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Abstract
Shear stiffness is critical in assessing the stress–strain response of geotechnical infrastructure, and is a complex, nonlinear

parameter. Existing methods characterise stiffness degradation as a function of strain and require either bespoke laboratory

element tests, or adoption of a curve fitting approach, based on an existing data set of laboratory element tests. If

practitioners lack the required soil classification parameters, they are unable to use these curve fitting functions. Within this

study, we examine the ability and versatility of an artificial neural network (ANN), in this case a feedforward multilayer

perceptron, to predict strain-based stiffness degradation on the data set of element test results and soil classification data

that underpins current curve fitting functions. It is shown that the ANN gives similar or better results to the existing curve

fitting method when the same parameters are used, but also that the ANN approach enables curves to be recovered with

‘any’ subset of the considered soil classification parameters, providing practitioners with a great versatility to derive a

stiffness degradation curve. A user-friendly and freely available graphical calculation app that implements the proposed

methodology is also presented.
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List of symbols
a Constant

A Matrix of neuron values for a neural network

AL Vector of neuron values at layer L of an artificial

neural network

b Matrix of bias values for an artificial neural

network

bL Vector of bias values at layer L of an artificial

neural network

C Cost value that represents the difference between

the output and expected output values

D50 Mean grain size

e Void ratio

G Shear stiffness

G0 Initial elastic stiffness

Id Relative density

MSE Mean square error

MAPE Mean absolute percentage error

OCR Overconsolidation ratio

p
0

Mean effective stress

pa Reference atmospheric pressure

Uc Uniformity coefficient

W Matrix of weight values for an artificial neural

network

WL Vector of weight values at layer L of an artificial

neural network

x Vector of input values for an artificial neural

network

y Vector of expected (or true) output values

by Vector of output values for an artificial neural

network

zL Vector of neuron values at layer L of an artificial

neural network prior to activation

ce Elastic strain

cr Reference strain

c Shear strain

rL The activation function at layer L of an artificial

neural network
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1 Introduction

1.1 Stiffness nonlinearity, measurement,
and prediction

The stress–strain response of soils, regardless of soil type,

is typically nonlinear with stiffness modulus varying with

strain level and stress path. Although stiffness can be

approximated as a constant value for small interval strains,

for the strain ranges observed during many geotechnical

design problems, there will be meaningful variance in the

magnitude of the stiffness modulus [25, 28]. Figure 1

shows a typical stiffness degradation curve [4, 28], anno-

tated with common in situ or laboratory tests and design

problems [7]. As such, the ability to predict the change in

stiffness with regard to strain, i.e. the stiffness degradation

curve, is essential to geotechnical design [4].

Direct measurement of the stiffness degradation curve

can be achieved through a range of laboratory and in situ

testing protocols including: resonant column testing [14];

triaxial shear testing [5]; torsional shear testing [43]; and

pressuremeter testing [24]. Due to the challenges of

retrieving undisturbed samples for laboratory testing and

carrying out bespoke element or in situ tests, alongside

the importance of stiffness degradation curves in design,

the ability to predict such a curve via a small number of

soil characterisation parameters would be advantageous.

Multiple previous publications demonstrate attempts to

define the stiffness degradation curve as a sigmoid (or ‘s’

shaped) function of strain [12, 15, 22]. More recent work

has sought further refinement on this concept through the

construction of a large data set consisting of many hun-

dreds of individual laboratory tests collected from 61

publications [31].

Empirical analysis and curve fitting using the assembled

data set led to the stiffness degradation function described

by Eq. (1) [31], where G is the stiffness (secant shear

modulus) at strain c, G0 is the elastic stiffness where strain

is small, ce is the elastic threshold after which stiffness is

no longer assumed to be constant, cr is a reference strain at

the point where G=G0 ¼ 0:5, and a is a dimensionless

curvature parameter. It should be noted that the equation is

valid only for c[ ce, while for c� ce, G ¼ G0.

G

G0

¼ 1= 1 þ c� ce

cr

� �a� �

ð1Þ

The cr, ce, and a parameters are defined in Eqs. (2, 3,

and 4), where: Uc is the uniformity coefficient; p0 is the

mean effective stress; pa is the reference atmospheric

pressure; e is the void ratio; and Id is the relative density.

cr %ð Þ ¼ 0:01Uc
�0:3 p0

pa

� �

þ 0:08eId ð2Þ

ce ¼ 0:0002 þ 0:012cr ð3Þ

a ¼ Uc
�0:075 ð4Þ

Equation 1 is extremely useful as an alternative to a

bespoke suite of element tests. However, if due to imita-

tions on the data available across some or all of a site, an

engineer only had access to, e.g. Uc and Id they would have

no means to recover the stiffness degradation curve using

the curve fitting approach.

This study sought to enhance the value of the extant data

set of soil stiffness degradation with strain from element

and in situ test data and the accompanying soil classifica-

tion data by leveraging capabilities of an artificial neural

network (ANN) to recover stiffness degradation curves

from any number and combination of available soil clas-

sification parameters from a set of eight identified param-

eters. The proposed method, and freeware app based on the

method, provide researchers and practicing engineers with

greater ability and versatility to derive a stiffness degra-

dation curve than currently exists.

