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Abstract: Bare board AudioMoth recorders offer a low-cost, open-source solution to passive acoustic 
monitoring (PAM) but need protecting in an enclosure. We were concerned that the choice of enclo-
sure may alter the spectral characteristics of recordings. We focus on polythene bags as the simplest 
enclosure and assess how their use affects acoustic metrics. Using an anechoic chamber, a series of 
pure sinusoidal tones from 100 Hz to 20 kHz were recorded on 10 AudioMoth devices and a cali-
brated Class 1 sound level meter. The recordings were made on bare board AudioMoth devices, as 
well as after covering them with different bags. Linear phase finite impulse response filters were 
designed to replicate the frequency response functions between the incident pressure wave and the 
recorded signals. We applied these filters to ~1000 sound recordings to assess the effects of the Au-
dioMoth and the bags on 19 acoustic metrics. While bare board AudioMoth showed very consistent 
spectral responses with accentuation in the higher frequencies, bag enclosures led to significant and 
erratic a enuation inconsistent between frequencies. Few acoustic metrics were insensitive to this 
uncertainty, rendering index comparisons unreliable. Biases due to enclosures on PAM devices may 
need to be considered when choosing appropriate acoustic indices for ecological studies. Archived 
recordings without adequate metadata may potentially produce biased acoustic index values and 
should be treated cautiously. 

Keywords: acoustic indices; acoustic metrics; AudioMoth; calibration; frequency response; passive 
acoustic monitoring 
 

1. Introduction 
In recent years, advances in technology have led to a surge in studies employing pas-

sive acoustic monitoring (PAM) as a surveillance technique in environmental and ecolog-
ical contexts [1–3] A reduction in the cost of hardware now means it is often possible to 
deploy, simultaneously, multiple devices in a single study, increasing the area covered 
and the amount of data collected. One such low-cost device for PAM is AudioMoth [4]. 
The AudioMoth couples a low-power microcontroller with an analogue microelectrome-
chanical systems (MEMS) microphone [4,5]. It is capable of recording and storing sounds 
over a wide frequency range, from anthropogenic noise of around 1 kHz, through audible 
wildlife at 4 kHz and up to 192 kHz for wildlife using the ultrasonic range [6]. AudioMoth 
recorders have successfully been used in a wide variety of applications, from remotely 
monitoring wild mammals [7–9], to identifying bird and frog species from spectral signa-
tures using a convolutional neural network [10] and even assessing exposure to urban 
noise on building façades [11]. 

AudioMoth devices are sold as bare electronic boards (around USD 97 in 2023 for the 
latest version from h ps://www.labmaker.org/products/audiomoth-v1-2-0 (accessed on 6 
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August 2023)) and, for most applications, need protecting from environmental factors in 
an enclosure. Recently, a proprietary injection-moulded polycarbonate case has become 
available, featuring a Porelle AV51D acoustic vent for the microphone 
(h ps://github.com/OpenAcousticDevices/Application-Notes/blob/master/An_Injec-
tion_Moulded_Case_for_AudioMoth/An_Injection_Moulded_Case_for_AudioMoth.pdf 
(accessed on 6 August 2023)). However, this adds around USD 40 to the price 
(h ps://www.labmaker.org/products/audiomoth-ipx7-case (accessed on 6 August 2023)), 
and alternative home-made solutions have included simple food containers, enclosures 
made from DIY components and 3D-printed cases (see h ps://www.openacous-
ticdevices.info/support/enclosures/summary-of-enclosures-to-date (accessed on 19 Au-
gust 2023) for a useful summary). The simplest, however, are zip-closure polythene bags 
that are both widely available and cheap. Global availability is important, as lost or dam-
aged bags may be replaced locally, even in remote situations. Plastic bags have been illus-
trated as suitable enclosures by the AudioMoth developers [4] [5] and on users’ blogs, 
although sometimes with reported condensation problems and ingress of water 
(h ps://www.openacousticdevices.info/support/enclosures/be-carefull-with-zip-lock (ac-
cessed on 19 August 2023)). In our experience, plastic bags can give suitable protection 
from rain, although, in windy conditions, the repeated rubbing of the plastic on the edges 
of the AudioMoth electronic board can cause spli ing and leakage. 

