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Abstract: Commercial pressure monitoring systems have been developed to assess conditions at the
interface between mattress/cushions of individuals at risk of developing pressure ulcers. Recently,
they have been used as a surrogate for prolonged posture and mobility monitoring. However, these
systems typically consist of high-resolution sensing arrays, sampling data at more than 1 Hz. This
inevitably results in large volumes of data, much of which may be redundant. Our study aimed at
evaluating the optimal number of sensors and acquisition frequency that accurately predict posture
and mobility during lying. A continuous pressure monitor (ForeSitePT, Xsensor, Calgary, Canada),
with 5664 sensors sampling at 1 Hz, was used to assess the interface pressures of healthy volunteers
who performed lying postures on two different mattresses (foam and air designs). These data were
down sampled in the spatial and temporal domains. For each configuration, pressure parameters
were estimated and the area under the Receiver Operating Characteristic curve (AUC) was used to
determine their ability in discriminating postural change events. Convolutional Neural Network
(CNN) was employed to predict static postures. There was a non-linear decline in AUC values for
both spatial and temporal down sampling. Results showed a reduction of the AUC for acquisition
frequencies lower than 0.3 Hz. For some parameters, e.g., pressure gradient, the lower the sensors
number the higher the AUC. Posture prediction showed a similar accuracy of 63−71% and 84−87%
when compared to the commercial configuration, on the foam and air mattress, respectively. This
study revealed that accurate detection of posture and mobility events can be achieved with a relatively
low number of sensors and sampling frequency.

Keywords: high-resolution pressure sensing arrays; pressure ulcers; posture and mobility; optimized
configuration; receiver operating characteristic curve; convolutional neural network

1. Introduction

There are many situations in both hospital and community settings where individuals
spend prolonged periods in beds or chairs as a result of restricted mobility and impaired
sensation. This can result in the breakdown of skin and soft tissues, typically over bony
prominences, commonly termed pressure ulcers (PUs) [1]. PUs represent a major burden to
populations worldwide, with a significant impact on the quality of life of the individuals
affected [2]. In the United Kingdom, their treatment is estimated to cost the National Health
System (NHS) approximately £8 billion p.a. [3].

For several decades, pressure sensing arrays have been employed as visual feedback
to assess the conditions at the support surface interface in both lying and sitting to optimize
repositioning and prescribe effective mattresses and cushions, thus protecting the most
vulnerable individuals [4]. This has been typically performed either at a single time point
or averaged over relatively short time periods, providing a “snapshot” of the interface
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conditions. However, the interpretation of these data can at best provide a limited overview
of the long-term effects of posture and mobility.

International and national guidelines recommend a generic repositioning frequency of
approximately 2−4 h in bed and more frequently in a chair [1]. However, there is strong
evidence that this frequency of movement is not adhered to in specific sub-patient groups,
e.g., spinal cord injury patients [5]. Therefore, effective monitoring posture and mobility is
critical for PU prevention and could support clinical decision making and personalized
intervention in an objective manner.

Where appropriately adapted, pressure sensing technologies have the potential to
monitor over extended periods to enable temporal evaluation of the interface conditions [6],
and we have recently demonstrated their long-term use as a surrogate for posture and
mobility detection [7]. Specific parameters estimated from the pressure data, such as center
of pressure (COP) and contact area, were sensitive and specific to postural change events,
and Convolutional Neural Network (CNN) was employed to predict static postures [8].
This was successfully translated for vulnerable patients, e.g., Spinal Cord Injured during
prolonged periods of lying and sitting [5,9].

Commercial pressure monitoring systems are typically manufactured with more than
1000 sensors sampling data at high frequencies e.g., >1 Hz. This results in a large volume of
data, which is complex to interpret, inevitably resulting in substantive redundancy [10,11].
The acquirement of large and non-relevant data sets place constraints on data transfer and
data processing, hindering efficient and real-time feedback and diagnosis, limiting their
accessibility and affecting adaptability. In addition, they have high costs (up to £20,000),
which also limits their accessibility to a range of clinical settings, e.g., private homes,
residential care, and nursing homes. Thus, there is a critical need to improve their design in
terms of spatial and temporal resolution to reduce the computational cost derived from the
acquisition and storage of large and redundant data and the economic cost to make these
technologies accessible to a variety of settings. Software and IoT technologies are required
to analyze pressure data acquired for long time periods as well as feedback patients, careers,
and healthcare providers.