1.2 The data set

The data set that underpins the curve fitting function given

in Eq. 1 was assembled by Oztoprak and Bolton [31]. The

data set features a large quantity of varied data from a

range of different test types, drainage conditions, and

granular soil classifications. Data are sourced from reso-

nant column tests, triaxial tests, torsional shear tests, simple

shear tests, and torsional simple shear tests, digitised and

collated from 61 original publications. A total of 509 lab-

oratory or in situ stiffness degradation curves were col-

lected with a range of soil classification parameters

available for each curve. As well as the aforementioned G0,

e, Id, p0, pa, and Uc, many of the degradation curves have

additional parameters available, including mean grain size

(D50) and overconsolidation ratio (OCR).

For this study, a subset of the curves were included in

which all eight of the identified parameters (D50, e, G0, Id,

OCR, p, pa, and Uc) are available, with the original data set

filtered and reformulated to exclude those curves that did

not meet this requirement. No curves were discarded for

any other reason, such as anomalous behaviour, presence of

outliers, or similar. As such, a total of 240 curves (out of

509 possibilities) were included from 23 original publica-

tions, with a total of 2861 data points on the curves. The

range of data used is illustrated in Fig. 2 along with a

histogram showing the distribution of strain values. The

filtered and reformulated data set utilised in this study has

been made publicly available [8].
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To provide context for the results of the ANN-based

approach, it is necessary to first assess the eight input

parameters considered in this study. Table 1 shows the

statistics relating to the eight parameters. Of note are D50

and Uc, for which the mean values are much higher than

the median and indicate that there are a significant number

of outliers with extremely high values. This is evident by

comparing the range to the median value. G0 likewise has a

very large range. The effects of these parameters, both to

specific cases and in general, are explored in later sections.

1.3 Application of an Artificial Neural Network
(ANN) to stiffness degradation prediction

The data set analysed in this study has eight independent

input parameters that potentially influence the shape of the

output curve. To make the most out of the data set, a

multiple parameter nonlinear regression should be derived

that can leverage information from all the potential input

parameters. However, developing a solution via classical

methods would require significant analysis to identify not

only how each input parameter affects the output, but also

how each parameter interacts with the others for combined

effects on the output. Although classical approaches would

be troublesome for this problem, it is very well suited to

machine learning, which is natively multidimensional.

Although there are several machine learning-based

approaches that would be suitable to address the stiffness

degradation curve challenge, the study presented in this

paper explores the use of an artificial neural network

(ANN). An ANN was chosen over other nonlinear

regression models as it can approximate any function

[11, 23] whereas other models are often limited to certain

function shapes. This approach is further facilitated by the

availability of a large and varied data set that will allow an

ANN to be trained for a range of soil behaviours. Recent
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Fig. 1 Typical shear stiffness degradation behaviour of soil with

strain ranges for several tests and design problems (after [4, 7, 28])

Fig. 2 Filtered data set showing (a) plot of 2861 data points from individual 240 curves, and (b) histogram showing the distribution of data points

in (a)

Table 1 Comparison of parameter statistics

Parameter Mean Median Standard deviation Range

p0(MPa) 0.149 0.1 0.114 0.575

p
0
=pa 1.43 1.02 1.15 5.86

OCR 1.05 1 0.367 4.33

e 0.676 0.676 0.236 1.3

Id 0.704 0.72 0.204 0.968

D50(mm) 5.17 0.38 14.9 69.9

Uc 8.53 1.4 22.3 132

G0(MPa) 161 115 155 1130
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work [50] demonstrates the similar use of an ANN in

predicting compression index and undrained shear strength

of clays.

An ANN is a ‘‘…biologically inspired computational

model, which consists of processing elements (called

neurons), and connections between them with coefficients

(weights) bound to the connections’’ [38]. For the case of

stiffness degradation with strain, with a large data set

consisting of inputs (i.e., strain values and associated

parameters) and outputs (i.e., G=G0), the weights of the

ANN can be trained so that the ANN approximates the

function G=G0 ¼ f c; paramsð Þ. It has been proven that

ANNs, provided there are sufficient neurons, are universal

approximators that can approximate any continuous func-

tion [11, 23]. The main benefit of such an approach is that

any number of input parameters can be used and no pre-

supposition of the shape of the stiffness degradation curve

is required, such as is the case in classical curve fitting

approaches.

Some background on ANNs used in this study is pro-

vided in the following section, with additional details

included in the appendix. Shear stiffness degradation pre-

dictions from an ANN trained on the data set are compared

with results from the existing curve fitting approach

(Eq. 1). The effects of hidden neuron configuration on both

performance and time usage are presented. A parametric

study is presented to identify the contribution of each

parameter to the overall solution. Additionally, an illus-

trative example showing how ANN’s could be used not to

recover a single curve but a region of possible responses

(i.e., a potential stiffness degradation envelope) is pre-

sented. Finally, a user-friendly graphical calculation app

that implements the proposed methodology is briefly

described with links for free download of the app and the

requisite data set provided. This study demonstrates that

ANN-based methodologies have great potential to improve

upon pre-existing empirical approaches, not just in terms of

improved accuracy, but also in providing additional capa-

bilities with dealing with sparse or incomplete data.

Research into the use of ANNs within geotechnical

engineering has been ongoing for several decades, with

detailed summaries provided by several highly cited review

papers [29, 37], as well as more broadly within civil

engineering [1]. The interest in ANNs has steadily

increased over time, from a handful of publications per

year in the early 2000s to more than 25 per year as of 2017

[29].