Very li le information appears to have been published on how any of these housings 
affect the acoustic performance of the devices, the exception being [12] as part of a wider 
study. This is potentially of concern, for example, given the care and a ention that has 
gone into the development of microphone windshields over many decades. If blocking 
the wind and rain is as simple as using a plastic bag, why are wind mufflers so expensive? 
Our study was motivated by the concern that the choice of housing (and therefore micro-
phone covering) may potentially alter the spectral response of the device. Depending on 
the research project, this may not ma er because, for example, small shifts in spectral re-
sponse have minor effects on how a recording sounds, and species identification aurally 
should still be possible. However, as the range of projects using AudioMoth and other 
PAM devices diversifies, housings could alter frequency responses in ways that compro-
mise comparisons of data from either within a single study or among different studies. 

In this paper, we focus on plastic bags as the simplest housing solution for Audio-
Moth recorders, although the principles (but not the details) apply to other recording de-
vices and their enclosures. Using an anechoic chamber, we performed a series of experi-
ments to assess how plastic bags affect the values of 19 acoustic metrics and ecoacoustic 
indices calculated from AudioMoth recordings. At least some of these feature in many 
studies employing PAM [13–18]. Simple acoustic metrics, such as mean frequency, can 
obviously be affected by shifts in frequency response, while measures such as RMS (aver-
age amount of energy per unit time) may be reduced by anything obstructing the micro-
phone. Ecoacoustic indices are routinely employed in ecological studies yet are potentially 
more problematic because they are often based on the relative amounts of energy in dif-
ferent frequency bands. Changes in the frequency responses of PAM devices due to the 
housings could render comparisons of such indices across devices and sites unreliable, 
potentially misleading the otherwise laudable goal of developing conservation action 
from audio information [19]. 

This paper addresses three research questions that potentially influence the ways in 
which PAM devices should be used in ecological studies, illustrated through an examina-
tion of the AudioMoth: 
(i) Do AudioMoth recorders require calibration to capture the true frequency composi-

tion of the source signal? 
(ii) Is the need for calibration affected by the housing? 
(iii) What is the impact of the lack of calibration on calculated acoustic metrics and 

ecoacoustic indices? 
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Our goal is not to criticise current practice but to point the way to expanded use of 
PAM devices through an understanding of limitations imposed by frequency responses 
and housings. 

2. Materials and Methods 
Ten AudioMoth recorders (version 1.1.0, obtained from different sources) were pro-

grammed to record at a sampling rate of 48 kHz with the gain set to medium. Each re-
corder was tested as a bare board, and then again with three experimental bag configura-
tions (Table 1), each with only a single layer of plastic covering the microphone. 

Table 1. Experimental deployments used for the ten AudioMoth recorders. The onboard micro-
phone was at the top left in all deployments. 

Experiment Deployment of AudioMoth Typical Set-Up 

B0 
Bare board (i.e., no bag). Held by 

clamp underneath. 

 

B1 
B2 

Large (235 × 285 mm), slightly 
thicker (47 gm−2) bag with sur-
plus folded behind the device, 

kept in place with cable tie. Held 
by clamp underneath. B2 repeats 

B1 after re-bagging. 

 

B3 

Small (95 × 150 mm), slightly 
thinner (41 gm−2) bag with sur-
plus folded behind the device. 

Held by clamp underneath. 

 

B4 
Small (95 × 150 mm), slightly 
thinner (41 gm−2) bag with no 

folds, suspended from a clamp. 

 
The bags were fi ed in a standard way by just one researcher, who had previously 

carried out the same process more than 100 times, to maintain consistency. Experiment B2 
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in Table 1 (repeat bagging of the same device) refers to incomplete data recorded inci-
dentally to the main trial when testing for appropriate sound levels for the experiment. 
We did not initially intend to analyse these data, but they reveal important clues to con-
sistency, a key point we refer to later. 

The devices were held at a 1.42 m height by a microphone clamp, directly facing a 
loudspeaker (Genelec 8020C, Iisalmi, Finland) placed 1.98 m away at the same height. A 
series of pure sinusoidal tones in deci-decades from 100 Hz to 19.95 kHz were generated 
using MATLAB (R2021a, Mathworks, Massachuse s, UK), rendered via a DAQ System 
(NI USB-6341; National Instruments, Theale, UK) and played through the speaker and 
recorded on the AudioMoth devices. The same source signals were also recorded on a 
calibrated Brüel & Kjær Class 1 sound level meter (SLM, Lübeck, Germany, type 2250) 
placed in exactly the same location as the AudioMoth relative to the speaker. All the ex-
periments were conducted in the large anechoic chamber at the University of Southamp-
ton with minimal noise intrusion. 