Literature reports several studies [12,13] assessing the optimal sensors’ distribution to
accurately predict seated postures. However, these analytical methods have been limited
to assess the optimal spatial resolution and predict postures from pressure data acquired
on one type of cushion, e.g., foam. A recent study [14] extended this methodology to lying
environment to assess an optimal temporal resolution that would detect postural change
events. However, this was limited to detecting time-dependent changes in the distribution
of pressure values and did not extend to predicting posture.

The present study aims to optimize sensor configuration for lying posture prediction in
both the spatial and temporal domain. This will be achieved through an off-line sensitivity
analysis of pressure values, down sampling from a high resolution and high frequency
acquisition of different lying postures on two different mattresses (i.e., foam and air designs)
which represent the widely used type of support surface in hospital and community settings.
The down-sampled data will be used to predict movement events and postures based on
validated algorithms [5,9]. An optimal spatial and temporal configuration that predicts
posture and mobility events with a similar accuracy to a commercial high-resolution array
will be evaluated and discussed.

2. Materials and Methods
2.1. Experimental Pressure Data

We used a set of experimental data derived from different studies on able-bodied
volunteers who adopted a series of lying postures on different mattress systems, namely
a castellated foam mattress (Medstrom, Ashby de la Zouche, Castle Donington, UK) and
dynamic air cell mattresses (CellUNO, Care of Sweden, Tranemo, Sweden; and Virtuoso,
Linet, Slaný, Czech Republic). Given that the dynamic mattresses were characterized by
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similar air cell designs, the corresponding experimental data were collated to form a single
data set.

The studies on both foam and air cell mattress were conducted under institutional
ethics (ERGO 26379 and 19647, respectively), and they involved 20 and 27 individuals
(11M and 9F and 15M and 12F), respectively. Participants’ anthropometrics are reported in
Table 1.

Table 1. Summary of the anthropometric characteristics (mean ± std) of participants involved in
each study.

Age [yo] Height [m] Weight [kg] BMI [kg/m2]

Foam mattress 33 ± 6.71 (range
27−56) 1.72 ± 0.1 70.3 ± 15.9 23.6 ± 3.4 (range

19−30)

Air cell mattress 34.4 ± 11.6
(range 21−69) 1.71 ± 1.0 73.1 ± 18.3 24.5 ± 4.2 (range

19−30)

Each participant was asked to adopt a series of sagittal and lateral lying postures on
their corresponding mattress (Figure 1). Sagittal postures involved supine, high sitting (HS)
with the head of the bed (HOB) set at 40◦, and supine again. On the foam mattress, lateral
posture was achieved with a continuous lateral rotational system (CLRS) (Vikta Komfitilt®,
Pressure Care Management LTD, Andover, UK), placed underneath the mattress to evoke
20–25◦ lateral tilting, whilst on the air cell mattress, lateral postures were performed by
placing pillows under the back and legs, in a similar manner to that adopted in clinical
settings to off-load the sacrum through a 30◦ tilt [15].
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Figure 1. Images of the sagittal and lateral postures on the air cell mattress: Supine (left), right lateral
turning (middle), 40◦ increment of the HOB (right).

Interface pressures were continuously monitored during each posture, using a high-
resolution sensing array (ForeSite PT, XSensor, Calgary, Canada), with an acquisition frequency
of 1 Hz [7] The mat incorporates 5664 pressure measuring sensor elements
(118× 48), with a spatial resolution of 15.9 mm, covering a sensing area of 762 mm × 1880 mm.
Each sensor operates within a range of 5–200 mmHg (0.7–26.6 kPa) and an accuracy of
± 2 mmHg.