A wide range of engineering problems have been

addressed including pile capacity [30], settlement of

foundations [42], soil behaviour [32], slope stability [19]

and settlement of tunnels [40]. Recent publications

demonstrate the prediction of monotonic and cyclic

responses of sand [20], automated classification of sand

particles by image in which a wide range of machine

learning classifiers were considered [27], using machine

learning methods (including ANNs) to generate constitu-

tive models without a-priori assumptions [49], and using

ANNs to predict the improvements in water retention of

soils with the addition of biochar [17]. The cited publica-

tion considering biochar demonstrates the generation of

soil–water characteristic curves, sigmoid curves of similar

form to the stiffness degradation curves considered in this

study.

2 Artificial neural network methodology

ANNs are functions that convert an input to an output.

Instead of programming this function in traditional ways by

algorithmically solving an equation, software is written

such that the function can be generated automatically

through training the ANN via an existing data set.

The basic components of an ANN (in this case a feed-

forward multilayer perceptron model) are illustrated in

Fig. 3 and include: an input layer x; an output layer by; one

or more hidden layers providing the output values AL; a

collection of weights W and biases b; an activation func-

tion rL for each layer; and a cost C which is an error metric

between the predicted output by and the observed output y

[26].

The output of an ANN is a function of the inputs,

weights, and biases. Inputs are of course known, but

weights and biases are not. After selecting initial random

estimates for weights and biases, the ANN must be trained.

This training procedure allows for refinements of these

initial guesses of weight and bias values, with the aim of
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ŷ1

Biases

Biases

Input Layer

L=0

Hidden Layer

L=1

Output Layer

L=2

0,1
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0,n

1,1

1,2

1,n

2,1

Fig. 3 Schematic of an Artificial Neural Network
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reducing the gap between the ANN output values and the

true output values. A summary of the key mathematical

concepts behind both the calculation of the output and the

training procedure is included in the appendix of this paper.

In the process of training an ANN, the available data set

is typically split (randomly) into three components [6]. The

largest part will be the training set that is used as input

during training iterations to optimise the weights and bia-

ses. Separate to the training set is the testing set. This is

used for final assessment of the ANN. These data points are

not used for training and allow the ANN to be tested

against data that has not yet been seen in an effort to

prevent overfitting. Overfitting is when the ANN becomes

too optimised to the specific training data set, following all

the subtle detail and noise present, and therefore may

produce some unexpected results when applied to inde-

pendent data. A third set, called the validation set, is

sometimes used. Here data points are not used for training

but are still assessed for error throughout the training

procedure. A reducing error for the training set and an

increasing error for the validation set provides an indica-

tion that overfitting has taken place and the iterative

training procedure should end. In this study, 70% of data

was assigned to the training set with 15% assigned to each

of the testing and validation sets. Existing work [21] dis-

cusses selecting the optimal distribution of data, however,

for the purposes of this study ‘‘good enough’’ meta-pa-

rameters are sufficient. Informal experimentation demon-

strated that varying the training data percentage (with the

remainder split evenly between testing and validation)

between 20% and 80% had insignificant impacts on neural

network performance.

The training procedure seeks to find the weights and

biases that result in the lowest error between output and

expected values across the training data set. It is important

to recognise that there is no guarantee that this is the global

minimum error. It is also important to note that the training

procedure is not deterministic [36]. Different combinations

of initial weights and biases (which are randomly assigned

at the start) will result in different final weights and biases,

as will the random distribution of data between the training

and testing sets. The random initial configurations can be

used to reduce the risk of finding local minima by simply

repeating the procedure several times and choosing the best

result.

For this study, an ANN architecture consisting of twelve

hidden neurons within one hidden layer was chosen and

used consistently regardless of the number of input

parameters used. It would be possible, and indeed ‘more’

correct, to optimise such meta-parameters for the best

results; however, in this case it was decided that consis-

tency would allow for easier comparison and demonstra-

tion of the proof of concept. An analysis of altering the

number of hidden neurons is provided later in this section

and shows that the 12 selected is appropriate for all the

cases considered. The activation functions applied to each

layer, discussed in more detail in the appendix, were tanh

on the hidden layer and simple linear on the output layer.

The training algorithm used was Bayesian regularisation

backpropagation as implemented in the MATLAB Deep

Learning Toolbox [44]. Except where otherwise stated,

meta-parameters relating to this algorithm were left as the

default/recommended values.

A final consideration is that ANNs are non-determinis-

tic. This makes accurate comparisons between differing

configurations difficult. All ANNs were generated and

trained 25 times, with the lowest mean square error (MSE)

result taken. The MSE values are calculated using the both

the training and testing subsets. Other measures of error,

such as mean absolute percentage error (MAPE) were

considered, but ultimately not included due to the measures

inability to deal with values less than one.

3 Results and discussion

3.1 Comparison of ANN-based approach
with laboratory data and published curve fit

In order to assess the suitability of an ANN-based approach

to derive stiffness degradation curves for geotechnical

design ANNs were trained with the data set compiled by

Oztoprak and Bolton [31]. ANN outputs with varying

selections of input parameters were compared with the

existing approximating expression and equations proposed

by Oztoprak and Bolton [31]. The ANN was used to predict

a stiffness value for a given strain value and a set of

geotechnical parameters, with the full stiffness degradation

curve being constructed by feeding the trained ANN the set

of parameters along with a range of strain values. As well

as the full set of 8 geotechnical input parameters plus the

strain parameter, ANNs were trained using only the four

geotechnical parameters plus strain used by Oztoprak and

Bolton [31], as well as with zero geotechnical parameters,

i.e. strain data only. This configuration is essentially a

curve of best fit through the entire data set and will serve as

a base against which other combinations can be compared.

