
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where appli-

cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Antonia Marcu (2023) “Data Matters: Towards a Data-centric Theory of Generalisation”,

University of Southampton, Faculty of Engineering and Physical Sciences, School of Electronics and

Computer Science, PhD Thesis, 1–166.



 

 



UNIVERSITY OF SOUTHAMPTON 
Faculty of Engineering and Physical Sciences 
School of Electronics and Computer Science 

DATA MATTERS 
Towards a Data-centric Theory of Generalisation 

by Antonia Marcu 

A thesis submitted for the degree of Doctor of 
Philosophy 

August 22, 2023 

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:am1g15@soton.ac.uk




UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES 
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE 

Thesis for the degree of Doctor of Philosophy 

by Antonia Marcu 

The ability of a learning machine to perform outside the training data is referred to 
as its generalisation performance. Despite being researched for many years, generalisa-
tion is one of the key unresolved puzzles in machine learning. In this thesis we start 
building the understanding needed to construct a new framework for reasoning about 
generalisation. We start with a theoretical perspective but conclude that the feld needs 
to build stronger intuitions before being able to formalise generalisation in a meaningful 
way. Our theoretical exploration, however, highlights that the data plays a much more 
central role than previously acknowledged. 

To better understand how the data can be incorporated in generalisation studies, we 
start exploring the practice of modifying images. The modifcations we consider are 
mixed data augmentation, patch-shufing, and patch-based occlusion. We fnd that 
there are a number of incorrect implicit assumptions in the literature regarding the side 
efects of data modifcation. These assumptions deem some distortion-based approaches 
to evaluating model attributes to be incorrect. In the case of modifying data to assess 
robustness to occlusion, we propose a solution that addresses the side efects. 

The existence of these incorrect assumptions attests to the fact that the feld has a 
poor understanding of data modifcation. Despite the feld’s limited understanding, data 
distortion has most recently been used to empirically predict generalisation performance. 
We focus on this practice and claim that data modifcation has been carelessly used in 
this case as well. We argue that it is the limited evaluation settings that caused the 
modifcation-based predictors to appear successful despite relying on poorly founded 
intuitions. We end by proposing the backbone for an extensive evaluation of empirical 
predictors of generalisation. We believe that such a practical approach to generalisation, 
when thoroughly designed, has the potential to provide the understanding needed to 
create a theoretical framework in future. Our proposed evaluation setting seeks to 
explore a variety of data-centric scenarios, highlighting the central role played by the 
data in the generalisation puzzle. 
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Foreword 

This chapter gives an introduction to the universe of this thesis. It motivates the 
choice of topic, but also the way the subject is addressed and presented. It gives the 

perspective from which we encourage the reader to approach the thesis. 

After the AI winter, machine learning has been everything from the great revived hope 
to buzzword generator. So what is machine learning really about? What makes machine 
learning – “machine learning”? We argue that in one way or another, the root of machine 
learning applications is learning a function that best captures the given data. This could 
be either learning to represent the data or simply fnding a rule based on which the data 
can be understood or discriminated. Whether for predictive, generative, adversarial or 
other purposes, learning such a function of the data is key. In other words, there is 
no machine learning without learning from the data. Thus, determining the quality of 
what was learnt is arguably one of the most important endeavours of machine learning. 
Determining this quality is the subject of the present thesis. 

Why is it challenging? When learning a function of the data, we only have access 
to a limited set of samples. What we are interested in is how suited the function is for 
describing the samples that are part of the true underlying data distribution yet which 
we do not have access to. But how can we determine how suitable the function is if we 
do not have access to those samples or to the true underlying distribution? Although 
this is a massively oversimplifed view, in its simplicity it captures the essence of the 
problem. All the technical challenges we will introduce throughout this work essentially 
boil down to this. 

How do we measure the function quality? So far we have talked about the quality 
of a learnt function without explaining how it is measured. This is because the answer is 
not straightforward and requires more context. For the moment, we will give an inexact 
response that will be detailed later on. In this thesis we focus on the task of prediction. 
In this context, we will consider the quality of the learning function to be how well the 
function can make predictions on unseen parts of the data distribution. This is referred 
to as the generalisation performance and it is the main object of study in this work. 
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4 Foreword 

Why is generalisation performance so important? The most recent advances in 
machine learning are largely characterised by great intuitions and happy accidents. It is 
very rarely the case that a newly proposed approach is driven by a theoretical fnding. 
Capturing the quality of the learned function would implicitly lead to a solid under-
standing of the true underlying mechanism. From a practical point of view, capturing 
generalisation could lead to more principled advances. From a theoretical point of view, 
it can lead to formalising a relevant framework that can both fuel progress as well as 
warrant the reliability of current practices. The latter is particularly important since 
the feld is hoping to apply machine learning to sensitive applications that would beneft 
from some form of theoretical validation in order to be fully trusted. 

How can it be approached? From a reductionist perspective, there are two types of 
approaches to scientifc research: the generalist and the specialist approach. As we will 
recount later in the thesis, the feld of generalisation studies has seen over the recent years 
an increase in outlooks and directions, uncovering the true complexity of the problem. 
So much so that what we believed would be a specialist task, turned out to be an entire 
feld worthy to be dedicated a life-long career. We see the present thesis as the initial 
search of a future “generalised specialist”; an expert in generalisation studies that is not 
committed to one single view of this extremely challenging problem. 

This perspective is key to understanding the nature of the content of the thesis: a 
mixture of high-level discussions of the main directions in generalisation studies and 
in-depth, methodical analyses of various phenomena. This mixture represents a search 
for a unifed view of generalisation; for understanding the bigger picture and at the 
same time understanding what are the details that hold it together. We will constantly 
remind the reader that this thesis is, above everything else, about understanding. This 
is the leitmotif of the work and its driving force. 

From a structural point of view, the thesis follows the order in which the subjects have 
emerged. Our search started from theoretical studies. Slowly, the belief that meaningful 
theories need to be based on strong empirical intuitions was formed. As a result, we 
shifted to empirical analyses. We then took the frst steps towards bridging theory and 
practice. Our hope is that the insights we provide in this thesis will one day help the 
community formulate a framework for reasoning about generalisation that is relevant in 
practice. 

In summary, this thesis refects, both in its content and structure, an exploration. Our 
exploration is motivated by the belief that good practical intuitions are required to build 
a relevant theoretical framework. This is the belief that we hope the reader will share 
by the end of this work. 



Chapter 1 

Directions in Generalisation: a 
Short Introduction 

This chapter gives a high-level account of the main research directions in capturing the 
generalisation ability of learning machines. We refer to such studies as “generalisation 
studies”. We use this chapter to propose an initial classifcation of the various research 
directions, which aim to either bound generalisation, or to estimate it. Based on this 

classifcation, we defne the scope of the thesis and outline some of the main 
contributions. Lastly, we provide an overview of the following chapters. 

In this chapter we introduce one of the main beliefs expressed in this thesis, namely that 
the machine learning feld needs to rethink generalisation. To justify this claim, through-
out the thesis we provide an overview of the main directions in generalisation studies. 
Here we start this overview by proposing a frst high-level classifcation of approaches 
to reasoning about generalisation. In the Foreword we have informally described gener-
alisation as the quality of the learnt function to perform on unseen data. There are a 
few important observations to be made. 

Performance is Task-dependent 

First, it must be noted that here we refer to functions learnt for the purpose of prediction, 
which is the setting we are concerned with in this thesis. For other applications, our 
defnition might not apply exactly. For example, in the case of generative tasks, the 
quality of the learnt function is less straightforward to determine. In that case, notions 
of quality typically refer to how “realistic” and diverse the generated samples are (e.g. 
Salimans et al., 2016; Bińkowski et al., 2018; Heusel et al., 2017; Kynkäänniemi et al., 
2019), but the existing evaluations are biased (Barratt and Sharma, 2018; Kynkäänniemi 
et al., 2022) and an objective quality is yet to be defned. Thus although the gist of 

5 



6 Chapter 1 Directions in Generalisation: a Short Introduction 

generalisation is the same across all tasks, it is only for prediction that our specifc 
defnition holds. 

The Data Can Trick Us 

We remind the reader that the greatest challenge is to determine the quality of the learnt 
function on a distribution that we do not have access to. In practice, we empirically 
estimate the generalisation performance by evaluating the function on a held-out set, 
the test set. This is typically selected out of the available data samples. Naturally, this 
method gives a very crude estimation that can give misleading results, especially if the 
data acquisition process is not carefully thought out. 

One such example of misleading results caused by a fault in the data collection process 
was exposed by Rueckel et al. (2020). They looked at predicting pneumothorax based 
on chest scans. An intervention carried out after a patient is detected with pneumoth-

orax is the insertion of thoracic tubes. Studying the images used to learn and evaluate 
functions of the data, Rueckel et al. (2020) noted that an overwhelming majority of the 
scans classifed as pneumothorax-positive were taken from patients with thoracic tubes 
already inserted. Rueckel et al. then chose a function with good reported performance 
and investigated its predictions on a new set of radiographs for patients that were pneu-
mothorax positive but who had not yet had thoracic tubes inserted. They found that 
pneumothorax was predicted only when marks of thoracic tubes were present. Thus, the 
function with good reported performance could not predict pneumothorax in patients 
which had not previously been diagnosed. The function had no real predictive power. 

In the case presented above, the test performance, which is the empirical estimate of 
the generalisation performance, would not be refective of the true generalisation per-
formance. Oftentimes, such unintentional biases in the data exist. This is the frst 
observation that needs to be considered when we equate model performance with gen-
eralisation performance and generalisation performance with performance on test data. 

Generalisation Performance Is Not All We Care About 

As mentioned in the Foreword, the feld is changing rapidly, and with it, the notions 
of function quality. As applications evolved, practitioners started to account for other 
notions of quality apart from predictions themselves. For example, we can imagine a 
function that is created to assist medical staf in diagnosing patients. In such a case, we 
might not only be interested in the predicted disease but also the confdence associated 
with the prediction. This brings us to our second caveat. Apart from ideal cases where 
a perfect function exists, the generalisation performance cannot measure all the aspects 
of function quality that we care about. This is even less so the case in practical settings, 
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where we can only estimate the true generalisation performance. The estimation can be 
improved in clever ways (e.g. computing an average estimate via cross-validation), but 
we would still rely on heavy assumptions. Throughout the thesis we will expand on this 
caveat and its nuances. 

Generalisation is Still Very Important but Needs Rethinking 

We have pointed out a number of challenges when dealing with generalisation. These are 
abstracted away in generalisation studies. We will mostly follow prior art in this respect. 
Although by setting aside such details, the problem of capturing function quality is 
massively simplifed, it still remains one of the most difcult and fundamental problems 
in machine learning. Despite its paramount importance, and the numerous attempts 
to understand and capture generalisation, we still lack to this day a comprehensive 
framework that gives real insight into when and how functions generalise. As we will 
argue throughout the thesis, we believe that one of the reasons for this is that the feld 
still lacks a strong intuition grounded in well-defned and principled experimentation. 

What are the numerous attempts to understand and capture generalisation? 
To the best of our knowledge, a comprehensive introduction to generalisation studies 
is missing from the literature. In this thesis we aim to incorporate an overview that 
highlights the main ideas in the feld, while being accessible to a wide audience. The 
motivation for this is similar to that of Alquier (2021), who proposes an introduction 
to one of the directions in generalisation, namely PAC-Bayes bounds, which we will 
introduce in Chapter 4. Alquier argues that given the large corpora of papers on PAC-
Bayes bounds, it is difcult for one to be aware of what has been proposed so far. We 
believe this observation extends to the entire feld of generalisation. 

Secondly, Alquier points out that most works assume familiarity with the feld, making 
it difcult for non-specialists to engage with the content in the absence of a separate 
introductory work. This holds true for most papers in the feld of generalisation, not 
only PAC-Bayes ones. For these reasons, we aim to present, classify, and contextualise 
the main ideas in the feld and their evolution. We direct this overview at machine 
learners, assuming basic prior knowledge. Nonetheless, we will explicitly introduce the 
core terminology, especially where terms have been used with varied meanings in prior 
art. 

Why does the thesis not subsequently focus on a single approach? This thesis 
has a broad and ambitious goal. One of the reasons for this, as mentioned in the 
Foreword, is the accelerated pace at which new directions are being proposed, turning 
this pursuit from a specialised task to a generalised one. But more importantly, we 
believe the feld is still missing a key ingredient that none of the individual approaches 
addresses. Note that although we do not know what the missing ingredient is, we believe 
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it requires a holistic understanding. Therefore, we advocate for rethinking generalisation 
and in this thesis we work towards this. In our overview we highlight the strengths and 
limitations of the main schools of thought in generalisation and provide our view on what 
we believe are promising future directions. We hope our work will invite the community 
to think outside of the confnes of established theories in an informed way, so as to fnd 
the missing piece of the generalisation puzzle. 

What are the established theories? Until recently, generalisation frameworks were 
highly formal, rigorously calculating results. We refer to these as “classical approaches”. 
In the following chapter we will discuss the irrelevance of classical results to practical 
settings which caused a change in the community’s take on generalisation. As such, 
more empirical analyses started to be carried out, and most recently a new feld has 
emerged: empirical theory of generalisation. This change in perspective leads to what 
is, in our view, the main branching in generalisation studies at the time of writing: 
whether the objective is to bound or estimate the generalisation performance. Below, 
we briefy introduce these two perspectives. 

1.1 Bounding or Estimating Generalisation? 

There is no clear answer to the dilemma of bounding versus estimating generalisation. 
In this section we look at how prior art has approached this question, and we emphasise 
the strengths and limitations of the chosen perspectives. We start by more precisely 
defning the terminology specifc to generalisation while still maintaining an informal 
tone. This will allow us to make more in-depth arguments but keep the introduction 
lightweight. 

So far we have talked about learning a function of the data. The term “function” is an 
improper one and was only used for illustrative purposes. In machine learning, such a 
“function” is a neural network commonly referred to as a model, and can be informally 
thought of as a particular instance of an architecture (i.e. a certain confguration of 
parameters). Note that what we are actually interested in when defning a learner is the 
functional efect on the representation space. Two diferent parameter confgurations 
can partition the space in the same way and as a result they would be considered, in 
efect, the same learner. Therefore the correspondence between model instances and 
functions is not exactly one-to-one. However, to keep the introduction simple, we will 
use this analogy for the moment. 

The generalisation performance is usually measured through the generalisation error, 
which can be informally thought of as the probability that the model will output an 
incorrect prediction. Until recently, the literature was mainly dedicated to bounding 
the generalisation error. The bounding approach is able to provide guarantees but has 
the downside of being disconnected from practical results. For this reason, increasing 
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eforts are being dedicated to empirically estimating generalisation. However, the most 
efective measures lack a good theoretical foundation and are still far from capturing 
the true mechanism. To build a relevant framework for reasoning about this important 
problem we believe the feld needs to bridge the two approaches. 

More precisely, we believe the ultimate goal of generalisation studies should be to provide 
guarantees that are relevant in practical settings. However, this has proved to be difcult 
to achieve with the feld’s current level of understanding of the true mechanism. Our 
take is that estimating generalisation could be a more approachable target. The hope 
is that by iteratively refning our estimators we could gain an intuition of what the 
mechanism behind generalisation is. Once such an intuition is constructed, we could 
compute more informative bounds. 

The purpose of this thesis is to further the understanding of the community rather than 
solve this complex problem altogether. To set out the scene, this section briefy in-
troduces the bounding and estimation approaches, with more detailed descriptions in 
Chapter 2 and Chapter 4 respectively. The bounding approaches started of as highly 
theoretical but recently incorporated empirical elements. On the other hand, estima-

tors are entirely empirical. Naturally, the diference between theoretical and empirical 
directions is given by the number of elements the results abstract away from. Although, 
in essence, the empirical bounds bridge theoretical results with practical quantities, we 
argue that they are still uninformative because they typically do not pay sufcient atten-
tion to a core ingredient – the data. Thus, before presenting the bounding and estimating 
directions, we quickly present the main factors to be considered when creating a theory 
of generalisation. These elementary notions of generalisation studies will later help us 
diferentiate between the theoretical and empirical approaches to bounding. 

Theoretical versus Empirical Perspective – Elements to Consider 

Typically, there are two approaches to reasoning about generalisation based on the object 
of interest, which can be either the choice of model class or the quality of the model 
instance. Based on these two de facto components for describing generalisation, we will 
next defne what is known in the feld as the generalisation error decomposition. With 
the emergence of studies that, like ours, advocate for the importance of accounting for 
the data, a number of works have started to consider the data as one of the core elements 
of study. Thus, we will diferentiate prior art based on how they relate to these three 
elements. 

In addition to the existing terminology in the literature, we propose a number of terms 
to more easily discriminate between methods throughout the thesis. Note that the 
exact view on the concepts we present varies between theories. We often adopt the deep 
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learning terminology but strive for generality such that consistency with the classical 
view is maintained. Where this is not possible, we spell out the diferences. 

• Model Class Choice. When faced with a learning problem, one must choose a 
model class. An instance from this class will be picked as a result of the learning 
process. In the more familiar terms of deep learning, the model class can be thought 
of as the choice of architecture, while the particular “learner”, or instance, is given 
by a fxed choice of model parameters1 . 

For choosing the model class, we use prior knowledge about what structural bi-
ases exist in the data and the type of architecture that is ft for addressing them. 
Traditionally, the model class’ ability to capture the data is refected in the general-
isation performance of the best instances of the chosen class. Note that in practice 
we cannot know this quantity since the model space is dauntingly vast. Instead, 
it is a theoretical quantity termed approximation error that helps us reason about 
generalisation. 

• Model Instance Quality. Another source of error stems from choosing a sub-
optimal model instance. In this setting, we are interested in the model instance 
quality relative to the optimal model instance. This gives the estimation error. 
Together with the approximation error, it encompasses the generalisation error. 

In practice there are a number of factors at play, such as the training procedure 
or the optimisation process, which is itself a product of initialisation methods, 
hyperparameter choices, optimisation algorithm, etc. From a classical theory point 
of view, however, the learning process is abstracted away. This error is seen as 
stemming from the size of the training set and the complexity of the class. In some 
textbooks the trade-of between the approximation and estimation error appears 
as the “bias-complexity trade-of” (e.g. Shalev-Shwartz and Ben-David, 2014). 

Capacity and complexity are two terms associated with the model class. These 
terms are sometimes used interchangeably in the literature and refer to the level 
of expressivity of the model class. The term complexity is sometimes also used 
in relation to the model instance, creating much confusion in the feld. In this 
chapter we focus on the expressivity of the model class alone. In the language of 
classical theory, the expressivity of a class can be thought of as the total number 
of functionally diferent learners belonging to that class. We will expand on this 
notion as well as the instance-centric defnition of complexity in Chapters 2 and 4. 

For completeness, we must mention that there exists an alternative view of the 
generalisation error named the bias-variance decomposition. This view is con-
cerned with the expected generalisation performance. In essence, it captures the 
same phenomenon as the approximation–estimation decomposition with a similar 
emphasis on complexity. 

1Once again, the mapping of terminologies is inexact due to network symmetries. 
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When computing the expected generalisation performance, we take the expecta-
tion over the training set, which is sampled from the true data distribution. Note 
that although this is a theoretical setting, it can be estimated in practice by sam-

pling diferent partitions of the test set. Instead of considering a single model 
instance, we pick a model instance for each sampled training set and average their 
predictions. As such, we obtain the mean learner. Akin to the estimation error, we 
take the diference between the best model instance and the learnt model, which 
in this case will be the mean learner. This gives the bias of the model class. 

The other term in this alternative decomposition is given by the variance in the 
learned model instances. Once again, it is argued that too high a model class 
complexity could lead to overftting to each specifc training set, thus resulting in a 
high variance. Conversely, a too-low model complexity would lead to underftting, 
which implies that the average learner would be far from the best model instance, 
hence leading to a large bias component. Both decompositions of the generalisation 
error are sometimes referred to as the complexity trade-of, refecting the belief that 
generalisation is controlled by the class complexity. 

• Data distribution. Generalisation studies can also be diferentiated based on 
how they treat the data. Most generalisation theories assume train and test data 
are both drawn from the true data distribution. In the literature, this is referred to 
in short as “the i.i.d. (independent and identically distributed) assumption”. From 
this assumption, two directions emerge. On the one hand we have the classical 
theories and those stemming from it, which do not take the data into account. 
We refer to these as data-agnostic. On the other hand, we have those which take 
the data into account. Some do so indirectly and aim to estimate performance 
before seeing the test data. In this thesis we refer to them as a priori methods. A 
diferent line of work argues that in practice the test data distribution can difer 
from training and for this reason it studies generalisation a posteriori, i.e. at 
inference time, after the test data is given. Note that a priori and a posteriori 
as defned here are not to be mistaken with the Bayesian terminology. We simply 
start from the larger philosophical notions of a priori and a posteriori and choose 
the test data as the central point of reference (“that which is experienced”). 