2.2. Data Analysis

Analysis for both data sets involved the same steps, which are explained below:
Down sample the spatial and temporal resolution: A series of coarser spatial con-

figurations were obtained by combining regions of 2 × 2, 3 × 3, 4 × 4, and 5 × 5 sen-
sors and averaging their values. This resulted in four different spatial resolutions, namely
1416 (59 × 24), 624 (39 × 16), 348 (29 × 12) and 207 (23 × 9) sensors, respectively (Figure 2).
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Figure 2. A depiction of a lying posture at different spatial resolutions represented through (a) the
original resolution (5564 sensors); (b) data points aggregated into 3 × 3 regions, which resulted in
624 sensors; (c) data points aggregated into 5 × 5 regions, which resulted in 207 sensors.

For each of these resolutions, pressure data were down sampled in their frequency,
considering 1 sample every 2, 3, 5, and 10 s, which resulted in temporal resolutions of 0.5, 0.3,
0.2, and 0.1 Hz, respectively. Table 2 summarizes the spatial and temporal configurations.

Table 2. Combination of spatial and temporal resolutions obtained by down sampling the original
configuration of 5564 sensors sampling at 1 Hz. This results in a lower number of sensors and higher
acquisition frequencies.

N Sensors Sampling Frequency

5664

1 Hz 0.5 Hz 0.3 Hz 0.2 Hz 0.1 Hz
1416
624
348
207

Estimate a series of temporal pressure parameters: For each of the spatial and tempo-
ral configurations, a series of parameters was estimated from the pressure distribution [7].
To briefly review, these involved:

• Center of pressure (COP), defined as the centroid of the distribution, in the longitudinal
and transverse direction with respect to the long axis of the mat;

• Contact area between the mattress and the individuals, in which sensors recorded a
pressure of or above a minimum threshold of 5, 10, and 20 mmHg;

• Peak pressure, which described the maximum pressure value;
• Peak pressure gradient, which described the maximum change in pressure between

adjacent sensing cells.

Signal processing to assess the accuracy in discriminating between postural change
events: For all combinations of spatial and temporal configurations, the 1st spatial deriva-
tive of the pressure parameters was examined. The derivative represents the difference in
the signal magnitude between consecutive time points and allows transitions between static
postures to be identified, namely postural change events, through peak magnitudes [8].
Figure 3 shows the derivative profile of the center of pressure estimated in the longitudinal
direction on the air cell mattress, for a spatial configuration of 5664 sensors.
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postural changes events.

A Receiver Operating Characteristic (ROC) analysis was then performed within SPSS
v27 (IBM SPSS Statistics, Armonk, NY, USA) to determine the accuracy of the parameters
for each spatial and temporal configurations to discriminate between the presence and
absence of postural changes. The area under the ROC curve (AUC), which plots sensitivity
(true positive) versus false positive rate (100–specificity) [7], was calculated to assess the
overall accuracy of each parameter.

Convolutional Neural Network (CNN) to predict static postures: For all the spatial
resolutions, the pressure distribution associated with the static postures was converted
into grey scale images. These were then utilized for prediction of specific postures (supine,
lateral lying, and high sitting) using the CNN [9]. For each spatial configuration, a training
model was generated with 80% of the image data for each of the participants, and the
accuracy in classifying the postures was then assessed with the remaining 20%, which
represented the test data set.

3. Results
3.1. Postural Movement Events: ROC Analysis

Table 3 summarizes the AUC values to predict postural movement events associated
with all parameters and their corresponding spatial and temporal configuration, for both
the foam and air cell mattress. Our analysis showed that the AUC associated with contact
area calculated at thresholds of 5, 10, and 20 mmHg was approximately similar, for all the
spatial and temporal configurations. Therefore, the current analysis focus on AUC values
associated with contact area was estimated at a threshold ≥ 20 mmHg [7].
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Table 3. AUC of the pressure parameters for the combinations of spatial and temporal configurations.

