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To fully exploit the capabilities of next-generation gravitational wave detectors, we need to
significantly improve the accuracy of our models of gravitational-wave-emitting systems. This paper
focuses on one way of doing so: by taking black hole perturbation theory to second perturbative
order. Such calculations are critical for the development of nonlinear ringdown models and of
gravitational self-force models of extreme-mass-ratio inspirals. In the most astrophysically realistic
case of a Kerr background, a second-order Teukolsky equation presents the most viable avenue for
calculating second-order perturbations. Motivated by this, we analyse two second-order Teukolsky
formalisms and advocate for the one that is well-behaved for gravitational self-force calculations
and which meshes naturally with recent metric reconstruction methods due to Green, Hollands, and
Zimmerman [CQG 37, 075001 (2020)] and others. Our main result is an expression for the nonlinear
source term in the second-order field equation; we make this available, along with other useful tools,
in an accompanying Mathematica notebook. Using our expression for the source, we also show
that infrared divergences at second order can be evaded by adopting a Bondi–Sachs gauge.

I. INTRODUCTION

A. Black hole perturbation theory beyond linear
order

Exact solutions of the Einstein field equations are few
and far between. The most astrophysically relevant ex-
act solutions, the Schwarzschild and Kerr spacetimes,
describe the simplest systems of isolated, stationary bod-
ies. To model dynamical spacetimes, particularly the
types observable by gravitational wave detectors, one
must generally resort to either numerically solving the
fully nonlinear field equations [1] or using approximation
methods [2]. One such method, black hole perturbation
theory [3], approximates systems that closely resemble
an isolated black hole. Since its inception, the develop-
ment of this method has largely focused on perturbations
at the leading, linear order. This has sufficed for most
purposes; linear calculations are used in LIGO–Virgo–
KAGRA templates [4–6] to calibrate models of the final
merger and subsequent ringdown at the end of an inspiral,
for example.
However, in the future, perturbative models must be

substantially improved. Next-generation detectors will
have improved sensitivity and broader frequency coverage,
allowing them to observe a wider variety of systems with
greater precision, but only if the accuracy of theoretical
models keeps pace with detector technology [7]. Meeting
the needs of next-generation detectors requires going to
nonlinear perturbative orders [3, 8, 9]. In this paper, we
take a step toward that goal, presenting new tools in
second-order perturbation theory.
We specifically focus on the astrophysically realistic

case of a perturbed Kerr black hole. This is expected
to universally describe the final stage of a black hole
binary, when the merged black holes ring down to a sta-
tionary Kerr state. It can also be remarkably accurate
in describing the merger itself [10, 11]. Recent work on
second-order perturbations of Kerr has been motivated
by these facts, particularly the desire for improved mod-
els of the final ringdown and the possible signatures of
nonlinearity it may contain [9, 12–17]. Here we are moti-
vated more by another important source of gravitational
waves: extreme-mass-ratio inspirals (EMRIs). These sys-
tems occur in galactic nuclei when a stellar object of
mass m ∼ 1–100M�, such as a black hole or neutron
star, slowly spirals into a massive black hole of mass
M ∼ 104–107M� [18]. Due to the disparity between the
two masses, the system is accurately described as a Kerr
black hole perturbed by the orbiting companion [19].
EMRIs are expected to be one of the premier sources

for the space-based gravitational-wave detector LISA [20–
22]. While the EMRI event rate is uncertain, current
estimates suggest that hundreds of detectable EMRIs will
likely occur during the LISA mission’s lifetime [21]. Each
EMRI signal will be in the LISA band for ∼ 104–105 wave
cycles, with the companion spending most or all of that
time in the strong-field region within 10 Schwarzschild
radii of the central black hole. The emitted waveforms
will therefore carry unique information about the strong-
field regime of general relativity and the astrophysics
of massive black holes. For a review of the stringent
tests of general relativity, astrophysical measurements,
and precise parameter extraction possible with EMRI
observations, see [21–26].

Most of these tests will only be possible using matched
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filtering with highly accurate waveform templates that
maintain phase coherence with the signal for its full ∼ 105

cycles. Currently, the only viable path to achieving such
accuracy is using gravitational self-force (GSF) theory [3,
19]. In the context of a binary, this approach corresponds
to an expansion in the binary’s mass ratio ε := m/M � 1.
At leading order in the expansion, the companion behaves
as a test mass, following a geodesic of the central black
hole geometry. At subleading orders, the perturbation
produced by the companion influences the companion’s
own motion, effectively exerting a GSF on it.
On the long timescale of an inspiral, the GSF’s domi-

nant effects are dissipative. It has been known for some
time that to achieve the necessary phase accuracy, the
GSF method must include second-order dissipative ef-
fects [27]. Ref. [8] showed this with a rigorous scaling
argument, establishing that on the characteristic time
t ∼M/ε over which the orbit inspirals, the gravitational-
wave phase has the following post-adiabatic expansion in
ε:

ϕ(t, ε) = 1
ε
ϕ(0)(εt) + ϕ(1)(εt) +O(ε), (1)

where the “adiabatic” (0PA) term ϕ(0) is dependent on
the dissipative piece of the first-order GSF, and the “first
post-adiabatic” (1PA) term ϕ(1) is dependent on the dis-
sipative piece of the second-order GSF and the entire
first-order GSF [3, 8]. Hence, to ensure that cumulative
phase errors remain small over the inspiral, we must know
the dissipative piece of the second-order GSF. In fact,
existing work on the conservative piece of the first-order
GSF, which has been the focus of the GSF community,
will likely not be of use in LISA data analysis if the dis-
sipative second-order GSF is not also included, as they
have comparable impacts on the phase evolution.

Going to second order in perturbation theory brings a
new set of challenges. While the general formalism for
nth-order perturbations of generic background spacetimes
is well understood [28–31], concrete methods in particular
spacetimes of interest are less well developed. Much of
the work in nonlinear perturbation theory has focused on
perturbations of cosmological spacetimes [32–40] or of flat
spacetime, either in post-Minkowskian or post-Newtonian
contexts [2, 41, 42], where calculations have been car-
ried to high orders [42–45]. In the context of black hole
perturbation theory, there are practical formulations of
second-order perturbations of Schwarzschild spacetime,
along with concrete calculations in some specific scenar-
ios [46–58]. But much of this work has been restricted to
vacuum perturbations and excluded certain perturbation
modes. In the astrophysically realistic case of a spinning,
Kerr black hole, substantially less has been done. After
an early formulation by Campanelli and Lousto [59], there
has been very little work on the subject prior to a recent
spate of papers by Green, Hollands, and Zimmerman
(GHZ) [12] and Loutrel and collaborators [9, 13].

Several key features of linear perturbation theory in
Kerr do not extend to second order. At first order, the

Teukolsky equation [60, 61] enables one to solve a single,
fully separable field equation for a gauge-invariant variable
(either of the Weyl scalars ψ0 or ψ4). In vacuum regions,
the Weyl scalar carries almost the entire information
about the metric [62], and there is also a well-developed
method of reconstructing the metric perturbation from
the Weyl scalar due to Chrzanowski [63] and Cohen and
Kegeles [64] (CCK). At second order, the Weyl scalars are
sourced by nonlinear combinations of the full first-order
metric perturbation; they are no longer invariant [59]; and
even in vacuum regions, obtaining the second-order metric
perturbation from them is highly nontrivial [12, 65].
GSF theory in this setting comes with more distinct

difficulties. There is now a large body of work on second-
order GSF theory in generic vacuum backgrounds [27, 66–
75]. A complete computational framework has been de-
veloped for the special case of quasicircular orbits in
Schwarzschild spacetime [58, 76–78], and concrete results
have been obtained in that restricted case [57, 79, 80].
However, astrophysically realistic EMRI models will re-
quire such calculations in a Kerr background, as massive
black holes are expected to have significant spin.

Currently, no second-order GSF calculations have been
performed in a Kerr background, and methods for such a
calculation are fledgling. In this paper, along with two se-
quel papers [81, 82], we begin to develop a framework for
these calculations. The core of our formulation, and the
focus of the present paper, is a linear equation for a cer-
tain second-order Teukolsky variable. This equation has
appeared previously [12, 83], and this paper partly serves
simply to flesh out the basic analyses that were summa-
rized in Ref. [83]. But no reference, to our knowledge, has
presented an explicit expression for the nonlinear source
term in this second-order field equation, which is con-
structed from quadratic combinations of the first-order
metric perturbation. Here we provide that expression,
along with tools for working with it, in a supplemental
Mathematica notebook [84]. The notebook was built
upon an existing notebook, Ref. [85], and uses the tensor-
calculus package xAct [86] (including the sub-packages
xPert [87] and Spinors [88]). We also outline how this
second-order Teukolsky formalism can be used in GSF
calculations and some advantages it has over the earlier
Campanelli–Lousto formulation that involved a slightly
different field variable.
We expect our formalism to provide the basis for fu-

ture second-order GSF calculations, and our discussion
focuses on that application. However, our techniques are
also applicable to any other second-order perturbative
calculation in Kerr spacetime, particularly to nonlinear
ringdown calculations.

B. Outline

We begin in Sec. II with a review of perturbation theory
and GSF theory in Kerr. We include a large portion of
review material partly because many readers might be un-
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familiar with second-order perturbation theory and partly
as a necessary guide to the accompanying Mathematica
notebook [84].
Sections III and IV then examine two second-order

Teukolsky formulations. We first review Campanelli and
Lousto’s second-order Teukolsky equation [59] and ex-
amine its utility for second-order GSF calculations. We
show it generically has an ill-defined source term, but
we suggest two potential ways around that. We then
explore an alternative that we call the reduced second-
order Teukolsky equation. Unlike the Campanelli–Lousto
equation, the reduced equation has a distributionally well-
defined source term in the GSF problem. We also describe
how the reduced formulation dovetails with the GHZ
metric-reconstruction formalism [12] (as well as other
recently developed reconstruction methods [89–93]) and
how both connect with the Teukolsky puncture/effective-
source scheme developed in Ref. [65].
In Sec. V, we next examine the asymptotic properties

of the source of the reduced second-order Teukolsky equa-
tion and comment on how the infrared divergences that
generically arise in second-order GSF calculations [94] can
be avoided by imposing Bondi-type gauge conditions. One
of the sequel papers [81] will describe how to incorporate
those gauge conditions into our framework.

We conclude in Sec. VI by summarizing how this paper
sets the stage for several follow-ups, including the two
sequels mentioned above as well as a framework and imple-
mentation specialized to Schwarzschild spacetime [77, 95].

Throughout this paper, we use lowercase Latin letters to
denote abstract indices and Greek letters α, β ∈ {0, 1, 2, 3}
to denote components in a coordinate basis. Greek indices
in square brackets denote components in a tetrad basis.
We adopt the (−+ ++) metric signature and geometric
units with G = c = 1. (t, r, θ, φ) denote Boyer-Lindquist
coordinates.

II. BLACK HOLE PERTURBATION THEORY

In this summary of black hole perturbation theory,
we review the generic structure of perturbation theory
in general relativity; Newman–Penrose (NP), first-order
Teukolsky, and metric-reconstruction formalisms; and the
applications of these things in GSF theory. We refer to
Refs. [3, 19] for a more thorough review. Readers familiar
with this review material can skip freely to Sec. III.

A. Perturbation theory in general relativity

We consider a one-parameter family of spacetimes with
metrics gab(ε). In the bulk of the paper ε may be any
small parameter, although we will take it to be the mass
ratio when specializing to a binary system.

We assume tensors Ab1...bn
a1...am

on this family admit series

expansions in powers of ε,

Ab1···bn
a1···am

= A
(0)b1···bn
a1···am + εA

(1)b1···bn
a1···am

+ ε2A
(2)b1···bn
a1···am + . . . (2)

In particular, we expand the metric and stress-energy
tensor as

gab = g
(0)
ab + εh

(1)
ab + ε2h

(2)
ab + . . .+ εnh

(n)
ab + . . . , (3)

Tab = T
(0)
ab + εT

(1)
ab + ε2T

(2)
ab + . . .+ εnT

(n)
ab + . . . (4)

We then expand the Einstein equation,

Gab[gab] = 8πTab, (5)

to obtain field equations for the successive terms in
Eq. (3).