A Note on Statistical Learning Theory 

Using the notions mentioned above, we can now diferentiate between theoretically and 
empirically bounding generalisation. To the best of our knowledge, there is no clear 
classifcation of generalisation studies. The frst seminal attempts to formalise general-
isation were those of statistical learning theory. The feld has much evolved since the 
frst results of this framework were presented, with so many iterative changes that we 
would argue it is difcult to decide what bounding methods can be considered part of 
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statistical learning theory and which ones cannot. Based on the terms introduced earlier, 
we will refer to the original setting of statistical learning as “classical”. The classical 
framework, which we will introduce in Chapter 2, completely abstracts away from the 
data and is concerned with the model class. 

Later statistical approaches started incorporating details about the data distribution 
in various ways but remained focused on the model class, while others have resorted to 
using complexity notions that are tied to the chosen instance rather that the whole class. 
Therefore, we will refer to classical bounds as theoretical, while the newer approaches will 
be referred to as empirical. We detail these approaches, their settings and assumptions 
below. This breakdown not only has the role of ftting each approach in a particular 
category but, more importantly, helps us clearly defne the scope of each method. Many 
of the previous directions have clear strengths within the settings they address. We aim 
to emphasise them and motivate why each particular perspective was chosen. We then 
discuss their limitations considering the confnes of their studies. Note once again that 
in this discussion we do not refer to the specifc directions belonging to each category. 
Instead, we do so in the dedicated sections of Chapters 2 and 4. 

1.1.1 Theoretically Bounding the Generalisation Error 

As Dziugaite et al. (2020) noted, within the generalisation approaches two polar opposite 
directions can be distinguished: one that entirely abstracts away from all the aspects of 
the problem and learning procedure and one which depends on every detail. The frst 
category is largely represented by classical statistical learning, arguably the most promi-

nent theoretical direction for decades. It provides a data-agnostic view on generalisation 
that is focused on the model space. As such, no particular model is chosen. Results 
can instead be considered to refect the worst-case scenario given a selected subset of 
learners. We begin by informally introducing the statistical learning framework on top 
of which we build the theoretical part of our work in Chapter 2. 

In statistical learning we start from the i.i.d. assumption. In the language of statistical 
learning, the function or rule we are trying to learn is referred to as a hypothesis. Thus, 
the purpose of the learning algorithm is to choose, out of a set of hypotheses, one that is 
the most representative of the true data. The theory employs information about this set 
of hypotheses, also referred to as the hypothesis class to guarantee that a good enough 
hypothesis will be selected with a certain probability. 

More specifcally, the results of classical statistical learning are in the form of bounds 
which depend on some notion of hypothesis class complexity or capacity. The lower 
the capacity, the better the guaranteed generalisation performance. This type of result 
formed the basis of a widely spread belief among practitioners that in order to get 
models with good generalisation, one must reduce capacity. In Chapter 2 we show 
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that the capacity-based calculations are unable to provide meaningful results because 
abstracting away from all details of the data and learning procedure leads the bounds 
to become vacuous when applied to real-world problems. 

In short, theoretical bounds are exact in the settings they consider and have great gen-
erality. However, the bounds are only of theoretical interest, with no practical relevance. 
As we will recount in Chapter 2, this is because modern learners have good generalisation 
performance despite having huge class capacity. 

1.1.2 Empirically Bounding the Generalisation Error 

The main factor that spurred researchers to move away from the classical framework 
was the remark that the worst case, which classical theory aims to account for, is very 
far from the typically observed case. Thus, to address the vacuousness of theoretical 
bounds, a few directions in statistical learning aimed to incorporate information about 
the data. Going further, most recently researchers started computing generalisation 
bounds based on empirically computed quantities . All of these quantities relate more or 
less directly to notions of complexity. Note that theoretical bounds were also considering 
complexity. While the notion of “capacity” is automatically associated with the model 
class, “complexity” has seen a number of diferent defnitions, some relating to the model 
class and others to the model instance. Until we discuss the technical details in the main 
body of the thesis, all these terms could be simply thought of as measures of expressive 
power. 

Empirical bounds are highly valued for their rigorously proved results but as we will 
discuss in Chapter 4, they are still far from helping us capture the generalisation mech-

anism. Subsequently, empirical evaluation of complexity measures inspired researchers 
to explore generalisation prediction outside the confnes of bounds. 

1.1.3 Empirically Estimating Generalisation 

Despite the fact that the attention has shifted from bound-like results, the paradigm 
has long remained that it is through some notion of model complexity that one can 
understand generalisation. However, most recently researchers have started to explore 
other indicators of good generalisation. Although not always explicitly stated, we ar-
gue many of the methods that have the learnt instance at heart can be fundamentally 
seen as combining representational geometry and some notion of model robustness. An 
increasingly adopted way of measuring model robustness is through data modifcation 
with a particular focus on data augmentation. However, we argue in this thesis that 
the efects of data modifcations on their own are poorly understood. This has led to a 
rather ad-hoc usage of data modifcation for the purpose of predicting generalisation. 
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Empirical predictors could represent a promising way of acquiring the intuition needed 
to capture the true mechanism of generalisation. However, this direction is in a very 
incipient stage and at the moment is very far from the rigour of bounding approaches. 

Summary 

To summarise this discussion so far, researchers have acquired partial intuitions about 
how machine learning works but have no formal frameworks that allow them to capture 
and refne their understanding. Conversely, the hard proofs of the theorists are exact in 
the settings they consider but of no real practical relevance. We believe that addressing 
this problem from both perspectives is necessary for reaching a comprehensive under-
standing that can be formalised. We believe that there is a need for a better formulation 
of intuitions and for the construction of a theoretical framework where these could be 
clearly seen. At the same time, we believe the feld should build stronger intuitions based 
on rigorous empirical fndings which can then be used for building relevant frameworks. 

1.2 Thesis Overview and Scope 

In this thesis we want to start empirically building the grounds and motivating the 
construction of new, more fexible theoretical formulations. We begin with the classical 
statistical learning framework and underline its limitations. We propose a new model 
of generalisation which encourages the reader to see this problem from a data-centric 
perspective. 

Having this view in mind, we pursue an empirical understanding of generalisation that 
is more focused on the data. We limit our exploration to visual classifcation tasks and 
propose an incremental understanding by analysing changes that occur when modifying 
data. More precisely, we evaluate models that were trained on diferent data augmenta-

tions but also evaluate model attributes using data alterations. We believe incorporating 
such modifcations can fuel a data-aware direction for generalisation studies and help 
uncover a yet unexplored piece of the puzzle. Incidentally, this endeavour highlights a 
number of incorrect assumptions about the side efects of data manipulations that are 
commonly adopted in the feld. For example, we analyse grid-shufing for shape-texture 
bias identifcation and patch overlapping for occlusion robustness and fnd that they 
represent biased methods of evaluating model attributes. 

Lastly, we focus on the newest direction in generalisation studies represented by the 
empirical estimation of model performance. We frst provide a comprehensive review of 
previous approaches. We then start building the foundations of a large-scale study for 
evaluating such estimators. We aim to build on previous large-scale studies and address 
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scenarios which had previously been omitted. More specifcally, we advocate for the 
necessity of incorporating variations in the data in the evaluation procedures. 

With a few exceptions (e.g. Kaplan et al., 2020), most of the infuential experiments 
and studies of generalisation in deep learning have so far been centred around vision 
applications. Because of this, as well as stronger intuitions built on personal experience, 
we exclusively focus on image tasks in the empirical part of the thesis. 

Note that although we take a data-centric approach, the generalisation ability as dis-
cussed in our empirical study excludes extrapolation. That is, we leave out the settings 
in which the true distribution used to sample the training data is signifcantly dif-
ferent to that of the test data. There is no clear threshold starting from which two 
distributions are diferent enough for the problem to fall under the “extrapolation” or 
“out-of-distribution” regime. This issue brings a level of subjectivity to generalisation 
evaluations and our work is no exception. However, fnding such a threshold is a highly 
complex problem in and of itself and would make up the subject of a whole new study. 

Distinguishing between out-of-distribution and within-distribution problems is only one 
of the challenges associated with studying generalisation. There are many more im-

portant aspects which we do not discuss in the present thesis such as how easy it is 
to navigate the loss landscape for fnding a low-error solution, or properties associated 
with each architecture. We refect on some of these in Chapter 5, Closing Remarks and 
Future Directions, and propose ways of integrating them into future studies. 

Coming back to the pneumothorax example (Rueckel et al., 2020) we introduced in the 
beginning of this chapter, a part of the generalisation puzzle is the “quality” of the data 
itself. Although highly connected to the performance of the learnt model, this constitutes 
an independent area of research and will not be addressed in this thesis. Challenges in 
this feld range from identifying mislabelled samples to determining if there is sufcient 
variety in the available data. A related issue is that of data complexity, which we discuss 
in the Future Work section of Chapter 3. 

We would like to end this section with a note on classifying generalisation studies. 
Earlier in the process of writing this thesis, we created a classifcation of generalisation 
studies that was signifcantly simpler. In a short time, the classifcation criteria no longer 
held, as directions became more and more nuanced. First and foremost, we fnd this 
encouraging. The feld is still swarming with ideas and great collective eforts are being 
made to solve this problem. Secondly, this rapid change likely tells us that our most 
updated classifcation will quickly not be able to account for advances in the feld. Thus, 
our objective is not to provide a fnal classifcation of directions in the feld. Instead, we 
aim to provide a clear picture of what has already been considered and how the ideas 
in the feld have evolved up to the moment of writing. Our hope is that this will help 
researchers identify paths that have not yet been explored. 
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1.3 Structure and Contributions 

With a clearer picture of the scope of the thesis, we proceed to outline the structure 
and our main contributions. The chapters are written around the theoretical–empirical 
trade-of. Chapter 2 is highly theoretical, with rigorous calculations, while Chapter 3 
is highly empirical, with thoroughly thought-out experiments. Each of these two chap-
ters constituted the backbone of independent research papers. These complementary 
approaches are then followed by Chapter 4, which focuses on empirical predictors of 
generalisation and their evaluation. Finally, Chapter 5 proposes broader future direc-
tions for the overall goal of understanding and capturing generalisation. 

Aspects of the work in this thesis were published and presented at the 2022 Interna-
tional Conference on Machine Learning (ICML), the 2019 Neural Information Processing 
Systems (NeurIPS) Workshop on Machine Learning with Guarantees, the 2021 Neural 
Information Processing Systems (NeurIPS) Workshop on Data-centric AI, and 2021 the 
International Conference on Learnt Representations (ICLR) Workshop on Robust Ma-

chine Learning. The calculations in Chapter 2 were presented at the Applied Maths 
Seminar at University of Southampton, while the work as a whole was presented as 
an invited talk at the Max Plank Institute for Intelligent Systems, Tübingen. At the 
beginning of each chapter we highlight the venues where its contents were presented, as 
well as the list of contributions corresponding to that particular chapter. 

The narrative is often question-based. To make the story easier to follow, we also 
provide a short abstract at the beginning of each chapter. Chapters 2, 3, and 4 have a 
“Future Work” section with concrete directions and experiment proposals for extending 
the work presented in each of them. A more high-level vision for the future of this work 
is presented in Chapter 5, Closing Remarks and Future Directions. Below, we give a 
chapter-based overview of the main ideas and contributions. 

Chapter 2: The Theoretical Approach: the Importance of the Data 

This chapter is concerned with the statistical learning view of generalisation. We start by 
introducing the terminology and set-up of classical statistical learning and highlight the 
aspects in which we deviate from it. Unlike most studies, we then compute the expected 
generalisation performance. The main contribution of our work is to propose a more 
accessible way to reason about the generalisation phenomena. Our calculation provides 
a higher-level perspective, highlighting the importance of the alignment between the 
choice of model class and the data at hand. We term this model-problem alignment 
“attunement” and argue that capturing it is crucial for reasoning about generalisation 
in a meaningful way. 
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Chapter 3: Steps Towards the Empirical Approach: Understanding by Dis-

torting 

The previous chapter raises the need for building the necessary intuition to identify 
and control attunement. In Chapter 3 we take initial steps towards this, by informally 
investigating what aspects of the data are important for generalisation. Inspired by 
recent empirical generalisation predictors, we start our exploration by looking at the 
practice of modifying data. We combat a number of incorrect implicit assumptions 
in the feld and advocate for more awareness of side efects when dealing with data 
modifcation. To do so, we create an index to identify instances of unfair evaluation 
and we then propose an alternative method for assessing robustness to occlusion. We 
subsequently use our newly proposed method to formulate a number of questions about 
attributes previously associated with generalisation and propose directions for future 
exploration of generalisation from an empirical viewpoint. 

Chapter 4: Steps Towards a Data-centric Evaluation of Empirical Predictors 

Working towards empirically capturing generalisation, this chapter establishes the foun-
dations for principled evaluation of generalisation predictors. We start by reviewing 
prior art, presenting a comprehensive overview of directions in generalisation. This pro-
vides the context in which empirical predictors have emerged, and allows us to highlight 
the strengths and limitations imposed by studying them. We then propose a standard-
ised way of evaluating these predictors. Building on prior evaluations, we propose a list 
of requirements and settings that we believe must be addressed. Lastly, we present the 
concepts that we believe can be used to capture generalisation. We argue that it is in 
terms of these concepts that new, meaningful predictors could be designed. 

Chapter 5: Closing Remarks and Future Directions 

In this fnal chapter of the thesis we return to a more holistic view of generalisation 
studies. We once again emphasise that understanding machine learning is a career-long 
pursuit and we reiterate our contributions from this perspective. More specifcally, the 
present work has a foundational role, although an incomplete one. We refect on the 
limitations of the thesis. For some of these limitations we propose ways of addressing 
them in the future, while for others we pose open-ended questions that we hope the 
wider community will be inspired to help answer. We end with optimism and great 
enthusiasm for possible future directions. 
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Supplementary Material 

To keep the thesis concise, we provide in this part additional evidence that further 
corroborates results found in the main body. For example, in Chapter 3 we show that the 
side efects of modifying data afect evaluation for one scenario; in the Supplementary 
Material we provide the results for the remainder of the scenarios we analyse, which 
reinforce the conclusions drawn for the scenario presented in the main body of the 
thesis. This is to simply show that we did not consider a single case, but instead a more 
thorough analysis was carried out. We also provide in the Supplementary Material the 
full experimental details and a description of all the data sets we use. Note that the 
thesis is stand-alone and this part only addresses additional supporting evidence. 

In summary, the contributions of this thesis are: 

Chapter 2 - We show the importance of the data. 

• We propose the β-Risk model for calculating the expected risk for classifca-
tion under the annealed approximation (Section 2.2.1); 

• Using the β-Risk model, we show the importance of accounting for the data 
when studying generalisation (Section 2.2.1); 

• We validate our model in the case of the perceptron (Section 2.3.1); 

• We propose a number of avenues for expanding our calculations and their 
interpretation (Section 2.4). 

Chapter 3 - We call for a more principled use of data distortion. 

• We identify a neglected phenomenon in data distortion which we term “data 
interference” (Section 3.2); 

• We propose an index that shows the presence of data interference (Sec-
tion 3.2); 

• We empirically show that model evaluation methods that do not account for 
data interference provide biased results (Section 3.2.1); 

• We identify three limitations of the classical method of measuring robustness 
to occlusion (Section 3.3.2); 

• We propose a fairer alternative for measuring robustness to occlusion that 
addresses the identifed limitations (Section 3.3); 

• We disprove the belief that data augmentations that preserve the distribution 
are better (Section 3.4); 

• We raise a number of open-ended questions to guide future research on data 
modifcation (Section 3.6). 
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Chapter 4 - We design a more extensive evaluation of empirical general-
isation predictors. 

• We contextualise and give an account of the major directions in generalisation 
studies (Section 4.1.1); 

• We provide what is, to the best of our knowledge, the frst review of modern 
empirical estimators of generalisation (Section 4.1.1); 

• We identify limitations of prior empirical predictors and then build concep-
tual arguments as well as preliminary experiments to support our claims 
(Sections 4.1.4 and 4.2.2); 

• We review the evaluation settings for empirical predictors proposed in prior 
art (Section 4.2.1); 

• We identify a number of limitations in evaluation studies (Section 4.2.1); 

• We design a new data set for evaluation which addresses the limitations we 
pointed out (Section 4.2.2); 

• We identify promising directions and propose a number of actionable ap-
proaches for future work (Section 4.3). 

Chapter 5 - We present our vision for the future of generalisation studies. 

• Based on the understanding built throughout the thesis, we propose a number 
of directions for the future of generalisation studies (Section 5.1). 





Chapter 2 

The Theoretical Approach: the 
Importance of the Data 

This chapter covers a new formalism for calculating generalisation. We start with a 
short introduction to the framework of classical statistical learning theory. Highlighting 
the limitations of the classical approach, we then motivate and introduce the β-Risk 
model for calculating the expected risk. Our calculations point towards the importance 

of a data-centric approach to understanding generalisation. 

The objective of the thesis is to better understand generalisation. To do so, we start 
with classical statistical learning theory, which provides the frst attempt to formalise 
generalisation. Since this classical work has been extensively studied, we do not provide 
a thorough discussion. Instead, we introduce the framework and direct the reader to 
established textbooks (e.g. Hastie et al., 2009; Shalev-Shwartz and Ben-David, 2014) for 
a more in-depth overview. In this thesis we choose to recount the evolution of ideas 
in generalisation studies and focus our review on the new directions. We provide this 
overview and discuss the new directions of generalisation studies in Chapter 4. 

In this chapter we propose an alternative formalism to that of classical statistical learning 
theory. Our framework exposes the inability of the classical theory to meaningfully 
capture generalisation. We argue that this is caused by not accounting for the data. 
We show that the generalisation performance is determined by the distribution of risks, 
which is intricately linked to ftness of the model class to the learning problem, and 
therefore, to the data. Instead, as we will see both in this chapter and in Chapter 4, 
the focus of most prior studies is on the class or model expressivity. Therefore, the core 
message of this chapter is that the data plays a much more central role in generalisation 
than it was previously attributed. 

In Chapter 1 we have seen that typically the objective of generalisation studies is either 
to bound or to estimate generalisation performance. Classical statistical learning opts for 
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an a priori bounding approach. For a priori methods, the problem of training samples’ 
representativeness is implicitly bypassed. The question becomes one of sample quantity 
rather than quality. In other words, knowing that the train and test samples are i.i.d. 
then, given sufciently many training examples, we can get a good approximation of the 
underlying distribution. In such a context we want to determine what is referred to in the 
feld as the sample complexity. The sample complexity is the minimum required size of a 
randomly chosen training set that would, with a certain probability, lead to a sufciently 
good generalisation performance. Here sufciently good means within a defned interval 
of the optimal performance. In other words, in this scenario we want to determine the 
training set size that would guarantee the learnt hypothesis is approximately correct with 
a certain probability. 

Such results belong to the Probably Approximately Correct (PAC) learning paradigm 
(Valiant, 1984a) and represent the standard results in the classical theoretical framework. 
Since statistical learning aims to provide guarantees, then the sample complexity needs 
to hold for all hypotheses in the class and over all possible data distributions. This 
generality is the undisputed virtue of classical results. However, as we will recount 
throughout the chapter, this generality makes the classical results uninformative for 
practical settings. For this reason, like most of the concurrent approaches, we opt to 
trade generality for practical relevance. Thus, in this chapter, rather than seeking to 
determine bounds by eliminating all high-risk hypotheses, we aim to study the expected 
generalisation performance. This perspective allows us to question the role of model class 
expressivity, which is regarded by statistical learning theory as key to understanding 
generalisation. 

Reiterating, the quantity of interest within the classical framework is the sample com-

plexity. In an infnite hypothesis space this can be determined (Shalev-Shwartz and 
Ben-David, 2014) by the Vapnik–Chervonenkis (VC) dimension (Vapnik and Chervo-
nenkis, 1971). The VC dimension captures capacity, a notion that is central to the 
classical theory. As mentioned in Chapter 1, capacity refects the expressivity of the 
hypothesis class. The aim of this chapter is to dispute the central role of capacity in 
understanding generalisation and to propose a framework that could help researchers 
gain more insights into the generalisation puzzle. The fundamental conclusion of our 
calculations is that researchers need to account for the data in order to understand 
generalisation. This conclusion sets the direction for the rest of the thesis. 

This chapter was presented at the Applied Maths Seminar of the Mathematical Sciences 
department at the University of Southampton. A short version of this work was also 
presented at the NeurIPS 2019 workshop on Machine Learning with Guarantees. Our 
contributions in this chapter are: 

• We propose a framework for reasoning about generalisation where we look at the 
expected risk rather than eliminating all bad hypotheses (Section 2.2); 
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• Making assumptions about the distribution of risks, we propose the β-Risk model 
for classifcation (Section 2.2.1) 

• We validate the β-Risk model on the realisable perceptron (Section 2.3.1), whose 
distributions of risks can be calculated; 

• Through our framework we emphasise the importance of accounting for the data 
in generalisation studies. 