AUC Values

Sampling frequency

1 Hz 0.5 Hz 0.3 Hz 0.2 Hz 0.1 Hz 1 Hz 0.5 Hz 0.3 Hz 0.2 Hz 0.1 Hz

Foam mattress Air cell mattress

N sensors COP–longitudinal direction

5664 0.71 0.70 0.70 0.68 0.65 0.88 0.86 0.83 0.81 0.78
1416 0.71 0.70 0.70 0.68 0.65 0.83 0.80 0.78 0.74 0.69
624 0.71 0.70 0.70 0.67 0.64 0.83 0.80 0.78 0.73 0.68
348 0.71 0.70 0.70 0.68 0.65 0.83 0.80 0.78 0.74 0.69
207 0.71 0.70 0.70 0.68 0.65 0.83 0.79 0.78 0.74 0.68

COP–transverse direction

5664 0.67 0.69 0.68 0.67 0.64 0.86 0.84 0.82 0.78 0.78
1416 0.67 0.68 0.68 0.67 0.64 0.81 0.79 0.76 0.73 0.70
624 0.67 0.68 0.68 0.66 0.63 0.81 0.79 0.76 0.73 0.70
348 0.67 0.68 0.68 0.66 0.63 0.81 0.79 0.77 0.73 0.68
207 0.67 0.69 0.68 0.66 0.63 0.81 0.79 0.76 0.73 0.69

Contact Area [20 mmHg]

5664 0.69 0.67 0.67 0.65 0.61 0.83 0.81 0.80 0.76 0.76
1416 0.65 0.66 0.66 0.63 0.63 0.81 0.79 0.74 0.68 0.66
624 0.66 0.67 0.67 0.64 0.62 0.80 0.78 0.74 0.69 0.66
348 0.64 0.65 0.65 0.63 0.59 0.76 0.76 0.70 0.65 0.64
207 0.63 0.64 0.64 0.62 0.59 0.74 0.74 0.68 0.64 0.65

Peak pressure

5664 0.62 0.63 0.63 0.61 0.58 0.82 0.80 0.78 0.73 0.68
1416 0.63 0.64 0.64 0.62 0.58 0.85 0.84 0.81 0.77 0.73
624 0.66 0.66 0.67 0.64 0.60 0.86 0.84 0.82 0.77 0.74
348 0.66 0.67 0.68 0.67 0.62 0.87 0.84 0.83 0.78 0.76
207 0.67 0.67 0.68 0.66 0.62 0.87 0.85 0.84 0.78 0.76

Peak pressure gradient

5664 0.63 0.62 0.63 0.63 0.59 0.83 0.65 0.64 0.61 0.58
1416 0.62 0.63 0.63 0.61 0.58 0.83 0.82 0.77 0.72 0.68
624 0.63 0.64 0.63 0.62 0.58 0.84 0.82 0.79 0.73 0.70
348 0.65 0.65 0.66 0.62 0.58 0.85 0.82 0.80 0.74 0.73
207 0.64 0.67 0.66 0.64 0.61 0.85 0.83 0.80 0.74 0.73

The findings from ROC analysis revealed a higher accuracy in detecting postural
events for the air cell mattress compared to the foam mattress. On both mattress condi-
tions, the parameters showed that AUC values were approximately similar at a sampling
frequency ranging between 1 and 0.3 Hz for all spatial resolutions, with a steady decline
for frequencies lower than 0.3 Hz. In some parameters, for example peak pressure, this
decrease ranged between 10 and 20%. At each sampling frequency, down sampling the
number of sensors did not lead to relevant changes in the AUC values for the COP esti-
mated on the foam mattress. By contrast, its counterpart on the air cell mattress showed
the highest AUC at a spatial resolution of 5664 sensors, with this value decreasing ≤ 10%
for lower spatial resolutions.

