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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

ENGINEERING SCIENCES

Doctor of Philosophy

Analysis of VRPM (Transverse-Flux) Machines for Renewable Energy

Applications

by Jaime Renedo Anglada

Rotor speeds of tidal and wind energy conversion systems (10/150 rpm) are lower than in tradi-

tional power plants such as gas or steam turbines (1500/3000 rpm). The low speed of the rotor

makes it necessary to install a gearbox when conventional electric generators are used, which can

reduce reliability and increase maintenance cost. Since transverse flux machines (TFMs) have a

high specific torque, they are attractive as direct-drive generators for wind and tidal turbines.

However, TFMs have complex three-dimensional geometries and structures, which complicates

the task of modelling. Therefore, the aim of this Thesis is to develop intuitive fundamental

theory particularly tailored for the modelling of permanent magnet transverse flux machines.

The Thesis makes several novel contributions in the field of electromagnetic modelling of TFMs.

Firstly, it develops a complex permeance framework for the case of TFMs using a scalar potential

formulation. The complex permeance function is used to obtain the homopolar magnetic field

distribution in the air-gap taking into account curvature and slotting. Furthermore, an algorithm

to quickly obtain the coefficients of the complex permeance function is presented.

The complex permeance function is then used to formulate a torque equation. A generalisation

of Harris et al.’s torque equation for TFMs is derived for any mmf waveform and phase advance

angle. The torque equation is based on Lorentz’s BiL principle, where i is the equivalent current

of the magnets and B is the magnetic field produced by the stator winding. The result is a fairly

simple equation that relates torque to the electric and magnetic loadings of the machine and a

flux factor that depends on the machine’s geometrical parameters.

In addition, a virtual mutual inductance (VMI) approach to calculate the flux linkage in TFMs is

proposed. The VMI between the stator windings and the magnets’ equivalent currents is obtained

by integrating the flux produced by the stator windings over the surface of the magnets. Based

on the reciprocity theorem (M12 = M21) it can be used to obtain the flux linkage in the stator

windings. This methodology has been validated using experimental data and three-dimensional

finite element analysis showing a reasonable level of accuracy. Key design parameters such as

back emf and power factor are then readily calculated using the proposed methodology.

The well-known current sheet model has been adapted for the calculation of eddy current power

losses, produced by asynchronous harmonics in the air-gap, in the outer rotor geometry of TFMs.

Furthermore, the problem is formulated using transfer matrices, which reduces the complexity

of the problem significantly. The transfer matrices are used to express the boundary conditions



iv

sequentially; this simplifies the solution because instead of inverting a large matrix, as commonly

done in the literature, it is only necessary to invert a matrix of order two.

These analytical techniques are applied to optimise the design of a tidal generator. The opti-

misation philosophy developed in this Thesis emphasises the fact that torque and power factor

are closely interlinked. Furthermore, it is shown that the low power factor of TFMs is not pro-

duced by the leakage flux in the classical way but due to the ineffective use of the magnetic flux.

Understanding the relationship between torque and power factor is a key step to unlock the full

potential of TFMs.

Finally, all through this Thesis a particular single-sided TFM design case study is used. How-

ever, the background theory developed is completely general and it can be applied to any kind of

permanent magnet machine. The proposed future work includes the application of the method-

ologies developed for the analysis and design of radial permanent magnet machines, magnetic

gears, magnetic actuators and more complex flux-concentrating TFMs.
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Chapter 1

Introduction

1.1 Overview

There is great interest in electric machines with high specific torque for low speed renewable

energy applications such as wind and tidal turbines. Recently, that interest has been intensified

by the need of high torque machines for direct drive wind or tidal turbines.

This Thesis deals with transverse flux machines, which is a type of electric machine capable of

achieving a high specific torque, as an alternative for direct drive systems. This is based on

the fact that it is possible to get rid of the gearbox in the drive train. However, these devices

present a challenge from the analysis and design point of view because their topology is very

different to that of the traditional machines. This is because the torque production is based on

the interaction of a homopolar flux with a heteropolar flux rather than two heteropolar fluxes

rotating at the same speed.

Therefore, this Thesis develops background theory suitable for the analysis, modelling and design

of transverse flux machines. The theory developed here is meant to be used as a first design step

providing an insight into the system to the machine designer, which later can be refined using

numerical methods such as finite element analysis.

It is worth mentioning that all through the document a particular single-sided transverse flux

machine is used as a case study. However, the theory developed is completely general and could

be used to study other machines.

1.2 The Role of Renewable Energy

The debate on climate change has evolved significantly in the last decades, some time ago certain

sectors of society still denied the effect of greenhouse gas emissions over the environment but now

their impact is broadly accepted and the discussion is focused in how to take action (Jeffrey et al.,

2013; Stern, 2007; U.K. Government, 2008). The Paris Agreement (PA) is the latest example of

1
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the global scale of this problem1. The PA is an agreement between 193 countries dealing with

the reduction of greenhouse gases emissions; this agreement is an example of the international

efforts to stop climate change. The agreement was reached under the United Nations Framework

Convention on Climate Change (UNFCCC) and it should start in 2020. The aims of the Paris

Agreement are (United Nations Framework Convention on Climate Change, 2016):

• Holding the increase in the global average temperature to well below 2 oC above pre-

industrial levels and to pursue efforts to limit the temperature increase to 1.5 oC above

pre-industrial levels, recognizing that this would significantly reduce the risks and impacts

of climate change;

• Increasing the ability to adapt to the adverse impacts of climate change and foster cli-

mate resilience and low greenhouse gas emissions development, in a manner that does not

threaten food production;

• Making finance flows consistent with a pathway towards low greenhouse gas emissions and

climate-resilient development.

Traditionally, the energy sector has been one of the highest producer of CO2 in the world because

of the dependency on fossil fuels. Based on the International Energy Agency (IEA) the energy

sector is still very dependent on fossil fuels (coal, oil and natural gas) (International Energy

Agency, 2014). In fact, a comparison of the energy mix of the world in 1973 and 2012 shows

that the energy consumption went from 6106 Mtoe (mega tons of oil equivalent) to 13371 Mtoe,

which is an increment of almost 120%. It is important to highlight that coal, oil and natural gas

accounted for 86.7 % of the total in 1973 and 81.7 % in 2012. The dependency on these three

sources decreased only by 5 % in 39 years.

If we now focus on the electricity sector we can do a similar analysis. In the electricity sector

the dependency on fossil fuels in 2012 is only 67.9 % instead of 81.7 % in 1973 (International

Energy Agency, 2014). In this context we can infer that the problem of dependency on fossil

fuels is not only present in the primary energy supply but also in electricity generation. It

is important to mention that besides the hydroelectric energy that accounts for 16.2 % of the

total generated in 2012 all other renewable energy sources contribute less than 5 % of the total

electricity generation.

The concerns over the impact of climate change due to CO2 emissions in society has made

de-carbonisation of the energy sector a priority to regulators in the European Union (EU) and

internationally (Jeffrey et al., 2013). To achieve a reduction of CO2 the EU has set ambitious

goals for 2020 (Comission to the European Parliament, 2013) in what is called The 2020 Climate

and Energy Package (European Comission, 2015), that is a set of binding legislation which aims

to ensure the European Union meets its climate and energy targets for 2020. These targets,

known as “20-20-20”, set three key objectives for 2020:

• A 20% reduction in EU greenhouse gas emissions from 1990 levels;

• Raising the share of EU energy consumption produced from renewable resources to 20%;

1It seems that Trump’s administration is committed to leave the accord but it is not clear to what extent this
is going to impact the energy markets.
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• A 20% improvement in the EU’s energy efficiency.

Achieving these goals will require a significant change in the current regulation to make renewable

energies competitive in the electricity market in particular. The substantial growth of renewable

energy generation in recent years has relied on subsidies that reached $101 billion globally in 2012

with almost 60% of these paid in the European Union (International Energy Agency, 2013c).

The risk of the energy subsidies is that they represent a high economic burden for a country

and the efficiency of this inversion is not always guaranteed. For this reason the International

Monetary Fund started a challenging campaign to reformulate the energy subsidy policy in all

the world (Clements et al., 2013). The subsidies and the public policy in general have proven

to be effective because in the last 30 years the development of the renewable energies has been

very high; in 2014 renewables accounted for almost 25% of the electricity generation in the EU

(European Comission, 2014).

The sources of the renewable energy in 2012 are shown in table 1.1. We can classify hydro as a

traditional renewable energy and the rest as non-traditional. This classification is useful because,

as it will be shown later, the increment of big scale hydroelectric energy is expected to be low

in Europe.

Table 1.1: Renewable electricity generation in Europe, 2012.

Hydro Wind Biomass Solar Geothermal Marine
EU-28 [TWh] 366.4 205.8 149.4 71.0 5.8 0.5
Share (%) 45.9 25.8 18.7 8.9 0.7 0.1

In 1990 hydro was practically the only renewable energy source but by the year 2000 there was a

boom of wind energy generation that continued until today. The influence of solar energy remains

low but it is expected to increase both in the residential and the industrial context (International

Energy Agency, 2013a,b,c). The total amount of hydroelectric energy has remained almost

constant because in the EU countries in general suitable locations for dams are already used and

normally the environmental and social impact is high due to the size of these power plants. For

these reasons the amount of energy from big hydro power plants is expected to remain almost

constant (U.S. Department of Energy, 2013). However, there are some interesting projects about

upgrading conventional hydro power plants into variable speed and/or pumped storage hydro

power plants (Janning and Schwery, 2009; Schmidt et al., 2011; Pannatier et al., 2010). Many

renewable energy sources such as wind and solar can’t be produced on demand. Therefore,

storage capacity is needed and variable speed pumped storage power plants can be useful in that

respect.

To achieve the ambitious goals proposed such as the 20-20-20 it is necessary to boost the de-

ployment of all types of renewable energy sources. The problem is doing this without having to

rely on expensive subsidies that can deteriorate the competitiveness and economic efficiency of

countries. A possible solution to this problem is that the regulation instead of giving subsidies

to the generation should help to make the renewables competitive and in this context the market

will pull instead of being pushed by the public organisations (Jeffrey et al., 2013; Allan et al.,

2014; Lawrence et al., 2013).

Wind and marine energy technologies are based on the principle that a flow of air or water

moves a turbine at low speed (5-25 rpm for wind turbines and 5-150 rpm tidal turbines). Since
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traditional generators rotate at much higher speeds (3000-1500 rpm) it is necessary to install a

gearbox in the drive train. These gearboxes are expensive, not fully reliable and the maintenance

costs are high; which makes the price of the energy go up.

1.2.1 Wind Energy

In the context of renewable power generation wind energy has been the fastest growing energy

technology in the world because it is one of the most cost-effective renewable source of electricity

(Hansen and Hansen, 2007; Bull, 2001). Since 1995 the average growth has been almost 25 % per

year and it is expected to keep growing (International Energy Agency, 2013b; U.S. Department

of Energy, 2013).

Most of the installed systems at utility scale have a standard three-blade rotor (Hansen and

Hansen, 2007). In terms of the electric generator there are two main concepts: geared and

direct-drive (McMillan and Ault, 2010). As the name suggests the geared system has a gearbox

(normally a three-stage gearbox (Hansen and Hansen, 2007)) to transform the low speed rotation

(around 5-25 rpm (Semken et al., 2012)) into the high speed required by traditional generators.

On the other hand, the direct-drive has a special type of generator that is designed specifically

to operate at low speeds. Normally direct-drive electric generators are larger than geared ones

because the size of the machine is proportional to the torque produced.

Polinder et al. (2013) did an extensive review of the current trends in the wind energy industry.

The four most commonly used configurations are shown in Figure 1.1. This list is almost the same

list as the one presented by Hansen and Hansen (2007) except for the system called Type B that

is the same as the second one of Polinder’s list but instead of using a power electronics converter

it has a variable resistance connected to the rotor windings. This configuration is almost extinct

because it is considerably more inefficient than the second one in the list presented here. A brief

description of each of these technologies is shown below, based on (Polinder et al., 2013; Hansen

and Hansen, 2007; Zhu and Hu, 2012a,b).

A. Constant Speed Squirrel-Cage Induction Generator

This was the most common technology in the early days of wind turbines, sometimes this

system is called the Danish Concept. It consists simply in a three-stage gearbox and a

squirrel-cage induction generator directly connected to the grid. In this system there is

no control of the speed therefore variations in the wind speed can make it inefficient. The

main strength of this design is that all the components are standard making it very cheap.

Other strength is that the squirrel-cage induction generator is very robust and reliable

because of its simplicity.

B. Doubly Fed Induction Generator

This system became very popular after 1996 when many manufacturers moved from the

constant speed squirrel-cage to this configuration. This system consists of a multi-stage

gearbox, a doubly fed induction generator and a power electronic converter to feed the

rotor winding. The converter has a rated power of about 25 % of the rated power of

the generator, enabling to operate in speeds from 60 % to 110 % of the rated speed of the

machine with the consequent improvement of efficiency. An important disadvantage of this
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Figure 1.1: Four commonly used wind generator systems.
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system was noticed when the operators of the power system imposed voltage-ride through

requirements on wind farms2.

C. Direct Drive Generator System

Since 1992 there have been manufacturers using gearless generator systems. The generator

itself is a synchronous machine and it is necessary to have a fully rated power electronic

converter for the grid connection. In the past most of the direct-drive generators were

electrically excited but now there are several designs using permanent magnets. The main

advantage of the direct drive generator systems is that by getting rid of the gearbox the

system is more reliable (in theory) and the maintenance costs are lower, however this needs

to be studied in more detail. Section 1.2.1.1 analyses the problem of gearboxes and direct

drive generators extensively.

D. Brushless Generator with Gearbox and Full Power Converter

This system is an evolution of B that improves the voltage-ride through capability of wind

farms. The system is made of a gearbox, a brushless generator and a fully rated power

converter. The main disadvantage of this configuration is that the power converter is more

expensive that the one required in B and decreases the overall efficiency.

Choosing between these systems for a particular project is a very important step in the design

and still there is not a clear winner (Polinder et al., 2013; McMillan and Ault, 2010; Hansen

and Hansen, 2007). The next section presents an analysis of the problems of gearboxes and the

advantages of a direct drive configuration.

1.2.1.1 Reliability, Gearboxes and Direct Drive Technology

Reliability is one of the key issues for wind turbines, particularly in off-shore power plants

(Polinder et al., 2013; McMillan and Ault, 2010; Tavner et al., 2006). Gearboxes are one of the

most expensive components of the generator system and several failures in this component have

generated uncertainty in the industry (Echavarria et al., 2008; Spinato et al., 2009; Arabian-

Hoseynabadi et al., 2009). The typical configuration of a geared wind turbine is presented in

Figure 1.2. It can be appreciated that it has a low speed shaft connected to the rotor spinner

and the gearbox to increase the rotation speed of the shaft of the traditional generator.

The alternative to the geared drive train is the direct drive configuration shown in Figure 1.3.

The generator in this case is directly connected to the low speed shaft; it can be appreciated

that the generator is considerably bigger in diameter than in Figure 1.2. Also the direct drive

electric generator can be more complicated and more expensive than in the geared one.

In the literature there is a very high number of publications suggesting that direct drive gen-

erators specifically designed for wind turbines (Grauers, 1996; Semken et al., 2012; Ran et al.,

2011; Zavvos et al., 2013; Polinder et al., 2006; Spooner et al., 2005; National Renewable Energy

Laboratory, 2010; Bang and Polinder, 2008; Bang et al., 2008; Polinder et al., 2007). Almost

every one of these publications states that a direct drive system is inherently more reliable than

2The author believes that the name “Doubly Fed Induction Generator” is an inaccurate and misleading name
because there is nothing being induced since the frequency of the rotor currents is actively controlled. A more
accurate name would be simply doubly fed asynchronous generator.
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TABLE I

TOP 10 WIND TURBINE MANUFACTURERS OF 2012, CURRENTLY USED

GENERATOR CONCEPTS AND POWER RANGES [20]–[29]

1) Pole changing induction generators have two stator
windings with different numbers of pole pairs so that the
turbine can operate at two constant speeds to increase
energy yield and reduce audible noise.

2) The semi-variable speed wind turbine has a wound
rotor induction generator with an electronically variable
rotor resistance. This enables larger speed variations and
reduces mechanical loads and power quality problems.
This system is sometimes mentioned as a separate gen-
erator system [15].

B. Doubly Fed Induction Generator

After 1996, many wind turbine manufacturers changed to a
variable speed system with a doubly fed induction generator
(DFIG) for wind turbines with power levels above roughly
1.5 MW. This system consists of a multistage gearbox, a
relatively low-cost standard DFIG and a partly rated power
electronic converter feeding the rotor winding. Pitch control
limits the output power to rated power at wind speeds above
rated.

The power rating of the converter is ∼25% of the rated
power, enabling a speed range from roughly 60% to 110%
of the rated speed. This is sufficient for a good energy yield
because the tip speed ratio can be kept optimal for a large part
of the operating range.

Compared with the constant speed system, this system
enables a more flexible match with requirements considering
audible noise, mechanical loads, power quality, and energy
yield. An important disadvantage of this system appeared
when the grid codes of the power system operators prescribed

Fig. 3. Sketch of a nacelle with gearbox, in this case of a constant speed
NEG micon wind turbine. Source: Bundesverband WindEnergie e.V.

grid-fault ride-through capabilities [2]. This was not possible
with the standard DFIG system, and therefore a lot of work
has been done to enable grid-fault ride-through [30]–[36]. This
work has been so successful that general electric (GE), after
changing to gear and full converter (GFC) systems around
2005, changed back to DFIG in 2012 [14].

C. Brushless Generator With GFC

Since around 2005, several large manufacturers have devel-
oped variable speed wind turbines with a gearbox, a brushless
generator, and a converter for the full rated power. Pitch
control limits the output power to rated power at wind speeds
above rated. This system is mainly used to obtain better grid-
fault ride-through characteristics than the DFIG and to avoid
the maintenance and the failures of the brushes of the DFIG.
However, a fully rated converter has more losses than a partly
rated converter as in the case of a DFIG.

There are quite a number of variants of this system on
the market because different generator types and different
gearboxes are used. Several manufacturers use PM generators,
but squirrel-cage induction generators are also used (Table I).
The number of gear stages in this system may vary from one
to three. According to (3), a lower number of gear stages
implies a larger generator, but the resulting system may be
more efficient and more reliable because of the omission of
the high speed stage of the gearbox [17], [37]. The multibrid
system shown in Fig. 4 has a single stage gearbox and a PM
generator.

D. Direct-Drive Generator System

Since 1992, there have also been wind turbine manu-
facturers using gearless generator systems with direct-drive
(DD) generators as shown in Fig. 5. The generator is a
synchronous machine. A fully rated power electronic converter
is necessary for the grid connection.

Figure 1.2: Nacelle of a constant speed wind turbine, specifically the NEG Micon. Source:
Bundesverband Wind Energie (BWE: German Wind Energy Association, 2014).
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Fig. 4. Sketch of the multibrid system. Source: Winwind.

Fig. 5. Sketch of a gearless nacelle, in this case of an Enercon E-66 DD
wind turbine. Source: Bundesverband WindEnergie e.V.

In the nineties, DD generators mainly had electrical exci-
tation, because PMs were too expensive. When the price of
PMs decreased, the focus shifted to PM generators. The high
magnet prices around the year 2011 have again increased the
interest in alternatives for PMs.

For a long time, Enercon has been the only large successful
DD manufacturer, although there were several smaller DD
manufacturers. However, also other large wind turbine manu-
facturers have started producing DD wind turbines (Table I).

The main reason for using DD systems is to increase
reliability by avoiding the maintenance and the failures of the
gearbox and by reducing the number of turbine parts. However,
it has yet to be proven that the reliability of DDs is really better
than that of geared systems [6].

The main disadvantages of the DD generator are that the
low-speed high-torque generator (3) is a large, heavy, and
expensive and that low speed generators are less efficient than
high speed generators. Therefore, a lot of research has been

done to optimize these machines. The electromagnetic and
thermal limitations of the iron cored radial flux generators
as applied in the industry are described in [10]–[12] and
[38]–[40]. To reduce the manufacturing cost of DD genera-
tors, tooth wound concentrated windings have been proposed
[41]–[43]. The additional losses due to the additional space
harmonics are a point of concern.

E. Conclusion on Currently Used Generator Systems

It is clear that the constant speed system is disappearing.
However, there is no clear convergence toward a single best
wind turbine generator system, but instead the variety of wind
turbine generator systems is increasing. The three currently
used variable speed systems all have their strengths and
weaknesses and are expected to remain the coming years. An
attempt to compare these generator systems in terms of cost
and energy yield was made in [17], but this comparison also
did not result in a clear winner.

IV. FUTURE GENERATOR SYSTEMS

This section reviews elements of possible future generator
systems, including hydraulic transmissions, alternative DD
generators, brushless DFIGs, magnetic pseudo DDs, supercon-
ducting generators, and power electronic converters. For most
of these systems, we are not yet able to predict if they will
lead to a cost of energy lower than that of the currently used
generator systems. Therefore, this paper describes proposed
future generator systems and lists the critical advantages and
disadvantages compared with the currently used generator
systems.

A. Mechanical Continuously Variable Transmissions

Continuously variable transmissions make it possible to use
directly grid connected synchronous machines with electrical
excitation, thus avoiding power electronic converters.

The most commonly used mechanical continuously variable
transmission is based on a gearbox with two output shafts
[44], [45]. The main output shaft is connected to a constant
speed generator. The speed of the other output shaft is con-
trolled using a variable speed drive in such a way that the speed
of the main shaft is kept constant. In a variant of this system
[46], the variable speed shaft is mechanically connected to
the constant speed shaft with a continuously variable speed
transmission based on a metal belt.

To obtain a reasonable speed variation, the power level of
the variable speed system must be considerable, comparable
with the DFIG system. Furthermore, this system increases
the complexity of the gearbox. Therefore, we do not yet see
convincing advantages compared with the DFIG system.

B. Hydraulic Transmission Systems

Hydraulic transmission systems can be divided into
hydrodynamic and hydrostatic transmissions [47]–[49]. The
WinDrive (of Voith) is based on a hydrodynamic transmission
or a torque converter, where turbines give energy to and take
energy from an oil flow. This only works for high speeds,

Figure 1.3: Nacelle of a direct drive wind turbine, specifically the Enercon E-66 DD. Source:
Bundesverband Wind Energie (BWE: German Wind Energy Association, 2014).
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a geared one because of the long history of failures in the gearbox (Echavarria et al., 2008; Wind-

power Monthly, 2005; Rasmussen et al., 2004). However, in the literature there is no conclusive

scientific proof of this assertion. Furthermore, there are some articles that suggest that reliability

of direct drive wind turbines is almost the same as geared turbines or even worse (McMillan and

Ault, 2010; Echavarria et al., 2008; Spinato et al., 2009; Arabian-Hoseynabadi et al., 2009).

To understand the widespread belief that gearboxes are diminishing the overall reliability of wind

turbines we need to move to the late 1990’s when massive series of failures in the gearboxes of

the NEG Micon brought the company close to bankruptcy (Windpower Monthly, 2005). The

causes of these failures are still not clear even though wide ranging research has been carried out

(Rasmussen et al., 2004; Spinato et al., 2009). Rasmussen et al. suggested that the failure was

probably caused by the misalignment of the bearings. On the other hand, it was suggested that

the problem of gearboxes was partly due to the fast development of the industry when in reality

suitable gearboxes for the bigger turbines simply did not exist before (Windpower Monthly,

2005); this idea is consistent with Rasmussen’s claim. A study of the different gearboxes of wind

turbines was reported in (National Renewable Energy Laboratory, 2004, 2003).

Despite all these problems some studies state that geared machines are still more reliable than

direct drive machines (Echavarria et al., 2008; Arabian-Hoseynabadi et al., 2009; McMillan and

Ault, 2010). Then why is there such an interest in the development of direct drive systems?

The answer to this question can be found in (Spinato et al., 2009). Spinato et al. postulate

that direct drive systems are not necessarily more reliable. However, the gearbox technology

is mature and substantial improvements are not expected. On the other hand, there is not a

standard solution for the direct drive generators, which implies that the industry is not mature

yet and revolutionary concepts are expected to appear over time. The following is a summary

of the reasons why direct drive technology will remain of interest in the future (Spinato et al.,

2009):

• Direct drive systems are not necessarily more reliable than geared systems. However, the

failures in the gearbox can be considered catastrophic and the operation hours lost for

repair/replacement are very high.

• The gearbox industry is mature and substantial improvements are not expected in the

future.

• The failure rates in direct drive generators is higher than in traditional generators. How-

ever, the industry is not mature (there is not a single technology that stands out amongst

the rest) therefore revolutionary concepts are expected to appear.

• The hours of operation lost by a failure in the generator are lower than in a gearbox failure

because the repair is simpler. Therefore the total downtime hours produced by a failure in

the generator are lower.

• In direct drive systems a full scale power converter is required and the failure rate of this

device is high. Currently the development of power electronics is extremely high therefore

we expect an improvement of the reliability of these devices.

This section has given a very brief overview of the wind energy industry, including the history

and the challenges for the future. The main idea is that if we want to keep increasing the presence
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of the wind in the energy mix we need to make it more competitive from the economic point of

view. In this context the direct drive concepts are very promising because even though they have

not proven yet that they are more reliable the technology is moving very fast and year after year

many new concepts will appear (Grauers, 1996; Semken et al., 2012; Ran et al., 2011; Zavvos

et al., 2013; Polinder et al., 2006; Spooner et al., 2005; National Renewable Energy Laboratory,

2010; Bang and Polinder, 2008; Bang et al., 2008; Polinder et al., 2007).

1.2.2 Marine Energy

The marine energy sector is still at a very early stage and besides the case of Scotland the share

of the energy mix is almost insignificant in the rest of the world (International Energy Agency,

2013c, 2014; Jeffrey et al., 2013; Lawrence et al., 2013). But there is a strong effort both from

governments and the industry to develop this technology because it has several positive aspects

like high predictability, higher power density and therefore smaller turbines than those of wind

generators. In addition, it can be implemented in places where there is no social impact. One

of the most important research centres in the world is the European Marine Energy Centre in

Orkney, Scotland (European Marine Energy Centre (EMEC) Ltd, 2017), where both industry

and academia can test prototypes in real conditions. Some of the most relevant companies in

the marine energy sector are shown in table 1.2.

Table 1.2: Important companies in the marine energy sector (Marine Current Turbines LTD,
2017; OpenHydro Group Limited, 2017; Magallanes Renovables, S.L. , 2017; Wello OY, 2017;
Andritz Hydro Hammerfest , 2017; Pelamis Wave Power, 2015; Aquamarine Power, 2015;

Alstom, 2017).

Location Technology
Aquamarine Power Edinburgh, UK Wave energy
Pelamis Wave Power Edinburgh, UK Wave energy
ScottishPower Renewables Glasgow, UK Wave energy
Wello Oy Finland Wave energy
Openhydro Ireland Tidal energy
Magallanes Renovables Spain Tidal Energy
Alstom (now GE) USA Tidal energy
Andritz Hydro Hammerfest Norway Tidal energy

Pelamis Wave Power went into bankruptcy in December 2014 and Aquamarine Power did the

same in October 2015. Alstom was acquired by GE and its cooperation with EMEC ceased.

Also, Openhydro was acquired by DCNS in 2013. All these rapid changes in the market show

that the marine energy sector is a hot topic.

The marine energy industry has similarities with the wind energy industry, in particular the tidal

energy devices. Most tidal energy devices are made of a turbine connected to a generator directly

or through a gearbox. As in the case of the wind, the tides flow very slowly (around 1 m/s) and

hence the ration speed of the turbines is low (from 10 to 150 rpm normally). Therefore, either a

gearbox to increase the rotation speed of the shaft or special direct drive generators are needed.

The problems of reliability in this case are critical because a repair requires very complicated

operations underwater in places with strong currents. For these reasons the direct drive systems

are even more interesting in this case than in wind turbines.
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The following sections show two devices for harvesting energy from the sea to give the reader a

general idea about what is happening in the industry and academia.

1.2.2.1 SeaGen

The SeaGen was the first commercial scale tidal generator in the world connected to the grid

(Marine Current Turbines LTD, 2017); it is installed in Strangford Lough, Northern Ireland. It

has a rated power of 1.2 MW using two turbines with a diameter of 16 m each. There are plans

to scale-up this project to 20 m turbines and 2 MW of rated power. Figure 1.4 shows a general

view of the turbines and the generator system.

Figure 1.4: Schematic view of the SeaGen, c©2011 IEEE.

The drive train has a very similar topology to the wind turbine system. One of the advantages

of this particular design is that the turbines can be lifted to the top of the tower for maintenance

or repair. According to the manufacturer each six months a group of people need to bring a

hydraulic system for lifting the two turbines for maintenance and every 5 years an industrial

vessel with a crank has to come to replace the complete drive train (Marine Current Turbines

LTD, 2017; Keysan et al., 2011; Douglas et al., 2008).

One very interesting project carried out in the University of Edinburgh aims to replace the geared

generator with a direct drive machine. Muller et al. developed what is called the C-GEN that

is a novel permanent magnet generator to reduce the overall mass of the system, in which the

electromagnetic and structural design are integrated (Hodgins et al., 2009; Keysan et al., 2012;

Mueller et al., 2007; Ran et al., 2011; Subiabre and Mueller, 2011).

1.2.2.2 The OpenHydro Turbine

OpenHydro is a company based in Dublin that has been in the industry since 2005. The Open-

Hydro concept is very interesting because the electric machine and the turbine are one integrated

design (OpenHydro Group Limited, 2017). The electric machine is in the outside ring and not in
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the axis of rotation in a similar way as the marine thrusters developed by Sharkh et al. (Sharkh

et al., 2004).

2 

mounted on its deployment barge before being lowered to the 
seabed in the bay of Fundy Canada. Smaller 6m research 
machines have been tested on a special-purpose R&D 
platform in the European Marine Energy Centre in Orkney, 
and have generated power into the UK grid.  

 
 
Figure 1: Open Hydro 16m commercial turbine  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: The 16m prototype during construction 
 

 
 Figure 3:  A 10m prototype on its deployment barge 

2 Permanent magnet rim generator 

The generator is mounted at the rim of the turbine as 
illustrated in Figure 4. It has a radial-flux, surface-mounted, 
permanent-magnet Nd-Fe-B rotor.  It was considered 
impractical to fit water seals, so the generator operates with a 
flooded gap. Both the rotor magnets and the stator winding 
are encapsulated for protection from the sea water.  
 

 
 
Figure 4: The arrangement of the PM rim generator 
 
The rotor magnets are simple rectangular blocks mounted on 
short sections of back iron to facilitate assembly and to make 
it possible to provide all-round protection from the water. The 
stator winding comprises a number of discrete coils housed in 
waterproof non-metallic enclosures and connected in series 
and parallel groups within each of the three phases. The 
airgap (water gap) diameter of the generator in the 
commercial prototype is approximately 14m.  The machine 
has no shaft and so the bearing system is also of very large 
diameter. The radial clearance between rotor and stator is 
necessarily large and since the magnets are surface mounted 
and the stator winding is slotless, both enclosed in thick 
protective enclosures, the total magnetic gap is unusually 
large. Initial electromagnetic design and analysis of the 
generator has been based on 2D analytic and 2D finite 
element models, Fig. 5. However, the very large magnetic gap 
means that the effects of the ends of the magnets and the 
stator laminated core extend a long distance axially into the 
active part of the machine. As a result there is a large 
difference between the emf expected from a simple 
application of the 2D results and the emf measured in 
practice.  
 

 
 
Figure 5: 2D FE model 
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Figure 1.5: The 16 m prototype during construction, c©2014 IEEE.

The generator itself has been designed specifically for this application and it is direct drive,

that aims to improve reliability and avoid the problems of short life-cycle and high maintenance

costs of the SeaGen. The large diameter and the non-traditional topology produce a high torque

machine suitable for direct drive (Baker et al., 2014; Villegas and Cawthorne, 2013).

It is important to mention that in the design process it was considered impractical to fit water

seals so the generator operates with a water-gap instead of an air-gap (Baker et al., 2014). To

hold the turbine in place with the water-gap the systems has magnetic bearings (Spooner and

Dunne, 2011). This is an interesting solution but of course requires a high amount of magnetic

material that increases the overall cost of the system. There are almost no scientific publications

about this system and for this reason it is not possible to assess its performance. However, it is

one of the most successful marine turbine in the market.

1.3 Classification of Electric Machines

Figure 1.6 displays graphically a classification of electric machines. In grey we have the traditional

machines: DC machines, induction machines and electrically excited (EE) synchronous machines;

these devices are analysed extensively in (Kundur, 1993; Fitzgerald et al., 2003; Matsch, 1972;

Say, 1965; Hendershot and Miller, 2010) and a detailed description of them is outside the scope

of this document. The reluctance machines are shown in light orange, the characteristics of them
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can be found in (Lovatt, 2005). In green we have the permanent magnet (PM) machines that

are the main topic of this Thesis. We can define three sub-classes of PM machines depending on

the flux path:

• Radial flux: They are probably the most common type of PM machine. The concept

is very similar to the synchronous machines but instead of having an electrical excitation

there are permanent magnets (Hendershot and Miller, 2010).

• Axial flux: As the name suggests, the magnetic flux is parallel to the axis and in some

cases it has a toroidal slotless stator, some examples of these machines are described in

(Polinder et al., 2013).

• 3D flux: In the literature this kind of machines is referred as Transverse Flux Machines

(Harris and Pajooman, 1995; Harris et al., 1996, 1997a; Pajooman, 1997; Zhang et al.,

2014; Kastinger, 2002; Blissenbach and Viorel, 2003; Kang et al., 2003; Ibala et al., 2011;

Bang et al., 2008; Yang et al., 2012; Kang and Weh, 2008; French et al., 2002; Polinder

et al., 2005; Ueda et al., 2013; Polinder et al., 2003). We included as 3D flux machines

because there is not a single standard characteristic that these machines share except that

the magnetic field follows a path that is 3-dimensional (not like in the previous two sub-

classes). Inside this category there are machines that have a high torque capability like

the variable-reluctance permanent-magnet (VRPM) machine. For air-cooled TFMs, like

the one described in (Pajooman, 1997), the torque density3 is between 30 to 50 kNm/m3

when for a traditional machine with the same type of cooling this value is between 10 17

kNm/m3.

1.3.1 Description of the Transverse Flux Machine under Study

This section shows a particular VRPM or transverse flux machine (TFM) built at the University

of Southampton that will be used all through the document as a case study. This machine has

a very simple structure which makes it robust, easy to construct and reliable but on the other

hand it has some issues regarding its low power factor. Furthermore, it has been studied in detail

in the past, which makes it the ideal candidate to apply the theory developed in this Thesis.

The magnetic topology of this machine is similar to that of claw-pole machines. Fig. 1.7 shows

the radial and axial cross-sections of the machine built at the University of Southampton (Harris

and Mecrow, 1993; Harris and Pajooman, 1995; Harris et al., 1996, 1997a; Pajooman, 1997).

The stator has two phases comprising a circular coil each, linking and magnetising 20 laminated

C-cores which modulate the armature’s magnetic field to produce a fundamental heteropolar (40

poles) harmonic in the radial direction. The number and width of the C-cores has been carefully

selected to maximise the flux utilisation factor and the torque produced by the machine.

The outer rotor comprises a cylindrical yoke with 4 arrays of 40 heteropolar magnets each, glued

to the inside surface. Each phase is associated with two arrays of magnets: one array positioned

over the left-hand C-core legs and the other array, which is spatially anti-phase with the first, is

positioned over the right-hand C-core legs. The two sets of magnet arrays corresponding to the

3The torque density defined as torque per volume.
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Figure 1.6: Classification of electric machines.

Figure 1.7: Front view and cross-section of a single sided TFM.
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two phases are spatially shifted by 90 electrical degrees (alternatively, the two sets of C-cores

could be spatially shifted by 90 electrical degrees). The radial heteropolar flux harmonic interact

with the magnets to produce useful torque. The aligned position is defined as the position of

the rotor in which the flux passing through the C-cores is maximum.

Figure 1.8: Picture of the stator and the rotor of the TFM under study.

Figure 1.8 shows a picture of the prototype machine. The key geometrical parameters of this

device are shown in table 1.3, which also defines the symbols used. The value of the magnetic

gap, gz, is calculated as

gz = dm + cg. (1.1)

Table 1.3: Parameters of the TFM

Quantity Symbol Value
Stator radius Rs 73 mm
Rotor radius Rr 78.5 mm
Clearance gap cg 1 mm
Magnet thickness dm 4.5 mm
Magnet axial length Lmag 21 mm
C-core head width lcore 15 mm
C-core axial length ws 50 mm
C-core height hs 41 mm
C-core slot width wc 20 mm
C-core slot height hc 24 mm
Winding clearance hco 2 mm
Pole pitch θλ 18o

Tooth pitch θt 7.02o

Slot pitch θs 10.98o

Number of C-cores Nc 20
Number of turns Nw 230
Number of phases q 2
Magnetisation M ∼ 835 kA/m

The principle of operation is based on the variation of the reluctance with the position, seen

from the rotor side, because of the C-cores. Figure 1.11 shows schematically the path of the

magnetic field in two different positions. If there is a current that goes out of the paper (dot in

the figure) because of the right hand rule the magnetic field will be counter-clockwise and there

will be an electromagnetic force that will try to move the rotor towards the magnets that create

a magnetic field in the same direction.
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Figure 1.9: Dimensions of the TFM explained schematically.

Name of the project 
DATE 

Short description:

General information: 

Symbol Description Value 

Pmech
Rated active power in the 
shaft at rated speed (n). 

n Rated speed. 
T Maximum torque. 
J Current density. 

P Pairs of poles also number of 
C-cores.

Nph Number of phases. 

Nrows
Number of repetitions of the 
phases axially. 

KB Flux factor. 
Type of machine: (inner rotor/outer rotor) 

Materials data: Geometrical data:

Material Mass [kg]

Copper 

Iron 

PM 

Material Cost [€]

Copper 

Iron 

PM 

Symbol Description Value 
Din Inner diameter. 
Dout Outer diameter. 
cgap Clearance gap. 
L Axial length of the device. 
dm Magnet thickness. 
lyoke Yoke width. 
hs Height of the C-cores. 
ws Width of the C-cores. 
hc Coil height. 
wc Coil width.

wm
Width of C-core leg with 
tooth-tip. 

wl Width of C-core leg.

Din 

Dout 

ws

hc

Fig. 1: Machine dimensions.

Fig. 2: C-core dimensions. 

hs
wc

hco

Winding

Figure 1.10: Dimensions of the C-core in detail.

I I

Figure 1.11: Path of the magnetic field depending on the current.
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When the current goes into the paper the magnetic field produced will be clockwise and the

electromagnetic force will try to align with the magnets on the opposite way than the previous

case.

dm g

θ

r

θ = −π2 θ = π
2

t s

C-core

core-back

(a) Maximum torque position with a positive current.

θ

r

θ = −π2 θ = π
2

(b) Maximum torque position with a negative current.

Figure 1.12: Developed model of the TFM. The positive force is shown in red and the
negative one in green in two rotor positions.

Figure 1.12 shows the developed model of the air-gap of the TFM with the equivalent currents

shown as dots and crosses (shown only for one PM). Figure 1.12 shows the maximum torque

position for a positive current (flux going up in subfigure a) and the maximum torque position

for a negative current (flux going down in subfigure b).

With the appropriate current waveform with more than one phase this machine can produce a

net positive torque. The machine built in Southampton has two phases with 90 electric degrees

of difference and 20 C-cores per phase, in each phase there are two rows of 40 magnets with

alternating polarity.

1.3.2 Modelling of Transverse Flux Machines

The modern trend to study machines with complicated geometries such as TFMs (Gieras, 2005;

Keysan et al., 2012; Kang and Weh, 2008; Yang et al., 2012; Baker et al., 2014; Zhang et al., 2014;

Doering et al., 2015; Liu et al., 2015; Wan et al., 2015; Dobzhanskyi and Gouws, 2016) and claw

pole machines (Washington et al., 2012; Baker et al., 2012; Ahmed et al., 2014; Deodhar et al.,

2015; Washington et al., 2016) is to use 3D CAD modelling and numerical methods like finite

element analysis (FEA). This approach can be conveniently complemented with optimisation

algorithms, particularly evolutionary genetic algorithms, which have been used widely in this

area (Pompermaier et al., 2012; Zhang et al., 2016; Oh and Kwon, 2016). However, the insight

provided by numerical methods is not as deep as that provided by analytical methods and the
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combination of 3D CAD modelling and 3D FEA tends to be more time consuming. Therefore,

there remains significant interest in analytical methods that can be used at the initial design

optimisation stage to produce nearly optimal models that can be refined further using FEA,

which significantly reduces time and effort.

The computational capability of computers has improved (and keeps on improving) at a fast

pace. Consequently, the simulation time keeps reducing accordingly. However, when we state

that 3D FEA combined with 3D CAD modelling is time consuming we are talking about the total

time of the process. Two-dimensional geometries can be easily parametrised but 3D geometries

(such as the topologies of TFMs) have many geometrical parameters; which complicates the

geometrical modelling significantly. Therefore, the overall time of the process is high.

The design of brushless permanent magnet (PM) machines is a complex iterative process in

which many factors have to be taken into account. However, when designing traditional PM

machines there are several analytical expressions to obtain a quick estimation of the performance

of these devices before refining the final design with more complicated methods such as FEA

(Hendershot and Miller, 2010; Tapia et al., 2013). Because of the three-dimensional nature of

TFMs the number of free geometrical parameters is high; which means that the approach that

uses genetic algorithms combined with 3D FEA may not be feasible (Zhang et al., 2016; Oh

and Kwon, 2016). Furthermore, the simple analytical expressions derived for traditional PM

machines are not always suitable for the analysis of TFMs because of their different topology

and principle of operation.

1.4 Aims and Objectives

In general terms, this Thesis deals with the analysis, modelling and design of transverse flux

machines suitable for renewable energy applications. In particular, the TFM developed at the

University of Southampton and described in section 1.3.1 will be used as a case study throughout

the document.

The specific objectives of the research presented in this Thesis are:

• Develop an analytical framework based on the complex permeance function to obtain the

magnetic field distribution in the air-gap of homopolar transverse flux machines.

• Implement the complex permeance function in a toolbox based on Matlab.

• Investigate in depth the parameters, such as the slotting model and curvature, that influ-

ence the accuracy of the complex permeance framework developed.

• Generalise the torque equation proposed by (Harris and Mecrow, 1993; Harris and Pa-

jooman, 1995; Harris et al., 1996; Pajooman, 1997) and combine it with the complex

permeance framework.

• Develop a methodology to calculate the flux linkage and back emf in transverse flux ma-

chines.

• Study the relationship between torque and power factor, which tends to be low, in trans-

verse flux machines.
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• Study the application of the current sheet model for the calculation of rotor losses in

transverse flux machines. In particular, investigate the usage of transfer matrices to reduce

the complexity of the problem.

