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Educational paper

Two simple theoretical models for teaching wave mechanics in coastal engineering
Gerald Müller , Associate Professor, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
Email: g.muller@soton.ac.uk

ABSTRACT
Waves are an integral component of teaching in coastal engineering. Some aspects of wave theory are however complex and outside the scope of
e.g. introductory courses, so that only the results of the theory are used. For other wave effects such as overtopping, no theory exists, and purely
empirical formulas are employed. This limits the students’ understanding of the problems. At Southampton University, we developed simple models
for wave effects to improve the teaching. The models rely on basic hydraulic engineering principles such as continuity, conservation of energy and
momentum, with the condition that the results are reasonably close to those from more complex theories or from experiments. In this article, two
such models for the propagation speed of a solitary wave, and for the shallow water breaking criterion, will be presented. The results from both
models are surprisingly close to the textbook formulas or values.
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1 Introduction

In the teaching of coastal engineering, waves and wave related
effects are of course of prime importance. However, in many
cases, such as solitary waves or wave breaking, the the-
ory is complex and outside the scope of e.g. general or
introductory courses. In addition, there are several impor-
tant areas where no theory exists and where we rely on
empirical equations, e.g. in wave overtopping. This makes
the student’s understanding of the basic phenomena, and of
the influence of the parameters involved, more difficult. To
address this problem, the author has developed simple the-
oretical models which describe these effects. These models
rely on basic hydraulic engineering theory such as continuity,
conservation of energy and momentum with which the stu-
dents are familiar. The basic conditions for the models are that
they:

(1) are coherent and conform with the principles of fluid
mechanics; and

(2) have results which show a reasonable to good agree-
ment with theoretical models or, in case of empirical
relationships, with experimental results (Müller, 2022).

In the following, two such models will be described.

2 Speed of propagation of a solitary wave

Solitary waves are waves which consist of a crest only. They
are used in coastal engineering to analyse shallow water effects
such as wave breaking, or the propagation of tsunami waves.
Their theory is however rather complex (see the overview in
Daily & Stephan, 1952). For engineering purposes, the speed
of propagation v0 of such a wave is of course of great inter-
est since it determines the effective loadings generated by such
a wave. Currently, we simply use a formula given in the liter-
ature where the velocity v0 is a function of the water depth d
and the wave height H. This widely used formula is the result
of a fairly complex mathematical model based on potential flow
theory (Boussinesq, 1872):

v0 =
√

g(d + H) (1)

This speed can however also be determined by analysing
the energy flux. Figure 1 shows a wave with a control vol-
ume/section at the crest. Here, the wave contains potential
and kinetic energy. In the illustrative explanation for students
(Fig. 1a), the potential energy induces the collapse of the wave
whilst the kinetic energy balances this tendency. Both must be
equal for the wave to be stable. Since the wave is moving, we
need to consider the power. Figure 1b shows the potential and
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Figure 1 Breaking wave: (a) propagating wave; (b) energy balance with moving reference frame

the kinetic power in a reference frame which moves with the
wave speed. For the following analysis, a strip with a width of
1 m is assumed. With a propagation speed v0, the kinetic power
Pkin is given as:

Pkin = ρ(d + H)
v3

0

2
(2)

The hydrostatic force Fh1 acts in the positive direction since it
has to counteract the momentum force Fm1. Power equals force
times velocity, so the potential power Ppot becomes:

Ppot = v0ρg
(d + H)2

2
(3)

The power balance can be written as:

ρ(d + H)
v3

0

2
= ρg

(d + H)2

2
v0 (4)

This leads to:

(d + H)v2
0 = g(d + H)2 (5)

And:

v0 =
√

g(d + H) (6)

Equation (6) is identical to the solution for the speed of prop-
agation of a solitary wave given by Boussinesq (1872), i.e.
Eq. (1), and solutions given by Raleigh, Stakes and Stoker
(Daily & Stephan, 1952). Equation (6) slightly overpredicts
experimental results reported by Daily and Stephan by 2.7%
for H /d = 0.65, and the solution can therefore be regarded as
reasonably accurate.

3 Wave breaking in shallow water

3.1 Overview

Wave breaking is an important phenomenon in the coastal zone;
it limits the wave height and dissipates energy. Depth induced
wave breaking involves wave steepening, where the particle
motion becomes predominantly horizontal, and the subsequent
overturning of the crest. When hitting a seawall, breaking waves
can create so-called impulsive overtopping and extremely high

impact pressures. There are several theories for the mechanism
of wave breaking reported in the literature, the most common
ones being the stability limit of a solitary wave, and the assump-
tion that the particle velocity at the wave crest reaches and
exceeds the wave speed itself.