Combining the SLM data and the AudioMoth recordings of the broadband noise, the 
frequency response function (FRF) between the incident pressure wave and the recorded 
signal at the AudioMoth was calculated. A linear phase finite impulse response (FIR) filter 
with 513 taps was designed with the same FRF as that computed for each of the Audio-
Moth configurations. Applying this filter to the data replicates the effect of the AudioMoth 
and any bag on that data and provides a convenient way to investigate how sounds are 
actually recorded. 

To assess how the AudioMoth and the bags affect derived acoustic indices, we used 
our archive of over 250,000 sound clips recorded across the city of Southampton during 
2020. Although these were collected using AudioMoth, they are simply being used here 
as example sound sources with analyses only considering how these are affected by the 
filters simulating the FRF of the AudioMoth with and without bags. Used in this way, it 
should not ma er what the origins of the recordings were. To ensure we had a good range 
of signal characteristics among our sound clips, we took stratified random samples from 
the archive using three indicative metrics (RMS, ADI and ACI—Table 2), which had al-
ready been processed from the recordings without correction, to yield raw acoustic indi-
ces. To achieve this, the entire archive was stratified into 10 quantile groups based on each 
metric, and an approximately equal number of samples was drawn at random from each 
quantile to select 333 sound clips per metric. The stratified samples for each metric were 
then combined and duplicates removed, yielding a set of 998 unique sound recordings 
with a wide range of acoustic characteristics. 

We assessed how our filters (and therefore the AudioMoth recordings made with and 
without bags) affect 19 representative acoustic metrics and ecoacoustic indices, grouped 
into four families (Table 2; colour-coded for convenience). Most of these metrics are con-
veniently coded in R [20], although Table 2 gives the original citations, where known. To 
assess impact, we plo ed the unfiltered metric (representing the true source signal) 
against the filtered metrics (AudioMoth/bag effects). If there were no effects of the exper-
imental treatment on the indices, we would expect the relationships to follow the line of 
equality (i.e., a 1:1 line). Deviations from this line were assessed using Willmo ’s md, bor-
rowed from hydrology [21]: 

𝑚𝑑 = 1 −
∑ | 𝑆  − 𝐴  |

∑ | 𝐴 − 𝑆̅ |+| 𝑆  − 𝑆̅|
 (1)

where Si is the acoustic index value from source signal i, and Ai is the corresponding value 
from the AudioMoth recording. A value of md = 1 indicates perfect agreement, whereas 
md = 0 indicates no agreement. 

We also assessed consistency in the calculated acoustic metric values between tests 
of the same individual sound clip on different AudioMoth devices (with or without bags) 
using a form of the coefficient of variation: 

𝐶𝑉 = 100|
Mean [Within clip SD of (𝐴  − 𝑆  )]

Grand mean of (𝐴  − 𝑆  )
| (2)
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where Si is the index value from source signal i, and Ai is the corresponding value from 
the AudioMoth. Values of CV = 0 indicate perfect consistency, ranging to plus infinity for 
no agreement. 

Table 2. Acoustic indices and their definitions as applied here. The shadings represent the different 
families of metrics. The measures highlighted in blue are based on time-domain properties (alt-
hough computations may be done in the frequency domain). Those in yellow are based on statistical 
properties of the spectrum; in green are metrics based on geometric properties of the spectrum; and 
in orange are quantities based on manipulations of the energies in one or more frequency bands. 

Metric Description 

RMS 
Root mean square is the square root of the average amount of energy in the 

clip per unit time. For use in ecological research, see [22]. 

dBZ Unweighted sound level, calculated across the entire frequency spectrum, i.e., 
20 log10(RMS) + 94 

M Median of the signal envelope, scaled by bit depth [23] 
Bio Bioacoustic index energy in the signal filtered between 1 and 8 kHz [24,25] 

Smean The mean frequency of the frequency spectrum [20] 
Ssd The standard deviation of the mean frequency of the spectrum [20] 

Smedian The median frequency of the spectrum [23] 
SQ25 The frequency at the first quartile of the frequency spectrum [20] 
SQ75 The frequency at the third quartile of the frequency spectrum [20] 

SFM Spectral flatness measure is the ratio between the geometric mean and arith-
metic mean among frequency bins of the frequency spectrum [26] 

SH Shannon evenness among the frequency bins of the frequency spectrum [27] 

TH 
The temporal amplitude index, assessing the Shannon evenness of the ampli-

tude envelope [27] 

Rough 
Roughness captures the curvature of the frequency spectrum curve and is the 

integrated squared second derivative of the spectrum [20] 
Rugo Rugosity is similar to roughness but instead based on the first derivative [20]  