Closer examination of the data revealed that pressure parameters followed two gen-
eral trends in their spatial resolution, at each sampling frequency. Peak pressure and peak
pressure gradient showed higher AUC values for a lower number of sensors, as opposed
to the COP and contact area, which revealed the opposite trend. Figure 4A,B show a com-
parison between the contact area (≥ 20 mmHg) and peak pressure gradient, estimated on
the air cell mattress. The former showed the highest AUC values at the original resolution
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of 5664 sensors for all sampling frequencies (AUC = 0.83 at 1 Hz and 0.76 at 0.1 Hz). By
contrast, the latter showed the highest AUC values at a spatial resolution of 207 sensors,
with AUC equal to 0.83 at 1 Hz and 0.58 at 0.1 Hz. It was interesting to note that, at the
original spatial resolution, AUC dramatically reduced by approximately 22% for sampling
frequencies ≥ 0.5 Hz.
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It was interesting to note that, for each sampling frequency, the AUC associated
with COP in both longitudinal and transverse directions showed little variations when
spatial resolution was decreased, on the foam mattress. On the air cell, the original spatial
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resolution was associated with higher AUC values when compared to lower resolutions,
which were associated with little variations.

3.2. Posture Classification: Convolutional Neural Network

Table 4 shows the total accuracy across all participants of the CNN in classifying
the static postures adopted on both the foam and air cell mattress, for each of the spatial
resolution. The results revealed that, on the air cell mattress down sampling, the spatial
resolution resulted in a similar accuracy in postures classification (84−87%) when prediction
was compared to the original resolution of 5664 sensors (86%). By contrast, on the foam
mattress, the accuracy decreased by ~10% when the number of sensors was reduced at
<350 sensors. A closer examination of the data revealed that prediction of static postures
was more accurate when postures were performed on the air cell mattress, for all the
resolutions.

Table 4. Total accuracy [%] in posture classification at different spatial resolutions for postures
adopted on foam and air cell mattress.

Total Accuracy [%]

N Sensors Foam Mattress Air Cell Mattress

5664 71 86
1416 71 88
624 71 84
348 63 87
207 63 84

4. Discussion

The present study performed a sensitivity analysis to optimize spatial and temporal
configurations of a pressure sensing array to detect mobility events and predict static
postures adopted on two mattress systems (Figure 2 and Table 2). Our findings revealed
that high levels of accuracy in detecting posture and mobility events could be achieved with
reduced array of sensing points, sampled at lower frequencies. Down sampling the spatial
resolution increased the predictive ability of some parameters, e.g., peak pressure and peak
pressure gradient at all sampling frequencies (Figure 4B). By contrast, the COP and contact
area had reduced predictive performance, although the decrements were relatively low
(1−10%) (Table 2).

Posture detection with the CNN showed an approximately similar accuracy at the
different spatial resolution. Prediction on the air cell mattress resulted in an accuracy
> 80% at all the spatial resolutions. Accuracy on the foam mattress was found to be 71%
for > 350 sensors, with this value decreasing when the number of sensors was reduced
(Table 4).

These studies using CNN thus demonstrated that a high accuracy in posture classifica-
tion can be achieved at lower spatial resolution. Indeed, an accuracy of 90% in predicting
lying postures was achieved using a pressure sensing array with 171 sensors placed in a
19 × 9 grid [16]. Moreover, an accuracy of 82% was obtained with a system of 64 sensors
placed in a 8 × 8 grid [17]. It is evident that the present findings are comparable with
previous studies, with our results showing a similar accuracy in classifying postures with
CNN when lower spatial resolutions are compared with systems with a high number of
sensors (Table 4).

Our results also revealed a difference in predictive accuracy when mattress conditions
were compared (Tables 3 and 4). This could be explained by the different nature of the
lateral postures performed on the foam and air cell mattress, which might have influenced
the predictive ability of both pressure parameters and the CNN. In addition, this could
also have been influenced by the different characteristics of the two mattresses [18], with
the air cell mattress resulting in more immersion when compared to the foam mattress.
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This implies an increase in the contact area, whose predictive ability in detecting postural
change events is higher when compared to its counterpart on the foam mattress.