3.2 Textbook models

Solitary wave theory breaking criterion

The textbook breaker criterion states that waves break if the ratio
of wave height and water depth H / d reaches 0.78. This is based
on McCowan (1894), who developed a potential flow theory for
solitary waves. For increasing values of H / d, the solitary wave
forms a discontinuity – a cusp – at the crest. When H / d = 0.78,
the curvature radius r at the cusp becomes infinite, indicating a
point of inflexion, so that a further increase in height is not possi-
ble (Fig. 2). This is considered as the breaking limit. In a recent
review of wave breaking, new theoretical work was described
which led to a more accurate value of H / d = 0.82 (Robertson
et al., 2013).

Particle velocity assumption

The most common assumption made in textbooks for wave
breaking is that the onset of breaking occurs at the point where
the maximum horizontal particle velocity reaches the speed of
the wave (e.g. Wood & Fleming, 1981; Sorensen, 2006). This
occurs under the following preconditions:

(1) As the water depth reduces, the celerity of the wave
becomes a function of the water depth only.

Figure 2 Breaking point of a solitary wave, H /d = 0.78 (McCowan,
1894)
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(2) As the water depth reduces, the wave height increases
due to shoaling. The particle velocity is a function of the
wave height and therefore also increases.

(3) Wave breaking starts when the particle velocity of the
crest reaches the speed of propagation of the wave, the
wave crest then starts to overtake the wave.

Figure 3a shows the deep-water situation, Fig. 3b the increase
in maximum particle velocities when entering shallow water.
These assumptions can be tested quite easily using linear
wave theory. The maximum horizontal particle velocity umax is
given as:

umax = H
2

√
g
d

(7)

The local wave celerity at the crest vcr can be estimated as:

vcr =
√

g(d + H/2) (8)

This takes the effect of the wave crest in shallow water into
account. Both must be equal:

umax = vcr;
H
2

√
g
d

=
√

g(d + H/2) (9)

This gives a quadratic equation for H for a constant value d:

H 2

4d
− H

2
− d = 0 (10)

The equation has two roots, H 1 = 3.236d and H 2 = –1.235d.
The first solution is clearly not applicable, whilst the second

implies that it is not the particle in the crest which overtakes the
wave, but the particle in the trough which comes to a standstill
so that the crest must overtake it. A change in sign for the H / 2
term in the r.h.s. of Eq. (9) gives a positive result, verifying this
statement. The H / d ratio from this assumption is however unre-
alistically high. An increase in trough depth ratio would result
in lower ratios of H / d. However, such a wave would contra-
dict the observed characteristics of shallow water waves where
the crest becomes shorter and higher whilst the trough becomes
longer and shallower when the wave travels into shallow
water.

3.3 Momentum model

Momentum balance and moving reference frame

Both assumptions for wave breaking as presented in the previ-
ous sections rely on very different criteria. The results do not
agree well, and the solitary wave analysis is mathematically
very complex. Therefore, a momentum analysis which assumes
wave breaking to constitute a stability problem was developed
to determine a critical H / d ratio.

In a breaking wave approaching a vertical wall, the orbital
motion of the particles is replaced by a predominantly horizontal
motion (e.g. Hull & Müller, 2002). For the analysis, we therefore
assume the breaking wave to consist of a body of water of height
d + H, which moves horizontally with a velocity v0, in a water
depth d (Fig. 4a). The forward velocity can be determined with
Eq. (6). For an analysis of the stability of the wave, we consider
the momentum balance with a moving reference frame as shown
in Fig. 4b.

Figure 3 Wave and maximum horizontal particle velocities: (a) deep water, (b) shallow water

Figure 4 Breaking wave: (a) simplified velocity distribution; (b) momentum balance with moving reference frame
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Stability of a rigid block

A closer look at Fig. 4b shows that the lines of action (l.o.a.)
of the different forces / the distances between the l.o.a. and the
bed are not the same. This implies that the effect of the different
forces on the stability or the overturning of the wave will also
be different. We can now borrow a concept from the mechanics
of solid bodies, the stability of a rigid block subjected to a hori-
zontal load against overturning (Fig. 5) to analyse the problem.
A block with a base width b and a weight W is subjected to a
horizontal force FH , which acts at a vertical distance e above
ground level. The block is assumed to rotate over point “1”.