ADI 
Acoustic diversity index of the energy content in frequency bands between 0 

and 10 kHz above a threshold, here −40 dB [28,29] 

AEI 
Acoustic evenness index uses the Gini coefficient to assess the equity of the 
energy content distribution among frequency bands, defined as in ADI [29] 

ACI 
Acoustic complexity index, measuring the complexity of the signal but giving 
most importance to sounds that are modulated in amplitude rather than con-

sistent [30] 

NDSI128 
Normalized difference soundscape index contrasting the energy in the 1 to 2 
kHz frequency bin (anthropophony) against that in the 2 to 8 kHz frequency 

bins (biophony) [31] 

NDSI238 
Normalized difference soundscape index contrasting the energy in the 2 to 3 
kHz frequency bin (anthropophony) against that in the 3 to 8 kHz frequency 

bins (biophony) [31] 
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3. Results 
3.1. Calibration 

The FRFs of the bare board AudioMoth (B0 in Table 1) were remarkably consistent 
below about 13 kHz, after which small variations were observed between devices (Figure 
1). However, the FRFs were not flat, showing substantial accentuation of higher frequen-
cies relative to the lower frequencies and with almost 25 dB variation in the averaged re-
sponse across the frequency band (100 Hz–20 kHz). 

 
Figure 1. FRFs of AudioMoth with and without the bag treatments in Table 1. The correction factor 
is the amount that needs to be subtracted from the recording on the AudioMoth to recover the source 
signal. The AudioMoth FRFs are consistently coded, AM01 to AM10, to allow comparisons between 
graphs. Note that AM04 has been omi ed from experiment B3 due to a recording error. 

Placing the AudioMoths in bags had a marked effect on the spectral responses that 
were, apparently, often highly inconsistent (Figure 1). In all the bag configurations, there 
was a tendency for frequency responses to show greater repeatability at low frequencies 
(below 2–3 kHz), particularly for experiment B4, but unpredictable behaviour above 5 
kHz, leading to wide 95% prediction intervals (Figure 2). All the bags reduced the re-
sponse at a high frequency relative to that for the bare AudioMoth (e.g., see mean trends 
in Figure 2), but in an inconsistent manner. 
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Figure 2. Mean and 95% prediction intervals (PI) for the FRFs for the four experimental treatments. 
The prediction intervals (PI) show the limits within which 95% of all responses are likely to lie. 

As the bare board AudioMoth showed very consistent FRFs, while the bagged de-
vices did not, the bags themselves (or the action of bagging the AudioMoth devices) must 
be responsible. Indeed, analysis of the incomplete data from the pre-trial (experiment B2 
in Table 1, initially intended only to set audio levels) showed a large variation between 
repeat bagging of the same AudioMoth (Figure 3). In other words, pu ing the AudioMoth 
in the bag introduced variations in the FRF, and repeating the operation on the same de-
vice, in the same way, did not result in the same outcome. On average, across all frequen-
cies and AudioMoth devices tested, using the large bag (B1 and B2) added variations in 
the response of ±2.9 dB. However, low frequencies were less affected than higher frequen-
cies, and variability peaked at around 8 kHz, with a mean uncertainty of ~9.6 dB with 95% 
PI of −2.4 to 21.6 dB (Figure 3). 

 
Figure 3. The left-hand figure shows the difference between dB levels recorded at each frequency 
tested for experiments B1 and B2, i.e., repeat bagging of each AudioMoth. Ideally, all values should 
be zero. As there is no logical ordering between trials B1 and B2, the right-hand figure shows the 
mean and 95% prediction intervals (PI) for the absolute difference between repeat bagging. The dot-
ted lines have been added for visualisation only and cover frequencies for which data were lacking. 
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3.2. Bag Effects on Metrics 
When we calculated the acoustic metrics (Table 2) from the AudioMoth recordings, 

we found strong differences compared with the metrics calculated from the source signals 
(Figures 4–7; data in [32]), even on bare board AudioMoths (Figure 4). 

 
Figure 4. Comparison of acoustic metric values derived from 998 source signals and as recorded on 
10 AudioMoths with no bag. The dashed line is the line of agreement. The metrics are described and 
colour-coded in Table 2. 

