k-point sampling of the Brillouin zone is realized
with a 12 × 12 × 1 Monkhorst-Pack grid.35

In classical molecular dynamics (MD) simulations,36 we
describe the intralayer interaction by the REBO potential37,38

and the interlayer interaction either by the Lennard-Jones (LJ)
potential or by the Kolmogorov-Crespi (KC) potential.24 We
use the parameters σ = 3.41 Å and ϵ = 2.39 meV for the LJ
potential, as in Ref. 39, and the same parameters of the original
paper for the KC potential.24 A cutoff of 14 Å and a two-
dimensional cell containing 112 atoms per layer are used for
both kinds of interlayer interactions.

The interlayer interaction between two layers in AB stack-
ing is reported as a function of the separation in Fig. 1(a) for all
the considered methods. It is calculated as e = 1

2 (E12 − 2E1),
where E12 is the total energy of the system containing the
two interacting layers and E1 is the total energy of an isolated
graphene layer.

We can see that DFT-LDA underestimates the depth of the
minimum. A problem which is solved by the inclusion of the
vdW interactions as in the DFT-D and vdW-DF schemes. We
notice that vdW-DF produces a deeper minimum and higher
equilibrium distance than DFT-D. The present vdW-DF curve
is similar to that previously published in Ref. 44, where a
minimum of 45.5 meV is obtained for z = 3.6 Å. The two em-
pirical methods (REBO + LJ and REBO + KC) show almost
the same trend as DFT-D, with a small deviation at short range.

We then calculate the interaction energy for the relative
lateral positions of the two layers indicated in the inset of
Fig. 1(b) (each point indicates the position of the origin of the
unit cell of the upper layer, not shown, within the unit cell of
the lower layer, represented by arrows). The distance between
the two layers is optimized at each location to its equilibrium
value zeq. The energy values reported in Fig. 1(b) are referred
to the minimum, which is obtained for the AB stacking of
the two layers. The highest maximum corresponds to the AA
stacking and the lower one to the PES saddle point. The atomic
configurations competing with these sites are described in the
following. The numerical values obtained for all the considered
methods are summarized in Table I.

The binding energy for AB stacking emin and the cor-
responding equilibrium interlayer distance zeq are slightly
higher than those we obtained for graphite.45 The results are
consistent with the available experimental data, except for
DFT-LDA, which largely underestimates the binding energy,
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FIG. 1. (Color online) Interaction energy per atom of two
graphene layers obtained by different numerical methods. The lines
are guides for the eyes. In (a) the relative lateral position of the
two layers corresponds to the AB stacking. In (b) the considered
lateral positions are represented in the hexagonal unit cell, shown
in the inset, the layer separation is optimized at each location.
The reported values are referred to the energy minimum. In (c)
the difference #emax = eAA − eAB is reported as a function of the
interlayer separation z.

even if the equilibrium interlayer distance is not too far from
the experimental value.

In the third column of Table I we report the maximum
difference obtained for the equilibrium distances: #zmax =
zAA

eq − zAB
eq . The lateral variation of the interlayer interaction

gives rise to a lateral dependence not only of the binding
energy, but also of the equilibrium interlayer distance. This
quantity in some systems, as, for example, rare gases monolay-
ers adsorbed on metals, can be directly measured. We are not
aware of any experimental evaluation for graphene, however,
the corrugation of the interlayer distance is predicted both
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the strength of the dispersion correction by means of a scaling
factor and cuts it off at short interatomic separations. We use
a scaling factor s6 = 0.65, C6 coefficients, and vdW radii for
the carbon atoms given by Grimme.30 Pairwise interactions
are summed within a radius of 200 a.u.

In the vdW-DF method,31 the energy functional is written
as Etot = E0 + Enl

c , where E0 is obtained from the DFT-
revPBE33 energy and Enl

c describes the nonlocal part of the
correlation energy, according to the analytical expression
given in Ref. 31. We performed plane-wave/pseudopotential
calculations.34 On the basis of test calculations for bulk
graphite, we adopted a kinetic energy cutoff Ecut = 60 Ry for
wave functions, and 4Ecut for charge density. In calculations
where the ionic species are described by ultrasoft pseudopo-
tentials, we use 6Ecut for the charge density cutoff. We use a
hexagonal cell with (1×1) in-plane size and vertical axis 32 Å
long. The k-point sampling of the Brillouin zone is realized
with a 12 × 12 × 1 Monkhorst-Pack grid.35

In classical molecular dynamics (MD) simulations,36 we
describe the intralayer interaction by the REBO potential37,38

and the interlayer interaction either by the Lennard-Jones (LJ)
potential or by the Kolmogorov-Crespi (KC) potential.24 We
use the parameters σ = 3.41 Å and ϵ = 2.39 meV for the LJ
potential, as in Ref. 39, and the same parameters of the original
paper for the KC potential.24 A cutoff of 14 Å and a two-
dimensional cell containing 112 atoms per layer are used for
both kinds of interlayer interactions.

The interlayer interaction between two layers in AB stack-
ing is reported as a function of the separation in Fig. 1(a) for all
the considered methods. It is calculated as e = 1

2 (E12 − 2E1),
where E12 is the total energy of the system containing the
two interacting layers and E1 is the total energy of an isolated
graphene layer.

We can see that DFT-LDA underestimates the depth of the
minimum. A problem which is solved by the inclusion of the
vdW interactions as in the DFT-D and vdW-DF schemes. We
notice that vdW-DF produces a deeper minimum and higher
equilibrium distance than DFT-D. The present vdW-DF curve
is similar to that previously published in Ref. 44, where a
minimum of 45.5 meV is obtained for z = 3.6 Å. The two em-
pirical methods (REBO + LJ and REBO + KC) show almost
the same trend as DFT-D, with a small deviation at short range.

We then calculate the interaction energy for the relative
lateral positions of the two layers indicated in the inset of
Fig. 1(b) (each point indicates the position of the origin of the
unit cell of the upper layer, not shown, within the unit cell of
the lower layer, represented by arrows). The distance between
the two layers is optimized at each location to its equilibrium
value zeq. The energy values reported in Fig. 1(b) are referred
to the minimum, which is obtained for the AB stacking of
the two layers. The highest maximum corresponds to the AA
stacking and the lower one to the PES saddle point. The atomic
configurations competing with these sites are described in the
following. The numerical values obtained for all the considered
methods are summarized in Table I.

The binding energy for AB stacking emin and the cor-
responding equilibrium interlayer distance zeq are slightly
higher than those we obtained for graphite.45 The results are
consistent with the available experimental data, except for
DFT-LDA, which largely underestimates the binding energy,
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FIG. 1. (Color online) Interaction energy per atom of two
graphene layers obtained by different numerical methods. The lines
are guides for the eyes. In (a) the relative lateral position of the
two layers corresponds to the AB stacking. In (b) the considered
lateral positions are represented in the hexagonal unit cell, shown
in the inset, the layer separation is optimized at each location.
The reported values are referred to the energy minimum. In (c)
the difference #emax = eAA − eAB is reported as a function of the
interlayer separation z.

even if the equilibrium interlayer distance is not too far from
the experimental value.

In the third column of Table I we report the maximum
difference obtained for the equilibrium distances: #zmax =
zAA

eq − zAB
eq . The lateral variation of the interlayer interaction

gives rise to a lateral dependence not only of the binding
energy, but also of the equilibrium interlayer distance. This
quantity in some systems, as, for example, rare gases monolay-
ers adsorbed on metals, can be directly measured. We are not
aware of any experimental evaluation for graphene, however,
the corrugation of the interlayer distance is predicted both
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(a)

where EFF
i and EDFT

i are the energy values of the i-th point in the
L-PES profiles for the classical model and the reference respectively.
Results for both stackings are reported in Table 4. The force fields

with the lowest values of RMSE are the DR and FA models (quite
surprisingly, since they are among the oldest FFs). The LI force field
also predicts quite accurately the L-PES profiles. We stress that
there is a close relation between the L-PES profile and the static
friction acting between layers. In fact, a correct description of the
interlayer energetics is essential in order to obtain meaningful
prediction from MD simulations.

Let us focus on the configurations that correspond to the main
minimum for both stackings (namely, Min and Min1 for the R0
and R180 orientations, respectively). We calculated the binding
energy of the bilayer configurations (as described in Section 3)
and the interlayer distance evaluated, in this case, as the distance
between the two molybdenum planes. The results of these calcula-
tions are reported in Table 5. The DR and BR models give values of
the interlayer distance that are too small compared with the refer-
ence data (i.e., the layers tend to stay closer to each other than in
the DFT calculation). This could be due to the lacking of electrostat-
ics interactions that usually contribute to the interlayer repulsion.
Conversely, the other models show a fairly good agreement with
the ab initio calculations (deviations in the interlayer distance are
in the order of tenths of Å), except for the MO force field that shows
deviations of about 3 Å. A wide range of values for the binding
energy is instead reported. Let us omit the discussion about the
unrealistic results coming from the BE model, since they are
obtained by modifying the original cut-off distances in order to
avoid atomic overlaps between layers (see [42]). Anyway, it could
be interesting to notice that this model uses e values for the LJ
interactions (that represents the depth of the energy wells) that
are even three orders of magnitude bigger respect to most of the
other FFs. Some models (DR, BR, MO and ON) underestimate the
interlayer binding energy. In particular, the MO force field predicts
an almost negligible binding affinity. This could be attributed to
the abovementioned lacking of dispersive (attractive) interactions
between atomic species. On the other hand, the remaining FFs
(FA, VA8, VA9 and DA) show values of the binding energy bigger
than the reference. For the FA model, this could be explained by
considering that the values for the atomic charges employed are
considerably smaller than the values used for other models. For
the VA8, VA9 and DA models, the overestimation of the interlayer
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Fig. 5. Lateral potential energy surfaces obtained translating a MoS2 layer above a
fixed one along the long diagonal of the hexagonal unit cell for the R0 stacking.
Energy differences are calculated per hexagonal unit cell (namely per Mo2S4 unit).
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Table 4
Root-mean-square errors (RMSEs) of the calculated points respect to the reference data for the lateral potential energy surfaces in the two stackings (see Eq. (31)). Units are
kcal mol!1 per hexagonal unit cell (Mo2S4).

DR BR FA BE MO LI ON VA8 VA9 DA JI

R0 0.15 0.45 0.17 23.00 0.73 0.22 0.43 0.85 1.09 11.66 3.33
R180 0.17 0.67 0.23 23.22 0.74 0.27 0.44 0.66 0.98 11.82 3.33

Table 5
Binding energies and interlayer distances (calculated as the distance between the two
molybdenum planes) evaluated at the main minima of the two stackings for all
models. Reference values are also reported. Units for the binding energies and for the
interlayer distances are kcal mol!1 per hexagonal unit cell (Mo2S4) and Å respectively.

Model R0 Min R180 Min1

Binding
energy

Interlayer
distance

Binding
energy

Interlayer
distance

DFT !3.4683 6.21 !3.4683 6.22
DR !1.7248 3.93 !1.7012 3.99
BR !2.5386 3.70 !2.4795 3.78
FA !8.2610 6.04 !8.2177 6.05
BE !1022.7 5.36 !1023.1 5.36
MO 0.036172 9.22 0.036044 9.20
LI !3.1333 6.09 !3.1156 6.09
ON !1.8059 6.34 !1.8065 6.34
VA8 !9.4768 6.06 !9.4056 6.06
VA9 !9.1837 6.34 !9.1205 6.34
DA !73.182 5.86 !73.4440 5.86
JI !9.8673 5.60 !9.8673 5.60

166 P. Nicolini, T. Polcar / Computational Materials Science 115 (2016) 158–169

where EFF
i and EDFT

i are the energy values of the i-th point in the
L-PES profiles for the classical model and the reference respectively.
Results for both stackings are reported in Table 4. The force fields

with the lowest values of RMSE are the DR and FA models (quite
surprisingly, since they are among the oldest FFs). The LI force field
also predicts quite accurately the L-PES profiles. We stress that
there is a close relation between the L-PES profile and the static
friction acting between layers. In fact, a correct description of the
interlayer energetics is essential in order to obtain meaningful
prediction from MD simulations.