• Establish some design guidelines for transverse flux machines based on the background

theory developed and provide an insight into the optimisation process of these devices.

1.5 Novel Contributions

The following novel contributions are presented in this Thesis:

• A functional Matlab-based framework using the complex permeance function has been

successfully developed (Anglada and Sharkh, 2016a). This toolbox has been used to study

the effect of curvature (Anglada et al., 2017) and the slotting model considered (Anglada

et al., 2016) for the calculation of rotor eddy-current losses in high speed PM machines.

• A generalization of Harris et al.’s torque equation has been developed, validated and im-

plemented in a Matlab-based toolbox (Anglada and Sharkh, 2017b).

• A virtual mutual inductance approach has been proposed for the calculation of the flux

linkage. This approach has been validated using 3D FEA and experimental data (Anglada

and Sharkh, 2017a).

• Using the torque equation and the virtual mutual inductance approach it has been proven

that the low power factor of transverse flux machines is not due to leakage in the classical

way, as many authors sustain, but due to the ineffective use of the magnetic flux (Anglada

and Sharkh, 2016b, 2017c).

• The cylindrical multilayer current sheet model has been reformulated using transfer matri-

ces. The approach using transfer matrices allow us to study geometries with any number

of layers without increasing the complexity of the problem significantly.

• An optimisation methodology based on a trade-off between torque density and power factor

has been proposed. Several generic curves for single-sided TFMs are shown in this Thesis

but the principle is completely general and can be applied to other topologies.

• All the methodologies described in the previous bullet points have been implemented in a

transverse flux machine optimisation software based on Matlab. The case study is a tidal

generator.

1.6 Outline of the Thesis

The first part of this Thesis is an introduction to the broad field of electric machines for renewable

energy applications. Chapter 1 includes an overview of the scope of this document, the context

of the energy sector with particular emphasis on wind and tidal energy, an introduction to

transverse flux machines, and the aims and objectives. Chapter 2 shows the most commonly
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used methods for the calculation of the magnetic field distribution in the air-gap of electric

machines.

Chapter 3 shows the implementation of the complex permeance function for the homopolar field

distribution of transverse flux machines. The expressions obtained here for the magnetic field

distribution in the air-gap are used in the following chapters for the calculation of torque, back

emf, power factor and rotor losses.

Chapter 4 describes a generalisation of Harris et al.’s torque equation (Harris and Mecrow, 1993;

Harris and Pajooman, 1995; Harris et al., 1996; Pajooman, 1997) and a novel equation for the

calculation of flux linkage (and back emf) of transverse flux machines. These two expressions

are then used to illustrate the problem of the low power factor of these machines.

Chapter 5 deals with the calculation of eddy current losses in general but applied to transverse

flux machines. The most important part of this chapter is the usage of transfer matrices in the

formulation of the problem to reduce the complexity.

Chapter 6 puts together the methodologies presented in chapters 3, 4 and 5 to design a transverse

flux machine for tidal power generation. This chapter illustrates how to use the methodologies

developed in previous chapters for the preliminary design of transverse flux machines.

Chapter 7 shows the conclusions and future work.





Chapter 2

Calculation of the Air-gap

Magnetic Field Distribution in

Electric Machines

2.1 Introduction

The magnetic flux-density distribution in the air-gap of an electric machine determines per-

formance parameters like torque, induced electromotive force and eddy current losses. If the

magnetic field distribution in the air-gap is fully known, then all the performance parameters

can be readily obtained. Obtaining the magnetic field distribution in the air-gap is basically

achieved by solving Maxwell’s equations with some particular boundary conditions. However,

the complex topologies of rotating electric machines mean that the boundary conditions are not

easy to handle. Therefore, there are several methods, both analytical and numerical, for calcu-

lating the magnetic field distribution. The aim of this chapter is to review the most relevant

methodologies to provide theoretical foundations for the following chapters.

In the early days of the electric machines as we know them today (the transformer, the induction

machine, the DC machine and the synchronous machine) the design was almost based on the

intuition of the engineer. Most of the documents written by Nikola Tesla contain very little

quantitative analysis about the performance of such devices (Tesla, 1888a,c,b, 1896). Almost

ten years later, Charles Proteus Steinmetz developed the fundamental theory of AC phenomena

and rotating machines using complex numbers (Steinmetz, 1894, 1897; Alger and Arnold, 1976)1.

However, most of Steinmetz’s work on magnetic fields was based on empirical formulae that relied

on direct observation and he did not attempt to calculate analytically the electromagnetic field

distribution.

Carter was one of the first to analyse quantitatively the problem of the electromagnetic fields in

rotating electric machines; he suggested a method based on conformal mapping that transformed

the slotted geometry of the air-gap into a slotless one in which the field could be calculated. He

1Evidence suggests that Steinmetz was the first one to use the letter j to represent the 90o shift.

21
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defined a coefficient to quantify the effect of slotting on the mean value of the magnetic field

waveform (Carter, 1900, 1926). However, the transformation from the slotted geometry into the

slotless one is a Schwarz-Christoffel (SC) transformation that does not have an explicit expression

for complicated domains (Driscoll and Trefethen, 2002) which makes the practical application of

this method difficult. Until 1929 the analysis of electric machines was mainly based on empirical

and equivalent circuit methods when Hague (1917) presented several methods to analyse the

magnetic field distribution produced by currents with different boundary conditions (O’Connell

and Krein, 2009). The main disadvantage of this method was that the field was expressed as

infinite series, which are more complicated to handle. Gibbs (1958) presented two different

methods to account for slotting based on conformal mapping, one method was a simplification

considering infinitely wide teeth and the other one takes into account the neighbouring slots.

Freeman (1962) applied Gibbs’ methods to a range of practical geometries and expressed the

distribution as a Fourier series showing the coefficients in graphs as a function of the normalised

parameters of the air-gap. The main disadvantage of Gibbs’ methods is that to calculate the

conformal map it is necessary to do a Schwarz-Christoffel (SC) transformation like in Carter’s

method.

The appearance of numerical methods like finite element analysis (FEA) allowed machine design-

ers to have very accurate solutions for the air-gap magnetic field even considering the non-linear

behaviour of materials. However, the process involved in such numerical methods tends to be

time consuming and in general it is difficult to gain an insight into the system under study unless

several geometries are analysed; some numerical solvers provide tools for parametric analysis for

this purpose. Numerical methods are very useful tools for the validation and the refinement of

the final design. But, analytical methods remain very useful procedures for an initial design

combined with an optimisation based on the insight provided.

Recently two analytical methods have been suggested in order to obtain an accurate solution of

the magnetic field in the air-gap: the sub-domain method and the complex permeance method.

In the sub-domain method the air-gap geometry is separated into simpler sub-domains; the

expression of the field for each of them and the field distribution is obtained by applying the

appropriate boundary conditions at the interface (Liu and Li, 2007; Liu et al., 2008; Dubas and

Espanet, 2009; Wu et al., 2010a; Zhu et al., 2010; Wu et al., 2010b, 2011, 2012b,a; Lubin et al.,

2013), see section 2.4. This method provides an accurate solution for the magnetic field but the

computation time is long because the problem has to be solved in each position of the rotor.

Also, the qualitative interpretation of the results of the sub-domain method is not easy due to

the inherent mathematical complexity of the formulation.

The complex permeance method proposed by Zarko et al. (Zarko et al., 2006; Boughrara et al.,

2009a,b, 2013) uses conformal mapping to obtain a function that modulates the magnetic field

distribution from the slotless configuration that was previously obtained by Zhu et al. (Zhu

et al., 1993; Zhu and Howe, 1993a,b,c; Zhu et al., 2002). One of the main disadvantages of the

complex permeance method proposed by Zarko is that the computation time is relatively high

because of the necessity of evaluating the permeance function at a great number of points to

generate the whole waveform. This method is described in detail in chapter 3 where we show

just a particular application of the CP method to TFMs.
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The aim of this chapter is to review the most relevant methods used to calculate the magnetic field

distribution in the air-gap of electric machines. Section 2.2 shows the most simplified method and

probably the most common as well; it is based on a 1-dimensional reluctance network. Section

2.3 discusses the basis for FEA applied to the field of rotating electric machines. Section 2.4

presents the sub-domain method briefly; a simple example is given. Section 2.5 describes the

use of conformal mapping to solve Maxwell’s equations. This section is particularly important

because the theory developed in the following chapters is based on conformal mapping. Section

2.6.3 is a natural extension to the previous section that gives a clear criterion to choose between

single-slot and multiple-slots methods. It is important to point out that this is the first time that

a clear criterion is expressed based on a theoretical background; this is an original contribution

by the author of this Thesis (Anglada et al., 2016). Finally, section 2.7 summarises the chapter.

2.2 Reluctance Networks or Magnetic Circuits

To obtain the magnetic field distribution in the air-gap of an electric machine Maxwell’s equations

with very complicated boundary conditions need to be solved. In most of the cases this solution

is impossible to obtain but with some simplifying assumptions we can construct a model that

calculates the magnetic field using an analogy to Ohm’s Law (Laithwaite, 1967; Carpenter, 1968;

Fitzgerald et al., 2003; Kirtley, 2003). If we consider that the frequencies involved are low (the

displacement current can be neglected (Stoll, 2011)) and we can ignore the effect of radiation

then the system is magneto-quasistatic (Fitzgerald et al., 2003). Under these assumptions the

relevant Maxwell equations are the following:

˛

C

~H · d~l =

¨

S

~J · d~a (2.1)

‹

S

~B · d~a = 0. (2.2)

Equation (2.1) is the integral form of Ampere’s Law where ~J is the current density expressed as

a vector, it means that the integral of the tangential component of the field intensity ~H around a

closed contour C is equal to the total current passing through any surface S surrounded by this

contour (Fitzgerald et al., 2003). The second one is expressing in a mathematical way that there

are no magnetic monopoles2, or what is the same that the magnetic flux density ~B is conserved.

We can apply this to a simple magnetic circuit like the one shown in Figure 2.1 to calculate the

magnetic field.

To calculate the magnetic flux in the metal core we can assume that the permeability of the iron

is much higher than the one of the air and that almost all the flux is confined inside the metal.

Considering that the magnetic flux density is uniform across the cross-section of the metal:

Φ =

¨

S

~B · d~a→ Φ = Bc ·Ac. (2.3)

2Dirac developed a theory about the existence of magnetic monopoles (Dirac, 1931). However, the only
documented detection of a magnetic monopole is the so-called “Valentine’s Day Monopole” detected by Blas
Cabrera (Cabrera, 1982); which has been widely disputed. This topic is still controversial (Rajantie, 2016).
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Figure 2.1: A schematic view of a magnetic circuit.

We can use (2.1) to calculate the magnetic field intensity:

F = Ni =

˛

~H · d~l, (2.4)

where i is the current, N the number of turns and F the total magnetomotive force.

If the core is not very wide we can assume that all the paths are close to the mean core length,

lc. So we have the following relationship:

F = Ni = Hc · lc. (2.5)

To calculate the magnetic flux density and the total flux:

~B = µ ~H → Φ = µHcAc. (2.6)

After these manipulations we can express what in the literature is sometimes called Ohm’s

Magnetic Law, that is simply making an analogy to an electric circuit:

F = Φ
( lc
µAc

)
= Φ · R → R =

lc
µAc

, (2.7)

where the magnetomotive force F is analogous to voltage, the total flux Φ to current and R,

that is called reluctance, is analogous to the resistance. This magnetic circuit is shown in Figure

2.2.

−
+F

Φ

R

Figure 2.2: Electrical analogy to the magnetic circuit shown in Figure 2.1.
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We can apply the same idea to more complicated geometries, like the one shown in Figure 2.3

that is exactly the same case as the previous one but with an air-gap in the core.

, µ

Ag

lc

λ

Figure 2.3: A schematic view of a magnetic circuit with an air-gap.

The magnetic circuit in this case has two reluctances, one for the core (Rc) and other one for

the air-gap (Rg). The analogue electrical circuit is shown in Figure 2.4, in which the two series

reluctances are calculated as follows:

Rc =
lc
µAc

, (2.8)

Rg =
g

µ0Ag
, (2.9)

and the total flux:

Φ =
F
Rtot

=
F

Rc +Rg
=

Ni
lc
µAc

+ g
µ0Ag

. (2.10)

−
+F

Φ
Rc

Rg

Figure 2.4: Electrical analogy to the magnetic circuit shown in Figure 2.3.

This procedure can be applied to estimate the flux in electric machines. Let us consider the

simplified synchronous machine shown in Figure 2.5, taken from an example in (Fitzgerald

et al., 2003). The examples shown previously are extremely simple but this methodology can be

applied to more complicated geometries and it also allows to quantify the magnetic coupling of

several electric circuits as it is shown in (Laithwaite, 1967; Carpenter, 1968).

To obtain the magnetic field in the air-gap for design purposes we can use the equivalent magnetic

circuit. This approach is valid for obtaining an approximate result that is in the same order of
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µ→∞

µ→∞

µ0

Ag

Figure 2.5: A simplified synchronous machine.

magnitude as the real solution but is not completely accurate because in practice we do not

know the path of the magnetic field. In the presence of air-gaps that have a toothed member the

magnetic field tends to fringe as it is shown in Figure 2.6 and therefore the simplistic methodology

presented previously is not completely accurate nor reliable for a detailed analysis.

air-gap

fringing

field

Figure 2.6: Flux lines of the fringing magnetic field in a tooth-to-tooth configuration.

Probably the most important feature of the magnetic equivalent circuit methodology is that be-

cause of its simple formulation, even if the results are approximated, it provides a very significant

insight into the system. Once the method is fully understood, the designer has the intuition to

know in which direction the magnetic flux will tend to go even if the exact value is not known.

For this reason several researchers have tried to generalise this methodology to make it suitable

for applications that require a better accuracy.
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One of the most significant contributions in this sense was done by Ostovic (1986, 1987, 1988,

1989). In these papers the magnetic equivalent circuits have several reluctances to model each

of the different flux paths. Ostovic suggested constructing an equivalent magnetic circuit in the

air-gap to take into account fringing, interpolar flux and leakage; then the problem is formulated

as a system of matrix equations. Figure 2.7 shows the magnetic equivalent circuit of the air-gap

of an induction machine. It can be appreciated that the complexity of this circuit is very high.

The increased complexity of these reluctance networks provides more accurate results but on the

other hand it makes the physical interpretation more difficult and therefore the insight provided

(that is probably the most important part of this method) into the system less straightforward.
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A METHOD FOR EVALUATION OF TRANSIENT AND STEADY
STATE PERFORMANCE IN SATURATED SQUIRREL CAGE

INDUCTION MACHINES

Vlado Ostovic
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Abstract - A brief survey of the application of the mag- tional error. More about this approach, which can be called
netic equivalent circuit method in evaluation of steady and the flux tubes method, can be found in [6], [7], [8], [9] and
transient states in induction machines is described in this [10]
paper. Taking into account machine geometry, type of wind-
ings, rotor skewing, magnetizing curve etc., this method is
able to solve transients in ac machines. Sample calcula- 2. The approach tothe problem
tions are provided, showing the influence of the number of
stator and rotor slots, initial conditions, rotor skewing and
saturation on electromagnetic and mechanical values dur- The method of induction machine magnetic curcuit
ing transients. evaluation differs signiflcantly from the same task in the

case of stepping motors, although their equivalent schemes
are almost the same (Fg. 2. 1). The difference in equivalent

Introduction circuits is caused only by the induction machine rotor wind-
ing, i.e. squirrel cage.

The last decades in electrical machine theory are
characterized by wide application of computers in calcula-
tion of both transient and steady state behavior. The basic
dynamical models of machines describe them as elec- G Fm
tromechanical systems in which all of the magnetic energy
is stored in the air gap, while torque between stator and ' -\
rotor is caused only by fundamental harmonics of the fluxes ism't'I17 Gr ISmf2
and currents. Generalization of these models enables cal- j'_Z% Y'z%-1l; tflZ
culation of the inMuence of numbers and shapes of stator I
and rotor teeth and stator windings [1],[2],[3],[4], as well as J J
skin effect [5] on fluxes, currents, speed and torque curves r>sm = I. tJ
during dynamics. I

Saturation in electrical machines is a spatiatL
phenomenon - it varies from tooth to tooth and from one to p
another part of the yoke. It reflects itself in different ways
on inductances in one phase compared to another, so it
cannot be taken into account correctly by just varying
machine equivalent circuit parameters.

The spatial character of saturation leads to an idea of
machine representation in the same way as it is
represented in flnite element methods. The necessity of r=
dynamic computation imposes that the number of these G,rpI |rp (Frpelements be as small as possible, which results in the
representation of a whole tooth or whole part of the yoke
between two teeth with one element. This approach means Inn

less accuracy, but as it was shown in [6], the error becomes I I I
significant only in deep saturation. Introducing a second or _ _ I -2 ut
even a third element for representation of the critical part yr. - -
of the magnetic circuit can considerably decrease computa-
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printing April 22, 1985. The variable reluctance stepping motor which was stu-

died in [10] had each stator tooth separately excited, while
induction machine tooth fluxes are dependent on both sta-
tor and rotor phase fluxes, as well as on all permeances of
the machine. This difference can be explained by means of
Fig. 2.2 and FiEg. 2.2b.

0885-8969/86/0009-0190$O1.OO©B1986 IEEE

Figure 2.7: Magnetic equivalent circuit of an induction motor, from (Ostovic, 1986), c©1986
IEEE.

In summary, Ostovic’s formulation applies the idea of the magnetic equivalent circuit taking

into account several effects that the simplistic approach was ignoring. However, because of the

complexity of the equivalent circuits and the matrices involved the insight provided is low.

Several papers have reported successful results in the application of this methodology to electric

machines (Lovatt, 2005; Blissenbach and Viorel, 2003; Dogan et al., 2013; Hodgins et al., 2009;

Kang et al., 2003; Polinder et al., 2005; Yang et al., 2012), particularly in the academic envi-

ronment. However, each of these papers shows an implementation in a particular application

that could not be easily generalised. In this context, Amrhein and Krein postulated a general

framework that uses the magnetic equivalent circuit idea to model electromechanical devices

(Amrhein and Krein, 2009a,b, 2010). The most important idea of this framework is that it puts

together all the magnetic equivalent circuit theory in a rigorous way analogous to the typical

matrix structural analysis (or the so-called direct stiffness method) so that it can be used for

any 3D geometry. Also, with this formulation the computational implementation should be

straightforward.
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Fig. 1. (a) Geometric definition of a flux tube and (b) its corresponding lumped
reluctance.

modeling approach. This paper explores a 3-D MEC framework
that is suitable for modeling a variety of electromechanical
devices. A general 3-D reluctance element is introduced, and
the creation of variable-sized reluctance networks for arbitrary
device geometries and excitations is discussed. Modeling of
motion and force calculation by the Maxwell stress tensor
(MST) method is then addressed. Two examples are presented:
prediction of power loss and current waveforms in a soft-ferrite
inductor, and steady-state induction machine torque.

II. MEC THEORY

Magnetic circuits are a straightforward analog to lumped elec-
trical circuits. Solution approaches from electrical circuit theory
apply equally to magnetic circuits, simplifying the analysis of a
magnetic system. In a general MEC, the unknowns to be solved
are the scalar magnetic potentials at every circuit node. The
nodes are connected by lumped circuit components, which are
sources and reluctances (hence the name reluctance network as
a common synonym for MEC). The reluctances are defined by
the geometry and materials of the modeled magnetic device.
Possible sources are electric coils, represented by MMFs, and
PMs, modeled by flux sources. The MEC network equations are
based on Gauss’s law, which states that the sum of all fluxes into
a node must be zero (analogous to Kirchhoff’s current law), and
Ampère’s circuital law (analogous to Kirchhoff’s voltage law).

A. Flux Tubes

Reluctances represent flux tubes in the modeled device geom-
etry. A flux tube connects two nodes in an object where a scalar
magnetic potential u is defined. The flux φ flows in uniaxial
directions between these points. The general definition of a flux
tube is shown in Fig. 1. Its reluctance R is

R =
u1 − u2

φ12
=

∫ l

0

1

µ (u, x)A (x)
dx (1)

where the potential difference u1 − u2 is equal to the MMF
drop across the flux tube, φ12 is the flux flowing through the
flux tube, x is the integration variable along the flux tube length
l, µ(u, x) is the permeability inside the flux tube, and A(x) is
the variable cross section of the flux tube. In (1), it is assumed
that µ can vary within the tube as a function of the potential and
position. In MEC, it can be assumed that µ is constant within

Fig. 2. Passive rectilinear 3-D reluctance element with six branch reluctances
and branch fluxes defined in the element flux-tube coordinate system u–v–w.
The element permeability µe is assumed to be constant within the reluctance
element based on (2).

each flux tube with respect to its geometry. Thus, (1) reduces to

R =
1

µ (u1 − u2)

∫ l

0

1

A (x)
dx =

r

µ (u1 − u2)
(2)

where

r =

∫ l

0

1

A (x)
dx. (3)

The reluctance factor r represents the geometric portion of R
and has units of inverse meter.

B. Definition of Reluctance Elements Based on Flux Tubes

The distribution of flux tubes and nodes is straightforward
only when the main flux paths are modeled. For example, in
an induction machine, the main flux tubes are stator and ro-
tor teeth, and the yoke between the stator and rotor slots. As
defined in [15], [16], and [18], these flux tubes are 1-D. They
do not allow flux to flow anywhere except along the path of
the magnetic material. This crude approximation does not prop-
erly model leakage flux or local saturation effects such as tooth
saturation. A different approach is necessary to capture these
effects, thus complicating the task of creating a reluctance net-
work. Rasmussen and Ritchie [1] and Perho [17] introduced 2-D
reluctance elements that break up the device structure into small
regions. Each region has a center node and reluctances connect-
ing to the adjacent regions. The approach taken here is based
on this idea, but extended to 3-D elements with a generalized
formulation.

1) Passive Reluctance Element: In 3-D, any geometry can
be approximated by a reluctance network based on elements
similar to the one shown in Fig. 2. At the center of each element
is a node that represents the scalar magnetic potential ue . Ad-
jacent elements are connected to the six boundary nodes u1–u6

and the corresponding branches defined by reluctances R1–R6 .
The relationship between the scalar magnetic potentials and the

Figure 2.8: A node with the reluctance branches and fluxes, from (Amrhein and Krein,
2009a), c©2009 IEEE.

The mathematical formulation is analogous to the typical matrix structural analysis, that is:

define the nodes that are connected by the components of the circuit (reluctances or magnetic

sources), express this information as a matrix equation and solve it (Amrhein and Krein, 2009a).

Figure 2.8 shows an arbitrary 3D node with six branch reluctances, from (Amrhein and Krein,

2009a).

In (Amrhein and Krein, 2009a) there is an example of this method applied to study the per-

formance of an induction motor, a cross-section of the model considered is shown in Figure
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Fig. 12. Close-up of reluctance element distribution in air gap of the FEC
motor. The dotted lines represent element boundaries in the rotor and stator
structure, and the solid lines the element boundaries in the air gap.

from a four-quadrant power electronics drive. Thus, it was pos-
sible to obtain measurements at slip values beyond the peak
torque. Steady-state measurements of the machine are com-
pared to simulations of a 3-D MEC model with 1302 reluctance
elements (Fig. 11), RMxprt, a conventional lumped-parameter
model based on analytical and empirical permeance expres-
sions [3], [5] (this model includes saturation in magnetic mate-
rial, skin effect in rotor bars, and a standard rotor structure with
bars and end rings), and a 2-D FEA model with 17 100 elements
in Fig. 13. The figure shows the steady-state torque character-
istic of this machine. In both MEC and FEA, the steady-state
torque values have been obtained as the average values from
dynamic torque simulation results once the simulation reached
steady state. The rotor was rotating at a constant speed, thus
keeping the motor slip value constant. The FEA model was
implemented in the commercial software package Ansoft.

Neither RMxprt nor the 2-D FEA model accurately predicts
torque values. These models do not show saturation in the stator
and rotor teeth accurately, and compute an excessive air gap flux
density. Although the 2-D FEA tool (Ansoft) employs nonlinear

magnetic properties, it is likely that the limited mesh complexity
in the FEA analysis does not yield a dense enough mesh in the
tooth tip regions (it is well known that force fidelity is very
sensitive to mesh density [33], [42]–[45] as well as the choice of
integration path for the MST method [33]). As saturation occurs,
the tool tends to compute inaccurate fluxes in these regions. The
mesh used in this effort has been automatically generated with
minimal user input, which has been successful in the analysis of
more traditional machine shapes. Because Ansoft employs the
virtual work method in its force calculation, the accuracy does
strongly depend on the number of mesh elements and does not
depend on the integration path as in the case of the MST method.
Thus, in order to increase the accuracy in the aforementioned
simulation, a very significant increase in mesh density in the
air gap and surrounding areas would be necessary [45], which
would extend run times and make the FEA simulation nearly
infeasible.

In the 3-D MEC model, the predicted peak torque is much
lower, reflecting saturation limits on the air gap flux density.
The best agreement is achieved by the conventional lumped-
parameter model, but only after its parameters have been ad-
justed to match the measurements. The difference between the
3-D MEC and the lumped-parameter model in the low-slip re-
gion can be attributed in part to skin effect in the rotor bars, not
modeled in this version of MEC. This can be concluded based
on the similar peak torque levels of both models. Compared to
the measurements, one can determine that leakage inductance
and rotor resistance in both models are too small. Further results
are provided in [30] and [41].

IV. CONCLUSION

Modeling of electromechanical systems has traditionally em-
ployed lumped-parameter models and FEA. Detailed MEC ap-
proaches have only recently become a viable alternative to the
other two options. MEC has desirable attributes, such as mod-
erate computational effort and reasonable accuracy that could

Figure 2.9: Model of the induction motor considered in (Amrhein and Krein, 2009a), c©2009
IEEE.

Amrhein and Krein’s framework (Amrhein and Krein, 2009a) has several advantages like the

simple formulation and the compatibility with computational implementation, but because the

sizes of the matrices due to the high number of nodes the solution requires high computational

capability (compared to the traditional analytical methods). Therefore, this method can be con-

sidered a hybrid between analytical and numerical methods. In fact, this particular formulation

presents great similarities with finite element analysis, that is described in the next section, and

even though there are not commercial software that provide solutions based on this methodology

it can be an interesting idea for the future. The main advantage of this method compared with
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FEA is that it obtains a reasonable accuracy using a coarser grid than FEA, which reduces the

computational time.

2.3 Finite Element Analysis

The finite element analysis (FEA) is an extremely useful numerical tool that is very widely

spread in engineering in general. This method gained major importance with the development

of digital computers in the 60s due to its easy computational implementation. Typically FEA has

been used for the analysis of solids, fluid dynamics and structures but it is applicable to almost

every field of engineering like heat transfer, fluids and electromagnetism. Figure 2.10 shows

the general process of finite element analysis, from (Bathe, 1996). In this section neither the

theoretical derivation nor the application of FEA to a particular case are shown, for a detailed

explanation see reference (Bathe, 1996), which shows the mathematical background in depth.

Physical problem

Mathematical model:
Governed by differential equations
Assumptions on:
• geometry
• materials properties
• loading
• boundary conditions
• etc. . .

Finite element solution
Choice of:
• finite elements
• mesh density
• solution parameters
Representation of:
• loadings
• boundary conditions
• etc. . .

Assessment of accuracy of finite
element solution of mathematical model.

Interpretation of results

Change of
physical
problem

Improve
mathematical

model

Refine mesh,
solution parameters,

etc. . .

Refine
analysis

Design improvements
and optimisation.

Figure 2.10: The process of finite elements, based on (Bathe, 1996).
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In the context of electromagnetism this method was first presented in the 70s by Chari and

Silvester (Silvester and Chari, 1970; Chari and Silvester, 1971; Chari et al., 1981), since then

it has become the most widely used computational method for electromagnetic field analysis

for electric machines (Pajooman, 1997). Because of the compatibility with the computational

implementation several commercial software (like Ansys and Opera for example) and open-source

software (like OpenFOAM and FEM) have been developed. These software use very refined

algorithms for the meshing and solving, and they are compatible with other CAD software for

the design process making FEA a very powerful tool for the industry and academia.

2.3.1 Calculation of Torque using FEA

Once the magnetic field distribution is obtained the next step is to use this information to

calculate the performance of the machine under study. The calculation of torque has a particular

importance in this project because one of the objectives is to design machines with high torque

capability. Almost every FEA software uses the Maxwell Stress Tensor (MST) to calculate torque

(or force). In practical terms we can state that the MST is a tool to calculate forces once the

total magnetic field is obtained. An example of the derivation of the MST can be found in

(Kirtley, 2003).

The Lorentz Force can be calculated as the cross product of the current (as a vector in 3D) and

the flux density at any point. But there is other component of the traction that comes from

the variation of the permeability. An empirical expression for the force density using this idea

according to Kirtley is the following:

~f = ~J × ~B − 1

2

(
~H · ~H

)
∇µ,

where ~H is the magnetic field intensity and µ is the permeability of the material at each point.

We know that the current density is the curl of the magnetic field intensity so we can rewrite

the previous expression as:

~f =
(
∇× ~H

)
× µ ~H − 1

2

(
~H · ~H

)
∇µ,

~f = µ
(
∇× ~H

)
× ~H − 1

2

(
~H · ~H

)
∇µ,

since (
∇× ~H

)
× ~H =

(
~H · ∇

)
~H − 1

2
∇
(
~H · ~H

)
,

then, the force density can be written as:

~f = µ
(
~H · ∇

)
~H − 1

2
µ∇
(
~H · ~H

)
− 1

2

(
~H · ~H

)
∇µ,

in a more compact way:

~f = µ
(
~H · ∇

)
~H −∇

(
1

2
µ
(
~H · ~H

))
. (2.11)
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Working with this vector equation it can be proved that for k’th component of the force density:

fk =
∂

∂xi

(
µHiHk −

µ

2
δik
∑

n

H2
n

)
, (2.12)

where δik is Kronecker’s delta defined as δik = 1 if i = k and 0 otherwise. Instead of working

with sums we can define the tensor T and define the express density as the divergence of the

tensor:

fk =
∂

∂xi
Tik,

for the three components we can use the vector operator:

~f = ∇ · T. (2.13)

This deduction is valid in the context of electric machines (low frequency electromagnetics). For

a complete formulation it is necessary to include the Poynting vector. A more detailed analysis

is given in (Woodson and Melcher, 1968).

Now let us apply this to the particular case we are interested in, an electric machine in a Cartesian

coordinate system. Using the coordinate system x, y and z, for an arbitrary point ~r = (x, y, z)

at the instant of time t the MST, T , is given by:

T (~r, t) =



Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz




=




µ0

2

(
H2
x −H2

y −H2
z

)
µ0HxHy µ0HxHz

µ0HyHx
µ0

2

(
H2
y −H2

x −H2
z

)
µ0HyHz

µ0HzHx µ0HzHy
µ0

2

(
H2
z −H2

x −H2
y

)


 , (2.14)

where ~H(~r, t) is a function of space and time, which are not shown in the matrix for simplicity.

For example, if we want to calculate the force density in the x-component:

fx(~r, t) =
∂Txx(~r, t)

∂x
+
∂Txy(~r, t)

∂y
+
∂Txz(~r, t)

∂z
.

To obtain the total force that a solid object feels, we can integrate this expression over a volume

V :

~F =

˚

V

~f · dv =

˚

V

∇ · Tdv. (2.15)

If S is a closed surface that surrounds V we can apply the divergence theorem and then we

obtain:

~F =

˚

V

~f · dv =

‹

S

T · d~a. (2.16)
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The most important concept of (2.16) is that to obtain the total force that a body is feeling we

do not need to calculate the force density in all the volume, but it is only necessary to know the

MST, or what is the same, the field intensity, over a surface that surrounds this body.

If we apply it to a 2-dimensional model of a rotating electric machine we can calculate the torque

produced using the MST. The traction in the tangential direction τθ is obtained as follows:

τθ = µ0HrHθ (2.17)

If the length of the machine is L and Γ is a closed path in the air-gap, then the total tangential

force is the following:

Fθ =

˛

Γ

τθLd` =

˛

Γ

µ0HrHθLd`, (2.18)

hence the torque:

T = Fθ · r = Lr

˛

Γ

µ0HrHθ d`. (2.19)

FEA is a powerful tool for studying the electromagnetic behaviour of rotating electric machines.

The application of refinement algorithms for meshing and solution has increased the speed and

the accuracy significantly. Also, the MST combined with FEA enables the calculation of the

torques and forces readily. However, when looking at (2.14) we see a complicated 3 by 3 matrix

that is difficult to assimilate. Intuitively it is very difficult to understand the meaning of each

of these terms and for this reason this method does not provide a good insight into the system.

Here is the main weakness of FEA: analytical methods can provide information to the designer

so she/he can use the intuition to improve the design but with FEA the calculation starts and

you have the final result.

The current trend in the design of novel electric motors and generators is dominated by FEA.

The typical procedure is: an idea of a concept machine, parametrisation of the geometry, FEA

calculation of the field and optimisation using techniques like genetic algorithms (Keysan et al.,

2012; Ueda et al., 2013; Henneberger and Bork, 1997; Baker et al., 2014; Colli et al., 2005; Guo

et al., 2006; Ifedi et al., 2013; Kang and Weh, 2008; Kastinger, 2002; Lewis, 2002; Pompermaier

et al., 2012; Potgieter and Kamper, 2012; Rahman et al., 2006; Subiabre and Mueller, 2011;

Yan et al., 2009). This approach implies the simulation of hundreds or thousands of different

scenarios and use an algorithm to pick the best. After analysing a great number of scenarios

it is possible to have an intuition of which parameters are affecting the design, but it is not

straightforward.

2.4 The Sub-domain Method

The sub-domain method was originally proposed by Liu et al. (Liu and Li, 2007; Liu et al., 2008).

Zhu et al. from the University of Sheffield generalised it and applied to a great number of practical

cases (Wu et al., 2010a; Zhu et al., 2010; Wu et al., 2010b, 2011, 2012b,a). Simultaneously, at
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the University Henri Poincaré, Lubin et al. also analysed several motors and also applied it to

magnetic gears (Dubas and Espanet, 2009; Lubin et al., 2013) with satisfactory results.

The procedure of the sub-domain method aims to directly solve the partial differential equations

in each of the sub-domains to obtain the unknown coefficients by applying the boundary con-

ditions on the interfaces between sub-domains. Figure 2.11 shows the geometry of an electric

motor divided in sub-domains.
1694 IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 6, JUNE 2011

subdomain model found in [36] does consider the influence of
tooth-tips. However, it is developed for the axial flux perma-
nent-magnet machines.

In this paper, an improved analytical subdomain model ac-
counting for the tooth-tips in the slots is derived for predicting
the open-circuit field distribution of the radial field permanent-
magnet machines. In the derivation, the field domain is divided
into four types of subdomains, viz. magnet, air-gap, slot opening
and slots. The analytical field expression of each subdomain is
obtained by the variable separation method. The coefficients in
the field expressions are determined by applying the boundary
and interface conditions. Compared with the conventional sub-
domain models which assume the same slot width angle as the
slot opening, the subdomain model accounting for tooth-tips can
accurately predict the flux density in the slot of a practical shape.
The investigation shows the developed model has better accu-
racy in the prediction of the cogging torque and the flux den-
sity of a PM machine having a relatively large slot opening to
tooth-tip height ratio. The finite element (FE) results verify the
validity of the analytical model.

II. ANALYTICAL FIELD MODELING

The analytical modeling is based on the following assump-
tions: (1) Infinite permeable iron materials; (2) Negligible end
effect; (3) Linear magnet properties; (4) Simplified slot but with
tooth-tips as shown in Fig. 1(b), rather than the ideal slot Fig.
1(a) adopted by the model in the conventional models; (5) Non-
conductive stator/rotor laminations; (6) Any magnet pole-arc to
pole-pitch ratio, but the relative permeability of gaps between
magnets being assumed to be the same as magnets.

1) Vector Potential Distribution: The magnetic field can be
expressed by the vector potential as

(1)

where the flux density can be given by

(2)

where is the permeability of vacuum and is the relative
permeability, is the magnetic field intensity, and is the
magnetization.

Thus,

(3)

where is the current density.
If the influence of eddy current on the field distribution is

neglected, the vector potential in the magnets is governed by

(4)

Fig. 1. Symbols and types of sub-regions. (a) Subdomain model without tooth-
tips; (b) subdomain model with tooth-tips.

Since in the 2-D field, the vector potential has only z-axis
component which satisfies [5]:

(5)

where and are the radial and circumferential positions, and
and are the radial and circumferential components of

magnet magnetization [4]:

(6)

Figure 2.11: Example of a PM motor divided in sub-domains, from (Zhu et al., 2010), c©2010
IEEE.

For the particular geometry shown in Figure 2.11 the general expressions of the scalar potential

functions are as follows (example from (Zhu et al., 2010)):

φ1(k 6= 1) =
∑

k

[
A1(k)rk +B1(k)r−k +

Mckr

µr(1− k2)

]
cos(kα)

+
∑

k

[
C1(k)rk +D1(k)r−k +

Mskr

µr(1− k2)

]
sin(kα), (2.20)

φ1(k = 1) =
[
A1(1)r +B1(1)r−1 +

Mc1r log(r)

µr

]
cos(α)

+
[
C1(1)r +D1(1)r−1 +

Ms1r log(r)

µr

]
sin(α), (2.21)

for region 1,

φ2 =
∑

k

[
A2(k)rk +B2(k)r−k

]
cos(kα) +

∑

k

[
C2(k)rk +D2(k)r−k

]
sin(kα), (2.22)
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for region 2 and

φ3i =
∑

m

C3i(m)

[( r

Rsb

)Fm
−
( r

Rsb

)−Fm
]
· sin

[
Fm

(
α+

boa
2
− αi

)]
, (2.23)

for each of the slots of region 3. Where µr is the relative permeability of magnets, k and m

are the harmonic orders, Rsb is the radius of the slot bottom, A1(k) → D1(k), A2(k) → D2(k)

and C3i(m) are the coefficients determined by the boundary conditions. For a more detailed

explanation see the references (Wu et al., 2010a; Zhu et al., 2010) that have the same notation

shown here.

Once all the coefficients are obtained from the scalar potential function, the magnetic field can

be obtained. The main problem is that each of the coefficients A1 → D1, A2 → D2 and C3i in

reality is a sum of terms so when the interface boundary conditions are applied this becomes

a system of equations with a high number of variables. Furthermore, this procedure has to be

done in each position of the rotor making the computation time of this method high.

There is ongoing research in this topic. A recent paper by Pfister et al. (2016) shows a general

methodology based on the sub-domain method including the diffusion effects, which models eddy

currents. This methodology has not been implemented by the author of this Thesis but if the

numerical complexity is not high it could be an interesting option for the future.

In summary the sub-domain method is a very interesting way of obtaining the magnetic field

in the air-gap because it is analytical and the accuracy is high. However, the large matrices

involved in the solution process diminish the insight provided to the machine designer. Also, the

computation time is high due to the complexity of the methodology if high order harmonics are

considered.

2.5 Conformal Mapping

Conformal mapping is a standard method for solving boundary value problems in two-dimensional

potential theory. In simple terms, the idea is to use conformal mapping to map the given domain

into a simpler one in which the solution of the Laplace’s equation is known. The solution ob-

tained is then mapped back onto the original domain (Kreyszig, 2011). This technique has been

successfully used for the calculation of the magnetic field distribution in the electromagnets for

particle accelerators (Halbach, 1968, 1990).

The main problem is that when the given geometry is a polygon, which is commonly the case in

the context of electric machines, the conformal transformation needed is a Schwarz-Christoffel

Transformation. In many cases there is not an explicit expression for the Schwarz-Christoffel

Transformation, which makes the solution difficult.

Conformal mapping, combined with the complex permeance method described in the following

chapter, has been successfully used for the calculation of the magnetic field distribution in electric

machines (Markovic et al., 2004, 2005; Zarko et al., 2006; Boughrara et al., 2009a,b, 2013). The

PhD Thesis developed at the Ecole Polytechnique Federale de Lausanne, EPFL, by Dr Miroslav
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Markovic provides a very comprehensive analysis of conformal mapping and provides several

examples of the application of this methodology (Markovic, 2004).

This section is particularly important because the complex permeance framework described in

the following chapter is based on conformal mapping.

2.5.1 Background Theory

Let us study a complex function w = f(z) defined in a domain D of the z-plane. For each point

in D there corresponds a point in the w-plane. If the function f(z) is analytic in D then the

mapping given by w = f(z) is conformal, this means that the angles are preserved (for example

if two curves cross in a right angle on the z-plane they should cross at 90o in the w-plane), except

at points where the derivative f ′(z) is zero.

The great importance of conformal mapping theory is based on the fact that it can be readily

used to solve the Laplace and Poisson equations in 2-D. In particular, conformal mapping yields

a standard method to solve two-dimensional boundary value problems.

The most important step of this method to solve magnetic or electrostatic potential problems is

the choice of the functions that transform the geometry (the maps). Depending on the properties

of the function applied the new domain will have particular features. Several transformations

can be applied in a sequence to reach a certain desired geometry.

As an example the function w = f(z) = z2 will be analysed to demonstrate the fundamentals

of the theory. Considering the polar form z = rze
jθ and w = rwe

jφ, from this expression

w = z2 = r2
ze

2jθ. So rw = r2
z and φ = 2θ. In figure 2.12 the z-plane is shown with a region D

defined as 1 ≤ |z| ≤ 2 and π/6 ≤ θ ≤ π/3.

1 2

D

x

y

Figure 2.12: z-plane.

In the w plane the domain D is defined as 1 ≤ |w| ≤ 4 and π/3 ≤ φ ≤ 2π/3, this is shown in

figure 2.13.

This example shows how a region is modified by a conformal transformation (f(z) = z2 in

this case) and it can be appreciated that the angles are preserved. This property is extremely
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1 4−1−4

D

u

v

Figure 2.13: w-plane.

important because it is the definition of conformal transformation and it is valid if the complex

function f(z) is analytic and the derivative f ′(z) is not zero.

2.5.2 The Schwarz-Christoffel Transformation

The Schwarz-Christoffel conformal transformation is a particular conformal map that has very

useful properties to solve two-dimensional magnetic or electrostatic potential problems.

The general formula is a standard procedure to obtain a conformal map f from the upper half

of a certain complex plane w that is usually called the canonical domain into the interior of a

polygon on the z-plane that is called the physical domain in the literature (Gibbs, 1958; Driscoll,

2005).

w4w3w1 w2
w5 →∞
u

v

z1

z2

z3

z4

z5

α1

α2

α3

α4
α5

(x, y)

(u, v)
f

z-plane w-plane

Figure 2.14: Example of a polygon in the z-plane transformed into the upper half plane of
the w-plane.