The stabilizing moment Ms is:

Ms = W
b
2

(11)

And the overturning moment MOT becomes:

MOT = FH e (12)

As long as Ms > MOT, the block remains stable. Once
Ms = MOT, the block is in an unstable equilibrium; if
Ms < MOT, then the block overturns.

Wave stability and breaking

The velocity of the wave increases with increasing wave height
(Eq. 6). The forces in Fig. 4b must balance. However, the lines
of action of these forces have different distance to the bed, which
is considered as the reference line. Subsequently, we can con-
sider this as a stability problem similar to Fig. 5 and determine a
wave height for which the sum of the moments equals zero. This
can then be considered as the stability limit. Applying this con-
cept to the momentum forces in Fig. 4b, we take the moments
over the seabed for the critical condition. Here, the momen-
tum force Fm1 causes the stabilizing, the hydrostatic forces Fh1

and Fh2 the overturning moment. Eq. (10) gives the moment

Figure 5 Stability of a block against overturning

balance:

ρdv2
0

d
2

− ρg
d2

2
d
3

− ρg
(d + H)2

2

(
d + H

3

)
= 0 (13)

Simplifying, and substituting with Eq. (6):

d2(d + H) − (d + H)3

3
− d3

3
= 0 (14)

This cubic equation can be solved numerically; it has a solution
for H = 0.534 d. For larger values of H, the hydrostatic moment
created by Fh2, which is the overturning factor, becomes domi-
nant and the wave loses its stability.

3.4 Analysis and interpretation

The common assumptions of particle velocities reaching and
exceeding the wave speed give results which are too high to be
realistic. The solitary wave criterion is based on a mathematical
limit for the wave height and does not include the steepening of
the wave front. Experiments reported by Hull and Müller (2002)
showed that breakers occurred from a value of H / d = 0.58
to 0.74, and results from experiments mentioned by Sorensen
(2006) give breaking ratios of H / d = 0.62 to 0.74, well below
the ratio of H / d = 0.78 which is derived from solitary wave
theory. The stability analysis described in Section 3.3 interprets
wave breaking as a stability problem, which is nearly indepen-
dent of the local particle velocity. It introduces a new concept,
the moment balance, in addition to the equilibrium of forces.
The analysis results in a breaking wave height to depth ratio
of H / d = 0.534. This is below the limit given in Sorensen
(2006) but still a value which can be regarded as approximately
realistic.

3.5 Extended theory including particle velocity

The next question to the students that comes after this result is
whether or not the momentum analysis is absolutely correct. The
answer is of course “no” – the velocity formula does not take the
effect of the particle velocity in the solitary wave into account.
The velocity determined from Eq. (6) therefore slightly over-
predicts the wave speed since the particle motion is not taken
into account (Daily & Stephan, 1952). This velocity is small
compared with the propagation velocity, but near the breaking
point it does have an effect, slowing the wave down. It can be
quantified from the force analysis of the momentum balance
shown in Fig 4b: the forces do not balance completely, and an
additional momentum force has to be introduced to create force
equilibrium.

The effect of the particle velocity u0 can be incorporated
by substituting the speed of propagation v0 from Eq. (6) into
the momentum balance of the breaking, Eq. (13), and adding a
momentum force Fm2 (Fig. 6). Fm2, is the force generated by
the particle velocity u0. For simplicity, the particle velocity is
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Figure 6 Momentum balance with momentum force from particle
velocity

here assumed to be constant over the depth. The control vol-
ume is now moving with the actual velocity v = v0 – u0, not the
velocity determined from the simplified approach in Eq. (4):

ρdv2
0 − ρg

d2

2
− ρg

(d + H)2

2
= 0? (15)

Subsequently, a force imbalance exists which needs to be
addressed. Substituting with Eq. (6):

ρdg(d + H) − ρg
d2

2
− ρg

(d + H)2

2
= −ρg

H 2

2
�= 0 for H > 0

(16)
The particle velocity u0 therefore creates an additional momen-
tum force Fm2:

Fm2 = −ρg
H 2

2
(17)

The moment over the bed can then be written as:

ρdg(d + H)
d
2

− ρg
d2

2
d
3

− ρg
(d + H)2

2

(
d + H

3

)