As the bare board AudioMoth tended to add high-frequency emphasis (accentuating 
the higher frequencies relative to the lower ones; Figure 1), all the metrics related to the 
dominant frequency (Smean, Ssd, Smedian, SQ25 and SQ75—colour-coded yellow in Ta-
ble 2 and Figure 4) were badly affected (i.e., strongly deviating from a 1:1 line). A visual 
inspection of Figure 4 shows that among the ecoacoustic indices (coloured orange) rec-
orded on the bare board AudioMoth, ADI and AEI were the worst affected, followed by 
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the two NDSI metrics and then ACI, the least affected. The bare board AudioMoth had a 
tendency to overestimate metrics based on the time domain (Figure 4; coloured blue), alt-
hough Bio was underestimated. The metrics based on geometric properties (Figure 4; 
green) were highly skewed on the bare board AudioMoth recordings. 

The metrics calculated from the AudioMoth devices in bags showed modified re-
sponses that depended on how they were bagged and the metric used (Figures 5–7). 
Among the time-domain metrics (blue), M was relatively li le affected by the bags, 
whereas the response of Bio was split into multiple parallel lines. None of the set-ups 
tested faithfully captured dBZ as would be needed for noise assessments, the best being 
the B1 bag, especially above 75 dB. This is likely to reflect that noise sources contributing 
most to the sound field were low-frequency, where the bag was the least influential. 

 
Figure 5. Comparison of acoustic metric values derived from 998 source signals and as recorded on 
10 AudioMoths with a B1 bag. The dashed line is the line of agreement. The metrics are described 
and colour-coded in Table 2. 



Sensors 2023, 23, 7287 10 of 18 
 

 

Ecoacoustic indices (orange in Figures 5–7) tended to deviate more from a 1:1 line 
when calculated from bagged than bare board AudioMoth (e.g., NDSI), although ACI re-
mained consistent and true to the source signal throughout. As with the metric M, indices 
based on statistical properties (yellow in Figures 5–7) often split into multiple parallel 
curves in the bagged devices. Visually, the metrics based on geometric properties (green) 
sometimes showed a closer fit to a 1:1 line when recorded in a bagged AudioMoth (e.g., 
SFM), presumably because the housing reduced the high-frequency content. 

 
Figure 6. Comparison of acoustic metric values derived from 998 source signals and as recorded on 
9 AudioMoths (one failed during the experiment) with a B3 bag. The dashed line is the line of agree-
ment. The metrics are described and colour-coded in Table 2. 

This visual impression of the effects of the bags was confirmed by goodness-of-fit 
tests (Willmo ’s md statistic) applied to the data (Table 3). Despite the rather chaotic na-
ture of the frequency responses in Figure 1, AudioMoths in B1 bags actually showed the 
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closest acoustic metric matches to the source signal, even compared with the bare boards. 
This was true for all the metrics except ACI (which performed equally well across bag 
treatments), NDSI128, NDSI238 and Bio. 

 
Figure 7. Comparison of acoustic metric values derived from 998 source signals and as recorded on 
10 AudioMoths with a B4 bag. The dashed line is the line of agreement. The metrics are described 
and colour-coded in Table 2. 

According to Willmo ’s md, the acoustic metrics most robust against the effects of 
the method of deployment were ACI (all configurations), M (with B1), RMS (with B1) and 
TH (with B1) (Table 3). Note, however, that the la er still showed a wide spread of values 
(Figure 5). 
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Table 3. Willmo ’s md values for how close the fits in Figures 4–7 are to a 1:1 relationship. Values in 
bold are the highest (best) in each row. The metrics are described in Table 2. 

Metric Bare B1 Bag B3 Bag B4 Bag 
RMS 0.75 0.90 0.83 0.83 
dBZ 0.57 0.83 0.72 0.71 
M 0.73 0.90 0.82 0.82 

Bio 0.81 0.59 0.67 0.52 
Smean 0.28 0.50 0.44 0.40 

Ssd 0.07 0.41 0.35 0.26 
Smedian 0.31 0.58 0.51 0.48 

SQ25 0.47 0.57 0.53 0.50 
SQ75 0.15 0.52 0.42 0.34 
SFM 0.28 0.69 0.57 0.51 
SH 0.25 0.57 0.46 0.40 
TH 0.74 0.88 0.84 0.82 

Rough 0.77 0.84 0.83 0.80 
Rugo 0.72 0.85 0.83 0.78 
ADI 0.34 0.57 0.50 0.45 
AEI 0.44 0.67 0.59 0.55 
ACI 0.94 0.94 0.94 0.94 