Let us focus on the configurations that correspond to the main
minimum for both stackings (namely, Min and Min1 for the R0
and R180 orientations, respectively). We calculated the binding
energy of the bilayer configurations (as described in Section 3)
and the interlayer distance evaluated, in this case, as the distance
between the two molybdenum planes. The results of these calcula-
tions are reported in Table 5. The DR and BR models give values of
the interlayer distance that are too small compared with the refer-
ence data (i.e., the layers tend to stay closer to each other than in
the DFT calculation). This could be due to the lacking of electrostat-
ics interactions that usually contribute to the interlayer repulsion.
Conversely, the other models show a fairly good agreement with
the ab initio calculations (deviations in the interlayer distance are
in the order of tenths of Å), except for the MO force field that shows
deviations of about 3 Å. A wide range of values for the binding
energy is instead reported. Let us omit the discussion about the
unrealistic results coming from the BE model, since they are
obtained by modifying the original cut-off distances in order to
avoid atomic overlaps between layers (see [42]). Anyway, it could
be interesting to notice that this model uses e values for the LJ
interactions (that represents the depth of the energy wells) that
are even three orders of magnitude bigger respect to most of the
other FFs. Some models (DR, BR, MO and ON) underestimate the
interlayer binding energy. In particular, the MO force field predicts
an almost negligible binding affinity. This could be attributed to
the abovementioned lacking of dispersive (attractive) interactions
between atomic species. On the other hand, the remaining FFs
(FA, VA8, VA9 and DA) show values of the binding energy bigger
than the reference. For the FA model, this could be explained by
considering that the values for the atomic charges employed are
considerably smaller than the values used for other models. For
the VA8, VA9 and DA models, the overestimation of the interlayer
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Table 4
Root-mean-square errors (RMSEs) of the calculated points respect to the reference data for the lateral potential energy surfaces in the two stackings (see Eq. (31)). Units are
kcal mol!1 per hexagonal unit cell (Mo2S4).

DR BR FA BE MO LI ON VA8 VA9 DA JI

R0 0.15 0.45 0.17 23.00 0.73 0.22 0.43 0.85 1.09 11.66 3.33
R180 0.17 0.67 0.23 23.22 0.74 0.27 0.44 0.66 0.98 11.82 3.33

Table 5
Binding energies and interlayer distances (calculated as the distance between the two
molybdenum planes) evaluated at the main minima of the two stackings for all
models. Reference values are also reported. Units for the binding energies and for the
interlayer distances are kcal mol!1 per hexagonal unit cell (Mo2S4) and Å respectively.

Model R0 Min R180 Min1

Binding
energy

Interlayer
distance

Binding
energy

Interlayer
distance

DFT !3.4683 6.21 !3.4683 6.22
DR !1.7248 3.93 !1.7012 3.99
BR !2.5386 3.70 !2.4795 3.78
FA !8.2610 6.04 !8.2177 6.05
BE !1022.7 5.36 !1023.1 5.36
MO 0.036172 9.22 0.036044 9.20
LI !3.1333 6.09 !3.1156 6.09
ON !1.8059 6.34 !1.8065 6.34
VA8 !9.4768 6.06 !9.4056 6.06
VA9 !9.1837 6.34 !9.1205 6.34
DA !73.182 5.86 !73.4440 5.86
JI !9.8673 5.60 !9.8673 5.60
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(b)

Figure 6.9: Lateral potential energy surfaces obtained translating a graphene (a) or MoS2 (b)
layer above a fixed one along the long diagonal of the hexagonal unit cell. In each figure differnt
curves refer to different models, as reported in the legends. In (b), the relevant comparison is
between DFT curve (black crosses) and LI curve (pink circles). Adapted from Ref. [93] (a) and
from Ref. [94] (b).

MoS2 and G on electronic density is to move charge from the interlayer region into the

C plane. Thus, pz orbitals are depopulated and the anisotropic contribution motivating

KC is weakened. Moreover, exact quantitative agreement between DFT and classical FF

cannot be expected as the energy scale observed here is at the accuracy limit of ab initio

methods as well. The green dashed line in Fig. 6.8b shows the sliding barrier reported

in Ref. [248], based on a DFT protocol similar to the one deployed here. The nominal

value the authors report is 0.046 meV/atom, putting the FF PES between the two DFT

results. To sum up, a level of discrepancy between experiments and MD simulations is

expected, but this should be limited to a scaling factor, while qualitative trends should be

reproduced truthfully.POTENTIAL ENERGY SURFACE FOR GRAPHENE ON . . . PHYSICAL REVIEW B 86, 245434 (2012)
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FIG. 4. (Color online) PES corrugations at the maxima and saddle
points as a function of distance derived analytically (continuous lines)
and by DFT-D (circles). The inset shows the contributions at the
AA corrugation arising from the repulsive and attractive parts of the
potential.

is almost completely determined by the difference in the
repulsive energy while the long-range attraction produces a
negligible corrugation. This definitely demonstrates that the
adhesion due to interactions of vdW nature does not produce
significant effects on the potential corrugation and, thus, on
the intrinsic resistance to the sliding of the system. Frictional
forces at fully saturated interfaces are almost completely
determined by the Pauli repulsion existing between the two
surfaces, which varies as a function of their relative alignment.
By neglecting the part of the corrugation arising from the
attractive part of the potential and assuming !1 ≃ 0, it is
possible to derive a simplified expression for !V (x,y,z)

!V (x,y,z) ≃ V min
R (z)ζ (x,y),

(5)
with ζ (x,y) = C0(x,y) − Cmin

0

Cmin
0

.

The potential corrugation at a given (x,y) site is approximated
as the repulsive part of the potential at the AB site V min

R (z) =
Cmin

0 e−zCmin
1 multiplied by a factor ζ (x,y) that measures the

strength of the repulsive coefficient C0(x,y) at the selected
site with respect to the AB site. This suggests that, apart from
a scaling factor, the corrugation increases upon the bilayer
compression in the same way as the short-range repulsion
increases. The ζ factor for the AA stacking is ζmax = 0.687
and for the saddle ζsaddle = 0.076 about nine times lower
because of the difference in the Pauli repulsion at these two
sites.

To understand the microscopic origin of the differences in
the repulsive character of the different bilayer configurations,
we analyze their electronic charge distributions. In Fig. 5(a)
we show the changes in the electronic charge occurring when
a compressed bilayer is formed from two isolated layers [i.e.,
we plot !ρ = ρ12 − (ρ1 + ρ2), where ρ12 is the charge density
of the bilayer with z = 3 Å interlayer spacing, and ρ1 and ρ2
are the charge densities of single graphene layers at z = 0
Å and z = 3 Å, respectively]. In Fig. 5(a) a slice of !ρ is
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FIG. 5. (Color online) Changes in the electronic charge distribu-
tion of a compressed bilayer z = 3.0 Å, with respect to the sum
of the charge distributions of two isolated layers. (a) The same
scale is used for different stacking configurations to highlight the
differences. (b) The profile of !ρ along the z direction is obtained by
two-dimensional integration.

taken in the yz plane with origin (0,0,0). It can be seen that
the bilayer compression induces a charge depletion from the
region in between the two layers. This charge depletion is
much more consistent in the AA than in the AB and saddle
configurations. The depleted electronic charge gathers in the
regions around the nuclei, where the electrostatic potential
is lower, with a consequent increase of Pauli repulsion. As
previously noted for graphite at equilibrium,25 we observe that
in the AB configuration the charge gathers around “hollow”
carbon atoms only, while “on-top” carbon atoms are depleted.
In Fig. 5(b) the profile of the charge displacement along
the z direction, obtained by integration in two dimensions,
clearly reveals the presence of charge accumulation in the
proximity of each layer (indicated by a vertical line) and
charge depletion in the middle. The depths of !ρ(z) in the
depleted region for the AA and saddle stackings differ by
a factor of 9. This suggests that the different behavior of
the electronic charge distribution upon bilayer compression
is what determines the corrugation increase, which is more
enhanced for the AA than the saddle stacking. The “acceptor-
like” electronic character of the intralayer regions compared to
the “donor-like” character of the interlayer region may be tuned
by the chemical modifications of graphene by the presence of
a substrate. In particular, substrates with different electronic
affinities may cause !V (z) to deviate from the curves of Fig. 4
and, thus, change friction for interlayer sliding.
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Figure 6.10: Charge difference between BLG and isolated G layers. Adapted from Ref. [93].
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6.1.4 Simulation of Edge Pinning Effect

The origin of the edge pinning effect in the MoS2/G heterostructure is unveiled by per-

forming a set of MD simulations. The computational setup is illustrated in Fig. 6.11a and

b. Triangular MoS2 flakes are considered, with side lengths ranging from 2 to 20 nm. The

adhesive pressure between MoS2 and graphite is G = 1.20 GPa, which is in good agreement

with both experiment and ab-initio calculations [239]. All systems have been equilibrated

at room temperature, after which non-equilibrium simulations have been performed by

applying a constant speed protocol and calculating the lateral force acting on the flake.

Figure 6.11: MD simulation results of a MoS2 flake sliding on graphite. (a) and (b) Side and top
views of the MD computational setup, respectively. (c) Calculated shear strength as a function of
MoS2 flake area; the inset shows the calculated edge pinning strength as a function of MoS2 flakes’
perimeter. Dash lines are the fits. Error bars are standard deviation of data points. (d) Root mean
square displacement maps of different atomic layers in the MoS2 flake calculated with respect to
the optimized geometry for a typical trajectory (flake size ≈ 16 nm). (e) and (f) Per-atom average
potential energy fluctuation and kinetic energy maps of different atomic layers in the MoS2 flake,
respectively. For the potential energy, values are reported as the difference with respect to the
optimized system.

Fig. 6.11 summarizes the simulation results. The shear strength (S) and the edge

pinning strength (E) are reported as a function of MoS2 domain area (A) and perimeter

(P ), respectively. As shown in Fig. 6.11c, S presents a decreasing profile as a function of

A, while E is almost constant, resembling the experimental results in Fig. 6.3. We also

calculate the shear strength of an infinite heterostructure, Sinfinite = 4.95 kPa, which is at

least one order of magnitude smaller than that of our finite heterostructures. Despite this

scaling, the trends are consistent with the experimental observations.

To get a more in-depth insight into the underlying mechanisms, Fig. 6.11d reports

the map of the atomic root mean square displacement with respect to the equilibrium

positions for different atomic layers of MoS2, and averaged over the MD trajectory. The
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Figure 6.12: Scanning Transmission Electron Microscopy (STEM) image of MoS2 domain edge
at various zoom levels. Red dash line in c outlines the arrangement of molybdenum atoms in the
body and at the edge, highlighting the distortion of the latter.

mean displacement of edge atoms is significantly larger than for centre atoms. Potential

energy maps of different atom types within the MoS2 layer (Fig. 6.11e) show that the

edge S atoms have a higher potential energy than S centre atoms. For the kinetic energy

maps in Fig. 6.11f, there is no apparent difference between edge atoms and centre atoms.

The MD simulations indicate that, during sliding, the edge atoms are more “active” and

present more energetic distortions, absorbing and dissipating more energy than the centre

atoms, providing the greatest contribution to the friction force. Indeed, in Fig. 6.12,

high-resolution transmission electron microscopy analysis shows more pronounced lattice

distortions at the edges, which supports the simulation results.

This behaviour is rationalised in terms of a different scaling of the properties between

the two system. While in the near-commensurate system friction arises from surface effect,

i.e. magnitude of dissipation scales with the area of the flakes, in the large-mismatch

system frictional events occur at localised regions on the edges of the flakes, i.e. friction is

determined by pinning at the edges sites. The generality of the result is confirmed by the

experimental observation of the same behaviour for MoS2/hBN heterostructures.

6.1.5 Final Remarks

In conclusion, large lattice mismatch MoS2/graphite and MoS2/h-BN heterojunction

interfaces provide ultra-low coefficients of friction, ≈ 1× 10−6, without any twist angle

dependence. Both experiments and molecular dynamics calculations indicated that pinned

edges dominate the friction process, whereas in small lattice mismatch, e.g. graphene/h-BN,

a significant contribution to the interface friction arises from surface-wise effects. These

results show that the large lattice mismatch of two contact surfaces is a promising route to

designing a near-frictionless sliding pair.

6.2 Multi-scale Prandtl-Tomlinson Model

Friction results in significant energy losses and system failures in a wide range of tech-

nologies [70]. The design of optimised surfaces for friction in a systematic way relies

on a predictive model of friction, scalable from the nano-scale up to micro/macro-scales.
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Challenges for a complete description of friction include non-linearity, the complexity of

the many processes, and the different scales involved [81]. Attempts to model microscopic

friction include First principle calculations, Molecular Dynamics, and low-order models.

First principle calculations and Molecular dynamics modelling are highly accurate, but

limited to time and length scales smaller than those in experiments of friction. On the

other hand, low-order models, such as the PT model [96, 106, 102, 249], approximate

atomistic interactions by simple potential energy surfaces, thus allowing to access time

and length scales in the nano-scale that match those of experiments using Lateral-Force

Atomic Force Microscope (LF-AFM), at the cost of losing quantitative correlation with

real materials. Such low order models are able to describe the stick-slip behaviour of

nano-scale friction, and capture the velocity, load, and temperature dependencies observed

in experiments [250, 251, 102, 252, 253], which are not included in the standard Coulomb

model [83, 84].