Note that the 0 parameter model is named as such due to

the lack of consideration for any of the eight geotechnical

parameters considered in this study, even in this case the

ANN does have one input for strain. Additionally, con-

figurations in which each input parameter was discounted

from the full set are examined such that the significance of

the contribution of each can be identified; along with the

inverse, in which each parameter is added in turn to the

Acta Geotechnica

123



base configuration. An analysis of the effects of changing

the number of hidden nodes is also provided.

To demonstrate the performance of the methodology, a

set of eight cases were selected from the 240 available to

act as an illustration. Instead of choosing only favourable

cases, 7 of the 8 selected were, as far as possible, chosen to

be the same cases used for this purpose by Oztoprak and

Bolton [31]. Where the specific data point was unavailable

due to being filtered for missing parameters, another was

randomly selected from the same source reference for

inclusion. A final eighth case was randomly chosen to

allow for an even number of subplots.

Figure 4 presents a subplot for each of the eight selected

test cases. Each subplot shows the ANN output utilising all

eight available input parameters, the ANN output using the

four specific input parameters used by Oztoprak and Bolton

[31], and the ANN output using 0 input parameters (i.e.

only the strain data). For comparison, the output of the

Oztoprak and Bolton [31] equation (Eq. 1) is given, as is

the laboratory stiffness curve taken from the original lit-

erature source [2, 13, 16, 33, 45, 47, 48].

Overall, the results of the ANN-based approach are good

regardless of which combination of input parameters is

used, particularly at low strains where there is plenty of

available training data. At high strains, where training data

are sparse, the curves recovered by the ANN are typically

of lower quality than the equation-based approach (since

the latter constrains the shape of the curve) for some of the

arbitrarily selected examples. However, when examining

the MSE across the entire data set, it becomes apparent that

the ANN-based approach represents an improvement (see

Table 2).

Table 2 shows that the MSE is smaller in cases where

more input parameters are used. This does not guarantee

that every individual recovered curve will be closer to the

laboratory values and indeed this can be seen in Fig. 4. The

ANN curve for eight parameters (Fig. 4g) shows poor fit at

low and high strains, indeed poorer than when 4 or even 0

parameters are used. This suggests the 8 parameter ANN

result is being skewed by one or more anomalous input

values. Examining the input parameters for Fig. 4g, along

with Table 1, shows that there are several values that, if not

anomalous, are certainly outliers. The uniformity coeffi-

cient Uc is 54, over 6 times the mean of the data set, D50 is

70 mm, over 13.5 times the mean, and G0 is 578 MPa, over

3.5 times the mean. This specific combination of parame-

ters is represented by a tiny fraction of the available data

such that little confidence can be had in the results, par-

ticularly at high strains where this effect is compounded

due to the established sparsity of high strain data points.

Selecting only the 4 ‘Oztoprak and Bolton [31]’ parameters

and simply not including D50 and G0 eliminates the prob-

lem. This illustrates how unnecessary input parameters can

have an adverse effect the accuracy of an ANN, either by

adding noise or overshadowing more important correla-

tions [3]. This example also highlights the importance of

the engineer reviewing and interpreting the ANN results

based on their geotechnical knowledge, since the ANN has

no such knowledge. Additional constraints on the curve

shape and other boundary conditions could also prevent

anomalous predictions such as in Fig. 4g but must be

weighed against benefits of less constraints in finding the

optimal curves across the whole data space.

Also of note is the curve recovered by the 0 parameter

ANN in which only strain and G=G0 were used to train the

network. This curve is the same for all the 8 examples

provided, and indeed for the 232 curves not presented. This

recovered curve essentially represents a curve of best fit for

the entire data set. Despite this, the 0 parameter ANN has a

lower MSE than the fitting function proposed by Oztoprak

and Bolton [31]. This does not, however, mean that such a

curve would be more suitable for design. The shape of an

unconstrained curve with undulations visible by eye will

have a lower MSE than a curve constrained to follow a

smooth sigmoid ‘s’ shape, yet these undulations are not

representative of true behaviour and care must be taken that

the recovered behaviour is critically examined rather than

blindly trusting a single error value. It should also be noted

that the 0 parameter ANN curve is specific for this data set

and this result would not necessarily follow for other data

sets. Although in this case a single wildly undulating line

of best fit is able to represent the entire data set fairly well,

a data set with samples covering a wider range of particle

size for instance, would likely see the opposite result.

Several possible indications of poor behaviour are

apparent to the trained geotechnical engineer’s eye from

Fig. 4. If, for instance, G=G0 at strain 0 is significantly

different to 1, or the curve undulates, it will almost cer-

tainly be unrepresentative. It should be noted that such

concerns would be relevant only when a practitioner is

concerned with a specific curve. If a trained ANN is used to

predict the degradation curve for a specific sand, the fact

that an outlier gravel with a D50 of 70 mm has a badly

predicted curve is largely immaterial.

It should also be remembered that Fig. 4 represents 8

out of the 240 available curves and that these examples

were not chosen to showcase favourable results. Demon-

strated flaws within individual plots are specific to that

individual case and do not impact either the other plots or

the overall performance of the network.

Figure 5 shows how MSE varies with strain. This plot

was produced by calculating the squared error of every

output point to the corresponding laboratory data point and

finding the MSE for bins of 100 points. This figure indi-

cates the lack of data at high strains due to increased

spacing between bins and shows that all ANN
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configurations (and the Oztoprak and Bolton [31] equation-

based methodology) perform worst at around 0.1% strain.

It should also be noted that taking the mean of each bin

MSE produces the same values as presented in Table 2.