NDSI128 0.74 0.60 0.70 0.67 
NDSI238 0.78 0.68 0.79 0.60 

The results in Table 3 are somewhat counter-intuitive, because of the consistency of 
the frequency responses among the bare AudioMoth (Figure 1), and can be explored fur-
ther by looking at the variation in the calculated acoustic metric values between tests of 
the same sound clip on different devices (Table 4). The index in Table 4 captures the spread 
on the y-axis for any given value on the x-axis that arises due to variations between Audi-
oMoth/bag combinations (i.e., it removes the effects of different sound sources leading to 
coincident acoustic index values). Looked at in this way, the bare AudioMoth clearly per-
formed best across all the metrics except for the metric Rough, which had a peculiarly 
clumped range of values (Figures 4–7). Given that AudioMoth cannot be deployed in the 
field without protection from the weather, it is instructive to examine the second-best val-
ues for each metric (italics in Table 4). In this case, the B4 bag performed best for 15 out of 
19 metrics. Note, however, that second-best (italics) values were nearly always substan-
tially worse than the best values (bold) because of the way bags affect the frequency re-
sponses (Table 4). 

The relative contributions of the source signal, bag, and individual device were in-
vestigated by estimating their effect sizes within linear models (Table 5) using the R pack-
age effectsize [33]. The results are approximate only due to the assumptions around line-
arity and interacting effects, but provide an indication of the relative contributions. In all 
cases except for Ssd (which showed a highly curvilinear relationship in Figure 4), the pri-
mary contribution to variance in the AudioMoth recorded signals came from the source 
signal itself, as might be expected (Table 5). Confirming previous results, the acoustic met-
rics with the highest effect size (partial eta squared) associated with the source signal (and 
therefore the most robust across deployments) were ACI, M, RMS and dBZ in decreasing 
order. The bag effects were most severe for Smean, dBZ, NDSI238 and then, jointly, SFM 
and SH. 
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Table 4. Consistency (CV) of acoustic metric values between different methods of AudioMoth de-
ployment. Values in bold are the lowest in each row, indicating the least variation between de-
vice/bag set-ups. Values in italics are the second best. The acoustic metrics are described in Table 2. 

Metric Bare B1 Bag B3 Bag B4 Bag 
RMS 15.8 45.2 43.7 31.3 
dBZ 9.6 35.4 37.8 21.4 
M 16.4 49.4 47.1 32.0 

Bio 21.6 180.0 326.5 299.1 
Smean 9.1 42.8 55.3 22.9 

Ssd 15.6 53.3 88.8 39.9 
Smedian 9.9 51.6 60.3 27.7 

SQ25 13.5 41.1 66.6 39.4 
SQ75 6.4 43.8 51.9 19.5 
SFM 10.4 86.8 58.5 32.9 
SH 5.4 21.5 27.4 13.8 
TH 19.6 112.5 112.6 74.6 

Rough 338.2 172.9 476.5 872.2 
Rugo 33.2 37.3 77.4 52.4 
ADI 6.3 22.9 28.7 14.9 
AEI 8.7 34.4 38.4 22.8 
ACI 1.9 13.5 7.9 6.1 

NDSI128 7.0 31.8 41.9 41.4 
NDSI238 7.5 33.9 54.1 31.3 

Table 5. Estimates of effect sizes (partial eta squared) for source signal, bag and device ID on the 
recordings on the AudioMoth. Note that in multifactor ANOVA, as here, partial eta-squared values 
can sum to greater than one. Acoustic metrics as in Table 2. 

 Effect Due to: 
Metric Source Signal Bag Used Device and Its Filter 
RMS 0.91 0.07 <0.01 
dBZ 0.90 0.24 0.05 
M 0.97 0.18 0.03 

Bio 0.53 0.16 0.22 
Smean 0.81 0.46 0.21 

Ssd 0.04 0.02 0.05 
Smedian 0.48 0.20 0.06 

SQ25 0.36 0.19 0.04 
SQ75 0.44 0.15 0.09 
SFM 0.68 0.22 0.05 
SH 0.80 0.22 0.05 
TH 0.79 0.02 <0.01 

Rough 0.79 <0.01 <0.01 
Rugo 0.70 0.03 0.03 
ADI 0.54 0.10 0.02 
AEI 0.60 0.03 0.03 
ACI 0.98 <0.01 <0.01 