Our study proposed an optimization process which involved down sampling the
number of sensors and frequency of data acquisition. The former involved a series of
coarser configurations obtained by combining regions of sensors, e.g., 2 × 2, 3 × 3, and
averaging their pressure values. This method is reflected in previous studies assessing
the optimal sensor distribution in sitting [13]. They reported that 19 sensors, optimally
distributed at the seat and back interface, produced the same accuracy of 82% in predicting
static postures when compared to 4032 sensors [13]. However, they limited their analysis
to sitting environment and to evaluating the accuracy by only predicting static postures
against different spatial resolutions. By contrast, another recent study [14] explored a range
of frequencies of acquisition at a spatial resolution of 5564 sensors. It utilized correlation
coefficients between pressure values from 5564 sensor cells at the established time frames
and thresholds to identify postural change events in lying. They reported that the number
of postural change events was comparable with the original temporal resolution for a
sampling frequency equal to 60 s (0.017 Hz). This is in contrast with our results where, at
the same spatial resolution of 5664 sensors, 1 Hz shows the highest predictive ability.

The present study has several limitations. The experimental studies involved a rela-
tively young, able-bodied cohort, and this precludes generalizing the findings to all specific
sub-populations deemed to be at risk of developing pressure ulcers, i.e., the elderly, spinal
cord injured, and those individuals in intensive care units. Further limitations involved
a pre-determined order of postural changes following a relatively short period of 20 min
in which each posture was maintained. In addition, the different natures of the lateral
postures performed on the foam and air cell mattresses influenced the predictive ability of
the pressure parameters in detecting postural change events and the CNN in predicting
static postures. Indeed, the manual lateral turning performed on the air cell mattress
resulted in higher prediction of movement and postural discrimination. By contrast, the
automatic lateral tilting on the foam mattress had a lower predictive outcome, whereby
there is smaller change in the distribution of pressure values during this movement [19].
Indeed, misclassification was observed to occur in the lateral posture classification. In
addition, this precludes a full comparison of the mattress conditions.

Continuous pressure monitoring has been proven to provide promising indicators
of posture and mobility when integrated with intelligent algorithms. The present study
demonstrated that reducing the number of sensors and acquisition frequency influences
the predictive ability of pressure parameters. They provide different clinically relevant
pieces of information to clinicians, carers, and patients on posture, mobility, and PU
risk. Therefore, the optimal spatial and temporal resolution would be a composite of the
individual parameters’ predictive ability. In the light of our findings, we demonstrated that
the high-resolution systems can be down sampled in the number of sensors and sampling
frequency, while still maintaining a similar predictive ability in detecting postural change
events and predicting static postures. This technological improvement could be utilized to
help (i) reduce the volume and redundancy of data, decreasing computational costs (this
will lead to a more efficient data mining and processing to achieve clinically meaningful
parameters and provide efficient feedback); (ii) lower costs of manufacture, which will lead
to more accessibility to diverse clinical settings and range of patients. Further studies are
required to establish how new sensing systems could be developed and what resolution is
needed to support clinical decision making. In addition, integrating IoT could support a
more efficient PU prevention through real-time feedback and diagnosis, of which remote
and community care would benefit.

5. Conclusions

This study has demonstrated that accurate detection of posture and mobility events can
be achieved with pressure sensing array with a relatively low number of sensors and sampling
rate. Our optimization process, involving both spatial and temporal domains, resulted in
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equivalent performance to high-resolution pressure sensing arrays. These findings are novel
and important as they highlight the potential for our approach to optimize commercial systems
and reduce their cost, data redundancy, and complexity. This will support clinical translation
and utility in a variety of settings, including in the community.

Author Contributions: Writing-original draft preparation, S.C.; writing-review and editing, L.J., D.F.
and P.W.; Methodology, S.C. and P.W.; funding acquisition, P.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Engineering and Physical Sciences Research Council
(EPSRC), grant number EP/W031558/1.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Ethics Committee of School of Health Sciences (ERGO
26379 and 19647, approved in 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Kottner, J.; Cuddigan, J.; Carville, K.; Balzer, K.; Berlowitz, D.; Law, S.; Litchford, M.; Mitchell, P.; Moore, Z.; Pittman, J.; et al.