Figure 2.14 shows a certain polygon on the z-plane and the corresponding transformation into

the w-plane. The general mathematical relationship between the z-plane and the w-plane is

equation (2.24) expressed in an integral form. In the equation wk represents the point k in the

w-plane and αk is the internal angle of the vertex k on the polygon of the z-plane, of course

1 ≤ k ≤ N .

z = f(w) = A

ˆ N∏

k=1

(w − wk)
αk
π −1dw +B, (2.24)
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with N being the number of sides of the polygon. A and B are integration constants that have

to be determined from the geometry.

An equivalent expression to equation (2.24) is:

dz

dw
= A

N∏

k=1

(w − wk)
αk
π −1. (2.25)

The Schwarz-Christoffel mapping derivative is important for potential problems as it will be

explained in the following sections.

The main practical difficulty is that for many cases equation (2.24) cannot be obtained analyt-

ically so it has to be determined numerically by solving a system of non-linear equations. This

approach is often called the Numerical Schwarz-Christoffel Transformation.

2.5.3 Schwarz-Christoffel Toolbox for Matlab

Driscoll et al. have developed a Matlab-based toolbox based on Schwarz-Christoffel transforma-

tions (Driscoll, 2005; Driscoll and Trefethen, 2002). The advantage of this toolbox is that the

algorithms used to solve complicated polygons are very efficient and the fact that it is based on

Matlab facilitates the usage. It has been successfully used in several scientific publications in

the field of rotating electric machines such as (O’Connell and Krein, 2009).

The toolbox has many features but the most important ones are that it can solve the map,

evaluate the positions in the canonical domain and evaluate the derivative of the map.

(a) Original domain. (b) Canonical domain.

Figure 2.15: Flux lines and equipotential lines obtained using the SC toolbox.

Figure 2.15(a) shows an arbitrary domain that can be considered the z-plane3. Using the ap-

propriate function f , making sure that it is a conformal transformation4, we can transform the

original domain into a rectangle (or canonical domain) as shown in Figure 2.15(b). The magnetic

field distribution in the canonical domain is very easy to obtain and this solution can be brought

back to the z-plane using the properties of the function f .

3This particular example can be used to calculate the tooth-to-tooth permeance.
4In simple terms it means that the angles are preserved. Or what it is the same: making sure that the flux

lines and equipotential lines cross with right angles.
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2.5.4 Field Equations in Conformal Mapping

The previous sections introduced the concept of Conformal Mapping and described a particular

case of conformal map that is extremely useful for the solution of electromagnetic fields. In this

section the mathematical background of these methods is presented.

A conformal map is a one to one analytic function f of the complex variable z such that w =

f(z). This means that it transforms each point in z into a new point in w, consequently every

zo = xo + jyo has an unique image f(zo) = wo = uo + jvo.

Considering the potential and flux functions, if each point is uniquely defined it also means that

the potential and flux function will have the same value in zo and wo. As a consequence the

equipotential and flux lines in z will be mapped into the corresponding lines in w.

In this section a generic field F is considered. In the case of electrostatics it would be the

electrostatic field E and in magnetostatic analysis it would be the magnetic field intensity H.

Considering a generic potential function ϕ in the z plane we can define a field function F that

represents any scalar field that satisfies Laplace’s equation:

F (x, y) = Fx + jFy = −∂ϕ
∂x
− j ∂ϕ

∂y
.

In order to deduce the relationship between the field in the z-plane and the w-plane, the following

scalar potential functions are defined:

• ϕ(x, y) ≡ scalar potential in the z-plane.

• ψ(u, v) ≡ scalar potential in the w-plane.

Considering that each point (u, v) in w is at the same potential than the corresponding point

(x, y) in z the following equation must be satisfied in all the region:

ϕ(x, y) = ψ
(
u(x, y), v(x, y)

)
. (2.26)

The field in the z-plane:

Fz = Fx + jFy = −∂ϕ
∂x
− j ∂ϕ

∂y
. (2.27)

The field in the w-plane:

Fw = Fu + jFv = −∂ψ
∂u
− j ∂ψ

∂v
. (2.28)

From equation (2.26) we have:

∂ϕ

∂x
=
∂ψ

∂u

∂u

∂x
+
∂ψ

∂v

∂v

∂x
, (2.29)

∂ϕ

∂y
=
∂ψ

∂u

∂u

∂y
+
∂ψ

∂v

∂v

∂y
. (2.30)
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Combining equations (2.29) and (2.30):

Fz = Fu
∂u

∂x
+ Fv

∂v

∂x
+ j
(
Fu
∂u

∂y
+ Fv

∂v

∂y

)
. (2.31)

As the potential functions are analytic they satisfy the Cauchy-Riemann conditions5, hence

equation (2.31) can be written as:

Fz = (Fu + jFv)
(∂u
∂x
− j ∂v

∂x

)
, (2.32)

Fz = Fw

(∂u
∂x
− j ∂v

∂x

)
. (2.33)

Considering that w = u(x, y) + jv(x, y), then

∂w

∂x
=
∂u

∂x
+ j

∂v

∂x
=
∂w

∂z

∂z

∂x
=
dw

dz
. (2.34)

The complex conjugate is given by:

(dw
dz

)∗
=
(∂u
∂x

+ j
∂v

∂y

)∗
=
∂u

∂x
− j ∂v

∂y
. (2.35)

If equation (2.35) is substituted in equation (2.31), the relationship of the field in the w-plane

with the z-plane is the following:

Fz = Fw

(dw
dz

)∗
. (2.36)

Equation (2.36) shows the explicit relationship between a vector field in the z-plane and the w-

plane defined by the same potential function. With this relationship if the field on the w-plane

is known (because it is a simple geometry for example) then the problem reduces to calculating

the derivative, which is not trivial but is possible to do analytically.

2.6 Gibbs’ Methodology

The first one to apply Conformal Mapping to the analysis of the magnetic field distribution in

electric machines was Carter (Carter, 1900, 1926) who proposed the so-called Carter coefficient

(Krause et al., 2013; Neville, 1967) to quantify the effect of slotting over the mean value of

the magnetic field. Since Carter’s coefficient considers only the effect of slotting over the mean

value of the magnetic field, the details of the effect over the space harmonics is ignored. These

5 The general expression of the Cauchy-Riemann conditions:

∂u

∂x
=
∂v

∂y

∂u

∂y
= −

∂v

∂x
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harmonics are particularly important for the calculation of torque in transverse flux machines

and no-load rotor losses.

Gibbs (Gibbs, 1958) postulated two methods to obtain the magnetic field distribution in the

simplified geometry shown in figure 2.16. One method considers a single-slot surrounded by

infinitely wide teeth, section 2.6.1, and the other one considers the multiple slots and teeth,

section 2.6.2. The most important contribution of Gibbs compared with Carter was that the

former obtains the magnetic field distribution (including the space harmonics) instead of only

considering the mean value.

Pole-face

Toothed member
Air-gap

d t s

g

τ

Figure 2.16: Developed geometry considered by Gibbs.

2.6.1 Single-Slot Model

Figure 2.17 shows the geometry considered for a single slot surrounded by infinitely wide teeth

that we will call the z-plane. The field is produced by a magneto-motive force of V between the

toothed member and the pole-face.

s

g µ0

µ =∞

Bs

x

B(x)

Figure 2.17: Geometry of a single slot and the corresponding air-gap magnetic flux density
waveform.

The magnetic flux density B on the pole-face as a function of the intermediate variable w can

be shown to be given by

B(w) =
w − 1

(w − a)
1
2 (w − b) 1

2

Bs, (2.37)
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with a = 1/b and b is obtained from the equation:

b− 1√
b

=
s

g
. (2.38)

Bs is the value of the magnetic flux density if there were no slots:

Bs =
µ0V

g
. (2.39)

The distance along the pole-face,

x =
g

π

{
− log

∣∣∣1 + p

1− p
∣∣∣+ log

∣∣∣b+ p

b− p
∣∣∣+

2(b− 1)√
b

tan−1 p√
b

}
− s

2
, (2.40)

with the parameter p given by the intermediate variable w:

p2 =
b− w
a− w. (2.41)

To obtain the magnetic field distribution B and x are evaluated as a function of w for values

from −1 to 0.

2.6.2 Multiple-Slots Model

The objective is to transform the geometry shown in Figure 2.18 into a rectangle to solve the

Laplace equation with the same assumptions as in the previous section. The main difference

between this method and the one that considers a single-slot is that there is not an explicit

equation for the transformation. This is why it is necessary to operate with the intermediate

variables α and k. The parameters α and k are obtained by solving the following system of

µ0

µ =∞

t s

g

Bs

x

B(x)

Figure 2.18: Geometry of a machine with multiple slots and the corresponding magnetic flux
density waveform.

non-linear equations:

g

s
=

K(k)

π

{ sn(α, k) dn(α, k)

cn(α, k)
− Z(α, k)

}
, (2.42)
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t

s
=

2 K(k′)
π

{ sn(α, k) dn(α, k)

cn(α, k)
− Z(α, k)

}
− α

K(k)
, (2.43)

with

k′ =
√

1− k2, (2.44)

where K(k) is the complete elliptic integral of the first kind. The functions sn(α, k), cn(α, k)

and dn(α, k) are the Jacobi trigonometric functions defined as inverse elliptic integrals. Finally,

Z(α, k) is the Jacobi Zeta function defined as a function of the elliptic integrals (Dwight, 1947).

The expression for the magnetic flux density as a function of the intermediate variable v is:

B(v) =
(1 + k2

1v
2)

1
2

(1 + k2v2)
1
2

Bmax, (2.45)

where

Bmax =
πg

sK(k1)

cn(α, k)

sn(α, k) dn(α, k)
Bs, (2.46)

with k1 = k sn(α, k).

The distance along the pole-face,

x(v) =
s

π

[{ sn(α, k) dn(α, k)

cn(α, k)
− Z(α, k)

}
β + tan−1

−2
∞∑
1

(−1)mqm
2

sin πmα
K(k) sinh πmβ

K(k)

1 + 2
∞∑
1

(−1)mqm2 cos πmαK(k) cosh πmβ
K(k)

]
,(2.47)

with

β = F
( v

(1 + v2)
1
2

, k′
)
, (2.48)

where F(φ, k) is the incomplete elliptic integral of the first kind and q is called the nome, q =

e−
πK(k′)
K(k) .

To obtain the flux density distribution B and x are evaluated as a function of v for values from

0 to ∞ in a similar way as in the previous method.

2.6.3 Limits of Application

How to choose between these two models is an important matter. The single-slot model is simpler

but it may not be suitable for some geometries. On the other hand, the multiple-slots model

is more accurate but it is more complex and in some cases there might be numerical issues.

Freeman proposed a criterion to choose between the two methods but he did not provide any

justification for it (Freeman, 1962).

This topic was addressed by the author of this Thesis in (Anglada et al., 2016) and this section is

based on that paper. Section A.1 illustrates the importance of choosing the appropriate slotting

model for the calculation of rotor losses. The following sections present an original contribution.
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2.6.3.1 Practical Limit

When the teeth are wide enough it was noted by Gibbs and Freeman that the maximum value

of the flux density, Bmax, is almost equal to Bs. This suggests that the effect of neighbouring

slots on the field distribution in the vicinity of a slot is negligible.

We can define the following indicator to study if the single-slot model is going to give almost the

same answer as the multiple-slots model for a particular geometry:

rp =
Bmax
Bs

=
πg

sK(k1)

cn(α, k)

sn(α, k) dn(α, k)
, (2.49)

where Bmax is obtained from (2.46). With this indicator for any geometry (a given t/s and g/s)

we can estimate immediately if both models give a similar answer. If the value of rp is close to

1 it means that the interaction between adjacent slots is negligible and a single-slot model can

be used. If it is significantly smaller than 1 then a multiple-slot model is needed.

2.6.3.2 Numerical Limit

This section shows the range of the geometrical variables within which the multiple-slots model

is valid. Theoretically, according to the definition of the Schwarz-Christoffel transformation the

geometry of Figure 2.18 can always be mapped into a rectangle. However, in practice when the

ratio of the tooth width t and the air-gap length g is large, i.e., the teeth are very wide, the

numerical solution of (2.42) and (2.43) becomes impossible.

Let us define the right hand side of (2.42) as Fg(α, k) and the right hand side of (2.43) as Ft(α, k):

g

s
= Fg(α, k), (2.50)

t

s
= Ft(α, k). (2.51)

Considering a particular value of g
s = K, a curve ΓK of all the points (α, k) that satisfy this

equation can be defined as the following:

(αi, ki) ∈ ΓK ⇔ Fg(αi, ki) = K. (2.52)

Of all the points in ΓK there is only one point (αopt, kopt) that satisfies:

Ft(αopt, kopt) =
t

s
. (2.53)

To know the limits of application of the multiple-slots methodology we need to find the maximum

tooth width within which the numerical solver can provide a solution. To find the maximum

value of t
s for a particular value of g

s an algorithm was implemented in Matlab. The algorithm

is divided in three stages:

(a) Choose a value of g
s = Fg(α, k) = K.

(b) Obtain the curve (family of points) ΓK .
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(c) Calculate the point (αopt, kopt) that maximizes the function Ft(α, k) and evaluate t
s |max.

The value of t
s |max will depend on the numerical precision of the software.

For this case as the value of t
s increases k′ —see equation (2.44)— tends to be close to zero. This

results in k being close to 1 and the elliptic integral of the first kind has the following property:

lim
k′→0

K(k′) =∞ ⇒ lim
k→1

Ft(α, k) =∞. (2.54)

For this reason the numerical limit in which the multiple slots method has a solution will depend

on the numerical precision of the software; for the case of Matlab the minimum value of k′ in

which K(k′) is not infinite is k′ = 10−8.

2.6.3.3 Representation of the Limits

This section presents the results obtained using Matlab after implementing the algorithms to

calculate the practical and numerical limits. To obtain the limits the previous methodology was

applied for a range of values of g
s to calculate the corresponding t

s |max.

0 0.5 1 1.5 2 2.5 3

g/s

0

5

10

15

20

25

t/
s

Numerical limit

Practical limit rp=99.99%

Practical limit rp=99.9%

Freeman‘s limit

Both models

Single-slot model

Multiple-slots model

Figure 2.19: Numerical and practical limits of the two methodologies as a function of the
geometric variables. Also, representation of Freeman’s limit.

Freeman (1962) proposed the following criterion: if t/g > 3.3 the single-slot model should be used

and if t/g < 3.3 the multiple-slots model should be used. This condition can also be expressed

using the normalised parameters t
s and g

s :

if
t

s
> 3.3

g

s
; single-slot model, (2.55)

if
t

s
< 3.3

g

s
; multiple-slots model. (2.56)

Figure 2.19 shows the limit proposed by Freeman, the numerical limit and the practical limit

for 3 different values of rp as a function of the normalised variables t
s and g

s . The figure can

be divided in three different regions. In the region above the solid red line the single-slot model

should always be used because the multiple-slots model will fail as it was noted in section 2.6.3.2.

Below the orange line with the circular markers ignoring the effect of the neighbouring slots can

produce significant errors because the magnetic field in the middle of the teeth does not reach
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Bs as it was described in section 2.6.3.1 (here the minimum value of rp was considered to be

the 99.9 %). Between these two lines both models can be used in the sense that they will give

similar answers. However, above the magenta line with square markers that is rp of 99.99 % the

solution of both methods will be almost identical and k′ → 0. Freeman’s limit in Figure 2.19 is

the dashed blue line. It is almost the same as the practical limit with rp of 99.9 %.

2.7 Summary

The aim of this chapter is to build the background in electromagnetic field theory required for

the proper understanding of this Thesis. There is a particular emphasis on conformal mapping

because this is the methodology that will be used in subsequent chapters.

A summary of these methods:

Reluctance Networks : The method itself is very simple and intuitive providing good insights.

The typical formulation has very strong simplifications (neglecting fringing for example)

and in an effort to make it accurate the reluctance networks become very complicated

making the method itself similar to FEA. It can be a good alternative to FEA if it has

lower computation time.

FEA : This method is very accurate and with the current CAD software it can be easily

implemented in the design process. However, it is a numerical method and the insight

provided is low unless several geometries are analysed. In this project we will use FEA for

validation for these reasons.

Sub-domain : It is completely analytical but the mathematical formulation and solution is

extremely complicated making very difficult to get an intuition about the system.

Conformal Mapping : This method does some simplifications but the insight provided is high.

Furthermore, the Schwarz-Christoffel Toolbox for Matlab facilitates the usage and it can

be readily implemented for the modelling of rotating machines.

The following chapters use conformal mapping to study transverse flux machines. This technique

was chosen because it provides a deep insight into the system combined with reasonable accuracy

and a low computational time. Furthermore, the Schwarz-Christoffel Toolbox can be used as the

foundations of our own simulation codes.





Chapter 3

The Complex Permeance

Framework

3.1 Introduction

In chapter 2 several methodologies to calculate the magnetic field in the air-gap of electric ma-

chines were presented with particular emphasis on conformal mapping. The complex permeance

method proposed by Zarko et al. (Zarko et al., 2006, 2009; Boughrara et al., 2009a,b) uses

conformal mapping to obtain a function that modulates the magnetic field distribution from the

slotless configuration that was previously obtained by Zhu et al. (Zhu et al., 1993; Zhu and

Howe, 1993a,b,c; Zhu et al., 2002).

This chapter presents a different approach to the complex permeance (CP) method using a scalar

potential formulation (Hammond, 1982) to obtain the complex permeance function making the

interpretation of the solution simpler and particularly suited for machines with a homopolar

excitation (Anglada and Sharkh, 2016a). The methodology proposed to estimate the parameters

of the permeance function reduces the computation time significantly because the number of

points in which the function has to be evaluated is very low (enough to estimate the coefficients

instead of evaluating the whole waveform in all the domain). The significant reduction in the

computation time presents a major improvement in the context of the design and optimisation

of electric machines.

This chapter is based on the work published by the author in (Anglada and Sharkh, 2016a;

Anglada et al., 2017) and there are several novel contributions. First, it shows how to apply

the CP function for the analysis of TFMs. In addition, the effect of curvature is effectively

modelled using a proportional-logarithmic transformation that provides a deep insight as it does

not modify the scale length. Finally, a novel algorithm for estimating the coefficients of the CP

function based on random sampling, which can help to reduce the computation time significantly

is described.

The chapter starts with a description of the complex permeance method considered and the

difference between this method and Zarko’s one. The following two sections show the complex

47
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transformations required to obtain the permeance function. Later, the mathematical model of

the permeance function is shown and in the next section an algorithm to identify the parameters

of the model is proposed. In the following section this method is applied to a real geometry,

the TFM described in section 1.3.1 but the method can be generalised for any case that can be

represented with a scalar potential formulation, and the results are validated with FEA. Finally

the conclusions of this chapter are presented in section 3.8.

3.2 Zarko’s Complex Permeance

The CP method was presented by Zarko et al. in (Zarko et al., 2006) as a natural generalisation

of Zhu’s relative permeance shown in (Zhu and Howe, 1993c). Zhu’s relative permeance is a real

function that modulates the radial component of the magnetic field to account for the slotting

effect. The main contribution presented in (Zarko et al., 2006) is that considering the permeance

function as a complex number can also modulate the tangential component of the magnetic

field, not just the radial one. Furthermore, it is natural to consider the permeance function as

a complex number because the Schwarz-Christoffel transformation is by definition a complex

function. In (Zarko et al., 2006) the CP function is applied only to the magnetic field produced

by the magnets in the rotor and in (Zarko et al., 2009) the armature windings magnetic field is

considered.

1830 IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 7, JULY 2006

Fig. 2. Flux density in the middle of the slotless air gap of a six-pole surface
PM motor. (a) Radial component (b) Tangential component.

Fig. 3. Slot opening in the S plane.

where . The link between the
coordinates in the and planes is

(4)

Fig. 4. Slot opening in the Z plane.

The next step is to transform the geometric structure in the
plane into the upper half of the plane (Fig. 5) using

Schwarz–Christoffel transformation. Since there are four cor-
ners to be opened, the Schwarz–Christoffel transformation will
have the form [9]

(5)

The unknown coefficients and which represent the values
of at the corner points are defined as

(6)

Another transformation from the plane where the field is
regular to the plane is required. The slot opening in the
plane represents two parallel plates extending an infinite dis-
tance in both directions as shown in Fig. 6. The transformation
from the plane into the plane is given by

(7)

The transformation of the linear geometry in the plane into
curved geometry in the plane (Fig. 7) requires an exponential
function in the form

(8)

Figure 3.1: Zarko’s geometry, from (Zarko et al., 2006), c©2006 IEEE.

Figure 3.1 shows the geometry considered by Zarko et al. (2006, 2009). It is important to

point out that this transformation considers the effect of curvature with Rabinovici’s transfor-

mation (Rabinovici, 1996) with the consequent change of scale described in section 3.4. Also,

the methodology described in (Zarko et al., 2006, 2009) considers a single slot geometry (Gibbs,

1958) that in some cases may be inaccurate as described in chapter 2. The articles by Boughrara

et al. (2009a,b) consider the effect of multiple slots using the SC Toolbox developed by Driscoll

(Driscoll, 2005).
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3.2.1 Limitations of Zarko’s CP

• To obtain the coefficients of the permeance function it is necessary to do an iterative process

to determine the coordinates of each point and later use a discrete Fourier transform,

making the computation time very high.

• The implementation of the transformation itself is complicated and therefore the under-

standing of the system is more difficult.

• The torque is calculated using the Maxwell Stress Tensor making the interpretation diffi-

cult.

• To calculate the magnetic field produced by the permanent magnets in (Zarko et al., 2006)

the deformation of the domain of the magnets is neglected (Krop et al., 2008).

3.3 Modified Complex Permeance

The air-gap of the machine under study has a toothed member (each C-core can be considered a

tooth) and a smooth coreback. Figure 3.2 shows the z-plane, which is the real geometry, and the

transformed domains (w and χ planes), which are described later in the chapter. The magnetic

field distribution is obtained using a complex permeance (CP) function (Anglada and Sharkh,

2016a; Zarko et al., 2006; Boughrara et al., 2009a,b) adapted for a homopolar field distribution.

We are assuming that the permeability of the iron is infinite and the effect of saturation is

negligible.

T1
T2

Figure 3.2: Conformal transformations required to obtain the magnetic field distribution in
the air-gap.

We present an alternative interpretation of the CP function in order to simplify the final expres-

sion of the magnetic field distribution. The function λ(θ, r) modulates the scalar value of Bs(t)

that is the instantaneous magnetic flux-density produced by the stator windings in the simplified

rectangular slotless geometry defined as follows:

Bs(t) =
µ0F (t)

gz
, (3.1)
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where F (t) is the instantaneous magneto-motive force (MMF) produced by the stator windings

and g is the effective air-gap length. The function λ(θ, r) depends only on the geometric prop-

erties of the air-gap that give the shape. The scalar value of Bs(t) gives the magnitude to the

function of the magnetic field distribution ~Bstator(t, θ, r).

The function λ(θ, r) is calculated in such a way that the real part corresponds to the radial

component and the imaginary to the tangential one. In this chapter the variable θ is expressed

in electrical radians, such that a pole pitch is 2π; to change to mechanical radians it is necessary

to divide by the number of pairs of poles. Accordingly, the expression of the stator’s magnetic

field distribution in the air-gap expressed as a vector is:

~Bstator(t, θ, r) = Bs(t)
[

Re
{
λ(θ, r)

}
~ur + Im

{
λ(θ, r)

}
~uθ

]
. (3.2)

On the other hand, the rotor’s magnetic field distribution is produced by the permanent magnets

(PMs). The no-load magnetic field distribution in the air-gap of the slotless configuration can

be expressed using complex number notation as

Bsl(θ, r) =

∞∑

n=1,3,5

Kn(r) cos
(
n(θ + ωt)

)
+ j

∞∑

n=1,3,5

Dn(r) sin
(
n(θ + ωt)

)
, (3.3)

where ω is the electrical frequency and the coefficients Kn(r) and Dn(r) are calculated accord-

ing to (Zhu et al., 2002) and j =
√
−1 is the imaginary unit. Therefore, the magnetic field

distribution produced by the rotor of the slotted geometry is

Brotor(θ, r, t) = Bsl(θ, r) · λ∗(θ, r, t). (3.4)

The value of λ(θ, r) is obtained using conformal mapping theory by transforming the original

domain (z-plane) into a new one in which we know the solution, in this case the new domain

is a rectangle (χ-plane) where the magnetic field is constant (Gibbs, 1958). To achieve this

there are two conformal transformations to be done: a proportional-logarithmic transformation

(Rabinovici, 1996) that transforms the circular geometry into a rectangular developed model and

a Schwarz-Christoffel transformation that maps the developed model into a rectangle (Gibbs,

1958; Freeman, 1962; Zarko et al., 2006; Boughrara et al., 2009a,b).

3.3.1 Proportional-Logarithmic Transformation (T1)

The first conformal transformation (T1 in Figure 3.2) maps the circular geometry of the z-

plane into a rectangular geometry in the w-plane. To achieve this T1 has to be a proportional-

logarithmic transformation (Rabinovici, 1996). This transformation is described in detail in

section 3.4 and in (Anglada et al., 2017). The proportionality constant Rg chosen is the radius

of the middle of the air-gap in this case. The transformation to obtain the w-plane is the

following:

w = Rg ln(z). (3.5)
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According to the theory of conformal mapping (Gibbs, 1958; Freeman, 1962; Driscoll and Tre-

fethen, 2002) the relationship between the magnetic field in the z and w-planes expressed as

complex numbers:

Bz = Bw

(dw
dz

)∗
= Bw

(Rg
rz
ejθz

)
(3.6)

The term that multiplies Bw in (3.6) has a term that is a scale factor (
Rg
r ) and a second term

(ejθz ) that transforms the real component into radial and the imaginary one into tangential. To

obtain the magnetic field at a particular point of the z-plane it is sufficient to know the value of

the field on the w-plane and the derivative of the transformation evaluated in that point. If we

define the relative permeance associated to the proportional-logarithmic transformation as

λlog(r) =
Rg
r
, (3.7)

then, the expression of the magnetic field in the z-plane as a vector ~Bz in radial and tangential

components is as follows

~Bz =
[

Re
{
Bw
}
~ur + Im

{
Bw
}
~uθ

]
λlog(r). (3.8)

3.3.2 Schwarz-Christoffel Transformation (T2)

The details of Schwarz-Christoffel transformations and their application to solve this problem are

given in (Gibbs, 1958; Freeman, 1962; Driscoll and Trefethen, 2002). According to the literature

this transformation is sometimes called Numerical Schwarz-Christoffel Transformation because

the equation of the transformation is not explicit, in this chapter the solution is obtained with

the SC Toolbox developed by Driscoll (Driscoll, 2005).

The starting point is the polygon in the w-plane that needs to be transformed into a rectangle

that is the χ-plane, shown schematically in Figure 3.2, in which the magnetic field distribution

is known. The general equation of the SC transformation is as follows (Driscoll and Trefethen,

2002):

w = f(χ) = K1

ˆ N∏

k=1

(χ− χk)
αk
π −1dχ+K2, (3.9)

where K1 and K2 are integration constants and αk are the interior angles of the polygon. The

function f̂(w) is defined as the inverse of f(χ):

χ = f̂(w). (3.10)

Even though there is not an analytical expression of f̂(w) the derivative of the transformation

of the w-plane into the χ-plane is defined as follows (taking into account that χ is a function of

w)

dχ

dw
= f̂ ′(w). (3.11)
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The relationship between the magnetic fields is given by

Bw = Bχ

( dχ
dw

)∗
= Bχ

{
f̂ ′(w)

}∗
. (3.12)

The functions f̂(w) and f̂ ′(w) can be evaluated in each point with the SC Toolbox once the map

is created.

The SC transformation is such that the domain in the χ-plane is the rectangle shown in Figure

3.2. The solution to the Laplace equation considering an MMF F (t) is the following:

Bχ(t) =
µ0F (t)

`
, (3.13)

where the length ` can be calculated as the following:

` = |χA − χB |.

The SC Toolbox gives the option of obtaining χi = f̂(wi) making the calculation of ` trivial

because is just the length of the side of the rectangle on the canonical domain. The field in the

w-plane can be expressed as

Bw = Bχ

{
f̂ ′(w)

}∗
= Bs(t)

gz
`

{
f̂ ′(w)

}∗
. (3.14)

The term that multiplies Bs(t) is the relative complex permeance associated with the SC trans-

formation taking into account that w is a function of θ and r:

λSC(θ, r) =
gz
`

{
f̂ ′
(
w(θ, r)

)}∗
. (3.15)

For the polygon considered here there is not an explicit expression f̂ but with the SC Toolbox

(Driscoll, 2005) it can be evaluated at any point and also the derivative can be evaluated.

Consequently, the function λSC(θ, r) cannot be obtained directly but can be evaluated at every

point of the domain.

3.4 Effect of Curvature on the Magnetic Field

The problem of modelling the effect of curvature analytically was addressed by Rabinovici (1996)

using a pure logarithmic transformation that maps the circular geometry into a rectangular

one, which can be solved using conformal mapping techniques like those developed by Gibbs

(1958) and Freeman (1962) based on the Schwarz-Christoffel transformation. However, a pure

logarithmic transformation makes the length of the new geometry completely different from the

real one thus making it difficult to assess how strong the effect of curvature is or what would

happen if it is ignored. Similar methods were also used in (Zarko et al., 2006; Boughrara et al.,

2009a; Markovic et al., 2004); although these produce a solution to the problem, they do not

provide a direct insight into the effect of curvature partly due to the change in the length scale.
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This section presents some original contributions about the influence of curvature on the magnetic

field distribution and how the proportional-logarithmic transformation proposed by the author

of this Thesis provides a deeper insight.

Figure 3.3 shows a generic cross-section of a rotating electric machine with a toothed stator and

a smooth exterior rotor. One tooth-pitch is τz = sz + tz. In Figure 3.3 sz is the slot pitch, tz the

tooth pitch, gz the effective air-gap length, Rr the rotor radius and Rs the stator bore radius.

The effective air-gap length is defined as the magnet thickness plus the clearance gap plus the

sleeve thickness.

sz

tz
2

tz
2

Rr

Rs
gz

θt
2

θs

θt
2

x

y

Figure 3.3: Cylindrical geometry studied showing only one slot in the z-plane.

The geometry in the z-plane in Figure 3.3 can be transformed into that shown in the w-plane in

Figure 3.4 using a logarithmic transformation, as proposed by Rabinovici (Rabinovici, 1996):

w = R ln(z) = R ln(rz) + jRθz, (3.16)

where R is a proportionality constant, z = rze
jθz is the complex variable in the z-plane and w

the complex variable in the w-plane.

Rabinovici implicitly sets R = 1 in the above equation. However, this makes the w-plane

geometry in Figure 3.4 very different in its scale from that in Figure 3.3. The vertical length of

the geometry in the w-plane is equal to the angle of one tooth pitch, i. e. τw = θτ , where θτ is

the tooth pitch angle.

In this section we propose to set R to be the radius in the middle of the air-gap, Rg = Rs + gz
2 .

This results in

tw = Rgθt = tz, (3.17)

sw = Rgθs = sz, (3.18)
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tw
2

tw
2

sw

gw

u

v

Figure 3.4: Rectangular developed model obtained after the proposed transformation in the
w-plane.

τw = Rgθτ = τz, (3.19)

gw = Rg

[
ln(Rr)− ln(Rs)

]
= Rg ln

(Rr
Rs

)
, (3.20)

where θt and θs are the tooth and slot angles, respectively. From these equations it can be easily

appreciated that all the geometrical length parameters are exactly the same as in Figure 3.3 with

the exception of gw.

It can be readily shown that gw can be expressed in terms of gz and Rg as follows:

gw = Rg ln

(
Rg + gz

2

Rg − gz
2

)
. (3.21)

After these first manipulations comes the first intuitive interpretation of this transformation.

The geometry obtained from the proposed conformal transformation is exactly the same as the

conventional developed model that is obtained simply by cutting and opening the machine. The

only difference is in the parameter gw whose value is given by (3.21).

3.4.1 Curvature Coefficient

Carter (Carter, 1900, 1926) proposed that the effect of slotting can be represented as a modifi-

cation of the air-gap length of an equivalent slotless model. The effect of slotting on the mean

air-gap flux density can be accounted by multiplying the air-gap length, g, by Carter’s coefficient,

Kc, (Krause et al., 2013) to obtain:

g′ = gKc, (3.22)
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which is set to be the gap of an equivalent slotless model. The mean value of the magnetic field

in the slotted machine is then calculated as

Bs−slotted =
µ0F

g′
. (3.23)

where F is the mmf drop across the gap, g, of the slotless model. If we define Bs−slotless as the

mean value of the magnetic field of a slotless machine with a gap then

Bs−slotless =
µ0F

g
. (3.24)

Hence

Bs−slotted =
Bs−slotless

Kc
. (3.25)

It was deduced previously, from (3.17)-(3.21), that using the proposed transformation the rect-

angular geometry obtained has the same basic dimensions as the original cylindrical geometry

except for the air-gap length gw. Following the same logic as that used when defining Carter’s

coefficient we define a curvature coefficient KJ such that

gw = gzKJ → KJ =
gw
gz
. (3.26)

Applying (3.26) to the mean value of the magnetic field:

Bs−curv =
µ0F

gz
=
Bs−rect
KJ

, (3.27)

with

Bs−rect =
µ0F

gw
. (3.28)

Substituting (3.21) into (3.26) we obtain the following expression for KJ as a function of the

ratio between the radius of the machine and the air-gap length, Rg/gz:

KJ =
Rg
gz

ln

( Rg
gz

+ 1
2

Rg
gz
− 1

2

)
. (3.29)

With this function a direct estimation of the influence of curvature on the mean value of the flux

density can be obtained without any other calculation; the effect will depend on the ratio of gz

and Rg. Qualitatively this means that if the air-gap length is large compared to the radius of

the machine the effect of curvature is significant and when the radius is considerably larger than

the air-gap length this effect is negligible.

Like Carter’s coefficient, the value of KJ is close 1; it equals 1 for a rectangular geometry and

it becomes slightly grater than one as the curvature increases. The difference between the value

of KJ and 1, i.e., KJ − 1, would therefore provide a measure of the effect of curvature on the

magnetic field. Figure 3.5 shows a graph of (KJ − 1) in percentage versus the ratio of the radius
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in the middle of the gap to the air-gap length. As expected, the influence of curvature reduces

as the radius increases for a given air-gap length. Below a ratio of about 6 the effect of curvature

is expected to be significant.

0 2 4 6 8 10
Rg/gz

0

0.5

1

1.5

2

(K
J
−
1)
,
in

%
strong influence
of curvature

weak influence of
curvature

Figure 3.5: The curvature coefficient, KJ , as a function of the ratio between the air-gap
radius and the air-gap length.

3.4.2 Magnetic Field Relations

Using the conformal transformation we can obtain the relationship between the magnetic field

in the z-plane and the w-plane. With this relationship the solution of the rectilinear geometry

in the w-plane can be transformed into a solution for the real cylindrical geometry in the z-

plane. To deduce these equations, the magnetic scalar potential functions in both planes are

considered (Hammond, 1999; Zarko et al., 2006; Boughrara et al., 2009a; Markovic et al., 2004,

2005; Anglada and Sharkh, 2016a; Anglada et al., 2017):

• ϕ(x, y) ≡ scalar potential in the z-plane.

• ψ(u, v) ≡ scalar potential in the w-plane.

Each point (u, v) in w is at the same potential as the corresponding point (x, y) in z and hence

the following equation must be satisfied in all the domain:

ϕ(x, y) = ψ
(
u(x, y), v(x, y)

)
. (3.30)

The field intensity in the z-plane is obtained from the potential function in the z-plane, ϕ(x, y),

as follows:

Hz = Hx + jHy = −∂ϕ
∂x
− j ∂ϕ

∂y
. (3.31)
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The field intensity in the w-plane is obtained from the potential function in the w-plane, ψ(u, v),

as follows:

Hw = Hu + jHv = −∂ψ
∂u
− j ∂ψ

∂v
. (3.32)

Applying the rule of an implicit derivative to the scalar potential we obtain:

∂ϕ

∂x
=
∂ψ

∂u

∂u

∂x
+
∂ψ

∂v

∂v

∂x
, (3.33)

∂ϕ

∂y
=
∂ψ

∂u

∂u

∂y
+
∂ψ

∂v

∂v

∂y
. (3.34)

Combining (3.31), (3.33) and (3.34) it can be shown that:

Hz = Hu
∂u

∂x
+Hv

∂v

∂x
+ j
(
Hu

∂u

∂y
+Hv

∂v

∂y

)
. (3.35)

As potential functions are analytic they satisfy the Cauchy-Riemann conditions (Hammond,

1999; Zarko et al., 2006; Anglada and Sharkh, 2016a; Anglada et al., 2017) and hence (3.35)

they can be rewritten as

Hz = (Hu + jHv)
(∂u
∂x
− j ∂v

∂x

)
, (3.36)

or

Hz = Hw

(∂u
∂x
− j ∂v

∂x

)
. (3.37)

Considering that w = u(x, y) + jv(x, y), then

∂w

∂x
=
∂u

∂x
+ j

∂v

∂x
=
∂w

∂z

∂z

∂x
=
dw

dz
. (3.38)

The complex conjugate

(dw
dz

)∗
=
(∂u
∂x

+ j
∂v

∂x

)∗
=
∂u

∂x
− j ∂v

∂x
. (3.39)

If (3.39) is substituted in (3.37), the relationship of the field intensity in the w-plane with the

z-plane is then given by

Hz = Hw

(dw
dz

)∗
. (3.40)

Since B = µ0H in the air-gap, then

Bz = Bw

(dw
dz

)∗
. (3.41)
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From (3.16):

dw

dz
=
Rg
z

=
Rg
rz
e−jθz . (3.42)

Substituting (3.42) in (3.41) yields

Bz = Bw

{Rg
rz
ejθz

}
= Bw

{
M(rz)e

jθz
}
. (3.43)

The second term of (3.43), e−jθz , simply rotates and aligns the radial direction in the z-plane

with the horizontal axis in the w-plane. It does not affect the value of the field and therefore it

will not be analysed further.

The term M = Rg/rz can be interpreted as a scale factor, related with the flux focusing effect of

curvature. Because of the nature of the transformation the region rz < Rg is contracted, which

intensifies the field. In the region rz > Rg , which is expanded compared to the rectangular

model, the field’s intensity is reduced. When rz = Rg the magnitude of the magnetic field is not

altered.

The value of the scale factor in the z-plane therefore defines the influence of curvature on the

magnitude of the magnetic field density at a particular point. Figure 3.6 shows a 2D representa-

tion of M in a certain region of the z-plane. The value of M(rz) was restricted to values between

0.5 and 1.5 because usually the value of M in the air-gap (the region of interest in this case) is

within these limits.

x/R
g

y/
R

g

M(r)
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Figure 3.6: M(rz) =
Rg
rz

.

This representation of the scale factor M(rz) shows how the magnetic field is intensified in

some regions and debilitated in others. As the radius reduces, the field lines are bunched closer

together, thus intensifying the magnetic field, and vice versa. If the air-gap length is small and

it is contained within the light green region the effect of curvature will be small. However, if this

is not the case the effect of the scale factor will be important – neglecting the curvature gives

inaccurate results. The proportionality constant Rg will determine the radius at which the scale

factor is unity, the radius where distances are not distorted.
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3.4.3 Permanent Magnet Transformation

In this section the transformation equations for a radially magnetised permanent magnet are

deduced based on the assumption that these permanent magnets can be represented by two

current sheets on the edges of each magnet (Boules, 1985; Rabinovici, 1996), with a current

density J (A/m) equal to the magnetisation of the material, J = M. A permanent magnet in

the z-plane is represented in Figure 3.7 with the equivalent current sheets as dots and crosses.

Mz

x

y

diz

Figure 3.7: Permanent magnet in the cylindrical geometry, the z-plane.

Rabinovici (Rabinovici, 1996) proposes that a cylindrical permanent magnet in the z-plane is

transformed into a rectangular one in the w-plane such that the magnetisation Mw in the w-

plane is set in such a way that the total equivalent current is the same in both planes. The

new permanent magnet in the w-plane is shown in Figure 3.8. The implicit assumption in this

procedure is that the current density is constant along the edge of the magnets in the w-plane,

i.e., that Mw is constant. In the following paragraphs it is shown that such assumption is not

correct.

Mw

u

v
diw

Figure 3.8: Permanent magnet in the rectangular developed geometry, the w-plane.

For the deduction of the transformation equations let us consider the permanent magnet in

the z-plane shown in Figure 3.7 and the transformed magnet in the w-plane, Figure 3.8. The

equivalent current sheets of the magnet in the z-plane have a constant current density Jz. To

represent these two current sheets in the w-plane each differential current point, diz, is mapped

on the w-plane in the corresponding position (Rabinovici, 1996; Boughrara et al., 2009a). The

magnitude of the current should be same in both planes, this is

diz = diw. (3.44)

Each of these differential currents can be expressed in terms of the corresponding current density

diz = Jzdrz, (3.45)
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diw = Jwdu. (3.46)

Combining (3.44), (3.45) and (3.46) yields

Jzdrz = Jwdu ⇒ Jw = Jz

( du
drz

)
. (3.47)

The derivative can be obtained from (3.16). The final expression of the new current density is

the following:

Jw(rz) = Jz

( rz
Rg

)
=

Jz
M(rz)

. (3.48)

The current density of the equivalent current sheet is therefore not constant in the w-plane; it

is modified by the scale factor, M(rz).

3.5 Properties of the CP Function

The function λlog(r) associated to the logarithmic transformation is a real number and the

function λSC(θ, r) associated to the SC transformation can be separated into real and imaginary

parts that correspond to the radial and tangential components respectively. The permeance

function can be expressed as the product of these two functions as follows:

λ(θ, r) = λlog(r)
[
λr(θ, r) + jλθ(θ, r)

]
, (3.49)

where

λSC(θ, r) = λr(θ, r) + jλθ(θ, r). (3.50)

The function λSC(θ, r) has the same shape as the magnetic field distribution of the rectangular

geometry (w-plane in this chapter, Figure 3.2) therefore for each r the real and imaginary

parts can be expressed as Fourier series according to (Freeman, 1962) because of the symmetry

of the boundary conditions the radial component has to be an even function (which can be

approximated as a Fourier cosine series) and the tangential component has to be an odd function

(which can be approximated as a Fourier sine series):

λr(θ, r) = λr

[
1 +

∞∑

n=1

γn(r) cos(n θ)
]
, (3.51)

λθ(θ, r) =

∞∑

n=1

λθn(r) sin(n θ), (3.52)

with the coefficients calculated accordingly:

λr =
1

π

ˆ π

0

Re
{
λSC(θ, r)

}
dθ, (3.53)
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γn(r) =
2

πλr

ˆ π

0

Re
{
λSC(θ, r)

}
cos(nθ)dθ, (3.54)

λθn(r) =
2

π

ˆ π

0

Im
{
λSC(θ, r)

}
sin(nθ)dθ. (3.55)

3.5.1 Analysis of λr

From the strictly mathematical point of view the permeance function associated with the SC

transformation is fully defined if the functions λr(r), γn(r) and λθn(r) are known in all the

air-gap. The function λr(r) is the mean value of the radial magnetic field in the air-gap in the

rectangular geometry that is the w-plane. To gain an insight about this function let us define a

closed rectangular surface (a box) S of depth h as shown by a dashed line in Figure 3.9 in the

rectangular developed model of the machine, this would be a projection of the w-plane. From

Gauss’ Law we know that the total flux through a closed surface is 0 and that there is only

normal flux in the top A and bottom B of S:

¨

A

~Bw(u, v) · d~s = −
¨

B

~Bw(u, v) · d~s. (3.56)
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γn(r) =
2

πλr

ˆ π

0

Re
{
λSC(θ, r)

}
cos(nθ)dθ, (3.54)

λθn(r) =
2

π

ˆ π

0

Im
{
λSC(θ, r)

}
sin(nθ)dθ. (3.55)

3.5.1 Analysis of λr

From the strictly mathematical point of view the permeance function associated with the SC

transformation is fully defined if the functions λr(r), γn(r) and λθn(r) are known in all the

air-gap. The function λr(r) is the mean value of the radial magnetic field in the air-gap in the

rectangular geometry that is the w-plane. To gain an insight about this function let us define a

closed rectangular surface (a box) S of depth h as shown by a dashed line in Figure 3.9 in the

rectangular developed model of the machine, this would be a projection of the w-plane. From

Gauss’ Law we know that the total flux through a closed surface is 0 and that there is only

normal flux in the top A and bottom B of S:

¨

A

~Bw(u, v) · d~s = −
¨

B

~Bw(u, v) · d~s. (3.56)

u

v

z

Figure 3.9: Geometry considered to apply the Gauss Law.