The multi-scale model of nano-scale friction presented comprises of a modified PT

model and electronic structure calculations, linked via a controlled set of approximations to

achieve a more realistic description of friction between a single asperity-tip and a substrate,

as measured in LF-AFM. This novel approach addresses the qualitative nature of the

standard PT-based approaches found in literature [90, 91]. Atomic scale contacts in these

models are approximated with an analytical function resembling the symmetry of the

crystal under study. DFT is used to model the energy of interaction between a coated

tip and a substrate of the same material, e.g. MoS2 on MoS2. The computed energy

surface is used as a parameter in the two-dimensional PT model of friction. The frictional

behaviour arising from their respective electronic structure is compared between a set of

different crystals. In addition, the framework of stochastic thermodynamics [109, 254, 77]

allows insights to be gained in the non-equilibrium thermodynamics during friction for the

different crystals and for different sliding directions.

The Prandtl-Tomlinson Model

The PT model of friction describes a point-like object, the AFM tip, connected by a spring

to a much larger slider moving at a constant speed in one direction, the AFM cantilever,

on a static substrate, the atomic corrugation of the substrate. The model is defined by the

general potential energy:

U(r, t) = Us(r) +
C

2
(r − vt)2 (6.13)

where the variable r is the position of the tip, Us the static potential generated by the

substrate, C the elasticity constant of the spring, v the velocity of the slider, and vt the

position of the slider. The potential Us(r) produced by the interaction of specific substrate

material and the coated tip is modelled at DFT level as described in section 6.2.1.

To better grasp the physics behind this model, consider, as an example, the following
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(a) (b)

(c) (d)

Figure 6.13: (a) Cartoon of the PT model. The total energy U in Eq. (6.13) is shown in red and
blue, with C = 1, and substrate potential described in Eq. (6.14) is shown in black and white, with
l = 1 and U0 = 1 and The position of the cantilever (higher red sphere) is vt0 = (0, 1/2). The
tip, lower red sphere, sits at the global minimum and local minima by pink circles. (b) Substrate
potential in Eq. (6.14) with l = 1. Three isolines are shown: within the minimum well Us = −2/9
(white)), around the maxima Us = −1/90 (black) and along the saddle energy Us = −1/9 (gray).
Crosses mark the saddle points, as in Eq. (6.16), and circles mark the substrate minima, as in
Eq. (6.15) (c) Cantilever elastic energy with C = 1 overlaid over substrate isolines defined in (a). (d)
Total energy in Eq. (6.13). Gray hexagons show the shift at the linear order of the substrate minima,
as in Eq. (6.17). (d) Three-dimensional representation of the surface energy in (b). BW surface
shows the substrate potential in Eq. (6.14). The global minimum is marked by an orange circle and
local minima by purple circles. The green hexagon marks the slider position vt0 = (0, 1/2).

analytical form for the substrate Us [255]

Us(r) = −1

9

[
3 + 4 cos

(
2π√

3l
ry

)
cos

(
2π

l
rx

)
+ 2 cos

(
4π√

3l
ry

)]
. (6.14)

Since Us(r) ∈ [0, 1], the spring constant C defines the energy scale of the system. The

energy landscape comprises of minima, arranged in a triangular lattice, each surrounded

by six maxima, similar to the graphene on graphene potential surface [91]. The minima lie

on the Bravais lattice G = n1A1 + n2A2 generated by the vectors

a1 = l
(

1 0
)

a2 = l
(
−1

2

√
3

2

)
. (6.15)



132 Chapter 6 Digital Tribology

In terms of the lattice in Eq. (6.15), saddle points of Us are located at

s1 =
a1

2
s2 =

a2

2
s3 =

a1 + a2

2
, (6.16)

which forms the honeycomb lattice marked by gray crosses in Fig. 6.13. This potential

depends explicitly on time, and the position and depth of minima and saddle points evolve

as the slider translates in space, as shown by the synthetic snapshot reported in Fig. 6.14.

Figure 6.14: Time evolution of the total potential in Eq. (6.13).

The effect of the cantilever parabolic potential in Eq. (6.13) in the main text on the

substrate, can be qualitatively understood by linearising the problem around the substrate

minima, which form a Bravais lattice A = a1n+ a2, where ai are the vectors in Eq. (6.15).

In the limit of small displacement u, the total energy can be approximated to the linear

order as

U(A + u, t) = Us(u) +
C

2
(A + u− vt)2 (6.17)

≈
(
C

2
+

(
2π

l

)2
)
u2 − 2

C

2
uγ cos(θuγ) +

C

2
γ2 − 1, (6.18)

where trigonometric functions in Eq. (6.14) were expanded to the lowest order and Us(A +

u) = Us(u) is implied by symmetry. The vector γ = vt−A points from the lattice point

A to the position of the cantilever vt. Thus, the minimum always lies in the direction γ

connecting the lattice point A with vt, as shown by the arrows in Fig. 6.13c. The minimum

is shifted along this direction of the quantity

umin =
C
2 γ

C
2 +

(
2π
l

)2 . (6.19)

In the limit of soft spring C
2 � 1, umin ≈ γl2

(2π)2
C
2 → 0, i.e.the minimum is located at the

substrate lattice point. In the limit of a hard spring C
2 � 1, the position of the minima is

given by umin ≈ γ(1− 8π2

Cl2
), i.e. the minimum is almost at the cantilever position.

Minimisation of the energy in Eq. (6.13) yields the stable states m of the system,
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accommodating the tip in the absence of external driving forces and thermal fluctuations,

but also in the presence of external driving forces in the over-damped limit. The over-

damped limit refers to the case of fast dissipation of the kinetic energy of tip compared

to the sliding velocity such that the tip is found, in practice, always in a minima of the

energy. The energy at a minimum is Em = U(rm, t), where rm = rm(t) is the position of

the minimum.

The position, energy, as well as the number of states, are time-dependent quantities,

due to the relative motion of the tip. In the over-damped limit, the tip follows a stick-slip

motion, if the energy has more than one minimum [250, 256, 102]. The stick-slip movement

of the tip consists of a periodic alternation of the tip sitting on a minimum of the energy

for a relatively long time time (stick) and a consecutive fast movement to a new position

(slip). At finite temperature, slips to a new state can also occur due to thermal activation,

which is modelled here by using transition state theory as described in section 6.2.2. In

this framework, the over-damped dynamics of frictional processes is viewed as a Markovian

random hopping process over energy barriers separating the different states m promoted

by thermal fluctuations [249].

6.2.1 Atomistic Contact Model

First principles calculations. At the DFT level, the atomic scale corrugation is modelled as

two flat crystalline surfaces sliding adiabatically. Thus, the PES is obtained from a set of

translated geometries as explained in detail in section 2.4.3. Each grid point is obtained

from a DFT calculation of a bilayer system of the given crystal, e.g. MoS2 on MoS2, where

the top layer has been translated by a vector x with respect to the bottom layer. The

geometry is relaxed keeping the bottom layer fixed in xyz and letting the top layer relax

in z only, to avoid it sliding back to the minimum position. From a thermodynamic point

of view, allowing relaxation along z corresponds to the sliding interface at constant zero

pressure.

First principles calculations were carried out using DFT as implemented in VASP [198,

199] within the PAW framework [124]. The exchange-correlation potential is approximated

using the PBE functional [127] and the vdW dispersion is described by DFT-TS method,

a local-geometry-corrected empirical model developed by Tkatchenko and Scheffler [257].

A plane wave cut-off of 650 eV is adopted and the Brillouin zone was sampled using a

17× 17× 1 mesh.

Finite tip model. The PT model describes a finite-size tip sliding, while the PES

from DFT represents the sliding interface between infinite planes. Thus, the next step

to construct the multi-scale model is to estimate the contact area between the tip and

substrate. Mimicking experimental protocols [258], the system is a spherical tip, coated

with a thin crystalline layer, in contact with a thin layer of the same crystalline material,

deposited over a substrate. Usually both tip and substrate are silica in experiments [259].

Atomic-scale sliding interface and tip deformation determining the contact area are

assumed to be decoupled. The sliding interface arises from short-range interaction and,
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thus, is determined by properties of the 2D layers in contact [93, 91, 260]. On the other

hand, the contact area is determined by the deformation of the large tip and the substrate

and is usually modelled by continuum mechanics, which explicitly disregards the discrete

nature of nanoscale contacts [260]. An accurate description of the contact area in nanoscale

tribology remains subject of current debate [85, 261]. Here the Hertz model is used to

estimate the contact area. For fixed load, the contact area represents a scaling factor of

the DFT-computed PES and is independent of the coating ML crystal. Its value cannot

change the relative amplitude and geometry of corrugation between different materials.

Thus, while the Hertz model may not describe the contact area exactly, with deviation of

up to 20% [260, 86], it is suitable for the phenomena studied here.

In the Hertz model, the radius a of the contact area is expressed in terms of the applied

load L and mechanical properties of the tip [262] by

a =

(
3LR

4E∗

)1/3

, (6.20)

where R is the curvature radius of the tip and the effective elastic modulus is given by

1

E∗
=

1− ν2
1

E1
+

1− ν2
2

E2
,

The quantities E1, E2 are the elastic moduli and ν1, ν2 the Poisson’s ratios associated

with each body. The quantities appearing in Eq. (6.20) are evaluated for silicon, a

common material for tip and substrates. Thus, E1 = E2 = E and ν1 = ν2 = ν. The

parameters E = 151.34 GPa and ν = 0.19732 are obtained from DFT calculations, tabulated

in the Materials Project [217].The radius R = 10 nm of the AFM tip is taken from

experiments [100].

6.2.2 Dynamics and Thermodynamic Evolution

The dynamics of the PT system is modelled based on transition state theory as a Markovian

random hopping process over energy barriers separating the different stable states m of

the total energy U in Eq. (6.13). The rate of the transition from a state n to a state m is

given by the Arrhenius law:

ωmn = f0 exp
(
− β∆umn

)
(6.21)

where ∆umn denotes the energy barrier for the transition from state n to state m, and f0 is

the attempt frequency setting the characteristic timescale of thermal relaxation processes,

β = 1/kBT , T is the temperature, and kB the Boltzmann constant. The energy barriers

∆umn as well as the rates ωmn are time-dependent.

Single- and multi-lattice hops are considered, so m and n do not necessarily refer to

nearest-neighbour sites. The energy barrier for a transition from state n to another state

m is here defined as follows. A sketch in Fig. 6.15 shows the calculated path of the tip in
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transitioning from an arbitrary state n to a different state m, and how the energy barrier

along this path is calculated. This is done first, by using the string method [263] to find

the least energy path between state n and m over the two-dimensional total energy U

defined in Eq. (6.13). Second, all local maxima and local minima are found along the path

using a peak detection algorithm [264]. Next, the energy at the local maxima are summed,

and the energy at the local minima subtracted. This quantity is referred to as uB. Finally,

the energy barrier ∆umn for the transition is defined as uB − un, where un = u(rn, t) is

the energy of state n. Similarly, the energy barrier for the reverse transition, i.e. from

state m to state n is ∆unm = uB − um. In other words, the total energy barrier is defined

as the sum of partial energy barriers in the path separating the two states, which naturally

implies higher energy barriers between further away states than between nearest neighbour

states. Note that uB is time dependent, as well as the energy of the states.

(a) (b)

Figure 6.15: Example of energy barrier between two states in MoS2 at time t0 = 0. (a) The
least energy path for the transition between two states m (orange circle) and n (green circle) is
found using the string method. (b) Partial energy barriers along the path are defined by the orange
dotted lines and green dot-dashed ones. The energy barrier from m to n is calculated as the sum of
the partial energy barriers along the path (dotted, orange). Equivalently, the energy barrier from n
to m is the sum of barriers in the opposite direction (dot-dashed, green).

Each state m has an associated probability of occupation pm, the evolution of which is

given by the Master equation for Markovian dynamics:

dpm
dt

=
∑

n

ωmnpn − ωnmpm (6.22)

The stochastic trajectories followed by the tip given a specific energy of the form of

Eq. (6.13) and an initial condition can be found from Monte Carlo sampling of discrete

states. The evolution of the PT system can be described alternatively with Langevin

dynamics, by integrating Newton’s equation of movement over the whole energy surface,

instead of Monte Carlo sampling over the stable points of the energy.
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The thermodynamic evolution of the system for single stochastic trajectories can

be evaluated by applying stochastic thermodynamics. The field of stochastic thermo-

dynamics extends the concepts of macroscopic thermodynamics to the level of single

stochastic trajectories in microscopic out-of-equilibrium systems [109, 265, 266]. Stochastic

thermodynamics has been applied to microscopic systems such as elastic molecular sys-

tems [267, 268, 269, 109], nanomotors [270, 271, 109], colloidal particles in non-harmonic

potentials [272], and to AFM in vertical harmonic oscillator mode [273]. Only recently

has stochastic thermodynamics been applied to nanoscale friction, such as in a recent

study investigating the validity of the Jarzynski equality in Friction Force Microscopy

trajectories [274].