We provide full derivations of our calculations in Sections 2.2 and 2.3. These use a num-

ber of known mathematical tools, such as the Beta and Gamma functions, the Gaussian 
distribution, Jensen’s inequality, etc. For completeness, we include the defnitions of 
these in Section A of the Supplementary Material for the reader’s reference. 

We start by giving a short informal introduction to the statistical learning paradigm, 
whose framework forms the basis of our calculations. This allows us to underline the 
limitations of classical work, which we then seek to address. 

2.1 Introduction 

In the previous chapter we mentioned that the purpose of the learning algorithm is to 
choose, out of a set of hypotheses, the one that best captures the data. How do we 
defne this ability to capture the data and which set do we pick a hypothesis 
from? We start by choosing a loss function to be minimised. For each hypothesis, the 
loss defnes the ability of the hypothesis to make a prediction about a particular data 
point. Keeping in mind the assumption on which a priori methods are based, our best 
attempt to capture the unseen data is to select a hypothesis only out of those that do 
best on the training data. As such, in the statistical learning framework one computes 
the loss over the whole training data set for all hypotheses in the class and then chooses a 
subset composed of the hypotheses with the lowest expected loss. This is also referred to 
as the risk. It is the quality of this subset that makes the subject of classical theoretical 
studies. Note that this process is usually infeasible in practice, as hypothesis spaces are 
so vast that we cannot exhaustively explore them; it is simply another abstraction that 
allows us to reason about generalisation. 

Naturally, the larger the training set, the better the estimate of the true data distri-
bution. We can say that a new training sample “eliminates” those hypotheses that do 
not correctly classify it, iteratively getting a more refned hypothesis subset. As men-

tioned in Chapter 1, traditional statistical learning theory takes a worst-case approach 
to generalisation analysis. In this view, the number of training samples should be high 
enough so that all rules that poorly explain the data are eliminated. Once again, this 
process relies on the idea that rules with poor generalisation performance (high risk) 
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will, with high probability, make errors on a sufciently large randomly chosen training 
data set (Vapnik and Chervonenkis, 1971; Valiant, 1984a; Baum and Haussler, 1989; 
Blumer et al., 1989; Haussler, 1992; Vapnik, 1992). Thus, given a large enough training 
set, the only rules left are those with good generalisation behaviour. To formalise this, 
we assume there is a set, H, of hypotheses. Note once again that we also refer to a 
hypothesis as an individual rule or learning machine. 

The expected loss for a hypothesis, h, over this distribution of data we term the risk, 
Rh. Thus, our objective is to choose a hypothesis with low risk. For a given training set 
we can compute the total loss, Lh, on all data points for a particular hypothesis h. The 
loss associated with the training set is known as the empirical risk. We assume that we 
have an algorithm capable of choosing a hypothesis from the set 

HERM = {h ∈ H|∀h ′ Lh ≤ Lh ′ } , (2.1) 

i.e. the set of hypotheses with minimum loss on the training set. This is known as 
empirical risk minimisation (ERM). Using the notions introduced above, in traditional 
statistical learning theory the aim is to fnd a worst-case bound on the sample complexity 
such that with overwhelming probability all h ∈ HERM will have a risk less than some ϵ. 
To obtain such a bound there needs to be a fnite number of hypotheses. Otherwise, there 
could still be a high-risk hypothesis that by chance did well on the particular training set 
we used. In the case where the learning machine has a continuous parameter space (so 
that the dimensionality of the space is uncountably infnite), we consider the efective 
size of the hypothesis space to be the VC dimension, in terms of which the sample 
complexity can be expressed. 

The VC dimension is a measure of hypothesis class capacity and revolves around the idea 
of space shattering. Informally, in a classifcation setting a hypothesis class can shatter 
a space if, given a set of points, for any possible labelling there exists a hypothesis in the 
class that can assign the labels correctly. The VC dimension is given by the maximum 
size of the set that can be shattered by the hypothesis class. More specifcally, for a 
binary classifcation problem, a hypothesis class shatters a set of size n when one could 
arrange the elements in the set in such a way that there exists a hypothesis for all 2n 

possible combinations of label assignment. 

To more easily visualise set shattering, we give a concrete example. We choose the 
hypothesis class of axis-aligned rectangles, where everything within the rectangle is 
classifed as belonging to class “A”, while everything outside of it belongs to class “B”. 
Given a set of four points, one can arrange them as depicted on the left-hand side of 
Figure 2.1. For any possible labelling, we can fnd an axis-aligned rectangle that gives 
the desired classifcation. Therefore, the class of axis-aligned rectangles can shatter a 
set of size 4. When adding one more point to the set, no matter how we arrange the fve 
points, there will be a confguration that cannot be correctly classifed. We can conclude 
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Figure 2.1: The class of axis-aligned rectangle classifers has a VC dimension of four. We take the axis-
aligned rectangles to classify everything with the rectangles as belonging to class “A”, and everything 
outside to belong to class “B”. This is because arranging four points as shown on the left-hand side, 
one can fnd a rectangle for each possible class assignment. However, adding a ffth point makes this 
impossible. For example, on the right-hand side confguration, there is no axis-aligned rectangle that 
can classify the two red points as belonging to class “A” and the three blue points to class “B”. Figure 

inspired by Shalev-Shwartz and Ben-David (2014). 

that the VC dimension is 4, the size of the largest shatterable set. This efective size 
or capacity lies at the heart of conventional statistical learning theory. By limiting the 
capacity we can obtain stronger bounds on the generalisation performance. But this 
central role of capacity has been empirically questioned. 

Our work, like many of the generalisation studies proposed over the past fve years 
has as its starting point the infuential paper of Zhang et al. (2017). In their study, 
Zhang et al. perform a randomising label experiment which shows that architectures 
which were achieving state-of-the-art generalisation performance (Szegedy et al., 2016; 
Krizhevsky et al., 2012), had immense capacity. We will introduce the experiment later 
in this chapter but focus on their observation for the moment. 

Why is this observation important? Firstly, the results under the form of bounds 
had started to be wrongly interpreted in the machine learning folklore. As such, the 
bounds were taken to mean that it is necessary for the capacity to be restricted in 
order to achieve generalisation. The fnding that good hypothesis classes had almost 
infnite capacity was seen by some as puzzling and has resulted in many studies aimed 
at explaining generalisation in overparametrised regimes and attempts to redefne com-

plexity. Secondly, the fnding caused the feld to question the relevance of theoretical 
results for modern deep learning settings. The bounds are constructed such that they 
hold regardless of the data distribution. However, the elegant generality makes them 
intangible when applied in practice. 

In this work we challenge the traditional approach. Eliminating all high-risk hypotheses 
is, in our view, too stringent and often leads to weak bounds. Good generalisation can 
be achieved with high probability so long as the vast majority of hypotheses in HERM 

have low risk. Thus, provided there is no bias towards choosing high-risk machines we 
will still, with high probability, choose a low-risk machine. In this scenario, capacity 
plays a much more minor role. Instead, we need to know the distribution of risks, ρ(r), 
of a learning scenario. That is, we need to know the proportion of hypotheses with a 
certain risk. As we will show, the asymptotic generalisation performance is determined 
by the power-law growth in ρ(r) for small r; a quantity we term attunement. This new 
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perspective solves the apparent paradox that arose as a result of Zhang et al. (2017)’s 
experiment. 

The basic idea of our approach is simple. We assume that we are given a set of hy-
potheses with a given distribution of risks, ρ(r). We eliminate hypotheses that perform 
poorly on the training examples. This will, with overwhelming probability, remove more 
hypotheses with high risk, thus the expected risk of hypotheses in HERM will decrease as 
the size of the training set is increased. Although the idea is simple, computing the ex-
pected ERM risk exactly from ρ(r) alone cannot be done. We would require information 
about the correlation between hypotheses, which depends on other details of our learn-
ing algorithm. However, by making an assumption about the independence of losses for 
the hypotheses, we can obtain an approximation to the expected ERM risk from ρ(r) 
alone. We do this in Section 2, where we propose the β-Risk model for classifcation. 
Section 2.3.1 derives an exact expression for the expected risk of a realisable perceptron 
— this result is data set dependent. This allows us to show that our proposed β-Risk 
model can closely capture the expected risk of a perceptron. 

How does our calculation relate to prior art? One of the main changes to the 
classical framework of statistical learning that we make is to focus on the expected gen-
eralisation performance. As we will present in more detail in Chapter 4, this perspective 
can also be found in the PAC-Bayesian literature. Our calculations however, are more 
closely related to the largely forgotten statistical mechanics work on learning (Engel and 
den Broeck, 2001). This developed out of Gardner (1988)’s calculations of the expected 
generalisation performance for a perceptron. Gardner’s results are believed to be exact 
in the limit when the number of features becomes infnite. Although we are forced to use 
approximations, our intent is to develop a more general framework. The approximation 
developed in the next section is equivalent to the annealed approximation in statistical 
mechanics. The work presented in this chapter was done independently and we only 
became aware of the feld after drafting the calculations. Although, as mentioned in the 
introduction of this chapter, statistical learning literature is extensively covered by prior 
studies and textbooks, the connections between statistical learning theory and the work 
done in the physics feld of statistical mechanics are rarely mentioned in the generalisa-
tion literature. For a review of the work on learning in statistical mechanics, we refer 
the reader to Engel and den Broeck (2001). 

Another similar approach to ours has also been put forward by Schefer and Joachims 
(1999). For a number of classes of hypotheses, they estimate empirically the distribution 
of error rates from which the expected error of an ERM hypothesis from each hypothesis 
class can be obtained. However, they used this approach to propose a model selection 
algorithm rather than introducing a new framework for reasoning about generalisation. 

What is the contribution of our calculation? The novelty of our work stems from 
its focus on simplicity and the clear connection with statistical learning theory. Under 
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the annealed approximation, we assume a distribution for the risks which then allows us 
to study the relationship between this distribution and the generalisation performance. 
This allowed us to grasp the importance of accounting for the data, which leads us to 
pursue a data-centric analysis of generalisation in the upcoming chapters. Therefore, the 
β-Risk model we propose allows us to gain a higher-level understanding of generalisation 
compared to prior art. Thus, the present chapter focuses on carrying out calculations 
that can provide a better intuition on the quantities of interest for generalisation studies. 

Before presenting our calculations, we introduce Zhang et al. (2017)’s label randomisa-

tion experiment in more detail and relate it to the view on generalisation that we discuss 
in this chapter. 

The Label Randomisation Experiment 

In our opinion, the label randomisation experiment has fuelled the development of mod-

ern generalisation theories. Given its seminal role, we will refer back to this experiment 
throughout the thesis. Zhang et al. (2017) challenged the relevance of classical theo-
ries by studying some of the most successful deep learning architectures at the time: 
AlexNet (Krizhevsky et al., 2012) and Inception (Szegedy et al., 2015). They used 
CIFAR-10 (Krizhevsky et al., 2009), a 10-way image classifcation task consisting of 
50 000 training images, and ImageNet (Deng et al., 2009), a 1000-way classifcation task 
with over one million training images. The CIFAR-10 images are of size 32 × 32, while 
ImageNet ones are centre-cropped to 224 × 224 pixels. They then trained AlexNet and 
Inception models on modifed versions of these data sets, where the images were assigned 
random labels. 

Interestingly, despite this unnatural setting, they were still able to fnd a set of param-

eters that for CIFAR-10 (Krizhevsky et al., 2009) perfectly classifed all the training 
examples, while for ImageNet (Russakovsky et al., 2015) they found network instances 
with very low errors on the randomly labeled training data. This experiment shows that 
the capacity of the AlexNet and Inception architectures is incredibly vast; so vast that 
they are able to shatter spaces of dimensionality at least as high as those of the con-
sidered data sets. In fact, these networks have such a large capacity that conventional 
statistical learning theory can provide no useful guarantee of generalisation performance. 
Notably, the AlexNet and Inception networks consisted of many fewer parameters than 
some of the successful architectures which have been proposed since. Thus, for modern 
deep learning architectures, the bounds of classical theory become vacuous. Neverthe-
less, when trained on the real, unmodifed data, such vast-capacity architectures achieve 
state-of-the-art results. In our approach described below, this provides no contradic-
tion. If we consider the set of parameters that perform well on the training set, then an 
overwhelming proportion of those parameters corresponds to low-risk hypotheses. 
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Although in the thesis we focus on the VC dimension, we must mention that this is not 
the only measure of expressiveness proposed prior to Zhang et al. (2017)’s experiment. 
Another such measure is the Rademacher complexity which, in essence, measures the 
ability of a hypothesis class to ft randomly assigned binary labels. Zhang et al. (2017)’s 
experiment questions the relevance of this notion of complexity as well. 

Summarising, since hypothesis classes that are commonly being used have almost infnite 
capacities, the practical relevance of capacity-centric approaches is being questioned. We 
believe that by looking at the expected ERM risk we can get a more tangible model of 
generalisation. Although we lose the generality of the statistical learning view, as will 
be made clearer later in this chapter, being able to control the distribution of risks 
underlines its central role and brings to the forefront the importance of accounting for 
the data distribution. 

2.2 Computing the Expected ERM Risk 

We seek to obtain more informative results than those obtained by considering the 
capacity of a learning machine. To do so we require more information about the learning 
problem than in classical learning theory. In particular, we assume that we are given a 
problem with a fxed data set for which we know the distribution of risks, ρ(r). 

Following conventional a priori theory, we imagine that we are given a training data 
set of size m, where each training example is drawn independently at random from the 
distribution of data that defnes our problem. We model our learning machine by a 
set, H, of hypotheses. In our formalism the set of hypotheses may be fnite or infnite. 
Each hypothesis, h ∈ H, will have a loss associated with it. In this section, we consider 
classifcation problems where we take the loss function to be 1 for a misclassifcation and 
0 otherwise. As each training data point is sampled independently, for any hypothesis, 
h, with risk Rh, the loss over the entire training data, denoted Lh, will be binomially 
distributed 

( ) ( ) m
P Lh = ℓ|Rh = Binom(ℓ|m, Rh) = Rh

ℓ (1 − Rh)
m−ℓ . 

ℓ 

However, the hypotheses may be correlated. For the moment we will assume that the 
correlation can be ignored without the end results being signifcantly afected. This 
makes the analysis relatively straightforward. The approximation we get by ignoring the 
correlations is equivalent to the annealed approximation in statistical mechanics (Engel 
and den Broeck, 2001). We analyse the case in which zero approximation loss can be 
achieved. That is, among the hypotheses in the training set there exists one which fully 
captures the data. Such a case is termed the realisable case and it is commonly considered 
in theoretical studies. In this context, the chance correlations between training examples 
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lead to a systematic correction in the typically observed generalisation performance. As 
we will show, the annealed approximation gives a reasonable qualitative description of 
the generalisation performances but it is overly pessimistic. Since this is not relevant 
to the central story of this thesis, we do not present these calculations in the main 
body of the thesis but include them in Section C.2 of the Supplementary Material for 
completeness. 

We remind the reader that we consider the scenario known as Empirical Risk Minimi-

sation (ERM) where we choose a hypothesis from the HERM subset. Importantly, we 
assume that every hypothesis in HERM is equally likely to be chosen. This is sometimes 
referred to as Gibb’s learning and in the context of training a perceptron, it provides a 
good approximation to the performance of the learning algorithm. 

We are interested in the generalisation performance of the model obtained as a result 
of the learning algorithm. The algorithm consists of reducing the hypothesis space 
to a subset, the ERM subset, and then uniformly choosing one of the hypotheses in 
this set. Thus, in the language of our framework it is the expected risk of such a 
randomly chosen hypothesis that gives the generalisation performance of our learning 
algorithm. Throughout the thesis we will refer to this quantity as the expected ERM 
risk. Formalising, let RERM ∈ {Rh|h ∈ HERM} denote the risk of a randomly sampled 
hypothesis from the set of hypotheses with minimum loss on the training set. Under the 
assumptions of our framework, the expected ERM risk is 

r z r z∑ ∑ [ ] m r zRh h ∈ HERM ∑ Rh Lh = ℓh∈H h∈H 
E = r z = r zRERM ∑ ∑ ℓ = LERM 

h∈H h ∈ HERM ℓ=0 h∈H Lh = ℓ 

m [ ] r z∑ 
= E r|ℓ ℓ = LERM , 

ℓ=0 

r z 
where predicate denotes an indicator function equal to 1 if the predicate is satisfed 
and 0 otherwise, and LERM = min{Lh|h ∈ H} (i.e. the minimum empirical risk). Note 
that above we take the expectation over the choice of hypotheses. Following classical 
statistical learning, we would like to be able to compute the expected generalisation 
performance over the choice of data set as well. Making the strong assumption that[ ] [ [ ]] 
E r|ℓ ≈ ED E r|ℓ (i.e. that there are no signifcant fuctuations between data sets) 
then 

[ [ ]] m [ [ ]] ( ) ∑ 
ED E RERM ≈ ED E r|ℓ P ℓ = LERM . 

ℓ=0 

[ ] [ [ ]] 
In the rest of this section we write E · · · = ED E · · · (i.e. the expectation both 

( ) 
with respect to the data set and over all hypotheses in HERM). Computing P ℓ = LERM 

is inherently problematic in this formalism as it depends on the correlations between 
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our hypotheses. In the spirit of the approximation we are making we can ignore any ( ) 
correlation between hypotheses. If we do this and defne fL(ℓ) = P Lh = ℓ for a 

( ) ∑ℓrandom hypothesis h ∈ H, and let FL(ℓ) = P Lh ≤ ℓ = fL(ℓ ′ ), thenℓ ′ =0 

( ) ∏ ( ) ∏ ( ) 
P ℓ = LERM = P Lh ≥ ℓ − P Lh ≥ ℓ + 1 

h∈H h∈H 

= (1 − FL(ℓ − 1))H − (1 − FL(ℓ))
H , 

where H = |H|, that is, the size of the hypothesis space. For an infnite hypothesis space, 
2DV C we should take H to be some efective size of the hypothesis space (e.g. , where 

DV C is the VC-dimension). This is the one area in our formalism where capacity plays 
an important role. We remind the reader that the realisable regime is that where there 
exists a hypothesis that correctly captures that data. That hypothesis must naturally 
be among the ERM hypotheses. Thus, for realisable models we do not need to evoke 
capacity, as we will see below. 

( ) ( ) 
From Bayes’ rule f(r|ℓ) = P ℓ|r ρ(r) / P ℓ so that 

1 ( ) 1∫ ∫ 
r P ℓ|r ρ(r) dr rℓ+1 (1 − r)m−ℓ ρ(r) dr[ ] 

0 0E R|ℓ = = . 
1 ( ) 1∫ ∫ 
P ℓ|r ρ(r) dr rℓ (1 − r)m−ℓ ρ(r) dr 

0 0 

Putting together the results above we obtain 

1∫ 
m rℓ+1 (1 − r)m−ℓ ρ(r) dr[ ] ∑ ( ) 0E RERM = (1 − FL(ℓ − 1))H − (1 − FL(ℓ))

H . (2.2)
1∫ 

ℓ=0 rℓ (1 − r)m−ℓ ρ(r) dr 
0 

Since in the realisable regime LERM = 0, the generalisation performance in this case 
becomes 

1∫ 
r (1 − r)m ρ(r) dr[ ] [ ] 

0E RERM = E R|ℓ = 0 = ∫1 . (2.3) 
(1 − r)m ρ(r) dr 

0 

To be able to analyse the generalisation performance from this point onward, we would 
need to know the distribution of risks, ρ(r). In Section 2.3.1, we look at how to compute 
ρ(r) for a specifc problem, namely the realisable perceptron. In general, however, this 
is a hard task. We can obtain an estimate of this quantity in practice through MCMC 
sampling (Belcher et al., 2022). 
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By examining how the generalisation performance depends on ρ(r), we can obtain a 
better understanding of what is required to improve generalisation. For this, we have 
to make assumptions about the distribution of risks. In the following section we study 
the generalisation performance where we assume the risks are distributed according to 
a Beta distribution. We call this the β-Risk model of generalisation. 

Is assuming a Beta distribution reasonable? In Section B.1 we look at the asymp-

totic generalisation in a realisable setting and show that for an infnite hypothesis space, 
generalisation is given by the exponent of the risk. In other words, we show that it is 
the power-law growth in the distribution of risks that is the driving factor of the general-
isation performance. Therefore, our calculations have generality beyond problems with 
a Beta-distributed risk. Subsequently, in Section 2.3.1 we show that our model allows 
us to capture the generalisation performance of the realisable perceptron, which further 
validates our proposal. Nonetheless, the ability of our model to capture all aspects of 
generalisation as well as possible alternatives to β-Risk remain open research questions. 

2.2.1 Classifcation: β-Risk Model 

Starting from Equation 2.3 we can numerically compute the expected ERM risk from a 
knowledge of the distributions of risks, ρ(r). In this section, we consider a special form 
of ρ(r) that allows us to compute the integrals in closed form. That is, we take ρ(r) to 
be Beta-distributed, 

ra−1 (1 − r)b−1 
ρ(r) = Beta(r|a, b) = . (2.4)

B(a, b) 

For a balanced data set where we perform a binary classifcation task we would choose [ ] 
b = a, while for k-way classifcation we would set b = a/(k−1) so that E Rh = (k−1)/k. 
Note that this distribution is unbiased, so, for example, in the binary case, there are as 
many poor hypotheses as good ones. We call this the β-Risk model. 