Only the real component of Bw is contributing to the flux so the total flux entering A:

ΦA =

¨

A

~Bw(u, v) · d~s =

¨

A

Bswλr(rA)
[
1 +

∞∑

n=1

γn(rA) cos(n θ)
]
· ds, (3.57)

where λw is the pole pitch and θ can be expressed:

θ =
2π

λw
v, (3.58)

face A
at rA

face B
at rB

τw 

h 

Figure 3.9: Geometry considered to apply the Gauss Law.

Only the real component of Bw is contributing to the flux so the total flux entering A:

ΦA =

¨

A

~Bw(u, v) · d~s =

¨

A

Bswλr(rA)
[
1 +

∞∑

n=1

γn(rA) cos(n θ)
]
· ds, (3.57)
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where τw is the pole pitch and θ can be expressed:

θ =
2π

τw
v, (3.58)

where v is the vertical coordinate as shown in Figure 3.9. The differential area can be expressed

as:

ds = h · dv. (3.59)

(3.57) can be rewritten as:

ΦA =

ˆ τw

0

Bswλr(rA)
[
1 +

∞∑

n=1

γn(rA) cos
(2πn

τw
v
)]
h · dv (3.60)

The total flux in A:

ΦA = Bswτwhλr(rA). (3.61)

Similarly we can calculate the flux in B:

ΦB = −Bswτwhλr(rB). (3.62)

Substituting (3.61) and (3.62) into (3.56):

Bswτwhλr(rA) = Bswτwhλr(rB), (3.63)

All the terms are exactly the same by definition except the mean value of the permeance function

so it was proven that

λr(rA) = λr(rB) = λr, (3.64)

for any value of r. The mean value of the permeance function, λr, does not depend on the

radius; it is constant in all the air-gap necessarily because of the conservation of flux. On the

other hand the functions γn(r) and λθn(r) have an unknown shape but they can be approximated

as polynomials. For the polynomial approximation, instead of using the variable r the distance

to the coreback δ is used to simplify the subsequent expressions:

δ = Rg +
g

2
− r. (3.65)

The functions of the Fourier coefficients expressed as polynomials of δ are as follows

γn(δ) = γ0
n + γ1

nδ + γ2
nδ

2 + · · · , (3.66)

λθn(δ) = λ1
θnδ + λ2

θnδ
2 + λ3

θnδ
3 + · · · , (3.67)
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where γ0
n, γ1

n, γ2
n, . . . , are the Taylor coefficients for the radial component and λ1

θn, λ2
θn, λ3

θn,

. . . , the corresponding ones for the tangential component1.

3.6 Estimation of the Coefficients of the CP Function

One of the main disadvantages of the CP method implemented in (Zarko et al., 2006; Boughrara

et al., 2009a,b) is that the computation time is high because the CP function needs to be

evaluated at each point to obtain the waveform. However, with the proposed methodology for

an arbitrary geometry the machine designer can decide the harmonic order, Nh, and the order

of the polynomial of the Taylor series, Np, and after that estimate the number of points that

have to be evaluated in order to obtain the coefficients. For the radial component there are Nc

coefficients (λr, γ
0
n, γ1

n, γ2
n, . . . ) and for the tangential component there are Ncθ < Nc coefficients

( λ1
θn, λ2

θn, λ3
θn, . . . ). Under these conditions the model can be fully defined by evaluating at

least Nc independent points. If Nh is the higher order harmonic and Np the power of the last

term of the Fourier series (which are defined by the the user), Nc is calculated as follows:

Nc = Nh(Np + 1) + 1. (3.68)

To describe the following algorithm to identify the parameters of the permeance function instead

of directly calculating γn(δ) we will first calculate an(δ) that is the harmonic amplitude before

normalisation:

an(δ) = λrγn(δ). (3.69)

For an arbitrary point (θi, ri) the value of the permeance function:

Re
{
λSC(θi, ri)

}
= λr +

Nh∑

n=1

Np∑

m=0

amn δ
m
i cos(n θi), (3.70)

where λSC(θi, ri) is calculated as follows:

λSC(θi, ri) = λ(θi, ri)
ri
Rg

. (3.71)

If we consider K independent points, with K > Nc, we have an over determined linear system

with K equations and Nc unknowns that are the coefficients. (3.70) can be written in a matrix

form as follows:

XC = Λ, (3.72)

1The tangential component does not have the λ0θn term because there is not tangential component at δ = 0
in this geometry.
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where [X]K×Nc is the matrix with the points in which the permeance function is evaluated,

organised to be consistent with (3.70) as follows:

[
X
]
K×Nc

=




1 cos(θ1) δ1 cos(θ1) . . . δ
Np
1 cos(θ1) . . . cos(Nh θ1) δ1 cos(Nh θ1) . . . δ

Np
1 cos(Nh θ1)

1 cos(θ2) δ2 cos(θ2) . . . δ
Np
2 cos(θ2) . . . cos(Nh θ2) δ2 cos(Nh θ2) . . . δ

Np
2 cos(Nh θ2)

...
...

...
. . .

...
. . .

...
...

. . .
...

1 cos(θK) δK cos(θK) . . . δ
Np
K cos(θK) . . . cos(Nh θK) δK cos(Nh θK) . . . δ

Np
K cos(Nh θK)




(3.73)

C is the matrix with the coefficients that we want to estimate:

[
C
]
Nc×1

=




λr

a0
1

a1
1

...

a
Np
1

a0
2

...

a
Np
Nh




. (3.74)

Λ is the solution vector

[
Λ
]
K×1

=




Re
{
λSC(θ1, r1)

}

Re
{
λSC(θ2, r2)

}

...

Re
{
λSC(θK , rK)

}



. (3.75)

The coefficients can be estimated using the following linear least squares algorithm:

C =
[(

XtX
)−1

Xt
]
Λ, (3.76)

where t denotes the transposed matrix.

Once the vector C is known the real part of the complex permeance function is fully defined.

The procedure for the imaginary part is completely analogous. Once the real and the imaginary

parts are obtained the magnetic field distribution is known as a vector in all the air-gap.

3.6.1 Analysis of the Matrix X

The algorithm described in the previous section enables the estimation of the parameters of the

permeance function if we have the value of it in at least Nc independent points. But what is the

meaning of independent points in this context? From the point of view of linear algebra we have



Chapter 3 The Complex Permeance Framework 65

Nc independent points if and only if:

rank
{
X
}

= Nc (3.77)

This condition is equivalent to saying that we have Nc independent points if and only if the

matrix [XtX] is not singular (all the eigenvalues are not zero).

To illustrate the problems that can bring the fact that the points are not independent let us

consider the geometry of the TFM built at the University of Southampton. The first step if we

want to estimate the parameters of the permeance function is to choose the number of harmonics

considered and the order of the polynomial. For this example let us consider Nh = 10 and Np = 5.

The second step is to choose enough points in the domain to apply the algorithm described in

the previous section, a logical approach is to apply a grid to the air-gap, we will call this set of

points S1. The 273 (which is a number grater than Nc so it is an overdetermined system) points

chosen are shown in Figure 3.10.
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Figure 3.10: Points chosen to estimate the parameters of the permeance function.

Under these assumptions the parameters can be estimated and the values obtained for the

harmonics are shown in Figure 3.11.

It can be appreciated in Figure 3.11 that the approximation is very accurate compared with

the results obtained by evaluating the permeance function in thousands of points for each δ and

later calculate the coefficients of the Fourier series by definition. Also the values obtained are

consistent with the ones obtained with 2D FEA. Figure 3.12 shows the magnetic field distribution

in the air-gap that was used to obtain the coefficients of the permeance function. The software

used was Ansys Maxwell and for the calculation of the permeance function the analogy between

electrostatic and magnetostatic was considered (the field expressed using the scalar potential

formulation).
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Figure 3.11: The amplitude of the first four harmonics of the radial component of the
magnetic field with Nh = 10 and Np = 5.

Figure 3.12: Magnetic field distribution obtained using FEA with a scalar potential formu-
lation.
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Let us assume that we want to use the same algorithm but now we consider Nh = 11 instead of

Nh = 10 because for some reason we want to make sure that the 11th harmonic is not significant.

Considering the same set of points S1 the first four harmonics are shown in Figure 3.13.
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Figure 3.13: The amplitude of the first four harmonics of the radial component of the
magnetic field Nh = 11 and Np = 5.

We can see clearly in Figure 3.13 that the solution obtained is not consistent with the results

obtained by direct evaluation and FEA. Even more, these results are not correct and the error

in the calculation of the harmonics is very significant.

As an example to illustrate a similar situation let us assume that we have the following function:

f(x) = a sin(x) + b sin(2x) (3.78)

and we want to estimate the value of the coefficients a and b. Using the same idea of creating a

grid that was applied in the air-gap we will evaluate the function in 3 points:

x1 = 0 (3.79)

x2 =
π

2
(3.80)

x3 = π (3.81)

If we want to formulate this problem with the proposed algorithm we have the following matrix

equation:




sin(x1) sin(2x1)

sin(x2) sin(2x2)

sin(x3) sin(2x3)



[
a

b

]
=



f(x1)

f(x2)

f(x3)


 (3.82)
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In this case we have that:

X =




0 0

1 0

0 0


⇒ [XtX] =

[
1 0

0 0

]
(3.83)

So the matrix that we want to invert, [XtX], is singular and the algorithm fails in giving a

solution. We would have the same problem if we considered a grid of 5 points from 0 to 2π.

Figure 3.14 shows the function f(x) = a sin(x) + b sin(2x) with a = 1 and b = 0.5 in the range

0-2π in colour blue. The red and green curves are the first and second harmonics respectively.

The dashed black lines are the grid we proposed, we can see that in all our measurements we

see the green function vanish so the amplitude can’t be estimated.
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Figure 3.14: Function and harmonics of the example function f(x) = a sin(x) + b sin(2x).

The same problem appears if we are trying to calculate the harmonic amplitude of a signal

f(t) = K+h sin(2πf · t) and we have a sampling frequency of the same value f . Each period we

would measure the same value of f(t) = f(t+T ) so we could not estimate the value of K and h.

Now let us do something different, to avoid this problem we decide to pick the 3 points randomly.

If we consider R(0, 1) a random variable between 0 and 1 with constant probability density

function we can express the problem as the following:

xn = π ·R(0, 1) (3.84)
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Generating 3 random numbers in MATLAB we obtain by chance the following:

x1 = 1.1962 (3.85)

x2 = 0.9505 (3.86)

x3 = 0.9266 (3.87)

so the matrices:

X =




0.9307 0.6810

0.8137 0.9460

0.7996 0.9604


⇒ [XtX] =

[
2.1676 2.1715

2.1715 2.2810

]
(3.88)

hence, now the matrix can be inverted without any problem.

3.6.2 Random Sampling

To improve the reliability of this algorithm we want to make sure that we avoid having any

problem in inverting the the matrix [XtX], or what is the same: that we have at least Nc

independent points. To achieve this we propose to generate a set of random points. It was

observed that if we have a given number of points distributed uniformly as a grid and we are

trying to detect a high frequency space harmonic whose period is of a similar order of magnitude

as the separation of the points; then the matrix [XtX] may produce problems in the inversion.

Because of the nature of random sampling this problem does not appear because the points are

not equally spaced. Each point is calculated as follows:

δi = dm ·R(0, 1), (3.89)

θi = 2π ·R(0, 1), (3.90)

where R(0, 1) denotes a random variable between 0 and 1 with constant probability density

function.

Figure 3.15 shows the set of points S, which consists in 250 points generated randomly. The

improvement in the stability of the algorithm is due to the fact that the points are not equally

spaced and therefore the high frequency harmonics can be detected.

3.7 Results

This section illustrates the proposed methodology by its application to the transverse-flux (or

VRPM) machine described in chapter 1.

The windings of the machine have Nt = 230 turns in the configuration analysed in this chapter

and the rated current I is 10 A. The MMF in each C-core head is calculated as follows

F =
1

2
NtI = 1150 A, (3.91)
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Figure 3.15: The set of random points, S. In this case it consists 250 random points..

therefore the magnetic field of the slotless configuration is

Bs =
µ0F

g
=

4π · 10−7 · 1150

5.5 · 10−3
≈ 0.263 T. (3.92)

If the current was a sinusoidal the value of Bs would not be constant but a sinusoidal function

as well, the analysis here considering a constant current is the case of a square waveform.
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Figure 3.16: λr(θ, r) in the middle of the air-gap, r = Rg.

Figure 3.16 shows the real part of the permeance function at the middle of the air-gap (r = Rg).

The green triangles were obtained using 2D FEA with a scalar potential formulation, the orange

squares were obtained using 3D magnetostatic FEA, the red crosses are the value of λr(θi, ri)

evaluated using the SC Toolbox and the blue line is the approximated model considering 500

random points (which is a number much greater thanNc to make sure that it is an overdetermined

system), the harmonic order Nh = 11 and the polynomial order Np = 5. The value of λr obtained

by evaluating the function, 2D FEA and the proposed model has less than 0.01 % error in this

case.
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Figure 3.17: The amplitude of the first four harmonics of the radial component of the
magnetic field Nh = 11 and Np = 5, with a set of 500 random points.

To study the accuracy of the method in the entire domain and not only in the air-gap, Figure 3.17

shows the harmonic amplitude of the first four harmonics obtained by evaluating the permeance

function, 2D FEA and the proposed method. The coefficients of the Fourier series for the

comparison were calculated by evaluating (3.53) and (3.54) after obtaining the waveform with

FEA or by evaluating points with the SC Toolbox. The software developed for this chapter is

shown in Appendix C at the end of this Thesis.

As an example, one of the possible outcomes of the code developed in this Thesis is shown in

Figure 3.18. The radial component of the magnetic field distribution is shown in the air-gap in

a similar way as the typical FEA package would.
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Figure 3.18: Radial component of the magnetic field distribution in the air-gap obtained
using the CP function, quarter of the model only.
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3.8 Conclusion

This chapter illustrates how to obtain the magnetic field distribution in the air-gap of electric

machines using the CP method combined with random sampling. The case study is a TFM but

it can be applied to other machines that have a slotted topology. The results obtained with the

methodology presented here are consistent with FEA and with the traditional CP method.

In this chapter the influence of curvature on the magnetic field distribution in slotted rotating

PM electric machines has been investigated. The proposed proportional logarithmic transforma-

tion provides an insight into the effect of curvature because it preserves the length scale. The

curvature coefficient, KJ , indicates when the effect of curvature is going to be important. The

value of the curvature coefficient, KJ which is the ratio of the air-gaps in the rectangular and

cylindrical models in the w and z-planes, respectively, tends to be small. However, this small

change of the air-gap length in the w-plane has a significant influence in the amplitude of the

asynchronous harmonics of the magnetic field distribution (Anglada et al., 2017). The effect of

curvature on rotor losses is discussed in section A.2.

Random sampling can effectively improve the computation time by reducing the number of

points at which the CP function has to be evaluated. To generate the whole waveform of the CP

function at a particular radius, r, it is necessary to evaluate a large number of points depending

on the accuracy required. With a small set of randomly generated points we can accurately

estimate the CP function coefficients in all the air-gap. Random sampling was preferred to

uniform sampling because of the improvement of the stability of the algorithm.

The formulation of the problem is such that the shape of the CP function is deduced from

conformal mapping theory and we only have to calculate the coefficients of the polynomials.

This allows us to directly estimate the amplitude of the harmonics, which facilitates subsequent

analysis of performance.



Chapter 4

Analysis of Transverse-Flux

Machines

4.1 Introduction

Traditionally, the renewable energy industry has been dominated by induction machines, elec-

trically excited synchronous machines and conventional radial or axial permanent magnet (PM)

machines, which normally operate at high speed (1500-3000 rpm) and low torque. Wind and ma-

rine turbines normally operate at low speed, around 5 to 25 rpm, making it necessary to install

a gearbox in the drive-train to enable the use of a conventional generator (Sopanen et al., 2011;

Polinder et al., 2006; Spooner et al., 2005; Mueller et al., 2007; Semken et al., 2012). Several novel

machines have been designed to operate as direct-drive generators in renewable energy sources

but they are not widespread across the industry (Polinder et al., 2013; National Renewable En-

ergy Laboratory, 2014, 2015; Carroll et al., 2015). Transverse flux machines (TFMs), which

sometimes are called variable-reluctance permanent-magnet (VRPM) machines, can achieve a

high torque density which makes them an interesting option for direct-drive operation (Weh and

Mayer, 1984; Weh and May, 1986; Harris and Mecrow, 1993; Harris and Pajooman, 1995; Harris

et al., 1996, 1997a; Pajooman, 1997; Henneberger and Bork, 1997). However, TFMs tend to

have a complicated topology with a three-dimensional path of the magnetic field which makes

the task of modelling and understanding the behaviour of these devices difficult. Additionally,

TFMs tend to have a low power factor which has hindered their acceptance (Harris et al., 1997b;

Anglada and Sharkh, 2016b).

The current trend to study machines with complicated geometries such as TFMs (Gieras, 2005;

Keysan et al., 2012; Kang and Weh, 2008; Yang et al., 2012; Baker et al., 2014; Zhang et al.,

2014; Doering et al., 2015; Liu et al., 2015; Wan et al., 2015; Dobzhanskyi and Gouws, 2016) and

claw pole machines (Washington et al., 2012; Baker et al., 2012; Ahmed et al., 2014; Deodhar

et al., 2015; Washington et al., 2016) is to use 3D CAD modelling and numerical methods like

finite element analysis (FEA). This approach produce accurate results but does not provide an

insight as deep as that provided by analytical methods.

73
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The aim of this chapter is to develop the background theory for the analytical modelling of

TFMs. Even though the methods were developed for the study of TFMs they are completely

general and can be used for the analysis of radial PM machines, magnetic actuators, magnetic

gears, etc... Both methods are based on the fact that PMs can be replaced with equivalent

current sheets (Boules, 1985).

The calculation of torque is based on the Lorentz force equation, i.e. the BiL principle. However,

in this case B is the stator’s magnetic field, i the equivalent current of the PMs and L the axial

length. This allows us to calculate the torque using a compact equation, which relates torque

to the electric and magnetic loadings of the machine and a flux factor (Anglada and Sharkh,

2017b).

In addition, this chapter presents an alternative novel analytical methodology for TFMs based on

a virtual mutual inductance, M which is measured in [H], between the equivalent current loops

of PMs and the stator windings (Anglada and Sharkh, 2017a). This virtual mutual inductance,

M, can be used to calculate the flux linkage, back EMF and power factor of the machine using

only the stator’s magnetic field distribution.

The virtual mutual inductance approach presented in this chapter provides a very deep insight

into the behaviour of TFMs because the path of the stator’s magnetic field is simpler than that of

the PMs. Therefore, the calculation of the flux linkage using the virtual mutual inductance, M, is

more intuitive and the relationship between torque and power factor can be readily understood.

Understanding this relationship can be the key to unlocking the full potential of TFMs through

a trade-off between torque density and power factor.

The chapter starts with the formal derivation of the torque equation in section 4.2 followed

by the calculation of the flux factor in section 4.3. The virtual mutual inductance approach

is explained in section 4.4. Next, section 4.5 presents the calculation of the circuit parameters

and performance of the machine using the torque equation and the virtual mutual inductance

approach. Appendix B illustrates how to use the proposed methodologies for the simulation

of electromechanical systems, emphasising its compatibility with Simulink/SimPowerSystems.

Section 4.6 then concludes with a case study and the validation of the methodologies.

4.2 Torque Equation

Figure 4.1 shows a developed model of the TFM with dots and crosses representing the equivalent

currents placed along the edges (equivalent currents are shown for one magnet only).

The basic approach is to firstly calculate the average torque of a single current loop at an

arbitrary distance from the core-back and then calculate the total torque by integrating the

resulting expression over the length of the magnets’ equivalent current sheets. The linear current

density, J , is equal to the magnetisation of the material M as described in (Boules, 1985).
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Figure 4.1: Developed model of the TFM.

4.2.1 Torque Produced by a Current Loop

If we consider a current loop that represents a layer of the magnet and one C-core head, this

is the same as saying that we will calculate the force along the line r = rδ as shown in Figure

4.2. The average tangential force of half of a fundamental electrical period can be calculated

using the BiL principle. The radial magnetic field Br(t, θ, r) is produced by the current in the

winding, L is the active C-core length and iδ is the equivalent current of the magnets at rδ.

The tangential force can be divided in two components: the positive force of the currents going

out of the paper (dots) and the negative force that comes from the opposite currents (crosses) as

it is shown in Figure 4.2. Because the positive currents, iδ, (dots in the figure) are located under

the teeth and the negative currents, −iδ, (crosses) are located in the slot regions, the total force

is positive because the magnetic field is stronger under a tooth than that in the slot regions.

~F1

~F2

iδ

−iδ

δrδ

C-core

core-back

Figure 4.2: Forces applied to the equivalent current loop at a distance δ.

The average force experienced by iδ and −iδ in Figure 4.2 over half of an electrical cycle can be

calculated as

Fδ =
1

π

{ˆ π
2

−π2
Br(t, θ, rδ)iδLdθ −

ˆ

3π
2

π
2

Br(t, θ, rδ)iδLdθ
}
. (4.1)
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We can define Bsc(δ) as the magnetic field of the slotless geometry corrected for the curvature

at a distance δ as follows

Bsc(δ) =
µ0F

g

Rg
rδ

= Bs
Rg
rδ
. (4.2)

Using Bsc(δ) and considering that φ is the phase advance angle of the current (angle between

the emf, E, and the current, I) we can express the force as follows

Fδ = iδLBsc(δ) cos(φ)KB(δ), (4.3)

where KB(δ) is called the flux factor for the loop at distance δ and it only depends on the

geometry. From (4.1), (4.2) and (4.3) the general expression of the flux factor is as follows

KB(δ) =
1

Bs(δ)π cos(φ)

ˆ

π
2

−π2

{
Br(t, θ, rδ)−Br(t, θ + π, rδ)

}
dθ. (4.4)

Considering that Nc is the number of C-cores (also the number of pole pairs) and that each

C-core has two heads the total torque per phase can be expressed as

Tδ = NcLDgBsiδKB(δ) cos(φ). (4.5)

It is important to note that in (4.5) Nc, L, Dg and cos(φ) are known parameters of the machine

and do not depend on rδ.

4.2.2 Total Torque

The total torque produced by one phase can be obtained by integrating (4.3) along the magnet

width, dm. If we consider δ as the distance from the equivalent current loop to the core-back,

the total torque can be expressed as the following

T =

ˆ dm

0

dTδ =

ˆ dm

0

NcLDgBsKB(δ) cos(φ) diδ. (4.6)

The differential current at the edge of the magnet can be expressed in terms of the magnetisation,

M, taking into account that there are two adjacent magnets, as

diδ = 2M dδ. (4.7)

Therefore the total torque can be expressed as follows

T = 2NcLDgBsMdm cos(φ)
[ 1

dm

ˆ dm

0

KB(δ) dδ
]
, (4.8)
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whereMdm = Fm is the total MMF of one permanent magnet and the term inside the brackets

can be defined as the total flux factor:

KTotal
B =

1

dm

ˆ dm

0

KB(δ) dδ. (4.9)

The expression of the torque produced by a machine with q phases is then

T = 2qKTotal
B BsFmLNcDg cos(φ). (4.10)

This expression has the same shape as the equation presented in (Harris and Mecrow, 1993) but

with the calculation of the flux factor considers several aspects that were previously neglected.

Also, the cosine of the angle between the MMF and the q-axis of the rotor cos(φ), φ is the phase

advance angle, appears in (4.10).

If the magnets are wider than the teeth, the fringing flux in the axial direction is actually

producing torque, Figure 4.3. To estimate the active length of the C-core in the axial direction

we can use the results reported by Markovic et al. (2005) in which the permeance of a tooth to

tooth structure is calculated. Considering a 2D model of a C-core tooth against the core-back,

the permeance per unit length can be estimated as

Λ = µ0
lcore
gz

(
1 + 0.384

gz
lcore

)
, (4.11)

where lcore the C-core head width, Figure 4.3. In the previous deduction of the torque equation

it was assumed that the field is constant in the perpendicular direction (two-dimensional approx-

imation). Considering a magnetic potential difference Θ between the tooth and the core-back,

the flux per unit length is given by

Φt = ΘΛ. (4.12)

gz

lcore

Core-back

C-core
head

Figure 4.3: Fringing around the C-core head, axial geometry considered to obtain the equiv-
alent length.

Therefore we can define an equivalent axial length, Leq, as

Φt = BtLeq, (4.13)
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where Bt = µ0Θ/gz. The flux per unit length is equal to that obtained using the permeance

(4.11). Therefore the equivalent length is given by

Leq ≈ lcore
(

1 + 0.384
gz
lcore

)
. (4.14)

This equivalent length takes into account that the fringing flux is actually producing torque when

the magnets are longer than the C-core head, lcore, and therefore this value should be used in

(4.9). However, when the magnet length, Lmag, is not longer than lcore not all the fringing flux

is effectively producing torque; in this case the equivalent length should be the magnet length.

4.3 Flux Factor

The flux-factor is the term in (4.10) that has all the information about the electro-mechanical

interaction that takes place in the air-gap and determines how much of the total flux is effectively

producing torque. This coefficient depends only on the complex permeance function that includes

the information about the geometry and the waveform of the MMF. In this chapter two different

MMF cases are considered: square wave MMF and sinusoidal MMF.

4.3.1 Flux Factor of a Single Current Loop

This section derives an expression for the flux factor at an arbitrary distance δ to the coreback.

The geometry considered for the calculation is shown in Figure 4.2. The calculation of the

magnetic field distribution in the air-gap is described in chapter 3. The expression of the radial

component of the magnetic field distribution is shown in (4.26).

Solving the integral from (4.4), considering that the square-wave MMF, the expression of the

flux-factor is the following:

KB(δ) =
4

π
λr

[
γ1(δ)− γ3(δ)

3

cos(3φ)

cos(φ)
+
γ5(δ)

5

cos(5φ)

cos(φ)
− . . .

]
. (4.15)

It is important to remember that this is the expression for one layer and that to evaluate the

integral for the total flux factor λr and γn(δ) vary with rδ.

If the MMF of the winding is a sinusoidal function in synchronism with the rotation of the

machine, then the instantaneous magnetic field is expressed as follows:

Bs(t) = Bso cos(ωt+ φ), (4.16)

with

Bso =
µ0F̂

gz
, (4.17)
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where F̂ is the peak value of the MMF. Accordingly, according to chapter 3, the magnetic field

distribution can be expressed as

Br(θ, δ) = Bsoλlog(δ) cos(θ + φ)λr

[
1 +

∞∑

n=1

γn(δ) cos(n θ)
]
, (4.18)

where φ is the phase advance angle of the MMF. In this situation when we substitute (4.18) into

(4.4) we obtain the expression of the flux factor for sine-wave MMF:

KB(δ) = λrγ1(δ). (4.19)

4.3.2 Total Flux Factor

The total flux factor that takes into account all the magnet thickness is obtained by evaluating

the integral from (4.9). Because the magnetisation of the PM is constant, the integration over

dm is just to obtain the average value of the amplitude of the harmonics. Accordingly, the

expression of the total flux factor for square-wave and sinusoidal waveforms respectively is

KTotal
B =

4

π
λr

[
γav1 −

γav3

3

cos(3φ)

cos(φ)
+
γav5

5

cos(5φ)

cos(φ)
− . . .

]
, (4.20)

KTotal
B = λrγ

av
1 , (4.21)

where γavn is the average value of the n harmonic over the magnet thickness calculated as follows

γavn =
1

dm

ˆ dm

0

γn(δ) dδ. (4.22)

Having the value of KTotal
B the torque produced by the machine can be readily estimated by

simply evaluating (4.10). However, KTotal
B depends on the magnetic field distribution in the air-

gap and obtaining this function is normally complicated as discussed in chapter 3. Still, because

of the formulation of the torque equation the flux factor depends only on the geometry of the

air-gap.

4.4 Virtual Mutual Inductance Approach

The flux linkage in the stator windings of PM machines is normally obtained after calculating

the PMs’ magnetic field distribution in the air-gap and integrating the flux density over the coils

surfaces.

In the virtual mutual inductance approach the magnets are replaced with equivalent current

sheets (Boules, 1985). Figure 4.4 shows schematically the air-gap of the TFM with a radially

magnetised PM with its equivalent current sheets. In this context, when the rotor moves the
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relative position of the stator windings and the equivalent current sheets changes. These current

sheets can be thought of as several current loops in series.

β
θ

r

C-core

core-back

Figure 4.4: Schematic view of the air-gap of the TFM under study with the equivalent current
loops at a particular position of the rotor, β.

The reciprocity theorem states that for any two circuits the value of the mutual inductances is

the same, this is M12 = M21, regardless of the geometry (Purcell, 2008; Feynman et al., 2010).

Therefore, if the stator’s magnetic field distribution in the air-gap of the TFM under study is

known, then flux linking the equivalent current sheets due to the stator’s MMF can be directly

calculated as

λPM =

ˆ

PM

NPM ~B(θ, r) · d~a = M(β) · IS , (4.23)

where ~B(θ, r) is the magnetic field distribution produced by the stator’s windings, NPM is the

number of turns of the equivalent current loop which is 1, IS the stator’s current and M(β)

the virtual mutual inductance between the stator windings and the equivalent current sheets, at

a particular rotor position β. Based on the reciprocity theorem, the flux linkage of the stator

windings due to the PMs can be calculated as

λS = M(β) · IPM , (4.24)

where IPM is the equivalent current of the PMs

IPM =M · dm, (4.25)

where M is the magnetisation and dm the magnet’s thickness.

4.4.1 Calculation of the Virtual Mutual Inductance

The total virtual mutual inductance, M(β), is calculated as the average of the virtual mutual

inductance of single coils, Msc(β, r), along the magnet thickness.

Let us consider two consecutive permanent magnets of a TFM. Figure 4.5 shows a single equiv-

alent coil in the relative position β in the air-gap.

Using the complex permeance function defined in (Anglada and Sharkh, 2016a) and in chapter

3, the magnetic field distribution in the air-gap produced by the stator can be expressed in polar
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β

C-core

core-back

x

y

Figure 4.5: Schematic view of a single coil in the air-gap at the position β.

coordinates (θ is the electrical angle in radians) as

~B(θ, r) = Bs
Rg
r

[
λr
{

1 +

∞∑

1

γn(r) cos(nθ)
}
~ur +

∞∑

1

λθn(r) sin(nθ)~uθ

]
, (4.26)

where

Bs =
µeqµ0F

gz
. (4.27)

F is the MMF across the air-gap of value F = NwIS/2 and Nw the number of turns; µeq is the

equivalent permeability, which depends on the relative permeability of the PMs (µr) and the

magnet thickness to effective air-gap ratio. It is calculated as follows:

µeq =
µrdm + cg

gz
. (4.28)

The total flux linkage through the circuit that corresponds to one pair of poles is the contribution

of two loops in series: the first one is positive and the second one is negative according to the

direction of magnetisation of the magnets. The expression of the flux linkage over Nc pairs of

poles taking into account that each C-core has two heads is therefore given by

λPM (β, r) = 2Nc

[
ˆ β+π

2

β−π2
Br(θ, r)

Lr

Nc
dθ −

ˆ β+ 3π
2

β+π
2

Br(θ, r)
Lr

Nc
dθ

]
, (4.29)

where L is the equivalent length of the magnets in the axial direction and Nc the number of

C-cores.

The final expression of the flux linkage of a single coil is

λPM (β, r) = 8LRgBsλr

[γ1(r)

1
cos(β)− γ3(r)

3
cos(3β) +

γ5(r)

5
cos(5β)− . . .

]
. (4.30)



82 Chapter 4 Analysis of Transverse-Flux Machines

Now that the total flux linking with the equivalent currents of the PMs is known, the expression

of the virtual mutual inductance of a single current loop becomes

λPM (β, r) = Msc(β, r)IS ⇒Msc(β, r) = λPM (β, r)
µeqµ0Nw

2gzBs
. (4.31)

The final expression of the virtual mutual inductance between a coil at a distance r and position

β can be shown to be given by:

Msc(β, r) = 4µeqµ0
RgLNw
gz

λr

∞∑

1,3,5...

γn(r)

n
cos(nβ)(−1)

n−1
2 . (4.32)

The virtual mutual inductance for the distributed equivalent current of the magnets with thick-

ness dm can be calculated as follows

M(β) =
1

dm

ˆ dm

0

Msc(β, δ)dδ, (4.33)

where δ is the distance to the core-back:

δ = Rg +
gz
2
− r. (4.34)

The final expression of the virtual mutual inductance will then be given by

M(β) = 4µeqµ0
RgLNw
gz

λr

∞∑

1,3,5...

γavn
n

cos(nβ)(−1)
n−1
2 , (4.35)

where γavn is the average value of γn(r) along the magnet thickness.

4.5 Circuit Parameters and Performance

4.5.1 Back EMF and Torque Constants

The instantaneous back EMF of each phase can be obtained directly using Faraday’s Law.

Therefore,

ES(t) = −dλS(ωt)

dt
= −IPM

dM(ωt)

dt
, (4.36)

which can be rewritten as

ES(t) = 4µeqµ0Nw
RgL

gz
λrIPMω

∞∑

1,3,5...

γavn
n

sin(nωt)(−1)
n−1
2 . (4.37)
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The RMS value of the fundamental harmonic when the machine is operating in steady state at

constant speed is expressed as

ERMS =
4µeqµ0√

2
Nw

RgL

gz
λrIPMγ

av
1 ω, (4.38)

which can be expressed using the back EMF constant, kE , (Hendershot and Miller, 2010) as

ERMS = kEΩ, (4.39)

where Ω = Nc · ω is the mechanical speed of the rotor. This gives the following expression for

the back EMF constant

kE = NwNc
4µeqµ0√

2

RgL

gz
Fmλrγ

av
1 . (4.40)

On the other hand, the average torque per phase can be obtained using the torque equation in

(Anglada and Sharkh, 2017b). The average torque per phase when the current is sinusoidal is

given by

Tph =
4µeqµ0√

2
NwNc

RgL

gz
λrIPMγ

av
1 IRMS , (4.41)

which can be rewritten as

Tph = kT IRMS , (4.42)

where kT is the torque constant (Hendershot and Miller, 2010) calculated as follows

kT = NwNc
4µeqµ0√

2

RgL

gz
Fmλrγ

av
1 . (4.43)

As expected the expressions of (4.40) and (4.43) are exactly the same, with the only particularity

that for TFMs the back EMF constant is equal to the torque constant per phase.

4.5.2 Phase Inductance

The reactance is due to the self-inductance of the coils; it can be separated into two different

terms one due to the flux that crosses the air-gap, Lg, and one due to the leakage in the axial

direction, Ll.

The value of Lg can be estimated using the expression of the magnetic field distribution in the

air-gap to obtain the flux. For a given current i the inductance is calculated as follows

Lg = Nc
NwΦcore

i
, (4.44)

where Φcore is the total flux passing through one C-core across the air-gap. The parameter λr

from the complex permeance function in (4.26) can be used to obtain the total flux crossing the



84 Chapter 4 Analysis of Transverse-Flux Machines

air-gap as follows

Φcore = B̂λrL
2πRg
Nc

, (4.45)

with

B̂ =
µeqµ0Nwi

2gz
, (4.46)

therefore, the final expression of the air-gap inductance is

Lg = µeqµ0N
2
wL

πRgλr
gz

, (4.47)

The leakage flux in the axial direction can be estimated using the expression for the slot leakage

can be found in (Say, 1965):

Ll = µ0NcN
2
wlcore

(hc − hco
3ws

+
hco
ws

)
, (4.48)

where hc is the slot depth, hco is the difference between the slot depth and the coil depth, ws the

slot width, and lcore the C-core axial length as shown in Figure 1.10 in the introduction. The

total reactance X is calculated as follows

X = ω(Lg + Ll). (4.49)

4.5.3 Power Factor

The back EMF can be calculated using (4.39) and the inductance according to (4.49). Therefore,

the power factor can be directly calculated. TFMs tend to have a low power factor; in (Harris

et al., 1997b) this topic is studied in detail. The conclusion is that besides the leakage, which is

relatively high in these machines, the main cause is the ineffective use of magnetic flux (Anglada

and Sharkh, 2016b). This can be easily seen in the fact that during the calculation of the virtual

mutual inductance one of the equivalent current loops has a strong positive flux linking while

the flux linking with the other current loop is in the opposite direction. However, still many

publications state that the low power factor is due to leakage in the classical way (Mueller and

Polinder, 2013; Lu et al., 2003, 2011; Kremers et al., 2014, 2015). Leakage has been defined

traditionally as the part of the flux that is not crossing the air-gap (Say, 1965; Kundur, 1993;

Fitzgerald et al., 2003; Matsch, 1972); the negative flux mentioned earlier is actually crossing

the air-gap but in the opposite direction1.

To operate in the maximum torque condition the current, I, has to be in phase with the back

EMF, E; this means that current only has a q-axis component Iq. The phasor diagram is shown

in Figure 4.6.

1Prof. Martyn Harris considered the leakage flux as the flux that is not effectively producing torque rather
than the flux that is not crossing the air-gap. Using this definition of leakage it is true that the low power factor
is due to the high leakage flux. However, in this Thesis we will use the classical definition of leakage according to
(Say, 1965; Kundur, 1993; Fitzgerald et al., 2003; Matsch, 1972).
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Figure 4.6: Phasor diagram with current only in the quadrature axis.

At high frequencies the value ofX is much greater than the value of the resistance of the windings,

Rw. Therefore, the angle φ in Figure 4.6 can be approximated as

φ ≈ tan−1
(IqX
E

)
. (4.50)

According to the phasor diagram shown in Figure 4.6, when the resistance of the windings is low

the power factor can be calculated as follows:

cos(φ) ≈ E√
(IqX)2 + E2

. (4.51)

According to (4.40), the back EMF constant is proportional to λrγ
av
1 ; which is the flux factor

when operating with a sinusoidal current. Therefore, the back EMF is proportional to the flux

factor:

E ∝ KB . (4.52)

On the other hand, based on the torque equation:

T ∝ NcKBIq. (4.53)

If Iq and Nc remain constant but KB reduces, then the power factor and the torque will reduce.

Therefore, the torque and the power factor are closely related through the flux factor, KB . In

the following section this concept is illustrated with a case study.

The value of the back EMF can be calculated from the flux linkage equation shown in (4.39).

Since both the back EMF and the phase inductance are proportional to the frequency, the power

factor at full load is independent of the frequency.
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4.6 Case Study

The method described in the previous sections was applied to the geometry of the TFM built at

the University of Southampton (Harris and Mecrow, 1993; Harris and Pajooman, 1995; Harris

et al., 1997a, 1996; Pajooman, 1997).

The windings of the machine have Nt = 230 turns in the configuration analysed in this chapter

and the rated current I is 10 A. The MMF across the gap under each C-core head is calculated

as follows

F =
1

2
NtI = 1150 A, (4.54)

therefore the magnetic field as defined by Harris et al.

Bs =
µ0F

gz
=

4π · 10−7 · 1150

5.5 · 10−3
≈ 0.263 T. (4.55)

The permanent magnets are made of the neodymium-iron-boron type with Br = 1.05 T and

µrec ≈ 1, which is the relative permeability of the PM. The equivalent current:

Fm =Mdm =
1.05

4π · 10−7
· 4.5 · 10−3 ≈ 3760 A. (4.56)

The active C-core length is calculated as it is described in section 4.2 considering that the magnet

width is 21 mm, which is higher than the C-core head width, lcore, that is 15 mm. Therefore,

the equivalent length is calculated as follows

Leq ≈ lcore + 0.384gz ≈ 17.11 mm (4.57)

This methodology was implemented in Matlab. Using the CP function method, as described in

chapter 3, the value of the flux factor for a square-wave current is

KTotal
B ≈ 0.3105. (4.58)

Figure 4.7 shows the average torque of one phase of the TFM obtained from the generalised

torque equation presented in this chapter, Harris’ torque equation (Harris and Mecrow, 1993),

the value measured in the actual device and 3D FEA calculations. The method proposed in

this chapter has a good agreement with FEA and experimental data in the linear region below

saturation.

The results obtained from the torque equation can be compared with the studies presented in

(Harris and Mecrow, 1993; Harris and Pajooman, 1995). The calculation of the flux factor pro-

posed in (Harris and Mecrow, 1993) considers the magnets to be represented by point currents

(in the 2D section) at the inner bore of the rotor core-back. Then, the amplitude of the magnetic

field harmonics can be obtained from (Freeman, 1962) to calculate KB to be 0.275, which cor-

responds to the torque equation - Harris line in Figure 4.7. However, it is mentioned in (Harris

and Mecrow, 1993) that the equivalent current is distributed along the air-gap which the authors
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from (Harris and Mecrow, 1993) suggested could increase KB to 0.334 without providing details

of the calculation. This value is an overestimate compared to the value of KTotal
B in (4.58).
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Figure 4.7: Average torque of the TFM obtained with the torque equation presented this
chapter, Harris et al. torque equation, the value measured in the lab and 3D FEA (Harris and

Mecrow, 1993; Harris and Pajooman, 1995).

Figure 4.8 shows the real part of the CP function, Re{λSC}, for δ = 0 mm (over the core-

back), δ = dm/2 (middle of the magnet width) and δ = dm (over the surface of the magnet).