3.2 Global analysis of results

A comparison of recovered and expected G=G0 values are

shown in Fig. 6 for all curves from (a) the Oztoprak and

Bolton [31] equation, (b) the ANN-based approach using 4

input parameters, and (c) the ANN-based approach using

all 8 input parameters. It is evident that the ANN-based

approaches cluster more tightly around the 1:1 line, indi-

cating an overall better fit to the observed data for both the

4 and 8 parameter input ANNs, with MSE values (shown in

Fig. 4 Comparison of ANN predictions with Eq. 1 and laboratory data for 8 arbitrarily selected cases. Solid black line indicates the prediction

using Eq. 1, dashed black line the ANN prediction using all 8 input parameters, solid grey line the ANN prediction using 4 input parameters, and

dashed grey line the ANN prediction using just strain as input

Table 2 Comparison of global performance (MSE) of all

methodologies

Equation-

based

approach

(Eq. 1,

Oztoprak and

Bolton 31)

8

parameter

ANN-

based

approach

4 parameter

ANN-based

approach (4

parameters as

in Oztoprak and

Bolton 31 used)

0 parameter

ANN-based

Approach

(strain data

used only)

MSE 0.00662 0.00208 0.00229 0.00436
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Table 2) of 0.00662, 0.00229, and 0.00208 for the equa-

tion-based and ANN-based approaches, respectively.

Whereas the previous discussion regarding comparisons

between recovered and expected stiffness curves identified

cases at the edge of the data set in which the ANN-based

approach appeared to perform poorly, it is clear from this

more global analysis that both ANN-based approaches

perform around 3 times better, on average, than the equa-

tion-based approach based on the MSE values.

Several differences are apparent. Firstly, the equation-

based approach has an enforced limit for the allowable

values of G=G0. The Oztoprak and Bolton [31] equation

(Eq. 1) was defined based on geotechnical concepts and

empirical analysis that ensure outputs make physical sense,

such as G=G0 being fixed at 1 for strains below the elastic

threshold. This is clearly visible in the provided point

cloud. The trained ANNs have no knowledge of geotech-

nics or physics and potential users of such methodologies

must ensure the output is sensible. It would be possible to

design an ANN such that physics-based rules are incor-

porated; however, this is beyond the scope of this paper.

The second difference is the tendency for the equation-

based approach to overestimate at high G=G0 values. This

can be seen by examining the density of the point clouds

above the 1:1 line for G=G0 [ 0:8. Although 8 out of 240

data sets is not fully representative, a close examination of

Fig. 4 allows for identification of this phenomena in sev-

eral of the provided subplots. The ANN-based approach

can take advantage of the large number of data points at

relatively low strains to provide an improved fit at low

strain values at the expense of fit at high strain values,

where there is little available data.

It is noted that the data set used to present these com-

parisons was not trimmed due to anomalous data points.

Trimming outliers would improve such a comparison plot

for the Oztoprak and Bolton [31] equation, but not alter the

performance of the remaining data points. Trimming out-

liers from the ANN training set would potentially improve

performance of those points still in use at the expense of a

narrower applicability. A network trained to predict the

stiffness curves of sands would potentially better predict

the stiffness curves of sands than a network trained to

predict the stiffness curves of a range of granular soils,

particularly if extreme outliers are eliminated in the

process.

A final consideration is that the performance of any of

the trained ANN models cannot be assessed with regards to

data points from outside the domain of the original data set.

The standard ANN techniques of splitting the data set into

training, testing, and validation subsets mitigate this issue

somewhat but as stated previously, soil properties that have

poor coverage within the data set tend to have more

anomalous results. It is likely that the ANN models would

perform poorly when fed data that has significantly dif-

ferent soil properties to what was included in the analysed

data set. Although the data set used is large and provides

good coverage over a range of engineering sands, it would

Fig. 5 Demonstration of how ANN performance (MSE) varies with

strain

Fig. 6 Comparison of actual and expected values for a Eq. 1, b ANN using 4 input parameters, and c ANN using 8 input parameters
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be beneficial to provide alternative or supplementary data

points if intending to use the described methodology for

different granular soils, e.g. gravels.

3.3 Influence of architecture on runtime
and performance of the Artificial Neural
Network-based approach

Figure 7 shows how (a) runtime and (b) performance,

indicated by mean square error (MSE), vary with the

number of hidden neurons used. For simplicity, only one

hidden layer was considered, with hidden neuron numbers

between 1 and 25 trialled. As would be expected, more

hidden neurons result in a longer runtime with an

approximately linear relationship. The rate of change is

higher when all 8 parameters are used, as an additional

hidden neuron requires 8 connections to the input neurons,

whereas when only 4 inputs are used an additional hidden

neuron results in only 4 extra connections to the input

neurons.

Of note is that all runtime durations presented in Fig. 7

are low (a matter of seconds). Using a larger training set

would increase the elapsed times. However, as per the

discussion above, outside of edge cases, the data set used

was of sufficient size. Despite these quick runtimes, the

method is not ‘‘plug and play’’. A data set cannot simply be

loaded into an ANN software with a fully trained network

available a few seconds later. Formal or informal experi-

mentation into network architecture, training algorithms,

and which input parameters are to be included require

many runs of the training process as well as repeats to

account for the non-negligible variance between runs due

to the inherent randomness of the procedure.

Performance, measured by MSE, improves with an

increasing number of hidden neurons with diminishing

returns after around 10. Extremely high numbers of hidden

neurons would cause an increase in training time and

almost certainly lead to overfitting. Based on these figures,

the decision to use 12 hidden neurons for the main analysis

with this particular input data set is sound.