The structure of the field equations is made clearer by
first expanding the Einstein tensor in powers of the total
metric perturbation hab := gab − g(0)

ab :

Gab[gab] = Gab[g(0)
ab ] + δGab[hab] + δ2Gab[hab, hab]

+ . . .+ δnGab[hab, . . . , hab] + . . . , (6)

where δGab is the linearised Einstein tensor, δ2Gab is
quadratic in hab, and so on; each of the operators δnGab
is linear in each of its n arguments. We omit the textbook
expression for δGab, but for easy reference, we include
here the expression for the quadratic Ricci tensor,

δ2Rab = −1
2 h̄

cd
;d(2hc(a;b) − hab;c)

+ 1
4h

cd
;ahcd;b + 1

2h
c
b
;d(hca;d − hda;c)

− 1
2h

cd(2hc(a;b)d − hab;cd − hcd;ab). (7)

δ2Gab then comprises the quadratic terms in the trace
reversal of Rab,

δ2Gab = δ2Rab −
1
2g

(0)
ab g

(0)cdδ2Rcd

− 1
2

(
habg

(0)cd − g(0)
ab h

cd
)
δRcd. (8)

Here indices are raised and lowered with the back-
ground metric, a semicolon denotes covariant differen-
tiation compatible with the background metric, and
h̄ab := hab − 1

2g
(0)
ab g

(0)cdhcd.
If we substitute the expansion of hab in powers of ε into

Eq. (6), the Einstein equation becomes

Gab[g(0)
ab ] + εδGab[h(1)

ab ] + ε2
(
δGab[h(2)

ab ] + δ2Gab[h(1)
ab ]
)

= 8π
(
T

(0)
ab + εT

(1)
ab + ε2T

(2)
ab

)
+O(ε3). (9)

Equating coefficients of powers of ε then yields a nonlinear
equation for the background metric, Gab[g(0)

ab ] = 8πT (0)
ab ,
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together with a sequence of linear equations for the per-
turbations h(n)

ab ,

δGab[h(1)
ab ] = 8πT (1)

ab , (10)

δGab[h(2)
ab ] = 8πT (2)

ab − δ
2Gab[h(1)

ab , h
(1)
ab ], (11)

δGab[h(3)
ab ] = . . . (12)

For a vacuum background such as Kerr, we have

Gab[g(0)
ab ] = T

(0)
ab = 0. (13)

In principle, perturbation theory then boils down to solv-
ing the sequence of linear equations for each successive
h

(n)
ab (together with any equations governing the matter

fields in the system). These equations have the same
left-hand side at every order; their only difference is their
source terms on the right-hand side, which involve non-
linear combinations of lower-order metric perturbations.
While conceptually simple, solving these linear equa-

tions in a Kerr background is challenging (and numeri-
cally expensive) because each of them comprises a non-
separable set of coupled partial differential equations.1
Given this challenge, instead of tackling the equations
directly, at first order, one generally solves the linearized
Einstein equation indirectly by reconstructing h(1)

ab from
a single complex scalar that satisfies the (fully separable)
Teukolsky equation. We review these metric reconstruc-
tion methods in Sec. II E. The derivations of the Teukolsky
equation and metric reconstruction generally rely on using
the NP formalism, which we review next.

B. Newman–Penrose formalism

The NP formalism utilizes an orthonormal basis of null
vectors,

ea[µ] = {ea[1], e
a
[2], e

a
[3], e

a
[4]} := {la, na,ma, m̄a}, (14)

chosen such that la and na are real and ma is complex
(with a bar denoting complex conjugation). They satisfy
the orthonormality conditions

lana = −1, mam̄a = 1, (15)

and gabe
a
[µ]e

b
[ν] = 0 for all other combinations of tetrad

legs. The metric in this basis therefore reads

gab = −2l(anb) + 2m(am̄b), (16)

1 As a consequence of Kerr’s axisymmetry and stationarity, one can
partially separate the equations by expanding the components
h

(n)
αβ

in modes h(nmω)
αβ

(r, θ)ei(mφ−ωt), leading to two-dimensional

elliptic equations for each of the coefficients h(nmω)
αβ

. This route
is being actively explored [96].

where parentheses denote symmetrization.
In the NP formalism, the connection is represented

using Ricci rotation coefficients,

γ[µ][α][β] := ek[µ]e[α]k;ie
i
[β]. (17)

The independent components of the Ricci rotation coeffi-
cients are denoted using complex scalars,

κ = −γ[3][1][1], τ = −γ[3][1][2], σ = −γ[3][1][3],

ρ = −γ[3][1][4], π = −γ[2][4][1], ν = −γ[2][4][2],

µ = −γ[2][4][3], λ = −γ[2][4][4],

ε = −
γ[2][1][1] + γ[3][4][1]

2 , γ = −
γ[2][1][2] + γ[3][4][2]

2 ,

β = −
γ[2][1][3] + γ[3][4][3]

2 , α = −
γ[2][1][4] + γ[3][4][4]

2 ,

(18)

known as spin coefficients.
The covariant derivatives along tetrad vectors are writ-

ten as operators D,∆, δ, and δ̄, which are defined as

D := la∇a, ∆ := na∇a, δ := ma∇a, δ̄ := m̄a∇a. (19)

We use boldface symbols for these directional derivatives
to distinguish them from δ (denoting functional deriva-
tives as in the preceding section) and ∆ (denoting a gauge
transformation as in the next section). It will be useful
to also define

d̄3 := δ̄ − τ̄ + β̄ + 3α+ 4π, (20)
d̄4 := ∆ + 3γ − γ̄ + 4µ+ µ̄, (21)

following the notation of Ref. [59].
In the NP formalism, one expresses the vacuum curva-

ture by defining Weyl scalars, five complex scalars that
represent the ten degrees of freedom of the Weyl tensor
Cabcd:

ψ0 = Cabcdl
amblcmd, (22)

ψ1 = Cabcdl
amblcnd, (23)

ψ2 = Cabcdl
ambm̄cnd, (24)

ψ3 = Cabcdl
anbm̄cnd, (25)

ψ4 = Cabcdn
am̄bncm̄d. (26)

All of the above is generic; it applies for any metric,
whether the background or the exact spacetime. For our
one-parameter family of spacetimes, each NP quantity is
expanded in powers of ε, starting with the tetrad itself:

ea[µ] → e
(0)a
[µ] + εe

(1)a
[µ] +O(ε2). (27)

When using the NP formalism to describe perturbed
quantities, we will only rarely write any exact quantity.
We, therefore, simplify the notation by dropping the (0)
label on background quantities. For example, rather
than using ea[µ] to denote the exact tetrad, we use it to
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denote e(0)a
[µ] ; this is the reason for the arrow, instead

of an equality, in Eq. (27). We express the first-order
tetrad perturbations and spin coefficients in terms of h(1)

ab
in Appendix A (while noting that such expressions are
necessarily not unique because of the freedom to rotate
the tetrad, reviewed below).

If the zeroth-order tetrad legs la and na are chosen to
lie along the principal null directions of Kerr, four of the
Weyl scalars and four of the NP spin coefficients are made
to vanish at zeroth order [97]:

ψ0 = 0, ψ1 = 0, ψ3 = 0, ψ4 = 0 (28)
κ = 0, λ = 0, ν = 0, σ = 0. (29)

We will always make this choice, aligning la with the
outgoing principle null direction and na with the ingoing
one. ε can also be made to vanish by further specializing
to the Kinnersley tetrad [98].
Beyond zeroth order, our main quantities of inter-

est are the perturbations of ψ0 and ψ4. At linear or-
der, these are independent of the tetrad perturbations;
this follows from the fact that Cabcdδ(lamblcmd) = 0 =
Cabcdδ(nam̄bncm̄d) [99], such that the definitions (22) and
(26) imply

ψ
(1)
4 = δψ4[h(1)

ab ] = δCabcd[h(1)
ab ]nam̄bncm̄d (30)

and analogously for ψ(1)
0 . Appealing to the same identities,

we see that the second-order analogue of Eq. (30) has the
more complicated structure

ψ
(2)
4 = δψ4[h(2)

ab ] + δ2ψ4
[
h

(1)
ab , e

(1)a
[µ]
]
, (31)

where the second term is quadratic in h(1)
ab and e(1)a

[µ] (and
is not bilinear in its two arguments). This structure of
ψ

(2)
4 will be important for our discussions in Sec. (IV).
For later reference, we write the linear operator in

Eqs. (30) and (31) as

T := δψ4[·] (32)

and include here its explicit NP form,

T ab = −1
2

{
(δ̄ − τ̄ + 3α+ β̄)(δ̄ − τ̄ + 2α+ 2β̄)nanb

+ (∆ + µ̄+ 3γ − γ̄)(∆ + µ̄+ 2γ − 2γ̄)m̄am̄b

−
[
(∆ + µ̄+ 3γ − γ̄)(δ̄ − 2τ̄ + 2α)

+ (δ̄ − τ̄ + 3α+ β̄)(∆ + 2µ̄+ 2γ)
]
n(am̄b)

}
. (33)

Following Ref. [59], we also write Eq. (31) as

ψ
(2)
4 = ψ

(2)
4L + ψ

(2)
4Q, (34)

where ψ(2)
4L := T [h(1)

ab ] and ψ(2)
4Q := δ2ψ4[h(1)

ab , e
(1)a
[µ] ]. ψ(2)

4Q
is given in NP form in Eq. (B3) of Ref. [59] as well as in
the supplemental Mathematica notebook [84].

In this section and throughout the body of the paper,
we use standard NP quantities. The accompanying Math-
ematica notebook [84] also presents results in terms of
the refined NP formalism due to Geroch, Held, and Pen-
rose (GHP) [100]. We summarize that reformulation in
Appendix B.

C. Gauge transformations and infinitesimal tetrad
rotations

Perturbation theory in the NP formalism has two types
of perturbative gauge freedom: one corresponding to
changes in the identification between points in the exact
spacetime and points in the background; and one cor-
responding to near-identity rotations of the tetrad. To
avoid ambiguity, we refer to a change of identification as a
gauge transformation, and we refer to a change of tetrad
as an infinitesimal tetrad rotation.
Gauge transformations are equivalent to near-identity

coordinate transformations. For a generic expansion of
the form (2), a gauge transformation leaves the zeroth-
order term unchanged while altering the subleading terms
as A(n)b1···bn

a1···am → A
(n)b1···bn
a1···am + ∆A(n)b1···bn

a1···am , where

∆A(1)b1···bn
a1···am = Lξc

(1)
A

(0)b1···bn
a1···am , (35)

∆A(2)b1···bn
a1···am = Lξc

(2)
A

(0)b1···bn
a1···am + 1

2Lξ
c
(1)
Lξc

(1)
A

(0)b1···bn
a1···am

+ Lξc
(1)
A

(1)b1···bn
a1···am . (36)

For a derivation of this, see Ref. [30] or Sec. IVA of
Ref. [73]. Here L denotes a Lie derivative, and the vec-
tor fields ξa(n) are referred to as the generators of the
transformation.