+ ρg
H 2

2

(
d
2

)
= 0 (18)

The additional momentum forces Fm2 is positive here since it
acts in the opposite direction to Fm1. Equation (18) reduces to:

d3 + Hd2

2
− d3

6
− (d + H)3

6
+ H 2d

4
= 0 (19)

which has a solution for H / d = 0.678. This corresponds sur-
prisingly well with the experimental results mentioned in Hull
and Müller (2002) and Sorensen (2006). The actual velocity of
the wave v can then be determined by summing up the two
contributions:

ρdv2 = ρdg(d + H) − ρg
d2

2
→ v =

√
d + H − H 2/2d (20)

Equation (20) slightly underpredicts the experimental results
given in Daily and Stephan (1952) by 4.2% for H /d = 0.678.

Interestingly, it is very close to the velocities given by McCowan
(1894). The discrepancy between the experimental results and
the velocity from the extended model is probably caused by the
fact that the particle velocity distribution in a solitary wave is not
constant as assumed in the model, but variable with a maximum
at the crest and a minimum near the bed.

4 Discussion and conclusions

The models described previously show how some complex fluid
mechanics problems can be approximated using basic princi-
ples. Simple linear wave theory allowed the assumption to be
tested that wave breaking begins when the particle velocity
of the wave reaches the wave speed; this led to a different
interpretation and a quantification of that assumption.

The comparison of the different models for wave breaking
also introduces a more critical view of commonly accepted
concepts. The subsequent analysis of the moments in a momen-
tum analysis introduced the concept of stability against over-
turning, borrowed from structural analysis. Two models for
wave breaking were developed. Both relied on a new concept,
namely stability of a wave. The first simpler model gave a
wave height to depth ratio of H /d = 0.534 for the onset of
breaking, The second more complex model, which incorpo-
rates the effect of the particle velocities in a solitary wave,
gave a ratio of H /d = 0.678. Theoretical work suggested ratios
of H /d = 0.78 to 0.82 whilst experiments gave ratios of 0.58
to 0.74. The results from in particular the second model are
therefore realistic.

The advantage here is, that students can relate to this inter-
pretation of the problem and identify just why wave height is so
important. Ideally, the students will learn a method to develop
models for the analysis of complex and unfamiliar problems for
which there are not textbook solutions available.

The analysis so far was limited to specific areas of coastal
engineering. The results can however possibly be applied in
other areas of hydraulic engineering as well. The energy flux
analysis of the speed of propagation could possibly be used to
determine the minimum velocity of the front face of a prop-
agating mass of water on a horizontal plane, such as a flood
wave. The moment analysis as described in Section 3.3 could
be employed to analyse the stability of a hydraulic jump.

It appears that simple models like those presented in this arti-
cle are quite suitable for teaching purposes since they employ
standard approaches. They can be used in undergraduate classes
and they provide some insight into the mechanism without
having to use complex mathematics. The author considers the
critical analysis and development of new models as important in
teaching since it encourages students to question even textbook
statements if they are not backed up with theory.

From the analysis described in this manuscript, the following
conclusions can be drawn:
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• The speed of propagation derived from a very simple
model is very close to theoretical solutions for a solitary
wave reported in the literature.

• Current concepts for the onset of breaking rely on very
different assumptions and lead to varying results.

• The analysis of the moment equilibrium in a momen-
tum balance of a solitary wave gave a critical wave
height to water depth ratio of H /d = 0.678; this is
reasonably close to other theoretical and experimental
work.

• The solutions allow determination of these results without
having to employ complex models.

The momentum models employ principles with which the
students are familiar and can be employed for teaching pur-
poses. This allows students to derive and understand solutions
for complex problems with simpler means.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notation

b = width of block (m)
d = water depth (m)
e = lever arm (m)
Fh = hydrostatic force (N m−1)
FH = horizontal force (N)
Fm = momentum force (N m−1)
g = acceleration of gravity (m s−2)
H = wave height (m)
M OT = overturning moment (Nm)
M s = stabilising moment (Nm)
u0 = horizontal particle velocity of solitary wave (m s−1)
umax = maximum horizontal particle velocity (m s−1)
v = solitary wave speed including particle velocity effect

(m s−1)
v0 = solitary wave speed (m s−1)
vc = wave celerity (m s−1)
vcr = wave crest speed (m s−1)

W = weight of block (N)
ρ = density of water (kg m−3)
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