The parameter a measures the degree of “attunement”: the smaller a the more attuned 
the hypothesis class H is to the problem being solved. The β-Risk model allows us to 
obtain an intuitive understanding of the generalisation performance in this framework. 
This seems a very particular functional form for ρ(r). However, as mentioned earlier, 
for large m the expected ERM risk is dominated by the power-law growth in ρ(r), so 
that the β-Risk model provides a reasonably accurate approximation for many diferent 
learning scenarios. To further verify the validity of our model, we explicitly compare 
the results obtained for the perceptron using the true ρ(r) and a β-Risk model with the 
same asymptotic behaviour in Section 2.3.1. 
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For the β-Risk model the distribution of learning errors is given by 
( ) [ ] m B(a + ℓ, b + m − ℓ)

fL(ℓ) = ER f(ℓ|R) = . (2.5)
ℓ B(a, b + m) 

The conditional probability of a risk, r, given an empirical loss of ℓ is 
( ) 

P ℓ |r ρ(r) rℓ+a−1 (1 − r)m−ℓ+b−1 
f(r |ℓ) = ( ) = , (2.6)

B(ℓ + a, m − ℓ + b)P ℓ 

from which we fnd 
∫ 1 

[ ] r ℓ+a (1 − r)m−ℓ+b−1 
B(ℓ + a + 1,m − ℓ + b)0E R|ℓ = = (2.7)

B(ℓ + a, m − ℓ + b) B(ℓ + a, m − ℓ + b) 

Γ(l + a + 1) Γ(a + m + b) a + ℓ 
= = . (2.8)

Γ(a + m + b + 1) Γ(l + a) m + a + b 

The β-Risk model is a realisable problem in the limit H → ∞ since infh∈H Rh = 0. That 
is, there exists a learning machine with arbitrarily small risk. In this case, the expected [ ] 
ERM risk is E RERM = a/(a + b + m). 

Next, by considering a fnite hypothesis space, a common abstraction in statistical learn-
ing theory, we can use β-Risk to model unrealisable problems. Unrealisable problems 
are those where all hypotheses have a risk that is greater than zero. If we assume that 
our hypothesis space corresponds to samples drawn from a continuous parameter space 
of a learning machine then such an unrealisable problem would be one where ρ(r) = 0 
for all r < Rmin. If we sample from ρ(r) then all hypotheses will have a risk greater 
than or equal to Rmin. Inserting Equation 2.8 into the expected ERM Risk given in 
Equation 2.2 we obtain 

[ ] m∑ a + ℓ ( ) 
E RERM = (1 − FL(ℓ − 1))H − (1 − FL(ℓ))

H . (2.9) 
m + a + b 

ℓ=0 

Figure 2.2 shows the expected ERM risk versus m plotted on a log-log scale for the case 
when a = 102 and a = 103 with diferent sized hypothesis spaces. This allows us to get 
a quick intuition about the generalisation behaviour for unrealisable problems. 

We see in Figure 2.2 that, for a given attunement a, we can obtain better results for larger 
hypothesis spaces. This is because larger hypothesis spaces are likely to include lower-
risk hypotheses. Of course, in a concrete scenario increasing the size of the hypothesis 
space would most likely implicitly modify the level of attunement. This is simply to say 
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Figure 2.2: Expected ERM risk versus the number of training examples plotted on a log-log scale for 
a = 102 (blue) and a = 103 (red), with b = a/9 (i.e. for a 10 class problem) for diferent values of H. 

that given the same level of attunement, one is more likely to fnd lower-risk hypotheses 
in higher hypothesis spaces. 

When providing bounds on the asymptotic behaviour, standard statistical learning the-
ory makes a strong distinction between the realisable and unrealisable learning scenarios. 
In our framework, we observe that there is a zero-loss phase and a nonzero-loss phase 
in the generalisation curves. For small m some proportion of the learning machines are 
able to perfectly classify the training examples. If ρ(r) is well approximated by a Beta[ ] [ ] 
distribution around E RERM then E RERM ≈ a/(a + b + m) — this characterises the 

[ ] 
zero-loss phase. When E RERM approaches the minimum risk Rmin (the risk of the 

[ ] 
best learning machine in H) then E RERM will converge towards Rmin. For realisable 

[ ] 
scenarios, E RERM will remain in the zero-loss phase for all m. 

In our framework the role of the VC-dimension is played by the attunement parameter 
a. This captures a quite diferent concept from class expressiveness, namely how quickly 
does ρ(r) fall of as r → 0. If the learning machine is well attuned to the problem we 
would expect this to fall of relatively slowly. Note that, whereas the capacity depends 
only on the learning machine architecture, the attunement also heavily depends on the 
distribution of data. 

In the following section we study the case of a well-attuned perceptron. We calculate 
its risk probability density and relate back to our β-Risk model to analyse changes in 
attunement as a result of feature reduction. 

2.3 The Distribution of Risks: Case Study 

Key to our formalism is the need to know the distribution of risks, ρ(r), for a learning 
problem. To validate our model, in this section we compute ρ(r) for a realisable percep-
tron. Using the inferred distribution of risks we match the generalisation performance 
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of the perceptron with that modeled by β-Risk and show that our model can capture 
reasonably well the generalisation performance for the concrete scenario we study. 

2.3.1 Realisable Perceptron 

We consider a very simple learning scenario. Our training set corresponds to m pairs 
T(xi, yi) where xi ∼ N (0, I) and yi = sgn(xi w ∗). That is, yi = 1 if the data is positively 

∗correlated with the target vector w that defnes the separating plane and yi = −1 
otherwise. We consider learning this with a perceptron with p-dimensional weights w 
such that ∥w∥ = 1. That is, the weights live on a hypersphere. If we consider sampling 
uniformly from the set of weight vectors then the distribution of weight vectors with an 

∗angle θ to w is 

sinp−2(θ)
fΘ(θ) = . (2.10)

B(12 , 
p−1 )2 

For this problem the risk is given by r = θ/π so that ρ(r) = π fΘ(π r). This is a 
realisable model for which the expected ERM risk, under the assumption of the annealed 
approximation, is 

1∫ 
r (1 − r)m sinp−2(π r) dr[ ] [ ] 

0E RERM = E R|ℓ = 0 = . 
1∫ 
(1 − r)m sinp−2(π r) dr 

0 

We can compute this numerically. However, when m is large the dominant contribution 
p−2to the integral comes from where r is small. In this region ρ(π r) grows as r (since 

sin(π r) grows linearly with r for small r). Thus we can approximate ρ(r) by a Beta[ ] 
distribution Beta(r|p − 1, p − 1) for which E RERM = (p − 1)/(2 p − 2 + m). 

[ ] 
In Figure 2.3, we show E RERM as a function of the number of training examples, m, 
for the realisable perceptron and the β-Risk model with a = b = p − 1. Note that the 
expected risk for the realisable perceptron is computed numerically. We see that the β-
Risk model provides a good approximation to the realisable perceptron in the annealed 
approximation. 

For this simple scenario, the distribution of risks, and hence the attunement, is directly 
∗ ∗determined by the dimensionality of the vector w . If w is orthogonal to some of the 

features, then they can be removed, improving generalisation. Traditionally, this would 
be attributed to reducing the size of the hypothesis space. However, we see that this 
also leads to an improvement in attunement. Comparing the solid curves in Figure 2.3, 
we can see the improvement in the expected risk when reducing features that do not 
afect the generalisation performance. In the example depicted in this fgure, removing 
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Figure 2.3: Expected ERM risk for[ the realisable perceptron for the cases p = 20 and p = 100. ] We 
also show as dashed curves are E RERM = (p − 1)/(2 p − 2 + m) corresponding to a β-Risk model 
with a = p − 1. Removing 80 features leads to a better generalisation curve. Fitting a β-Risk model to 
the two perceptron cases, we note that the value of a has decreased from 99 to 19. Therefore removing 
the 80 features has increased attunement. Note once again that a smaller value of a indicates better 

attunement. 

80 features leads to better generalisation performance. Fitting our β-Risk model to the 
two perceptrons, one with 100 features and the other with 20 features, we observe that 
removing the 80 features has led to an improvement in attunement. 

In Section C.2 of the Supplementary Material we do the same calculation for the un-
realisable perceptron and once again note the central role of attunement and, in turn, 
of the data. To ensure our calculations are correct, in Section C.2 we take a closer 
look at the assumptions we make. This allows us to compare our results against those 
obtained through Gardner (1988)’s replica calculation. The corrections we obtain give 
very similar asymptotic generalisation results to Gardner’s. 

We believe that the good performance of modern deep learning algorithms can be ex-
plained by their attunement. It is important to note that we do not yet have a good 
understanding of exactly how changes in the data or model class shape the attunement. 
This is what we attempt to build an intuition for in the second half of the thesis. Once 
we have an understanding of how the attunement changes, we can use our model to 
further reason about generalisation. However, the important insight gained from this 
result is the importance of the data, which we believe has not been sufciently accounted 
for in prior studies. 

Coming back to Zhang et al. (2017)’s experiment, we can informally reason about it 
in terms of attunement. Because the training data has random labels, then all the hy-
potheses in the ERM subset will have high risk, since they can have no better than 
random generalisation power. In our β-Risk model, this corresponds to very low attune-
ment. Therefore randomising labels changes the attunement. Although the architectures 
Zhang et al. experiment with have high capacity, they can have good generalisation 
performance provided that they are well-attuned to the problem. When the labels are 
not randomised, the attunement will be signifcantly better than that on randomised 
labels. A similar argument is given by the concurrent work of Wilson and Izmailov 
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(2020) who take a probabilistic approach to generalisation. They argue that it is the 
“ftness” between the model’s inductive biases and the data distribution that determines 
generalisation. 

2.4 Future Work 

The most important endeavour for future work is to understand how to capture and 
formalise attunement. This, however, would imply solving the generalisation problem 
and it is therefore a difcult problem. The purpose of this chapter was to emphasise 
the importance of accounting for the data and the limitation of classical studies that 
comes from abstracting away from the data. In the rest of this thesis we advocate 
for a data-centric empirical approach to understanding generalisation. Although such 
an approach does not have formal rigour, the hope is that it will guide us towards a 
theoretical formulation once we have a better handle on what drives generalisation. 

Regularisation. An immediate direction to consider is the efect of regularisation on 
attunement. It is believed in the community that regularisation improves performance 
because it reduces the capacity of the model (Neyshabur et al., 2015; Hernández-Garćıa 
and König, 2018). We believe, however, that the capacity is imperceptibly afected 
by regularisation, if at all and wish to study how adding regularisers such as the L2 

impact the distribution of risks for small risks. Aiming to get an intuition of a realistic 
setting for this problem, we have considered empirically determining the risks obtained 
when performing linear regression for the Maximum Satisfability Problem. For this, 
we chose the predictor to be a discrete Fourier transform and we calculated the risks 
as we restricted the complexity of the function. However, the distribution of risks for 
this particular problem is too specifc. Thus, to ensure that our fndings are sufciently 
representative, analysing more problem classes is necessary. 

Separability. One other natural question to ask is how the attunement changes with 
the increase in class separability. We believe the reason why deep learning architectures 
are so successful is because the powerful feature extractor is increasing attunement by 
facilitating class separation. Through our framework, we can analyse this efect very 
easily for the case of the unrealisable perceptron by varying the distance of the two class 
means. 

Class Imbalance. Similarly, we believe that studying the attunement in the case of 
unbalanced data sets will further our understanding of the diferent mechanisms that 
determine attunement and has the potential to hint towards more practical approaches 
to alleviate the efects of the imbalance. 

As we have mentioned in Chapter 1 and will reiterate throughout the thesis, deeply 
engaging with the theoretical approach has allowed us to understand that in the absence 
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of better practical intuitions, we cannot formalise generalisation in a meaningful way. 
Although we can do calculations for simple models, we cannot yet scale them to the 
types of architectures and high-dimensional data sets used in practice. Therefore, the 
understanding that we can get from such calculations is also limited. Although the 
above directions for future work are interesting from a purely theoretical point of view, 
we believe that pursuing them is unlikely to help us fnd the missing ingredient in 
generalisation studies, which is the goal of this thesis. As such, in the following chapters 
we steer towards a more experimental approach. 

As we will detail in Chapter 5, at the time of drafting this chapter, we became aware of 
Zhang et al. (2018a)’s work, which introduced us to the feld of mixed data augmentation. 
Studies centred around data modifcation have then piqued our interest, since, like our 
calculations, they were attesting to the importance of the data. Albeit at the cost of 
losing formal rigour, the data modifcation literature is providing a more practical way 
of building intuitions. Therefore, in Chapter 3, we focus on the practice of modifying 
data. The hope is that the understanding gained from this pursuit will take us one step 
closer to building a theoretical framework that provides informative results. 

2.5 Conclusions 

Traditional machine learning theory has universal applicability in that it provides bounds 
on the generalisation gap that depend only on the capacity of the learning machine 
and are independent of the problem being tackled. This apparent strength is also its 
weakness. A learning machine with a large capacity may or may not generalise well 
depending on the distribution of the data. We know there exist distributions of data for 
which we cannot get any tighter bounds, so obtaining tighter ERM risk bounds requires 
us to include information about the data distribution. We have done this by considering 
the distribution of risks, which depends on the alignment between the learning machine 
and the problem. Therefore, the distribution of risks implicitly depends on the data. 

The cost of considering the distribution of risks is that we lose a lot of the elegance 
of traditional machine learning. Instead of hard bounds, we are left with approximate 
results for the expected ERM risk. There are, however, advantages: we know that a 
poorly attuned problem will require a large number of training examples and we have a 
model for the generalisation performance rather than just the generalisation gap. We can 
improve on the annealed approximation, but this requires additional information about 
the learning machine. However, the annealed approximation provides a qualitatively 
accurate model that captures many of the generalisation properties of the exact system. 
The most important takeaway, in our view, is that generalisation is heavily determined 
by attunement. 
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The attunement measures the power-law behaviour of ρ(r) around r = 0. This deter-
mines the asymptotic learning behaviour for realisable models. We believe this provides 
a new language for understanding generalisation performance. To design a successful 
learning machine it is not necessary to limit the capacity but to obtain good attunement 
(i.e. ensure that there is a relatively high proportion of low-risk machines). We believe 
this shift in thinking will aid the design of learning machines in the future. 

A natural question is what is the exact mechanism behind attunement. Although one 
can try to formulate a number of intuitions, fnding an exact description is a very difcult 
pursuit. For the rest of the thesis we seek to build stronger intuitions with the hope 
that these will inform researchers how to start theorising about this intricate mechanism. 
Until then, one of the immediate takeaways of our theoretical work that is going be the 
driving force of our empirical endeavour is that data is a core aspect of generalisation. 
Although the observations we make around our calculations point towards integrating 
information about the problem, in one way or another this has been attempted in other 
studies. From the theoretical end, such studies can be found in the PAC-Bayesian 
literature, which we discuss in more detail in Chapter 4. 

In the PAC-Bayesian framework, estimators are defned in terms of data-dependent 
probability measures from which predictors are either drawn or aggregated. As such, 
McAllester (1999) bounds the risk of a randomly drawn estimator using the Kull-

back–Liebler divergence between the distribution over estimators and a fxed prior prob-
ability distribution. For a simple introduction, see Alquier (2021). These bounds have 
been recently applied in the context of overparametrised deep learning models (e.g. Dz-

iugaite and Roy, 2017), albeit on architectures signifcantly smaller than those used in 
practice. Despite being tighter than many other bounds, they are still not sufciently 
descriptive (Neyshabur et al., 2017). We will discuss this in more detail in Chapter 4. 

In turn, the most recent and allegedly successful empirical estimators of generalisation 
have resorted to modifying the data. We will study such estimators in Chapter 4. Before 
doing so, we take a closer look at data modifcation as a practice in the next chapter. We 
want to better understand the implications data distortion has on model training and 
evaluation. This is because they are highly used in the feld without being thoroughly 
researched but also because we believe we can better understand the role of the data by 
approaching it in an incremental manner. Thus, the next chapter is dedicated to data 
distortion. 



Chapter 3 

Steps Towards the Empirical 
Approach: Understanding by 
Distorting 

In this chapter we focus on data distortion as a way of studying learned 
representations. We start by highlighting the neglected side efects of data distortion 
when both training and evaluating models. Our empirical fndings challenge core 
assumptions in the feld, raise a number of important questions and subsequently 

motivate a distortion-based approach to understanding generalisation. 

The previous chapter has emphasised the importance of accounting for the data. While 
in that particular theoretical setting we were able to do so by looking at the distribution 
of risks, in practice we have no tools to integrate information about the data or properly 
describe it and capture its underlying attributes. 

We believe one way of grasping complex concepts is by breaking them down and this 
is what this chapter is striving to achieve. Instead of aiming to understand data as a 
whole, we focus on studying the efects of incrementally changing the data. Despite its 
great potential, this topic has largely remained unexplored. A case in which it has been 
somewhat studied is that of data augmentation. But as remarked in Harris et al. (2020), 
previous studies have a number of inconsistencies and, as a feld, we are far from having 
a clear description of how distorting data afects learning. Being able to fully describe 
this phenomenon is in itself highly challenging and beyond the scope of this work. 

As we have briefy mentioned in the Foreword and Chapter 2, empirical predictors of 
generalisation are starting to incorporate data modifcation in their approaches. There-
fore, rather than aiming to fully understand data distortion, this chapter starts building 
the intuitions necessary for understanding how data modifcation can be used in a more 
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principled way for the purpose of empirically predicting generalisation. During this pro-
cess, we propose new promising directions for understanding distortions and we expose 
a number of issues that arise when distortion is not thoroughly studied. 

The contributions in the frst half of this chapter were presented at the Robust ML 
workshop as part of the International Conference on Learned Representations (ICLR) 
2021. The second half was included in a lightning talk presentation at the Data-Centric 
AI workshop at the NeurIPS 2021 Conference. As a whole, a condensed version of this 
chapter was submitted to the NeurIPS 2021 Conference. Despite having three out of four 
reviewers in favour of acceptance, it was fnally rejected on grounds which we had already 
addressed during the rebuttal period. The same work was subsequently submitted and 
accepted for publication as a spotlight paper at the International Conference on Machine 
Learning (ICML) 2022. The contents of this chapter along with our vision for the future 
of generalisation studies, which we will introduce in Chapter 4, were also presented as 
an invited talk at the Max Planck Institute for Intelligent Systems Tübingen. 

3.1 Context and Prior Art 

Augmentation is commonplace when training models. It is a form of data modifcation 
where samples are artifcially distorted to create larger training sets. Apart from aug-
mentative purposes, data modifcation is also used for a wide range of model analysis 
methods. Most recently, distortion-based approaches have been adopted when trying 
to answer key machine learning questions. To this end, MixUp-like distortions (Zhang 
et al., 2018a) were proposed for empirically predicting generalisation (Schif et al., 2021; 
Natekar and Sharma, 2020; Lassance et al., 2020). Thus, data modifcation is becoming 
increasingly popular, but little attention is paid to the secondary efects of this practice. 
As we will demonstrate, our current understanding of the efects of data modifcation 
lies on fundamentally fawed assumptions. This impacts not only our perception of what 
features are important to our models, but also the correctness of the distortion-based 
approaches we propose as a feld. 

In this chapter we study the implicit assumptions made when artifcially distorting data 
and their implications. From the model analysis perspective, we take occlusion robust-
ness and shape bias identifcation methods as examples of where modifed data is used. 
On the training side, we focus on some instances of Mixed Sample Data Augmentation 
(MSDA), where two images are combined to obtain a new training sample. Visual illus-
trations of each can be found in Figure 3.1. In this chapter we delve into some of the side 
efects of data modifcation and point out that this practice has resulted in the creation 
of biased model interpretation tools and poorly informed theories. More specifcally, we 
study a number of assumptions which we show are erroneous and which lie at the heart 
of the methods we briefy introduce below. Contesting these assumptions has broader 

https://sites.google.com/connect.hku.hk/robustml-2021/home
https://sites.google.com/connect.hku.hk/robustml-2021/home
https://datacentricai.org/
https://datacentricai.org/
https://openreview.net/forum?id=UZgGf92u5N0
https://openreview.net/forum?id=UZgGf92u5N0
https://proceedings.mlr.press/v162/marcu22a.html
https://proceedings.mlr.press/v162/marcu22a.html
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Image 1 Image 2 Occlusion Shufed grid MixUp CutMix FMix 

Figure 3.1: Examples of image distortions on ImageNet (224 × 224 pixels) samples. Occlusion and 
Shufed grid are typically used for evaluating models, while MixUp, CutMix and FMix are distortions 
used for model training. For test-time distortions, only Image 1 was used. For mixing augmentations, 

the frst row was generated with a mixing factor of 0.2, while the second one with 0.5. 

implications on the community’s perception of what aspects of the data are important 
when learning. 