Explicit expressions for the entropy are given within the stochastic thermodynamics

framework and applied to the trajectories n(t) followed by the tip for the Hamiltonian

in Eq. (6.13), found from Monte Carlo sampling. The starting point for the derivation

of such expressions is the derivative of the energy in Eq. (6.13) evaluated on a given

stochastic trajectory followed by the system. It has been shown that the derivative can

be split into work and heat in the same way as by the first law of thermodynamics for

macroscopic closed systems [275]. In the derivative of the energy in Eq. (6.13) two terms

arise, that are then associated to the work of the cantilever and to the heat transferred

to the surroundings during the stick-slip friction process. The work w is the term with

the explicit time dependence of the energy, and the heat q the term with the hopping

between states. A term for the entropy s along a trajectory is defined in stochastic

thermodynamics [276]. The derivative of the stochastic entropy can be split into two

terms, entropy production si and entropy flow to the surroundings se [276], in the same

way as given by non-equilibrium thermodynamics for macroscopic systems [277]. Entropy

production measures irreversibly, while entropy flow is related to heat flow by q = Tse.

Thermodynamic expressions applied are summarised in Table 6.1. The complete derivation

of the expressions has been described in detail in [276] for general systems and, in particular,

in our earlier work for time-dependent potentials [77].

6.2.3 Results

Crystalline Interfaces

Figures 6.16 and 6.17 report the PES for the BLs considered. The selection represents

a collection of different geometries and chemistry within the 2D materials family, highly

interesting for solid lubrication technologies. This variety allows to evaluate the impact of

interface complexity on dissipation.

The first distinction in the dataset is between between purely 2D materials, GBL and

h-BN, and the remaining ”extended ML” compounds, whose geometry extends in 3D. As

shown in Figures 6.16a and 6.16d, the former are composed of flat sheets of atoms arranged

in a honeycomb lattice. Within this class, the presence of a single-component crystal,

GBL, and a binary, h-BN, allows to evaluate the effect of chemical composition. The
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Stochastic thermodynamics in the PT model

Variable Expression Notes

Entropy s s(n, t) = −kB ln pn(t)(t) From definition in [278, 276].

Entropy change ds
ds

dt
=
d̄es

dt
+
d̄is

dt
From non-equilibrium thermo-
dynamics [277].

Entropy production
d̄is

d̄is

dt
=
∂s

∂t
+ kB

∑
j δ(t− tj) ln

p
n−
j

(tj)ωn−
j n

+
j

(tj)

p
n+
j

(tj)ωn+
j n

−
j

(tj)
As defined in [279] for systems
governed by a Master equation.

Entropy flow d̄es
d̄es

dt
= kB

∑
j δ(t− tj) ln

ω
n+
j n

−
j

(tj)

ω
n−
j n

+
j

(tj)
Defined as ds/dt− d̄is/dt.

Energy u u = U(rn(t), t) Energy in Eq. 1 in the main
text evaluated over trajectory
n(t).

Energy change du
du

dt
=
d̄w

dt
+
d̄q

dt
First law of thermodynamics
for stochastic trajectories and
close systems [275].

Work w
d̄w

dt
=
∂u

∂t
= −Cv · (rn(t) − t) Where rn(t) is the position of

the tip along the trajectory
and f = −C(rn(t) − vt) the
force of the spring.

Heat q
d̄q

dt
=
∂u

∂n

dn

dt
= kBT

∑
j δ(t− tj) ln

ω
n+
j n

−
j

(tj)

ω
n−
j n

+
j

(tj)
Derived from from non-
equilibrium thermodynamics
d̄q/dt = T d̄es/dt [277].

Table 6.1: Stochastic thermodynamic along trajectory n(t) in the PT model in the transition
state theory limit. The special notation in Table 6.1 using the d̄ symbol is to emphasise that work
and heat are not state variables and depend on the path connecting the starting and the end states
associated with the trajectory. The notation for the heat, entropy flow, and entropy production are
defined in [109], which is n−j = n(tj) and n+j = n(tj + dt).

extended ML compounds include two binaries from the TMD family, MoS2 in Fig. 6.16b

and WTe2 in Fig. 6.16c, and the single component black phosphorous in Fig. 6.16e, recently

indicated as a promising solid lubricant [193]. On the other hand, as shown in Fig. 6.16e,

black P comprises of staggered rows of three-fold coordinated P atoms, with two in-plane

neighbours and one in the neighbouring plane. Lastly, a bilayer composed of two slabs of

NaCl, shown in Fig. 6.17b, is considered as an example of non-lubricant material. This

crystal has been used in AFM experiments to acquire high-contrast frictional maps [280].

The simplest energy landscape is found for GBL, where the 2D nature and single

composition of the layer result in a global maximum and a global minimum divided by

a saddle point, as shown in Fig. 6.16a. Increasing the complexity by including different

species in the unit cell, like in h-BN shown in Fig. 6.16d, results in the appearance of

a local minimum in place of a single global one. The same structures is found in MoS2

PES, albeit with a higher barrier around 10 meV compared to ≈ 3 meV in h-BN. The two

systems characterised by an orthorhombic cell, WTe2 and black P, show the most complex

PES, with a local minimum and a local maximum accompanying the global ones. The

PES respect the symmetry of the unit cell, giving rise to triangular lattices of maxima and

minima for hexagonal crystals, Figures 6.16a, 6.16b and 6.16d, and rectangular lattices

for orthorhombic cells, Figures 6.16c and 6.16e. Finally, note that the energy barrier for
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(a) Graphene (b) MoS2

(c) WTe2 (d) h-BN

(e) P-black

Figure 6.16: PES for the selected lubricant systems evaluated over a 15x15 grid at DFT level
and interpolated over 200x200 points, with the protocol outlined in section 2.4.3. Ball-and-stick
images on the right of each plot report the crystal structure of each ML system. On the right of
each plot, the PES for the BL system is reported. Smaller, gray-edged circles represent atoms in
the bottom layer, while larger, black-edged circles represent atoms in the top layer.

(a) P As-type (b) NaCl

Figure 6.17: PES for the selected non-lubricant systems evaluated over a 15x15 grid at DFT level
and interpolated over 200x200 points, with the protocol outlined in section 2.4.3. Ball-and-stick
images on the right of each plot report the crystal structure of each ML system. On the right of
each plot, the PES for the BL system is reported.

the non-lubricant example, square lattice of NaCL bilayer in Fig. 6.17b, shows an energy

barrier one order of magnitude higher than the layered materials, linked to higher friction
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as seen in experiments [280]. Note that the PES reported in Figures 6.16 and 6.17 refer to

the relative sliding of two infinite crystal planes; thus, they are measured in energy per

area, meV/Å2. These will be transformed to the substrate corrugation Us, energy per tip,

as outlined in section 6.2.1.

Thermodynamics and Anisotropy

The thermodynamic variables described in section 6.2.2 are evaluated using the definitions

reported in Table 6.1 on single stochastic trajectories for the seven potential energy surfaces,

as obtained from First principle calculations shown in section 6.2.3.

The friction system is described for each substrate energy by a PT model with the

corresponding energy surface and fixed parameters C = 3 N/m, v = 10 nm/s, T = 300 K,

f0 = 10 kHz, in the range of typical values for LF-AFM [281]. The load is fixed at

L = 10 nN, yielding a contact area of πa2 = 3.04 nm2, according to the protocol outlined

in section 6.2.1. The sliding distance is set between 10− 20 nm, to ensure that the steady

state is reached.
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Figure 6.18: Angular dependence of the thermodynamic behaviour for different materials. The
quantities shown are the time average of the lateral force after the first stick-slip event (f), the work
of the lateral force (∆w), heat flow into the heat bath (∆q), entropy production (∆si), entropy
change (∆s), and energy change (∆u). All quantities, except f are integrated over enough sliding
length (10−20 nm) and then normalised in units of eV/nm. The two entropies are given multiplied
by temperature. All quantities are averaged over 50 trajectories.

The polar plots of Fig. 6.18 report friction f , work ∆w, heat transferred to the

surroundings ∆q, entropy production ∆si, entropy change in the system ∆s, and energy

change ∆s during sliding as a function of the sliding direction, in steps of 10◦, between the

lattice direction and the cantilever velocity v. The work is the typical variable used to

quantify dissipation during friction. Stochastic thermodynamics allows us to quantify a

range of thermodynamic variables, providing a more detailed description of the anisotropy
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and the response of each material during sliding compared to the work of the force only.

For the materials NaCl and P As-type, the simulations do not reach the steady-state of

consecutive stick-slip events for reasonable simulation times of sliding distance of up to

50 nm, while the rest of the materials reach the stick-slip regime after 10−20 nm. Thus

the results of NaCl and P As-type in Fig. 6.18 are not the actual dissipation during stick

slip, but the dissipation after sliding a distance of 20 nm, corresponding to a lower bound

of static friction. This is because the ratio between the recall force of the cantilever spring

C and the energy barrier in Eq. (6.13) is too low: the tip is stuck at the first minimum

and the spring elongates as the cantilever translates away.

6.2.4 Discussion

Integrating the profiles in Fig. 6.18 over the angles, the lubrication character of the crystal

considered can be ranked as in Table 6.2 by the average value of the lateral force, yielding

h-BN and GBL as the bests solid lubricants, followed by P black, WTe2, and MoS2.

Consistently with the theoretical expectation and experimental observation [280], NaCl is

identified as the worst lubricant of the selection, as well as P As-type.

One possible application of the thermodynamic framework is the calculation of tem-

perature gradient due to heating during sliding. The quantity ∆q in Fig. 6.18 is the heat

leaving the system which can be used to calculate the increase in temperature in the

surroundings. For instance, the temperature gradient as ∇T caused by the heat transferred

to the silicon in the core of the tip and in the under-layers substrate can be computed.

Using the thermal conductivity of silicon of λ = 8.11× 1011 eV · nm/(s ·K) through an

area of 1nm2, the relation

∇T = ∇q/λ, (6.23)

where ∇q = ∆qv. The resulting gradients are shown in Table 6.2 for the seven materials.

The average friction force predicted by the model over all angles in Table 6.2 is

compared to the ideal shear strength τ , an estimation of friction behaviour based only on

First Principles quantities. In an infinite-plane geometry, τ is defined as the maximum

value of the gradient along the least energy path in the potential energy surface [282],

yielding a force per unit area. This quantity represents an upper bound for friction,

as it is computed at 0 K and in static calculations. Here, multiplying by the contact

area, yields the ideal lateral force, fM, exerted on the finite tip, reported in Table 6.2.

These estimations are higher than the ones found with the PT model, coherent with the

absence of thermal energy. However, the estimation from the gradient does not allow us to

differentiate between different sliding directions as in Fig. 6.18; neither allows to evaluate

thermodynamic variables.

Two examples are helpful in understanding the anisotropy behaviour of the thermody-

namic variables in Fig. 6.18 and gain insights on the relation between the crystal PES and

lubricating properties. In the first example, the instantaneous thermodynamics observables

are compared in MoS2 for three different directions. In the second example, the behaviour
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Material 〈f〉 [nN] fM [nN] ∇T in Si [10−11K/nm]

h-BN 0.29±0.03 1.6 2.2 ± 0.3

GBL 0.33±0.03 1.5 2.5 ± 0.2

P black 0.91±0.24 1.5 6.7 ± 1.8

WTe2 1.30±0.31 3.4 9.4 ± 2.1

MoS2 1.67±0.43 3.7 9.0 ± 2.5

NaCl 9.00±0.00 15.6 69.2 ± 0.7

P As-type 9.00±0.00 16.9 69.2 ± 0.4

Table 6.2: Materials ranked by average friction over all angles and temperature gradient in silicon
with thermal conductivity of λ = 8.11× 1011 eV · nm/(s ·K). The quantity fM is the maximum
lateral force obtained from the maximum shear strength in the material specific energy surface.

of three crystals are compared for a fixed sliding direction.
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Figure 6.19: Instantaneous thermodynamics (a) substrate energy along the sliding direction, (b)
work, (c) heat, (d) energy, (e) entropy production, (f) entropy, for MoS2 sliding at 60◦ (green
continuous), 90◦ (orange dashed) and 150◦ (blue dotted). All quantities are averaged over 50
trajectories.

For the MoS2 PES, Fig. 6.19 shows three sliding directions, 60◦, 90◦, and 150◦. The

shape of the substrate energy along the sliding direction is shown in panel (a), and the

energy of the substrate along the actual path taken by the tip on the two-dimensional

energy surface is shown in (b). Panels (c)-(f) show the instantaneous behaviour of work

(c), heat flow (d), energy (e), entropy production (f), and entropy of the system (g), as the

cantilever slides on each of the directions.