Applied to the perturbations h(n)
ab and T (n)

ab , the general
rules (35) and (36) become

∆h(1)
ab = Lξc

(1)
g

(0)
ab , (37)

∆h(2)
ab = Lξc

(2)
g

(0)
ab + 1

2L
2
ξc

(1)
g

(0)
ab + Lξc

(1)
h

(1)
ab , (38)

and

∆T (1)
ab = 0, (39)

∆T (2)
ab = Lξc

(1)
T

(1)
ab , (40)

where we have specialized to a vacuum background with
T

(0)
ab = 0.
The perturbative Einstein equations (10) and (11) (and

their analogues at all higher orders) are invariant under a
generic gauge transformation. This is easily seen by mov-
ing all curvature terms to the left-hand side while noting
δGab[h(1)

ab ] = G
(1)
ab and (δGab[h(1)

ab ] + δ2Gab[h(1)
ab , h

(1)
ab ]) =

G
(2)
ab . The invariance then follows from Eqs. (35) and (36),

so long as the field equations are satisfied in the original
gauge. For example, at first order:

∆G(1)
ab = Lξc

(1)
G

(0)
ab = 8πLξc

(1)
T

(0)
ab = 8π∆T (1)

ab . (41)



6

In a vacuum background, we also have the stronger state-
ment that each side of the first-order Einstein equa-
tion (10) is separately invariant; this follows immedi-
ately from the vanishing of the zeroth-order fields G(0)

ab

and T (0)
ab . Because ∆G(1)

ab is also given by δGab[∆h(1)
ab ] =

δGab[Lξcg
(0)
ab ], its vanishing also implies the standard iden-

tity

δGab[Lξcg
(0)
ab ] = 0 (42)

for any ξc. But at second order, while the Einstein equa-
tion (11) is still invariant, each separate side is not. Using
Eqs. (38) and (42), we see the left-hand side transforms
as

∆δGab[h(2)
ab ] = δGab[∆h(2)

ab ]

= δGab

[
1
2Lξc

(1)
Lξc

(1)
g

(0)
ab + Lξc

(1)
h

(1)
ab

]
. (43)

From the invariance of the equation as a whole, the right-
hand side transforms in the same way,

∆
(

8πT (2)
ab − δ

2Gab[h(1)
ab ]
)

= δGab[∆h(2)
ab ]. (44)

This gauge dependence will be important in later sections.
We now turn to infinitesimal tetrad rotations, which cor-

respond to near-identity Lorentz transformations (boosts
or spatial rotations) of the tetrad legs. Under such a trans-
formation, the zeroth-order legs are unchanged, while the
perturbations e(n)a

[µ] are transformed. We will only require
the first-order tetrad perturbations, which transform as

e
(1)a
[µ] → e

(1)a
[µ] +B[µ]

[ν]ea[ν], (45)

where B[µ][ν] is an arbitrary antisymmetric matrix. Here
frame indices are raised with the inverse of the Minkowski
metric η[µ][ν] = g

(0)
ab e

a
[µ]e

b
[ν]. Following our convention

discussed in the previous section, ea[µ] denotes the zeroth-
order tetrad legs.
In a Kerr background (except in the Schwarzschild

limit), ψ(n)
2 can be set to zero at all perturbative orders

through a gauge transformation. At first order, for exam-
ple, it transforms as

∆ψ(1)
2 = Lξc

(1)
ψ2 = ξr(1)∂rψ2 + ξθ(1)∂θψ2; (46)

since ψ2 and ψ
(1)
2 are complex (except when the Kerr

spin parameter vanishes), this implies we can set ψ(1)
2 to

zero by solving ∆ψ(1)
2 = −ψ(1)

2 for the two components
ξr(1) and ξθ(1). We can likewise set ψ(n)

2 = 0 through
appropriate choices of ξr(n) and ξθ(n). Similarly, the Weyl
scalars ψ(n)

1 and ψ(n)
3 can always be set to zero through

an infinitesimal tetrad rotation. Therefore, at all orders,
ψ

(n)
0 and ψ(n)

4 are the only Weyl scalars that carry gauge-
and tetrad-invariant information.

Moreover, at first order, the Weyl scalars ψ(1)
0 and ψ(1)

4
are both gauge and tetrad invariant. They are trivially in-
variant under infinitesimal tetrad rotations because, from
Eq. (30), they are independent of the tetrad perturba-
tions e(1)a

[µ] . They are trivially gauge invariant by virtue
of Eq. (35) because the background scalars ψ0 and ψ4

vanish. Just as the invariance of G(1)
ab implied Eq. (42),

the gauge invariance of ψ(1)
0 and ψ(1)

4 implies

δψ0[Lξcg
(0)
ab ] = 0 = δψ4[Lξcg

(0)
ab ] (47)

for all vectors ξc.
On the other hand, the second-order perturbations ψ(2)

0
and ψ

(2)
4 are neither gauge invariant nor infinitesimal-

tetrad-rotation invariant [59]. We review their transfor-
mation properties in Sec. III B below.

D. First-order Teukolsky equation

In first-order perturbation theory, the invariant Weyl
scalars ψ(1)

0 and ψ
(1)
4 satisfy decoupled, fully separable

Teukolsky equations [61, 97]. These equations are most
easily derived from the Penrose wave equation [101],2

�Cabcd − 4Caef [cCd]
f
b
e + CabefC

ef
cd = Sabcd, (48)

which is itself a consequence of the Ricci identity and
Bianchi identities. Here � := gab∇a∇b, Sabcd is made
up of terms involving the stress-energy tensor, and all
quantities are constructed from the exact metric (as op-
posed to the background metric). Contracting Eq. (48)
with appropriate tetrad legs and linearizing, one finds the
Teukolsky equations for ψ(1)

0 and ψ
(1)
4 . We write these

equations concisely as

O′ψ(1)
0 = 8πS ′[T (1)

ab ], (49)

Oψ(1)
4 = 8πS[T (1)

ab ], (50)

where O, S, and their primed versions are second-order
linear differential operators; the prime here denotes the
GHP operation (la ↔ na,ma ↔ m̄a) explained in Ap-
pendix B.

One can work with either of the variables ψ(1)
0 or ψ(1)

4 .
Here we focus on ψ(1)

4 , in which case the differential oper-
ators in the Teukolsky equation are given by

O = (∆ + 3γ − γ̄ + 4µ+ µ̄)(D + 4ε− ρ)
− (δ̄ − τ̄ + β̄ + 3α+ 4π)(δ − τ + 4β)− 3ψ2 (51)

2 The original derivation due to Teukolsky instead began from
a selection of perturbed Bianchi and Ricci identities in NP
form [61, 97]. That derivation is reproduced in the accompa-
nying Mathematica notebook [84].
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and

Sab = 1
2 d̄

(0)
4

[
(δ̄ − 2τ̄ + 2α)n(am̄b)

− (∆ + 2γ − 2γ̄ + µ̄)m̄am̄b
]

+ 1
2 d̄

(0)
3

[
(∆ + 2γ + 2µ̄)n(am̄b)

− (δ̄ − τ̄ + 2β̄ + 2α)nanb
]
, (52)

where all quantities here are zeroth order, and d̄(0)
3 and

d̄
(0)
4 are the zeroth-order versions of the operators in

Eqs. (20) and (21). We have restored indices on S to
indicate that it acts on rank-2 tensors to return scalars
(i.e., S[Tab] := SabTab).

Equations (49) and (50) can be written in a common,
separable form known as the Teukolsky master equation,

sÔsψ = sS, (53)

where the left subscript indicates spin weight, and where
sÔ is given explicitly in Eq. (4.7) of Ref. [61]. The re-
lationship between the master scalars sψ and the Weyl
scalars depends on the choice of background tetrad [3].
In the Kinnersley tetrad, 2ψ = ψ

(1)
0 , and Eq. (53) for

s = 2 is identical to Eq. (49); while −2ψ = ρ−4ψ
(1)
4 , and

Eq. (53) for s = −2 reads

−2Ô[ρ−4ψ
(1)
4 ] = 16πΣρ−4S[T (1)

ab ], (54)

where Σ = r2 + a2 cos2 θ and −2Ô is related to O by
−2Ô = 2Σρ−4Oρ4. The equations (49) and (50) may
not be manifestly separable, but Eq. (53) is immediately
separable in a basis of spin-weighted spheroidal harmonics
sS`mω. For example, Eq. (54) is separated with the ansatz

ρ−4ψ
(1)
4 =

∫
dω
∑
`m

−2ψ
(1)
`mω(r)−2S`mω(θ)eimφ−iωt. (55)

This reduces Eq. (54) to an ordinary differential equation
for each radial coefficient −2ψ

(1)
`mω.

E. Metric reconstruction

ψ
(1)
0 and ψ(1)

4 directly encode the gravitational waves
emitted to future null infinity (I +) [61] and into the
primary black hole horizon [102]. Moreover, in vacuum,
each of them contains all the information about the metric
perturbation h

(1)
ab (up to trivial perturbations towards

other Kerr solutions) [62]. As recently shown by GHZ [12],
even in nonvacuum ψ

(1)
0 and ψ(1)

4 each contain “most” of
the information in h(1)

ab . Metric reconstruction methods
are a realisation of this fact, allowing one to reconstruct
any perturbation h(1)

ab from its corresponding ψ(1)
0 or ψ(1)

4
(along with a few other simple ingredients described below,

and again excluding trivial perturbations). We again focus
on schemes that begin from ψ

(1)
4 .

For vacuum perturbations, the standard CCK recon-
struction method [63, 64, 103] begins with Wald’s operator
identity [104]

OT = SE , (56)

where O, T , and S are the operators defined in Eqs. (51),
(33), and (52), and E is the linearized Einstein operator,

E := δGab[·]. (57)

Equation (56) is simply the statement that the linear
Teukolsky equation (50), written in index-free form as

OT [h(1)
ab ] = SE [h(1)

ab ], (58)

is valid for any h(1)
ab . Taking the adjoint of Eq. (56) gives

us another operator identity,

T †O† = ES†, (59)

where we have used the fact that E is self-adjoint. It
follows that if we can find a scalar field Φ(1) satisfying
O†Φ(1) = 0, then

h
(1)
ab = 2Re(S†abΦ

(1)) (60)

is a solution to the vacuum Einstein equation Eab[h(1)
ab ] = 0.

The structure of S in Eq. (52) immediately implies that
the reconstructed metric perturbation is in a traceless
outgoing radiation gauge (ORG), satisfying h(1)

ab n
b = 0 =

h
(1)
ab g

ab.3 The field Φ(1), referred to as the ORG Hertz
potential, can be obtained from ψ

(1)
4 using the circular-

ity condition ψ
(1)
4 = T [h(1)

ab ] = 2T [Re(S†Φ(1))], which
enforces that the reconstructed perturbation h

(1)
ab cor-

responds to the original Weyl scalar. This circularity
condition can be reduced to a so-called radial inversion re-
lation, a fourth-order ordinary differential equation along
ingoing null rays, given in Eq. (C6). In vacuum, the in-
version relation can effectively be solved algebraically by
simultaneously imposing O†Φ(1) = 0 [106, 107].
More recently, GHZ extended the CCK method to

nonvacuum perturbations [12]. In brief, they showed that
the CCK procedure remains valid for any perturbation
of Kerr with T (1)

lµ = 0. They then provided a method for
calculating a so-called corrector tensor, x(1)

ab , to account

3 Despite being defined from the ingoing principal null vector, CCK
reconstruction in this gauge yields a solution that is regular
at I +for outgoing radiation. Conversely, CCK reconstruction
defined from the outgoing null vector la yields a solution that is
regular for ingoing radiation. See Ref. [105].
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for the T (1)
lµ 6= 0 piece of the source. The total metric

perturbation is hence4

h
(1)
ab = 2Re(S†abΦ

(1)) + x
(1)
ab . (62)

Φ can still be found from ψ
(1)
4 by integrating the same

radial inversion relation (C6). If x(1)
ab is put in a trace-

ful outgoing radiation gauge, meaning x
(1)
ab n

b = 0 but
x

(1)
mm̄ 6= 0, then the field equation Eab[x(1)

ab ]nb = 8πT (1)
ab n

b

also reduces to a set of ordinary differential equations
along ingoing null rays. Therefore, the complete met-
ric perturbation can be found by solving the Teukolsky
equation for ψ(1)

4 and integrating the ordinary differential
equations for Φ(1) and x(1)

ab . We refer to Appendix C for
additional details.
These methods work in the same way if starting from

ψ
(1)
0 and its associated operators O′, T ′, and S ′ (using

the GHP prime notation described in Appendix B). The
resulting metric perturbation then satisfies the ingoing
radiation gauge (IRG) condition h(1)

ab l
b = 0, and the piece

obtained from the IRG Hertz potential is again traceless.
The IRG Hertz potential can be obtained from ψ

(1)
0 by

solving a fourth-order ordinary differential equation along
outgoing null rays, given in Eq. (C2).5 Likewise, the
field equation for the IRG corrector tensor, Eab[x(1)

ab ]lb =
8πT (1)

ab l
b, reduces to ordinary differential equations along

outgoing null rays.
Other, similar nonvacuum reconstruction methods are

also now becoming available, either in the Aksteiner–
Andersson–Bäckdahl gauge [77, 89, 92] or in the Lorenz
gauge [90, 91, 93]. The emergence of all these methods
partially motivates our choice of preferred second-order
formalism in this paper.