Shape-texture Bias. Deep models are known to be sensitive to distribution shifts 
(Alaiz-Rodŕıguez and Japkowicz, 2008; Cieslak and Chawla, 2009; Engstrom et al., 2019) 
and interventions that are imperceptible to humans (Szegedy et al., 2014; Goodfellow 
et al., 2015). It has been argued that this is intimately linked to networks tending to use 
texture rather than shape information (Brendel and Bethge, 2019; Geirhos et al., 2019). 
Recently, input distortions have become a popular way of assessing a model’s texture 
bias. To this end, images are divided into a grid and the resulting patches are randomly 
shufed such that information is preserved locally, while the global shape is altered 
(Shi et al., 2020; Mummadi et al., 2021; Luo et al., 2019; Zhang and Zhu, 2019). It 
is implicitly assumed that patch-shufing does not introduce misleading shape or texture 
that could afect model evaluation. As such, if a model’s accuracy drops when evaluated 
on patch-shufed images, this degradation in performance is entirely attributed to the 
model’s bias for shape information. Thus, any side efects of the data manipulation 
process are considered negligible. 

Occlusion Robustness. Commonly, occlusion robustness is concerned with the amount 
of information that can be hidden from a model without afecting its ability to classify 
(e.g. Tang et al., 2018; Rajaei et al., 2019). A widely adopted proxy for measuring 
occlusion robustness is through the raw accuracy obtained after superimposing a rect-
angular patch on an image (Chun et al., 2020; Fawzi and Frossard, 2016; Yun et al., 
2019; Zhong et al., 2020b; Kokhlikyan et al., 2020). We refer to this approach as Cu-
tOcclusion throughout the thesis. Just as with shape bias, this method relies on the 
introduced information not to interfere with a model’s learnt representations such that a 
decrease in performance can be directly attributed to a lack of robustness. Thus, using 
CutOcclusion, one implicitly assumes that artefacts do not interfere with the results of 
robustness evaluation. 
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Data Augmentation Studies. In statistical learning, training with augmented data 
is termed Vicinal Risk Minimisation (VRM) (Vapnik, 1999a; Chapelle et al., 2001) and 
it is seen as injecting prior knowledge about the neighbourhood of the data samples. 
The intuition behind augmentation caused researchers to interpret its efect through the 
similarity between original and augmented data distributions. This perspective is often 
challenged by methods which, despite generating samples that do not appear to fall under 
the distribution of natural images, lead to strong learners. Gontijo-Lopes et al. (2021) 
argue it is the perceived distribution shift that needs to be minimised, while maximising 
the sample vicinity. Formalising these concepts, they introduce augmentation “diversity” 
and “afnity”. Diversity is defned as the training loss when learning with artifcial 
samples, while afnity quantifes the diference between the accuracy on original test data 
and augmented test data for a reference model. The latter penalises augmentations that 
introduce artifcial information to which the model is not invariant, implicitly assuming 
that training with that information is detrimental to generalisation. Thus, in contrast 
to the evaluation methods mentioned above, the artefacts are considered non-negligible 
when training with distorted data. 

In summary, it is currently assumed that the artefacts introduced by changes in the data 
are negligible when evaluating models, while those introduced when training are impor-

tant and undesirable. These assumptions implicitly shape the community’s perception 
of how machine learning works. Does the artifcial information added by analysis meth-

ods not have major side efects or does it lead to biased results? Conversely, are the 
artefacts important when training with modifed data? Do they cause models to learn 
better or worse representations? 

We set out to answer these questions. We fnd that results can be misleading when 
not accounting for the secondary efects of data manipulation, especially in comparative 
studies. Taking an oversimplifed example to illustrate this for robustness, we can imag-

ine a binary cat–truck image classifcation problem and two models: model A, which 
identifes cats solely by the presence of ears and model B, which has a more holistic 
approach. Generally, masking out the ears will cause model A to misclassify cats and 
we would consider this model not robust to occlusion, while model B will continue to 
correctly classify them. However, if the ears are covered with a large rectangle that 
introduces horizontal and vertical edges strongly associated with the “Truck” class, this 
will cause model B to also misclassify. In this case, because the misclassifcation is not 
caused by the absence of a feature but rather by the presence of a distractor, we would 
still consider model B robust to occlusion, although its performance degrades. In such 
a case, CutOcclusion would be unable to distinguish between a model that incorrectly 
classifes because of lack of information or because of the presence of confounding arte-
facts, making it an incorrect proxy for measuring occlusion robustness. Thus, the side 
efects of data distortion must be taken into account to create fair evaluation methods. 
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We start by introducing the Data Interference index, a measure that highlights the 
existence of such side efects. We then use the index to disprove the negligibility of 
data distortion artefacts when evaluating models. Subsequently, using the existence of 
artefacts, we disprove common beliefs in the augmentation literature through empirical 
counter-examples. This further motivates the importance of understanding the changes 
data manipulation introduces. Our contributions are: 

• We introduce a quantity for highlighting the interference of artifcially introduced 
visual information with a model’s learnt representations (Section 3.2); 

• We show that increasingly popular model interpretation and analysis methods are 
biased, relying on unfounded assumptions (Section 3.2); 

• For measuring occlusion robustness, we propose a fairer alternative (Section 3.3); 

• We show that, in contrast to what is widely assumed, not preserving the data 
distribution can lead to learning better representations (Section 3.4). 

While the impact of our practical contributions is relevant to the community, we believe 
more important for the future development of the feld is combatting erroneous research 
directions. Correctly understanding the increasingly popular mixed-sample augmenta-

tion is essential for trusting its usage in sensitive applications where the data can be 
out of distribution. Moreover, studying the efects of image distortion can shed further 
light on how vision models perceive changes to elemental features. But most impor-

tantly, we believe this could set a new direction in capturing the relationship between 
data and learned representations, which could ultimately play a role in understanding 
generalisation. 

3.2 Are Artefacts Negligible when Analysing Classifers? 

In this section we show that artifcially introduced artefacts may not be negligible, and 
distorting data at evaluation time could have side efects not previously considered. 
Specifcally, the artefacts can interfere with the representations learnt by the model, 
which in turn leads to incorrect evaluation. We highlight this interference by showing 
that the distortion can be consistently associated with a particular class in an image 
classifcation task. We do so by looking at the increase in misclassifcations per predicted 
category; from the number of incorrect predictions of a model evaluated on modifed 
data, we subtract the incorrect predictions when testing on original data. If, across 
multiple training runs, there is a signifcant increase for a specifc class, this indicates 
that the distortion introduces features the model associates with that class. We refer to 
this phenomenon as “data interference”. 
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By a model “run” we refer to a model instance trained with a diferent seed for the 
initialisation of weights and for the randomised data augmentation. For computing the 
DI index we train 5 diferent instances of the same model and only consider that data 
interference occurs when runs consistently display a bias for the same class. Considering 
only positive diferences, we denote the increase in the percentage of misclassifcations 

rfor predicted class c for a run r by c . Note that the class is taken to be that predicted 
by the classifer. To keep the score within a consistent range across data sets, we scale 
rc by the number of classes. We defne the Data Interference (DI) index as 

[ 
r [ ]] 
c ′ 
max rEr ∑ 
cr E ′ cmax , (3.1)r 

c 

where cmax is that of the class with the highest mean increase across all runs. Note that 
the inner expectation does not depend on r. We chose to write the index this way to 
make it easier to match the informal defnition, which is that the DI index measures the 
proportion represented by the dominant class weighted by its average increase across 
runs. A high index value indicates a sharp increase for a particular class which is 
consistent across runs. We associate this with an overlap between introduced artefacts 
and learnt representations, thus highlighting the side efects of distorting data for model 
evaluation. 

We also experiment with an alternative index, where we weigh by the highest increase 
of a model across the 5 runs, so as to obtain a worst-case analysis. As expected, we 
observe a stronger bias in this case, evidenced by an increased gap in the DI index. We 
will exemplify this in the case of shape bias in Section 3.2.1. Although the worst-case 
formulation makes our arguments more evident, for the rest of the chapter we present 
the results using the more restrictive defnition so as to show that our fndings hold in 
more general settings. 

To obtain models with diferent behaviours in a controlled manner, we make use of data 
augmentation. Since it is sufcient to identify some common cases in which models are 
disfavoured, we choose to reduce our environmental impact by restricting the analysis 
to simple MSDAs that combine images without incurring additional computation time 
or external models. As will be argued in Section 3.3, we expect the unfairness to be 
present in most settings, thus the exact choice of augmentation is irrelevant. We focus 
on two popular MSDAs, MixUp (Zhang et al., 2018a) and CutMix (Yun et al., 2019). 
MixUp linearly interpolates between two images to obtain a new training example, while 
CutMix masks out a rectangular region of an image with the corresponding region of 
another image. Besides the aforementioned methods, we also employ FMix (Harris et al., 
2020), a mixed-sample augmentation that samples masks from Fourier space. We choose 
to use FMix due to its irregularly shaped masks, which will play an important role in 
our analysis. 
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Note that although the masking methods sample the size of the occluding patch from the 
same distribution, in CutMix part of the rectangle can be outside the image, which leads 
to less occluded samples overall compared to FMix. A second important observation is 
that interpolating methods (i.e. MixUp and its variants) modify every pixel of the image, 
while masking methods (in this thesis CutMix and FMix) are more localised. We will 
come back to this diference later on in the chapter. 

We refer to models by the augmentations they were trained with and use “basic” to 
label the models trained without MSDA. Throughout this chapter, we do fve runs of 
each experiment with PreAct-ResNet18 (He et al., 2016b) as the default architecture. 
We explicitly state when other architectures (i.e. BagNet (Brendel and Bethge, 2019), 
VGG (Simonyan and Zisserman, 2015)) and ResNet-101 (He et al., 2016b) are used. 
The main data sets we report results on are CIFAR-10 and CIFAR-100 (Krizhevsky 
et al., 2009), Tiny ImageNet (Karpathy et al., n.d.), FashionMNIST (Xiao et al., 2017), 
and ImageNet (Russakovsky et al., 2015). For ImageNet we use pretrained ResNet-101 
models made publicly available by Harris et al. (2020). Note that the only experiments 
for which we are unable to run repeats are those on ImageNet, since only one model 
per augmentation is provided. For all other experiments, we give the average and stan-
dard deviation results obtained across the fve runs. For full experimental details, see 
Section D.1. 

As we will discuss below, the DI index has a high standard deviation. For this reason, 
for computing the DI index, besides taking the average across the fve runs we also 
experimented with performing fve distortion iterations for each image in the data set. 
That is, we computed the increase in incorrect predictions of each model instance when 
randomly occluding every image fve diferent times. However, we did not see a diference 
in results since the bias for associating distortions with a particular class seems to be 
very consistent for each model. The high deviation stems from the diference in the 
learnt bias between model runs. 

DI Confdence Evaluation and Gaussian Noise 

Before presenting our fndings, we briefy focus on the observation that for the models 
we evaluate, the DI index has a high standard deviation. For example, in the case of 
patch-shufing, the modifcation for assessing shape bias, the value of the DI index is 
2.40±0.59 for the basic model (i.e. the model trained without mixed data augmentation) 
on CIFAR-10. In the case of the CutMix-trained model, we measure a DI of 0.31±0.10. 
As we will emphasise when presenting the full results, the DI index must be interpreted 
in a comparative manner. 

How can we trust that the results have statistical signifcance? To answer this question, 
we want to determine to what extent the DI we measured is a result of chance. We, 

https://0.31�0.10
https://2.40�0.59
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therefore, calculate the result of DI for a random increase in misclassifcations. For this, 
we compute the increase in CIFAR-10 misclassifcations for the basic model just as we 
do for computing the DI index. Then, we redistribute each misclassifed sample to a 
random class and compute the DI index on this random assignment of the increase in 
misclassifcation. We repeat this experiment 105 times. We obtain an average DI of 0.10 
with a standard deviation of 4 × 10−5 . This result, highly concentrated around 0.10, 
tells us that there is an infnitesimally small chance that the DI index we observe for the 
basic model is a chance result of a random phenomenon. Thus, despite the high standard 
deviation, our index can inform us when one model is more afected than another by the 
artefacts of a distortion. 

To make our baseline more challenging, we then randomly assign all misclassifed ex-
amples to one of the classes and compute the index across 5 iterations. This is to 
simulate the case where each specifc model instance consistently associates artefacts 
with a certain class, but the class is not necessarily consistent across runs. We perform 
this experiment 105 times and obtain a DI of 0.10±0.30. Once again, there is a signifcant 
diference between the DI obtained by chance and the true DI index of the basic model 
(2.40±0.59). 

Finally, we compute the DI index for distorting with Gaussian noise. We distort the 
samples after the image normalisation step, when the pixel values are between 0 and 1. 
For each image, we uniformly sample the standard deviation of the Gaussian noise from 
the interval [0, 0.1], with a mean of 0. For the basic model trained on CIFAR-10, we 
obtain a DI value of 0.09±0.02. This is signifcantly lower than the index we observe in 
this chapter in the case of patch-shufing and rectangular occlusion. We have therefore 
seen through three diferent experiments that our index captures a real phenomenon that 
cannot be replicated by chance. The DI index helps us identify in a comparative way 
when a distortion introduces features that are associated with the learnt representation 
of a class. Although this is sufcient for the purpose of this thesis, it would be interesting 
to explore the idea of data interference outside the scenario we are concerned with. We 
refect on the limitations of applying this index in wider contexts in Section 3.6. 

3.2.1 Shape Bias Measurement 

Using the DI metric, we want to show the existence of side efects that occur when 
measuring shape bias based on the accuracy after patch-shufing images. We argue that 
these side efects make the patch-shufing evaluation method unreliable. For assessing 
shape bias through sample manipulation, the standard procedure is to choose between 
dividing the image in 4, 16 or 64 patches to be shufed. Since FashionMNIST images are 
smaller, we choose a 2 × 2 grid, while for CIFAR-10/100, Tiny ImageNet and ImageNet 
we use a 4 × 4 grid. However, similar results are obtained for diferent grid sizes (see 
Section D.2 of the Supplementary Material). 

https://0.09�0.02
https://2.40�0.59
https://0.10�0.30
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Table 3.1: DI index for PreAct-ResNet18 on grid-shufed images for four diferent types of models. 
Results with the highest average are given in italic and the lowest in bold. Information introduced 
when shufing tends to interfere less with the representations of FMix and CutMix models, as indicated 

by the lower DI values. 

basic MixUp FMix CutMix 

CIFAR-10 2 .82±0 .44 2.40±0.59 0.59±0.12 0.31±0.10 
CIFAR-100 0 .99±0 .27 0.88±0.24 0.18±0.10 0.09±0.04 
Fashion 1.23±0.15 2 .42±0 .92 1.06±0.23 0.68±0.11 
Tiny 1 .28±1 .13 0.57±0.11 0.67±0.10 0.25±0.11 
ImageNet 0.82 1 .49 0.58 − 

Table 3.2: Alternative DI index for PreAct-ResNet18 on grid-shufed images for four diferent types 
of models. Again, a gap in bias can be noted for all considered data sets, with the basic and MixUp 

models typically showing higher data interference when evaluated on patch-shufed images. 

basic MixUp FMix CutMix 

CIFAR-10 
CIFAR-100 
FashionMNIST 
Tiny 
ImageNet 

3 .52±0 .56 
1 .40±0 .38 
1 .56±0 .39 
3 .88±3 .43 
0.82 

3.31±0.82 
1.09±0.29 
3.57±1.35 
0.66±0.20 
1 .49 

0.76±0.16 
0.38±0.21 
1.65±0.35 
0.47±0.07 
0.58 

0.43±0.13 
0.16±0.08 
0.82±0.13 
0.19±0.09 
− 

We remind the reader that a high DI value indicates that the model consistently as-
sociates distorted images with a particular class. Note that there is no fxed threshold 
that indicates data interference. Instead, the results are meant to be interpreted in a 
comparative manner. As such, we are interested in determining if there exists a clear 
gap between diferent models across the same task. If such a gap exists, then the model 
with higher DI will artifcially appear to be more shape biased than a model with low 
DI index, as we will see later in this section. We compute the DI values for patch-
shufing images of the fve standard data sets mentioned above. We present the results 
of this experiment in Table 3.1. We observe that for all the data sets we consider, such 
a gap exists, with the basic and MixUp models generally having high index values. The 
large index indicates that they tend to associate the features artifcially introduced by 
patch-shufing with a certain class. 

We see the gap more clearly in the worst-case scenario captured by the alternative DI 
index (Table 3.2), where we consider the highest increase out of the fve runs. In this 
case, the gap between the average index for the basic model and the CutMix model is 
more than 20% higher than that measured with the standard index defned in Equa-
tion 3.1. Although a clearer data interference can be observed when considering the 
highest increase across runs, it is enough to use the more restrictive defnition to see 
that the introduced artefacts are afecting the model’s predictions. Therefore, for the 
remainder of this chapter we will use the standard DI index. 

To better interpret the results, we take a closer look at the distribution of misclassifca-

tions for CIFAR-10 and notice that the basic model tends to wrongly predict the class 

https://0.25�0.11
https://0.67�0.10
https://0.57�0.11
https://0.68�0.11
https://1.06�0.23
https://1.23�0.15
https://0.09�0.04
https://0.18�0.10
https://0.88�0.24
https://0.31�0.10
https://0.59�0.12
https://2.40�0.59
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(a) Increase in incorrect predictions on CIFAR-10 for (b) Increase in incorrect predictions on Fashion 
the basic model. Patch-shufed images tend to be MNIST for the MixUp model. Patch-shufed im-

incorrectly associated with the class “Truck”. ages tend to be incorrectly associated with the class 
“Bag”. 
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(c) Increase in incorrect predictions on ImageNet for the basic model. There is a sharp increase for class 550, “Espresso 
Maker”. 

Figure 3.2: Diference between the number of times a class was wrongly predicted when presented with 
original data samples compared to patch-shufed data. For all data sets, we can observe a considerable 
increase for one of the classes, a class that is visually characterised by strong horizontal and vertical 

edges. 

“Truck” (Figure 3.2a). This is not at all surprising, given that the strong horizontal and 
vertical edges are highly indicative of this class. Similar observations can be made for 
other data sets. For example, Fashion-MNIST models tend to identify shufed images 
as belonging to the class “Bag” (Figure 3.2b), while on ImageNet they are associated 
with the “Espresso Maker” category (Figure 3.2c). 

Given the observed tendency, we believe the grid-shufing approach is causing models 
which are not invariant to strong horizontal and vertical edges to falsely appear to 
rely more heavily on shape information. A model not afected by this transformation 
could be considered texture-biased if we accept the larger defnition of texture as local 
information. However, there is a question about the extent to which the reciprocal 
is true; a model could be invariant to the artifcial edges because it relies on texture 
information or because it uses diferent shape-related features. Since patch-shufing 
implicitly penalises models that are sensitive to artefacts, we question if this sensitivity 
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Table 3.3: Accuracy of ImageNet and Tiny ImageNet models on the GST data set when the label is 
taken to be either the shape or texture depicted in each sample. No clear correlation can be drawn 

between masking methods and low texture bias. 

ImageNet Tiny ImageNet 

Shape Texture Shape Texture 

basic 
MixUp 
FMix 
CutMix 

20.31 
24.14 
21.25 
— 

53.28 
60.31 
53.43 
— 

10.56±0.65 
12.02±0.33 
10.40±0.39 
10.54±0.38 

26.04±1.77 
27.77±1.56 
19.90±2.12 
23.72±2.42 

directly implies increased shape bias. Ultimately, we want to verify if models with similar 
shape bias can have diferent DI index values; if so, patch-shufing would be an unfair 
basis for evaluation of the shape bias of such models. 

Is a model necessarily more afected by patch-shufing if it has a higher 
shape bias? We will show that the side efects of patch shufing captured by our DI 
measure are not necessarily caused by a higher shape bias. To do this, we can use another 
method of determining shape and texture bias to fnd a counter-example. We analyse 
the ImageNet models on the Geirhos Style-Transfer (GST) (Geirhos et al., 2019) data 
set. The GST data set was specifcally designed for shape and texture bias identifcation 
and it represents a gold standard in the feld. The limitation associated with it is that 
it can only assess the bias of models trained on data sets with which it is compatible. 
For this reason, universal alternative methods such as patch-shufing were proposed. 

The GST data set contains artifcially generated images where the shape belongs to one 
class and the texture to another. For example, an image could depict the shape of an 
elephant and the texture of a cat. There are 16 coarse classes that encompass a number 
of ImageNet categories to which they are mapped. The bias of the models is given by 
the accuracy obtained when the label is set to either the shape or texture information. 
Using this well-known method of identifying shape bias we want to fnd models which 
have similar biases but diferent DI indices when patch-shufing. This would indicate 
that sensitivity to shufing is not necessarily linked to increased shape bias, which in 
turn would mean that models evaluated using patch-shufing can artifcially appear 
more shape biased. 