The figure shows a clear difference between the three directions, with 90◦ being the

worst in terms of dissipation. The large energy barriers in the substrate at 90◦ (dashed

line in Fig. 6.19a,b) yield large spikes in the work, heat flow, and entropy production

reported in Fig. 6.19c,d,f. Note that the PES energy in Fig. 6.19a along 90◦ and 150◦ are of

similar shape but exhibit different thermodynamic behaviour, showing that the dissipation
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is sensitive to small differences in the underlying potential surface.

Fig. 6.19e,g shows the periodic behaviour of the energy and entropy of the system,

after the initial transient period. This is due to the periodicity of the energy surface and

the simple modelling of the tip and substrate as constant entities with no internal degrees

of freedom that would break the time periodicity of the state variables. The result are

periodic state variables during sliding. The same is seen in Fig. 6.18 where work ∆w,

heat flow ∆q, and entropy production ∆si are very similar in Fig. 6.18. The difference

between work and heat flow is the change in energy ∆u (bottom right panel), and the

difference between heat flow and entropy production is the entropy change of the system ∆s

(bottom left panel), which are both very small for all cases. The small change in internal

energy and entropy observed is due to the starting and ending point of the sliding being

at non-equivalent positions in the substrate energy, and it tends to zero with increasing

sliding distance. However, it is not the general case that entropy and energy of system will

be periodic, but a feature of the PT model assuming a point-like tip, rigid cantilever and a

rigid substrate without internal degrees of freedom. On a more realistic model, entropy

and energy of the system would not necessarily be periodic. Such model would include

internal degrees of freedom in the tip, cantilever or substrate, which would decouple the

distribution of the heat and entropy production in the different parts of the system. For

example, one could imagine an explicit coupling of slider motion to the vibrational degrees

of freedom of the substrate [78], allowing for a better description of how sliding energy is

dissipated into the bulk.
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Figure 6.20: Instantaneous thermodynamics (a) substrate energy along the sliding direction, (b)
work, (c) heat, (d) energy, (e) entropy production, (f) entropy, for three different substrates, h-BN
(blue continuous), P black (gray dashed), and WTe2 (green dotted) sliding at 30◦. All quantities
are averaged over 50 trajectories.

The next example in Fig. 6.20, shows the same thermodynamics variables as before
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for three crystals h-BN, P black, and WTe2, during sliding, at a fixed sliding angle at

30◦ and with the rest of the parameters as before. From the example, lower lubricating

behaviour is observed for WTe2 compared to h-BN and P black, as measured by work in

Fig. 6.20c, heat flow in Fig. 6.20d, and entropy production in Fig. 6.20f. It is interesting

to note the highly non-linear character of dissipation in the model. The height of the

peaks in the energy landscapes along the sliding direction for P black and WTe2 shown

in Fig. 6.20a are of similar magnitude, coherent with the ideal frictional force fM in

Table 6.2 However, dissipation events for WTe2 are approximately double than those for P

black, as shown in Fig. 6.20b,c,e. This observation means that care must be taken when

extrapolating from PES computed statically with DFT to dissipation in out-of-equilibrium

sliding contact [193, 149]. Both magnitude and distribution of peaks in the energy landscape

play a role in the dynamics and thermodynamics of the system. For instance, in the length

of ‘stick’ events, e.g. double length stick events while equal magnitude of peaks in PES

along sliding direction for 90◦ compared to 150◦ in Fig. 6.19b. The influence of the geometry

of the PES on dissipation needs further analysis, left for future work.

6.2.5 Final Remarks

A multi-scale model of stick-slip friction has been developed to quantify dissipation through

different thermodynamic variables on real materials in experiments of Friction Force

Microscopy. The material specific response is achieved by Density Functional Theory

calculations of the energy surface for the specific electronic structure. The dynamics and

thermodynamics during sliding is modelled by a modified Prandtl-Tomlinson model and

stochastic thermodynamics in the limit of transition state theory.

The model has been applied to a set of seven crystals, but the model can be applied

to any material, provided that the material specific potential energy surface is available

or can be computed from DFT. While standard DFT is able to model the PES of simple

homostructures, like the ones reported here, linear scaling DFT or MD are needed in

the case of mismatched heterostrcutres, whose geometry can only be approximated with

supercells of thousands of atoms. The combined model allows us to link electronic structure

calculations to thermodynamics models able to describe dissipation on time and length

scales accessible by experiments.

The observed dissipation does not depend on the height of energy peaks on the crystal

energy surface only, but also on the distribution of such peaks.

The framework adopted allows for an easy and controlled introduction of new degrees

of freedom, while the stochastic thermodynamics formalism underpinning evaluation of

dissipated energy would still be valid. For example, a better description of how sliding

energy is dissipated into the different parts of the system could be achieved by adding to

the model possible vibrations in the substrate, in the cantilever, and inside the tip [78].

The results presented here could be validated by LF-AFM with relatively little effort.

A recently developed experimental protocol [258] allows to wrap flakes around AFM tips

yielding the homostructure contact modelled here. By changing the orientation between
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the flakes and the tip before the wrapping processes, the mismatch angle between sliding

direction and crystal orientation can be varied and anisotropy maps like the ones presented

in Fig. 6.18 could be measured experimentally.



7
Conclusions

This thesis shows that computational techniques can effectively describe both in-plane and

interlayer phase behaviour of two-dimensional materials. Moreover, the physically rigorous

models developed here can rationalise experimental results and provide a full thermodynamic

description of dissipation events. The arguments developed in chapter 3 provide general

insights into the physics underpinning mechanical relaxation in heterostructure systems.

The general theory therein provides a starting point to make this general argument

quantitative. The outlined generalised epitaxy theory can serve as a basis for a high-

throughput screening of the vast space of possible twistronic devices based on different

2D materials, aiming to estimate the stability of imposed misalignment angles. Such

predictions could be validated experimentally with CVD synthesis and transfer protocols

already found in the literature [23, 59].

The original aim of systematicly charting the chemical space of TMDs has been

addressed in chapters 4 and 5. The methodology outlined in chapter 4 is a promising way

to provide starting configurations for more in-depth computational studies and inform

synthesis, suggesting highly soluble TMD candidates to novel CVD-based techniques [63].

Moreover, a possible way to improve the accuracy and efficiency of alloy models is suggested

in the case of long-range elastic interactions by combining the CE framework [41] and the

elastic lattice model [222]. In-depth analysis of a specific system in chapter 5 shows that

the finite temperature phase-behaviour, obtained within the CE framework, agrees with

experiments [228].

The last chapter focuses on the characterisation of 2D materials for tribology. The

relevant physics of sliding has been modelled in both heterogeneous and homogeneous

nanoscale contact. In particular, sliding simulations in heterostructure systems agree

145
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with experimental results, providing a general argument for little-studied large-mismatch

heterostructures. The generalised PT model of homostructure systems provides a coherent

and in-depth thermodynamic description of the sliding behaviour. The prediction of the

model could be validated experimentally using LF-AFM with protocols already developed

in literature [258].

The results obtained in this thesis provide a solid starting point for future analysis in

both phase stability of 2D materials and their sliding behaviour. Experimental validation

of in-plane phase behaviour synthesis and homostructure sliding could be carried out

within the SOLUTION framework via CVD synthesis at FORTH, Greece and AFM

measurements at the University of Southampton, respectively. High-throughput screening

of heterostructure twisting behaviour based on the generalised epitaxy theory could be

carried out soon with the SOLUTION group at CVUT, Prague, and with the Condensate

Matter group at SISSA, Trieste.



A
Single Prototype Solubility Metric

All the solubility metric matrices obtained with the formalism in section 4.2.
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B
Epitaxy Theory Details

Consider crystalline ML surrounded by vacuum. It is always possible to orient the system

so that the ML is periodic in the xy plane and two lattice vectors, e.g. a1 and a2, are

contained in this plane. In turn, the a3 lattice vector is parallel to z. The unit cell is thus

described by vectors of the form

a1 =




a1x

a1y

0


 a2 =




a2x

a2y

0


 a3 =




0

0

a3z


 . (B.1)

If the ML unit cell is repeated L times along each xy-plane lattice directions, the result is

a Bravais lattice of the form

Rl = l1a1 + l2a2, (B.2)

where the index l runs over all possible integers pairs (l1, l2) in the range −L/2, L/2.

Fig. B.1 shows examples of such a 2D lattice. The internal structure of the crystal is

described by the basis, i.e. n vectors Rν describing the position of each atom in the unit

cell, added to each Bravais lattice point1. No assumption on the dimensionality of the

basis vectors is made: they may yield a 3D monolayer, like MoS2, or be purely 2D, like in

the case of graphene. An example of a 2D internal structure is shown in Fig. B.1. Basis

and Bravais vectors can be combined into a single one

Rνl = Rl +Rν , (B.3)

1Bravais lattice vectors are indexed by Roman letters while Greek letters label degrees of freedom within
the unit cell.

B-151



B-152 Chapter B Epitaxy Theory Details

which describes the equilibrium position of each atom in the ML. Deviation from the

equilibrium positions are described by the displacement vectors uνl = rνl −Rνl, as shown

in Fig. 2.12. Consider now a second ML placed on top of the first one with a misalignment
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Figure B.1: (a) a lattice: hollow, blue squares mark Bravais lattice points, defined in Eq. (B.2),
and filled, blue circles mark atoms. The generating vectors are a1 = la

(
1 0 0

)
and a2 =

la
(
−1/2

√
3/2 0

)
(gray arrows). The two atoms (n = 2) basis is R1 = 1/3a1 + 2/3a2 and

R2 = 2/3a1 + 1/3a2. The unit cell is repeated L = 2 times (dotted lines). (b) b crystal lattice (red
symbols), superimposed on the a one (blue symbols). The b crystal shares the same geometry as a
one, but lattice spacing lb = laπ/3, making the resulting bilayer incommensurate. The b lattice is
rotated of θ = 2.86◦ according to Eq. (B.4). (c) Detail of the twisted bilayer supercell (L = 30)
showing the optical interference typical of mismatched heterostructures.

angle, to form an incommensurate heterostructure. If this second ML lattice b has the

same symmetry as the first lattice a, then the vector generating its lattice can be defined

in terms of the a lattice vectors:

bi = Rz(θ) · ai (B.4)

Rz(θ) =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 . (B.5)

In other words, the lattice of the second layer, b, is rotated around the z axis with respect

to the first one, as shown in Fig. B.1(b,c). Finally, given the direct Bravais lattice a

generated by Eq. (B.1), its dual lattice is the set of vectors τ satisfying eiR·τ = 1 for all r

in Eq. (B.2), which implies

R · τ = 2πM, M ∈ Z. (B.6)

The set of vectors τ form a Bravais lattice themselves

τ = m1t1 +m2t2, (B.7)
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whose primitive vectors are defined by

ti = 2π
aj × ak

ai · (aj × ak)
, (B.8)

where i, j, k cycle through 1,2,3 [143, 150]. The same holds for the b lattice.

The geometry of the ML allows the position of the atoms to be decomposed as

rνl =

(
ρνl

zνl

)
=

(
Rl + (Rν + uνl) · (ê1 ⊗ ê2)

(Rν + uνl) · ê3,

)
(B.9)

where êi is a versor along a Cartesian axis.

Interlayer Potential Expasion

The expression in Eq. (3.8) can be further simplified by taking into account the periodicity

of the adsorbate ML. The plane-wave terms in Eq. (3.8) are expanded like in Eq. (3.3) in

terms of the adsorbate reciprocal lattice vectors τ :

∑

ν,l

eiRνl·G =
1

N0

∑

τ

(∑

ν

eiRν ·τ
∑

l

eiRl·τ
)∑

µ,j

eiRµj ·(G−τ ) (B.10)

=
∑

τ

fτ
∑

µ,j

eiRµj ·(G−τ ), (B.11)

where Rµl = Rl + Rµ and the definition of reciprocal lattice Eq. (B.6) were used. In

Eq. (B.11) the geometrical structure factors was defined [150]:

fτ =
∑

ν

eiRν ·τ , (B.12)

The geometrical structure factor fτ expresses the modulation of plane waves due to internal

structure of the unit cells and in X-ray experiments of Bragg diffraction are the origin of

extinction of lattice peaks [150]. Due to the parity of the lattices, the sums over µ, l of

oscillatory functions in Eq. (B.11) can only be non-zero if the argument of the exponential

is null for all terms, yielding

∑

τ,µ,j

eiRµj ·(G−τ ) = nN0

∑

τ

δG,τ , (B.13)

where δ(G− τ ) ≡ δG,τ . Substituting Eq. (B.11) and (B.13) in Eq. (3.8) yields

HL1L2 = nN0

∑

τ,G

VGfτδG,τ +
∑

ν,l,G

V ′Gzνle
iRνl·G + i

∑

ν,l,G

VGG · uνleiRνl·G. (B.14)

To tackle the two right-most terms of Eq. (B.14), the displacements uνl are written in

terms of phonon eigenvalues εsν in Eq. (2.117). The latter expansions introduces a third

wave-vector k spanning the BZ of the adsorbate. The displacement perpendicular to the
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monolayer plane is expanded as

zν,l = uνl · û3 =
1√
N0mν

∑

k,s

γksεs(ν,k) · û3e
ik·Rνl . (B.15)

Substituting the expansions Eq. (B.10), (B.15) and (2.117) in Eq. (B.14) and following

the same reasoning leading to Eq. (B.13), one obtains the linearised substrate-adsorbate

potential energy in Eq. (3.9) to (3.11) The geometrical construction obeyed by the vectors

G, τ , and k, sketched in Fig. 3.3, is shown for extended lattices in Fig. B.2a. Moreover,

Fig. B.2b shows how the allowed phonon vectors k resulting from the construction span

the whole BZ.