4 This can be modified by the addition of trivial perturbations
toward another Kerr solution, which we choose to absorb into
the background metric. Note, however, that x(1)

ab
will include

perturbations of that form in any vacuum region if there is a
change in mass or angular momentum between two regions. For
example, in the case of a point mass at radial position rp(t), x(1)

ab
will include perturbations of the form(

δM
∂g

(0)
ab

∂M
+ δJ

∂g
(0)
ab

∂J

)
θ(r − rp), (61)

where δM and δJ are the particle’s orbital energy and angular
momentum, and θ is a step function [65]. Due to the presence of
the step function, these are not trivial vacuum perturbations and
cannot be absorbed into the background metric.

5 One can alternatively use “angular inversion relations” to obtain
the ORG Hertz potential from ψ

(1)
0 and the IRG Hertz potential

from ψ
(1)
4 . See Table I in Ref. [105] or Eqs. (68) and (71) in

Ref. [3].

F. Self-force theory

At least through second order in perturbation theory,
GSF theory can be reduced to solving the perturbative
Einstein equations (10) and (11) with T (1)

ab and T (2)
ab ex-

tracted from the first- and second-order terms in the
expansion of the Detweiler stress-energy tensor [67, 75],

Tab = m

∫
γ

ũaũbδ̃
4(x, xp(τ̃))dτ̃ . (63)

This represents a point mass m moving on a worldline
γ (with coordinates xαp ) in a certain effective vacuum
spacetime

g̃ab = g
(0)
ab + εh

R(1)
ab + ε2h

R(2)
ab + . . . , (64)

where hR(n)
ab is a certain regular (smooth) piece of h(n)

ab . In
Tab, τ̃ is the proper time in that metric, the four-velocity
has components ũα = g̃αβdx

β
p/dτ̃ , and the covariant delta

function written in coordinate form is

δ̃4(x, xp(τ̃)) =
δ4(xα − xαp (τ̃))√
−det(g̃µν)

. (65)

The particle’s trajectory γ satisfies the geodesic equation
in the effective metric,

ũb∇̃bũa = O(ε3). (66)

When written in terms of background proper time τ and
the background derivative ∇a, this becomes [73]

ub∇bua = −1
2P

ab
(
gb
c − hR c

b

) (
2hR

c(d;e) − h
R
de;c

)
udue

+O(ε3), (67)

where uα = dxαp /dτ , P ab := (gab + uaub), and hR
ab :=

εh
R(1)
ab + ε2h

R(2)
ab .

At first order, most commonly, one solves directly for
the retarded field h(1)

ab with the point-mass source T (1)
ab and

then extracts hR(1)
ab through subtraction of an appropriate

singular piece [19, 108]. At second order, no analogous cal-
culation has been attempted due to the extreme singular-
ities that appear on γ in the source term δ2Gab[h(1)

ab , h
(1)
ab ].

Because of these, a mathematically meaningful form of
the field equation for the physical field h(2)

ab , valid on the
entire domain including γ, was only recently derived [75],
and it has not yet been cast in a practical form for compu-
tations. Instead, second-order GSF theory has generally
been formulated, and always been implemented, using a
puncture scheme. This scheme (like the description in
terms of a point mass in g̃ab) is derived from the method
of matched asymptotic expansions. It ensures that the
solution at small distances from γ matches the metric
outside a small compact body.

In a puncture scheme, one splits the physical field into
two pieces, h(n)

ab = h
P(n)
ab + h

R(n)
ab . The first piece, hP(n)

ab ,
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is an analytically known “puncture” [109] that encodes
the dominant behavior of the local field outside the small
object. It generically diverges as

h
P(n)
ab ∼ 1/%n (68)

on γ, where % is proper spatial distance from γ. The punc-
ture is confined to a finite region Γ around the worldline
γ, going to zero outside that region. The residual field
h
R(n)
ab = h

(n)
ab − h

P(n)
ab is regular on γ; furthermore, for

an appropriate puncture, hR(n)
ab and hR(n)

ab;c locally reduce
to hR(n)

ab and hR(n)
ab;c on γ, such that they can be used in

Eq. (67). Outside of Γ, hR(n)
ab is equal to the physical field

h
(n)
ab .
After making this split, we rewrite the Einstein equa-

tions as equations for hR(n)
ab . Beginning from the vacuum

field equations off the worldline, we move the punctures
to the right-hand side and treat their contributions as
effective sources for the residual fields:

δGab[hR(1)
ab ] = −δGab[hP(1)

ab ], (69)

δGab[hR(2)
ab ] = −δ2Gab[h(1)

ab , h
(1)
ab ]− δGab[hP(2)

ab ]. (70)

These equations are valid on the entire domain, including
γ, if we evaluate the sources as ordinary functions off
γ and then take the limit to γ; see Sec. I of Ref. [75].
Individually, each of the two source terms in Eq. (70)
diverges as 1/%4 on γ: δGab[hP(2)

ab ] ∼ ∇c∇d%−2 and
δ2Gab[h(1)

ab , h
(1)
ab ] ∼ (∇c%−1)2. But their sum is integrable

there. The retarded solutions to these equations, when
added to the punctures hP(n)

ab , are guaranteed to satisfy
the original physical problem.

Nearly all first-order GSF calculations in Kerr have been
performed in a so-called “no-string” radiation gauge [110],
in which ψ(1)

0 or ψ(1)
4 is first calculated, CCK reconstruc-

tion is applied in the vacuum region on either side of the
particle’s orbit, and the metric is then “completed” by
the addition of appropriate mass, spin, and gauge pertur-
bations in each of the two vacuum regions [107, 111–114].
In this gauge, h(1)

ab includes delta functions on the sphere
r = rp(t) that intersects the particle, along with jump dis-
continuities across it.6 It is not known how to use such a
singular metric perturbation as input in the second-order
source. Two of us, with collaborators, recently showed
how this problem can be overcome using GHZ reconstruc-
tion within a puncture scheme [65, 115] to calculate a
sufficiently regular h(1)

ab . The method solves Eq. (69) by
applying the GHZ scheme to reconstruct the residual field
h
R(1)
ab in a radiation gauge; adding the puncture hP(1)

ab in

6 This contrasts with “half-string” and “full-string” radiation
gauges, in which a stringlike singularity extends from the par-
ticle to infinity and/or to the horizon [110]. See Ref. [65] for a
thorough analysis of this stringlike structure.

any well-behaved gauge then yields the total h(1)
ab . Work

is also ongoing to instead reconstruct h(1)
ab in the Lorenz

gauge [90, 91, 93], which is free from the radiation gauge’s
pathologies.

Although GSF calculations at second order have relied
on puncture schemes, and there is a push in that direction
even at first order, our view is that there are likely to be
continued advantages to directly solving for the physical
field in some cases. For example, if one is calculating
asymptotic fluxes, one does not require the regular field
at the particle.

G. Fluxes and adiabatic evolution

The most advanced first-order GSF codes calculate both
the dissipative and conservative piece of the first-order
GSF from a “no-string” metric perturbation h

(1)
ab [116].

But it is possible to calculate the dominant effects of
the first-order GSF directly from ψ

(1)
4 . This is possi-

ble because the dominant, 0PA phase, ϕ(0) in Eq. (1),
can be obtained from the radiative “half-retarded minus
half-advanced” field hRad(1)

ab = 1
2

(
h

Ret(1)
ab − hAdv(1)

ab

)
[117].

Because it is the difference between two particular solu-
tions, hRad(1)

ab is a vacuum perturbation. This means CCK
reconstruction can be straightforwardly applied to eval-
uate the dissipative GSF directly in terms of modes of
ψ

Rad(1)
4 , which are in turn readily expressed in terms of

modes of the physical, retarded ψ(1)
4 [118, 119].

Evolving the orbit in this way is closely related to
balance-law arguments. For equatorial orbits, the 0PA
orbital evolution is specified by the rates of change of
orbital energy E and angular momentum L. These rates
of change are equal to the flux of energy and angular
momentum down the horizon and out to infinity [120],
and the formulas for dE/dt and dL/dt obtained from
the local GSF are identical to these fluxes, expressed in
terms of modes of ψ(1)

4 . However, for inclined orbits, one
must also track the evolution of the Carter constant Q.
There is no known way to calculate this without directly
substituting hRad(1)

ab into the formula for the local GSF
(even if the resulting formula for dQ/dt is often dubbed
a “flux-balance law” in the literature). These points will
be important in the context of post-adiabatic evolution.
We defer further discussion to Sec. VI, after we have
introduced methods of calculating ψ(2)

4 .

III. CAMPANELLI AND LOUSTO’S
SECOND-ORDER TEUKOLSKY EQUATION

Campanelli and Lousto [59] were the first to extend
the Teukolsky equation to second and higher order. We
now review their formulation and discuss its potential
applications in second-order GSF calculations.
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In this and the next section, we only give formulas for
ψ

(2)
4 . Formulas for ψ(2)

0 can be obtained from the ones for
ψ

(2)
4 by applying the GHP prime operation.

A. Overview

Campanelli and Lousto’s higher-order extension of the
Teukolsky equation can be obtained following the same
steps as at first order: projecting the Penrose wave equa-
tion (48) onto appropriate tetrad legs and expanding all
quantities in powers of ε. Alternatively, as Teukolsky
did at first order, one can derive it from the Ricci and
Bianchi identities in NP form; this was the route taken by
Campanelli and Lousto. Either approach, when the expan-
sions are carried to second order, produces a second-order
Teukolsky equation,

O[ψ(2)
4 ] = 8πS(2)

[
T

(1)
ab , T

(2)
ab , h

(1)
ab , e

(1)a
[µ]

]
+ S

(2)
CL

[
h

(1)
ab , e

(1)a
[µ]

]
, (71)

with nonlinear source terms

S
(2)
CL

[
h

(1)
ab , e

(1)a
[µ]

]
=
[
d̄

(0)
3 (δ + 4β − τ)(1) − d̄(0)

4 (D + 4ε− ρ)(1)
]
ψ

(1)
4

−
[
d̄

(0)
3 (∆ + 4µ+ 2γ)(1) − d̄(0)

4 (δ̄ + 4π + 2α)(1)
]
ψ

(1)
3

+ 3
[
d̄

(0)
3 ν(1) − d̄(0)

4 λ(1)
]
ψ

(1)
2

+ 3
[
(d̄3 − 3π)(1)ν(1) − (d̄4 − 3µ)(1)λ(1)

]
(72)

and

S(2)
[
T

(1)
ab , T

(2)
ab , h

(1)
ab , e

(1)a
[µ]

]
= 1

2

2∑
p=1

{
d̄

(0)
4

[
(δ̄ − 2τ̄ + 2α)(2−p)T

(p)
nm̄

− (∆ + 2γ − 2γ̄ + µ̄)(2−p)T
(p)
m̄m̄

]
+ d̄

(0)
3

[
(∆ + 2γ + 2µ̄)(2−p)T

(p)
nm̄

− (δ̄ − τ̄ + 2β̄ + 2α)(2−p)T (p)
nn

]}
. (73)

These quantities involve the perturbed spin coefficients
(κ(1), σ(1), . . .), which depend on both h(1)

ab and on e(1)a
[µ] .

In Appendix A we express e(1)a
[µ] and the spin coefficients

entirely in terms of h(1)
ab (with some corrections to the

analogous expressions that appeared in Ref. [59]). How-
ever, we note that doing so is only possible by specifying
a choice of perturbed tetrad; generically, e(1)a

[µ] contains
infinitesimal rotation freedom that cannot be specified by
h

(1)
ab .