It can be appreciated that the amplitude of the harmonics increases as δ increases. Since the

flux factor depends on the amplitude of the harmonics, considering only the top of the core-

back will underestimate the average torque. Harris et al. (Harris and Mecrow, 1993; Harris

and Pajooman, 1995) mentioned this effect but it was not calculated exactly. The proposed

methodology considers this effect accurately when calculating the flux factor.
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Figure 4.8: Real part of the CP function associated to the SC transformation, Re{λSC}, as
a function of the position, θ, for three different lengths, δ.
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Regarding the virtual mutual inductance approach: the results of the analytical model are

compared with experimental data and 3D FEA. The flux linkage of the stator winding was

measured using a flux meter while manually rotating the rotor over 18 mechanical degrees,

which corresponds to 360 electrical degrees. These measurements were reported in (Pajooman,

1997).

Figure 4.9 shows a quarter model of the TFM under study with the magnetic field passing

through one C-core. The 3D model was simulated using magnetostatic FEA for several rotor

positions. The flux linkage is calculated by integrating the magnetic field through the C-core

back.

Figure 4.9: Magnetic field passing through a C-core, 3D FEA model.

Figure 4.10 shows the flux linkage obtained analytically, the experimental data and the 3D FEA

data. It can be appreciated that the analytical method underestimates the amplitude of the flux

linkage. This is probably due to the 3-dimensional interaction of the field around the C-core

head, which is only partly taken into account by using the equivalent length, L.

4.6.1 Electrical Parameters of the Machine

Table 4.1: Electrical parameters of the TFM

Quantity Symbol Value
Rated current I 10 A
Back emf constant kE 3.54 V/(rad/s)
Torque constant kT 3.54 Nm/A
Air-gap inductance Lg 40.5 mH
Leakage inductance Ll 5.9 mH
Phase resistance Rw 1.57 Ω
Power factor cos(φ) 0.35
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Figure 4.10: The measured flux linkage and the one obtained with the flux linkage equation
proposed using the virtual mutual inductance (VMI) approach.

4.6.2 Study of the current design

Taking as a starting point the machine described in chapter 1 let us show how to choose the

number of C-cores, which is also the number of pole pairs. Assuming that the radius of the

machine, the magnet thickness dm, the clearance gap cg and the tooth-pitch ratio t/τp remain

constant. The pole pitch is calculated as follows

τp =
2πRg
Nc

. (4.59)

With these constraints it is possible to calculate the parameters of the machine (average torque,

back EMF and power factor at full load) starting from Nc = 1 until Nc = 35. Also, the

maximum power factor is calculated; which corresponds to the power factor assuming that there

is no leakage (Ll = 0 H). The purpose of this is to show that while leakage affects the power

factor it is not the main cause of the low power factor in TFMs.

Figure 4.11 shows the average torque per phase, calculated using (4.42), in blue with the scale

on the left hand side of the graph. As the number of C-cores increases the average torque also

increases until it reaches a maximum point, which corresponds to Nc = 24 C-cores.

The power factor at full load and the maximum power factor are shown in Figure 4.11 with the

scale on the right hand side of the graph. It can be easily appreciated that the maximum power

factor is higher than the actual power factor but it follows the same strictly decreasing trend.

This shows that the low power factor of TFMs is not due to leakage but due to the low back

EMF constant, which is strongly affected by the ineffective use of the magnetic flux as it was

mentioned earlier in this chapter and discussed in (Harris et al., 1997b; Anglada and Sharkh,

2016b).

The decrease in the power factor can be caused by three reasons, based on (4.51): an increase

of the rated current, an increase of the phase inductance and/or a decrease in the back EMF.
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Figure 4.11: Average torque per phase and power factor as a function of the number of
C-cores.

In this case study the rated current remains constant and therefore this is not the cause. It was

proved in section 4.5.3 that the back EMF is affected directly by the flux factor; therefore, it is

necessary to study if this is the dominant effect. Figure 4.12 shows the air-gap inductance, Lg,

and the leakage inductance, Ll, as a function of the number of C-cores with the axis on the left

hand side of the graph. The flux factor, KB , is shown with the axis in per unit in the right hand

side of the graph. It can appreciated that the air-gap inductance increases gradually but the

leakage inductance remains constant. This means that there is more flux crossing the air-gap;

however, not all of this flux is effectively producing torque because the flux factor is decreasing

rapidly. Therefore, the low power factor is not due to an increase of the leakage flux but due to

the ineffective use of the flux that actually crosses the air-gap.
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Figure 4.12: Air-gap inductance, Lg, and leakage inductance, Ll, as a function of the number
of C-cores with the axis on the left hand side of the graph. Flux factor, KB , with the axis in

per unit on the right hand side of the graph.

If the design optimisation is done only considering torque, as many authors propose (Lu et al.,

2011; Kremers et al., 2014, 2015), the optimal machine would have Nc = 24 C-cores. However,

this number of C-cores yields a very low power factor (< 0.3). Near Nc = 24 C-cores the slope
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of the torque curve is very low and the slope of the power factor curve is steep, which means

that for small improvements of torque for each C-core added there is a strong penalty in terms

of power factor. Therefore, during the design process it is essential to have a happy compromise

between torque density and power factor.

4.7 Conclusions

This chapter presents a comprehensive analysis of TFMs including the calculation of torque,

back EMF, phase inductance and power factor using the magnetic field distribution obtained

with the complex permeance function shown in chapter 3.

The torque equation presented in section 4.2 can be directly used to calculate the average torque

of TFMs. This method has been validated using FEA and experimental data, Figure 4.7. The

torque equation is valid when the magnetic circuit saturation is negligible.

The virtual mutual inductance approach can be used to calculate the flux linkage, back EMF

and power factor. The results were contrasted with FEA and experimental data as shown in

Figure 4.10.

The torque equation and the virtual mutual inductance were used to show the relationship

between torque and power factor. The flux factor, which affects both the torque and the back

EMF, measures the ineffective use of the magnetic flux. This effect is the reason of the low power

factor in TFMs and not the leakage flux.





Chapter 5

Calculation of Rotor Losses in

Transverse-Flux Machines

5.1 Introduction

Transverse flux machines (TFMs) tend to have large eddy currents induced in the rotor because

of the presence of many asynchronous harmonics in the air-gap produced by the structures that

modulate the field. In many cases the flux passing through the rotor follows a three-dimensional

path and the iron cannot be laminated; in these cases the rotor has to be made of soft magnetic

composites (Baker et al., 2012; Washington et al., 2012; Deodhar et al., 2015; Washington et al.,

2016; Liu et al., 2015; Doering et al., 2015). Therefore, accurate estimates of rotor losses is

essential to avoid designing a machine that may fail due to rotor overheating, when the rotor

yoke is not made of soft magnetic iron powder composites iron or laminations.

The calculation of eddy currents in 3D geometries tends to be time consuming because the mesh

has to be very refined in the conducting regions. The typical approach of at least three elements

per skin depth length normally implies an extremely large number of elements in 3D problems

(Lowther and Silvester, 1986). Analytical methods provide a low cost alternative in terms of

computational time to 3D FEA at the initial design stages.

Previous studies have successfully calculated the rotor losses in inner rotor PM machines using

the well-known current sheet model (Lawrenson et al., 1966; Stoll and Sykulski, 1992; Irenji,

1998; Zhu et al., 2004; Qazalbash et al., 2015). However, this approach has a major drawback:

as the number of regions in the model increases, the complexity of the problem increases in a very

significant way. This is because it is necessary to invert a matrix, which increases in size with

the number of layers considered, to solve the linear system of equations resulting from applying

the boundary conditions (Irenji, 1998; Qazalbash et al., 2014a,b, 2015; Anglada et al., 2016).

In this chapter we propose an analytical method that is also based on the current sheet model.

However, instead of solving the linear system of equations directly we obtain a transfer matrix

between layers. This implies that the only matrix that has to be inverted is of order two. A

similar approach has been used in the past to obtain the eddy currents in geometries with several

93
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rectangular regions (Pipes, 1956; Greig and Freeman, 1967; Freeman, 1968). Kirtley applied

a surface coefficient in a similar way in cylindrical coordinates but assuming that the eddy

currents are resistance limited (solving Laplace’s equation), which means that it is applicable

for thin regions only (Kirtley, 1975). We have generalised the concept of the transfer matrix to

cylindrical coordinates and conductive/non-conductive regions and formulated it in a systematic

form.

The methodology proposed in this chapter can be applied to any number of cylindrical regions,

conductive or non-conductive, excited by a cylindrical current sheet at an arbitrary position.

In this chapter we use a TFM as a case study but this methodology is particularly useful for

the calculation of rotor losses in high speed PM machines (Anglada et al., 2016) in which the

frequencies involved are high. This approach can be used to analyse inner rotor PM machines,

outer rotor PM machines, magnetic brakes, etc. To the knowledge of the author this is the first

time that the current sheet model is applied for the calculation of rotor losses in TFMs or outer

rotor machines.

5.2 Calculation of Rotor Losses: the Traditional Approach

In this chapter, we study the rotor loss of a non-salient outer rotor TFM. From the rotor ref-

erence frame the slots change position with time and this variation of permeance produces a

variation of the magnetic field seen by the rotor, which induces eddy currents (Lawrenson et al.,

1966; Stoll and Sykulski, 1992). In addition to the tooth-ripple (or slot permeance) losses there

might be eddy currents induced by the stator’s magnetic field distribution, which may contain

asynchronous harmonics. The calculation of the asynchronous harmonics due to tooth perme-

ance variation is done by calculating the magnetic field distribution in different rotor positions

spanning one pole-pitch.

The rotor eddy-current power loss is calculated analytically using a cylindrical multilayer model

in which each asynchronous harmonic is represented by a current sheet at the stator bore of an

equivalent slotless configuration of the machine; this is represented schematically for 4 layers in

Figure 5.1. The non-segmented magnet is modelled as a conducting region with no magnetiza-

tion.

The current sheet density that represents an asynchronous harmonic of space order q and time

order k can be expressed as

Jqk = Ĵqk cos(qθ + kωt) = Re
(
Ĵqke

jqθejkωt
)
. (5.1)

Maxwell’s field equations for this case, based on (Irenji, 1998), can be expressed as follows:

∇× ~E = −∂ ~B∂t , (5.2)

∇× ~H = ~J, (5.3)

~B = µ ~H, (5.4)

~J = σ ~E, (5.5)
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µ1, σ1

µ2, σ2

µ3, σ3

µ4, σ4

Stator

Air-gap

Magnet

Yoke

current sheet

Figure 5.1: Cylindrical current sheet model of an outer rotor PM machine with the corre-
sponding current sheet at the stator slotless surface.

where ~E is the electric field intensity, ~B the magnetic field, ~H the magnetic field intensity, ~J the

current density, µ is the magnetic permeability and σ the electric conductivity.

The magnetic vector potential, ~A, is defined as:

∇× ~A = ~B. (5.6)

Thus, we can obtain the relationship between the electric field and the magnetic vector potential:

~E = −∂
~A

∂t
. (5.7)

Combining the previous equations:

∇× ~H = ∇×
( ~B
µ

)
=

1

µ
∇× (∇× ~A) = − 1

µ
∇2 ~A, (5.8)

∇× ~H = ~J = σ ~E = −σ∂
~A

∂t
. (5.9)

In the previous expression it is assumed that the permeability does not depend on the magnetic

field and does not vary in time. The derivation of equation (5.8) is based on the following

identities:

∇×∇× ~A = ∇(∇ · ~A)−∇2 ~A, (5.10)

∇ · ~A = 0. (5.11)

Therefore, combining equations (5.8) and (5.9) the following relation is obtained:

∇2 ~A = µσ
∂ ~A

∂t
. (5.12)

The objective is to calculate the magnetic vector potential in the cylindrical multilayer domain

shown in Figure 5.1. In cylindrical coordinates the Laplacian of ~A assuming no variation in the
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z direction, ~A = (0, 0, A), is expressed as follows:

∇2A =
1

r

∂

∂r

(
r
∂A

∂r

)
+

1

r2

∂2A

∂θ2
. (5.13)

Since the applied current sheet is sinusoidal in space and time, the magnetic vector potential

can be expressed as a phasor by separating the variables as

A(θ, r, t) = R(r)ejqθejkωt, (5.14)

accordingly, in steady state the Laplacian can be expressed as

∇2A = jkωµσA. (5.15)

Substituting (5.14) into (5.15) and re-arranging the terms we obtain

d2R(r)

dr2
+

1

r

dR(r)

dr
−
(
jkωµσ +

q2

r2

)
R(r) = 0, (5.16)

which is a modified Bessel differential equation whose general solution is given by

R(κr) = CIq(κr) +DKq(κr), (5.17)

in which κ2 = jkωµσ, C and D are constants that are determined by applying the boundary

conditions, and Iq and Kq are the modified Bessel functions of the first and second kinds of

order q, respectively. The radial and tangential components of the magnetic field distribution

are calculated as follows:

Br(θ, r, t) =
1

r

∂A

∂θ
=

1

r
jq
[
CIq(κr) +DKq(κr)

]
ejqθejkωt, (5.18)

Bθ(θ, r, t) = −∂A
∂r

= −κ
[
CI ′q(κr) +DK ′q(κr)

]
ejqθejkωt. (5.19)

The constants C and D for each layer (1 stator iron, 2 air-gap, 3 magnet and 4 rotor hub) are

obtained after applying the following boundary conditions1:

1. Br and Bθ are finite as r approaches zero (D1 = 0);

2. Br is zero at the outer radius of the rotor;

3. the radial flux density, Br, is continuous at all interfaces;

4. at the current sheet (r = R1) there is a discontinuity in the tangential field intensity, Hθ,

by the amount of the current sheet;

5. the tangential field intensity, Hθ, is continuous at r = R2 and r = R3.

1Assuming that the permeability of the iron infinite.
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These boundary conditions are expressed mathematically as follows

1

R1
jq
[
C1Iq(κ1R1)

]
=

1

R1
jq
[
C2Iq(κ2R1) +D2Kq(κ2R1)

]
, (5.20)

1

R2
jq
[
C2Iq(κ2R2) +D2Kq(κ2R2)

]
=

1

R2
jq
[
C3Iq(κ3R2) +D3Kq(κ3R2)

]
, (5.21)

1

R3
jq
[
C3Iq(κ3R3) +D3Kq(κ3R3)

]
=

1

R3
jq
[
C4Iq(κ4R3) +D4Kq(κ4R3)

]
, (5.22)

1

R4
jq
[
C4Iq(κ4R4) +D4Kq(κ4R4)

]
= 0, (5.23)

−κ1

µ1

[
C1I

′
q(κ1R1)

]
= −κ2

µ2

[
C2I

′
q(κ2R1) +D2K

′
q(κ2R1)

]
+ Ĵqk, (5.24)

−κ2

µ2

[
C2I

′
q(κ2R2) +D2K

′
q(κ2R2)

]
= −κ3

µ3

[
C3I

′
q(κ3R2) +D3K

′
q(κ3R2)

]
, (5.25)

−κ3

µ3

[
C3I

′
q(κ3R3) +D3K

′
q(κ3R3)

]
= −κ4

µ4

[
C4I

′
q(κ4R3) +D4K

′
q(κ4R3)

]
. (5.26)

This is a linear system with 7 equations and 7 unknowns (C1, C2, D2, C3, D3, C4 and D4)2.

Once the constants are calculated the magnetic vector potential is known in all the domain and

the currents induced in the axial direction are calculated as follows:

Jaxial = −σ∂A
∂t
, (5.27)

were σ is the conductivity of the material. The total rotor losses can be obtained by integrating

J2
axial/σ in all the domain or using the Poynting vector (Qazalbash et al., 2014a,b; Zhu et al.,

2004).

The amplitude of the current sheet that corresponds to each asynchronous harmonic, Ĵqk, is

effectively set to produce the same normal flux density on the surface of the magnet B̂qk (Qazal-

bash et al., 2014a,b, 2015). In practice, the problem is solved by setting Ĵqk = 1 and calculating

the corresponding losses Pqk1 from the solution of the diffusion equation in the current sheet

model. In addition, the Laplace equation (no eddy currents) is solved to find the corresponding

B̂qk1 when Ĵqk = 1. Finally, the actual losses for a given B̂qk (obtained from harmonic analysis

using conformal mapping in this case) are calculated as

Pqk =
( B̂qk
B̂qk1

)2

Pqk1. (5.28)

2In theory this system of linear equations is well defined. However, there can be numerical problems because
it is necessary to evaluate Bessel functions with large complex arguments, which may produce that the matrix is
badly scaled and close to singular. Therefore, it is important to be careful in this stage.
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5.2.1 Solution without Eddy Currents

To obtain the value of B̂qk1 in order to calculate the rotor loss using (5.28) it is necessary to

solve the same problem as before but without eddy currents. Equation (5.16) can be rewritten

assuming that the conductivity in all regions is zero as:

d2R(r)

dr2
+

1

r

dR(r)

dr
− q2

r2
R(r) = 0, (5.29)

which is an ordinary differential equation whose general solution is given by

R(κr) = Crq +Dr−q. (5.30)

Therefore, the radial and tangential components of the magnetic field distribution are calculated

as follows:

Br(θ, r, t) =
1

r

∂A

∂θ
=

1

r
jq
[
Crq +Dr−q

]
ejqθejkωt, (5.31)

Bθ(θ, r, t) = −∂A
∂r

= −1

r

[
Crq −Dr−q

]
ejqθejkωt. (5.32)

The boundary conditions are the same as that in the previous case and the solution of the system

is simpler because in this case there are not Bessel functions in the system.

5.2.2 Calculation of Power using the Poynting Vector

The Poynting vector3 gives the power density of an arbitrary electromagnetic field. Let us define

as U the energy density of an electromagnetic field. The rate of change of U can be expressed

as follows:

∂U
∂t

= ε
∂ ~E

∂t
· ~E +

1

µ

∂ ~B

∂t
· ~B. (5.33)

Accordingly, the Poynting vector, ~S, is defined by

~S = ~E × ~H. (5.34)

We can then rewrite (5.33) using the Poynting vector as follows:

−∂U
∂t
− ~Jf · ~E = ∇ · ~S, (5.35)

where ~Jf is the free current density corresponding to the movement of charge. Expanding the

previous expression we obtain the most common form in electrical engineering of the derivation

3Named after John Henry Poynting; surprisingly, the name of this expression is phonetically accurate keeping
in mind that the Poynting vector gives the energy flow in a directional way.
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of the Poynting vector, which has some similarities with the continuity equation:

∇ · ~S + ε
∂ ~E

∂t
· ~E +

1

µ

∂ ~B

∂t
· ~B + ~J · ~E = 0. (5.36)

For a sinusoidal electromagnetic field in steady state, using the complex number notation used

in this Thesis, the average power (in W/m2) transmitted through a surface can be expressed as:

Ps =
1

2
Re
(
Ez ·H∗θ

)
, (5.37)

where Ez is the amplitude of the electric field intensity in the z-direction and H∗θ is the complex

conjugate of the amplitude of the tangential magnetic field intensity over the surface. To obtain

the total power transmitted through the surface it is necessary to integrate (5.37) over the

surface. In our case, the surfaces are simply cylinders and because of the nature of the fields

their amplitude is constant for a given radius. Therefore, the total power flow, Pn, through an

arbitrary cylindrical surface Sn is calculated as follows:

Pn =
1

2
Re
(
Ez|r=Rn ·H∗θ |r=Rn

)
· Sn, (5.38)

with:

Sn = 2πRnL, (5.39)

where Rn is the radius of the cylinder and L is the axial length.

The electric field intensity in the z direction can be directly calculated using the vector potential

from (5.14) as follows:

Ez = −∂A
∂t

= −jkω
[
CIq(κr) +DKq(κr)

]
ejqθejkωt, (5.40)

which can be rewritten as:

Ez = −krω
q
Br. (5.41)

5.2.3 The problem with the traditional approach

The above methodology has been successfully applied in many occasions (Irenji, 1998; Qazalbash

et al., 2014a,b, 2015). However, the solution of the system of linear equations to obtain the

coefficients in the solution of the problem with eddy currents, equations (5.20) to (5.26), can be

problematic. This is because we are dealing with modified Bessel functions with large complex

arguments. To avoid the numerical problems the matrix has to be inverted analytically and this

can be a very slow process as the size of the matrix increases.

The other major problem of this method is that as the number of cylindrical regions (or layers)

increases, the complexity of the problem increases in a very significant way. For example, in the

topology shown in Figure 5.2 there are 4 regions, which meant that the system of the boundary

conditions is 7 by 7. For example, if we want to study the effect of the conductivity of a retaining
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sleeve now we have 5 regions, which means that the system of the boundary conditions is 9 by

9. This additional complexity can hinder the application of the method from the practical point

of view.

5.3 Calculation of Rotor Losses using Transfer Matrices

This section presents a general methodology to solve the eddy currents problem of a current

sheet with an arbitrary number of conductive or non-conductive cylindrical regions. The basic

idea is to use a transfer matrix between regions instead of solving the whole system of boundary

conditions. Similar ideas have been presented in (Pipes, 1956; Greig and Freeman, 1967; Freeman,

1968; Kirtley, 1975). However, these methodologies are not widely used today probably because

they are old and unknown to most of the active researchers on this field. The main advantage of

the transfer matrix concept is that to obtain the quantities (B and H), it is necessary to invert

a 2 by 2 matrix, which reduces the complexity of the problem. The aim of this section is to

provide a systematic method to solve the problem using this approach.

Let us assume that we have a cylindrical geometry with N regions, each of them has a conduc-

tivity σn and a permeability µn, as shown schematically in Figure 5.2. There is a current sheet

of time order k and space order q in between regions h− 1 and h, which can be expressed as:

Jqk = Ĵqk cos(qθ + kωt) = Re
(
Ĵqke

jqθejkωt
)
. (5.42)

Figure 5.2 shows a simplified representation of the geometry of the problem. Only some of the

regions are shown and the current sheet in between regions h− 1 and h is shown with a thicker

line.

B1

H1

BN
HN

Jqk

. . .
. . .

1 2 ︷ ︸︸ ︷
h− 1

h N

µ1, σ1

µN , σN

Figure 5.2: General model with current sheet on boundary the h.

The differential equations that govern the field in these regions are the same as in section 5.2 and

the fields have the same shape. Therefore, the radial and tangential components of the magnetic

field distribution for a conductive region (σ 6= 0) are expressed as follows:

Br(θ, r, t) =
1

r

∂A

∂θ
=

1

r
jq
[
CIq(κr) +DKq(κr)

]
ejqθejkωt, (5.43)

Bθ(θ, r, t) = −∂A
∂r

= −κ
[
CI ′q(κr) +DK ′q(κr)

]
ejqθejkωt. (5.44)
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Similarly, the components of the magnetic field for a non-conductive region (σ = 0) are expressed

as follows:

Br(θ, r, t) =
1

r

∂A

∂θ
=

1

r
jq
[
Crq +Dr−q

]
ejqθejkωt, (5.45)

Bθ(θ, r, t) = −∂A
∂r

= −1

r

[
Crq −Dr−q

]
ejqθejkωt. (5.46)

The only boundary condition is that there is no flux escaping from the last layer, which is the

same as saying that Br = 0 in layer N . In all the interfaces the radial component of the magnetic

field, Br, is continuous. The tangential field intensity, Hθ, is continuous in all interfaces except

layer h in which there is a discontinuity by the amount of the current sheet amplitude.

To reduce the complexity of the problem, a transfer matrix approach is used to deal with the

boundary conditions at the interfaces between layers. The objective is to obtain a transfer matrix,

[Tn], that relates the radial component of the magnetic field, Br, and the tangential component

of the field intensity, Hθ, at the boundaries of region n. This can expressed as follows:

[
Bn

Hn

]
=
[
Tn

]
[
Bn−1

Hn−1

]
, (5.47)

where Bn is the radial component of the magnetic field at layer n and Hn is the tangential

component of the field intensity at layer n. The transfer matrix can be obtained for each region

based on the geometry and its properties. The calculation of this matrix for conductive regions

and non-conductive regions is shown in sections 5.3.1 and 5.3.2, respectively.

Therefore, we can use the transfer matrix of each region to write the following equations:

[
BN

HN

]
=
[
TN

][
TN−1

]
. . .
[
Th+1

]
[

Bh

Hh + Ĵqk

]
, (5.48)

[
Bh

Hh

]
=
[
Th

][
Th−1

]
. . .
[
T2

]
[
B1

H1

]
. (5.49)

To solve this system it is necessary to apply the boundary condition, which is simply that BN = 0.

Additionally, the magnetic field has to be finite in the origin. Therefore, we can write

H1 = β1B1, (5.50)

where

β1 =
jκ1R1

µ1q

I ′q(κ1R1)

Iq(κ1R1)
, (5.51)

when σ1 6= 0 and

β1 =
j

µ1q
, (5.52)
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when σ1 = 0.

Using the previous expression we can obtain the values of B1 and HN as follows:

[
B1

HN

]
=
[
D
]−1[

TN

][
TN−1

]
. . .
[
Th+1

]
[

0

Ĵqk

]
, (5.53)

with

[
D
]

=

[
0 0

0 1

]
−
[
TN

][
TN−1

]
. . .
[
T2

]
[

1 0

β1 0

]
. (5.54)

Once the values of B1 and HN are known, they can be used to obtain all the rest using the

transfer matrices, as shown in (5.48) an (5.49).

5.3.1 Transfer matrix for a conductive region

The transfer matrix, [Tn], directly relates the magnetic fields at the two boundaries of a given

region n. Figure 5.3 shows a schematic representation of a generic region. Hn−1 and Bn−1 are

the tangential component of the field intensity and the radial component of the magnetic field

at the inner boundary of region n, respectively.

Bn−1

Hn−1

Bn
Hn

region n

µn, σnn− 1
n+ 1

Figure 5.3: Simplified representation of a given region, n.

The expression of the magnetic field distribution is shown in (5.43) and (5.44). Therefore, for a

region n:

[
Bn−1

Hn−1

]
=

[
jq

Rn−1
Iq(κnRn−1) jq

Rn−1
Kq(κnRn−1)

−κnµn I
′
q(κnRn−1) −κnµnK

′
q(κnRn−1)

][
Cn

Dn

]
, (5.55)

hence, re-arranging the terms:

[
Cn

Dn

]
=

1

Fn

[
Mn

]
[
Bn−1

Hn−1

]
, (5.56)

with

[
Mn

]
=

[
−κnµnK

′
q(κnRn−1) − jq

Rn−1
Kq(κnRn−1)

κn
µn
I ′q(κnRn−1) jq

Rn−1
Iq(κnRn−1)

]
, (5.57)
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and

Fn =
jqκn

µnRn−1

[
Kq(κnRn−1)I ′q(κnRn−1)− Iq(κnRn−1)K ′q(κnRn−1)

]
. (5.58)

On the other hand we have that

[
Bn

Hn

]
=
[
Nn

]
[
Cn

Dn

]
, (5.59)

with

[
Nn

]
=

[
jq
Rn
Iq(κnRn) jq

Rn
Kq(κnRn)

−κnµn I
′
q(κnRn) −κnµnK

′
q(κnRn)

]
. (5.60)

Therefore, the transfer matrix is simply expressed as:

[
Tn

]
=

1

Fn

[
Nn

][
Mn

]
. (5.61)

5.3.2 Transfer matrix for a non-conductive region

The methodology is exactly the same as in the case of a conductive region but the expression of

the magnetic field distribution is shown in (5.45) and (5.46). Therefore, for a region n:

[
Bn−1

Hn−1

]
=

[
jqRq−1

n−1 jqR−q−1
n−1

− 1
µn
Rq−1
n−1

1
µn
R−q−1
n−1

][
Cn

Dn

]
, (5.62)

hence, re-arranging the terms:

[
Cn

Dn

]
=

1

Fn

[
Mn

]
[
Bn−1

Hn−1

]
, (5.63)

with

[
Mn

]
=

[
1
µn
R−q−1
n−1 −jqR−q−1

n−1
1
µn
Rq−1
n−1 jqRq−1

n−1

]
, (5.64)

and

Fn =
2jq

µnR2
n−1

. (5.65)

On the other hand we have that

[
Bn

Hn

]
=
[
Nn

]
[
Cn

Dn

]
, (5.66)
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with

[
Nn

]
=

[
jqRq−1

n jqR−q−1
n

− 1
µn
Rq−1
n

1
µn
R−q−1
n

]
. (5.67)

Therefore, the transfer matrix is simply expressed as:

[
Tn

]
=

1

Fn

[
Nn

][
Mn

]
. (5.68)

5.3.3 Calculation of losses

The losses can be calculated using the Poynting vector as described in section 5.2.2. For the

case of the TFM under study there are 4 layers, which correspond to stator iron, permanent

magnet material and rotor hub, as shown in Figure 5.1. Therefore, the total rotor losses, Ptot,

correspond to the power flow through the cylinder of radius R2:

Ptot = P2 =
1

2
Re
(
Ez|r=R2

·H∗θ |r=R2

)
· S2, (5.69)

and the losses in the rotor hub are calculated as follows:

Phub = P3 =
1

2
Re
(
Ez|r=R3

·H∗θ |r=R3

)
· S3. (5.70)

Finally, the losses in the magnets are simply calculated as:

Pmag = P2 − P3 = Ptot − Phub. (5.71)

The same philosophy can be applied to any number of layers.

5.3.4 Reduction of the complexity of the problem

In many cases it might be useful to have a quick estimation of rotor losses without performing very

complicated calculations. The only problem or inconvenience with the methodology proposed

in this chapter is that for the calculation of the transfer matrix of a conductive region, see

section 5.3.1, it is necessary to evaluate modified Bessel functions. This can be done easily in

mathematical software packages such as MATLAB. However, in pure programming languages

such as C or Python it is necessary to rely on external libraries. Therefore, the aim of this

section is to show how to calculate the transfer matrix in a simplified way.

The methodology presented previously showed how to apply the transfer matrix to estimate the

rotor losses Figure 5.3 assuming N regions. In fact, the only restriction is that each region has

constant properties (µn and σn). Therefore, we can divide each region in many sub-regions and

the method will still be valid. The advantage of dividing each of the regions in many subregions

is that if the thickness of the region is very small compared to its radius the transfer matrix

can be approximated using the results obtained for rectangular regions (Pipes, 1956; Greig and

Freeman, 1967; Freeman, 1968).
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Bn−1
Hn−1

Bn
Hn

. . .

Nt sub-regions

n− 1

n+ 1

Figure 5.4: Region n is divided into Nt sub-regions.

If the original region n is divided into Nt sub-regions of the same thickness. The thickness of

each sub-region is then calculated as follows

st =
sn
Nt

=
Rn −Rn−1

Nt
. (5.72)

The transfer matrix can be calculated directly applying the methodology presented in (Greig and

Freeman, 1967; Freeman, 1968). In this Thesis the full deduction of the expression is omitted but

it follows the same underlaying principle as sections 5.3.1 and 5.3.2. Therefore, the expression

of the transfer matrix of a sub-region t is

[
Tt

]
=

[
cosh(γtst)

1
βt

sinh(γtst)

βt sinh(γtst) cosh(γtst)

]
, (5.73)

where

γt =
√
k2
t + jσtµtω, (5.74)

kt =
q

Rt
, (5.75)

βt =
γt

jµtkt
. (5.76)

The transfer matrix of region n is simply the product of the transfer matrix of all sub-regions.

One reasonable approach can be to assume that the radius of all the sub-regions is the same:

Rt =
Rn +Rn−1

2
. (5.77)

Therefore, the transfer matrix of all the sub-regions is the same and the transfer matrix can be

calculated as follows:

[
Tn

]
=
[
Tt

]Nt
. (5.78)

At this point we can calculate the transfer matrices without having to evaluate the Bessel func-

tions. However, there are hyperbolic functions. If the thickness of the sub-region is sufficiently
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small we can do one last simplification:

[
Tt

]
= lim
st→0

[
cosh(γtst)

1
βt

sinh(γtst)

βt sinh(γtst) cosh(γtst)

]
=

[
1 γtst

βt

βtγtst 1

]
. (5.79)

This matrix is easy to compute and is well behaved in general terms. Therefore, it can be very

useful to get a quick estimation of the order of magnitude of the rotor losses. However, it is

important to note that the above approximations must be used with care.

5.4 3D Effects

The methodologies presented in previous sections are formulated in two-dimensions (assuming

that the eddy currents are only in the z direction) and they can be used in any kind of machine

not only TFMs. This approach is commonly used and it is effective when the machine studied

is long in the axial direction. However, TFMs tend to have short magnets; which makes the

influence of the 3D effects important.

JJ
z

3D case2D case

Figure 5.5: Paths of the eddy currents for the 2D and 3D cases.

When a machine is very long axially the magnetic fields inside are almost 2D and the end effects

not very important. Figure 5.5 shows schematically the difference between the 2D case and the

3D case. It can be appreciated in the right hand side of Figure 5.5 that the path of the eddy

currents has components that are not in the z axis. Therefore, it is important to consider this

effect in machines that are short in the axial direction.

Russell and Norsworthy (1958) studied the end effect on the eddy currents induced in thin cans.

Their approach was to solve the 2D problem ignoring the reaction field of the eddy currents, i.

e., consider a resistance limited problem. Next, they solved the same problem but considering

the end effects. If P0 is the total power loss in the 2D case, then the power in the 3D case is

P = P0KS , where KS is a coefficient that depends only on the geometry and the properties of

the materials.

In this section we present the background theory of Russell and Norsworthy’s approach and the

details of the calculation of KS . Furthermore, we show how to apply this theory in the context

of the rotor losses in TFMs.

It is important to point out that this methodology is used to account for the 3D effects that

appear in TFMs and complement the methodologies presented in the previous sections. All this

section is based on (Russell and Norsworthy, 1958).
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5.4.1 2D Case

The 2D case is simply a topology in which the axial length can be considered infinite4. The

thin can is subject to a radial magnetic field. Since the can is thin it can be developed without

loosing any generality as shown in Figure 5.6, with the appropriate Cartesian axes. The length

in the x direction is 2l, in the y direction is 2b with b = πr and the thickness of the can is h.

z

y
x

2b2l

h

Figure 5.6: Schematic representation of the developed model of the thin can with the appro-
priate axes. This is the geometry considered for the 2D case.

The radial magnetic field, using the same notation as Figure 5.6 can be written as:

Bz = Bm cos
(π
b
qy + ωt

)
, (5.80)

where q is the harmonic order.

Assuming that the reaction field of the induced currents can be neglected, the electromotive

force can be deduced from Lorentz’s equation, ~E = ~v × ~B, where ~v is the relative speed; which

has a radial component only v = bω/q. Therefore, the electric field is

Ex =
(rω
q

)
Bm cos

(π
b
qy − ωt

)
. (5.81)

Accordingly, the current density can be written as

Jx =
(σrω

q

)
Bm cos

(π
b
qy − ωt

)
. (5.82)

The power loss per unit volume can be calculated using the values of the electric field and the

current density as:

Pvol = ~J · ~E. (5.83)

The total loss is simply obtained by integrating the previous expression in all the domain:

P0 =

˚

~J · ~E dV, (5.84)

4In (Russell and Norsworthy, 1958) they refer to this case as Conducting Shell with Zero Overhang and Zero
Resistance End-Rings because they are the same case.
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which in this case is straightforward to evaluate because there are only x components. Thus,

the total eddy current loss in the thin can is

P0 =
2σhω2b3B2

ml

π2q2
. (5.85)

5.4.2 3D Case

The 3D case considered in this section is the same thin can as in the previous case but with

an overhang of αl (to make the case more general) and considering that that eddy currents can

have components in the x and y axes, as shown in Figure 5.6.

z

y

x

2b2l

h

αl

αl

Figure 5.7: Schematic representation of the developed model of the thin can with the appro-
priate axes. This is the geometry considered for the 3D case with end effects and overhang.

The principle is similar to the previous case but the formulation is slightly different. Based on

Maxwell’s equations, the differential form of Faraday’s law of induction can be expressed as:

~∇× ~E = −∂
~B

∂t
, (5.86)

considering that the external magnetic field has component in the z axis:

∂Ey
∂x
− ∂Ex

∂y
= −∂Bz

∂t
. (5.87)

This expression is equivalent to equation (10) in (Russell and Norsworthy, 1958)5. The current

density can be directly related to the electric field in each direction:

Jx = σxEx, (5.88)

Jy = σyEy. (5.89)

Therefore, combining (5.87), (5.88) and (5.89):

1

σy

∂Jy
∂x
− 1

σx

∂Jx
∂y

= −∂Bz
∂t

. (5.90)

5There is a typographical error in equation (10) in (Russell and Norsworthy, 1958). The correct expression is:

Exdx+
(
Ey +

∂Ey

∂x
dx

)
dy −

(
Ex +

∂Ex

∂y
dy

)
dx− Eydy = −

∂Bz

∂t
dxdy.

However, this error does not affect the final result because its deduction, equation (12), is correct.
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In addition, we have Kirchoff’s law expressed in differential form:

∂Jx
∂x

+
∂Jy
∂y

= 0. (5.91)

We can re-write (5.90) and (5.91) in a convenient form as a system of partial differential equations

(PDEs):

1

σy

∂2Jx
∂x2

+
1

σx

∂2Jx
∂y2

= −∂
2Bz
∂y∂t

, (5.92)

1

σy

∂2Jy
∂x2

+
1

σx

∂2Jy
∂y2

= −∂
2Bz
∂x∂t

. (5.93)

In our case the external magnetic field is applied only in the central region (|x| ≤ l). Therefore,

the PDEs that govern the central region are:

1

σy

∂2Jx
∂x2

+
1

σx

∂2Jx
∂y2

= −
(ωπqBm

b

)
cos
(π
b
qy + ωt

)
, (5.94)

1

σy

∂2Jy
∂x2

+
1

σx

∂2Jy
∂y2

= 0. (5.95)

In the overhang region there is no external field. Therefore, the PDEs are expressed simply as:

1

σy

∂2Jx
∂x2

+
1

σx

∂2Jx
∂y2

= 0, (5.96)

1

σy

∂2Jy
∂x2

+
1

σx

∂2Jy
∂y2

= 0. (5.97)

The boundary conditions between the two regions are that the tangential component of the

electrostatic field, Ey, is continuous and that the current satisfies Kirchoff’s law. The solution

of this system of PDEs is shown in detail in (Russell and Norsworthy, 1958) but for the sake of

simplicity and readability of this Thesis only the final results are shown.

The following intermediate variable is defined to express the solution in a compact way6:

ξ = tanh
(π
b
qαl

√
σy
σx

)
tanh

(π
b
ql

√
σy
σx

)
. (5.98)

The expression of the current densities in the central region is:

Jx =
(ωσxbBm

πq

)
cos
(π
b
qy + ωt

)[
1−

cosh
(
π
b q
√

σy
σx
x
)

(1 + ξ) cosh
(
π
b q
√

σy
σx

)
]
, (5.99)

6This variable is called λ in Russell and Norsworthy’s paper but in this Thesis the symbol of λ is used for the
complex permeance function.
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Jy =

√
σy
σx

(ωσxbBm
πq

)
sin
(π
b
qy + ωt

)[ sinh
(
π
b q
√

σy
σx
x
)

(1 + ξ) cosh
(
π
b q
√

σy
σx

)
]
. (5.100)

Analogously, the expression of the current densities for the overhang regions is:

Jx = −
(ωσxbBm

πq

)
cos
(π
b
qy + ωt

)[
1−

sinh
(
π
b q
√

σy
σx

[x− (1 + α)l]
)

(1 + 1
ξ ) sinh

(
π
b qα

√
σy
σx

)
]
, (5.101)

Jy =

√
σy
σx

(ωσxbBm
πq

)
sin
(π
b
qy + ωt

)[cosh
(
π
b q
√

σy
σx

[x− (1 + α)l]
)

(1 + 1
ξ ) sinh

(
π
b qα

√
σy
σx

)
]
. (5.102)

The calculation of the power for the 3D case is similar to the 2D one but it is slightly more

complicated. The power per unit volume is:

Pvol = ~J · ~E, (5.103)

taking into account that ~E = ~v × ~B we can re-write the specific power as

Pvol = (~v × ~B) · ~J =

∣∣∣∣∣∣∣∣

0 ωb
qπ 0

0 0 Bm cos
(
π
b qy + ωt

)

Jx Jy 0

∣∣∣∣∣∣∣∣
. (5.104)

The total losses are calculated by integrating the specific power all over the thin can:

P =

˚

(~v × ~B) · ~J dV. (5.105)

It can be shown that the expression of the total losses can be expressed as:

P = P0

[
1−

tanh
(
π
b q
√

σy
σx
l
)

πq
b

√
σy
σx

(1 + ξ)l

]
= P0KS , (5.106)

where P0 are the total losses of the 2D case shown in the previous section. The coefficient KS

can be readily used to modify, calculate and assess the influence of the 3D effects on the eddy

currents induced in a thin can.

5.4.3 Application to TFMs

The coefficient KS deduced in the previous section is interesting because it can be used to

complement the two-dimensional methodologies described in this chapter. Even though, the

assumptions of Russell and Northsworthy’s are based on thin cans and ignore the reaction field

of the eddy currents, the coefficient can be used as a link between the 2D and the 3D models.
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Furthermore, this approach is particularly well suited to complement the methodology presented

in section 5.3.4 because dividing each region in many thin layers is the same as having many thin

cans. Therefore, the value of KS and the 2D losses, P0, can be readily calculated for each thin

layer. Then, the total losses are simply the sum of all the thin layers. The interaction between

the field of different layers is not considered in this methodology but it remains as a useful first

approximation.

From the practical point of view, the aim of this section is to relate directly equations (5.98) and

(5.106) to the geometry of the TFM studied in this Thesis. The previous formulation considered

the possibility of anisotropy (σx 6= σy); the permanent magnet material is isotropic (σx = σy),

which simplifies the expressions.

The geometrical variables of section 5.4.2 are related to geometry of the TFM shown in chapter

1 as follows:

l =
lcore

2
, (5.107)

b = πr, (5.108)

α =
Lmag − lcore

2
. (5.109)

Thus, the practical expressions that should be used to calculate the coefficient KS for the analysis

of the single-sided TFM considered in this Thesis can be written as:

ν =
qlcore

2r
, (5.110)

ξ = tanh(αν) · tanh(ν), (5.111)

KS =

[
1− tanh(ν)

ν(1 + ξ)

]
. (5.112)

The value of KS does not vary in a significant way all through the magnet thickness; which is

where most of the eddy currents are induced.

Table 5.1: Value of KS for the TFM

r = Rm r = Rr
Space order q KS [%] KS [%]

1 20 24.09 24.07
3 60 24.61 24.56
5 100 25.11 25.04
7 140 25.61 25.51
9 180 26.10 25.98

Table 5.1 shows the value of Russell’s coefficient at the rotor hub (r = Rr) and on top of

the magnets (r = Rm) for the first even harmonics. It can be appreciated that there is not
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a significant difference in the value of KS all through the magnet thickness. Therefore, one

reasonable approach is to apply the average value of the coefficient to multiply the total losses

instead of applying it in each layer.