Prevention and treatment of pressure ulcers/injuries: Clinical practice guidelines 2019. J. Tissue Viability 2019, 28, 51–58. [CrossRef]
[PubMed]

2. Coleman, S.; Nelson, E.A.; Keen, J.; Wilson, L.; McGinnis, E.; Dealey, C.; Stubbs, N.; Muir, D.; Farrin, A.; Dowding, D.; et al.
Developing a pressure ulcer risk factor minimum data set and risk assessment framework. J. Adv. Nurs. 2014, 70, 2339–2352.
[CrossRef] [PubMed]

3. Guest, J.F.; Fuller, G.W.; Vowden, P. Cohort Study Evaluating the Burden of Wounds to the UK’s National Health Service in
2017/2018: Update from 2012/2013. BMJ Open 2020, 10, e045253. [CrossRef] [PubMed]

4. Reenalda, J.; Jannink, M.; Nederhand, M.; IJzerman, M. Clinical Use of Interface Pressure to Predict Pressure Ulcer Development:
A Systematic Review. Assist. Technol. 2009, 21, 76–85. [CrossRef] [PubMed]

5. Fryer, S.; Caggiari, S.; Major, D.; Bader, D.L.; Worsley, P.R. Continuous pressure monitoring of inpatient spinal cord injured
patients: Implications for pressure ulcer development. Spinal Cord 2022, 61, 111–118. [CrossRef] [PubMed]

6. Gunningberg, L.; Sedin, I.-M.; Andersson, S.; Pingel, R. Pressure mapping to prevent pressure ulcers in a hospital setting: A
pragmatic randomised controlled trial. Int. J. Nurs. Stud. 2017, 72, 53–59. [CrossRef] [PubMed]

7. Caggiari, S.; Worsley, P.R.; Bader, D.L. A sensitivity analysis to evaluate the performance of temporal pressure–related parameters
in detecting changes in supine postures. Med. Eng. Phys. 2019, 69, 33–42. [CrossRef] [PubMed]

8. Caggiari, S.; Worsley, P.R.; Payan, Y.; Bucki, M.; Bader, D.L. Biomechanical monitoring and machine learning for the detection of
lying postures. Clin. Biomech. 2020, 80, 105181. [CrossRef] [PubMed]

9. Caggiari, S.; Worsley, P.R.; Fryer, S.L.; Mace, J.; Bader, D.L. Detection of posture and mobility in individuals at risk of developing
pressure ulcers. Med. Eng. Phys. 2021, 91, 39–47. [CrossRef] [PubMed]

10. Stinson, M.D.; Porter-Armstrong, A.P.; Eakin, A.P. Pressure mapping systems: Reliability of pressure map interpretation. Clin.
Rehabil. 2003, 17, 504–511. [CrossRef] [PubMed]

11. Bogie, K.; Wang, X.; Fei, B.; Sun, J. New technique for real-time interface pressure analysis: Getting more out of large image data
sets. J. Rehabil. Res. Dev. 2008, 45, 523–536. [CrossRef] [PubMed]

12. Vermander, P.; Mancisidor, A.; Cabanes, I.; Perez, N.; Torres-Unda, J. Intelligent Sitting Posture Classifier for Wheelchair Users.
IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 944–953. [CrossRef] [PubMed]

13. Mutlu, B.; Krause, A.; Forlizzi, J.; Guestrin, C.; Hodgins, J. Robust, low-cost, non-intrusive sensing and recognition of seated
postures. In Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA,
7 October 2007; Association for Computing Machinery: Newport, RI, USA, 2007; pp. 149–158.