To understand how S(2) relates to the source operator
S in the first-order Teukolsky equation, one can split
Eq. (73) into two pieces,

S(2)
[
T

(1)
ab , T

(2)
ab , h

(1)
ab , e

(1)a
[µ]

]
= S[T (2)

ab ] + S∗
[
T

(1)
ab , h

(1)
ab , e

(1)a
[µ]

]
, (74)

where

S∗
[
T

(1)
ab , h

(1)
ab , e

(1)a
[µ]

]
:= 1

2

{
d̄

(0)
4

[
(δ̄ − 2τ̄ + 2α)(1)T

(1)
nm̄

− (∆ + 2γ − 2γ̄ + µ̄)(1)T
(1)
m̄m̄

]
+ d̄

(0)
3

[
(∆ + 2γ + 2µ̄)(1)T

(1)
nm̄

− (δ̄ − τ̄ + 2β̄ + 2α)(1)T (1)
nn

]}
. (75)

Comparing to Eq. (52), we see that S∗
[
· , h(1)

ab , e
(1)a
[µ]

]
,

treated as a linear operator that acts on a stress-energy
tensor, is a first-order correction to S. The total source
in Eq. (71) then reads

8π
(
S[T (2)

ab ] + S∗
[
T

(1)
ab , h

(1)
ab , e

(1)a
[µ]

])
+ S

(2)
CL

[
h

(1)
ab , e

(1)a
[µ]

]
.

(76)
Equation (71) has the same structure as the first-order

Teukolsky equation (50). They only differ in having a dif-
ferent source. So, in particular, the second-order equation
is separable in precisely the same way as at first order.
In an appropriate gauge, ψ(2)

4 also directly represents the
second-order term in the asymptotic waveform, and from
it one can compute asymptotic fluxes of energy and angu-
lar momentum using standard formulas; see, for example,
Eqs. (22) and (24) in Ref. [59]. However, the condition
“in an appropriate gauge” is indispensable (and subtle)
here, as we discuss in Sec. V.
To the best of our knowledge, Loutrel and collabora-

tors [9, 13] were the first to use Eq. (71) in a concrete
calculation. They solved equation (71) in the time domain
for a second-order quasi-normal mode in Kerr spacetime.
To compute the necessary first-order quantities in the
source of Eq. (71), they reconstructed h(1)

ab using a method
developed from Chandrasekhar’s [97, 121] technique. In
this approach, which is currently only consistent for linear
vacuum perturbations (and therefore cannot currently
be used to reconstruct h(2)

ab ), one reconstructs the metric
perturbation by integrating perturbed Ricci identities for
the perturbed curvature quantities.

B. Infinitesimal tetrad-rotation and gauge
dependence of ψ(2)

4

As pointed out by Campanelli and Lousto, ψ(2)
4 (unlike

ψ
(1)
4 ) is not invariant under infinitesimal tetrad rotations.
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This can be seen straightforwardly by applying an infinites-
imal boost, as defined from Eq. (B2) with A = 1 +O(ε).
From the definition of ψ4 in Eq. (26), we have that the
exact ψ4 transforms to A−2ψ4. Expanding A and ψ4 in
powers of ε, we see that ψ(2)

4 transforms as

ψ
(2)
4 → ψ

(2)
4 − 2A(1)ψ

(1)
4 , (77)

where we have used ψ(0)
4 = 0 (we add a superscript zero

here to avoid ambiguity). Since ψ(1)
4 is nonzero except

in trivial cases, ψ(2)
4 is not invariant. Campanelli and

Lousto give a method for constructing an infinitesimal-
tetrad-rotation-invariant quantity from ψ

(2)
4 by adding a

quadratic combination of first-order terms.
Similarly, unlike ψ(1)

4 , ψ(2)
4 is not gauge invariant. From

Eq. (36), ψ(2)
4 transforms as

∆ψ(2)
4 = Lξc

(1)
ψ

(1)
4 , (78)

again using ψ(0)
4 = 0. Campanelli and Lousto also pro-

posed a method for constructing a gauge-invariant quan-
tity from ψ

(2)
4 by, effectively, transforming it to an ORG.

C. Utility in GSF calculations

If we start from the second-order Einstein equation (11)
with the source extracted from (63), it is not hard to see
that the second-order Teukolsky equation (71) becomes
ill-defined in the GSF context. The singular nature of
h

(1)
ab and T

(1)
ab at the particle’s worldline, γ, causes the

source to be ill defined.
This is most striking in the source term S∗[T (1)

ab , h
(1)
ab ]

defined in Eq. (75). It is composed of products of T (1)
ab and

h
(1)
ab . Recall that T

(1)
ab is a delta function supported on the

particle and that h(1)
ab ∼

1
% , where we recall that % is the

proper spatial distance from γ. Their product therefore
has the manifestly ill-defined form T

(1)
ab h

(1)
ab ∼

δ(%)
% .

The other source terms are also problematic. As an
example, we show that S(2)

CL[h(1)
ab , h

(1)
ab ] is not locally inte-

grable at the worldline. This source, defined in Eq. (72), is
a complicated fourth-order differential operator, quadratic
in h(1)

ab . Hence, at the worldline, one can expect it to di-
verge as

S
(2)
CL[h(1)

ab , h
(1)
ab ] ∼ (∂%∂%h(1)

ab )(∂%∂%h(1)
ab )

∼ %−6. (79)

Integrating over a small region % < R, we see∫ R

0
S

(2)
CL[h(1)

ab , h
(1)
ab ]%2dΩ ∼

∫ R

0
%−6%2dΩ

=
[
− 4π

3%3

]R
0
. (80)

Clearly this diverges at the lower limit, meaning
S

(2)
CL[h(1)

ab , h
(1)
ab ] is not locally integrable at % = 0.

One can avoid this problem of an ill-defined source
by implementing a puncture scheme. As described in
Sec. II F, we first consider the field equation at all
points off the worldline. This region is vacuum, with
T

(1)
ab = 0 = T

(2)
ab , such that O[ψ(2)

4 ] = S
(2)
CL[h(1)

ab , h
(1)
ab ]. To

isolate the singular piece of ψ(2)
4 , we first fix the infinites-

imal tetrad freedom as in Appendix A. This allows us
to express e(1)a

[µ] uniquely in terms of h(1)
ab . The quadratic

terms in the Weyl scalar, ψ(2)
4Q in Eq. (34), then becomes

ψ
(2)
4Q = δ2ψ4[h(1)

ab , h
(1)
ab ], where δ2ψ4 is now bilinear in its

arguments. We then split the metric perturbations into
punctures and residual fields; i.e., h(n)

ab = h
R(n)
ab + h

P(n)
ab .

Now we can define ψP(2)
4 :

ψ
P(2)
4 = T [hP(2)

ab ] + δ2ψ4[hP(1)
ab , h

P(1)
ab ]

+ δ2ψ4[hP(1)
ab , h

R(1)
ab ] + δ2ψ4[hR(1)

ab , h
P(1)
ab ]

=: ψP(2)
4L + ψ

P(2)
4Q . (81)

Moving this puncture to the right-hand side of the second-
order vacuum equation, we obtain a field equation for the
residual ψR(2)

4 = ψ
(2)
4 − ψP(2)

4 ,

O[ψR(2)
4 ] = S

(2)
CL[h(1)

ab , h
(1)
ab ]−O[ψP(2)

4 ]. (82)

This can be extended down to the worldline to apply over
the full spacetime.
In practice, the puncture ψP(2)

4 would be obtained as
an expansion in powers of % [109]. The requirements on
this expansion are quite severe. Each of the two source
terms in Eq. (82) generically diverges as %−6. Making the
effective source integrable therefore requires cancelling
four powers of %. Given that hP(2)

ab ∼ %−2 and that
ψ
P(2)
4 ∼ ∇∇hP(2)

ab ∼ %−4, the first four orders in ψ
P(2)
4

have the following form:

ψ
P(2)
4 ∼ 1

%4 + 1
%3 + 1

%2 + 1
%
. (83)

Constructing this puncture would be possible using the
highest-order expressions available for hP(2)

ab [109]. How-
ever, this will only suffice to make the source integrable.
It will not suffice to make ψR(2)

4 continuous at the parti-
cle; the %0 term in ψ(2)

4 will generically have a directional
discontinuity at the particle, or even a logarithmic diver-
gence, and the ψP(2)

4 in Eq. (83) is not sufficiently high
order to remove those discontinuities. It is not obvious
whether metric reconstruction will then yield a differen-
tiable residual field h

R(2)
ab (as would be required to use

it in the GSF). We expect forthcoming work to alleviate
this problem by pushing analytical punctures to a much
higher order [122].

As an alternative to a puncture scheme, one can try to
construct a well-defined distributional source for the phys-
ical field ψ(2)

4 . The problem of an ill-defined source also
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arose historically for the second-order Einstein equation,
and Ref. [75] derived two ways around it. Unfortunately,
neither approach can be straightforwardly applied to the
source for ψ(2)

4 .
One approach in Ref. [75], building on the earlier [74],

was to adopt a so-called “highly regular gauge”, in which
h

(2)
ab ∼ %−1 rather than the generic %−2 suggested by

Eq. (68). In that special gauge, the worst part of the
source, δ2Gab[hP(1)

ab , h
P(1)
ab ], becomes integrable, behaving

as ∼ %−2 rather than the generic ∼ %−4. It is unlikely
that this method will help for the Teukolsky source SCL.
Because SCL is two orders more singular than δ2Gab, we
can expect it to behave as ∼ %−4 in a highly regular gauge,
making it nonintegrable.

The second method in Ref. [75] was to adopt a canoni-
cal distributional definition of δ2Gab[h(1)

ab , h
(1)
ab ]. This ap-

proach fails here because of the fundamental nonlinearity
of ψ(2)

4 . In the case of the Einstein equation, the method
works because even though δ2Gab[h(1)

ab , h
(1)
ab ] is not locally

integrable, we know that it is equal to −δGab[h(2)
ab ] at each

point away from the worldline. h(2)
ab is integrable even in

a generic gauge in which it diverges as %−2. Therefore
δGab[h(2)

ab ] is well defined as a distribution because it is
a linear operator acting on an integrable function [123].
Ref. [75] used this fact to promote δ2Gab[h(1)

ab , h
(1)
ab ] to a

well-defined distribution by effectively replacing its worst-
behaving piece with the most singular piece of−δGab[h(2)

ab ];
see Sec. VA of Ref. [75]. We cannot follow an analogous
approach here because O[ψ(2)

4 ] is not a linear operator
on an integrable function. Using the split (34) of ψ(2)

4
into its linear and quadratic pieces, we can divide O[ψ(2)

4 ]
into O[T [h(2)

ab ]] plus O[ψ(2)
4Q]. The first term is a linear

operator on the integrable function h(2)
ab , but the second

term is a linear operator on the nonintegrable, nonlinear
function ψ(2)

4Q.
One caveat to this analysis is that we have not ac-

counted for the source’s dependence on e
(1)a
[µ] . It might

be possible to use the freedom of infinitesimal tetrad ro-
tations to improve the behavior of the source, just as it
was possible to use the highly regular gauge to improve
the behavior of the source in the second-order Einstein
equation.

IV. REDUCED SECOND-ORDER TEUKOLSKY
EQUATION

We now turn to the alternative formulation of the
second-order Teukolsky equation. This equation has the
same operator on the left-hand side as Eq. (71), but it
has a different field variable and a different source. We
discuss its application to GSF calculations and how it
integrates into emerging metric reconstruction methods.

A. Overview

As pointed out by Campanelli and Lousto [59], the
second-order Weyl scalar naturally splits into a piece
(ψ(2)

4L ) that is linear in h
(2)
ab and a piece (ψ(2)

4Q) that is
quadratic in the first-order quantities h(1)

ab and e(1)a
[µ] ; refer

back to Eq. (34). Campanelli and Lousto’s second-order
field equation was for the sum ψ

(2)
4L + ψ

(2)
4Q. Here we

advocate for using a field equation for ψ(2)
4L alone.

The derivation of such a field equation follows imme-
diately from Wald’s operator identity (56). Applying
that identity to h(2)

ab produces a second-order Teukolsky
equation for ψ(2)

4L :

OT [h(2)
ab ] = SE [h(2)

ab ],

⇒ O[ψ(2)
4L ] = S

[
8πT (2)

ab − δ
2Gab[h(1)

ab , h
(1)
ab ]
]
, (84)

where we have used ψ
(2)
4L = T [h(2)

ab ] [from Eq. (34)] and
the second-order Einstein equation (11). For want of a
better name, we call Eq. (84) the reduced second-order
Teukolsky equation.