− 20 − 10 0 10 20

kx

− 20

− 10

0

10

20

k
y

Substrate

Adsorbate

k = τ − G

t1

t2

Γ

M

K g1

g2

k = τ − G in τ BZ

(a) (b)

Figure B.2: Reciprocal lattices τ ,G, evaluated on a N0 = 60× 60 grid. Arrows show an example
of the construction in Fig. 3.3. (b) Allowed phonon wave-vectors k = τ −G (black dots) build
from all possible black arrows in (a) and mapped into the BZ of τ lattice.

Classical Total Potential Energy

Summing the internal elastic energy of the harmonic layer Eq. (2.121) and the terms

comprising the interaction between this and the substrate Eq. (3.9) to (3.11), the total

energy of the harmonic-substrate bilayer system in Eq. (3.2) reads:

E = Ec + nN0

∑

τ,G

VGfτδG,τ +
∑

k,s

1

2
ω2
s(k)|γks|2 (B.16)

+
∑

k,s

n
√
N0γks


∑

τ ,G,ν

V ′G√
mν
εs(ν,k) · û3e

iRν ·τ δG+k,τ (B.17)

+ i
∑

τ ,G,ν

VG√
mν
εs(ν,k) ·GeiRν ·τ δG+k,τ


 , (B.18)
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The terms describing lattices coupling and internal structure of the unit cell in Eq. (B.17)

and (B.18) depend only characteristics of the pristine layers, e.g. phonon dispersion and

inter-layer coupling, and can thus be computed in a small supercell with accurate methods

and plugged into this results. Note that, as expected, the interaction relative to a different

wavelength is modulated by the amplitude of the corresponding phonon mode γks, defined

in Eq. (2.118). Finally note that Eq. (B.16) to (B.18) depends on configuration of the

system via γsk. Thus, it can be useful to analyse results of classical MD runs with extended

geometries or regard the amplitude γsk as coefficient in a ”fake-dynamics” minimisation

problem.

Second Quantization Framework

In order to overcome completely the dependency on configurations in extended geometries

contained in Eq. (B.16) to (B.18), the problem must be addressed according to second

quantisation formalism. Following Ref. [150, 143], the total energy, sum of kinetic and

potential, is transformed into an Hamiltonian operator, which needs to be diagonalised in

order to study the energy spectrum of the system. Normal-modes momentum is introduced

as the analogous of Eq. (2.117) for velocities [143]

pks =
1√
N0

∑

j,ν

√
mν u̇

α
νjε

α
s (ν,k)eik·Rνl = γ̇−ks, (B.19)

where the dot above a quantity indicates the derivative with respect of time. The pair γ

and p constitutes the conjugate variables for the system. The total energy of the isolated

harmonic ML will then be the sum of kinetic and potential energy stored in the normal

modes

E0 =
1

2

∑

ks

|pks|2 + ω2
ks|γs(k)|2. (B.20)

In the second quantisation formalism, the Hamiltonian is written in terms of creation

and annihilation operators â†ks, âks. The operators â†ks, âks represent the creation and

destruction of a phonon of momentum k in the branch s, respectively. Phonons are the

quasi-particle equivalent of the classical normal modes. Phonons operators obey bosonic

commutation rules [150]:

[âks, â
†
k′s′ ] = δk,k′δs,s′ (B.21)

[â
(†)
ks , â

(†)
ks ] = 0. (B.22)

The atomic displacements are expressed in terms of these operators as [143, 150, 151]

uανj =
~√

2N0mν

∑

j,ν

1

ωs(k)
(âks + â†−ks)ε

α
s (ν,k)eik·Rνl , (B.23)
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while the conjugate variables read [143]

γks =

√
~

2ωs(k)
(âks + â†−ks) (B.24)

pks = i

√
~ωs(k)

2
(â†ks − â−ks). (B.25)

Using Eq. (B.24) and (B.25) and the commutation rules, the energy in Eq. (B.16)

to (B.18) can be transformed into the Hamiltonian operator in Eq. (3.12).



C
Supercells for Twisted Lattices

Here, we explain the procedure to obtain the twisted lattices supercells. Let la and lb be

the spacing of the Bravais lattices of layer a and layer b, respectively and â1 = ( 1
0 ) be one

of the primitive versors of the first lattice, aligned with the x axis; the lattice with the

desired periodicity is generated by a primitive vector a1 = laâ1. The matrix representing

the discrete rotational symmetry of the lattice by an angle Ω = π/3 is:

R
Ω

=

(
cosπ/3 − sinπ/3

sinπ/3 cosπ/3

)
=

(
1/2 −

√
3/3√

3/3 1/2

)
. (C.1)

Thus, the second versor defining the lattice is â2 = R
Ω
â1. Since the second lattice, b,

has the same symmetry but is rotated with respect to the first one by an angle θ, versors

defining it are (b̂1, b̂2) = (R
θ
â1, RΩ

R
θ
â1) where

R
θ

=

(
cos θ − sin θ

sin θ cos θ

)
(C.2)

describes the misalignment between the lattices. A heterostructure supercell will be

compatible with both periodicities if the individual lattice cells match exactly at the edges,

in other words, if the following matching condition is satisfied

la(n1â1 + n2â2) = lb(m1b̂1 +m2b̂2), (C.3)

where n1, n2,m1,m2 represent the repetition along the corresponding versor of the unit

cell of the first and second lattice, respectively. An overview of the matching condition is
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given in Fig. C.1. This condition can be rewritten with a matrix formalism to:

n2aa2
!

n1aa1
!aa1

!

aa2
!

C1 = a(n1a1
! + n2a2

! )

bb2
!

bb1
!

m2bb2
!

m1bb1
!

θ

Figure C.1: Graphical overview of the matching condition Eq. (C.3) for unit cells with different
lattice constant a and b at imposed angles θ. Coloured arrows refer to primitive, repeated and
supercell lattices, as indicated by the labels. The low-opacity lines connect the points of the Bravais
lattice described by the primitive vectors.

la
lb

(n1â1 + n2RΩ
· â1) = m1Rθ · â1 +m2RΩ

·R
θ
· â1

ρ
(

I R
Ω

)
·
(
n1

n2

)
=
(

I R
Ω

)
·
(
m1

m2

)
·R

θ
(C.4)

where I is the identity matrix, we used the definition of the lattice vectors, introduced the

mismatch ratio ρ = la/lb, grouped the matrices and the indexes in vectors and simplified

â1 from both sides.

Albeit that the mismatch ratio of a system is fixed by the equilibrium values of the

lattice parameters, it would be impractical to approximate a real number using integers, as

the size of the supercells would easily exceed our computational capabilities. We follow the

reverse procedure: given the four indexes {mi, ni}i=1,2, we can invert the system and find

the mismatch ratio ρ and the misalignment angle θ that satisfy the matching condition of

Eq. (C.3). This means that now {mi, ni}i=1,2 are fixed parameters of Eq. (C.3) while ρ is

a variable, along with θ. Next, we find an expression for ρ and θ in terms of {mi, ni}i=1,2

that satisfies Eq. (C.3). In the following paragraph, we address the problem of selecting

sets of indices whose corresponding ρ, is close enough the real value fixed by the system ρ0.

We solve Eq. (C.4) for the matrix R
θ

and for ρ under the constraint that R
θ

is a rotation
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matrix, namely:





R
θ

= ρ
(
m1I +m2RΩ

)−1 (
I R

Ω

)
·


 n1

n2




detR
θ

= 1.

(C.5)

The first line in Eq. (C.5) is readily solved by

R
θ

=
ρ

Nb

(
m1n1 +m2n2 + 1/2(m1n2 +m2n1) −

√
3/2(m1n2 −m2n1)√

3/2(m1n2 −m2n1) m1n1 +m2n2 + 1/2(m1n2 +m2n1)

)

=
ρ

Nb
A, (C.6)

where Nb = m2
1 +m2

2 +m1m2 is the number of Bravais lattice points in the b lattice 1 and

A, implicitly defined in the last step, is a shorthand for the matrix of known coefficients.

Substituting Eq. (C.6) into the second line of Eq. (C.5) yields an expression for ρ: detR
θ

=
ρ2

N2
b

detA = 1. Substituting this back into Eq. (C.6) gives us the solution of (ρ, θ) of

Eq. (C.3) at chosen {mi, ni}i=1,2:





ρ = Nb√
detA

θ = (R
θ
)11 = arccos

(
1√

detA
A11

) (C.7)

Finally, the first vector of the supercell is given by the one of the members of the

equality in Eq. (C.3) and the second is obtained by symmetry, namely

C1 = la(n1â1 + n2â2) (C.8)

C2 = R
Ω
·C1 = −lan1â1 + la(n1 + n2)â2. (C.9)

In order to obtain a system with the desired misalignment θ and a ρ that is an acceptable

approximation of the equilibrium mismatch ρ0, we consider all combinations of integers

ni, mi within the range (−200, 200) and select the supercells which satisfy θ ∈ [0◦, 60◦] and

a mismatch ρ satisfying |∆ρ| = |ρ− ρ0| ≤ 1× 10−7. We then bin the resulting supercells

with a spacing of ∆θ = 0.01◦ and select the cell with the smaller number of Bravais point

within each bin. Note that this procedure does not guarantee that the resulting supercell

will be evenly spaced according to the mismatch angle.

The indices defining the supercells used in this work for the MoS2/G heterostructures

are reported in Table C.1, along with the misalignment angle, ρ− ρ0 and number atoms in

each layer. For this system ρ0 = lG/lMoS2 = 2.460 187 8 Å/3.093 682 7 Å = 0.7952295, the

number of atoms in each lattice is given by the number of Bravais lattice points times the

number of atoms in the crystal basis, i.e. Ntot = NBravais · nbasis with nbasis is 2 and 3 for

G and MoS2, respectively. In creating the supercell, the strain due to the approximated

1An equivalent relation holds for the other lattice Na = n2
1 + n2

2 + n1n2
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Figure C.2: Strain applied to MoS2 lattice versus angle imposed to the supercell according to
Eq. (C.7) for different values of tolerance. The tolerance value used in the work is ∆ρ = 1× 10−7.
The value of the lattice parameters is obtained as l = lG/ρ, where ρ is the solution of the Eq. (C.7).
The inset in the upper right corner reports the logarithm of the absolute value of the strain ε and
shows clearly that the spread is the magnitude of the residual strain.

mismatch ρ is applied to MoS2. The residual strain for different value of the tolerance

∆ρ = ρ− ρ0 are reported in Fig. C.2.