NDSI128 0.85 0.10 0.07 
NDSI238 0.85 0.23 0.04 

4. Discussion 
4.1. Frequency Response of the AudioMoth 
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The FRFs of the bare board AudioMoth were very consistent but accentuated higher 
frequencies. Previous work [12] has reported only small variations in the spectral re-
sponses between new AudioMoth, but our devices had already been deployed in the field 
several times yet still gave consistent results. However, our data do not show relatively 
flat frequency responses in contrast to [12]. When we listened to recordings made on our 
devices, we found no difficulty in identifying bird species, despite the high-frequency em-
phasis, suggesting that human aural identification is not impacted. This is where the pur-
pose of the study needs to be clear from the start: if aural identification is all that is re-
quired, the frequency shifts present li le problem. Additionally, if bare board AudioMoth 
are being used only for comparative assessments of acoustic indices, the consistency be-
tween devices suggests the correct rank order of sites (for example, in acoustic diversity) 
would be obtained. However, the absolute values of many acoustic indices are heavily 
impacted by frequency response, and they should not be compared across studies em-
ploying different forms of PAM recorders or housings. 

4.2. Effect of the Bag on this Frequency Response 
Of course, AudioMoth recorders can rarely be deployed in the field without protec-

tion from the weather, and we found that the addition of a protective plastic bag led to 
unpredictable frequency responses that were inconsistent between bag changes and 
modes of deployment. This was despite all the bag changes being made by just one re-
searcher who had done the process many times before and in a repeatable manner. For 
example, the AudioMoth was always placed in one corner of the B1 bag with a single layer 
of plastic over the microphone, any excess being folded behind the ba ery pack. This find-
ing, based on more extensive testing, differs from the conclusion in a previous study that 
plastic bags had relatively li le effect on spectral response [12], although they did note 
a enuation due to the bags above 10 kHz. 

Given the consistency in the performance of bare board AudioMoth devices, the fre-
quency spectrum shifts for enclosed AudioMoth in Figure 1 arise solely from the bags and 
do not reflect differences between circuit boards. Comparing our experimental treatments 
(Table 1), we could hypothesize that both bag thickness and folding affect frequency re-
sponse. Thicker plastic could potentially a enuate signals more, although it is difficult to 
understand how this happens at the frequencies studied because the wavelengths were 
all greater than 14 mm, far longer than the bag thickness. Additionally, our B1/B2 bags 
were only 15% thicker than the B3/B4 bags. A comparison of our B3 and B4 experiments 
suggests that folding the excess bag behind the device might have an effect, perhaps be-
cause signals are reflected from the folds, even though there is a ba ery pack in-between 
in all cases. If reflections ma er this much, it also suggests that how and where the Audi-
oMoth is a ached to a structure (branch, wall, etc.) has an impact. We carried out our 
experiments in an anechoic chamber with minimal reflections off surfaces, but, in the real 
world, signals will arrive at an AudioMoth from multiple directions and angles (see also 
[12]). 

Unfortunately, precise analytical prediction of the impact of the bag on the acoustics 
of the recorder is not feasible. There are several factors which confound such analysis, two 
of which are the fact that the membrane (i.e., the bag) and microphone are in close prox-
imity, so near-field effects are to be expected; and, secondly, that the edges of the mem-
brane are not tensioned in a controlled manner, so the boundary conditions are ill-defined. 
However, we can observe some trends in the data which conform with general predictions 
for simplistic models. Specifically, the bag is seen to introduce low levels of a enuation at 
low frequencies (below 5 kHz), which is consistent with predictions based on the mass 
law [34]. This is with the exception of some narrow bands at low frequency, e.g., close to 
1 kHz, where higher a enuations are observed, and this we a ribute to local resonant 
behaviour. At higher frequencies, more complex behaviour is evident, which is presuma-
bly the result of various phenomena, including standing waves on the membrane and 
within the structure of the AudioMoth itself. From a practical point of view, our tests 
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showed that the hanging bag with no folds had the least impact on the acoustic indices 
after the bare board AudioMoth (B4 in Table 4), and this might be the best arrangement 
for field use. Ironically, because the responses of AudioMoths in bags are (on average) 
fla ened, as high frequencies are being a enuated, the results from the bagged data are 
possibly closer to the raw signal (again, on average), but with greater variation. In the 
absence of further data, our advice is to avoid using bags if possible, and always to be as 
consistent as possible in the deployment method if the study is one that requires spectral 
information from PAM devices in protective housings, i.e., using the same housings in 
exactly the same way throughout and a aching the recorders to the same types of support 
in the same way across the study area. Even with these precautions, expect frequency 
shifts from the source signals in unpredictable ways. 