This reduced equation appeared previously [12, 83], and
in particular, it was a motivating factor in GHZ’s devel-
opment of their nonvacuum metric reconstruction scheme.
GHZ reconstruction, as outlined in Sec. II E, is able to ob-
tain a metric perturbation hab satisfying δGab[hab] = Sab,
for any distributionally well-defined Sab, starting from a
solution to O[ψ] = S[Sab]. Therefore it can be used to
reconstruct h(2)

ab from ψ
(2)
4L for non-vacuum perturbations.

The same is true for other nonvacuum reconstruction
methods under development [89, 91–93]. This provides
one of our primary reasons for preferring the reduced
equation. Ultimately, to calculate the second-order GSF,
we require the complete second-order metric perturbation,
making metric reconstruction methods crucial.
Given that the reduced equation is already avail-

able in the literature, our primary new contribution
here is explicit expressions for its nonlinear source term
S[δ2Gab[h(1)

ab , h
(1)
ab ]] in NP and GHP notation. That ex-

pression can be found in the accompanying Mathemat-
ica notebook [84]. We also provide all of the tetrad
components of δ2Gab[h(1)

ab , h
(1)
ab ], which can be used to cal-

culate the analogous source for the linear piece of ψ(2)
0 ,

ψ
(2)
0L .
If, for some reason, the complete ψ(2)

4 is needed in an
application, one can easily construct it from ψ

(2)
4L and h(1)

ab
using Eq. (34). In most contexts, this will be unnecessary
because ψ(2)

4L and ψ(2)
4 encode the same content from h

(2)
ab .

In particular, ψ(2)
4L and ψ(2)

4 encode the same second-order
contributions to the waveform. This can be understood by
considering that h(1)

ab decays like r−1 in an asymptotically
flat gauge, and ψ

(2)
4Q is quadratic in h

(1)
ab , implying ψ(2)

4Q
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must fall off like r−2; hence, for r →∞,

ψ
(2)
4 = ψ

(2)
4L +O(r−2). (85)

We discuss the asymptotic behavior of ψ(2)
4 and ψ(2)

4L in
more detail in Sec. V.

B. Infinitesimal-tetrad-rotation invariance and
gauge dependence of ψ(2)

4L

Solving the reduced second-order Teukolsky equation
for ψ(2)

4L offers the advantage that ψ(2)
4L is invariant under

infinitesimal tetrad rotations, unlike ψ(2)
4 . This invariance

is trivial because the operator T , given in Eq. (33), in-
volves only zeroth-order quantities. All the infinitesimal
tetrad dependence in ψ(2)

4 can therefore be attributed to
the dependence of ψ(2)

4Q on the tetrad perturbations e(1)a
[µ] .

Correspondingly, the source in the reduced second-order
Teukolsky equation (84) is also trivially invariant under
infinitesimal tetrad rotations because S, given in Eq. (52),
likewise depends only on background quantities.
Still, ψ(2)

4L , like ψ
(2)
4 , is gauge dependent. Using the

gauge-transformation rule (38), we find that ψ(2)
4L trans-

forms as

∆ψ(2)
4L = T [∆h(2)

ab ]

= T
[
Lξc

(1)
h

(1)
ab + 1

2Lξc
(1)
Lξc

(1)
gab

]
. (86)

Due to Eq. (47), no second-order gauge vector appears
in this transformation. That is, ψ(2)

4L is invariant under a
purely second-order gauge transformation. But like ψ(2)

4 ,
it does transform under a change of first-order gauge due
to the presence of ξa(1) in Eq. (86). From Eqs. (86) and
(78), we can also deduce a relatively simple transformation
rule for the quadratic part of ψ(2)

4 ,

∆ψ(2)
4Q = Lξa

(1)
ψ

(1)
4 − T [∆h(2)

ab ]. (87)

A reader might observe that the transformation (86) of
ψ

(2)
4L is substantially more complicated than the transfor-

mation of ψ(2)
4 . However, in practice, there would rarely

be a need to invoke either of these rules. Once boundary
conditions are specified, the gauge of ψ(2)

4L is implicitly
determined by the gauge of the source term in the re-
duced second-order Teukolsky equation; the same is true
of ψ(2)

4 and its source. The gauge of the source, in turn,
is determined entirely by the gauge of h(1)

ab . In one of the
follow-up papers [81], we will use this fact to construct a
gauge-independent version of ψ(2)

4L (and of its source).

C. Utility in GSF calculations

The important difference between Eq. (71) and Eq. (84)
is the form of their respective sources. As discussed in

Sec. III C, due to the singular behavior of h(1)
ab and T (1)

ab
on γ, the source in Eq. (71) requires special treatment
in GSF calculations. Here we show the more desirable
properties of the source in Eq. (84).
We first simply observe that (i) the Teukolsky source

operator S is linear, and (ii) it acts on a well-defined distri-
bution 8πT (2)

ab − δ2Gab[h(1)
ab , h

(1)
ab ] [75]. Therefore basic dis-

tribution theory tells us that S
[
8πT (2)

ab −δ2Gab[h(1)
ab , h

(1)
ab ]
]

is well defined as a distribution [123].
Formulatng a puncture scheme is equally straightfor-

ward. We simply apply the Wald identity (56) to hR(2)
ab .

Equation (70) then gives us

O[ψR(2)
4L ] = −S

[
δ2Gab[h(1)

ab , h
(1)
ab ]
]
−O[ψP(2)

4L ], (88)

where ψR(2)
4L := T [hR(2)

ab ] and ψP(2)
4L := T [hP(2)

ab ]. The two
source terms each diverge strongly, like ∼ ∂2

%%
−4 ∼ %−6

(or more mildly in a highly regular gauge). But they
cancel to yield an integrable effective source. We refer
back to Sec. III C for a discussion of the requirements on
the puncture; the analysis around Eq. (83) also holds true
for ψP(2)

4L .

V. ASYMPTOTIC BEHAVIOR OF THE
SECOND-ORDER TEUKOLSKY EQUATION

In the preceding sections, we focused on the behavior of
the second-order Teukolsky source on a particle’s world-
line. To complement that discussion, we now analyse
the source in the opposite extreme: asymptotically, near
I +. Slow asymptotic falloff has been one of the main
difficulties in second-order GSF calculations [94]. Our
conclusion in this section is that the problem persists
in the second-order Teukolsky equation, but it can be
eliminated by choosing a gauge that is adapted to the
spacetime’s null structure.

To analyse the source’s falloff, we adopt retarded coor-
dinates (u, r, θ, φ) and the Kinnersley tetrad. At large r,
the tetrad legs then behave as [65]

lµ∂µ = ∂r, (89)
nµ∂µ ∼ ∂u − 1

2∂r +O(r−1), (90)

mµ∂µ ∼
1
r

(ia∂u + ∂θ + ∂φ) +O(r−2). (91)

Since all spin coefficients behave as O(r−1) [3], the large-r
behavior of the tetrad legs immediately carries over to the
directional derivatives D, ∆, and δ. Hence, at large r,
∆ ∼ ∂u leaves the order in r unchanged, while all other
derivatives lower the order by one power in r.
We assume the matter source S[T (2)

ab ] is spatially
bounded, such that it does not contribute at large r.
We next note that, from Eq. (52), only δ2Gm̄m̄, δ2Gnm̄,
and δ2Gnn appear in the source S[δ2Gab]. Given the
scalings from the previous paragraph, we see

S[δ2Gab] ∼ δ2Gm̄m̄ + δ2Gnm̄
r

+ δ2Gnn
r2 . (92)
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In words, the Teukolsky source has the same large-r scal-
ing as the source in the Einstein equation, but the behavior
depends sensitively on the falloff of each component of the
Einstein source. By analysing the form of δ2Gab[h(1)

ab , h
(1)
ab ],

we will find the necessary gauge conditions on h(1)
ab to ac-

celerate the falloff.
Firstly, note the trace piece of δ2Gab does not appear

in S[δ2Gab], and the first-order perturbation is vacuum
away from the worldline; therefore, analysing the falloff
of δ2Rab[h(1)

ab , h
(1)
ab ] is sufficient. To determine that falloff,

we analyse the large-r behavior of h(1)
µν , h(1)

µν;γ and h(1)
µν;γδ.

First, we assume that the metric perturbation is asymp-
totically flat at I +, such that in a well-behaved gauge,
we can write

h(1)
µν = zµν(u, θ, φ)

r
+O(r−2), (93)

where zµν(u, θ, φ) is an arbitrary function of u, θ, and φ.
This implies

h(1)
µν;γ = −nγDh(1)

µν − lγ∆h(1)
µν + m̄γδh

(1)
µν +mγ δ̄h

(1)
µν

= − żµν(u, θ, φ)
r

lγ +O(r−2), (94)

where an overdot denotes differentiation with respect to
u. Similarly,

h
(1)
µν;γδ = z̈µν(u, θ, φ)

r
lδlγ +O(r−2). (95)

Substituting these into the covariant formula (7) for δ2Rab,
we find the generic behavior

δ2Gµν = Fµν(u, θ, φ)
r2 +O(r−3) (96)

for some Fµν constructed from quadratic products of zµν ,
żµν , and z̈µν . Therefore, in a generic gauge, Eq. (92)
implies S[δ2Gab[h(1)

ab , h
(1)
ab ]] ∼ r−2.

This is the same problematic falloff explored in Ref. [94]
(see also [58]). It causes two problems for any field equa-
tion that asymptotically behaves like a flat-spacetime
scalar wave equation, including the Teukolsky equa-
tion (50). The first problem is that for nonstationary
source modes Sω ∼ e−iωu/r2 with frequencies ω 6= 0, the
solution falls off like ∼ ln(ωr)e−iωu/(ωr), rather than like
a freely propagating wave ∼ e−iωu/r. This behavior is eas-
ily deduced from the form of the flat-spacetime scalar wave
operator in retarded coordinates, ∼ r−1(∂2

r − 2∂u∂r)(r ·).
The second problem is that for stationary (ω = 0) source
modes S0 ∼ r−2, the integral of the source against the re-
tarded Green’s function (Gω=0 ∼ r−1) does not converge.
It behaves as ∼

∫
G0S0r

2drdΩ ∼
∫
r−1drdΩ, which di-

verges logarithmically as the upper limit of integration is
taken to r →∞.

There are two reasons to expect that these ill behaviors
should be a gauge artefact. According to the peeling
theorem [124], the exact, fully nonlinear ψ4 should fall

off as r−1, which should carry over to ψ(2)
4L . Moreover, in

vacuum at large r it should behave as a freely propagating
wave, meaning the r−1 term should satisfy the homoge-
neous equation at leading order. This is only possible if
the source for ψ(2)

4L decays as r−4.
Another reason to expect this r−4 behavior is that

δ2Gab[h(1)
ab , h

(1)
ab ] is effectively the stress-energy tensor of

gravitational waves near I +, which should have the form
of outgoing null radiation. The piece carrying energy flux
should behave like ∼ lalb/r2, appearing as a r−2 term in
δ2Gnn[h(1)

ab , h
(1)
ab ]. The piece carrying angular momentum

flux should behave like ∼ lamb/r
3, appearing as a r−3

term in Gnm̄[h(1)
ab , h

(1)
ab ]. Neither piece has a component

∼ mamb, suggesting Gm̄m̄[h(1)
ab , h

(1)
ab ] should appear at

O(r−4). Hence, we expect that, in an appropriate gauge,

δ2Gnn ∼ r−2, δ2Gnm̄ ∼ r−3,

δ2Gm̄m̄ ∼ r−4. (97)

Referring to Eq. (92), we see that this would imply
S[δ2Gab] ∼ r−4.
We find it is possible to enforce the behavior (97) by

adopting a Bondi–Sachs gauge [125]. In such a gauge,
the metric perturbation satisfies the gauge conditions
h

(1)
µν ∼ r−1, h(1)

ln ∼ h
(1)
lm ∼ h

(1)
mm̄ ∼ r−2, and h

(1)
ll ∼ r−3.