It is important to point out that the approach presented in this section is not an exact solution

of the field equations in three dimensions. The solution is obtained using a 2D model and later

Russell’s coefficient, KS , is used to account for the end effects. Since TFMs are intrinsically

three-dimensional devices it is important to remember that this approach is useful as a first step

in the analysis and should be complemented with 3D modelling techniques.

5.5 Asynchronous Harmonics

The asynchronous harmonics are produced by the interaction between the permeance function

due to slotting and the rotor’s magnets (no load magnetic field distribution). In addition, there

are asynchronous harmonics produced by the stator’s MMF.

5.5.1 No-Load Magnetic Field Distribution

The no-load magnetic field distribution in the air-gap of the slotless configuration using the

rotor’s reference frame can be expressed using complex number notation as

Bsl(θ, r) =

∞∑

n=1,3,5

Kn(r) cos(npθ) + j

∞∑

n=1,3,5

Dn(r) sin(npθ), (5.113)

where the coefficients Kn(r) and Dn(r) are calculated according to (Zhu et al., 2002) and j =√
−1 is the imaginary unit. The complex permeance (CP) function using the rotor’s reference

frame is

λ(θ, r, t) = λa0 +

∞∑

m=1,2,3

λam(r) cos
(
mQs(θ − ωmt)

)

+ j

∞∑

m=1,2,3

λbm(r) sin
(
mQs(θ − ωmt)

)
, (5.114)

where the coefficients λa0, λam(r) and λbm(r) are calculated using conformal mapping, as shown

in chapter 3, ωm = ω/p is the mechanical speed of the rotor and Qs is the number of slots of the

machine. Therefore, the magnetic field distribution of the slotted geometry is

Bnl(θ, r, t) = Bsl(θ, r) · λ∗(θ, r, t). (5.115)

For the calculation of rotor losses we are interested in the amplitude of the asynchronous har-

monics of the radial component of the magnetic field, as discussed in section 5.3. Therefore,
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combining (5.113), (5.114) and (5.115) we obtain:

Re
(
Bnl(θ, r, t)

)
=

∞∑

n=1,3,5

Kn(r) cos(npθ)

[
λa0 +

∞∑

m=1,2,3

λam(r) cos
(
mQs(θ − ωmt)

)
]

+

∞∑

n=1,3,5

Dn(r) sin(npθ)

[ ∞∑

m=1,2,3

λbm(r) sin
(
mQs(θ − ωmt)

)
]
. (5.116)

For a particular m, which means a time order k = mQs/p, we can re-arrange (5.116) to ex-

press explicitly each asynchronous harmonic. For each particular n we have two asynchronous

harmonics whose space order, q, and amplitude, Bqk, are calculated as follows




q = k + n, and Bqk = Kn(r)λam2 −Dn(r)λbm2

q = k − n, and Bqk = Kn(r)λam2 +Dn(r)λbm2

(5.117)

The machine studied in this Thesis has Qs = 20 slots and p = 20 pole pairs. Therefore, the

time orders are 1,2,3... Accordingly, the most important asynchronous harmonics are for n = 1,

which is the fundamental waveform of the slotless solution. This means that the most important

asynchronous harmonics for time order 1 have space order 0 and 2; for time order 2 have space

order 1 and 3; for time order 3 have space order 2 and 4; and so forth.

5.5.2 Stator’s Magnetic Field Distribution

The stator’s magnetic field distribution was calculated in chapter 3. The radial component of

the magnetic field can be expressed in the rotor’s reference frame as follows:

Bstator(θ, r, t) = Bs(t)
Rg
r
λr

[
1 +

∞∑

m=1,2,3

γm cos
(
mQs(θ − ωmt)

)]
. (5.118)

Assuming that the current is sinusoidal, Bs(t) can be written as:

Bs(t) = B̂s cos(ωt). (5.119)

Taking into account that ωm = ω/p is the mechanical speed and operating with (5.118) and

(5.119) it can be proven that:

Bstator(θ, r, t) = B̂s
Rg
r
λr

[
cos(ωt) +

∞∑

m=1,2,3

γm
2

{
cos
(
ωt(1− mQs

p
) +mQsθ

)
+

cos
(
ωt(1 +

mQs
p

)−mQsθ
)}
]
. (5.120)

Analogously to the no-load case, for a particularm, we can re-arrange (5.120) to express explicitly

each asynchronous harmonic. For each particular m we have two asynchronous harmonics whose
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space order is q = mQs/p, and the amplitude, Bqk, are calculated as follows:

Bqk = B̂sλr
Rg
r

γm
2
. (5.121)

One has a time order k = 1−mQs/p and the other one k = 1 +mQs/p.

Therefore, the most important asynchronous harmonic is with m = 1 which means a time order

two7 and a space order one.

However, it is important to note that the first term of (5.120) is an asynchronous harmonic with

space order 0. This is because the field produced by the stator windings in the TFM studied

in this Thesis is homopolar. The current formulation of the current sheet model is not able to

obtain these losses and further work is required in this topic.

5.6 Limitations of the complex permeance and current

sheet model

The current sheet model provides more than reasonable results, as shown in the next section,

for the calculation of eddy currents as long as the amplitudes of the asynchronous harmonics are

accurate. However, there are several simplifying assumptions.

First, the current sheet model is two-dimensional. Therefore, the end effects and the influence of

the return path of the eddy currents induced is neglected. The model does not cater for peripheral

magnet segmentation, which can significantly affect the eddy currents since the segmentation

blocks the path of the induced currents.

In machines with relatively small active length to diameter ratios, it is necessary to use 3D FEA

because the end effects can be significant (Hendershot and Miller, 2010). To minimise the weight

of this issue we have implemented the methodology developed by Russell and Norsworthy (1958),

shown in section 5.4. Nevertheless, the qualitative information and the insight provided by the

current sheet model in these case can be helpful to a machine designer.

The properties of the materials are assumed to be linear and isotropic. Accordingly, the method-

ology presented in this paper does not take into account the saturation. Significant saturation,

particularly of the tooth tip can result in significant under estimation of the magnitudes of the

asynchronous harmonics and corresponding losses (Qazalbash et al., 2014a,b, 2015).

There is one particular limitation of the current sheet model that is particularly important for

the case of TFMs: the losses of a homopolar components of the field, i.e. space order 0, cannot

be calculated. This is related to the assumption that the harmonic can be represented with an

equivalent current sheet.

Finally, the effect of the induced eddy currents on the traveling flux harmonics is neglected, the

eddy currents generate travelling harmonics that interact with the slotting, which is not taken

into account in the slotless current sheet model. However, this effect is expected to be negligible

due to the large air-gap and the relatively weak magnetic field of the eddy currents (Irenji, 1998).

7The other harmonic has time order 0, which means that it is synchronous with the rotor.
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5.7 Results

For the purpose of validating the methodology presented, a two-dimensional finite elements

model was built. The model is made of cylindrical bodies, similar to the geometry shown in

Figure 5.1, with the same properties as the TFM described in chapter 1. The current density in

the Ansys model was set to produce an alternating field with an amplitude of 1 T. The model

was fully parametrised to allow for a given frequency, time order and space order. Figure 5.8

shows an example of the eddy currents induced and the ohmic losses in the rotor.

(a) Space order q = p. (b) Space order q = 3p. (c) Space order q = 5p.

Figure 5.8: Rotor losses in the TFM obtained using FEA at 50 Hz, B̂qk = 1 T.

A summary of the results from the simulations is shown in table 5.2. The total rotor losses were

calculated for several space orders for the case of an electrical frequency of 50 Hz and 500 Hz.

The value obtained using transfer matrices, PTM , and the value obtained using FEA, PFEA, are

expressed in watt.

Table 5.2: Rotor losses in the TFM for a field of 1 T

q B̂qk [T] f [Hz] PTM [W] PFEA [W]
p 1 50 14.7 14.84
2p 1 50 1.01 1.223
3p 1 50 0.222 0.261
4p 1 50 0.0802 0.108
5p 1 50 0.0359 0.0488
p 1 500 1057.8 1081.2
2p 1 500 91.83 111.48
3p 1 500 21.9 25.34
4p 1 500 8.01 10.8
5p 1 500 3.59 4.92

It can be appreciated that the proposed methodology presents a reasonable level of accuracy,

particularly for the space order q = p. The larger difference between the proposed analytical

method and FEA for the space orders q = 3p and q = 5p is probably due to the numerical errors

in FEA. This is because the absolute value of the losses for the high order harmonics decrease

significantly, which makes the calculation of the losses inaccurate.
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Figure 5.9: No-load asynchronous harmonics of the TFM.
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Figure 5.10: Stator’s asynchronous harmonics of the TFM.
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Figure 5.9 shows the no-load asynchronous harmonics of the TFM under study obtained using

the CP method. The most significant asynchronous harmonic has a temporal order 1 and a

space order 2 with an amplitude of B̂qk = 90.4 mT.

Figure 5.10 shows the asynchronous harmonics of the TFM under study produced by the stator

windings obtained using the CP method. The most significant asynchronous harmonic has a

temporal order 2 and a space order 1 with an amplitude of B̂qk = 25.04 mT.

The no load rotor losses per asynchronous harmonic when the machine is running at 1500 rpm

are shown in table 5.3. The on load losses are shown in table 5.4, it can be appreciated that the

most important harmonic has a space order of 1 and it is produced by the stator windings. In

the following tables q is the space order, k the time order, B̂qk the harmonic amplitude, f the

electrical frequency, Ω the mechanical speed of the rotor and P the power loss.

Table 5.3: No-load rotor losses in the TFM under study

q k B̂qk [mT] f [Hz] Ω [rpm] P [W]
p 2 1.675 500 1500 0.011
2p 1 90.37 500 1500 0.75
3p 2 1.561 500 1500 0
4p 1 18.56 500 1500 0

Ptot = 0.7614

Table 5.4: On load rotor losses in the TFM under study

q k B̂qk [mT] f [Hz] Ω [rpm] P [W]
p 1 25.4 500 1500 2.48
p 2 1.675 500 1500 0.011
2p 1 90.37 500 1500 0.75
3p 2 1.561 500 1500 0
4p 1 18.56 500 1500 0

Ptot = 3.241

The rotor losses, no load and on load, as a function of the mechanical speed of the rotor are

shown in Figure 5.11. The asynchronous harmonics considered in this figure are taken from

tables 5.3 and 5.4. These values might seem low but it is important to remember that they

are produced by the asynchronous harmonics and the homopolar components are not taken into

consideration.

5.8 Summary

A novel analytical methodology for the calculation of rotor losses was presented in this chapter.

The proposed methodology is based on the current sheet model and uses transfer matrices to

reduce the complexity of the problem.

The case study is an outer rotor TFM but it is important to mention that this methodology

can be applied to other machines and it is particularly useful for the analysis high speed PM

machines.
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Figure 5.11: Rotor losses as a function of the mechanical speed of the rotor.





Chapter 6

Design and Optimisation of a

TFM for Tidal Power Generation

Overview

This chapter illustrates the optimisation of a TFM for tidal power generation. The aim is to

show how to use the methodologies developed in the previous chapters to intuitively design (or

to do the so-called scaling) of a TFM. There might be some repetition in this chapter but the

objective is to present a self-contained example that does not require the reader to jump back to

the previous chapters.

The machine presented here is the same as the TFM described in chapter 1 but with three

phases. This might not be the best type of TFM in terms of power density but it has a simple

topology. However, the key point of this chapter is the design process itself, which can be applied

to any kind of TFM.

6.1 Introduction

The design of brushless permanent magnet (PM) machines is a complex iterative process in

which many factors have to be taken into account. However, when designing traditional PM

machines there are several analytical expressions to obtain a quick estimation of the performance

of these devices before refining the final design with more complicated methods such as FEA

(Hendershot and Miller, 2010; Tapia et al., 2013). Because of the three-dimensional nature of

TFMs, the number of free geometrical parameters is high; which means that the approach that

uses genetic algorithms combined with 3D FEA may not be feasible (Zhang et al., 2016; Oh

and Kwon, 2016). Furthermore, the simple analytical expressions derived for traditional PM

machines are not always suitable for the analysis of TFMs because of their different topology

and principle of operation.

The aim of this chapter is to present an intuitive TFM design optimisation philosophy based on

simple analytical methods; which can complement 3D FEA in the design process. Expressions

121
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for torque and back emf constants are obtained by replacing the permanent magnets (PMs) with

equivalent current sheets as shown in (Anglada and Sharkh, 2017a,b,c) and in chapter 4. These

compact expressions are used to obtain a set of normalised curves that can be readily used to

determine the optimal proportions and dimensions of a machine to maximise its torque density.

Equivalent circuit models are used to assess the performance of the machine.

The chapter also discusses the issue of the inherent low power factor of transverse flux machines,

which is fundamentally linked to its principle of operation. Maximizing torque density inherently

reduces the power factor (Anglada and Sharkh, 2017c). However, the chapter will show that it

is possible to improve the power factor significantly at the expense of a small reduction in the

machine’s torque capability. Accordingly, the chapter proposes a design optimisation procedure

with the combined objective of achieving high torque density and good power factor, which will

help to unlock the potential of these types of machine.

6.2 Machine Topology

To help to illustrate the design optimisation philosophy proposed in this chapter, we use the

tidal turbine generator shown in Figure 6.1 as an example. The current product uses an outer

rotor surface PM machine, which will provide a bench mark for the new TFM machine presented

in this chapter, which will be designed to fit within the constraints of the available space. The

type of TFM is the same as the one presented in chapter 1 but with 3 phases.

Figure 6.1: Picture of the tidal turbine developed at the University of Southampton.

There is a large number of TFM topologies from simple single-sided ones (Harris and Mecrow,

1993; Harris and Pajooman, 1995; Harris et al., 1996) to more complicated flux concentrating

design (Kang and Weh, 2008; Baker et al., 2012; Washington et al., 2012; Deodhar et al., 2015;

Doering et al., 2015; Washington et al., 2016; Keller et al., 2016). All of them share some

similarities with claw-pole machines. In this chapter, the topology considered is a three-phase

single-sided TFM with an outer rotor as shown in Figure 6.2. This topology was chosen because

it has an outer rotor configuration that is required in this case. In addition, it is fairly simple

and easy to manufacture. It has been studied extensively before and its simplicity makes it a
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good machine for illustrating the design optimisation procedure, which can be readily applied to

other topologies.

Each phase in the machine in Figure 6.2 has a circular coil, linking and magnetising the Nc

laminated C-cores which modulate the armature’s magnetic field to produce a fundamental

heteropolar harmonic in the radial direction. The number of C-cores and their width has to be

carefully selected to have a tradeoff between the torque density and the power factor (Anglada

and Sharkh, 2017c).

Phase A
Phase B

Phase C

Windings

PM

Outer rotor

C-core

Figure 6.2: 3D model of the TFM topology considered for this chapter.

The outer rotor comprises a cylindrical yoke with 6 arrays of 2Nc heteropolar magnets each, glued

to the inside surface. Each phase is associated with two arrays of magnets: one array positioned

over the left-hand C-core legs and the other array, which is spatially anti-phase with the first,

is positioned over the right-hand C-core legs. The three sets of magnet arrays corresponding

to the three phases are spatial shifted by 120 electrical degrees (alternatively, the three sets of

C-cores could be spatially shifted by 120 electrical degrees). The radial heterpolar flux harmonic

interacts with the magnets to produce useful torque. The aligned position is defined as the

position of the rotor in which the flux passing through the C-cores is maximum.

The key geometrical parameters of this device are shown in table 6.1, which also defines the

symbols used. The value of gz is calculated as

gz = dm + cg. (6.1)

The magnets’ axial length is greater than the teeth’s axial length because the fringing flux in

the axial direction crosses the air-gap and produces additional torque (Anglada and Sharkh,

2017b). To estimate the effective active length of the C-core in the axial direction we can use

results from (Markovic et al., 2005) to estimate the tooth-to-yoke permeance of the C-core head.

Using this value of the permeance, the total flux in a tooth can be directly calculated. This

enables the calculation of an effective axial length of a tooth, L, or model depth of an equivalent
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Table 6.1: Symbols of the TFM

Quantity Symbol
Stator radius Rs
Rotor radius Rr
Clearance gap cg
Magnet thickness dm
Magnet axial length Lmag
C-core head width lcore
C-core axial length ws
C-core height hs
C-core slot width wc
C-core slot height hc
Winding clearance hco
Pole pitch θτ
Tooth pitch θt
Slot pitch θs
Number of C-cores Nc
Number of turns Nw
Number of phases q
Magnetisation M

2 dimensional radial model of the machine. Accordingly, the effective length of a tooth, L, as

defined in chapter 4 takes into account the fringing flux and is calculated as follows:

L ≈ lcore
(

1 + 0.384
gz
lcore

)
. (6.2)

The previous expression can also be applied to estimate the value of the magnets’ axial length,

Lmag, during the design process.

bc
dm

hc

wcwl wl

wm

Figure 6.3: Dimensions of the C-core in detail.

The tidal turbine should operate over a wide range of frequencies due to the variable nature

of tidal streams. Therefore, it is assumed in this chapter that the machine is driven by a fully

rated power electronic converter with an active front end. This converter is back-to-back with

the converter that is connected to the AC grid as shown schematically in Figure 6.4.

The control strategy of the converter is based on maximum torque scheme; which means that

the current has component only in the q-axis (id = 0).
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M

Converter Grid
Transverse flux 

generator

Figure 6.4: Topology of the tidal generation system.

An important part of this chapter is the issue of the low power factor of TFMs. This power

factor refers to the side of the generator and not to the side of the grid. A low power factor of the

machine would imply a converter that has to be over-rated in terms of reactive power. Therefore,

improving the power factor in the machine means that the cost of the converter should be lower.

6.3 Theory

The methods to calculate torque and induced voltage are based on the idea of replacing the PMs

with equivalent current sheets (Anglada and Sharkh, 2017a,b,c). The advantage of this approach

is that we can obtain the torque and back emf constants by only calculating the stator’s magnetic

field distribution in the air-gap. This approach was described in detail in chapter 4.

The magnetic field distribution in the air-gap can be calculated analytically using a complex

permeance function (Anglada and Sharkh, 2016a), which was described in chapter 3. Therefore,

the magnetic field distribution in the air-gap is expressed as:

~B(θ, r) = Bs
Rg
r

[
λr
{

1 +

∞∑

1

γn(r) cos(nθ)
}
~ur +

∞∑

1

λθn(r) sin(nθ)~uθ

]
, (6.3)

where

Bs =
µeqµ0F

gz
. (6.4)

F is the MMF across the air-gap of value F = NwIS/2 and Nw is the number of turns, µeq is

the equivalent permeability, which depends on the relative permeability of the PMs (µr) and the

magnet thickness to effective air-gap ratio. It is calculated as follows

µeq =
µrdm + cg

gz
. (6.5)

The calculation of the coefficients of the permeance function applied to TFMs is shown in

(Anglada and Sharkh, 2016a). This method was used in the current chapter to obtain the

stator’s magnetic field distribution in the air-gap.
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6.3.1 Torque

The torque equation presented in (Anglada and Sharkh, 2017b) and in section 4.2 is based on

the BiL principle. However, in this case B is the stator’s magnetic field and i the equivalent

current of the PMs. Therefore, the average torque per phase of a TFM can be expressed as

Tph = kT IRMS , (6.6)

where IRMS is the stator’s current and kT is the torque constant (Hendershot and Miller, 2010)

calculated as follows

kT = NwNc
4µeqµ0√

2

RgL

gz
FmKB . (6.7)

where Rg is air-gap’s radius, Fm =Mdm is the permanent magnets’ MMF and KB is the flux

factor; which is calculated as follows:

KB = λrγ
av
1 . (6.8)

6.3.2 Back emf

The flux linkage is calculated using a virtual mutual inductance approach described in section

4.4 and in (Anglada and Sharkh, 2017a). Therefore, the RMS value of the fundamental harmonic

when the machine is operating in steady state at constant speed is expressed as

ERMS =
4µeqµ0√

2
Nw

RgL

gz
FmKB ω, (6.9)

which can be expressed using the back emf constant, kE , (Hendershot and Miller, 2010) as

ERMS = kEΩ, (6.10)

where Ω = ω/Nc is the mechanical speed of the rotor. This gives the following expression for

the back emf constant

kE = NwNc
4µeqµ0√

2

RgL

gz
FmKB . (6.11)

6.3.3 Phase inductance

The reactance is due to the self-inductance of the coils, it can be separated into two different

terms one due to the flux that crosses the air-gap, Lg, and one due to the leakage in the axial

direction, Ll.

The value of Lg can be estimated using the expression of the magnetic field distribution in the

air-gap to obtain the flux. For a given current i the inductance is calculated as follows

Lg = Nc
NwΦcore

i
, (6.12)
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where Φcore is the total flux passing through one C-core across the air-gap. The parameter λr

from the complex permeance function in (6.3) can be used to obtain the total flux crossing the

air-gap as follows

Φcore = B̂λrL
2πRg
Nc

, (6.13)

where L is the axial length and with

B̂ =
µeqµ0Nwi

2gz
, (6.14)

therefore, the final expression of the air-gap inductance is

Lg = µeqµ0N
2
wL

πRgλr
gz

, (6.15)

The leakage flux in the axial direction can be estimated using the expression for the slot leakage

can be found in (Say, 1965):

Ll = µ0NcN
2
wlcore

(hc − hco
3ws

+
hco
ws

)
, (6.16)

where hc is the slot depth, hco is the difference between the slot depth and the coil depth, ws

the slot width, and lcore the C-core axial length as shown in Figure 6.3. The total reactance X

is calculated as follows

X = ω(Lg + Ll). (6.17)

6.3.4 Power factor

To operate in maximum torque condition the current, I, has to be in phase with the back emf,

E; this means that the current only has a q-axis component Iq. The phasor diagram is shown

in Figure 6.5.

Iq

E

IqRw

jIqX

V

λS

φ

Figure 6.5: Phasor diagram with current only in the quadrature axis.
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At high frequencies the value ofX is much greater than the value of the resistance of the windings,

Rw. Therefore, the angle φ in Figure 6.5 can be approximated as

φ ≈ tan−1
(IqX
E

)
. (6.18)

The value of the back emf can be calculated from the flux linkage equation shown in (6.10).

Since both the back emf and the phase inductance are proportional to the frequency, the power

factor at full load is independent of the frequency.

6.4 Optimisation Philosophy

The optimisation procedure presented in this chapter is based on the theory described in the

previous section. The aim is to obtain a set of generic curves that can be used for the optimisation

of any TFM while providing an insight into the behaviour of the system.

The flux factor, KB , is a coefficient that measures how much of the total flux is actually producing

torque (Anglada and Sharkh, 2017c). The advantage is that the flux factor depends only on the

geometrical parameters of the air-gap. Therefore, it is possible to calculate the flux factor as a

function of the normalised parameters of the air-gap, as shown in (6.8).
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Figure 6.6: The flux factor, KB , as a function of the number of C-cores for four values of
dm/g.

The flux factor was calculated for four values of the magnet thickness, dm/g, covering most of

the cases found in practice. Several curves were obtained for each value of dm/g, each of them

corresponds to a different clearance gap length. The clearance gap is expressed as a percentage

of the diameter of the air-gap to make these curves as general as possible. In this case the

tooth-pitch, t/τ , was kept constant as 0.31; which is common in this type of machines and in the

1At the end of the chapter the graphs for several tooth-pitches are shown.



Chapter 6 Design and Optimisation of a TFM for Tidal Power Generation 129

stepping motor design (Kenjo and Sugawara, 1995) because the optimum value of t/τ is between

0.25 and 0.4. The value of t/τ can be tuned at the end and it is not critical in the design process

as it will be discussed later in the chapter.

Figure 6.6 shows the value of KB obtained analytically. It can be appreciated in the four

subfigures that as the number of C-cores, Nc, increases, the value of KB is strictly decreasing.

This is because if there are more C-cores they are closer together and the flux is not being used

effectively as it is discussed in (Anglada and Sharkh, 2017c). However, when designing a TFM

we are interested in the torque produced by the machine. Combining (6.6) and (6.7), the average

torque per phase can be expressed as follows:

Tph = IRMSNwM
4µeqµ0√

2
RgL

dm
gz
NcKB . (6.19)

The parameters Rg and L are the air-gap radius and the effective axial length of the C-core head.

IRMSNw is the electrical loading, µeq is the equivalent permeability andM is the magnetisation

of the PMs. Equation (6.19) can be conveniently re-written as:

Tph = IRMSNwM
4µeqµ0√

2
RgLfopt, (6.20)

with

fopt =
dm
gz
NcKB . (6.21)

The function fopt depends only on the geometrical parameters of the air-gap, which can be

normalised to obtain a set of generic curves similar to those shown in Figure 6.6 for the flux

factor. Assuming that the diameter, the axial length and the electric loading are fixed, the value

of fopt will determine the torque as a function of the number of C-cores. Therefore, fopt can be

used for the optimisation of torque.

The value of fopt was calculated for the same range of the normalised parameters as the flux

factor; the results are shown in Figure 6.7. All curves shown in Figure 6.7 follow the same trend:

at the beginning as the number of C-cores increases there is a substantial increase in the value

of fopt until a maximum value is reached, this is the maximum torque design. After this point

the value of fopt is strictly decreasing. This behaviour can be easily understood by studying

(6.21) in detail. As the number of C-cores increases the value of the flux factor, KB , decreases.

However, at the beginning this effect is compensated because fopt is proportional to the product

of KB and Nc. The maximum torque design corresponds to the point in which the improvement

in torque for each additional C-core is compensated by the decrease of the value of KB .

The generic curves of fopt as a function of the normalised parameters can be used to optimise a

TFM for each particular case maximising the torque produced. However, the torque and power

factor are very closely related and in simple terms a flux factor, KB , implies a low power factor

(Anglada and Sharkh, 2017c). Therefore, it is important to have a happy compromise between

the torque and the power factor. This issue is addressed in section 6.5.
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Figure 6.7: The torque optimisation function, fopt, as a function of the number of C-cores
for four values of dm/g.

6.4.1 Optimisation of the C-core shape

Once the number of C-cores is chosen the next step is to dimension the C-core itself. For a given

clearance gap and magnet thickness, the space available is a rectangle of width ws and height

hs as shown in Figure 6.3. Based on the BiL principle described in section 6.3.1, it can be

deduced that the torque is proportional to the stators magnetic field and the axial length (which

is directly related to the C-core head length, wm). Therefore, the torque is expressed as follows

T ∝ Bswm, (6.22)

where Bs is calculated according to (6.4). The dimensions are chosen for the maximum load

conditions. Therefore, the maximum MMF is calculated as follows:

F =
1

2
wchcJmaxSfg, (6.23)

where wc and hc are the width and height of the windings slot as shown in Figure 6.3, respectively.

Jmax is the maximum current density and Sfg is the slot-fill factor. The values of wc and hc are

constrained by the size of the C-core window. These constraints are expressed as follows:

hs = ht + hc + hb, (6.24)

ws = wc + 2wl. (6.25)

Normally, the back of the C-core is slightly thicker than the legs because of the slot leakage flux.

Therefore, it is reasonable to say that hb = klwl, with kl = 1-1.2 normally2.

2Section 6.4.1.1 comments on this topic and the C-core shape in general.
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Based on the following equations we can define a function, fcore, which is proportional to torque:

fcore = (ws − 2wl)(hs − ht − hb)wm. (6.26)

The optimum dimensions of the C-core are given after maximising fcore subject to the following

constraints:

wm ≤ kmwl, with km = 1-1.2, (6.27)

wl ≤ wm, (6.28)

Bcm +Bcs ≤ Bc−max, (6.29)

where Bcm and Bcs are the maximum values of the magnetic field in the C-core leg, which are

calculated as follows:

Bcm = BPM
dm
gz

wm
wl

(
1 + 0.384

gz
wm

)
kt, (6.30)

where BPM is the remanent field of the PM. The term (1 + 0.384gz/wm) is to consider the flux

from the overhang of the PMs in the axial direction and the term 1 ≤ kt to consider the the

overhang of the PMs in the radial direction (this is because normally t < τ/2, therefore there is

additional flux from the PMs). It is important to point out that this is a preliminary design of

the C-core shape that later has to be refined using more detailed models.

On the other hand,

Bcs = Bs
wm
wl

. (6.31)

The value of Bc−max is based on the properties of the material and the level of saturation at full

load that is tolerated in the design.

6.4.1.1 Some remarks about the C-core shape

The previous section showed how to optimise the C-core shape based on the current density and

MMF of the PMs. Two coefficients were introduced in the process to consider that the back of

the C-core should be slightly thicker than the legs and to limit the tooth-tips.

The coefficient kl is introduced to make sure that the back of the C-core is thicker than the

C-core legs. The back should be thicker because there is some slot leakage flux; therefore, the

total flux in the back is higher. The coefficient kl should be estimated based on this leakage flux

to make sure that the saturation in the back iron is within reasonable limits.

On the other hand, the coefficient km limits the tooth-tips. For example, km = 1 means no

tooth-tips at all, km = 1.1 means that the tooth-tips should not exceed by 10 % the C-core

leg and so forth. The tooth-tips are interesting because they can help to improve the torque
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capability of the TFM. However, they can complicate the winding process; which can be an issue

because one of the advantages of this TFM is the simplicity of the winding. Furthermore, the

tooth-tip shape has to be designed to avoid saturation.

Finally, in general terms it is important to have a trade-off between the total MMF from the

stator and the slot-leakage flux. For example, if the slots are deep and narrow the leakage flux

can reduce the power factor (Ll increases). As a general rule of thumb it can be said that if the

winding window is close to a square (ws ≈ hs) the slot leakage will not be significant.

6.4.2 Losses

In addition to the frictional losses in the shaft’s bearings there are losses in the C-cores (due

to eddy currents and hysteresis), eddy currents in the rotor (in the PMs and in the rotor hub)

and copper losses in the stator windings. The rotor losses due to eddy currents were calculated

in chapter 5 and these results can be directly applied to this case. The copper losses can be

directly calculated using Joule’s Law, I2R, once the current and the winding geometry are known.

Therefore, in this section we are going to deal with the core losses in the C-cores.

The C-cores are made of laminated magnetic steel in a very similar way of a transformer. Ac-

cordingly, the core loss per unit mass can be obtained using Steinmetz’s equation (Hendershot

and Miller, 2010). Thus, the core losses are:

Wc = ChfB̂
n + Cef

2B̂2; in W/kg, (6.32)

where f is the frequency and B̂ is the peak value of the magnetic field; which in this case is the

same as Bc−max from the previous section. The coefficients Ch, Ce and the exponent n depend

on the properties of the material. The first term in (6.32) is related to the hysteresis losses and

the second one to the eddy current losses.

The values of the coefficients can be obtained from a set of curves of core-loss vs. frequency.

This curve can be provided by the supplier of the material or obtained in the lab experimentally.

A comprehensive study about this topic is presented in (Ionel et al., 2007). For the following

analysis it is assumed that the material has been fully characterised.

6.5 Work-flow of the Process

It has been pointed out earlier that if the design is done only to maximise torque it will yield

a low power factor because of the ineffective use of the magnetic flux, or what is the same: the

low flux factor. Therefore, it is important to have a trade-off between torque density and power

factor. This can be achieved by combining Figure 6.7 with simple iterative process. Figure 6.8

shows the work-flow of this process. This work-flow is done for a particular t/τ but including

this variable to the optimisation process is straight-forward.

These are the steps of the design process:
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Calculate NOPT
c

from Figure 6.6

dm ∼ 5-10 cgap

Tem ∝ BsiPMLD
⇒ iPM , L

using L, iPM , cgap and Tin:
optimise C-core shape

and calculate the current, Imax

reduce Nc

Geometrical constraints:
D, L, cgap

Desired output:
Pin, Ω, Tin, PFg

Performance parameters:
kE , kT , Lg, Ll and cos(φ)

Tem = Tin − Teddy − Tcore − Tfriction

Losses:
Teddy, Tcore

cos(φ) ≥ PFg

End

Efficiency:
η = Pem

Pem−Peddy−Pcore−Pwind

no

yes

Figure 6.8: Simplified work-flow of the design optimisation process proposed.

1. Identify the desired output of the machines (Pin, Ω, Tin and the power factor at full load

PFg) and the geometrical constraints (D, L and cgap).

2. Calculate the number of C-cores that maximises torque for the given clearance gap, cgap.

Normally the minimum clearance gap is related to mechanical constraints and it is common

to express it as a percentage of the diameter.

3. Estimate the magnet thickness. Typical values of the magnet thickness are 5 to 10 times the

clearance gap. The important point here is to make sure that the PM won’t demagnetise.

4. Based on the torque required, the MMF of the PMs (iPM ) and the clearance gap obtain

the C-core shape based on section 6.4.1.

5. Calculate the performance parameters such as torque constant, back emf constant, phase

inductance, power factor at full load and losses. At this point the efficiency can be calcu-

lated.

6. Iterate with using the torque due to losses to make sure that the output torque meets the

specification.

7. Check if the power factor at full load is within the acceptable levels. If the power factor is

too low, then reduce Nc and repeat the optimisation process.

8. Iterate until the desired value of the power factor is achieved.
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6.6 Case Study

The aim of this section is to illustrate how to design a TFM for a particular application. In this

case study the machine is designed to suit a tidal turbine that was designed and built at the

University of Southampton, also described in chapter 1. The design specifications are shown in

table 6.2. These constraints are based on the current radial PM machine that was actually built.

Table 6.2: Design specifications

Quantity Symbol Value
Rated power Pem 10 kW
Rated speed nrpm 150 rpm
Rated torque T 670 Nm
Outer diameter Dout 450 mm
Axial length Lmax 160 mm
Clearance gap cgap 2 mm
Current density Jmax 10 A/mm2

To simplify the design process it was assumed that dm/g = 0.8 and t/τ = 0.3. These two

parameters are important but they can be included in the design process later.

Two designs are going to be studied in this section. The so-called Machine A is done by only

maximising torque and Machine B was designed including the iterative loop to correct the power

factor as shown in Figure 6.8.
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Figure 6.9: Flux factor, KB , and optimisation function, fopt, for the tidal turbine under
study.

Figure 6.9 shows the flux factor, KB , with the axis in the left side of the graph and the opti-

misation function, fopt, with the axis in the right side of the graph. It can be appreciated that

the maximum value of fopt corresponds to Nc = 42 C-cores. This means that Machine A has 42

C-cores (or pole pairs).

fopt|A ≈ 8.478. (6.33)
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However, the value of the flux factor for Nc = 42 is very low:

KB |A ≈ 0.1954. (6.34)

A low flux factor suggests a low power factor as it was pointed out in chapter 4. The power

factor of machine A at full load is calculated as follows

cos(φA) ≈ 0.345. (6.35)

Machine B is designed to have Nc = 30 C-cores, for example. Therefore, the values of the

optimisation function and the flux factor are the following:

fopt|B ≈ 8.147, (6.36)

KB |B ≈ 0.262. (6.37)

Finally, the power factor of machine B is:

cos(φB) ≈ 0.456. (6.38)

It can be appreciated that reducing the value of fopt by a 3.9 % means an improvement of 34.10

% in terms of flux factor. Machine B has a power factor at full load that is around 32.17 %

higher than machine A3.

Table 6.3: Parameters of the Machines

Machine A B
Rated speed nrpm 150 rpm 150 rpm
Rated torque Tem 670 Nm 670 Nm
Number of C-cores Nc 42 30
Stator radius Rs 205 mm 205 mm
Core-back radius Rr 215 mm 215 mm
Clearance gap cg 2 mm 2 mm
Magnet thickness dm 8 mm 8 mm
Magnet axial length Lmag 17 mm 17.2 mm
C-core head width lcore 13.00 mm 13.25 mm
C-core axial length ws 46.23 mm 46.98 mm
C-core height hs 46.23 mm 46.98 mm
C-core slot width wc 20.24 mm 20.47 mm
C-core slot height hc 31.93 mm 32.40 mm
Total mass M 29.90 kg 30.75 kg
Total cost4(euro) C 447.02 457.25

3All the values in percentage were calculated as follows:

∆K in % =
∣∣∣KA −KB

KA

∣∣∣× 100.

4Cost of materials:
Neodymium magnets: 45 euro/kg
Copper: 12.4 euro/kg
Magnetic steel: 3.5 euro/kg
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The geometrical parameters of machine A and B are shown in table 6.3. It can be appreciated

that the geometrical parameters are similar in value with the exception of the number of C-

cores. The dimensions of the C-cores of machine B are slightly larger to compensate for the

lower value of fopt. Both machines were designed to be able to achieve the rated torque (∼ 670

Nm), therefore machine B is slightly heavier and the specific torque is lower.

Table 6.4: Performance Comparison

Machine A B
Rated power Pn 10.5 kW 10.1 kW
Electrical frequency f 105 Hz 75 Hz
Rated current In 16.16 A 16.58 A
Rated voltage V 627.17 V 462.56 V
Back emf E 216.56 V 210.74 V
Number of turns Nw 200 200
Apparent power Sn 30.40 kVA 23.00 kVA
Power factor cos(φ) 0.345 0.456
Flux factor KB 0.1954 0.262
Specific torque TM 22.35 Nm/kg 21.70 Nm/kg
Specific torque TC 1.499 Nm/euro 1.466 Nm/euro

Table 6.4 shows the performance parameters of machine A and B. It can be appreciated that the

power factor at full load of machine A is much lower than machine B making the apparent power,

Sn, of machine A considerably higher (30.40 kVA compared to 23.00 kVA). Machine B has a

lower specific torque in terms of Nm/kg and Nm/euro because it is slightly larger. However, the

penalty in terms of specific torque is small (22.35 Nm/kg compared to 21.70 Nm/kg) compared

to the improvement in power factor (0.345 compared to 0.456).

Table 6.5 shows the characteristics of several motors used in the automotive industry (Popescu

et al., 2015). It can be appreciated that the specific torque (in terms of Nm/kg) of the TFM

designed in this section is higher than any of the machines shown in table 6.5. It is important to

note that all the machines shown in table 6.5 are liquid cooled and that it is important to consider

the cooling method (and current density of the windings) to do a more detailed comparison.

Table 6.5: Some examples from the automotive industry, data from (Popescu et al., 2015)

Motor motor type rated torque [Nm] total mass [kg] TM [Nm/kg]
YASA 400 axial PM 360 24 15
Tesla S induction 430 90 4.77
Nissan Leaf interior PM 300 46 6.52
Toyota Prius 2004 interior PM 400 51 7.84

In summary, this section shows two TFMs that could be used as a direct drive generator for a

given tidal turbine. One was designed by maximising the torque and it results in a machine with

a very low power factor. On the other hand, machine B considers that by reducing slightly the

specific torque (by reducing the number of C-cores) there is a significant improvement in terms

of power factor. These machines are just an example but they illustrate the design trade-offs

when dealing with TFMs.
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6.7 Summary

This chapter presents the design optimisation process of a TFM for tidal power generation. The

electrical generator was designed to suit a particular tidal turbine developed at the University

of Southampton.

The optimisation procedure uses the theory developed in chapters 3, 4 and 5. The proposed

methodology is based on two sets of graphs, the flux factor KB and the optimisation function

fopt, which were obtained as a function of the number of C-cores. Therefore, with these two sets

of graphs a preliminary design can be obtained without incurring in a long iterative process.

The case study emphasises the strong relationship between torque and power factor. It is shown

that a machine that is designed directly maximising torque will have a low power factor. To

solve this issue a correction loop in the work-flow has been introduced.

The comparison between machine A and machine B in section 6.6 illustrates how to deal with

the torque-power factor trade-offs.

Optimisation Graphs

Figures 6.10 to 6.13 show the optimisation graphs for several values dm/g and t/τ . The aim is

to show an example of a small database that could be used to do a more detailed optimisation

of this particular TFM topology.
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Figure 6.10: The flux factor, KB , and the torque optimisation function as a function of the
number of C-cores for four values of dm/g for t/τ = 0.25.
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Figure 6.11: The flux factor, KB , and the torque optimisation function as a function of the
number of C-cores for four values of dm/g for t/τ = 0.3.
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Figure 6.12: The flux factor, KB , and the torque optimisation function as a function of the
number of C-cores for four values of dm/g for t/τ = 0.35.
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Figure 6.13: The flux factor, KB , and the torque optimisation function as a function of the
number of C-cores for four values of dm/g for t/τ = 0.4.





Chapter 7

Conclusions and Future Work

The novel contributions presented in this Thesis can be summarised as follows:

• The complex permeance framework has been formulated in such a way that it can be used

for the analysis of transverse flux machines. Furthermore, an algorithm for the efficient cal-

culation of the coefficients of the harmonics of the permeance function has been successfully

developed.

• A generalisation of Harris et al.’s torque equation has been carried out. The torque equation

developed effectively takes into account the fact that the force is distributed all through

the magnet thickness, the effect of curvature, any shape of the mmf waveform and the

phase advance angle.

• A novel methodology for the calculation of flux linkage in permanent magnet machines, i.e.

the virtual mutual inductance approach, has been proposed and validated in this Thesis.

• The relationship between torque and power factor has been studied using the torque equa-

tion and the virtual mutual inductance approach showing that they are closely interlinked.

• The current sheet model has been reformulated using transfer matrices for the calculation of

eddy current power losses in cylindrical geometries reducing the complexity of the problem.

• All the previous methodologies have been applied in a case study, which is the design of a

transverse flux generator for a tidal turbine.

7.1 Conclusions

The aim of this work, in broad terms, has been to develop fundamental theory suitable for mod-

elling of transverse flux machines. The theories developed are general, but they are particularly

tailored for the analysis of transverse flux machines.

Firstly, the complex permeance framework was adapted for the case of TFMs using a scalar

potential formulation. It was successfully implemented in Matlab using a proportional logarith-

mic transformation to account for curvature and the Schwarz-Christoffel Toolbox to account for

143
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slotting. The curvature coefficient defined in section 3.4 tells us when the effect of curvature is

going to be significant. In simple terms, it was deduced that when the length of the magnetic

gap is large compared with the air-gap radius (the ratio Rg/gz) the effect of curvature is strong1.

As a rule of thumb could be said that when the ratio Rg/gz is below 6 the effect of curvature will

be significant. In a similar way, a criterion to choose between the single-slot and multiple-slots

models was obtained using the mathematical properties of the conformal transformation.

The results show that the complex permeance framework combined with the algorithm proposed

for the estimation of the coefficients of the harmonics provide accurate results in unsaturated load

conditions. An algorithm for the estimation of the coefficients of the complex permeance function

has been deduced. This algorithm allows us to obtain the permeance function in all the air-gap

evaluating the function in a limited number of points, therefore reducing the computational time.

It has been demonstrated that if the set of points is generated randomly, the robustness of the

algorithm improves significantly.

The torque equation proposed by Harris et al. is particularly useful because it relates the torque

produced by a machine to its magnetic and electric loadings. However, in Harris et al.’s approach

the permanent magnets are assumed to be current points at the rotor hub and the amplitude of

the flux density harmonics was obtained from lookup tables. The generalization of the torque

equation presented in this Thesis uses the complex permeance framework to obtain the magnetic

field distribution in the air-gap and the force is integrated all through the magnet thickness.