Table 3.3 gives the accuracy on the GST data set when setting the label to indicate frst 
the shape, then the texture class. The results in Table 3.3 show that the basic model 
does not have a higher shape bias than models trained with masking augmentations, 
although it has a signifcantly higher DI index, as we have seen in Table 3.1. We repeat 
the same experiment on the Tiny ImageNet data set. Geirhos et al. (2019) use WordNet 
(Miller, 1995) to map the 1000 ImageNet categories to the 16 classes of the GST data 
set. We used the same method to create a mapping between Tiny ImageNet and GST. 
A number of ImageNet categories that belong to the 16 higher-level classes of GST 
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Table 3.4: Shape and texture accuracy of 
BagNet9 models versus the DI index on the 

Table 3.5: Accuracy obtained on patch-
GST data set. Compared to the masking-

shufed images. A considerable gap can be 
trained models, the basic model shows a clear 

noted between the basic model and mask-
bias when evaluating predictions on grid-

augmented ones although they exhibit a sim-
shufed data. Their shape and texture bi-

ilar shape bias according to the GST method 
ases as measured with the GST approach, 

(Table 3.3).
however, do not difer outside the margin of 

error. 
ImageNet Tiny ImageNet 

Shape Texture DI basic 49.49 13.53±2.02 
basic 11.29±0.15 18.90±0.66 1.16±0.07 MixUp 52.16 17.81±0.16 
MixUp 11.04±0.29 12.56±1.26 0.89±0.27 FMix 56.20 34.53±0.62 
FMix 11.06±0.48 17.47±1.74 0.64±0.10 CutMix — 42.30±0.29 
CutMix 10.76±0.27 20.28±0.88 0.21±0.07 

are missing. For this reason, a poorer overall performance is expected and the results 
could difer slightly given a better ft between the sets. Nonetheless, we fnd again no 
signifcant correlation between masking augmentation and texture bias. 

We also perform the same experiment for BagNet9 models (see Table 3.4). Note that 
we do not present results for ImageNet since no pretrained BagNet models were made 
publicly available. We consider this architecture since it has smaller receptive felds and 
so models are forced to use more local information. Even in this case, we fnd a high 
DI for the basic model and no diference in texture bias compared to MSDA. Thus, 
a model which is more afected by the side efects of patch-shufing is not necessarily 
more shaped-bias. In other words, the artefacts introduced by patch-shufing can cause 
models to have diferent accuracies on these distorted images, albeit not difering in their 
shape and texture bias. 

We further confrm this conclusion using the GST approach on the two data sets with 
which this is compatible. Table 3.5 gives the accuracy obtained when patch-shufing 
on Tiny ImageNet and ImageNet. In both cases, for comparable levels of shape and 
texture bias, diferent accuracies are obtained. This confrms that models can appear to 
have vastly diferent shape bias when evaluated on randomly rearranged patches, when in 
reality their actual shape bias is similar. The sensitivity of the patch shufing approach 
to artefacts makes it an unfair and unreliable measure of shape bias and our DI index 
can help expose this limitation. 

3.2.2 Occlusion Measurement 

We next want to determine whether the same issue identifed in the case of shape bias 
evaluation applies to occlusion robustness measures. We focus on CutOcclusion, where a 
rectangular black patch is superimposed on test images and the robustness is given by the 
resulting accuracy. We perform the same experiment as for shape bias identifcation, 
where we evaluate the DI index for four types of models trained on the fve main 
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Table 3.6: DI index when occluding with black patches. The highest results are given in italic and 
the lowest in bold. For each data set, there exists a non-negligible gap in the DI index. 

basic MixUp FMix CutMix 

CIFAR-10 
CIFAR-100 
FashionMNIST 
Tiny ImageNet 
ImageNet 

1 .25±0 .17 
1 .24±0 .35 
0.21±0.08 
0 .52±0 .17 
0.50 

0.47±0.11 
0.34±0.09 
0 .38±0 .06 
0.39±0.03 
1 .50 

0.11±0.04 
0.12±0.10 
0.16±0.05 
0.14±0.04 
0.50 

2 .20±0 .81 
1 .06±0 .32 
0.12±0.05 
3.46±2.45 
− 

standard data sets we consider. The only diference is that the index is now measured 
when testing on rectangle-occluded images rather than patch-shufed. We once again 
look for a gap in the DI index values across each data set. 

There is no standardised distortion when measuring CutOcclusion, with the size and 
positioning of the obstructing patch varying between studies. Most often in prior art, 
a lack of robustness is noted for large occluders (e.g. Chun et al., 2020; Zhong et al., 
2020b). For this reason, we uniformly sample the size of the patch from [0.7, 1], allowing 
the occluding patch to lie outside the image (as it is done for augmenting with CutMix 
and CutOut (DeVries and Taylor, 2017)). This allows us to capture both the cases in 
which either the centre or the border area is masked out but requires a non-uniform 
distribution to counter for the patches existing outside the image. We also experiment 
with sampling from the interval [0.1, 1] where the occluder is restricted to be positioned 
within the image boundaries and obtain similar results (See Section D.5). 

Table 3.6 gives the result of measuring the DI index for occluding images with rectan-
gular patches as described above. A signifcant gap in the DI index can be identifed 
for each of the data sets. This indicates that some models will again be disadvantaged. 
Additionally, we fnd data interference to also occur when overlapping patches sampled 
from external images (Table D.2), using diferently shaped masks (Table D.3), and for 
diferent architectures (Section D.4). This confrms that data interference is commonly 
occurring in a variety of settings. Thus, the result of CutOcclusion and its variants 
is highly dependent on the problem at hand. Just as for randomly shufing tiles, by 
occluding images using a particularly shaped patch, one implicitly measures a model’s 
afnity to certain features. In other words, models for which a distinctive feature is 
artifcially introduced when performing CutOcclusion are going to be penalised by this 
method even though the feature is perfectly valid in a normal classifcation setting. This 
deems such methods inappropriate for fairly assessing robustness and texture bias. 

A related observation was made by Hooker et al. (2019), who note the pitfalls of ma-

nipulating data to determine feature importance. They point out that when simply 
superimposing uniform patches over image features, it is difcult to assess how much of 
the reduction in accuracy is caused by the absence of those features and how much is due 
to images becoming out-of-distribution. To address this, the most important features 
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identifed by an estimator are masked out both on train and test data, closing the gap 
between the two sets. Hooker et al. then train and evaluate models on the newly gen-
erated images. Unlike for interpretability methods, the subject of occlusion robustness 
studies is the model itself, which makes training with a modifed version of the data an 
inviable option. In the following section we explore ways of overcoming this bias when 
measuring occlusion robustness. 

3.3 What are Fairer Alternatives? 

We have shown that the results of CutOcclusion depend on whether the artefacts inter-
fere with the learnt representations or not. As we will illustrate in this section, another 
limitation of CutOcclusion is its sensitivity to the overall generalisation ability of the 
model. To better refect how much information can be hidden from a model without 
afecting its performance, a fair alternative should be invariant to the characteristics of 
the occluder and to the model’s goodness of ft. We propose a simple, more carefully 
defned measure that aims to decouple the machine’s edge bias and generalisation ability 
from the occlusion robustness. We refer to our measure as “interplay occlusion” (iOc-

clusion). Interplay occlusion refects the change in the interplay between performance 
on seen and unseen data. Formally, 

iOcclusioni = 
⃓⃓
⃓⃓ 
A(Di ) −A(Di )train test 
A(Dtrain) −A(Dtest) 

⃓⃓
⃓⃓ , (3.2) 

where A(D) denotes the accuracy on a given data set D, and Di is the data set resulting 
from removing i% pixels of each image. The intuition is that on train data, robust models 
are less sensitive to the artefacts of the occlusion policy for small levels of occlusion, 
resulting in a large diference in accuracy from that on unseen data. Note that this is an 
implicit assumption that although we argue it makes intuitive sense, we cannot verify. 
We discuss this in more detail in Section 3.6. The performance of both train and test 
gets close to random as the percentage of occluded data approaches 90% and we expect 
the gap to fall of quicker for less robust models. This change in interplay is taken with 
respect to the generalisation gap of the model, such that the quality of the model ft in 
itself does not interfere with the robustness measure. We next discuss the methods we 
consider for masking out i% of the pixels. 

3.3.1 Choosing a Masking Method 

Although iOcclusion reduces data interference, other factors have to also be considered 
when choosing a masking method for computing Di , such as the number of contiguous 
components or the amount of salient information that is masked out. In this section 
we illustrate these points by comparing the results obtained with four diferent masking 
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HaS CutMix FMix 

Figure 3.3: Examples of random masks used for ImageNet-sized samples (224 × 224 pixels) obtained 
with each of the three methods we consider. We refer to the masking approach based on the augmen-
tation they were inspired from. For each method, the top row corresponds to masks that occlude 30% 
of the image pixels, while the bottom one provides examples of masks that occlude 50% of the pixels. 

For the HaS masking the grids used were, from left to right, 16 × 16, 32 × 32 and 64 × 64. 
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Figure 3.4: iOcclusion results when using an 8 ×8 (left) and 4× 4 (right) grid mask. Models that were 
not trained with masking augmentations appear to be more robust for small levels of perturbations 

when the masking grid is more fne-grained. 

methods. Three of these methods are inspired by the masking approaches in the FMix, 
CutMix and Hide-and-Seek (HaS) (Singh et al., 2018) augmentations. Similar to the 
patch-shufing approach, HaS divides the image in a rectangular grid and masks out a 
fraction of the resulting tiles, selected at random. We give examples of masks obtained 
with the three approaches in Figure 3.3. The fnal masking approach we consider is 
based on Grad-CAM (Selvaraju et al., 2017). Grad-CAM uses the gradient information 
to identify which parts of the input have the largest impact on the fnal classifcation 
prediction. 

Mask Granularity. The level of mask granularity has two important and closely-linked 
aspects: the number of occluders and whether it mimics a local or global distortion. 
We show the importance of granularity by masking as in the HaS augmentation. As 
mentioned earlier, HaS uses a lattice to mask out random rectangular regions in an 
image. Naturally, the more fragmented the lattice is, the more the distortion resembles 
noise addition rather than occlusion. In other words, a smaller number of contiguous 
regions measures resilience to local distortions, while a very large number of contiguous 
regions is closer to measuring resilience to a form of global perturbation. 

We compute the iOcclusion results obtained when masking with an 8 × 8 and 4 × 4 grid 
respectively and give the results in Figure 3.4. We observe a diference in the curves 
obtained in these two regimes. The models appear more robust when the mask is more 
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Figure 3.5: iOcclusion results when occluding a percentage of the pixels containing the most (left) 
and least (right) salient information. Note that the basic model is very robust to occluding the least 
salient information, while performing very poorly when as little as 10% of the most salient information 

is masked out. This indicates that the basic model classifes based very few key features. 

fne-grained (8 × 8). This is particularly noticeable for the basic and MixUp models. For 
small fractions of occluded pixels, their robustness remains close to that of the FMix 
and CutMix models. That is because the distracting information is sufciently difused 
to be considered as negligible noise. For higher percentages of removed information the 
lack of robustness of the basic and MixUp models becomes clearer. A natural question 
is why is the robustness of MixUp models so low when the distortion is “spread” out 
across the image. An intuitive argument is that MixUp models are trained to recognise 
global patterns, which are now locally fragmented by this distortion. This interpretation 
will be reinforced later in this section. We believe the explanation lies in the fact that 
MixUp is a global distortion. 

Additionally, it is important to notice that for broad-grained masks, FMix appears to be 
more robust than CutMix for small levels of occlusion. This is because CutMix models 
are trained with a single obstructor, whereas FMix masks force the model to learn more 
distributed representations. Thus, the mask granularity must be taken into account 
when assessing robustness. 

Saliency. We next focus on illustrating the importance of accounting for information 
saliency when assessing robustness. For this, we use Grad-CAM, a model-dependent 
approach. For each image, Grad-CAM generates a heatmap that indicates the magnitude 
played by each image region on the model’s prediction. We will refer to regions that lead 
to the highest Grad-CAM activations in an image as “most salient”. Therefore, using 
the Grad-CAM method, we generate masks that occlude the most salient and the least 
salient information in the train and test images. It must be noted that the Grad-CAM 
masks are computed with respect to each of the models being evaluated rather than 
one reference model. This is because saliency is subjective and we want to occlude the 
information that is most or least relevant for each model in turn. The results we obtain 
are presented in Figure 3.5. We frst observe that the results we obtain when occluding 
the least salient information are signifcantly diferent from their counterparts. This 
confrms that saliency is important when choosing a masking policy. The most notable 
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diference between the most and least salient regimes is for the basic model. For the case 
of occluding the most salient information, the basic model shows very poor robustness 
to occlusion, signifcantly below all other models. Conversely, when the least salient 
information is being masked out, the basic model appears to have a level of robustness 
comparable to the masking models. 

Apart from observations relating to mask choice, this experiment also provides inter-
esting results with respect to the level of distribution of the learnt representations for 
the models we consider. More specifcally, it is interesting to observe that the basic 
model is heavily afected by occluding the most salient features, while being very robust 
to occluding less relevant pixels. This suggests that the basic model relies on a very 
small number of features and those features are crucial for the classifcation. On the 
opposite side of the spectrum, the FMix model appears to have a very “distributed” 
interpretation of the images. 

Compared to the other models, FMix is very resilient to masking the most relevant pixels, 
while not showing outstanding robustness to occlusion of the least relevant information. 
This would suggest that FMix relies more heavily on contextual information, which 
is expected given the fragmented masks this model was trained with. These insights 
confrm that the diference between CutMix and FMix-like masking is largely explainable 
given the diference in masking granularity and expected saliency occlusion. It is also 
interesting to note that the behaviour of MixUp is fairly similar across the two scenarios. 
Our interpretation of this is that this stems from MixUp being a global distortion; as 
such, its perception of information saliency might be less localised. 

What mask are we going to use? Since random masking makes the process noisier, 
we choose to generate masks using Grad-CAM when computing iOcclusion. Given that 
methods could be sensitive to either occluding contextual or core information, we get an 
average performance by choosing with equal probability between occluding the most or 
least salient i% pixels. It must be noted that this method implicitly assumes there could 
be multiple occluders and has the downside of being more computationally intensive. 
Another important observation is that Grad-CAM sufers from a number of limitations, 
including its inability to properly account for multiple object occurances or imprecise 
object localisation (e.g Chattopadhay et al., 2018; Omeiza et al., 2019; Belharbi et al., 
2021). However, for the purpose of this study we are not interested in an exact saliency 
map, but rather a new randomly shaped masked. Although FMix already provides 
this to some extent, to ensure fairness we prefer to validate our approach on a masking 
method that has not been used for training purposes. We provide examples of masks 
obtained when occluding the least respectively most salient pixels in Figure 3.6. Note 
that for a fair comparison, throughout this section we do not allow the obstructing patch 
when measuring CutOcclusion to lie outside the image. As such, the fraction removed 
is exact and comparable to that of iOcclusion. 
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original image 

least salient information 
(masked image) 

least salient information 
(mask only) 

most salient information 
(masked image) 

most salient information 
(mask only) 

Figure 3.6: Examples of masks obtained on CIFAR-10 (32 × 32 pixels) for the basic model for an 
occlusion level of 30%. Here we are interested in observing the variety in mask shapes. According 
to Grad-CAM’s notion of saliency, the basic model appears to pay little attention to contextual in-
formation. Although this latter observation is not relevant at this point in our study, it will play an 

important role in understanding the predictions of the basic model later on in this chapter. 

3.3.2 iOcclusion Results 

Assessing the correctness of such a measure is difcult in the absence of a baseline. 
For the remainder of this section we will build varied experiments to attest the validity 
of our method, highlighting important limitations of CutOcclusion that our approach 
addresses: sensitivity to the specifcs of the occluding patch and sensitivity to the model’s 
performance on unseen data. 

Sensitivity to the Colour Pattern of the Occluding Patch 

Since occlusion in real-life scenarios could be caused by non-uniformly coloured objects, 
an appropriate measure must generalise across colour patterns. We show that the re-
sults of CutOcclusion are sensitive to the colour pattern of the occluding patch, while 
iOcclusion is more invariant. To see this, we superimpose patches from images belong-
ing to a diferent data set when computing iOcclusion and CutOcclusion, and compare 
the results to those obtained when occluding with black patches only. The reason why 
we choose to occlude with images from other data sets is to try to avoid some of the 
confounding factors. We present here the results for models trained on CIFAR-10. In 
this case, for evaluating robustness to non-uniform occluders we superimpose patches 
taken from CIFAR-100 on top of the CIFAR-10 images. The obtained occlusion curves 
are presented in Figures 3.7 and 3.8. 
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Figure 3.7: CutOcclusion (left) and iOcclusion (right) when occluding with black patches (uniform) 
and patches taken from other images (nonuniform). For both the FMix and the basic model, the 
curves obtained with iOcclusion in the two scenarios (i.e. uniform and nonuniform occlusion) are 
mostly overlapping. This corroborates the idea that iOcclusion is less sensitive to the information 

contained inside the occluding patch. 

For visual clarity, Figure 3.7 only presents the results for the basic and FMix models, 
which are the least and most robust models respectively. Figure 3.8 gives a full compar-

ison. The randomness introduced by the texture is naturally making the process noisier. 
Nonetheless, we fnd iOcclusion to better rule out the specifcs of the occluding patch. 
For iOcclusion, using uniform occluders gives similar results to its non-uniform version, 
whereas the CutOcclusion measure provides an inconsistent model evaluation. In Fig-
ure 3.7 this can be seen by the mostly overlapping curves obtained for iOcclusion when 
occluding with uniform and non-uniform patches. In the case of CutOcclusion, however, 
there is a big gap between the results obtained with one type of patch and the other. 
In Figure 3.8 iOcclusion’s consistency of results can be seen by the similarity in the 
curves obtained in the uniform (Figure 3.8c) and non-uniform cases (Figure 3.8d). On 
the other hand, the results obtained with CutOcclusion for the two cases (Figures 3.8a 
and 3.8b) are visually more distinct. 

Sensitivity to the Patch Shape 

As we have argued, in addition to not being sensitive to the colour pattern of the patch, 
a fair measure must also be invariant to the shape of the patch. To empirically confrm 
iOcclusion reduces the importance of edge information, we could compare the results 
obtained when masking with diferently shaped masks. However, as we have seen in 
Section 3.3.1, there are multiple factors to account for and we are not aware of simple 
masking methods that account for all of them. 

To avoid issues caused by confounding factors, we aim to compare models which exhibit 
diferent characteristics using the same masking method. For this, we want to obtain 
a model that is robust to occlusion, but at the same time has a high DI index (i.e. it 
is sensitive to edge information). To this end, we create a variation of FMix, Random 
Masks (RM), where at the beginning of the training process three masks are randomly 
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Figure 3.8: Left-hand side versus right-hand side. Comparison of metric sensitivity to textured 
occlusion. Uniform occlusion refers to superimposing black patches over CIFAR-10 images, while 
nonuniform refers to superimposing part of CIFAR-100 samples. Nonuniform CutOcclusion provides 

signifcantly diferent results to its regular counterpart, while iOcclusion remains consistent. 

Table 3.7: DI index and occlusion robustness for models trained on CIFAR-10 when obstructing 30% 
of the image pixels with non-uniform patches. When measuring the robustness with CutOcclusion, 
RM appears signifcantly less robust than CutMix due to its sensitivity to patching with rectangles, 
while iOcclusion highlights the robustness specifc to training with FMix-like masks. Given in bold is 

the closest mean result to that of RM for each evaluation. 

basic MixUp CutMix FMix RM 

DI index 1.67±0.17 0.98±0.21 0.14±0.08 0.15±0.01 0.39±0.05 

CutOcclusion 47.97±0.52 58.65±1.01 72.56±8.55 78.00±0.45 60.79±5.03 
iOcclusion 0.21±0.10 0.57±0.18 1.09±0.17 1.46±0.07 1.20±0.23 

sampled from Fourier space. For each batch, one of the three is chosen uniformly at 
random. We obtain a model that has higher DI index than FMix (0.39±0.05 compared 
to 0.15±0.01), as desired. Table 3.7 gives the DI index, CutOcclusion, and iOcclusion 
results for the four main models we consider in this chapter, along with the RM model. 
For clarity, we only provide results for a 0.3 occluding fraction, although our observations 
hold for other fractions as well (see Figure E.1 of the Supplementary Material for the 
full results). Because CutOcclusion implicitly penalises models with high DI index, 
according to this measure, RM appears almost as sensitive to occlusion as MixUp. On 
the other hand, our measure refects the robustness of training with RM, situating it 
close to the models trained with masking augmentations (FMix and CutMix). 

https://0.15�0.01
https://0.39�0.05
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Figure 3.9: CutOcclusion (left) and iOcclusion (right) for the basic and FMix models on two subsets 
of the same data set: tail and typical. Evaluating the models with iOcclusion on the two types of 
samples leads to mostly overlapping robustness levels. That is, they do not difer outside the margin 
of error. On the contrary, CutOcclusion incorrectly fnds the models to be less robust on tail data. 