These conditions are adapted to the spacetime’s lightcone
structure by enforcing that, asymptotically, (i) the outgo-
ing null vector la remains null in the perturbed spacetime,
and (ii) spheres of constant (u, r) have surface area 4πr2.
In the follow-up paper [81], we will provide a scheme for
transforming from any gauge into the Bondi–Sachs gauge.
Using Eqs. (93), (94), and (95), and the formulas for

δ2Gab in the supplemental Mathematica notebook [84],
it is straightforward (but tedious) to show that δ2Gnn ∼
r−2, δ2Gnm̄ ∼ r−3 and δ2Gm̄m̄ ∼ r−3 if hll ∼ hln ∼
hlm ∼ hmm̄ ∼ r−2. By taking this analysis to one further
order in r, it is possible to show δ2Gm̄m̄ ∼ r−4 if hln ∼
hlm ∼ hmm̄ ∼ r−2 and hll ∼ r−3. Therefore, the source
in the Bondi–Sachs gauge behaves as S[δ2Gab[hab, hab]] ∼
r−4, making the retarded integral converge and giving
ψ

(2)
4L the natural behavior ∼ r−1 of a gravitational wave

at I +.
We conclude with three notes. First, we observe that

since ψ(2)
4L and ψ(2)

4 only differ by terms of order r−2, our
analysis carries over to ψ(2)

4 (and to its Campanelli–Lousto
source). Second, we observe that the Bondi–Sachs gauge
conditions are not enforced by standard CCK metric
reconstruction. The CCK procedure in the ORG yields
a well-behaved solution of the form (93), but it sets the
“wrong” tetrad components of h(1)

ab to zero. The IRG sets
the “right” components to zero, but the CCK procedure in
the IRG yields a perturbation whose nonzero components
blow up as h(1)

µν ∼ r [105]. Finally, we note an important
pitfall of working in a non-Bondi gauge. If ψ(2)

4L and ψ(2)
4

decay like ∼ ln(ωr)e−iωu/(ωr) rather than like ∼ e−iωu/r,
then they cannot be simply substituted into standard
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formulas for the flux of energy and angular momentum to
I +. In that instance, one would need to first transform
to a Bondi-type gauge in order to compute the fluxes.

VI. CONCLUSION

In this paper, we have advocated for using a reduced
second-order Teukolsky equation, Eq. (84). It has two
main advantages: its source term is well defined as a
distribution in the context of second-order GSF calcula-
tions, while the Campanelli–Lousto field equation for the
total field ψ(2)

4 is less tractable at the particle’s position;
and after one solves the reduced equation to obtain ψ(2)

4L ,
one can readily apply nonvacuum metric reconstruction
methods to retrieve the second-order metric perturbation
h

(2)
ab . Both of these advantages stem from the fact that

the reduced second-order Teukolsky equation is related to
the second-order Einstein equation by a linear operation.
An additional benefit is that the field variable ψ(2)

4L is
invariant under infinitesimal tetrad rotations.

We have also shown that large-r, infrared divergences,
which plague generic second-order GSF calculations, can
be avoided by imposing appropriate gauge conditions
on h

(1)
ab . The prime example of such a gauge is the

Bondi–Sachs gauge traditionally used to analyse the struc-
ture of I +. The benefits of this gauge apply regard-
less of whether one solves the reduced equation or the
Campanelli–Lousto equation. In the sequel paper [81], we
will present a method of enforcing this gauge condition
and constructing a gauge-invariant version of ψ(2)

4L that
automatically exhibits the correct asymptotically simple
behavior.

Besides our analyses of the source terms near the parti-
cle and near I +, our main new contribution is an explicit
expression for the nonlinear source in the reduced second-
order Teukolsky equation. This is included in the supple-
mental Mathematica notebook [84], which also includes
many of the calculations summarized in the paper. In the
second sequel paper [82], one of us will present a concrete
method of calculating spheroidal-harmonic modes of the
second-order source. In another associated paper, [77], we
present a simplified formula for the spin-weighted spheri-
cal harmonic modes of the source in the special case of a
Schwarzschild background; and in Ref. [95] we present an
implementation for quasicircular, nonspinning binaries.
A primary goal, in the GSF context, will be the gen-

eration of waveforms at first post-adiabatic order (1PA).
As discussed in the Introduction, this only requires dissi-
pative, time-antisymmetric effects from the second-order
GSF (in addition to all information from first order). In
Sec. IIG, we reviewed how, at first order, dissipative
effects can be extracted directly from ψ

(1)
4 , without re-

constructing the full h(1)
ab . A similar shortcut might be

possible at second order.
One potential obstacle to finding such a shortcut is that,

at first order, for generic, inclined orbits, the shortcut

was only possible because the rate of change of the Carter
constant could be computed from the radiative piece of
the metric perturbation, hRad(1)

ab . It is unknown whether
second-order dissipative effects can likewise be obtained
purely from a second-order radiative field. Therefore one
might need to implement a complete metric reconstruction
in order to compute the 1PA rate of change of the Carter
constant. But at least for equatorial orbits, one should
be able to entirely bypass h(2)

ab by obtaining the 1PA
dissipative effects directly from the gravitational-wave
fluxes of energy and angular momentum to I +and down
the central black hole’s horizon. The fluxes to infinity are
readily calculated from ψ

(2)
4L (or ψ(2)

4 ). We are not aware
of a practical formula for the fluxes through the horizon
beyond leading order, but if a formula for them is derived
in terms of ψ(2)

4L , then one should be able to compute 1PA
equatorial evolution directly from ψ

(2)
4L . Recent work for

inspiraling scalar charges also suggests it might be possible
to compute the rate of change of the Carter constant from
true “fluxes of Carter constant” [126], which might be
extracted from the Weyl scalar without requiring metric
reconstruction.

In considering such shortcuts, one should keep in mind
that they do not circumvent the need for metric recon-
struction at first order. Information from the complete
h

(1)
ab is needed in almost every aspect of a 1PA calcula-

tion: h(1)
ab is required to construct the nonlinear source

term for ψ(2)
4L ; the regular field hR(1)

ab and the GSF it ex-
erts are required in calculations of the material source
T

(2)
ab [75, 78]; and the complete (conservative plus dissi-

pative) first-order GSF contributes directly to the 1PA
phase evolution.

Moreover, in some contexts reconstructing the complete
h

(2)
ab will clearly be required. An example is the calculation

of second-order conservative GSF effects, which could be
important for improving effective-one-body models [127,
128] and improving the accuracy of GSF models for less
extreme mass ratios [129].
We also indicate again that the formalism here is not

limited to GSF calculations. It applies equally well to
any nonlinear perturbative calculation in Kerr spacetime.
Issues we have pointed to, such as large-r asymptotics
and products of singularities, are also likely to arise in
any number of contexts.

The most obvious application, outside GSF, is to non-
linear calculations of post-merger ringdown, which is an
active area of research [14, 16, 130]. Second-order quasi-
normal mode calculations in the time or frequency domain
could be made using the reduced Teukolsky equation.
Such calculations would provide precise predictions on
the excitation coefficient of quadratic second-order quasi-
normal modes when compared to the excitation coefficient
of linear quasinormal modes.
If quasinormal mode calculations are restricted to sec-

ond order, there are no obvious advantages of solving
the reduced equation rather than the Campanelli–Lousto



16

equation (71) (like Refs. [9, 13] did). But an advantage
of the reduced equation is that its compatibility with
nonvacuum metric reconstruction means it immediately
provides a practical approach to perturbation theory at
all orders. One can always solve the reduced Teukolsky
equation at order n, perform a nonvacuum metric recon-
struction to obtain h(n)

αβ , and then use h(n)
αβ (along with

lower-order perturbations) to construct the source for the
(n+ 1)st reduced Teukolsky equation. This extensibility
to higher orders could be useful in the near future: such
calculations could be used to investigate the third-order
quasinormal mode effects found in Ref. [15].
This extensibility could also be useful in theories of

gravity beyond general relativity and in cases where the
black hole is surrounded by an accretion disk or by a
scalar cloud. In these scenarios, the metric couples to
the non-metric fields, leading to sourced Einstein field
equations for the metric perturbations at all orders. The
combination of reduced Teukolsky equations with nonvac-
uum metric reconstruction provides a simple and practical
way of deriving and solving the relevant field equations.

Even before the metric perturbations couple to one an-
other, the non-metric fields in these cases lead to sourced
Teukolsky equations very similar to the nonlinear Teukol-
sky equations we have discussed here, with analogous op-
tions to choose between reduced equations or Campanelli–
Lousto-like equations. For example, in Ref. [131] the Wald
identity was used to obtain a Teukolsky equation in a class
of perturbatively beyond-general relativity theories. Their
approach produces a Teukolsky equation with a similar
structure to the reduced second-order Teukolsky equa-
tion. Ref. [132], on the other hand, provides a formalism
for deriving a Teukolsky equation in theories of grav-
ity perturbatively beyond general relativity by building
on Chandrasekhar’s method for deriving the Teukolsky
equation [97]. Their resulting Teukolsky equation has
a similar form to the Campanelli–Lousto second-order
Teukolsky equation. Crucially, all these equations have
noncompact source terms; we predict that when solving
these equations, whether in the self-force context or in
other problems, one will encounter similar obstacles (prod-
ucts of singularities and slowly decaying sources at large
distance) as those addressed in this paper.
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Appendix A: First-order Newman–Penrose
quantities

In this appendix we display the first-order perturba-
tions of the tetrad and spin coefficients, which enter into
the Campanelli–Lousto formulation of the second-order
Teukolsky equation.

The tetrad legs are expanded as in Eq. (27). As the
metric and tetrad satisfy Eq. (16), the metric perturbation
can be expressed as

h
(1)
ab = −2l(1)

(a nb) − 2n(1)
(a lb) + 2m(1)

(a m̄b)

+ 2m̄(1)
(a mb) + 2m(am̄

ch
(1)
b)c + 2m̄(am

ch
(1)
b)c

− 2l(anch
(1)
b)c − 2n(al

ch
(1)
b)c, (A1)

where indices on the tetrad perturbations are lowered
with the background metric. A perturbed tetrad which
satisfies Eq. (A1) is given in [59], reproduced from [133].
In our sign convention it reads

l(1)a = 1
2hlln

a, (A2a)

n(1)a = 1
2hnnl

a + hnln
a, (A2b)

m(1)a = −1
2hmmm̄

a − 1
2hmm̄m

a + hmln
a + hmnl

a,

(A2c)

m̄(1)a = −1
2hm̄m̄m

a − 1
2hmm̄m̄

a + hm̄ln
a + hm̄nl

a.