A final consideration is that performance is better for all

neuron numbers with the full set of input parameters.

Although some individual curves may appear to be lower

quality for the reasons discussed, Fig. 7 provides further

evidence that using all input parameters is, on average,

better.

Table 3 presents the effects of inclusion of each input

parameter, both subtractively (i.e., removing it from the

full set) and additively (i.e., adding it to the empty set). The

MSE for the inclusion of each parameter is presented along

with the change from the MSE of the base configuration. It

is reiterated that an ANN-based approach is non-deter-

ministic and there is some inherent randomness, and

although the table presents the ‘‘best’’ value obtained after

25 trials of each configuration, it is entirely possible that

repeating this exercise would produce slightly different

results. As such, this table should not be used to make fine

quantitative analyses, but instead to find broad qualitative

considerations that can be correlated with observations

discussed earlier in this paper.

The first point that can be raised is that OCR has

essentially zero effect when either added to the empty

configuration or subtracted from the full configuration

when compared to the other parameters. This is because,

the overwhelming majority of tests in the database (in-

cluding all 8 presented in Fig. 4) have an OCR of 1 with

only a few exceptions, and as this parameter is largely

uniform across the data set it makes sense that its inclusion

in the training process is not particularly influential.

Fig. 7 a Time vs hidden neurons and b Performance vs hidden neurons for 8 input parameter Neural Network and 4 (O&B) parameter ANN
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It was suggested in the earlier discussion that the outlier

values for D50, Uc, and G0 were potentially responsible for

anomalous recovered curves for some tests. Removing D50

and to a lesser extent Uc, does appear to result in a

reduction of MSE. This would fit the hypothesis that sparse

data at high strain values does not allow for significant

variations of some variables limiting the ANNs ability find

correlations that represent the full data set, and simply

omitting parameters in this case is potentially better. It

should also be noted that D50 is typically a poor parameter

for predicting soil behaviour: a well graded, gap graded,

and uniformly graded soil could all have identical D50

values while having radically different particle size distri-

butions and soil behaviours. An MSE improvement from

removing e is also apparent but was not something that was

predicted based on earlier analysis. However, due to the

inter-relationships between D50, Uc, and e, this behaviour

is not unexpected.

More broadly, although removal of a single parameter

from the full set can, in some cases, improve and, in some

cases, worsen the MSE, the effects are much smaller than

the improvement gained by adding any parameter (except

OCR) to the empty set. An ANN trained with the empty

parameter set will output the same stiffness degradation

curve for any soil properties, so it is logical that intro-

ducing even a single input parameter that has some cor-

relation with the stiffness degradation curve would

represent a meaningful improvement, as now the recovered

curve will be ‘‘personalised’’ for each specific soil.

Although testing every possible combination of 8

parameters would not be possible due to differences in

MSE often being less than random variance, it seems likely

that almost any combination that has at least a few input

parameters above strain alone would produce an accept-

able stiffness degradation curve. Full optimisation of input

parameter selection and network architecture, through a

genetic algorithm-based approach [3] or similar, would be

possible, but would appear to be unnecessary to recover

stiffness degradation curves that would be usable in design

or modelling.

The methodology used to estimate the influence of each

parameter is considered appropriate for this problem due to

the relatively small number of parameters considered, and

the fact that the purpose was to demonstrate that any

combination of the 8 considered parameters can produce a

reasonable output. Although it has been demonstrated that

some parameters are more influential than others, this

finding is secondary. For more generalised cases, where

e.g. significantly more parameters are available, or where a

specific optimal combination of inputs is sought, algo-

rithms exist to compute an ANN model sensitivity to all

input parameters [35].

3.4 Discussion on variability between ANN
training runs

Due to the non-determinism of the ANN training proce-

dure, repeated runs will produce both different MSE values

and different output curves. All figures and tables presented

so far have been based on the ‘‘best’’ (i.e., lowest MSE)

ANN out of 25 trials. Figure 8 shows box and whisker

plots for MSE for each of the 3 ANN architectures (8

parameters, 4 parameters, and 0 parameters, as described in

Sect. 3.1) generated using the results from 1000 training

runs. The boxes represent the 25th and 75th percentiles and

whiskers extend out to up to 3 times in interquartile range.

This many runs would have been prohibitively time con-

suming to carry out for all the analyses in this paper and is

presented here as a check to demonstrate that the results

presented in Sect. 3, where each analysis was trained 25

times, are reasonable.

Table 3 Effects of additive and subtractive inclusion of input parameters

Parameter MSE (removal) DMSE (removal) MSE (addition) DMSE (addition)

Base configurations 0.00208

(8 parameters)

n/a 0.00436

(0 parameters)

n/a

p0 0.00215 ? 7.22 �10�5 0.00359 - 77.2 �10�5

p
0
=pa 0.00215 ? 7.00 �10�5 0.00366 - 70.5 �10�5

OCR 0.00209 ? 0.84 �10�5 0.00433 - 3.68 �10�5

e 0.00198 - 9.81 �10�5 0.00355 - 80.9 �10�5

Id 0.00214 ? 6.45 �10�5 0.00388 - 47.9 �10�5

D50 0.00195 - 12.5 �10�5 0.00376 - 60.6 �10�5

Uc 0.00203 - 4.49 �10�5 0.00351 - 85.7 �10�5

G0 0.00210 ? 2.43 �10�5 0.00401 - 34.7 �10�5
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It is apparent that the vast majority of runs result in an

MSE that is roughly comparable, with the mean being

slightly higher, to those presented in Table 2 for 25 runs.