Sensitivity to the Model’s Overall Performance 

Another problem that occurs when purely looking at post-masking accuracy is weaker 
models would erroneously appear less robust. We show this by reversing the problem: 
we evaluate the same model on two diferent subsets of the CIFAR-100 data set: typical 
and tail images as categorised by Feldman and Zhang (2020). They consider a train-test 
sample pair to belong to the tail of the data distribution if the test sample is correctly 
classifed when a model is trained with the train sample and incorrectly without it. Each 
tail example from the train set has a corresponding one in the test set. 

Once again, for visual clarity we present results for the basic and FMix models alone. 
These are given in Figure 3.9. When evaluating robustness with iOcclusion, the robust-
ness curves when evaluating models on typical and tail examples are largely overlap-
ping, being within each other’s margin of error. On the other hand, when evaluating 
robustness with CutOcclusion, there is a clear gap, with robustness on tail data falling 
of quicker than on the typical counterpart. Thus, CutOcclusion would indicate that 
models are signifcantly more robust to occluding typical examples. However, a closer 
analysis makes us doubt this conclusion. The raw accuracy on test data for tail exam-

ples is lower than for the typical ones. For example, for the basic model, the accuracy 
on original test data drops from 76.23±0.69 on the typical subset to 67.46±0.48 on the 
tail subset. In fact, the performance when occluding images decreases at the same rate 
for the two subsets, indicating similar robustness. The raw accuracy of the models is 
higher on typical examples, making it natural that the accuracy when occluding will 
also be higher on this subset. By way of defnition, iOcclusion allows a fair comparison 
of robustness regardless of the overall performance of a model. 

To further assess the sensitivity of CutOcclusion and iOcclusion to the overall perfor-
mance of the model, we also experiment with randomising all the labels of the CIFAR-10 
data set, just as in Zhang et al. (2017)’s label randomisation experiment presented in 
Chapter 2. We train a basic and an FMix model on this altered version of the data 

https://67.46�0.48
https://76.23�0.69
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Table 3.8: Robustness to occluding with patches cov-
ering 50% of each image. The models are trained 
with and without masking augmentation on data with 
randomised labels (referred to as “basic random” and 
“FMix random” respectively). For reference, results for 
FMix-training with original data (“FMix clean”) are 
provided. iOcclusion captures the increased robustness 
to occlusion of the FMix model, while CutOcclusion 
makes no diference between regular and augmented 

training. 

basic 
random 
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random 

FMix 
clean 

CutOcclusion 
iOcclusion 

10.24±0.27 
14.63±1.12 
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Figure 3.10: iOcclusion results 
for training basic and FMix mod-
els with randomly assigned la-
bels (denoted “basic random” 
and “FMix random” respectively). 
For reference, results for FMix-
training with original data are pro-
vided. iOcclusion captures the 
added robustness of training with 
random masks when the labels 

have been randomised. 

using our standard training procedure. When evaluated on the randomly labeled train-
ing data, all the basic model runs achieve 100% accuracy, while the FMix model runs 
reach 99.99±0.01%. Since all labels are corrupted, the accuracy on the test set before and 
after occlusion is no greater than random. However, the augmentation-trained model is 
robust to occlusion. This is captured by our metric. Figure 3.10 gives the robustness 
curve obtained for the basic and FMix models trained on original and randomised labels. 
As desired, on the randomised data, the FMix model has a higher robustness than the 
basic model. 

On the other hand, CutOcclusion makes no distinction between learning with regular 
and augmented data. In Table 3.8 we give the CutOcclusion and iOcclusion results for 
the same models as in Figure 3.10. Namely, the basic and FMix models trained with 
randomised labels and the FMix model trained on the original data as reference. CutOc-

clusion incorrectly registers the same level of robustness for the basic and FMix models, 
while iOcclusion refects the robustness gained by training with masking augmentation. 

Despite being such a peculiar case, this experiment once again shows the comprehensive-

ness gained by accounting for the degradation on test data relative to the training data. 
We return to this experiment in Section 4.2.2 in the context of predicting generalisation 
based on a model’s robustness to distortion on training data. In light of this experiment, 
in Section 4.2.2 we argue that the robustness of a model to a specifc distortion on train-
ing data is not necessarily predictive of its generalisation performance. It is also very 
striking to observe that training with random labels makes the basic model more robust 
to occlusion. More precisely, for a 30% level of occlusion the accuracy for the basic 
model trained on original data drops to 0.37±0.017, while for the one trained on random 
labels it only drops to 44.61±0.01. This shows that learning random labels does not nec-
essarily entail “memorising”, or in other words depending on every single pixel. Instead, 

https://44.61�0.01
https://99.99�0.01
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the model uses more contextual information. As with other experiments throughout 
the thesis, the network used for this experiment is a PreAct-ResNet18. Naturally, the 
observed phenomenon could be an artefact of the network architecture. Nonetheless, for 
the purpose of predicting generalisation, the observation remains relevant in the con-
text of comparing instances of the same architecture. As we will discuss in Section 5.1, 
leveraging contextual information can help a model generalise in an i.i.d. setting. This 
raises questions of how one can determine a priori if the contextual information learnt by 
the model is benefcial or detrimental for generalisation. We will return to this question 
throughout the rest of the thesis. 

Notes on iOcclusion 

Alternative ways of measuring robustness to occlusion that have previously been consid-
ered in the literature imply cropping out objects from natural images and superimposing 
them on the data set of interest (e.g. Osherov and Lindenbaum, 2017; Zhu et al., 2019). 
This method incurs a high computational cost associated with cropping out objects and 
overlapping them on each data set we want to evaluate robustness on. Further, this ap-
proach does not address the limitations of CutOcclusion that we highlight in this chapter: 
sensitivity to the overall performance of the model and to potential data interference 
that could be caused by an insufcient variety in the types of objects considered. 

As we evidenced through controlled experiments, there are many cases that CutOc-

clusion does not properly address. The unbiased nature of iOcclusion could lead to a 
better understanding and development of training procedures. It is equally important 
to note that it has applicability for real-world deployments where no prior knowledge 
exists about the possible shapes of the obstructions. While this aspect of generality is 
the strength of our approach, it must be stressed that when there exists a limited set of 
known possible occluders, evaluating robustness specifcally to them could be safer. For 
example in an industrial setting or a clinical environment there could be a certain set of 
objects that could interfere with the subject of interest. 

Incorrectly assessing robustness can have severe efects, especially when applied to sen-
sitive applications such as autonomous vehicles or medical imaging. We do not propose 
a universal solution, but rather suggest an alternative to the biased approach for the 
common scenario in which the environment is not controlled and little is known about 
all the potential occluders. However, even in this case, our metric should be taken as 
a guide when analysing models. Although iOcclusion aims to address data interference, 
since a ground truth does not exist, it cannot be guaranteed that this method provides 
fair results in the absolute. 

The strength of the bias will depend on the data in question and some applications will 
be more heavily afected than others. We have seen that for natural images this bias 
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Table 3.9: DI index measured for 
non-uniform occlusion when train-
ing without the class with the 
highest increase in incorrect pre-
dictions. Again, a gap can be 
noted, supporting the idea that 
data interference is not specifc to 

peculiar cases. 

CIFAR-10 CIFAR-100 

MixUp 0.39±0.15 1.22±0.19 
Figure 3.11: Diference in incorrect predictions for theFMix 0.08±0.06 0.50±0.21 
basic model trained on a variant of the CIFAR-10 data set 
where the “Truck” class has been removed. A consistent 

bias exists for the “Ship” class. 

does exist. To confrm that we have not just identifed isolated cases, for CIFAR-10 
and CIFAR-100 we remove the class that has the highest increase in mispredictions and 
retrain the models on the remaining classes. We give the index obtained for the MixUp 
and FMix models when occluding with rectangular patches in Table 3.9. We once again 
identify a non-negligible gap in the DI index for these models. Therefore, the bias is 
still present but with respect to another class. For example, in the case of CIFAR-10, 
after removing the “Truck” class, the basic model mispredicts rectangle-occluded images 
as “Ship” (see Figure 3.11). Thus, the edge artefacts are very likely to interfere with 
learnt representations since they are such fundamental features. From an evaluation 
perspective, as we have seen, this impacts assessment methods and must be accounted 
for. From the training perspective, such a widespread data interference of masking 
distortions would indicate a large perceptual shift in the data when performing MSDA. 
However, large perceptual shifts are believed to have a negative efect on generalisation, 
while MSDAs are known to improve performance. Is then the perceptual shift 
caused by artifcially introduced information really detrimental to learning? 
In the following section we investigate the importance of the artefacts in this case and 
their implications. 

3.4 Is the Magnitude of the Distribution Shift Important? 

Note once again that in this thesis we are interested in data augmentation in the classical 
sense, where distortions are simply used to enlarge the data set. Augmentation has also 
been used in contrastive representation learning (e.g. Bai et al., 2022; Chen et al., 2020; 
He et al., 2020), but we are concerned with the scenario in which the model learns to 
perceive distorted and original data as belonging to the same distribution. In this case, 
it was traditionally believed that a good augmentation should have minimal distribution 
shift. However, increasingly many approaches propose heavy distortions (e.g. Yun et al., 
2019; Summers and Dinneen, 2019), questioning the traditional view. 

https://0.50�0.21
https://0.08�0.06
https://1.22�0.19
https://0.39�0.15
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Table 3.10: Augmentation comparison on CIFAR-10. We consider two variants when calculating 
diversity. One is computing the cross-entropy loss using the label of the majority class (Diversity), 
as for mixing in Inoue (2018). The alternative, MixDiversity, takes a linear combination of the two 

cross-entropy losses. 

Afnity Diversity MixDiversity 

MixUp −12.58±0.14 0.41±0.01 0.84±0.00 
FMix −25.55±0.26 0.34±0.01 0.65±0.00 

Most recently, it has been argued that it is the degree of shift as perceived by the model 
that determines augmentation quality. Gontijo-Lopes et al. (2021) propose to measure 
this shift by the diference between the performance of the model when presented with 
original test data and augmented test data. They refer to this gap as “afnity”. We show 
that the magnitude of the distribution shift does not determine augmentation quality of 
MSDA. We start with the perceptual gap of training with MSDA, as proposed in Gontijo-

Lopes et al. (2021). We frst argue that high afnity and high diversity are not necessarily 
desirable. Indeed, on CIFAR-10, we fnd FMix, a better performing augmentation, to 
have both lower afnity and lower diversity than MixUp (Table 3.10). We remind the 
reader that Gontijo-Lopes et al. defne diversity as the loss on the augmented training 
data. For diversity, we compute the cross-entropy loss where the label is taken to be 
that of the majority class. Similar results are obtained with the MixUp loss, where a 
weighted average of the true labels is taken. 

While intuitively for a high level of afnity, high diversity could correspond to better 
methods, the converse does not hold. We argue this is because afnity is rather an 
analysis of the learnt representations of the reference model and cannot give an insight 
into the quality of the augmentation or its efect on learning. The limitations of afnity 
are intimately linked to those of CutOcclusion. We have seen in Section 3.3 that the 
bias of the basic model is present not only when occluding an image with a uniform 
patch, but also when occluding with patches taken from other images, just as in mask-

mixing. As such, an augmentation will have a lower afnity if it introduces artefacts 
that could otherwise lead to learning better representations when used in the training 
process. We believe this issue extends to other approaches that aim to motivate the 
success of MSDA through reduced distribution shift. Henceforth, we focus on bringing 
further supporting evidence that the importance lies in the invariance introduced by the 
shift and its interaction with the given problem rather than its magnitude. 

3.4.1 If It Is Not the Magnitude That Matters, Is It the Direction? 

We use empirical evidence to argue against previous assumptions behind the success of 
MSDA and propose the study of introduced bias as a more informative research direction. 
Here we use the term “bias” to refer to a drift in the learnt representations introduced 
by the change in the training procedure. A fundamental diference to classical training 
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Table 3.11: Accuracy on CIFAR-10 (left) and CIFAR-100 (right) upon mixing with samples from 
a diferent data set. The baseline is the accuracy when training with a single data set using the 
reformulated objective. In the interest of space, CIFAR-110 is used to refer to mixing with CIFAR-100 

when training on the CIFAR-10 problem and vice-versa. 

MixUp FMix CutMix MixUp FMix CutMix 

baseline 
CIFAR-110 
Fashion 

94.18±0.34 
94.70±0.27 
92.28±0.28 

94.36±0.28 
94.80±0.32 
95.03±0.10 

94.67±0.20 
94.66±0.12 
94.61±0.19 

74.68±0.37 
72.36±1.04 
66.40±1.86 

75.75±0.31 
74.80±0.55 
74.46±0.57 

74.19±0.50 
74.47±0.39 
74.06±0.28 

is that in the case of augmentation the samples are no longer independent. Mixed-

sampling takes this even further. An immediate question is, does the added correlation 
lead to more meaningful representations? It is claimed that the strength of MixUp lies 
in causing the model to behave linearly between two images (Zhang et al., 2018a) or in 
pushing the examples towards their mean (Carratino et al., 2022). Both of these claims 
rely on the combined images to be generated from the same distribution. We perform 
inter-data set augmentation and show that good performance can be obtained even when 
the source images come from diferent distributions. The same inter-data set experiment 
further shows that by distorting the data distribution by a similar magnitude, we obtain 
two opposing results. This suggests that it is the direction of the introduced bias that 
is important for understanding the impact of augmentation. We next introduce the 
inter-data set experiment and present the results obtained. 

It has been argued that label mixing has a negligible efect on the fnal model perfor-
mance (Inoue, 2018; Huszár, 2017; Harris et al., 2020; Liang et al., 2018). We, therefore, 
use the reformulated objective setting (Huszár, 2017; Harris et al., 2020), where targets 
are not mixed and the mixing coefcient is drawn from an imbalanced Beta distribu-
tion. This allows us to apply MSDA between data sets. Thus, for training a model on 
a data set, we use an additional one whose targets will be ignored. As an example, a 
model that is learning to predict CIFAR-10 images will be trained on a combination of 
CIFAR-10 and CIFAR-100 images, with the target of the former. This scenario breaks 
the added correlation between training examples and shows that mixed augmentation 
does not necessarily rely on the source images to belong to the same distribution. Note 
that when mixing between data sets we use the same procedure as when performing 
regular MSDA. 

We present the results for the inter-data set experiment in Table 3.11. For the purpose of 
predicting CIFAR-10 classes, performing MixUp with CIFAR-100 improves the average 
accuracy form 94.18 to 94.70. A non-trivial increase is also registered for FMix, both 
when mixing with CIFAR-100 as well as Fashion MNIST images, while CutMix maintains 
an accuracy similar to the baseline. Thus, this experiment shows that an accuracy 
similar to or better than that of regular MSDA can be obtained by performing inter-
dataset MSDA. This invalidates the argument that the power of MixUp resides in causing 
the model to act linearly between samples, and calls for a broader explanation of its 
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success beyond that of pushing the examples towards their mean (Carratino et al., 
2022). Another observation is that for FMix and MixUp, introducing elements from 
CIFAR-100 when training models on the CIFAR-10 problem does not harm the learning 
process. The reciprocal, however, does not hold. Hence, the “distribution shift” is more 
intimately linked to the problem at hand and aiming to characterise an augmentation 
based on the distance from the original distribution is a limiting approach, especially 
when the distance is measured as perceived by a reference model. 

We believe an explanation is that the artefacts created when putting together images 
from CIFAR-10 with those of CIFAR-100 could introduce information that makes the 
separation of the 10 classes easier. However, if the information happens to interfere with 
a feature that is important for separating the CIFAR-100 categories, the performance 
could degrade on this data set. This singular experiment is not sufcient to draw any 
general conclusions. However, it does show that shifting two distributions by the same 
amount can have diferent efects on the model performance. Thus, the direction of the 
introduced bias could be more important than its magnitude. While some level of data 
similarity has to be preserved when performing MSDA, it is far from being the objective 
of such data-distorting approaches which, as we will argue further, should be rather seen 
as forms of regularisation. 

3.4.1.1 Augmentation or Regularisation? 

We have seen that for all considered data sets, artefacts introduced by masking methods 
seem to overlap with common features. This led us to believe that MSDA training could 
help bypass some of the simplicity bias. The simplicity bias refers to the tendency of deep 
models to fnd simple representations and, as we will discuss in Chapter 4, has been used 
to justify the success of deep models (Kalimeris et al., 2019; Valle-Perez et al., 2019a). 
Recent research shows that this propensity causes models to ignore complex features 
that explain the data well in favour of elementary features, even when they lead to 
worse performance (Shah et al., 2020; Hermann and Lampinen, 2020). 

Although it could seem natural that since MSDAs are not augmentations in the VRM 
sense, they will increase the complexity of the problem, we design an experiment to sup-
port this claim. Similarly to Shah et al. (2020), we combine CIFAR-10 and MNIST (Le-
Cun and Cortes, 2010) samples. Since they have the same number of classes, we can 
easily associate each class of one data set with a corresponding one from the other. Thus, 
we stack an image from the kth class of MNIST on top of a sample from the kth class of 
CIFAR-10. Since CIFAR-10 images are 32 × 32, while MNIST images are 28 × 28 pixels, 
we pad MNIST samples so as to match the dimension of the CIFAR-10 ones. Note that 
the stacking is done in the spatial, not channel dimension, such that a 3 × 64 × 32 image 
is obtained. 
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We randomly combine the test images so as to break the correspondence between the 
CIFAR-10 and MNIST classes. We then separately compute the accuracy with respect 
to the targets of each data set. The predictions with respect to the CIFAR-10 labels 
are no better than random (10.04±0.11), while the accuracy with respect to the MNIST 
images remains high (99.57±0.72). Thus, models trained on this combination are mostly 
relying on MNIST images to make predictions. Similar behaviours have previously been 
associated with simplicity bias. Subsequently, when training, we perform FMix only on 
MNIST images and observe that this is enough to reverse the results. The models now 
rely on the CIFAR-10 images to make predictions. Evaluating against the CIFAR-10 
label gives an accuracy of 86.60±0.34, while testing against the MNIST label only gives 
11.61±0.30. We fnd that this also holds true for the other MSDAs. Thus, performing 
these distortions on the simpler data set increases its complexity to the point where it 
surpasses that of CIFAR-10. 

Previously, we presented evidence that masking MSDA does not necessarily promote 
learning neither more shape nor more texture information. In light of this fact along 
with the results from this section, we believe image distortions force the model to learn 
more complex both shape and texture-specifc features. 

This chapter shows that a greater shift in learnt representations can lead to better models 
and simply quantifying the magnitude of the distribution shift can be misleading. An 
open question remains: How can we better capture the bias that is introduced and 
measure its quality? We believe understanding how a relatively small change in the 
data distribution impacts learnt representations could lead the way to characterising the 
relationship between data and model generalisation. However, this is a very complex 
problem in its own right. In the next section we look at how we can use insights 
gained from the present chapter to start addressing the relationship between learnt 
representations and generalisation. 

3.5 How Does All This Relate to Generalisation? 

As noted in passing in Directions in Generalisation: a Short Introduction, recent studies 
aiming to empirically estimate generalisation use data modifcation (Schif et al., 2021; 
Natekar and Sharma, 2020; Lassance et al., 2020). The modifcations used are prepon-
derantly MixUp-like distortions, which are some of the frst and most popular MSDAs. 
Using the insights gained throughout this chapter, in Section 4.2.2 we highlight the 
limitation of estimators that use MixUp-like distortions to capture generalisation per-
formance at large. Finally, we discuss generalisation in relation to our fndings. This 
leads to a number of questions that we hope will lead to better-motivated approaches 
to predicting generalisation. 

https://11.61�0.30
https://86.60�0.34
https://99.57�0.72
https://10.04�0.11
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Figure 3.12: Randomly picked MixUp samples obtained from ImageNet for a mixing coefcient of 
0.5. For many examples it is difcult to identify the class of both source images and it can be argued 

that the MixUp samples do not look like natural images. 

Why would models that behave linearly between training examples be bet-
ter? – Interpolation adds structured noise. The idea of evaluating models on 
MixUp-distorted images for the purpose of predicting their generalisation ability would 
indirectly imply that models which behave linearly between training examples are better. 
However, humans would not perceive some of the interpolated samples as belonging to 
the distribution of natural images (Figure 3.12 provides more randomly selected exam-

ples). It is thus unclear why we should expect models that generalise better to necessarily 
represent the manifold of natural images in such a linear manner. 

From a generalisation point of view, the most important observation we draw from the 
model analysis perspective is that distortion not only hides information, but also adds 
information. Seeing the above question through the lens of our observation allows us to 
form an initial intuition. Perhaps the linearity of the space more largely captures the 
model’s ability to make predictions when both salient information is less perceptible and 
structured artifcial information is introduced. This is more refective of generalisation 
than simply introducing random noise. 

We would argue, however, that linearity is not better in the absolute. Care must be taken 
when trying to predict the generalisation ability starting from it, as it has been proposed 
in the recent generalisation literature. We will expand on this idea in Chapter 4, where 
we will show that robustness to MixUp perturbation is not necessarily refective of 
generalisation performance. 