(A2d)

Note this is not a unique choice of perturbed tetrad; the
perturbations transform under the infinitesimal tetrad
rotation (45).
Starting from these tetrad perturbations, Campanelli

and Lousto also provided the perturbations of the spin
coefficients [59]. We were unable to fully reproduce their
results. We have performed a full re-derivation and in-
sisted consistency with the Bianchi identities used in the
original derivation. We have found a slightly corrected
full set of first-order spin coefficients,

κ(1) = −κhln − 1
2κhmm̄ −

1
2 κ̄hmm − (D − 2ε− ρ̄)hlm + σhlm̄ − (ᾱ+ β − 1

2 π̄ −
1
2τ −

1
2δ)hll, (A3a)

σ(1) = − 1
2 λ̄hll − ( 1

2D − ε+ ε̄+ 1
2ρ−

1
2 ρ̄)hmm − (−π̄ − τ)hlm, (A3b)

ν(1) = λhnm − (−∆− 2γ − µ̄)hnm̄ + νhln − 1
2νhmm̄ −

1
2 ν̄hm̄m̄ − (α+ β̄ − 1

2π −
1
2 τ̄ + 1

2 δ̄)hnn, (A3c)
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λ(1) = λhln − (− 1
2∆− γ + γ̄ + 1

2µ−
1
2 µ̄)hm̄m̄ − 1

2 σ̄hnn − (−π − τ̄)hnm̄, (A3d)
µ(1) = −(− 1

2µ−
1
2 µ̄)hln − (− 1

2∆ + 1
2µ−

1
2 µ̄)hmm̄ − (− 1

2δ − β −
1
2τ)hnm̄

− ( 1
2 δ̄ + β̄ − π − 1

2 τ̄)hnm + 1
2νhlm −

1
2 ν̄hlm̄ −

1
2ρhnn, (A3e)

ρ(1) = 1
2κhnm̄ −

1
2 κ̄hnm −

1
2µhll − ( 1

2 δ̄ − α−
1
2π)hlm − ( 1

2ρ−
1
2 ρ̄)hln

− ( 1
2D + 1

2ρ−
1
2 ρ̄)hmm̄ − (− 1

2δ + ᾱ− 1
2 π̄ − τ)hlm̄, (A3f)

ε(1) = 1
4κhnm̄ −

1
4 κ̄hnm − (− 1

4∆ + 1
2 γ̄ + 1

4µ−
1
4 µ̄)hll − ( 1

2D + 1
4ρ−

1
4 ρ̄)hln − ( 1

4ρ−
1
4 ρ̄)hmm̄

+ 1
4σhm̄m̄ −

1
4 σ̄hmm − (− 1

4δ + 1
2 ᾱ−

1
4 π̄ −

1
2τ)hlm̄ − ( 1

4 δ̄ −
1
2α−

3
4π −

1
2 τ̄)hlm, (A3g)

π(1) = 1
2λhlm − (− 1

2∆ + γ̄ − 1
2 µ̄)hlm̄ − (− 1

2D − ε+ 1
2ρ)hnm̄ − 1

2 σ̄hnm

+ 1
2τhm̄m̄ − ( 1

2 δ̄ −
1
2π −

1
2 τ̄)hln + 1

2 τ̄hmm̄, (A3h)
τ (1) = − 1

2 λ̄hlm̄ − ( 1
2∆− γ + 1

2µ)hlm + 1
2πhmm + 1

2 π̄hmm̄

− ( 1
2D + ε̄− 1

2 ρ̄)hnm + 1
2σhnm̄ − (− 1

2δ −
1
2 π̄ −

1
2τ)hln, (A3i)

α(1) = − 1
4 κ̄hnn + 3

4λhlm − (− 1
4∆− γ + 1

2 γ̄ + 1
2µ−

1
4 µ̄)hlm̄ − 1

4νhll − ( 1
4D −

1
2ε−

1
4ρ−

1
2 ρ̄)hnm̄

− 1
4 σ̄hnm − (− 1

4δ + 1
2 ᾱ−

1
4 π̄ −

1
4τ)hm̄m̄ − ( 1

4 δ̄ −
1
4π −

1
4 τ̄)hln − ( 1

4 δ̄ + 1
2α−

1
4π −

1
4 τ̄)hmm̄, (A3j)

β(1) = − 1
4κhnn −

1
4 λ̄hlm̄ − (− 1

4∆− 1
2γ −

1
4µ−

1
2 µ̄)hlm − 1

4 ν̄hll − ( 1
4D − ε+ 1

2 ε̄+ 1
2ρ−

1
4 ρ̄)hnm

+ 3
4σhnm̄ − ( 1

4δ −
1
4 π̄ −

1
4τ)hln − (− 1

4δ + 1
2β −

1
4 π̄ −

1
4τ)hmm̄ − ( 1

4 δ̄ + 1
2 β̄ −

1
4π −

1
4 τ̄)hmm, (A3k)

γ(1) = 1
4λhmm −

1
4 λ̄hm̄m̄ − ( 1

4µ−
1
4 µ̄)hmm̄ − (−γ + 1

4µ−
1
4 µ̄)hln + 1

4νhlm −
1
4 ν̄hlm̄

− ( 1
4D + 1

2 ε̄+ 1
4ρ−

1
4 ρ̄)hnn − (− 1

4δ −
1
2β −

1
2 π̄ −

3
4τ)hnm̄ − ( 1

4 δ̄ + 1
2 β̄ −

1
2π −

1
4 τ̄)hnm. (A3l)

The calculations made in this appendix are contained in
the accompanying Mathematica notebook [84].

Appendix B: Geroch–Held–Penrose formalism

The GHP formalism [100], which is used extensively
in the accompanying Mathematica notebook [84], is a
refinement of the NP formalism that is invariant under
spin and boost transformations. It is adapted to situations
with at least one preferred null direction (e.g., spacetimes
with at least one principal null direction), and it effectively
halves the formalism’s number of equations.

A spin transformation corresponds to

ma → eiϑma, (B1)

and a boost corresponds to

la → Ala and na → A−1na, (B2)

where A > 0 and 0 ≤ ϑ < 2π are real numbers. These are
the Lorentz transformations that preserve the directions
of the null vectors la and na. If one of the vectors is
aligned with a principle null direction, then it remains so
after the transformation (and therefore, in a Petrov type
D spacetime such as Kerr, the two vectors remain aligned
with the two principal null directions).

A tensorial object η whose construction involves the
tetrad is said to have spin weight s and boost weight b
if it transforms as η → Abeisϑη under a spin and boost

transformation. GHP combined the transformations by
defining λ2 = Aeiϑ, such that a quantity η of spin weight
s = 1

2 (p− q) and boost weight b = 1
2 (p+ q) transforms as

η → λpλ̄qη. (B3)

η is then said to have GHP weight {p, q}. The
{p, q} weights of the tetrad vectors themselves are
{1, 1}, {−1,−1}, {1,−1} and {−1, 1} for la, na, ma, and
m̄a, respectively. The product of a quantity of type {p, q}
and a quantity of type {r, s} is of type {p+ r, q + s}.

The alignment of the tetrad (though not the direction
of each vector) is also preserved under the interchange
of la and na and under the interchange of ma and m̄a.
GHP denoted the interchange with a prime notation,

(la)′ = na, (na)′ = la, (ma)′ = m̄a, (m̄a)′ = ma. (B4)

Using this notation, we can express half of the NP spin
coefficients as the prime of the other half:

κ′ := −ν, σ′ := −λ, ρ′ := −µ, (B5)
τ ′ := −π, β′ := −α, ε′ := −γ. (B6)

Note, under a GHP prime operation, {p, q} → {−p,−q};
and under a complex conjugation, {p, q} → {q, p}.

It is straightforward to find the GHP weights for eight
of the spin coefficients,

κ : {3, 1}, σ : {3,−1}, ρ : {1, 1}, τ : {−1, 1}, (B7)

and their primes. However, four of the NP spin coef-
ficients do not have well-defined weights: ε, ε′, β, and
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β′. Additionally, the NP derivatives (19) do not have
well-defined spin and boost weights. But these quanti-
ties can be combined to produce GHP derivatives with
well-defined weights, given by

Þ = D − pε− qε̄, Þ′ = ∆ + pε′ + qε̄′,

ð = δ − pβ + qβ̄, ð′ = δ̄ + pβ′ − qβ̄′, (B8)

when acting on a tensor of GHP weight {p, q}. These
derivatives have the following weights:

Þ : {1, 1}, Þ′ : {−1,−1}, ð : {1,−1}, ð′ : {−1, 1}. (B9)

When written in terms of these derivatives, all equations
in the formalism have definite weights.

Appendix C: GHZ metric reconstruction

In this appendix, we fill in some of the details of the
GHZ reconstruction procedure summarized in Sec. II E.
We make heavy use of the GHP notation reviewed in Ap-
pendix B, particularly the GHP prime operation. For clar-
ity, we append labels “IRG” and “ORG” to the Hertz po-
tentials and corrector tensors. We summarize the scheme
at first order and then state the generalization to nth
order.

Unlike the description in the body of this paper, GHZ’s
original procedure began from ψ

(1)
0 = T ′[h(1)

ab ] and worked
in an IRG (i.e., h(1)

ab l
b = 0). ψ

(1)
0 satisfies the Teukol-

sky equation (49). Given ψ(1)
0 , the reconstructed metric

perturbation is written as

h
(1)
ab = 2Re(S′†ab[Φ

(1)
IRG]) + x

(1)IRG
ab (C1)

in terms of a Hertz potential Φ(1)
IRG and a corrector tensor

x
(1)IRG
ab .
The Hertz potential can be obtained from the radial

inversion equation7

1
4Þ4Φ̄(1)

IRG = ψ
(1)
0 , (C2)

where the bar denotes complex conjugation. Þ, defined
in Eq. (B8), is a derivative along principal outgoing null
rays, making Eq. (C2) an ordinary differential equation
along those rays. In outgoing null coordinates and the
Kinnersley tetrad, Þ reduces to ∂r.
The corrector tensor in the IRG has nonzero compo-

nents x(1)IRG
mm̄ , x(1)IRG

nm , and x(1)IRG
nn . They can be calcu-

lated by solving three hierarchical ordinary differential

7 Our inversion formulas differ by a factor of −1/2 relative to the
formula in Ref. [65] due to our mostly positive signature and our
convention for the operator S. Our normalizations agree with
Ref. [3]. Our formulas for the corrector tensor likewise involve an
overall change in sign.

equations, again along principal outgoing null rays. These
equations are

ρ2Þ
[
ρ̄

ρ3 Þ
(
ρ

ρ̄
x

(1)IRG
mm̄

)]
= −8πT (1)

ll , (C3)

followed by

ρ

2(ρ+ ρ̄)Þ
[

(ρ+ ρ̄)2Þ
x

(1)IRG
nm

ρ(ρ+ ρ̄)

]
= −8πT (1)

lm +N [x(1)IRG
mm̄ ], (C4)

and then

1
2(ρ+ ρ̄)2Þ

(
1

ρ+ ρ̄
x(1)IRG
nn

)
= −8πT (1)

ln + Re
(
U [x(1)IRG

mm̄ ]
)

+ Re
(
V[x(1)IRG

nm ]
)
, (C5)

where the linear differential operators N , U , and V are
given in Eqs. (57)–(58) of Ref. [65].8 The inclusion of a
nonzero trace component, x(1)IRG

mm̄ , is essential; the contri-
bution to h(1)

ab from the Hertz potential is traceless, and
as shown by Ref. [134], it is impossible to put a metric
perturbation h(1)

ab in a traceless IRG if T (1)
ll 6= 0.

8 Equation (58) in Ref. [65] contains a typo in its second term
within curly brackets. (τ ′ − τ̄)ð′ should be (τ ′ − τ̄)ð.
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In the summary in the body of the paper, instead of
the above, we start from ψ

(1)
4 and reconstruct the metric

perturbation in an ORG. This procedure can be derived
directly from the one above by applying the GHP prime
operation to all equations. ψ(1)

4 satisfies the Teukolsky
equation (50); the reconstructed metric perturbation is
given by Eq. (62); the ORG Hertz potential can be ob-
tained from the radial inversion equation

1
4Þ′4Φ̄(1)

ORG = ψ
(1)
4 , (C6)

and the corrector tensor can be found by solving the
sequence of ordinary differential equations

ρ′2Þ′
[
ρ̄′

ρ′3
Þ′
(
ρ′

ρ̄′
x

(1)ORG
mm̄

)]
= −8πT (1)

nn , (C7)

followed by

ρ′

2(ρ′ + ρ̄′)Þ
′

[
(ρ′ + ρ̄′)2Þ′

x
(1)ORG
lm̄

ρ′(ρ′ + ρ̄′)

]
= −8πT (1)

nm̄ +N ′[x(1)ORG
mm̄ ], (C8)

and then

1
2(ρ′ + ρ̄′)2Þ′

(
1

ρ′ + ρ̄′
x

(1)ORG
ll

)
= −8πT (1)

nl + Re
(
U ′[x(1)ORG

mm̄ ]
)

+ Re
(
V ′[x(1)ORG

lm̄ ]
)
.

(C9)

Þ′, defined in Eq. (B8), is a derivative along principal
ingoing null rays. In ingoing null coordinates and an
appropriate tetrad, Þ′ reduces to −∂r.

These procedures generalize immediately to nth order,
starting from ψ

(n)
0L := T ′[h(n)

ab ] or ψ(n)
4L := T [h(n)

ab ] and
replacing 8πT (1)

ab with the source in the nth-order Einstein
equation.
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