θ[◦] n1 n2 m1 m2 ρ− ρ0 NG NMoS2

0.23 -135 -104 -108 -82 9.8e-08 86162 81732

0.58 -192 61 -153 50 8.1e-08 57744 54774

0.79 -184 -41 -148 -30 9.8e-08 86162 81732

1.01 -113 -182 -86 -148 -6.2e-08 132916 126081

1.24 -176 -59 -137 -51 4.3e-09 89682 85071

1.39 -109 39 -87 33 -5.7e-08 18300 17361

1.60 -141 -128 -107 -107 2.6e-08 108626 103038

2.11 -138 -99 -104 -85 -2.2e-08 85012 80640

2.88 -184 -41 -140 -42 9.8e-08 86162 81732

3.05 -118 12 -96 15 9e-08 25302 24000

3.21 -182 -113 -134 -102 -6.2e-08 132916 126081

4.17 -184 33 -142 15 8.1e-08 57744 54774

4.93 -191 -48 -140 -55 3.5e-08 95904 90972

5.30 -192 61 -155 62 8.1e-08 57744 54774

5.34 -185 63 -149 63 4.6e-08 53076 50349

5.95 -164 -41 -118 -50 1.5e-08 70600 66969

6.23 -164 -115 -110 -113 6.2e-08 117960 111894

6.64 -123 -185 -71 -169 -8.8e-08 144216 136800

6.75 -164 -145 -154 -89 4.4e-08 143402 136029

7.18 -152 -99 -140 -55 3.5e-08 95906 90972

7.94 -172 169 -146 122 -8.3e-08 58152 55164
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8.14 -118 12 -99 24 9e-08 25302 24000

8.42 -163 -125 -156 -68 -9.6e-08 125136 118704

8.64 -145 145 -104 124 1.2e-08 42048 39885

8.75 -138 -99 -85 -104 -2.2e-08 85012 80640

9.01 -184 33 -153 50 8.1e-08 57744 54774

9.04 -176 -59 -117 -76 4.3e-09 89682 85071

9.69 -172 169 -122 146 -8.3e-08 58152 55161

9.75 -181 -95 -113 -110 6.2e-08 117960 111894

10.25 -169 -174 -90 -178 7e-08 176484 167409

10.64 -181 -95 -110 -113 6.2e-08 117960 111894

10.81 -164 -145 -89 -154 4.4e-08 143402 136029

11.22 -174 -169 -90 -178 7e-08 176484 167409

11.37 -170 71 -130 31 -4.5e-08 43740 41493

12.17 -113 -182 -134 -102 -6.2e-08 132916 126081

12.27 -185 63 -138 19 4.6e-08 53076 50349

12.60 -192 61 -142 15 8.1e-08 57744 54774

12.99 -135 -104 -140 -42 9.8e-08 86162 81732

13.65 -118 12 -81 -15 9e-08 25302 24000

13.73 -184 33 -155 62 8.1e-08 57744 54774

14.52 -144 -98 -150 -31 1.7e-10 88904 84333

15.20 -184 33 -127 -15 8.1e-08 57744 54774

15.53 -185 63 -149 86 4.6e-08 53076 50349

15.63 -184 -41 -108 -82 9.8e-08 86162 81732

16.39 -182 -113 -86 -148 -6.2e-08 132916 126081

16.66 -135 -104 -148 -30 9.8e-08 86162 81732

17.14 -163 -125 -68 -156 -9.6e-08 125136 118704

17.26 -109 39 -87 54 -5.7e-08 18300 17358

18.47 -192 61 -155 93 8.1e-08 57744 54774

18.74 -118 12 -75 -24 9e-08 25302 24000

18.91 -41 -184 30 -178 9.8e-08 86162 81729

19.89 -185 -123 -71 -169 -8.8e-08 144216 136800

20.15 -184 -23 -101 -79 -7.1e-08 77232 73263

20.95 -187 -101 -75 -153 -5.7e-08 128114 121527

21.08 -152 -99 -55 -140 3.5e-08 95906 90972

21.47 -182 -23 -173 48 -8.3e-08 75678 71784

21.55 -135 -104 -42 -140 9.8e-08 86162 81732

22.24 -170 71 -130 99 -4.5e-08 43740 41493

22.58 -184 -41 -182 42 9.8e-08 86162 81732

23.03 -176 -59 -76 -117 4.3e-09 89682 85071

23.20 -192 61 -153 103 8.1e-08 57744 54774

23.63 -192 61 -127 -15 8.1e-08 57744 54774
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24.25 -148 -132 -185 -15 -4.9e-08 117728 111675

24.67 -184 -41 -82 -108 9.8e-08 86162 81732

25.00 -113 -182 -174 -52 -6.2e-08 132916 126081

25.23 -135 -104 -30 -148 9.8e-08 86162 81732

26.82 -191 -48 -195 55 3.5e-08 95904 90972

26.86 -185 63 -119 -19 4.6e-08 53076 50349

27.05 -144 -98 -31 -150 1.7e-10 88904 84333

27.74 -164 -41 -168 50 1.5e-08 70600 66969

28.03 -148 -132 -15 -185 -4.9e-08 117728 111675

28.22 -184 -23 -79 -101 -7.1e-08 77232 73263

28.37 -184 33 -103 -50 8.1e-08 57744 54774

29.17 -176 -59 -188 51 4.3e-09 89682 85071

30.83 -176 -59 -51 -137 4.3e-09 89682 85071

31.63 -184 33 -153 103 8.1e-08 57744 54774

31.78 -23 -184 79 -180 -7.1e-08 77232 73260

31.97 -148 -132 -200 15 -4.9e-08 117728 111675

32.26 -164 -41 -50 -118 1.5e-08 70600 66969

32.95 -144 -98 -181 31 1.7e-10 88904 84333

33.14 -185 63 -138 119 4.6e-08 53076 50349

34.77 -104 -135 30 -178 9.8e-08 86162 81729

35.33 -41 -184 82 -190 9.8e-08 86162 81729

35.75 -148 -132 15 -200 -4.9e-08 117728 111675

36.37 -192 61 -142 127 8.1e-08 57744 54774

36.80 -192 61 -103 -50 8.1e-08 57744 54774

36.97 -59 -176 76 -193 4.3e-09 89682 85068

37.42 -184 -41 -42 -140 9.8e-08 86162 81732

37.76 -170 71 -99 -31 -4.5e-08 43740 41493

38.45 -135 -104 -182 42 9.8e-08 86162 81732

38.53 -23 -182 -125 -48 -8.3e-08 75678 71784

38.92 -152 -99 -195 55 3.5e-08 95906 90972

39.85 -23 -184 101 -180 -7.1e-08 77232 73260

41.09 -184 -41 -30 -148 9.8e-08 86162 81732

41.26 -118 12 -99 75 9e-08 25302 24000

41.53 -192 61 -93 -62 8.1e-08 57744 54774

42.74 -109 39 -54 -33 -5.7e-08 18300 17361

43.34 -135 -104 30 -178 9.8e-08 86162 81729

44.37 -41 -184 108 -190 9.8e-08 86162 81729

44.47 -185 63 -86 -63 4.6e-08 53076 50349

44.80 -184 33 -142 127 8.1e-08 57744 54774

45.48 -144 -98 31 -181 1.7e-10 88904 84333

46.27 -184 33 -62 -93 8.1e-08 57744 54774
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46.35 -118 12 -96 81 9e-08 25302 24000

47.01 -135 -104 42 -182 9.8e-08 86162 81732

47.40 -192 61 -127 142 8.1e-08 57744 54774

47.73 -185 63 -119 138 4.6e-08 53076 50349

48.63 -170 71 -99 130 -4.5e-08 43740 41493

50.31 -172 169 -146 24 -8.3e-08 58152 55164

50.99 -184 33 -50 -103 8.1e-08 57744 54774

51.20 -104 -135 82 -190 9.8e-08 86162 81729

51.25 -138 -99 -189 85 -2.2e-08 85012 80640

51.36 -145 145 -124 20 1.2e-08 42048 39885

51.86 -118 12 -24 -75 9e-08 25302 24000

52.06 -172 169 -24 146 -8.3e-08 58152 55161

52.82 -152 -99 55 -195 3.5e-08 95906 90972

54.05 -164 -41 -168 118 1.5e-08 70600 66969

54.66 -185 63 -63 -86 4.6e-08 53076 50349

55.07 -191 -48 -195 140 3.5e-08 95904 90972

55.83 -184 33 -127 142 8.1e-08 57744 54774

56.95 -118 12 -15 -81 9e-08 25302 24000

57.12 -184 -41 -182 140 9.8e-08 86162 81732

57.89 -138 -99 -189 104 -2.2e-08 85012 80640

58.61 -109 39 -33 -54 -5.7e-08 18300 17358

58.76 -176 -59 -188 137 4.3e-09 89682 85071

59.21 -184 -41 30 -178 9.8e-08 86162 81729

59.42 -192 61 -50 -103 8.1e-08 57744 54774

59.77 -135 -104 82 -190 9.8e-08 86162 81729

Table C.1: Parameters of the rotated supercells used in this work. The lines relative to the four
geometries shown in Figure 5 in the main text are highlighted in bold font.
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D
Force-Field Parametrization and

Benchmark

The G layer is modelled with the REBO potential [172], while the 3-body Stillinger-Weber

(SW) potential [171] is used for MoS2. Interlayer coupling is described by the Lennard-Jones

(LJ) potential

HL1L2 = H
(LJ)
C−(Mo,S)

=
∑

i∈C
j∈Mo,S

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
. (D.1)

The intralayer force fields were benchmarked against experimental results and first principle

calculations at DFT level. DFT calculations were performed using using the Vienna

Ab initio Simulation Package (VASP) [198, 199] within the Projector Augmented-Wave

(PAW) framework [124]. The exchange-correlation potential is approximated using the

PBE functional [127] and the vdW dispersion is described by the DFT-D2 method [130].

A plane wave cut-off of 800 eV is adopted and the Brillouin zone was sampled using

a 13 × 13 × 1 mesh. The results on lattice parameters were deemed satisfactory. Since

interlayer interactions are especially relevant for the aim of this work and the LJ parameters

reported in Ref. [171] yield unsatisfactory results, it was deemed necessary to conduct a

more accurate parametrisation, reported in the following section.
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SW REBO DFT Experimental

Lattice constant graphene(Å) - 2.4602 2.4668 2.4589 [283],2.464(2) [284]

Lattice constant MoS2 (Å) 3.0937 - 3.1901 3.15 [285],3.1625 [286]

C-C bond distance (Å) - 1.4204 1.4242 -

Mo-S bond distance (Å) 2.3920 - 2.4112 -

Table D.1: Structural parameters obtained using the SW model for MoS2, the REBO model for
graphene together with reference data from X-ray diffraction experiments and density functional
theory (DFT) calculations. The DFT results were obtained using the computational details reported
in Appendix D.
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Figure D.1: Refining of LJ-parameters. Energy, in meV/area versus the interlayer distance, in Å.
The black line is the reference BEP from DFT, whereas the red and the blue line are the starting
and final binding energies obtained with LAMMPS, respectively. The dashed line represents the
weight function around the energy minimum enhanced by a factor of 50, as guide for the eye. The
inset shows the goal function χ2 versus the number of the iterations of the optimization algorithm.

Force Field refinement

In order to improve the unsatisfactory inter-layer description, binding energy profiles (BEP)

of the MoS2/G bilayer system were computed at DFT level used as reference set for the

minimisation protocol. The parameters provided in Ref. [171] were used as starting point

for the minimisation.

The Simplex algorithm [287] as implemented in SciPy [288] was used as a non-gradient-

based minimisation method. This algorithm samples the N-dimensional (N=number of

LJ parameters) phase space using a convex polygon. This algorithm acts on the following

goal function:

χ2[fL] =
1

W

∫ ∞

0
|fDFT(r)− fL(r)|2w(r)dr (D.2)

which is a squared distance combined with a weight function w(r). The function fDFT is

the reference, in our case the Lennard-Jones binding energy profile from DFT, whereas fL
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is same binding energy profile computed with LAMMPS using the current ε and σ. The

weight function w(r) = exp[−( r−r0ζ )2] ensures that the most relevant part, the minimum

of the Lennard-Jones at r0 = 4.94 Å and its directs surroundings, are represented correctly.

The amplitude of the relevant interval around the minimum is tuned with the ζ parameter.

In the computation of binding energy profiles the interlayer distance between G and MoS2

is fixed by freezing in the z direction C atoms and the outermost S layer of MoS2. The

heterostructure used as reference comprises 4× 4 MoS2 unit cell repetition and a 5× 5 G

unit cell repetition, where the residual stress of 2.6% is applied to MoS2. The optimised

parameters are reported in Table D.2. Fig. D.1 shows the optimised BEP, along with

reference and starting point, and the minimisation performance.

Optimized LJ Parameters

Atoms ε [meV] σ [Å] ζ [Å]

C-S 1.64 3.640 0.30
C-Mo 4.55 4.391 0.30

Table D.2: Optimized LJ Parameters for the interlayer interaction between G and MoS2.

Phonon band structure

Phonon bands were computed with the aid of Phonopy [151], which was coupled to

LAMMPS using phonoLAMMPS [289]. In both DFT and classical cases the phonon

dispersion was computed using the frozen method employing a 5x5x1 supercell.
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Figure D.2: Phonon band structure of (a) G and (b) MoS2 computed with LAMMPS (solid
lines) and VASP (dashed lines). The y axis reports the phonon energy, while the x axis marks the
distance from the origin along the path Γ→M → K → Γ.

Fig. D.2 reports the phonon band structure along the path Γ → M → K → Γ of G

and MoS2, panels Fig. D.2a and Fig. D.2b respectively, allowing one to compare phonon

dispersion computed from quantum forces, at the DFT level, and from classical forces.