Furthermore, the formulation allows for the calculation of the flux factor, KB , for any kind

of mmf waveform and any phase advance angle. For the particular case study presented in

chapter 4 it is shown that the flux factor calculated considering the magnets as current points

is KB = 0.275 while the value obtained using the proposed methodology is KB = 0.311.

The virtual mutual inductance approach is based on the fact that if the permanent magnets

can be replaced with equivalent current sheets, then there is a mutual inductance between these

equivalent currents and the stator windings. This virtual mutual inductance can be easily cal-

culated using the complex permeance function. Therefore, based on the reciprocity theorem

(M12 = M21) we can readily obtain the flux linking with the stator windings due to the perma-

nent magnets. The analytical results have been validated using 3D FEA and experimental data

for the transverse flux machine under study. Therefore, the virtual mutual inductance approach

can be used for the design optimisation of transverse flux machines.

The torque equation and the virtual mutual inductance approach have been used to study the

design optimisation process of transverse flux machines with special interest in the relationship

between torque and power factor. This Thesis shows that if the design of a transverse flux

machine is done only to maximise torque, then the power factor will tend to be low. Therefore,

it is important to have a trade-off between torque and power factor particularly because small

improvements of torque can produce strong penalties in terms of power factor. Furthermore, it

has been demonstrated that the low power factor of these machines is not due to leakage in the

classical way but due to the nature of the electromagnetic interaction that takes place.

The current sheet model has been reformulated using transfer matrices. The proposed approach

reduces the mathematical complexity particularly as the number of layers increases because

1This effect is particularly important for the calculation of rotor losses in machines with large effective gaps
such as high speed machines with retaining sleeves.
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instead of solving a large linear system of equations it is necessary to invert a matrix of order

2. Therefore, the proposed methodology could be used to study machines with any number

of layers, in principle. Furthermore, to reduce even more the complexity of the problem we

have obtained the transfer matrices for thin layers (which can be considered rectangular regions)

to avoid having to deal with Bessel functions. This could facilitate the implementation of the

proposed methodology in pure programming languages such as Python or C. Special care has to

be taken when applying the current sheet model to machines that are short axially, which is the

case of TFMs. Therefore, a coefficient has been used to account for the 3D effects.

The case study, the optimisation of a transverse flux generator for tidal power generation, illus-

trates how to deal with the relationship between torque and power factor. The machine that was

designed only maximising torque has a very low power factor (and an over-rated power converter

hypothetically) while the other machine (with the power factor correction loop) has a slightly

lower specific torque but a much higher power factor. Therefore, understanding this relationship

is essential to achieve a good design.

7.2 Future Work

Some of the work done in this Thesis requires further work to reach it’s full potential. The

author of this Thesis believes that there are interesting research lines based on some preliminary

ideas presented in this Thesis.

Firstly, it was discussed in section 3.6.2 that random sampling improves the reliability of the

algorithm developed for the estimation of the coefficients of the complex permeance function.

This can be understood intuitively because the variable spacing of the samples prevents from not

picking up a harmonic with a wavelength similar in length. However, a more formal derivation

of a proof of this would be necessary. Furthermore, a similar philosophy could be used for signal

processing and it would be interesting to determine if a random sampling scheme is practical.

The torque equation and the virtual mutual inductance approach have been used to analyse par-

ticular transverse flux machines in this Thesis. However, both principles are completely general

and are valid for any kind of permanent magnet machine. Therefore, it would be interesting

to use these equations to study radial permanent magnet machines, magnetic actuators, other

kinds of transverse flux machines, etc. . . The author believes that the torque equation could be

particularly useful for the study of magnetic gears. Currently, most of the publications dealing

with magnetic gears use directly FEA for the analysis and optimisation. Therefore, a torque

equation for magnetic gears analogous to that presented in chapter 4 could provide an insight

into the behaviour of these devices.

The main advantage of the formulation of the current sheet model for the calculation of eddy

current losses presented in chapter 5 is that topologies with many layers can be studied without

increasing the complexity of the problem in a significant way. This fact is particularly important

for the case of high speed machines with conducting sleeves because the eddy currents in the

sleeve could be readily calculated. Furthermore, a more detailed analysis of the transfer matrices

and its properties could provide a better insight into the energy flows which could help to better

understand the loss mechanisms and how to reduce them.
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The current sheet model has been used successfully to calculate the losses for each harmonic

(with a given time and space order). However, it cannot model the losses produced by the

homopolar field components. Hence, it is necessary to develop some new ideas to deal with this

limitation.

Some validation studies were presented in chapter 5. However, it would be interesting to perform

a deeper analysis using 3D FEA to study the eddy currents in the rotor. Furthermore, it is

necessary to study the accuracy and validity of Russell and Northsworthy’s coefficient for many

different cases.

Finally, in chapter 6 a simple design optimisation of a generator was presented. This approach

could be used to optimise a real machine considering all the aspects of the design process,

including the manufacture of a prototype.
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Appendix A

Rotor Losses in High Speed PM

Machines

The current sheet model applied for the calculation of rotor losses was presented in chapter 5.

In that chapter it was applied for the analysis of a TFM, which is probably not the best example

to illustrate the usefulness of the proposed methodology. This is because most of the rotor losses

in TFMs are produced by the homopolar components of the magnetic field, which cannot be

accurately represented using the current sheet model.

On the other hand, the current sheet model is particularly useful for the calculation of rotor

losses in high speed PM machines. In fact, the methods developed by the author of this Thesis

shown in chapter 5 were developed for this kind of machine (Anglada et al., 2016, 2017).

This appendix shows the application of the current sheet model for the case of high speed PM

machines. The aim is to show the influence of the slotting models and the effect of curvature on

no-load rotor losses.

Section A.1 is based on (Anglada et al., 2016) and section A.2 is based on (Anglada et al., 2017).

A.1 Analysis of Slotting Models for the Calculation of No-

Load Rotor Losses in PM Machines

Figure A.1 shows a quarter of the cross-section of a high speed (the rated speed, nrpm ≈ 60 krpm)

PM generator with a non-conductive rotor sleeve to hold the magnets, making the effective air-

gap even larger (Qazalbash et al., 2014b). The parameters of this machine are shown in table

A.1.

Taking into account that the permeability of the magnets and the sleeve is close to µ0 the effective

air-gap length:

g = hm + tsl + hg = 9.4mm. (A.1)
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Figure A.1: Quarter model of the PM synchronous generator under study.

Table A.1: Parameters of the Machine

Quantity Symbol Value
Number of poles 2p 4
Number of slots Qs 24
Core length L 125 mm
Rotor radius R1 21.6 mm
Magnet outer radius R2 27.1 mm
Stator radius R3 31 mm
Magnet thickness hm 5.5 mm
Sleeve thickness tsl 2 mm
Clearance gap hg 1.9 mm
Slot opening bo 3 mm
Rotor hub permeability µr 750
Rotor hub conductivity σr 6.7 · 106 S/m
Magnet conductivity σm 0.77 · 106 S/m
Magnet material - NdFeB
Magnet remanence Br 1.07 T
Magnet coercivity Hc 851 kA/m

In the developed model of the machine t = 3.492mm and s = 3.394mm, therefore

g

s
≈ 2.770, (A.2)

t

s
≈ 1.029. (A.3)

Clearly the machine is in the region where only the multiple-slots model should be used, as

discussed in section 2.6.3. To study the limitations of the single-slot model the CP function is

obtained for a multiple-slots and single-slot configuration for comparison. Both methodologies

include a first conformal transformation to model the effect of curvature (Rabinovici, 1996).
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The no-load magnetic field distribution in the air-gap of the slotless configuration using the

rotor’s reference frame can be expressed using complex number notation as

Bsl(θ, r) =

∞∑

n=1,3,5

Kn(r) cos(npθ) + j

∞∑

n=1,3,5

Dn(r) sin(npθ), (A.4)

where the coefficients Kn(r) and Dn(r) are calculated according to (Zhu et al., 2002) and j =√
−1 is the pure imaginary part. The CP function (both for the multiple-slots and single-slot

models) using the rotor’s reference frame is

λ(θ, r, t) = λa0 +

∞∑

m=1,2,3

λam(r) cos
(
mQs(θ − ωt)

)
+ j

∞∑

m=1,2,3

λbm(r) sin
(
mQs(θ − ωt)

)
, (A.5)

where the coefficients λa0, λam(r) and λbm(r) are calculated using conformal mapping. Therefore,

according to (Zarko et al., 2006) the magnetic field distribution of the slotted geometry is

B(θ, r, t) = Bsl(θ, r) · λ∗(θ, r, t). (A.6)

The radial and tangential components of the CP function on the surface of the magnets are

shown in Figure A.2. It can be appreciated that there are similarities in waveform but the

single-slot model is ignoring the effect of the neighbouring slots that is expressed mathematically

as the boundary conditions on the middle of the teeth: (a) derivative of the radial component

is zero and (b) the tangential component is zero. These two conditions are not satisfied by the

waveform obtained with the single-slot model.
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Figure A.2: Complex permeance function obtained with the multiple-slots and single-slot
models; radial and tangential components.

Figure A.3 shows the waveform of the radial component of the no-load magnetic field distribution

on the surface of the magnet at a particular rotor position using two-dimensional static FEA,

multiple-slots model and single-slot model. It can be appreciated that the waveforms look very

similar in Figure A.3. However, the amplitudes of the asynchronous harmonics have some sig-

nificant differences because of the singularities and discontinuities of the single-slot CP function

shown in Figure A.2. The amplitude of the most significant asynchronous harmonics is shown in
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Figure A.4. The single-slot model overestimates significantly the amplitude of the asynchronous

harmonics.

0 0.2 0.4 0.6 0.8 1
× π, electrical angle θ (rad)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ad

ia
l
m
ag
n
et
ic

fi
el
d
,
B

r
(T

)

Static FEA

CP Multiple Slots

CP Single Slot

Figure A.3: Magnetic field distribution in the air-gap obtained using two-dimensional static
FEA and the CP function.

Figure A.4: No-load amplitude of the significant magnetic induction space harmonics of time
order 12 at 90 000 rpm.

Table A.2 shows a comparison of the no-load losses obtained with the linear transient FEA

calculations, the multiple-slots CP function and the single-slot CP function for the machine

under study at running at 90 000 rpm.

Table A.2: No-load rotor power loss

Transient FEA ≈ 11.2 W
Multiple-slots model ≈ 15.5 W
Single-slot model ≈ 29.4 W

The rotor losses obtained with the single-slot CP function are significantly higher than the result

obtained with FEA. On the other hand, the value obtained with the multiple-slots CP function

has a good agreement (around 4 W error) compared to the single-slot model (around 18 W error)

which could in some cases make the difference as far as the feasibility of a design variant.
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The complex permeance function used in this Thesis assumes rectangular slots without tooth-

tips, which is valid if there is not saturation in the tooth-tips as discussed in (Zarko et al., 2006;

Qazalbash et al., 2014a).

A.1.1 Conclusion

The case study presented here of a high speed PM motor illustrates the importance of using

the appropriate model. Ignoring the effect of the adjacent slots, i. e., using a single-slot model,

produces a significant error in the calculation of rotor losses because the machine is clearly

in the region of multiple-slots method. Using the multiple-slots model improves the accuracy

considerably.

A.2 Effect of Curvature on Rotor Losses

Figure A.5 shows a quarter cross-section of a high speed PM machine, which requires a sleeve

to hold the magnets, making the effective air-gap relatively large. Machine B is the same as

Machine A but scaled 2:1 keeping the air-gap parameters (magnet thickness, sleeve thickness,

clearance gap and slot opening) constant. The parameters of these machines are shown in Table

A.3. The slots of the machines shown in Figure A.5 have tooth tips, but as long as the teeth

tips are not saturated, which is the case in these machines, the rectangular slot model shown in

Figure 3.3 remains valid (Zarko et al., 2006; Qazalbash et al., 2014a).

Yoke

Magnet

Hub

𝑅𝑅1

𝑅𝑅2
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Figure A.5: Quarter model of the PM synchronous machines under study.

Taking into account that the permeability of the magnets and the sleeve is close to µ0 the effective

air-gap length as defined in Figure 3.3 is:

gz = hm + tsl + hg = 11.12 mm, (A.7)
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Table A.3: Parameters of the Machines

Machine A B
Rated speed nrpm 65 krpm 32.5 krpm
Number of poles 2p 4 4
Number of slots Qs 12 12
Core length L 109 mm 218 mm
Rotor hub radius R1 20 mm 47.43 mm
Magnet outer radius R2 27.4 mm 54.8 mm
Stator radius R3 31.15 mm 58.55 mm
Magnet’s thickness hm 7.37 mm 7.37 mm
Sleeve’s thickness tsl 2.95 mm 2.95 mm
Clearance gap hg 0.8 mm 0.8 mm
Slot opening bo 3 mm 3 mm
Rotor hub permeability µr1 750 750
Rotor hub conductivity σr 6.7 · 106 S/m 6.7 · 106 S/m
Magnet conductivity σm 0.77 · 106 S/m 0.77 · 106 S/m
Magnet material - NdFeB NdFeB
Magnet permeability µr2 1.07 1.07
Magnet remanence Br 1.05 T 1.05 T
Magnet coercivity Hc 781 kA/m 781 kA/m

where hm is the magnet’s thickness, tsl the sleeve’s thickness and hg the clearance gap as shown

in Table A.3.

The no-load magnetic field distribution in the air-gap of the slotless configuration in the rotor’s

reference frame can be expressed using complex number notation as

Bsl(θ, r) =

∞∑

n=1,3,5

Kn(r) cos(npθ) + j

∞∑

n=1,3,5

Dn(r) sin(npθ), (A.8)

where the coefficients Kn(r) and Dn(r) are calculated according to (Zhu et al., 2002) and j =√
−1 is the imaginary unit. The complex permeance (CP) function using the rotor’s reference

frame is

λ(θ, r, t) = λa0 +

∞∑

m=1,2,3

λam(r) cos
(
mQs(θ − ωmt)

)
+ j

∞∑

m=1,2,3

λbm(r) sin
(
mQs(θ − ωmt)

)
,(A.9)

where the coefficients λa0, λam(r) and λbm(r) are calculated using conformal mapping and

ωm = ω/p is the mechanical speed of the rotor. Therefore, the magnetic field distribution in the

slotted geometry is

B(θ, r, t) = Bsl(θ, r) · λ∗(θ, r, t). (A.10)

For the calculation of rotor losses we are interested in the amplitude of the asynchronous harmon-

ics of the radial component of the magnetic field, as it discussed later in chapter 5. Therefore,
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combining (A.8), (A.9) and (A.10) we obtain:

Re
(
B(θ, r, t)

)
=

∞∑

n=1,3,5

Kn(r) cos(npθ)

[
λa0 +

∞∑

m=1,2,3

λam(r) cos
(
mQs(θ − ωmt)

)
]

+

∞∑

n=1,3,5

Dn(r) sin(npθ)

[ ∞∑

m=1,2,3

λbm(r) sin
(
mQs(θ − ωmt)

)
]
. (A.11)

For a particular mo, which means a time order k = moQs/p, we can re-arrange (A.11) to

express explicitly each asynchronous harmonic. For each particular no we have two asynchronous

harmonics whose space orders, q1 and q2, and amplitudes, Bq1k and Bq2k, are calculated as follows




q1 = k + no, and Bq1k = Kno(r)

λamo
2 −Dno(r)

λbmo
2

q2 = k − no, and Bq2k = Kno(r)
λamo

2 +Dno(r)
λbmo

2

(A.12)

The two machines studied in this appendix have Qs = 12 slots and p = 2 pole pairs. Therefore,

the time orders are 6, 12, 18...

The radial and tangential components of the CP function on the surface of the magnets are

shown in Figure A.6. In this case the value of the coefficient KJ is

KJ =





1.6 %, for machine A

0.37 %, for machine B,
(A.13)

which according to Figure 3.5 places Machine A in the region where strong effect of the curvature

is expected. Machine B is in the region of Figure 3.5 where the effect of curvature is expected

to be small. This is confirmed by Figure A.6, which shows the permeance functions of both

machines with and without taking curvature into account.

A.2.1 Transient FEA

Transient FEA was used to calculate rotor losses directly. A constant mechanical speed was

assigned to the rotor without any other excitation besides the PM magnetisation. In this case,

the element size was determined such that there are at least 3 elements per skin depth. The model

had around 100 thousand elements. for accurate calculation of eddy currents. The time step

was set to 0.5 µs such that there are at least 10 time steps per slot opening so that the slotting

permeance variation is captured at a high resolution. Mesh size and time step independence

were also confirmed.

Figure A.7 shows the eddy current density obtained from the transient FEA simulation. It can

be appreciated that most of the rotor losses are concentrated in the magnets.

A.2.2 Results and Discussion

Figure A.8 shows the waveform of the radial component of the no-load magnetic field distribution

on the surface of the magnet at a particular rotor position using two-dimensional static FEA,
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Figure A.6: Complex permeance function obtained with and without curvature; radial and
tangential components.

Figure A.7: Eddy current density at a particular instant of time obtained using transient
FEA, Machine A shown as an example.
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CP function with curvature and CP function without curvature. It can be appreciated in Figure

A.8 that in machine A the CP function without curvature underestimates the amplitude of the

tooth-ripple harmonics. On the other hand, in the case of machine B; which has smaller KJ ,

this effect is less significant.
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Figure A.8: Magnetic field distribution in the air-gap obtained using two-dimensional static
FEA and the CP function with and without curvature.

Ignoring the effect of curvature underestimates the amplitude of the asynchronous harmonics in

both cases as shown in Figure A.9. However, in Machine A this effect is more significant.

The no-load rotor losses obtained using transient FEA are shown in Figure A.10. Table A.4

shows a comparison of the average no-load rotor losses obtained with the linear transient FEA,

the CP function taking into account the effect of curvature and the CP function neglecting the

effect of curvature for the machines under study running at rated speed. The no-load rotor losses

were calculated using the current sheet model described in section 5.3.

Table A.4: No-load rotor power loss

Machine A B
Transient FEA ≈ 25.4 W 76.2 W
Model with curvature ≈ 22.7 W 87.0 W
Model without curvature ≈ 12.7 W 67.0 W

The no-load rotor losses obtained using the CP function without curvature are significantly

lower than the result obtained using FEA. On the other hand, the value obtained when the

effect of curvature is taken into account agrees reasonably well with FEA. In Machine A, the

model with curvature underestimates the losses by a factor of 0.89 compared to the model

without curvature, which underestimates losses by a factor of 0.5. In machine B, the model

with curvature overestimates the losses by a factor of 1.14 and in the model without curvature

underestimates the losses by a factor of 0.88. This is consistent with the fact that the curvature

coefficient is higher in Machine A than in Machine B and as expected the discrepancy between

the results neglecting curvature and FEA is greater in Machine A.

The difference between FEA and the model with curvature may be explained to be due to

numerical errors as well as the assumptions made in the current sheet model.
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Figure A.9: Amplitudes of significant magnetic induction space harmonics, Machine A is
running at 65 000 rpm and Machine B is running at 32 500 rpm.

0 0.5 1 1.5 2
Time (ms)

0

5

10

15

20

25

30

R
ot
or

p
ow

er
lo
ss

(W
)

(a) Machine A.

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (ms)

0

20

40

60

80

100

R
ot
or

p
ow

er
lo
ss

(W
)
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Figure A.10: No-load rotor power loss at rated speeds calculated using transient FEA.
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A.2.3 Conclusions

The value of the curvature coefficient, KJ which is the ratio of the air-gaps in the rectangular

and cylindrical models in the w and z-planes, respectively, tends to be small. However, this

small change of the air-gap length in the w-plane has a significant influence in the amplitude of

the asynchronous harmonics of the magnetic field distribution as shown in Figure A.9.

The case study presented in section A.2 illustrates how strong the effect of curvature can be

in machines with a large effective air-gap, particularly on rotor losses. Ignoring the effect of

curvature grossly underestimates the no-load eddy current losses in the rotor in Machine A with

large ratio of air-gap length to radius ratio. On the other hand, the effect of curvature is less

significant in Machine B as anticipated from the smaller value of KJ .





Appendix B

Simulation of Electro-mechanical

Systems

The equations proposed in sections 4.2 and 4.4 can be used to simulate the response of the

electro-mechanical system. We can consider the electro-mechanical energy conversion system a

black box with two terminals, one that corresponds to the mechanical world and the other one to

the electrical world as shown in Figure B.1. This method is usually referred as the Conservation

of Energy Method (Woodson and Melcher, 1968).

+

−

E , λ

i

+

−

θ

Te

Electromechanical

system defined by:

M(β)

Figure B.1: Schematic electromechanical energy conversion system.

The mechanical terminal has two variables, Te and θ that are the electromagnetic torque and

the rotor position. The electrical terminal has also two variables, E and i that are the voltage

and current respectively. The induced voltage is the derivative of the flux linkage, which in this

context is usually called λ:

E = −dλ
dt
, (B.1)

were λ is obtained using the virtual mutual inductance approach. On the other hand, the

mechanical system is ruled by the following equation:

J
dΩ(t)

dt
= Tm − Td − Te + Tcog, (B.2)

where J is the inertia of the shaft, Ω = Nc · ω the angular speed, Nc is the number of C-cores,

Te the electromagnetic torque, Tm the mechanical torque (load in a motor for example), Tcog(θ)

is the cogging torque and Td a damping torque.
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Figure B.2 shows a simplified block diagram that implements the proposed methodology. It

shows that the instantaneous electromagnetic torque can be obtained from the torque equation

described in section 4.2 and that the back emf (through the flux linkage) using the virtual mutual

inductance approach from section 4.4.

Electrical circuit

(Kirchoff s Law) Torque equation

(chapter 4)

Virtual mutual inductance

(chapter 4)

Rotor dynamics

Figure B.2: Schematic representation of the simulation philosophy.

From the practical point of view, this simulation philosophy is particularly well suited to be

implemented in Matlab+Simulink (MathWorks, 2017). One particularly attractive option is

to combine this idea with the SimPowerSystems. Each of the phases of the machine can be

represented with an inductance, a resistance and a controlled voltage source whose values come

from the flux linkage obtained using the virtual mutual inductance approach.

Figure B.3: One phase of the machine implemented in Simulink SimPowerSystems.

Figure B.3 shows the implementation of the proposed methodology in Matlab/Simulink. In this

particular case, one phase of the machine connected to a load (or power supply) is shown in a

simplified way. One block (a S-function) deals with the mechanical dynamics and the other one

calculates the back emf that goes to the controlled power supply.



Appendix C

Software Developed in Matlab

C.1 Complex permeance function

1 function [ output_args ] = cp_func_renedo( Rm,Rs,Rr ,bo,Qs,R,dslot )

2 %Calculates the CP according to Renedo.

3 % It uses the SC toolbox developed by Driscoll.

4

5 mu0 =4*pi*1e-7;

6

7 Rg=(Rr+Rs)/2;

8 N_points =1000;

9

10 % Parameters of the machine:

11

12 alpha_s=bo/Rs;

13 alpha_t =2*pi/Qs -alpha_s;

14

15

16 t=Rg*alpha_t;

17 s=Rg*alpha_s;

18 d=4* dslot;

19 delta=R-Rr;

20 g2=Rs-Rr;

21

22 theta_lambda=alpha_t+alpha_s;

23 theta_points =(0:( N_points))*theta_lambda/N_points;

24

25 % Coordinates of the problem:

26 s_dom= [Rr Rs Rs*(cos(alpha_t /2)+j*sin(alpha_t /2)) (Rs+d)*(cos(alpha_t /2)+j*sin(alpha_t /2)) (

Rs+d)*(cos(alpha_t /2+ alpha_s)+j*sin(alpha_t /2+ alpha_s)) (Rs)*(cos(alpha_t /2+ alpha_s)+j*

sin(alpha_t /2+ alpha_s)) (Rs)*(cos(alpha_t+alpha_s)+j*sin(alpha_t+alpha_s)) (Rr)*(cos(

alpha_t+alpha_s)+j*sin(alpha_t+alpha_s))];

27 s_points =(Rr+delta)*(cos ((0: N_points)*theta_lambda/N_points)+j*sin ((0: N_points)*theta_lambda/

N_points));

28

29 z_dom=log(s_dom);

30 z_points=log(s_points);

31

32 p=polygon(z_dom);

33 % Indicates the right angles in the Canonical Domain:

34 alpha =[0.5 0.5 1 1 1 1 0.5 0.5];

35

36 % Remember that acording to this criteria X is the plane with the toothed

37 % member and w is the plane with the canonical rectangle.

38

39 % Define the Canonical Domain:

175



176 Appendix C Software Developed in Matlab

40 f=crrectmap(p,alpha);

41

42 % Vertices of the canonical rectangle:

43 vc1=evalinv(f,z_dom (1));

44 vc2=evalinv(f,z_dom (2));

45 vc7=evalinv(f,z_dom (7));

46 vc8=evalinv(f,z_dom (8));

47 % figure

48 % plot([vc1 vc2 vc7 vc8])

49

50 g_poly=vc1 -vc2;

51

52 l_poly=abs(vc1 -vc8);

53 % Modified rectangle:

54

55 vc1_m=real(vc1)*log(Rr/Rs)/g_poly+j*imag(vc1)*theta_lambda/l_poly+log(Rr);

56 vc2_m=real(vc2)*log(Rr/Rs)/g_poly+j*imag(vc2)*theta_lambda/l_poly+log(Rr);

57 vc7_m=real(vc7)*log(Rr/Rs)/g_poly+j*imag(vc7)*theta_lambda/l_poly+log(Rr);

58 vc8_m=real(vc8)*log(Rr/Rs)/g_poly+j*imag(vc8)*theta_lambda/l_poly+log(Rr);

59

60 tp_points=evalinv(f,z_points);

61 for k=2:( N_points)

62 %SC_derivative(k)=evaldiff(f,evalinv(f,z_points(k)));

63 SC_derivative(k)=( evaldiff(f,tp_points(k)))^-1;

64 end

65 SC_derivative (1)=( evaldiff(f,evalinv(f,z_points (2))))^-1;

66 SC_derivative(N_points +1)=( evaldiff(f,evalinv(f,z_points(N_points -1))))^-1;

67

68 d_tz=real(SC_derivative)*log(Rr/Rs)/g_poly+j*imag(SC_derivative)*log(Rr/Rs)/g_poly;

69 t_points=real(tp_points)*log(Rr/Rs)/g_poly+j*imag(tp_points)*theta_lambda/l_poly+log(Rr);

70 k_points=exp(t_points);

71

72 for k=1:( N_points +1)

73 d_ks(k)=k_points(k)*d_tz(k)/s_points(k);

74 end

75 cp_func=conj(d_ks);

76 output_args =[ theta_points; cp_func ];

77 end

C.2 Calculation of the no-load asynchronous harmonics

1

2 % Generic machine (inner rotor):

3 % Calculation of the space and time harmonics.

4

5 clc

6 clear all

7

8

9 %% Parameters:

10

11 mu_0 =4*pi*10^ -7; % [m kg s^-2 A^-2]

12

13 R_r =58.5*10^ -3; % [m] rotor radius

14 R_s =70*10^ -3; % [m] stator radius

15 R_m =66.5*10^ -3; % [m] magnet radius

16 bo=3e-3; % [m] slot opening width

17

18 p=2; % pole pairs

19 alpha_p =1; % pole -arc to pitch ratio

20 Qs=48; % number of slots

21

22 c_gap=R_s -R_m; % [m] clearance gap

23 dslot =25e-3; %slot depth
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24

25

26 B_r =1.05; % [T] magnet remanence CHECK THIS WITH SULEIMAN

27 H_c=B_r/mu_0; % A/m

28 mu_r =1.05; % relative permeability

29

30

31 N_harm =1551; % maximum harmonic order , has to be even

32 N_points =1000; % number of points for the waveform

33

34 r=R_m +0.01*10^ -3; % [m] radius where we want to calculate the waveform

35 R_wave=r;

36

37 N_pos =350;

38

39 %% Calculation of the coefficientsof magnetisation:

40

41 M_vec=zeros(1,N_harm);

42

43 for count =1:2: N_harm

44 n=count;

45 A1(count)=sin((n*p+1)*alpha_p*pi/2/p)/((n*p+1)*alpha_p*pi/2/p);

46 A2(count)=sin((n*p-1)*alpha_p*pi/2/p)/((n*p-1)*alpha_p*pi/2/p);

47

48 Mr_vec(count)=(B_r/mu_0)*alpha_p *(A1(count)+A2(count));

49 Mt_vec(count)=(B_r/mu_0)*alpha_p *(A1(count)-A2(count));

50

51 M_vec(count)=Mr_vec(count)+n*p*Mt_vec(count);

52

53 A3(count)=(n*p-1/n/p)*Mr_vec(count)/M_vec(count)+1/n/p;

54 end

55

56 %% Calculate waveform for a given r>Rm:

57 % In the air -gap.

58

59 if R_m <r

60 % eq. (34) and (35) in Zhu ’s paper 1993:

61

62 theta =(0: N_points)*pi/p/( N_points)-pi/2/p;

63 % Calculation of the coeficients:

64

65 for count =1:2: N_harm

66 n=count;

67 KB=mu_0*M_vec(count)/mu_r*n*p/((n*p)^2-1)*((A3(count) -1)+2*( R_r/R_m)^(n*p+1) -(A3(

count)+1)*(R_r/R_m)^(2*n*p))/(( mu_r +1)/mu_r *(1-(R_r/R_s)^(2*n*p))-(mu_r -1)/mu_r *((R_m/R_s

)^(2*n*p)-(R_r/R_m)^(2*n*p))); % checked

68 f_Br=(r/R_s)^(n*p-1)*(R_m/R_s)^(n*p+1)+(R_m/r)^(n*p+1);

69 f_Bt=-(r/R_s)^(n*p-1)*(R_m/R_s)^(n*p+1)+(R_m/r)^(n*p+1);

70

71 coefs_radial(count)=KB*f_Br;

72 coefs_tan(count)=KB*f_Bt;

73 end

74

75 B_rI=zeros(1,length(theta));

76 B_tI=zeros(1,length(theta));

77 for count =1: N_harm

78 n=count;

79 B_rI=B_rI+coefs_radial(count)*cos(n*p*theta);

80 B_tI=B_tI+coefs_tan(count)*sin(n*p*theta);

81

82 end

83 B_r=B_rI;

84 B_t=B_tI;

85

86 end

87

88 %% Calculate waveform for a given r<=Rm

89 % In the magnets.
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90

91 if R_m >=r

92

93 % eq. (36) and (37) in Zhu ’s paper 1993:

94

95 theta =(0: N_points)*pi/p/( N_points)+pi/2/p/2;

96

97 % Calculation of the coeficients:

98

99 for count =1:2: N_harm

100 n=count;

101 C2=((A3(count) -1/mu_r)*(R_m/R_s)^(2*n*p)+(1+1/ mu_r)*(R_r/R_m)^(n*p+1)*(R_m/R_s)^(2*n*

p) -(A3(count)+1/ mu_r) -(1-1/mu_r)*(R_r/R_m)^(n*p+1))/(( mu_r +1)/mu_r *(1-(R_r/R_s)^(2*n*p))

-(mu_r -1)/mu_r *((R_m/R_s)^(2*n*p)-(R_r/R_m)^(2*n*p)));

102

103 C1=mu_0*M_vec(count)*n*p/((n*p)^2-1)*C2*((r/R_m)^(n*p-1)+(R_r/R_m)^(n*p-1)*(R_r/r)^(n

*p+1));

104

105 C1s=mu_0*M_vec(count)*n*p/((n*p)^2-1)*C2*((r/R_m)^(n*p-1) -(R_r/R_m)^(n*p-1)*(R_r/r)^(

n*p+1));

106

107 B1=mu_0*M_vec(count)*n*p/((n*p)^2-1)*(R_r/r)^(n*p+1);

108

109 D1=mu_0*M_vec(count)*n*p/((n*p)^2-1)*A3(count);

110 D1s=mu_0*M_vec(count)/((n*p)^2-1)*A3(count);

111

112 coefs_radial(count)=C1+B1+D1;

113 coefs_tan(count)=-C1s+B1 -D1s;

114

115

116 end

117

118 B_rII=zeros(1,length(theta));

119 B_tII=zeros(1,length(theta));

120 for count =1: N_harm

121 n=count;

122 B_rII=B_rII+coefs_radial(count)*cos(n*p*theta);

123 B_tII=B_tII+coefs_tan(count)*sin(n*p*theta);

124

125 end

126

127 B_r=B_rII;

128 B_t=B_tII;

129

130 end

131

132

133 theta_p =(0: N_points)*2*pi/p/( N_points); % electrical angle

134

135

136

137

138 Br_slotless=B_r;

139 Bt_slotless=B_t;

140 theta=theta_p; % electrical angle

141

142

143 %% Complex permeance:

144 temp2=cp_func_renedo( R_m ,R_s ,R_r ,bo ,Qs,R_wave ,dslot );

145 cp_func=temp2 (2,:);

146 theta_points=temp2 (1,:); % mechanical angle

147

148

149 % Calculate the coeffs of the fourier series multiple slots:

150

151 f1_t=imag(cp_func);

152 f1_r=real(cp_func);

153
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154 theta_integration=theta_points*Qs; % to make it up to 2*pi

155

156 a_0 =1/2/pi*trapz(theta_integration ,f1_r);

157 a_1 =1/pi*trapz(theta_integration ,f1_r.*cos(1* theta_integration));

158 a_2 =1/pi*trapz(theta_integration ,f1_r.*cos(2* theta_integration));

159 a_3 =1/pi*trapz(theta_integration ,f1_r.*cos(3* theta_integration));

160 a_4 =1/pi*trapz(theta_integration ,f1_r.*cos(4* theta_integration));

161 a_5 =1/pi*trapz(theta_integration ,f1_r.*cos(5* theta_integration));

162 a_6 =1/pi*trapz(theta_integration ,f1_r.*cos(6* theta_integration));

163 a_7 =1/pi*trapz(theta_integration ,f1_r.*cos(7* theta_integration));

164

165 b_1 =1/pi*trapz(theta_integration ,f1_t.*sin(1* theta_integration));

166 b_2 =1/pi*trapz(theta_integration ,f1_t.*sin(2* theta_integration));

167 b_3 =1/pi*trapz(theta_integration ,f1_t.*sin(3* theta_integration));

168 b_4 =1/pi*trapz(theta_integration ,f1_t.*sin(4* theta_integration));

169 b_5 =1/pi*trapz(theta_integration ,f1_t.*sin(5* theta_integration));

170 b_6 =1/pi*trapz(theta_integration ,f1_t.*sin(6* theta_integration));

171 b_7 =1/pi*trapz(theta_integration ,f1_t.*sin(7* theta_integration));

172

173 % make sure the phase is right.

174 alpha =0;

175 theta_temp=Qs*(theta/p+alpha);

176 f_tempr=a_0+a_1*cos(theta_temp)+a_2*cos(2* theta_temp)+a_3*cos(3* theta_temp)+a_4*cos(4*

theta_temp)+a_5*cos(5* theta_temp)+a_6*cos(6* theta_temp)+a_7*cos(7* theta_temp);

177 f_tempt=b_1*sin(theta_temp)+b_2*sin(2* theta_temp)+b_3*sin(3* theta_temp)+b_4*sin(4* theta_temp)

+b_5*sin(5* theta_temp)+b_6*sin(6* theta_temp)+b_7*sin(7* theta_temp);

178

179 % Apply the complex permeance:

180

181 B_slotless_complex=Br_slotless+i*Bt_slotless;

182 cp_func_adapted=conj(f_tempr+i*f_tempt);

183

184 cp_func_adapted =( f_tempr+i*f_tempt);

185

186 Bcp_complex=B_slotless_complex .* cp_func_adapted;

187 Bcp_r=real(Bcp_complex);

188 Bcp_t=imag(Bcp_complex);

189

190 %% Several rotor positions:

191

192 clear theta theta_temp

193 % make sure the phase is right.

194

195 alpha_vec =(0: N_pos)/(N_pos)*2*pi/Qs; % mechanical

196

197 theta =(0: N_points)*pi/( N_points); % electrical

198 alpha =0;

199

200

201 count =1;

202

203 x_ms=zeros(length(theta),length(alpha_vec));

204 y_ms=zeros(length(theta),length(alpha_vec));

205

206

207 for alpha=alpha_vec;

208 theta_temp=Qs*(theta/p+alpha); % to make it up to 2*pi

209 f_tempr=a_0+a_1*cos(theta_temp)+a_2*cos(2* theta_temp)+a_3*cos(3* theta_temp)+a_4*cos(4*

theta_temp)+a_5*cos(5* theta_temp)+a_6*cos(6* theta_temp)+a_7*cos(7* theta_temp);

210 f_tempt=b_1*sin(theta_temp)+b_2*sin(2* theta_temp)+b_3*sin(3* theta_temp)+b_4*sin(4*

theta_temp)+b_5*sin(5* theta_temp)+b_6*sin(6* theta_temp)+b_7*sin(7* theta_temp);

211 % Apply the complex permeance:

212

213 B_slotless_complex=Br_slotless+i*Bt_slotless;

214 cp_func_adapted=conj(f_tempr+i*f_tempt);

215

216 Bcp_complex=B_slotless_complex .* cp_func_adapted;

217 Bcp_r=real(Bcp_complex);
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218 Bcp_t=imag(Bcp_complex);

219

220 x_ms(:,count)=Bcp_r;

221 y_ms(:,count)=Bcp_t;

222 count=count +1;

223 end

224 time=transpose(theta/pi *180);

225

226 %% Calculate FFT

227

228 % Multiple slots:

229

230 [m1 ,n1]=size(x_ms);

231 %Matrix manipulation

232 %Data for N-pole Xn

233 %

234 x1=(x_ms (1,:)-x_ms(m1 ,:))/2;

235 x1n=x_ms (2:m1 -1,:);

236 Xn=[x1;x1n];

237 %Generating points for S-pole , data for S-pole is the negative of data for N-pole

238 Xs=-Xn;

239 %

240 Xns=[Xn;Xs];

241 time2 = linspace(0,time(end)*2,size(Xns ,1));

242

243 [m,n]=size(Xns);

244 Xnsfft2=fft2(Xns);

245 Xnsabs=abs(Xnsfft2)/(m*n);

246 %Matrix manipulation

247 X=Xnsabs;

248 if rem(m,2)==0,

249 X1m0=X(2:(m/2) ,1);

250 X2m0=X(m/2+2:m,1);

251 X2m0=flipud(X2m0);

252 Xm0=X1m0+X2m0;

253 %

254 X13=X(2:m/2,2:n);

255 X24=X(m/2+2:m,2:n);

256 X24=flipud(fliplr(X24));

257 X1234=X13+X24;

258 Y=zeros(m/2,n);

259 Y(1,:)=X(1,:);

260 Y(2:m/2,1)=Xm0;

261 Y(2:m/2,2:n)=X1234;

262 else

263 X1m0=X(2:m/2+0.5 ,1);

264 X2m0=X(m/2+1:m,1);

265 X2m0=flipud(X2m0);

266 Xm0=X1m0+X2m0;

267 %

268 X13=X(2:m/2+0.5 ,2:n);

269 X24=X(m/2+1:m,2:n);

270 X24=flipud(fliplr(X24));

271 X1234=X13+X24;

272 %

273 Y=zeros(m/2+0.5 ,n);

274 Y(1,:)=X(1,:);

275 Y(2:m/2+0.5 ,1)=Xm0;

276 Y(2:m/2+0.5 ,2:n)=X1234;

277 end

278 % if Y is partitioned from the middle column , then the first part represent the forward

rotating waves and second part the backward rotating waves.

279 Xfft2=Y;

280 %Mat_to_write = Y(2:2:20 ,1:6);

281 Mat_to_write = Y;

282 %xlswrite(’multiple_slots_mat ’,Mat_to_write)

283

284 Mat_multiple_slots=Y(1:70 ,1:70);
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285

286 for k1=1: length(Y(:,1))

287 %Y_n(k1 ,:)=Y(k1 ,:);

288 for k2=1: length(Y(1,:))

289 Y_n(k1 ,k2)=Y(k1 ,length(Y(1,:))-k2+1);

290 end

291 end

292 Mat_multiple_slots_n=Y_n (1:70 ,1:70);

C.3 Class that defines a TFM

1 classdef tfm_class < handle

2 % airgap_screen: represents the airgap of the VRPM machine with

3 % superconducting screens to clock the magnetic field. Considering the

4 % effect of curvature. It is based on SC Toolbox developed by driscoll

5 % Jaime Renedo Anglada , University of Southampton

6

7 properties

8 s_self

9 t_self

10 g_self

11 d_self

12 gnew_self

13 Rg_self

14 n_cores

15

16 polygon_self

17 map_self

18 h_canonical

19

20 coeffs_pf

21 end

22 methods

23 %% Definition of the object:

24

25 function obj = airgapVRPM_no_screen_curvature (input_s , input_t , input_g , input_d ,

input_Rg ,n_cores)

26 obj.s_self = input_s;

27 obj.t_self = input_t;

28 obj.g_self = input_g;

29 obj.Rg_self = input_Rg;

30 obj.d_self = input_d;

31 obj.n_cores=n_cores;

32 end

33

34 %% Building the conformal map from the SC toolbox

35

36 function obj = build_map (obj)

37 s=obj.s_self;

38 t=obj.t_self;

39 g=obj.g_self;

40 Rg=obj.Rg_self;

41 d=obj.d_self;

42

43 gnew=Rg*log((Rg+g/2)/(Rg-g/2));

44 obj.gnew_self=gnew;

45

46 % Polygon for SC toolbox (Driscoll)

47 path(path ,’C:\ Users\jra1c13\Documents\MATLAB\sc’)

48 % Geometric operations for the map:

49 % Generate a polygon with the geometry of the problem:

50 v=[d*i t/2+d*i t/2 t/2+s t/2+s+d*i t+s+d*i t+s+(d+gnew)*i (d+gnew)*i];

51 v1=v(1);

52 v2=v(2);
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53 v3=v(3);

54 v4=v(4);

55 v5=v(5);

56 v6=v(6);

57 v7=v(7);

58 v8=v(8);

59

60 p=polygon(v);

61 obj.polygon_self=p;

62

63 % Indicates the right angles in the Canonical Domain:

64 alpha =[0.5 1 1 1 1 0.5 0.5 0.5];

65

66 % Remember that acording to this criteria X is the plane with the toothed

67 % member and w is the plane with the canonical rectangle.

68

69 % Define the Canonical Domain:

70

71 f=crrectmap(p,alpha);

72 obj.map_self=f;

73

74 % Vertices of the canonical rectangle:

75 vc1=evalinv(f,v1);

76 vc6=evalinv(f,v6);

77 vc7=evalinv(f,v7);

78 vc8=evalinv(f,v8);

79

80 obj.h_canonical=abs(vc1 -vc8); % height of the canonical rectangle.

81

82 end

83 %% Magnetic field waveform

84 % delta is the distance to the coreback , V is the MMF and n_points

85 % is the number of points evaluated. In case we want to plot it.