Diamond markers have been plotted to represent the values

used in the earlier analysis. It should be noted that there are

a small number of extreme outliers that are not visible on

this plot due to having MSE values an order of magnitude

higher than the visible data. There are no such outliers with

lower MSE values. Also apparent is the fact that the spread

is lower with fewer input parameters. This is in line with

previous commentary on additional parameters being a

potential source of noise.

Variance between runs need not be seen as a negative.

Figure 9 shows a heatmap of output curves predicted by

1000 individually trained ANNs for the example shown in

Fig. 4c. To produce this heatmap, the strain-stiffness plot

was split into 500 bins in each axis with 1000 output curves

plotted and inclusion of each bin counted. The heatmap

values represent the inclusion within each strain-stiffness

bin. Although presented here only for a single example for

illustrative purposes, it would be possible to use such a

technique to allow for confidence intervals in the output

curve rather than a single line for every case. Given the

short runtimes present in Fig. 7, this technique is perfectly

tractable and potentially offers a more intuitive output.

The heatmap plot also increases confidence in the

validity of the ANN-based approach despite the inherent

non-determinism. Even over 1000 runs, the output degra-

dation curves are largely the same, with the exception of

very high strains where the lack of available data has been

identified as an issue.

3.5 Implementation of methodology
into graphical calculation app

The capabilities demonstrated in this paper have been

compiled into a stand-alone calculation application, pro-

grammed in MATLAB, that can be downloaded, both as

source code and as an executable app [9]. The data set used

in this study is bundled with the application, but as stated in

Sect. 1.2 is also available as a stand-alone object [8]. It is

the hope of the authors that sharing this application and the

associated data set will provide a tool that is useful both for

practitioners and researchers. A short video demonstrating

the usage of this application has been included as supple-

mentary material for this paper and can also be viewed at

https://youtu.be/jyTPOrWE3EI.

Figure 10 shows screenshots demonstrating the main

functionality of the application. Figure 10a shows the

parameter input form. Users can tick the box beside every

parameter that they have access to, as many or as few as

that may be, and input the value in the provided box.

Several example values are preloaded into the application.

On pressing run, an ANN will be trained for the selected

parameter set with the output curve for the input parameter

values being plotted (Fig. 10b). The output curve is plotted

over a point cloud of all shear stiffness degradation data in

the data set to allow for qualitative judgement to be made

regarding the output curve. Due to the fact that there are

eight factorial combinations, it is impossible to provide

pretrained ANNs. Numeric values for the output curve can

be displayed and easily exported to, e.g. FEA software

(Fig. 10c). Figure 10d shows a plot of actual vs expected

G/G0 values for the entire data set along with a mean

squared error (MSE) value.

Fig. 8 Box and Whisker plot showing variance of ANN performance

over 1000 training runs. The boxes represent the 25th and 75th

percentiles and whiskers extend out to up to 3 times in interquartile

range. Diamond markers represent the values used in earlier analysis

as per Table 2

Fig. 9 Heatmap showing the range of possible output curves for

example (c) from Fig. 4 predicted by 1000 individually trained ANNs
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4 Conclusions

This study has demonstrated that shear stiffness degrada-

tion curves can be quickly and efficiently recovered from

an arbitrary number of soil classification parameters using

an Artificial Neural Network (ANN)-based approach. The

ANN approach exhibited lower Mean Squared Error than

the existing empirical curve fitting approach using the same

background data set whether all eight input parameters

were used, the same specific four as used in the empirical

curve fitting function, or even any individually selected

parameter.

The key value of the ANN approach presented in this

paper is the ability to derive a stiffness degradation curve

for the soil characterisation parameters available to the

engineer, rather than being constrained by requiring

specific parameters, as is the case for a classical curve

fitting approach (i.e., Eq. 1). In this latter case, if the

specific input parameters demanded by the approximating

function are not available, a curve cannot be recovered. For

the ANN-based approach presented here, the engineer can

always recover a stiffness degradation curve, based on any

number of characterisation parameters available, providing

greater ability and versatility to derive stiffness degradation

curves than currently exists. Further, as shown, the mean

square error of the stiffness degradation curves recovered

from the ANN were always lower compared to the current

curve fitting method—irrespective of the number of input

parameters available.

It has been shown that the ANN-based approach is

extremely resilient to factors such as network architecture

and input parameter selection and, although there are

methodologies to optimise such meta-parameters, initial

investigation shows that such methodologies are not nec-

essary for this case.

A user-friendly graphical calculation application has

been created as part of this study that allows researchers to

select and input whichever parameters they choose and/or

have available from the set, and derive a stiffness degra-

dation curve, along with uncertainty measure, for use in

engineering calculations. The app, along with its source

code and the required data set are available freely for

download [8, 9], along with an explanatory video demon-

strating its use (https://youtu.be/jyTPOrWE3EI).

Finally, this work contributes towards the evidence base

of merit in machine learning techniques such as ANNs

within the geotechnical context that can provide additional

capabilities over more traditional empirical approaches

particularly regarding sparse or incomplete site data. The

key benefit is not in terms of performance or design

Fig. 10 Screenshots showing the graphical MATLAB app that implements the methodology demonstrated in this paper
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efficiency (although there are improvements to be found in

these areas) but in allowing solutions to be found where

existing techniques are unable to provide them.