4.3. Choice of Acoustic Metrics 
When audio signals are altered by the frequency response of a device, and then fur-

ther modified by the housing used (e.g., bag, container), the spectral characteristics of the 
recording can differ markedly from those of the source signal. This has a knock-on effect 
on the values of a wide range of acoustic metrics that may be calculated. However, the 
effects are not uniform, and our empirical tests showed that some metrics are more robust 
against frequency changes. On the bare board AudioMoth, M, ACI, NDSI and Bio showed 
reasonable resilience, although the effects are not always linear (Figure 4). When bags 
were used, M and ACI remained among the least affected metrics. The robustness of ACI 
can be explained because it looks at the energy within a frequency bin and sums temporal 
differences in those energies. That sum is then normalised by the total energy and 
summed across bands. This means that if a gain is applied to a band, ACI will remain 
unchanged. The effect of the FRFs can be approximated as applying different gains to 
different bands, which therefore leaves ACI unchanged. RMS was also fairly robust in 
some configurations but requires calibration [35] to have more than a comparative mean-
ing. Indices such as ADI, AEI, Bio and NDSI cannot generally be recommended from re-
cordings made on AudioMoths in bags unless correction factors are employed. Again, it 
is crucial to consider the potential limitations in any field deployment carefully and to 
choose acoustic indices depending on those constraints. 

The effects reported here are in addition to the biases that can arise in the use of 
acoustic indices due to community composition and the intrusion of extraneous sounds 
[36–39]. Often, no single index is sufficient, and several will be needed to characterise an 
area [13]. Furthermore, there are limitations in the effectiveness of acoustic indices to 
quantify biodiversity, and caution is needed when using them as surrogates for biodiver-
sity metrics [40]. Our analysis has intentionally compared AudioMoth recordings with 
source signal characteristics across a wide spectrum of index values, but there are obvious 
variations in how well the data fit a 1:1 line, depending on the index value. For example, 
the middle of the range for RMS with our B1 bag (Figure 5) appeared to fit tolerably well, 
suggesting that the effects we report may not limit studies narrowly focused on particular 
index values. This is an extension of the idea that the choice of index should depend on 
the acoustic properties of the source signals expected, such as who or what is making the 
sound [38]. 

5. Conclusions 
In this experimental study, we have shown that AudioMoth recorders show a con-

sistent frequency response, at least in our sample of 10 devices. They do, however, accen-
tuate high frequencies and therefore require calibration to capture the true frequency com-
position of source signals. Unfortunately, the calibration needed is affected by plastic bag 
housings, often in unpredictable ways that appear to vary between fi ings of the same 
bag in the same way. Both the accentuation of high frequencies by the bare board Audio-
Moth and the use of housings affect the values of most acoustic metrics and ecoacoustic 
indices calculated from sound recordings. These limitations must be borne in mind when 
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planning field studies; some projects will be affected, whereas others will not. It is also 
vital that metadata accompanies any archived recordings in order to limit misleading con-
clusions that could arise from researchers re-analysing old data without knowledge of the 
way the recording devices were deployed. 

We are strong supporters of PAM, and devices such as the AudioMoth have greatly 
advanced the ability of researchers to capture environmental sounds across space, time 
and the frequency spectrum. Our goal in writing this paper has not been to criticise these 
revolutionary developments, but rather to help guide the expansion of their use into other 
fields. With careful spectral calibration (and, for some studies, calibration of sound levels), 
low-cost sensors such as the AudioMoth can be successfully used across many applica-
tions. As new enclosures come onto the market and the ability to fit external microphones 
is explored ( h ps://github.com/OpenAcousticDevices/Application-Notes/blob/mas-
ter/Using_AudioMoth_with_External_Electret_Condenser_Microphones/Using_Audio-
Moth_with_External_Electret_Condenser_Microphones.pdf (accessed on 19 August 
2023)), the range of these applications is set to grow and add to the field of environmental 
acoustics. We have explored just one way of protecting AudioMoth in the field, and the 
newer, hard casings may give different results [12]. Importantly, if it is the flexibility of 
the bag that causes unpredictable variations in spectral response, the harder casings may 
perform more consistently, and this would be advantageous. Although we have not for-
mally investigated the acoustic performance of the new proprietary housing 
(h ps://www.labmaker.org/products/audiomoth-ipx7-case (accessed on 6 August 2023)), 
preliminary trials suggest strong a enuation (up to 10 dB) below about 1.3 kHz and am-
plification above 2 kHz, but this clearly needs additional work. There is some evidence, 
however, that recordings made on AudioMoth mounted in the new housing are suffi-
ciently faithful to the original to be classified correctly by automated recognition software 
[41], which bodes well for future studies. 
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