14. Peng, M.; Southern, D.A.; Ocampo, W.; Kaufman, J.; Hogan, D.B.; Conly, J.; Baylis, B.W.; Stelfox, H.T.; Ho, C.; Ghali, W.A. Exploring
data reduction strategies in the analysis of continuous pressure imaging technology. BMC Med. Res. Methodol. 2023, 23, 56. [CrossRef]
[PubMed]

15. Moore, Z.; Cowman, S.; Conroy, R.M. A randomised controlled clinical trial of repositioning, using the 30◦ tilt, for the prevention
of pressure ulcers. J. Clin. Nurs. 2011, 20, 2633–2644. [CrossRef] [PubMed]

16. Tang, K.; Kumar, A.; Nadeem, M.; Maaz, I. CNN-Based Smart Sleep Posture Recognition System. IoT 2021, 2, 119–139. [CrossRef]

https://doi.org/10.1016/j.jtv.2019.01.001
https://www.ncbi.nlm.nih.gov/pubmed/30658878
https://doi.org/10.1111/jan.12444
https://www.ncbi.nlm.nih.gov/pubmed/24845398
https://doi.org/10.1136/bmjopen-2020-045253
https://www.ncbi.nlm.nih.gov/pubmed/33371051
https://doi.org/10.1080/10400430903050437
https://www.ncbi.nlm.nih.gov/pubmed/19715252
https://doi.org/10.1038/s41393-022-00841-7
https://www.ncbi.nlm.nih.gov/pubmed/35978113
https://doi.org/10.1016/j.ijnurstu.2017.04.007
https://www.ncbi.nlm.nih.gov/pubmed/28460263
https://doi.org/10.1016/j.medengphy.2019.06.003
https://www.ncbi.nlm.nih.gov/pubmed/31221516
https://doi.org/10.1016/j.clinbiomech.2020.105181
https://www.ncbi.nlm.nih.gov/pubmed/33128961
https://doi.org/10.1016/j.medengphy.2021.03.006
https://www.ncbi.nlm.nih.gov/pubmed/34074464
https://doi.org/10.1191/0269215503cr643oa
https://www.ncbi.nlm.nih.gov/pubmed/12952156
https://doi.org/10.1682/JRRD.2007.03.0046
https://www.ncbi.nlm.nih.gov/pubmed/18712638
https://doi.org/10.1109/TNSRE.2023.3236692
https://www.ncbi.nlm.nih.gov/pubmed/37018674
https://doi.org/10.1186/s12874-023-01875-y
https://www.ncbi.nlm.nih.gov/pubmed/36859239
https://doi.org/10.1111/j.1365-2702.2011.03736.x
https://www.ncbi.nlm.nih.gov/pubmed/21702861
https://doi.org/10.3390/iot2010007


Sensors 2023, 23, 6872 11 of 11

17. Hudec, R.; Matúška, S.; Kamencay, P.; Benco, M. A Smart IoT System for Detecting the Position of a Lying Person Using a Novel
Textile Pressure Sensor. Sensors 2020, 21, 206. [CrossRef] [PubMed]

18. McInnes, E.; Jammali-Blasi, A.; Bell-Syer, S.E.; Dumville, J.C.; Middleton, V.; Cullum, N. Support surfaces for pressure ulcer
prevention. Cochrane Database Syst. Rev. 2015, 9, CD001735. [CrossRef] [PubMed]

19. Yi, C.-H.; Kim, H.-S.; Yoo, W.-G.; Kim, M.-H.M.; Kwon, O.-Y. The Effects of Different Types of Automated Inclining Bed and Tilt
Angle on Body-Pressure Redistribution. Adv. Ski. Wound Care 2009, 22, 259–264. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s21010206
https://www.ncbi.nlm.nih.gov/pubmed/33396203
https://doi.org/10.1002/14651858.CD001735.pub5
https://www.ncbi.nlm.nih.gov/pubmed/26333288
https://doi.org/10.1097/01.ASW.0000305473.37745.9b
https://www.ncbi.nlm.nih.gov/pubmed/19478566

	Introduction 
	Materials and Methods 
	Experimental Pressure Data 
	Data Analysis 

	Results 
	Postural Movement Events: ROC Analysis 
	Posture Classification: Convolutional Neural Network 

	Discussion 
	Conclusions 
	References