Appendix

This appendix contains a brief overview of the key math-

ematical concepts behind the Feedforward Multilayer

Perceptron Artificial Neural Network (ANN) used in this

study.

As per Fig. 3 in the main body of the paper, an ANN

consists of an input layer x; an output layer by; one or more

hidden layers each with a value AL, a collection of weights

W and biases b; an activation function rL for each layer.

Each layer consists of one or more neurons and each

neuron has a numeric value. The neuron values of the input

layer are known and are described by the vector x or

alternatively A0. The neuron values of hidden layer L are

described by the vector AL. The output layer neuron/s are

represented with the vector by. Which in cases with one

hidden layer could be referenced with the vector A2.

Matrices of weights are used to represent the influence

of each neuron of layer L-1 on neurons on layer L, where

each matrix will be of size (i 9 j) where i is the number of

neurons on layer L-1 and j is the number on layer L. Each

neuron will also have a bias value, which is a single

numeric value that is added and unaffected by weightings.

Whereas weights are multiplicative with respect to the

previous layer, biases are additive.

The values of the neurons on layer L, AL, can be found

with Eq. (5) with the raw values prior to activation, zL,

provided in Eq. (6):

AL ¼ rLðWL � AL�1 þ bLÞ ð5Þ
zL ¼ WL�AL�1 þ bL ð6Þ

The output of one layer can be used to find the value of

the next layer. Equations can be chained together for an

arbitrary number of layers. In cases with only one hidden

layer, the output by can be described as a function of the

input and two layers of weights, biases, and activation

functions as shown in Eq. 7:

by ¼ r2ðW2 � r1ðW1 � X þ b1Þ þ b2Þ ð7Þ

Activation functions are used to limit the value of a

neuron to within a certain range, e.g. 0�AL � 1 by passing

the neuron value through the logistic function, or

�1�AL � 1, using the tanh function. Applying activation

functions allows for mimicry of biological neurons and

enables nonlinear relationships to be found. An ANN

without nonlinear activation functions would essentially

function as a linear regression solver [39]. Activation

functions on the output neuron/s are determined by the

problem type. An ANN designed to, e.g. categorise images,

could have an output neuron for each category that is

assigned a value between 0 and 1, which represents the

likelihood of each category being correct. In cases where

this is not necessary or desirable such as finding an

unknown relationship in which outputs can be greater than

1, a simple linear activation function can be used for the

output layer. It will be necessary to know the derivative of

the activation function. It should be noted that there are

many activation functions that could potentially have been

used, including some more recent developments than the

chosen tanh, such as ReLu. Qualitative investigation

showed that tanh typically produced the most realistic

output curve with other possibilities having very little

impact in terms of measured error, which matches findings

in literature [41]. For the activation function used in this

project, tanh, the derivative is as shown in Eq. (8).

where rðzLÞ ¼ tanhðzLÞ; r0ðzLÞ ¼ 1 � rðzLÞ2 ð8Þ

The cost C allows for assessment of the performance of

an ANN. The goal is to train the network such that the

output values by are as close as possible to the expected

values y. The cost is calculated using the Mean Square

Error (MSE). Cost is used during the training process along

with the training data sets and after completion to assess

performance with the testing data set. Equation (9) shows

how cost is calculated [46].

C ¼
X

ðy� byÞ2 ð9Þ

Moving forwards through the ANN is called feed for-

ward. It is likely that the initial guesses for weighting and

bias will result in a large error and as such must be adjusted

to improve the performance of the ANN. A process called

back propagation [34] is used to determine how the weights

and biases are to be adjusted to minimise the cost.

The minimisation problem can be thought of as a mul-

tidimensional plot with a dimension for each weight, bias

and input. Such a plot would be impossible to visualise. A

3D representation could be made in which peaks and

troughs would allow for visual identification of local

minima. Finding the gradient (in each dimension) at the

current location allows for movement towards the nearest

local minima through a process called gradient descent

[10]. The gradient of cost with regard to W2 can be written

using the chain rule as shown in Eq. (10) [18].

oC

oW2

¼ oC

oA2

oA2

oz2

oz2

oW2

ð10Þ

The terms in Eq. (10) are defined as follows. The

derivative of cost function with respect to output is shown

in Eq. (11). The derivative of output with respect to z (sum
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prior to activation function) is the derivative of the acti-

vation function and is shown in Eq. (12). The derivative of

z with respect to weight is simply weight, Eq. (13).

oC

oA2

¼ 2ðy� byÞ ð11Þ

oA2

oz2

¼ r
0
z2ð Þ ¼ r0ðW2 � A1 þ b2Þ ð12Þ

oz2

oW2

¼ W2 ð13Þ

Having calculated the above components, the differen-

tial of cost with respect to weight can be found with

Eq. (14). Additionally, the differential of cost with respect

to both bias and neuron value at L-1 can similarly be

found. These terms are provided in Eqs. (15 and 16).

oC

oW2

¼ 2 y� byð Þ � r0
W2 � A1 þ b2ð Þ � A1 ð14Þ

oC

ob2

¼ 2 y� byð Þ � r0
W2 � A1 þ b2ð Þ � 1 ð15Þ

oC

oA1

¼ 2 y� byð Þ � r0
W2 � A1 þ b2ð Þ ð16Þ

As A1 is a function of W1 � X þ b1 the chain can be

continued further to find the gradients relating to W1 etc.

When the gradients have been found, they can simply be

added to the weight and bias matrices and the process

repeated. After many iterations, values should be found

that give a reasonable error compared to expected outputs.
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