86

87 function result = B_func (obj ,delta ,V,n_points)

88

89 s=obj.s_self;

90 t=obj.t_self;

91 g=obj.g_self;

92 d=obj.d_self;

93 gnew=obj.gnew_self;

94 Rg=obj.Rg_self;

95

96 f=obj.map_self;

97

98 result=zeros (3,2* n_points -1);

99

100

101 B_w=V/obj.h_canonical;

102

103 l_ag_line=n_points;

104 Br=zeros(l_ag_line ,1);

105 Bt=zeros(l_ag_line ,1);

106

107 Ri=Rg+g/2-delta;

108 delta_SC=Rg*log((Rg+g/2)/(Rg+g/2-delta)); %distance in the w plane

109

110 ag_line =(gnew -delta_SC+d)*i+(s+t)/2*(0: n_points)/n_points;

111 x=real(ag_line);

112

113 for count =2:( l_ag_line -1)

114 dif=evaldiff(obj.map_self ,evalinv(f,ag_line(count)));

115 B_temp=B_w/conj(dif)*Rg/Ri;

116

117 Br(count)=real(B_temp);

118 Bt(count)=imag(B_temp);

119

120 end
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121 Br(1)=Br(2);

122 Bt(1)=0;

123

124 count=l_ag_line;

125 Br(count)=Br(count -1);

126 Bt(count)=0;

127

128 for count =1: n_points

129 result(1,count)=Br(count);

130 result(2,count)=Bt(count);

131 result(3,count)=x(count);

132

133 if count <n_points

134 result (1,2* n_points -count)=Br(count);

135 result (2,2* n_points -count)=-Bt(count);

136 result (3,2* n_points -count)=s+t-x(count);

137 end

138

139 end

140

141 end

142

143

144 %% Evaluation of lambda(theta ,r) at one point

145 % delta is the distance to the coreback , V is the MMF and n_points

146 % is the number of points evaluated. In case we want to plot it.

147

148 function result = eval_lambda (obj ,theta_in ,r_in)

149

150 s=obj.s_self;

151 t=obj.t_self;

152 g=obj.g_self;

153 d=obj.d_self;

154 gnew=obj.gnew_self;

155 Rg=obj.Rg_self;

156

157 f=obj.map_self;

158 V=g;

159 B_w=V/obj.h_canonical;

160 Ri=r_in;

161 delta=Rg+g/2-Ri;

162 delta_SC=Rg*log((Rg+g/2)/(Rg+g/2-delta)); %distance in the w plane

163 point=(gnew -delta_SC+d)*i+(s+t)/(2*pi)*theta_in;

164

165 dif=evaldiff(obj.map_self ,evalinv(f,point));

166 B_temp=B_w/conj(dif)*Rg/Ri;

167 result=B_temp;

168

169 end

170

171

172 %% Evaluation of lambda(theta ,r) at one point

173 % delta is the distance to the coreback , V is the MMF and n_points

174 % is the number of points evaluated. In case we want to plot it.

175

176 function result = gen_vec_points(obj ,N_points ,dm)

177 g=obj.g_self;

178 Rg=obj.Rg_self;

179

180 for k=1: N_points

181 result(k,:) =[(0.01+0.98* rand (1,1))*2*pi Rg+g/2 -(0.01+0.98* rand (1,1))*dm ];

182 end

183

184

185 end

186

187

188 %% Evaluation of lambda(theta ,r) at one point
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189 % delta is the distance to the coreback , V is the MMF and n_points

190 % is the number of points evaluated. In case we want to plot it.

191

192 function result = eval_coeffs_lambdar (obj ,vec_points ,N_harmonics ,N_poly)

193

194 s=obj.s_self;

195 t=obj.t_self;

196 g=obj.g_self;

197 d=obj.d_self;

198 gnew=obj.gnew_self;

199 Rg=obj.Rg_self;

200

201 f=obj.map_self;

202

203 result=zeros(N_harmonics +1,N_poly +1);

204 lambda_sol=zeros(1,length(vec_points (:,1)));

205 delta_temp=zeros(1,length(vec_points (:,1)));

206

207 for count1 =1: length(vec_points (:,1))

208 % Rg+g/2- vec_points(count1 ,2)

209 lambda_sol(count1)=real(obj.eval_lambda(vec_points(count1 ,1),vec_points(

count1 ,2)))*vec_points(count1 ,2)/Rg;

210 delta_temp(count1)=Rg+g/2- vec_points(count1 ,2);

211 theta_temp(count1)=vec_points(count1 ,1);

212 end

213

214 Delta=zeros(length(vec_points (:,1)) ,1+ N_harmonics *( N_poly +1));

215

216 Delta (:,1)=Delta (:,1)+1;

217

218 for count1 =1: length(vec_points (:,1))

219 control_count =0;

220 control_count2 =1;

221 for count2 =2:( N_harmonics *( N_poly +1)+1)

222 Delta(count1 ,count2)=delta_temp(count1)^control_count*cos(control_count2*

theta_temp(count1));

223 if control_count == N_poly

224 control_count =0;

225 control_count2=control_count2 +1;

226 else

227 control_count=control_count +1;

228 end

229 end

230 end

231

232

233 Gamma=(inv(transpose(Delta)*Delta)*transpose(Delta))*transpose(lambda_sol);

234

235 result (1,1)=Gamma (1);

236 count_aux =2;

237 for count1 =2:( N_harmonics +1)

238

239 for count2 =1:( N_poly +1)

240 result(count1 ,count2)=Gamma(count_aux)/Gamma (1);

241 count_aux=count_aux +1;

242 end

243 end

244 obj.coeffs_pf=result;

245 end

246

247

248 %% Evaluation of lambda(theta ,r) at one point

249 % delta is the distance to the coreback , V is the MMF and n_points

250 % is the number of points evaluated. In case we want to plot it.

251

252 function result = pflux_linkage (obj ,dm)

253

254 coeffs_func=obj.coeffs_pf;



Appendix C Software Developed in Matlab 185

255 n_cores=obj.n_cores;

256

257 resolution =25;

258

259 N_terms=length(coeffs_func (1,:));

260 N_harm=length(coeffs_func (:,1));

261

262 coeffs_func (1,1)

263

264 coeffs_mod=coeffs_func ((2: N_harm) ,:);

265

266 count2 =1;

267 for delta_c =0:(dm/resolution):dm

268 for h=1: N_terms

269 temp_delta(h,1)=delta_c ^(h-1);

270 end

271

272 gamma_matrix(count2 ,:)=coeffs_mod*temp_delta;

273

274 count2=count2 +1;

275 end

276 % gamma_matrix

277 gamma_av1=mean(gamma_matrix (:,1))

278 gamma_av3=mean(gamma_matrix (:,3))

279 gamma_av5=mean(gamma_matrix (:,5))

280 gamma_av7=mean(gamma_matrix (:,7))

281

282 mu_0 =4*pi*10^ -7;

283 Rg=obj.Rg_self

284 L=0.036/2;

285 Mag =1.05/(4* pi*10^ -7);

286 n=20;

287 N_wind =115;

288 g=obj.g_self

289

290 K=4* mu_0*Rg*L/g/n_cores; % we need to check this

291

292 beta =0:(2* pi/100) :(2*pi);

293 M_func=K*coeffs_func (1,1)*( gamma_av1*cos(beta)-gamma_av3*cos (3* beta)/3+ gamma_av5*

cos (5* beta)/5-gamma_av7*cos(7* beta)/7);

294 result=M_func;

295

296 Phi_func=n*M_func*Mag*dm*10^ -3* N_wind;

297 %

298 plot(beta ,Phi_func)

299 % for beta =0:(2* pi/100) :(2*pi)

300 %

301 %

302 % end

303

304 end

305

306

307

308 %% Expression of the magnetic field as Fourier Series:

309

310 function fourier_coeffs = fourier_series(obj ,delta ,V,n_points)

311 temp_matrix=obj.B_func (delta ,V,n_points);

312 lambda=obj.s_self+obj.t_self; % because we defined x of length lambda

313

314 x=temp_matrix (3,:);

315 % x(length(x))

316 % lambda

317 Br=temp_matrix (1,:);

318 Bt=temp_matrix (2,:);

319

320

321 % Using trapz fuction:
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322 alpha=trapz(x,Br)/lambda;

323 Bm=alpha;

324

325

326 F1=Br.*( cos (2*1* pi*x./ lambda));

327 F2=Br.*( cos (2*2* pi*x./ lambda));

328 F3=Br.*( cos (2*3* pi*x./ lambda));

329 F4=Br.*( cos (2*4* pi*x./ lambda));

330 F5=Br.*( cos (2*5* pi*x./ lambda));

331

332 gamma_1=trapz(x,F1)*2/( lambda*Bm);

333 gamma_2=trapz(x,F2)*2/( lambda*Bm);

334 gamma_3=trapz(x,F3)*2/( lambda*Bm);

335 gamma_4=trapz(x,F4)*2/( lambda*Bm);

336 gamma_5=trapz(x,F5)*2/( lambda*Bm);

337

338 fourier_coeffs =[Bm gamma_1 gamma_2 gamma_3 gamma_4 gamma_5 ];

339 end

340

341

342 %% KB calculation:

343 % n_int: the number of points for the integration layers

344

345 function Kb_out = Kb_calc_square (obj ,dm)

346 coeffs_func=obj.coeffs_pf;

347 n_cores=obj.n_cores;

348

349 resolution =50;

350

351 N_terms=length(coeffs_func (1,:));

352 N_harm=length(coeffs_func (:,1));

353

354 coeffs_func (1,1);

355

356 coeffs_mod=coeffs_func ((2: N_harm) ,:);

357

358 count2 =1;

359 for delta_c =0:(dm/resolution):dm

360 for h=1: N_terms

361 temp_delta(h,1)=delta_c ^(h-1);

362 end

363

364 gamma_matrix(count2 ,:)=coeffs_mod*temp_delta;

365

366 count2=count2 +1;

367 end

368 % gamma_matrix

369 gamma_av1=mean(gamma_matrix (:,1));

370 gamma_av3=mean(gamma_matrix (:,3));

371 gamma_av5=mean(gamma_matrix (:,5));

372 gamma_av7=mean(gamma_matrix (:,7));

373 Kb_out =4/pi*coeffs_func (1,1)*(gamma_av1 -gamma_av3 /3+ gamma_av5/5- gamma_av7 /7)

374

375 end

376

377

378 %% KB calculation:

379 % n_int: the number of points for the integration layers

380

381 function Kb_out = Kb_calc_sin (obj ,dm)

382 coeffs_func=obj.coeffs_pf;

383 n_cores=obj.n_cores;

384

385 resolution =50;

386

387 N_terms=length(coeffs_func (1,:));

388 N_harm=length(coeffs_func (:,1));

389
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390 coeffs_func (1,1);

391

392 coeffs_mod=coeffs_func ((2: N_harm) ,:);

393

394 count2 =1;

395 for delta_c =0:(dm/resolution):dm

396 for h=1: N_terms

397 temp_delta(h,1)=delta_c ^(h-1);

398 end

399

400 gamma_matrix(count2 ,:)=coeffs_mod*temp_delta;

401

402 count2=count2 +1;

403 end

404 % gamma_matrix

405 gamma_av1=mean(gamma_matrix (:,1));

406 gamma_av3=mean(gamma_matrix (:,3));

407 gamma_av5=mean(gamma_matrix (:,5));

408 gamma_av7=mean(gamma_matrix (:,7));

409

410

411 Kb_out=coeffs_func (1,1)*( gamma_av1)

412

413 end

414

415 %% Plot the magnetic field:

416 % n_int: the number of points for the integration layers

417

418 function result = plot_field (obj ,n_pointsu ,n_pointsv ,V)

419

420 g=obj.g_self;

421 s=obj.s_self;

422 t=obj.t_self;

423 d=obj.d_self;

424 Rg=obj.Rg_self;

425 lambda=s+t;

426 f=obj.map_self;

427

428 B_w=V/obj.h_canonical;

429 theta_lambda=lambda/Rg;

430 theta_s=s/Rg;

431 theta_t=t/Rg;

432

433

434 Z_coord=zeros (2* n_pointsu ,n_pointsv);

435 B_com=zeros (2* n_pointsu ,n_pointsv);

436 Br=zeros (2* n_pointsu ,n_pointsv);

437 Bt=zeros (2* n_pointsu ,n_pointsv);

438

439 distance_g =(0:(2* n_pointsu))*g*2/ n_pointsu;

440 %distance_g_w=Rg*log((Rg+g/2)/(Rg+g/2- distance_g))

441 theta_vec =(0: n_pointsv)*theta_lambda/n_pointsv;

442

443 for k=1:(2* n_pointsu)

444 for h=1:( n_pointsv)

445 r_temp=Rg+g/2- distance_g(k);

446 Z_coord(k,h)=r_temp*exp(i*theta_vec(h));

447 d_w=Rg*log((Rg+g/2)/r_temp);

448 % Z_coord(k,h)

449 w_temp=i*(d+g-d_w)+theta_vec(h)*Rg;

450 if r_temp >(Rg-g/2)

451 if k==1

452 r_temp=Rg-distance_g (2)+g/2;

453 d_w=Rg*log((Rg+g/2)/r_temp);

454 w_temp=i*(d+g-d_w)+theta_vec(h)*Rg+lambda /10000;

455 dif=evaldiff(obj.map_self ,evalinv(f,w_temp));

456 B_temp=B_w/conj(dif)*Rg/r_temp;

457 B_com(k,h)=B_temp;
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458 elseif h==1

459 w_temp=i*(d+g-d_w)+theta_vec (2)*Rg;

460 B_temp=B_w/conj(dif)*Rg/r_temp;

461 B_com(k,h)=B_temp;

462 elseif h== n_pointsv

463 w_temp=i*(d+g-d_w)+theta_vec(n_pointsv -1)*Rg;

464 B_temp=B_w/conj(dif)*Rg/r_temp;

465 B_com(k,h)=B_temp;

466

467 else

468 % w_temp

469 dif=evaldiff(obj.map_self ,evalinv(f,w_temp));

470 B_temp=B_w/conj(dif)*Rg/r_temp;

471 B_com(k,h)=B_temp;

472 end

473

474 elseif theta_vec(h) >(theta_t /2) && theta_vec(h)<(theta_t /2+ theta_s)

475 dif=evaldiff(obj.map_self ,evalinv(f,w_temp));

476 B_temp=B_w/conj(dif)*Rg/r_temp;

477 B_com(k,h)=B_temp;

478 % B_com(k,h)=0;

479

480 else

481 B_com(k,h)=NaN;

482

483 end

484

485 end

486 end

487 X=real(Z_coord);

488 Y=imag(Z_coord);

489

490 F_z=B_com;

491

492

493 figure

494 %VectorField2d ([real(F_z), imag(F_z)], X,Y);

495 contourf(X,Y,real(F_z) ,100,’LineStyle ’,’none’)

496

497 figure

498 %VectorField2d ([real(F_z), imag(F_z)], X,Y);

499 contourf(X,Y,imag(F_z) ,100,’LineStyle ’,’none’)

500

501

502 end

503

504 end

505

506 end

C.4 Example of the modelling of a TFM

1 % This code studies the optimal number of C-cores as a function of the normalised

parameters.

2 % It is based in conformal mapping and uses the

3 % SC-toolbox by Driscoll and a logarithmic conformal transformation.

4 % Author: Jaime Renedo Anglada , University of Southampton

5 % s: slot width

6 % g: airgap

7 % t: tooth width

8 % d: slot depth

9 % R_coreback: radius of the coreback of the machine

10 % dm: magnet width

11
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12 %% Add the path of the library and define standar variables:

13

14 clc

15 clear all

16

17 t_lambda =0.39;

18

19 N=11;

20 res_B =1000;

21

22 vec_cores =1:35;

23

24

25 D=151.5; % [mm]

26 R_g=D/2;

27 g=5.5; % [mm]

28 dm =4.51; % [mm]

29 c_gap=g-dm; % [mm]

30 F=sqrt (2) *1150; % [A]

31 Mag =1.05/(4* pi*10^ -7);

32 Fm=Mag*dm*10^ -3; % [A]

33 Leq =17.11; % [mm]

34 mu_0 =4*pi*10^ -7;

35 mu_r =1.05;

36 mu_eq=(mu_r*dm+g-dm)/g;

37 Bs=mu_eq*mu_0*F/g*10^3; % [T]

38 N_wind =230;

39

40 count =1;

41 for N_cores=vec_cores

42 count

43

44 lambda=pi*D/N_cores

45 t=t_lambda*lambda;

46 s=lambda -t;

47 d=3* lambda;

48

49 test2_curv=tfm_class (s,t,g,d,R_g ,N_cores);

50 test2_curv.build_map

51 points=test2_curv.gen_vec_points (1000 ,dm);

52 N_harm =11;

53 N_pol =5;

54 coeffs_func=test2_curv.eval_coeffs_lambdar (points ,N_harm ,N_pol);

55 lambda_r=coeffs_func (1,1);

56 K_B=test2_curv.Kb_calc_sin(dm);

57 Kb(count)=K_B;

58 Ke(count)=K_B;

59 Torque(count)=2*Kb(count)*N_cores*Bs*Fm*D*Leq *10^ -6;

60

61 % Inductance:

62 L_ind(count)=mu_eq*mu_0*N_wind ^2/g*pi*lambda_r*Leq*R_g *10^ -3;

63 h1=24;

64 h2=2;

65 ws=20;

66 lambda_say=h1/3/ws+h2/ws;

67

68 % half the value of Say because there is half the leakage. is it good?

69 angle_t=t/R_g;

70 L_leak(count)=N_cores*mu_0*N_wind ^2* lambda_say*angle_t *(R_g -g/2) *10^ -3;

71 omega =2*pi*50;

72 rms_emf =2* sqrt (2)*mu_0*N_wind*Fm*K_B*omega*Leq*R_g/g*10^ -3;

73 amp_rms =10;

74 phi(count)=atand(amp_rms *( L_ind(count)+L_leak(count))*omega/rms_emf);

75 phi2(count)=atand(amp_rms *( L_ind(count))*omega/rms_emf);

76

77 power_factor(count)=cosd(phi(count));

78 power_factor2(count)=cosd(phi2(count));

79
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80 count=count +1;

81 end

82

83

84 save(’data_power_factor ’)

C.5 Calculation of the rotor losses in a TFM

1

2 %% Calculate the rotor losses:

3 % This is the code that uses Bessel fuctions to calculate the rotor losses.

4 % Author: Jaime Renedo Anglada , University of Southampton.

5 clc

6 clear all

7

8 % Modified bessel function of the first kind: I = besseli(nu,Z)

9 % Modified bessel function of the second kind: K = besselk(nu,Z)

10 % k_p=sqrt(j*omega*mu*sigma)

11 %

12

13

14

15 %% Parameters (TFM soton):

16

17 mu_0 =4*pi*10^ -7; % [m kg s^-2 A^-2]

18 p=20; % pairs of poles

19

20 B_given =0.09; % [T]

21 time_order_given =1;

22 space_order_given =2;

23

24

25 n_rpm =300; % [rpm]

26

27 f_1=n_rpm /60*p; % [Hz]

28 f_1 =50;

29 omega =2*pi*f_1; % [rad/sec]

30 alpha_p =1;

31

32 mu_r =1.05;

33

34 R_1 =73*10^ -3; % [m] rotor radius

35 R_2 =74*10^ -3; % [m] magnet radius

36 R_3 =78.5*10^ -3; % [m] stator radius

37 R_4 =85*10^ -3; % [m] outer radius

38

39 R_wave =73.75e-3; % [m]

40

41 L=17*10^ -3; % [m] axial length

42 % L=1;

43

44

45 sigma_1_eval =3*10^ -15; % [S/m]

46 sigma_2_eval =3*10^ -15; % [S/m]

47 sigma_3_eval =0.77*10^6; % [S/m]

48 sigma_4_eval =6.7*10^6; % [S/m]

49

50

51

52 mu_1 =5000* mu_0; % [m kg s^-2 A^-2]

53 mu_2=mu_0; % [m kg s^-2 A^-2]

54 mu_3=mu_r*mu_0; % [m kg s^-2 A^-2]

55 mu_4 =750* mu_0; % [m kg s^-2 A^-2]

56
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57 delta_1=sqrt (2/( sigma_1_eval*omega*mu_1)); % Skin depth in [m]

58 delta_2=sqrt (2/( sigma_2_eval*omega*mu_2)); % Skin depth in [m]

59 delta_3=sqrt (2/( sigma_3_eval*omega*mu_3)); % Skin depth in [m]

60 delta_4=sqrt (2/( sigma_4_eval*omega*mu_4)); % Skin depth in [m]

61

62 N_div =1000;

63

64 %% Select only the significant harmonics:

65 vec_B_given=B_given; % [T]

66 vec_time2=time_order_given;

67 vec_space2=space_order_given;

68

69 %% Calculation of rotor losses forward rotating:

70

71 length_harmonics=length(vec_B_given);

72

73 P_ms_matrix=zeros(length_harmonics ,1);

74 P_hub_matrix=zeros(length_harmonics ,1);

75

76 warning=false;

77 vec_space_warning =[];

78 vec_time_warning =[];

79

80 P_ms_tot =0;

81 for count =1: length_harmonics

82 k_time=vec_time2(count);

83 h_space=vec_space2(count);

84 q_eval=p*h_space; % space order

85 omega_eval=f_1*2*pi*k_time;

86 B_ms_given=vec_B_given(count)

87 omega=omega_eval

88

89 %% Define the symbolic variable

90 sigma_1 =3*10^ -15; % [S/m]

91 sigma_2 =3*10^ -15; % [S/m]

92 sigma_3 =0.77*10^6; % [S/m]

93 sigma_4 =6.7*10^6; % [S/m]

94 %% Current sheet model:

95 J_kq =1;

96 k_p_1=sqrt(1i*omega*mu_1*sigma_1);

97 k_p_2=sqrt(1i*omega*mu_2*sigma_2);

98 k_p_3=sqrt(1i*omega*mu_3*sigma_3);

99 k_p_4=sqrt(1i*omega*mu_4*sigma_4);

100

101 % New method:

102 q=q_eval;

103

104 % Region 1:

105 % beta_1 =1i*k_p_1*R_1*besseli_d(q,k_p_1*R_1)/besseli(q,k_p_1*R_1)/mu_1*q_eval;

106 beta_1=mu_0*1i/mu_1/q;

107

108 % choose the type of transfer matrix you need.

109 % Region 2:

110 % T_2=TransferMatrix_comp( R_1 , R_2 , mu_2 , sigma_2_eval , omega , q_eval);

111 T_2=TransferMatrix_medium_simp( R_1 , R_2 , mu_2 , sigma_2_eval , omega , q_eval , N_div);

112 % T_2=TransferMatrix_simp( R_1 , R_2 , mu_2 , sigma_2_eval , omega , q_eval , N_div);

113 % T_2=TransferMatrix_super_simp( R_1 , R_2 , mu_2 , sigma_2_eval , omega , q_eval , N_div);

114

115 % Region 3:

116 % T_3=TransferMatrix_comp( R_2 , R_3 , mu_3 , sigma_3_eval , omega , q_eval);

117 T_3=TransferMatrix_medium_simp( R_2 , R_3 , mu_3 , sigma_3_eval , omega , q_eval , N_div);

118 % T_3=TransferMatrix_simp( R_2 , R_3 , mu_3 , sigma_3_eval , omega , q_eval , N_div);

119 % T_3=TransferMatrix_super_simp( R_2 , R_3 , mu_3 , sigma_3_eval , omega , q_eval , N_div);

120

121

122 % Region 4:

123 % T_4=TransferMatrix_comp( R_3 , R_4 , mu_4 , sigma_4_eval , omega , q_eval);

124 T_4=TransferMatrix_medium_simp( R_3 , R_4 , mu_4 , sigma_4_eval , omega , q_eval , N_div);
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125 % T_4=TransferMatrix_simp( R_3 , R_4 , mu_4 , sigma_4_eval , omega , q_eval , N_div);

126 % T_4=TransferMatrix_super_simp( R_3 , R_4 , mu_4 , sigma_4_eval , omega , q_eval , N_div);

127

128

129 %% Estimation of the coefficients

130 Mat_D =[0 0; 0 1]-T_4*T_3*T_2*[1 0; beta_1 0];

131 % temp_mat=inv(Mat_D);

132 vec_sol=Mat_D\T_4*T_3*T_2 *[0; mu_0*J_kq];

133

134 % Get the fields:

135 B_1=vec_sol (1);

136 H_1=beta_1*B_1/mu_0;

137

138 H_4=vec_sol (2)/mu_0;

139

140 temp_2=T_2*[B_1; mu_0*(H_1+J_kq)];

141 B_2=temp_2 (1);

142 H_2=temp_2 (2)/mu_0;

143

144 temp_3=T_3*[B_2; mu_0*H_2];

145 B_3=temp_3 (1);

146 H_3=temp_3 (2)/mu_0;

147

148

149 %% Calculate the power losses for J_kq =1:

150 S1=2*pi*R_1*L;

151 S2=2*pi*R_2*L;

152 S3=2*pi*R_3*L;

153

154 E_1=-omega/q*R_1*B_1;

155 E_2=-omega/q*R_2*B_2;

156 E_3=-omega/q*R_3*B_3;

157

158 P1_j1_temp =0.5* real(E_1*conj(H_1+J_kq))*S1;

159 P2_j1_temp =0.5* real(E_2*conj(H_2))*S2;

160 P3_j1_temp =0.5* real(E_3*conj(H_3))*S3;

161

162 %% Solution with no eddy currents:

163

164 syms q

165

166 syms sigma_1

167 syms sigma_2

168 syms sigma_3

169 syms sigma_4

170

171 clear A

172

173 syms A

174

175 A(1,1)=R_1^q;

176 A(1,2)=-R_1^q;

177 A(1,3)=-R_1^(-q);

178

179 A(2,1)=-1/mu_1*R_1^(q);

180 A(2,2)=1/ mu_2*R_1^(q);

181 A(2,3)=-1/mu_2*R_1^(-q);

182

183 A(3,2)=R_2^q;

184 A(3,3)=R_2^(-q);

185 A(3,4)=-R_2^q;

186 A(3,5)=-R_2^(-q);

187

188 A(4,2)=-1/mu_2*R_2^(q);

189 A(4,3)=1/ mu_2*R_2^(-q);

190 A(4,4)=1/ mu_3*R_2^(q);

191 A(4,5)=-1/mu_3*R_2^(-q);

192
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193 A(5,4)=R_3^q;

194 A(5,5)=R_3^(-q);

195 A(5,6)=-R_3^q;

196 A(5,7)=-R_3^(-q);

197

198 A(6,4)=-1/mu_3*R_3^(q);

199 A(6,5)=1/ mu_3*R_3^(-q);

200 A(6,6)=1/ mu_4*R_3^(q);

201 A(6,7)=-1/mu_4*R_3^(-q);

202

203 A(7,6)=R_4^q;

204 A(7,7)=R_4^(-q);

205

206

207 B1=[0 J_kq*R_1/q_eval 0 0 0 0 0];

208 B=transpose(B1);

209

210 X_1=A\B;

211

212 C10_temp=X_1(1);

213 C_10=double(subs(C10_temp ,q, q_eval));

214

215 C20_temp=X_1(2);

216 C_20=double(subs(C20_temp ,q, q_eval));

217

218 D20_temp=X_1(3);

219 D_20=double(subs(D20_temp ,q, q_eval));

220

221 C30_temp=X_1(4);

222 C_30=double(subs(C30_temp ,q, q_eval));

223

224 D30_temp=X_1(5);

225 D_30=double(subs(D30_temp ,q, q_eval));

226

227 C40_temp=X_1(6);

228 C_40=double(subs(C40_temp ,q, q_eval));

229

230 D40_temp=X_1(7);

231 D_40=double(subs(D40_temp ,q, q_eval));

232

233 B_calculated=abs(-j*q_eval *(C_20*R_wave ^(q_eval -1)+D_20*R_wave^(-q_eval -1)));

234

235

236 K_B_ms=B_ms_given/B_calculated;

237

238 if isnan(K_B_ms)

239 K_B_ms =0;

240 warning=true;

241 vec_space_warning =[ vec_space_warning h_space ];

242 vec_time_warning =[ vec_time_warning h_space ];

243 end

244

245

246 %% Calculate the power losses for J_kq =1:

247

248 P1_j1=P1_j1_temp;

249 P2_j1=P2_j1_temp;

250 P3_j1=P3_j1_temp;

251

252 P_j1_mag=P2_j1 -P3_j1;

253 P_j1_hub=P3_j1;

254

255

256 %% Final estimation of the rotor losses:

257 P_mag_ms=alpha_p*P_j1_mag*K_B_ms ^2;

258 P_hub_ms=alpha_p*P_j1_hub*K_B_ms ^2;

259

260 P_ms_matrix(count)=P_mag_ms;
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261 P_hub_matrix(count)=P_hub_ms;

262 P_ms_tot=P_ms_tot+P_mag_ms+P_hub_ms;

263

264

265 end

1 function [ T_mat ] = TransferMatrix_comp( R_1 , R_2 , mu, sigma , omega , q)

2 %Calculation of the transfer matrix of a region. Complete methodology.

3 % Author: Jaime Renedo Anglada , University of Southampton.

4

5 mu_0 =4*pi*10^ -7; % [m kg s^-2 A^-2]

6 k_p=sqrt(1i*omega*mu*sigma);

7

8 N_div =1000;

9 test_nan=besselk_d(q,k_p*R_1)*besseli_d(q,k_p*R_1);

10

11 if isnan(test_nan)

12

13 S_2l=R_2 -R_1;

14 S_2d=S_2l/N_div;

15

16 T_2 =[1 0; 0 1];

17 for count2 =0:( N_div)

18 delta=S_2d;

19 r_2a=R_1+delta*count2+delta /2;

20

21 k_2=q/r_2a;

22 d_2 =1/ sqrt(sigma*mu*omega);

23 gamma_2h=sqrt(k_2 ^2+1i/d_2^2);

24 beta_2h=gamma_2h /(1i*mu*k_2);

25 T_2h=[cosh(gamma_2h*S_2d) sinh(gamma_2h*S_2d)/beta_2h/mu_0; mu_0*beta_2h*sinh(

gamma_2h*S_2d) cosh(gamma_2h*S_2d)];

26 T_2=T_2*T_2h;

27 end

28 T_mat=T_2;

29

30 else

31 F_2=mu_0*1i*k_p*q/(mu*R_1)*( besselk(q,k_p*R_1)*besseli_d(q,k_p*R_1)-besseli(q,k_p*R_1)*

besselk_d(q,k_p*R_1));

32 M_2=[-mu_0*k_p/mu*besselk_d(q,k_p*R_1) -1i*q/R_1*besselk(q,k_p*R_1); mu_0*k_p/mu*

besseli_d(q,k_p*R_1) 1i*q/R_1*besseli(q,k_p*R_1)];

33 N_2 =[1i*q/R_2*besseli(q,k_p*R_2) 1i*q/R_2*besselk(q,k_p*R_2); -mu_0*k_p/mu*besseli_d(q,

k_p*R_2) -mu_0*k_p/mu*besselk_d(q,k_p*R_2)];

34 T_mat =[1 0; 0 -1]*N_2*M_2/F_2*[1 0; 0 -1];

35

36 end

37

38

39 end

1 function [ T_mat ] = TransferMatrix_medium_simp( R_1 , R_2 , mu, sigma , omega , q, N_div)

2 %Calculation of the transfer matrix of a region. Medium simplified methodology.

3 % Author: Jaime Renedo Anglada , University of Southampton.

4

5 mu_0 =4*pi*10^ -7; % [m kg s^-2 A^-2]

6

7 S_2l=R_2 -R_1;

8 S_2d=S_2l/N_div;

9

10

11 T_2 =[1 0; 0 1];

12 for count2 =0:( N_div)

13 delta=S_2d;

14 r_2a=R_1+delta*count2+delta /2;

15

16 k_2=q/r_2a;

17 d_2 =1/ sqrt(sigma*mu*omega);
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18 gamma_2h=sqrt(k_2 ^2+1i/d_2^2);

19 beta_2h=gamma_2h /(1i*mu*k_2);

20

21 T_2h=[cosh(gamma_2h*S_2d) sinh(gamma_2h*S_2d)/beta_2h/mu_0; mu_0*beta_2h*sinh(gamma_2h*

S_2d) cosh(gamma_2h*S_2d)];

22 T_2=T_2*T_2h;

23 end

24 T_mat=T_2;

25 end

1 function [ T_mat ] = TransferMatrix_simp( R_1 , R_2 , mu, sigma , omega , q, N_div)

2 %Calculation of the transfer matrix of a region. Simplified methodology.

3 % Author: Jaime Renedo Anglada , University of Southampton.

4

5 mu_0 =4*pi*10^ -7; % [m kg s^-2 A^-2]

6

7 S_2l=R_2 -R_1;

8 S_2d=S_2l/N_div;

9

10 T_2 =[1 0; 0 1];

11 for count2 =0:( N_div)

12 delta=S_2d;

13 r_2a=R_1+delta*count2+delta /2;

14

15 k_2=q/r_2a;

16 d_2 =1/ sqrt(sigma*mu*omega);

17 gamma_2h=sqrt(k_2 ^2+1i/d_2^2);

18 beta_2h=gamma_2h /(1i*mu*k_2);

19

20 T_2h =[1 gamma_2h*S_2d/beta_2h/mu_0; mu_0*beta_2h*gamma_2h*S_2d 1];

21

22 T_2=T_2*T_2h;

23 end

24 T_mat=T_2;

25 end

1 function [ T_mat ] = TransferMatrix_super_simp( R_1 , R_2 , mu, sigma , omega , q, N_div)

2 %Calculation of the transfer matrix of a region. Super simplified methodology.

3 % Author: Jaime Renedo Anglada , University of Southampton.

4

5 mu_0 =4*pi*10^ -7; % [m kg s^-2 A^-2]

6

7 S_2l=R_2 -R_1;

8 S_2d=S_2l/N_div;

9

10 T_2 =[1 0; 0 1];

11

12 delta=S_2d;

13 r_2a=(R_1+R_2)/2;

14

15 k_2=q/r_2a;

16

17 d_2 =1/ sqrt(sigma*mu*omega);

18 gamma_2h=sqrt(k_2 ^2+1i/d_2^2);

19 beta_2h=gamma_2h /(1i*mu*k_2);

20

21 T_2h =[1 gamma_2h*S_2d/beta_2h/mu_0; mu_0*beta_2h*gamma_2h*S_2d 1];

22

23 T_2=T_2h^N_div;

24

25 T_mat=T_2;

26

27

28 end
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C.6 Optimisation of a tidal turbine

1 %% Optimisation of the shape of a C-core:

2 % You have a Bs_max which comes from the level of flux from the PM , see my

3 % own notes for more details. The constraints of the C-core are

4 % geometrical and the air -gap is given. Specifications of the Casimere

5 % tidal generator from TSL

6

7 clc

8 clear all

9

10 Dyoke =430; %[mm]

11

12 N_phase =3;

13 N_rows =1;

14

15 Length =150; % [mm]

16 ws_0=Length/N_phase/N_rows *0.9; % [mm]

17 hs_0=ws_0;

18

19

20 dm=8; % [mm]

21 c_gap =2; % [mm]

22 g=c_gap+dm; % [mm]

23

24 D_ccores=Dyoke -2*dm -2* c_gap; %[mm]

25 D_g=D_ccores+g; % [mm]

26 R_g=D_g/2;

27

28 J=10; % [A/mm^2]

29

30 % 150 rpm more less

31 n_rpm =150; % [rpm]

32 n_rad=n_rpm /60*2* pi; % [rad/s]

33

34 % Rated torque:

35 T_out =670; % [Nm]

36 T_out1 =670/ N_phase; % [Nm]

37

38 pf_given =0.4;

39

40 % rho_steel =7650; % kg/m^3

41

42 rho_steel =7.650/1000; % kg/cm^3

43 rho_pm =7.3/1000; % kg/cm^3

44 rho_cu =8.96/1000; % kg/cm^3

45

46 cost_pm =45; % [euro/kg]

47 cost_steel =3.5; % [euro/kg]

48 cost_cu =12.4; % [euro/kg]

49

50 slot_fill =0.5;

51

52

53

54 %% Calculate the torque for a given t, s, lambda ...

55

56

57 mu_0 =4*pi*10^ -7;

58 mu_eq =1;

59

60 N=5;

61 res_B =500;

62

63 Mag =1.05/(4* pi*10^ -7);

64 Fm=Mag*dm*10^ -3; % [A]

65
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66 N_wind =200;

67

68 t_lambda =0.3;

69

70 hs=hs_0;

71 ws=ws_0;

72

73 %% Choose optimum Nc

74 %

75 Nc_max=find_nc_max ();

76 error_wanted =0.005;

77 vec_pf =[];

78 T_out_max=T_out1;

79 correction_factor =12;

80

81 count=1

82 flag=true;

83 while flag

84 Kb_max=KB_VRPM_read(Nc_max);

85 Ke=KE_VRPM_read(Nc_max);

86 flag2=true;

87 while flag2

88 [ wm,hc ,wc ] = opt_c_core( hs ,ws,dm,c_gap ,slot_fill*J );

89 L_eq=wm *(1+0.384*g/wm);

90 F=0.5* slot_fill*J*hc*wc;

91 I_n =2*F/N_wind;

92 Bs=mu_0*F/g*10^3;

93

94 k_e=N_wind*Nc_max *4* mu_0*R_g*L_eq*Fm*Kb_max/sqrt (2)/g*10^ -3;

95

96 Torque_temp=k_e*I_n; % [Nm]

97

98 if abs((T_out_max -Torque_temp)/T_out_max)<error_wanted

99 flag2=false;

100 Torque_calc=Torque_temp;

101

102 elseif Torque_temp >T_out_max

103 hs =0.999* hs;

104 ws =0.999* ws;

105 elseif Torque_temp <T_out_max

106 hs =1.001* hs;

107 ws =1.001* ws;

108 end

109 end

110

111 N_cores=Nc_max -correction_factor;

112

113

114 Kb=KB_VRPM_read(N_cores);

115 Kb_old=Kb;

116 Ke=KE_VRPM_read(N_cores);

117

118 L_eq=wm *(1+0.384*g/wm);

119 F=0.5* slot_fill*J*hc*wc;

120 Bs=mu_0*F/g*10^3;

121 I_n =2*F/N_wind;

122 k_e=N_wind*N_cores *4* mu_0*R_g*L_eq*Fm*Kb/sqrt (2)/g*10^ -3;

123 Torque_temp=k_e*I_n; % [Nm]

124 if abs((T_out1 -Torque_temp)/T_out1)<error_wanted

125 flag=false;

126 Torque_calc=Torque_temp;

127 lambda=pi*D_g/N_cores;

128

129 t=t_lambda*lambda;

130 s=lambda -t;

131 d=3* lambda;

132 R_g=D_g /2;

133
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134 test2_curv=airgapVRPM_no_screen_curvature (s,t,g,d,D_g/2,N_cores);

135 test2_curv.build_map

136 points=test2_curv.gen_vec_points (1000 ,dm);

137 N_harm =11;

138 N_pol =5;

139 coeffs_func=test2_curv.eval_coeffs_lambdar (points ,N_harm ,N_pol);

140 lambda_r=coeffs_func (1,1);

141

142 K_B_sc=test2_curv.Kb_calc_sin(dm);

143 K_B=KB_VRPM_read(N_cores);

144 Kb=K_B;

145 Ke=K_B

146 I_n =2*F/N_wind

147 k_e=N_wind*N_cores *4* mu_0*R_g*L_eq*Fm*Kb/sqrt (2)/g*10^ -3;

148 Torque=k_e*I_n

149

150 % Inductance:

151 L_ind=mu_eq*mu_0*N_wind ^2/g*pi*lambda_r*L_eq*R_g *10^ -3;

152 h1=hc;

153 h2=1;

154 ws2=wc;

155 lambda_say=h1/3/ ws2+h2/ws2;

156 k_e=N_wind*N_cores *4* mu_0*R_g*L_eq*Fm*K_B/sqrt (2)/g*10^ -3;

157

158 % half the value of Say because there is half the leakage. is it good?

159 angle_t=t/R_g;

160

161 L_leak=N_cores*mu_0*N_wind ^2* lambda_say*angle_t *(R_g -g/2) *10^ -3;

162

163 omega_elec=N_cores*n_rad;

164 rms_emf=k_e*n_rad;

165 rms_emf_calc=rms_emf;

166 amp_rms =2*F/N_wind;

167 phi=atand(amp_rms *(L_ind+L_leak)*omega_elec/rms_emf);

168

169 power_factor=cosd(phi)

170 power_factor_calc=cosd(phi)

171 vec_pf =[ vec_pf power_factor ];

172

173

174 elseif Torque_temp <T_out1

175 T_out_max =1.0001* T_out_max

176 elseif Torque_temp >T_out1

177 T_out_max =0.9999* T_out_max

178 end

179 end

180

181

182 %% Final calculations

183

184 wl=wm;

185

186 vol_pm =2*pi*(R_g+g/2-dm/2)*wm*dm*2* N_rows*N_phase; % [mm^3]

187 vol_cores=N_rows*N_phase*N_cores *(hs*ws-hc*wc)*t; % [mm^3]

188 vol_yoke=N_rows*N_phase*ws*pi*((R_g+g/2+wl)^2-(R_g+g/2)^2); % [mm^3]

189 vol_cu =2*pi*(R_g -g/2-hc/2)*wc*hc*N_rows*N_phase; % [mm^3]

190

191 vol_tot=N_rows*N_phase*pi*(R_g+g/2+wl)^2*ws; % [mm^3]

192

193 mass_pm=rho_pm*vol_pm /1000; % [kg]

194 mass_cores=rho_steel*vol_cores /1000; % [kg]

195 mass_cu=slot_fill*rho_cu*vol_cu /1000; % [kg]

196

197 tot_mass=mass_pm+mass_cores+mass_cu

198

199 tot_cost_pm=cost_pm*mass_pm; % [euros]

200 tot_cost_cores=cost_steel*mass_cores; % [euros]

201 tot_cost_cu=cost_cu*mass_cu; % [euros]
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202

203 tot_cost_pm;

204 tot_cost_cores;

205 tot_cost_cu;

206

207 tot_cost=tot_cost_pm+tot_cost_cores+tot_cost_cu

208

209

210 k_e=N_wind*N_cores *4* mu_0*R_g*L_eq*Fm*K_B/sqrt (2)/g*10^ -3;

211

212 % specific torque:

213 T_specific =3* Torque_calc/tot_mass

214 T_specific_eu =3* Torque_calc/tot_cost

215

216 % electrical parameters:

217 I_n =2*F/N_wind

218 E_n=rms_emf_calc

219 f_elec=omega_elec /2/pi

220 power_factor_calc

221 V_n=E_n/power_factor_calc

222 Total_torque =3* Torque_calc

223 speed_rpm=n_rpm

224 P_n =3*I_n*E_n /1000

225 S_n =3*I_n*V_n /1000
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