Acoustic models from quantum and classical dispersion are in good agreement around Γ,

the centre of the Brillouin zone. Thus, the long wavelength distortions at the base of NM

theory are well-described by the classical force fields. Moving towards the edge of the cell,

i.e. distortions occurring over shorter wavelength, the two dispersion deviate. For example,
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the splitting of quantum-computed transverse and longitudinal branches observed at M

point in G is shifted to a different k in the classical results. Similar observations can be

made for the region around K and for the MoS2 phonon bands. The general trend is that

the classical treatment underestimates the energy of acoustic branches and overestimates

the optical ones. However, strong quantitative agreement is not needed for the qualitative

statements developed in the following discussion and, in order to obtain the sound velocity

needed as input of the NM theory, only an accurate description around the Γ point is

required.
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Many softwares with different implementations of DFT outlined section 2.1 are available,

each one characterised by its “dialect”. In this work DFT are carried out using the Vienna

ab initio Software Package (VASP) [197, 119, 198, 199], which is based on a plane-wave

expansion of KS orbitals, relies on PP and provides a selection of difference exchange-

correlation functionals adn vdW corrections. In this section we report the parameters and

technical details used in this work.

All simulations are spin polarised. The tetrahedron smearing with Bloch corrections

of amplitude 0.05 eV is used with semiconductors to avoid discontinuity in the energy

level occupancy and ease the integration in the BZ. In chapter 4, a Gaussian smearing

of 0.05 eV is used, as the metal or semiconductor nature of the large set of compounds

studied is unknown. The Pseudo-Potential problem is treated in the augmented-plane wave

(PAW) formalism [124, 200]. For the sulfur atoms only the outer p orbitals are considered

as valence and for the transition metals the outer s, p and d electron orbital constitute

the valence shell. In relaxations, ions positions are optimised using a conjugate gradient

algorithm. Depending on the calculations, either all the degrees of freedom, i.e. ions

position, cell shape and cell volume, or ions positions only are relaxed; this difference is

specified case by case in the main text.

Parallelization Benchmark on Iridis5 HPC In order to test the parallel perfor-

mances of VASP and define the optimal setup for our machine, we perform a self consistent

cycle of fixed length varying the input parameter controlling the numerical aspect of the

code. Fig. E.1a shows the N3 scaling with the system size while Fig. E.1b shows the scaling

at fixed system size with the number of cores. Even though in principles there would be
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Figure E.1: (a) Simulation time versus system size in number of ions. The green dashed line
represents a scaling behaviour N3. (b) Simulation time as function of the number of cores allocated
for the computation. (c) Simulation time as function of the number of orbitals treated in parallel.

no limit to the number of cores one could use, the time required to share information

between the threads limits this number: on the University of Southampton HCP Iridis5 a

Parallelization over 80-120 cores yields the best results for system of 10-30 atoms, while

single node jobs (40 cores) suffice for smaller systems of up to 10 atoms. At fixed system

size and core number, Fig. E.1c shows the simulation time as function of the number of

cores working in parallel on each orbital. Spreading each orbital over ≈ 10 cores yields the

best results.

Exchange-correlation Functional Convergence

Following the works by Perdew et al. [129] and Bjorkamn et al. [290], we use SCAN meta-

GGA functional in combination with rVV10 correction for long-ranged vdW interactions.

We adopt the values for Cvv10 = 0.0093 and bvv10 = 15.6 used in the Ref. [129]. Being

semiconductors with covalent bonds but small bandgaps, TMDs are in between the localised

picture implemented in local basis sets, suitable for ionic materials like rock-salts, and

the delocalised one of the plane-wave set, suitable for metals. Li et al. [291] studied the

properties of TMDs and transition metal oxides as function of the functional and the basis

set used. They found that, while there is a strong dependence on the functional used,

plane-wave are suitable to describe TMDs. Since we want to resolve vdW interaction, which

are in the order of 10 meV, we set the tolerance on electrons energy at 1 meV per atom.

We found that a tolerance of 1× 10−4 eV yields satisfying results on the ions minimisation.

SCAN+rVV10 Convergence We test our protocol on two element of the TMDs

family: MoS2 and TiS2. Experimental results are taken as starting configuration for our

calculations. Before optimising the structures, we study the convergence of the total energy

with respect to the size plane-wave basis set used in the expansion of the Kohn orbitals

and the density of the grid used to sample the reciprocal space. We adopt a cutoff of

Ecutoff = 800 eV in accordance with Fig. E.2a, which shows difference in total energy

between the two systems as function of the energy cutoff of the plane waves1. Fig. E.2b

shows the convergence of total energy against the number of division in the BZ along each

1The error in truncating the basis set is a systematic one and thus it is relevant to check the relative
convergence over different systems instead of the absolute one
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direction. The total energy does not vary appreciably for more than 11 division 2, which is

the value adopted in this work.

PBE Convergence In exploring vast class of materials in HT approach and a coherent

DFT parametrisation is needed. Thus, we performed a similar convergence study on a

simpler function, PBE [127]. The analysis was carried out on 60 ML reported in Ref.

[21]. Fig. E.3 reports an example of this convergence study for CrSe2 in octahedral (CdI2)

coordination. We adopt a cutoff of Ecutoff = 650 eV and sample the BZ with a 17× 17× 1

mesh. The larger mesh compared to the SCAN parameters is required as some material

show a metallic character. The absence of repetition in the kz direction is dictated by the

ML geometry studied.

2This correspond to 6600 k-point-per-atom



E-172 Chapter E Software: VASP

Compound a Reference c Reference

MoS2 3.168 3.161 [230] 12.522 12.295 [230]

TiS2 3.4085 3.4097 [231] 5.7471 5.7052 [231]

Table E.1: Intralayer a and interlayer c lattice parameters from simulations and references in Å.
Intralayer lattice parameter a is within 0.03% and 0.2% of the experimental measured value for
TiS2 and MoS2, respectively, while the interlayer one c is within 0.7% and 1.8% for TiS2 and MoS2,
respectively.
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Figure E.4: The BE Ebind(d) of MoS2 and TiS2.

Material Properties Benchmark

A relaxation of both ions positions and cell vectors yields the parameters reported in

Table E.1.

Binding Energy Profile To estimate the accuracy of our vdW description, we check

the binding energy profile defined as Ebind(d) = E(d) − E(∞) and reported in Fig. E.4.

Our protocol is to fix the distance between the layer by rigidly shifting the layers and

freezing the z coordinate of the metal ion while all the remaining degrees of freedom are let

free to relax. Table E.2 reports the minimum of this profile, which is the binding energy

keeping the layers together in the bulk system.

Band Structure Once we have a relaxed structure, we can check that the electronic

properties of the system. Fig. E.5b and Fig. E.5c report the band structure and density of

state (DOS) of 2H-MoS2 and 1T-TiS2, respectively. As a general remark, we note that

overlap in the DOS between d metal orbitals and p chalcogenides ones confirms the covalent

Compound Ebind(dmin) Reference

MoS2 -19.86 -20.53

TiS2 -18.98 -18.88

Table E.2: Minimum of the BE in meV as computed in this work and reference values from RPA
calculation [129].
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Figure E.5: (a) The BZ relative to the hexagonal primitive cell of MoS2 (space group n. 194)
and TiS2 (space group n. 164). Band structure along the path Γ→M → K → Γ→ A→ L (each
point is marked by a vertical line) within the cell reported in Fig. E.5a and DOS obtained with the
SCAN+rVV10 protocol for (b) 2H-MoS2 and (c) TiS2. The red and green points represent the
projection of the states onto the Mo and S atoms, respectively.

nature of the interaction.

The computed band gap for bulk 2H-MoS2 of 1 eV underestimate the experimental

value of 1.29 eV [16]. The value bandgap of TiS2 is still debated varying from 0.05 eV

to 2.5 eV depending on the experimental technique used [292, 293]. From computational

investigation, the material is predicted to be semimetallic and a semiconductor, when

going from LDA to hybrid functional. In our simulations TiS2 is semimetallic, with a small

overlap between the minimum of the conduction band at M and the maximum of the

valence band at Γ.
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Phonons dispersion are obtained using the Parlinksi-Li-Kawazoe method [294] as imple-

mented in the Phonopy package [151]. This method is a numerical approach to fit force

constants P from forces F and displacements ∆. The relation for a pair of atoms i and j

can be cast in the matrix form

F = −∆ · P , (F.1)

where F , ∆ and P are given by

F =
(
Fx Fy Fz

)
(F.2)

P =



φxx φxy φxz

φyx φyy φyz

φzx φzy φzz


 (F.3)

∆ =
(

∆rx ∆ry ∆rz

)
. (F.4)

This relation can then be inverted to obtain the force constants P = −∆†F . The number of

displacements needed by the fitting procedure is reduce by exploiting the symmetry crystal

and the force constants are then used to compute the dynamical matrix D in Eq. (2.109)

and from there the dispersion relation between k and ω and all other properties.

Fig. F.1a reports the dispersion relation for a MoS2 bulk crystal in the H2 configuration.

The dispersion is in agreement with literature [80, 295]: all frequencies are positive,

indicating a stable structure, acoustic modes vanish at Γ point and we find the “sliding

modes”, with frequencies at Γ between 1 THz and 2.4 THz. To test ability to predict

unstable structures of this protocol, we computed the phonon dispersion of MoS2 bulk
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Figure F.1: The phonon dispersion relation and DOS of (a) MoS2 2H ans (b) artificial MoS2 T1
crystals computed with SCAN+rVV10 protocol. The path is along the symmetry point of the BZ
in Fig. E.5a. Forces are computed in a 2 × 2 × 2 supercell. The dispersion is interpolated on a
41× 41× 41 grid.
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Figure F.2: The phonon dispersion relation and DOS of TiS2 T1 crystal computed with (a)
SCAN+rVV10 and (b) GGA functional and Hubbard correction (GGA+U) U = 2 eV protocols.
The path is along the symmetry point of the BZ in Fig. E.5a. The phonon displacements are relative
to the primitive cell of the T1 polytope but forces are computed in a 2× 2× 1 supercell to improve
the accuracy on the forces. The lack of replicas along the z direction yields the flat behaviour
Γ → A; this choice was made to study the CDW instability in the x-y plane. The dispersion is
interpolated on a 20× 20× 20 grid. Note that in (b) the instability at the M point is gone, but
the branch curvature changes sing at this point and the phonon frequencies are lowered, an effect
known as Kohn anomaly.

crystal in the T1 configuration, known to be unstable at 0 K. Negative frequencies1 in

Fig. F.1b signal that the structure is indeed unstable: if one were to displace the atoms

along the polarisation vector relative to negative frequencies, there would be no recoil force

bringing them back to the equilibrium position, and they would be attracted by the real

minimum in the configurational space, the prismatic configuration.

Fig. F.2a reports the dispersion relation for a TiS2 bulk crystal in the H2 configuration.

The negative frequencies around the Γ and M points suggest this is an unstable structure.

This is in contrast with experimental observation of octahedral coordination of TiS2.

How do we explain this? This soft mode was previously reported in literature only

by Dolui and Sanvit [292], to our knowledge. The authors attribute the instability to

a CDW: layered TMDs show strong electron-phonon coupling and CDW ground state

1Negative frequencies correspond to imaginary frequency coming from the square root of a negative
eigenvector of the dynamical matrix
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are found for TaSe2 and NbSe2. The soft mode at M corresponds to a CDW wave

vector qCDW = π/a
(

1/2 0 0
)

. Using the LDA functional, the authors found that the

system gets stabilised in a 2x2 supercell with the distorted geometry found at the M

point: imaginary frequencies disappear and CDW configuration sits 0.85 meV lower than

undistorted one. We are currently running simulation to confirm that these results holds

with the SCAN+rVV10 protocol. This distortion might be important in all range of TMDs

[296] and one should look out for this kind of dynamic instabilities while carrying out DFT

simulations. Dolui and coworkers also noted that this instability is stabilised by localising

the electrons. As shown in Fig. F.2b, we find as well that the addition of a Hubbard

correction U = 2 eV that localises the electrons on the Ti atoms removes the instability:

electrons are forced to stay around the metal ion, the long range distortion cannot take

place and, as a result, all frequencies are positive. This is in agreement with the observation

that Khon anomalies, a lowered phonon frequency at a specific k point, can only appear in

metallic systems, while the Hubbard correction opens a gap in the electronic structure.
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Since the parametrisation of the CE involves supercell of different size, to be consistent

we kept the number of k point per atom constant to 6600 through the work. CE models

presented in section 2.2 comprise clusters of maximum four points. Bulk models are trained

with 113 and 57 structures for 1T and 2H, respectively. Models of the 2D counterparts are

trained using 46 and 39 structures for 1T and 2H cases.

Accuracy of the Monte Carlo simulations is affected by finite size effects and it is

necessary to study the convergence of quantities of interest against the size of the system.

Figures G.1a and G.1b report the convergence study in the two hosts: for MC simulation

in the 1T host we adopt a cell containing 4851 atoms and one containing 21904 atoms for

the 2H host.
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Figure G.1: Variation of equilibrium concentration in MC simulations as function of the system
size in (a) 2H and (b) 1T hosts. Dashed lines are a guide for the eye. Grey vertical line marks the
system size chosen for the rest of the simulations.
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