Local versus Global Distortion 

As we alluded to in the beginning of this chapter, from the perspective of training with 
distorted images we note a diference between learning invariance to local or global 
distortions. The locality impacts how “distributed” the learnt representations are. We 
have seen that the fragmented masks of FMix cause models to be resilient to core 
information being masked out as they are forced to leverage more contextual information. 
But there is another interesting observation that can be drawn from masking out the 
least important information: the iOcclusion robustness applied to FMix and CutMix 
appears to be lower than that observed when masking out very small fractions of the 
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least salient information. Namely, for an occluding fraction of 0.1, for FMix and CutMix 
the iOcclusion is 1.57±0.03 and 1.52±0.05 respectively, while the one computed when 
masking out the least important information is 1.03±0.01 and 1.08±0.01 respectively. At 
a frst glance, this seems contradictory. On a closer inspection, however, we notice 
that the CutMix and FMix models achieve very high training accuracy (99.85±0.04 
and 99.93±0.04 respectively). Considering that CIFAR-10 was approximated to have 
around 3% mislabelled data (Pleiss et al., 2020), this situates them in a regime of minor 
overftting. This is then refected in a signifcantly lower drop on the training data 
versus test data when the least salient information is masked out. An important issue 
is thus raised: Can a model be too robust on the training data? How do we 
diferentiate between desirable and undesirable robustness in the absence of 
test data? 

We believe models can be overly robust on training data. If a model is robust to extreme 
levels of random occlusion, for example, when 90% of the image is occluded, then it must 
make predictions based on information that is in most cases not salient for the class. 
Therefore, it must learn spurious correlations in order to be more robust on training 
data. This observation is highly relevant to Chapter 4, where we explore robustness on 
training data as an indicator of generalisation performance. 

Diferences between local and global changes can also be seen in the intra-dataset mixing 
experiment (Table 3.11) introduced in Section 3.4.1. Namely, when the source distribu-
tions difer signifcantly (e.g. CIFAR-10 versus Fashion-MNIST), interpolating methods 
impact the statistics of the data set, leading to a decreased performance. This once 
again highlights that masking and interpolative distortions have diferent efects on the 
learning dynamics and the representations that are learnt. In the context of model train-
ing, Harris et al. (2020) argue that their efects are complementary. As we will see in 
Chapter 4, researchers are aiming to use robustness to distortions to empirically predict 
generalisation performance. However, we will argue in Section 4.2.2 that robustness 
to a specifc type of distortion cannot indicate generalisation performance. Can this 
diference between local and global distortions also be used to empirically 
capture generalisation through a more holistic notion of robustness? 

In summary, distortion for the purpose of predicting generalisation is a nascent feld and 
this chapter brings to light a few directions that are worth exploring: the relationship 
between adding and subtracting information, between local and global distortions and 
the balance between too little and too much robustness. However, as we have shown 
in this chapter, distortions themselves are still not well understood. Therefore, as we 
will argue in Chapter 4, thorough evaluations of these empirical estimators are needed 
in order to ensure their correctness. 

https://99.93�0.04
https://99.85�0.04
https://1.08�0.01
https://1.03�0.01
https://1.52�0.05
https://1.57�0.03
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3.6 Future Work 

This chapter represents a rich source for future research. Throughout the chapter we 
have already raised open-ended questions such as “How is a small change in the data 
refected in the learnt representations?”, “How can we better capture the 
bias introduced by data modifcation?”, “Where is the threshold between 
local and global distortions and how does their impact difer?”, etc. Aside 
from these, we briefy discuss more questions that have surfaced while working with 
data modifcation, as well as limitations of the analyses and tools we propose. 

Can we design a fairer alternative for measuring shape bias? During the review 
process for the International Conference on Machine Learning, the question of proposing 
a measure of shape bias based on patch shufing was raised. It is important to point 
out that we do not believe patch shufing provides a good starting point for evaluating 
shape-texture bias. This is because texture information is not necessarily equivalent to 
local information. The rectangles that result when dividing the image using a grid retain 
local information. This could indeed include texture information, but edge information 
is often preserved as well (e.g. a cat’s pointy ears might be fully preserved in a patch). It 
is difcult to see how one could address this issue and construct a method for measuring 
shape bias starting from patch-shufing. However, fnding a fairer alternative remains 
an important objective since we believe interesting insights can be gained from studying 
the shape bias of diferent models. 

Augmentation or Regularisation? An important objective for future work is more 
rigorously approaching the terms of “augmentation” and “regularisation” achieved through 
data modifcation. This distinction might be crucial when proposing a framework for 
reasoning about the efects of data modifcation. In this sense, one could think of “aug-
mentation” in the VRM sense, where the distortions are expected to be “natural”. That 
is, the distorted image appears as a natural image to a human. The intuition behind 
VRM is valuable, however, we do not have good defnitions of sample vicinity. Con-

sidering only individual pixel values is limiting and does not refect the complexity of 
the space of natural images. Nonetheless, assuming we had a good notion of vicinity, 
we could indeed defne augmentation as a method of better capturing the natural space 
around existing samples. However, a natural distortion could be partially occluding the 
subject, which could in turn have a regularising efect. Therefore, it is unclear how one 
could describe natural distortions in a way that clearly separates regularisation from 
augmentation. 

We believe another possible avenue for creating this distinction would be by defning 
a data complexity measure. As such, if a data modifcation increases the complexity 
of the data beyond a certain threshold, that modifcation can be considered to have a 
regularising efect. There are, however, also problems associated with this proposal. For 
example, the same type of modifcation could change the data complexity to diferent 
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extents when applied to diferent data sets. Moreover, we are as yet unsure how one 
would defne data complexity in a formal way. We will return to this issue again in 
Section 5.1. 

Immediate improvements to our work would be to address some of the limitations we 
have mentioned throughout the chapter. For example, iOcclusion relies on the assump-

tion that models which are more robust to occlusion have a higher train-test gap on 
occluded images than their counterparts. Verifying this assumption boils down to de-
coupling the efects of adding and masking out information at the same time, as it is 
done when masking out regions of images. This leads back to the exact problem that 
we are trying to solve. Would it be possible to propose a fair alternative for 
measuring robustness to occlusion that does not rely on additional assump-

tions? While we believe that one always needs to make some assumptions, it is possible 
that future methods could start from weaker assumptions. However, the alternatives we 
have considered implied, in our opinion, stronger ones. Once again, it was not possible 
to verify these assumptions. 

Similarly, we could aim to defne a DI index that allows a more comprehensive compar-

ison. In this chapter we were only interested in showing that data interference exists. 
Therefore, we have not considered constructing an index that allows cross-data set com-

parisons. We have, therefore, not accounted for the fact that the misclassifcations for a 
10-class problem are going to be less dispersed across classes than those of a 1000-class 
problem. Proposing a universal DI index could open new avenues for research where 
one could use this quantity to further study class-wise feature importance or even defne 
a non-relative version of this index. 

Lastly, an open problem remains building a framework that allows us to tell when one 
augmentation will be better than another and why. As mentioned in the introduction 
of this chapter, this problem is highly challenging. Indeed, we would argue that solving 
this problem might not be possible until we gain the same intuitions needed to solve gen-
eralisation itself. Nonetheless, it remains an avenue worth investigating and a promising 
source for gaining further practical insights. 

3.7 Conclusions 

Distorting data is such a commonplace procedure, yet little efort has been devoted 
to investigating its broader efects. This is particularly problematic when image mod-

ifcations are applied in analyses. We show a number of cases in which this leads to 
biased or incorrect results. For occlusion robustness evaluation, we propose an alterna-
tive measure. The insights we gain from this endeavour point towards the study of data 
characteristics as a cornerstone of our understanding and raise a number of important 
questions about mixed sample data augmentation, on which we subsequently focus. 
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We note that MSDAs interfere with features that are consistently found across a number 
of data sets and conclude that the methods commonly used are forms of mixed sample 
regularisation rather than augmentation. A limitation of previous studies that aim to 
explain their success is the focus on trying to argue similarity with original data, rather 
than explaining the bias introduced by the distortion. Correctly interpreting it is impor-

tant not only for making the models trustable but also for injecting more informed prior 
knowledge in future applications. Beyond their practical benefts, we believe MSDAs 
have the potential to help characterise the interplay between data and learnt repre-
sentations. Overall, the purpose of this chapter is to encourage better practice when 
dealing with all forms of data distortions as well as to motivate their principled usage 
in generalisation studies. 





Chapter 4 

Steps Towards a Data-centric 
Evaluation of Empirical 
Predictors 

This chapter lays the foundations of the future work needed to make meaningful 
contributions to the feld of generalisation using empirical predictors. It covers a 

discussion of previously proposed predictors, a series of requirements for large-scale 
evaluation, and a proposal for a conceptual future direction. 

In Chapter 2 we make evident the need to capture the attunement of the model to the 
given problem and its data. Our insight is that accounting for the data is crucial for 
this pursuit. We argue, however, that with the feld’s current level of understanding, 
it is difcult to propose a concrete and efective way of doing so. In line with recent 
developments, we believe a valid strategy is to return to practical experimentation to 
gain stronger insights into the phenomena observed in practice. 

Since we began working on this thesis, a number of researchers started embracing the 
importance of practical experimentation for the purpose of capturing model performance. 
As such, a new form of studies has emerged: empirically predicting the generalisation 
performance of a learnt model. That is, having access to the learnt model, can we 
predict the generalisation performance a priori (i.e. before seeing the test data)? It 
is such predictors and their evaluation that this chapter is primarily concerned with. 
We will also refer to the generalisation predictors as generalisation estimators or simply 
estimators. Note that in the literature they are sometimes referred to as generalisation 
measures. We use the terms “predictor” and “estimator” since we believe they are more 
ft to generally describe all approaches that aim to predict generalisation, including the 
newer ones for which the term “measure” is less appropriate. 

73 



74 Chapter 4 Steps Towards a Data-centric Evaluation of Empirical Predictors 

We have mentioned in the previous chapter that most recent empirical attempts have 
incorporated data distortion. Yet, as we have seen in Chapter 3, the feld has a poor 
understanding of the mechanisms behind distorting data. We argued that when eval-
uating models on distorted data, one might obtain an unfair model comparison if the 
side efects (i.e. artefacts) of the data modifcation process are not taken into account. 
Do the side efects we have identifed earlier afect generalisation predictors 
in a similar way? Is the feld’s limited understanding of distortions also im-

pacting empirical predictors? Can our fndings so far be used to improve 
predictors? These are some of the questions that gave birth to this chapter and which 
we aim to answer. 

We believe that distortions for the purpose of predicting generalisation have been used 
in a poorly informed manner. Although sensitivity to distortions can signal an overft-
ting model, there is little foundation for the exact choice of data distortions in prior art. 
More specifcally, it is unclear why the chosen data modifcations (e.g. MixUp) would 
necessarily be correlated with a better generalising model. We argue this conceptually 
and also provide a small empirical example as initial evidence. However, in the Pre-
dicting Generalisation in Deep Learning competition (Jiang et al., 2021), a large-scale 
competition for empirically predicting generalisation, distortion-based estimators have 
been reported as successful, being adopted by the winning as well as runner-up solutions. 
So why are reported results good when we argue distortion has been used 
inadequately? We dedicate the second half of the chapter to answering this question. 
We argue that the setting in which the estimators were evaluated is too limited to expose 
the issues we underline. We believe this calls for a more critical examination of prior 
evaluation settings. 

What scenarios have not been considered in previous evaluations? Chapters 2 
and 3 have emphasised the need for a data-centric approach to understanding machine 
learning. With this perspective in mind, we note that most of the previously proposed 
empirical predictors have not been evaluated on variations of the training data. As 
we will detail in Section 4.2.2, variation could include removing specifc subsets of the 
data set, changing the number of classes, or even distorting samples. We argue that 
considering settings where data is varied would refect the limitation of state-of-the-art 
predictors and provide a more accurate picture of estimators’ true ability to capture 
generalisation performance. 

Are there other benefts of a data-centric evaluation? We believe the implications 
of a data-centric evaluation go far beyond exposing the limitations of distortion-based 
estimators. A good measure of generalisation should appropriately refect changes in 
data, not only training procedure or architecture. We also argue that when models 
trained with diferent variations of the data set result in diferent generalisation perfor-
mance, good generalisation measures should refect this. Therefore, an evaluation that 
constructs a variety of data-focused scenarios would help ensure that the feld does not 
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propose measures that can only explain hyperparameter changes without truly capturing 
generalisation performance at large. 

Are empirical predictors of generalisation worth studying? In Section 4.2.2 we 
identify a number of challenges associated with pursuing this direction and we argue that 
in order to obtain truly fruitful results, a strong foundation must be established frst. 
Clearly discussing implicit assumptions or pointing out the limitations of the empirical 
a posteriori perspective are some of the aspects missing from the literature. We argue 
that these are crucial for understanding what the realistic potential of this approach is 
and subsequently reaching it. Therefore, we believe there is value in studying empirical 
predictors but the feld needs to systematically address the current limitations before 
impactful contributions can be made. 

Our initial goal for this chapter was to provide a large-scale, data-centric evaluation of 
empirical estimators. Given the time constraints, this quickly turned out to be infeasible 
due to the many challenges that we will highlight throughout the following sections. This 
chapter, therefore, lays the ground for carrying out such a study. As mentioned earlier, 
we strongly believe this is important for a principled development of the feld. 

In the frst part of this chapter we provide an extensive overview of directions in gen-
eralisation with a focus on empirical methods of generalisation estimation. To the best 
of our knowledge, we are the frst ones to review the recent approaches that moved 
away from the complexity-centric view and the frst ones to recompose the evolution of 
ideas in modern generalisation studies. With a large-scale study of empirical predictors 
in mind, we interweave the literature review with refections and preliminary results 
for some of the methods. These are those methods which we would not incorporate 
in a future large-scale study. This is to avoid unnecessary computation by discarding 
directions that are not promising. However, we believe they should be discussed since 
studying the feld’s evolution gives us a more comprehensive view of the community’s 
current take on generalisation and will hopefully help future researchers avoid unfruitful 
directions. 

In the second part we clearly formulate the framework for predicting generalisation 
performance, motivating it while at the same time drawing the reader’s attention to 
its limitations. We then focus on how empirical predictors have been evaluated in the 
past and highlight a number of omitted scenarios that expose issues with prior art. 
Consequently, we propose a list of desiderata for future evaluation. We fnally motivate 
a conceptual direction for future estimators. 

In summary, this chapter is concerned with empirical estimators of generalisation and 
their evaluation. Our contributions are: 

• We present a succinct history of ideas in generalisation studies (Section 4.1.1); 
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• We review prior approaches in the empirical predictors of generalisation literature, 
highlighting limitations and inaccuracies (Section 4.1.1); 

• For some estimators we provide preliminary evidence against their ability to cap-
ture generalisation at large (Sections 4.1.4 and 4.2.2); 

• We review prior attempts to evaluate such generalisation estimators, discussing 
the practices they undertake (Section 4.2.1); 

• Lastly, we propose a standard for such studies which accounts for the limitations 
of prior evaluations (Section 4.2.2). Note that constructing the evaluation setting 
itself is left as future work. 

This chapter combines two diferent research directions: we provide an overview of 
perspectives on generalisation; and, we investigate the evaluation of empirical predictors. 
We will therefore discuss the relevant related work for these two research directions 
separately rather than having a unifed section for related work. 

Together with parts of Chapter 3, the contribution on Intrinsic Dimension from Sec-
tion 4.1.1 was included in a workshop paper and presented as a lightning talk at the 
Data-Centric AI workshop at the NeurIPS 2021 Conference (Marcu and Prügel-Bennett, 
2017). 

4.1 Empirically Capturing Generalisation — an Overview 

In Chapter 1 we have recounted that we can try to capture a model’s behaviour either 
a priori or a posteriori. In this thesis we limit our exploration to methods that aim to 
characterise networks a priori. We remind the reader that there are two options when 
choosing the a priori direction: either estimating the generalisation performance without 
being able to provide guarantees, or provide guarantees typically by making strong 
assumptions. In this thesis we advocate for the estimation path. Our belief is that once 
we can successfully predict generalisation, we will be able to create bounds or notions 
of certainty that would guarantee performance depending on the given conditions. Our 
hope is that such a practice-based framework for providing guarantees would be relevant 
for real-world scenarios. 

In this section we review the main ideas in the feld of empirical generalisation studies. 
As a reminder, we consider an approach to be empirical if it moves away from the 
classical setting of statistical learning theory, which abstracts away from the problem 
and adopts a worst-case analysis. Due to the belief expressed above, we dedicate more 
time to discussing empirical predictors of generalisation which are at the heart of this 
study. These are those approaches that, given a specifc instance of a model, aim to 
predict its generalisation performance. 

https://datacentricai.org/
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The general review aims to present the context in which empirical predictors have 
emerged, while at the same time noting the more abstract concepts around which prior 
approaches are concentrated. The latter is particularly important for avoiding future 
redundancy, since, as we will see, highly similar approaches have been proposed across 
the diferent generalisation subfelds. For completeness, we also briefy note some of the 
a posteriori directions but we do not provide a full review. For both a priori and a pos-
teriori studies, we focus on the motivation behind the proposed approaches, highlighting 
strengths and limitations of the chosen perspective. 

Related Work. As we mentioned in Chapter 1, there is no up-to-date, comprehensive 
overview of directions in generalisation studies, although reviews of some subfelds exist. 
For example, surveys of classical statistical learning can be found in many textbooks 
covering generalisation (e.g. Hastie et al., 2009; Shalev-Shwartz and Ben-David, 2014). 
Similarly, the early advances in empirical studies are covered in depth by a number of 
reviews (e.g. Alquier, 2021; Mohri et al., 2018; Bartlett and Shawe-Taylor, 1999) and 
we will therefore only go into detail when it comes to the newer approaches. We will, 
however, mention the broad ideas in the early empirical studies and subsequently refer 
the reader to the existing extensive overviews. The broadest introduction to generalisa-
tion as a feld is provided in the concurrent work of He and Tao (2020). However, He 
and Tao’s study is concerned with bounding approaches only, reviewing improvements 
in tightness. He and Tao’s focus is the precise results obtained, whereas our focus is to 
explain the setting considered and provide a history of ideas in the feld. The two works 
are therefore complementary in nature. Another concurrent survey is that of Hu et al. 
(2021), who review the literature concerned with expressive power only. Like He and 
Tao (2020), they focus on specifc results and less on the ideas being proposed and their 
contextualisation. 

4.1.1 A Priori Estimation 

A priori estimation relies on the implicit assumption that train and test data are both 
drawn from the same distribution. One important limitation of such methods is that in 
real-world applications it is very hard to guarantee that this assumption holds. In a pos-
teriori settings, having a model-centric distribution distance measure can shed some light 
on the extent of the match between the two distributions, yet this is still prone to failure 
due to the ultimately subjective notion of distance between distributions, particularly 
in very high dimensional spaces. We will return to this discussion in Chapter 5. 

Assuming that the training and test data are sufciently similar, the focus falls on 
ensuring the model does not learn spurious features. The intuition often drawn from the 
bias-complexity formulation is that such spurious features are caused by an increased 
expressive power of the model class. As noted in the Directions in Generalisation: a 
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Short Introduction chapter, the ideas of capacity and complexity, which are measures of 
expressive power, are the cornerstones of classical generalisation studies. 

Zhang et al. (2017)’s randomised labels experiment showed that the highly successful 
models used in modern machine learning have huge expressive power and therefore called 
for a rethinking of the feld’s approach to generalisation. Nonetheless, after Zhang et al.’s 
study, researchers still aimed to explain the generalisation mechanism working around 
the notion of expressive power, this time searching for new measures of complexity. We 
next briefy present the diferent interpretations of Zhang et al.’s experiment followed 
by an overview of the new ways of bounding or defning complexity. 

Opposing Interpretations of the Label Randomisation Experiment 

On the one hand, Zhang et al. (2017)’s work sparked the emergence of a new research 
direction in machine learning which quickly became a whole feld: explaining general-
isation in a highly overparametrised regime. This is usually studied in settings where 
training is carried out until zero loss is achieved, also referred to as the interpolative 
regime. In this direction, an interpretation is that the label randomisation experiment 
contradicts the bounds of statistical learning. As we have mentioned in Chapter 2, this is 
due to wrongly taking the classical bounds to mean that capacity needs to be restricted 
in order to have good generalisation performance. Another commonly accepted take 
is that the label randomisation experiment invalidates the complexity trade-of. This 
belief also occurs as a result of misinterpreting the Double Descent curve (Belkin et al., 
2019) which we will discuss later in this chapter. 

On the other hand, there are studies that reconcile the label randomisation experiment 
with classical wisdom. In this sense, studies like our own and Wilson and Izmailov 
(2020)’s argue that the generalisation performance depends on the “ftness”, or attune-
ment, of the architecture to the given problem such that an overwhelming number of 
hypotheses have a low risk. 

An earlier complementary and popular explanation was that although deep learning 
models correspond to high-capacity hypothesis spaces, the SGD optimisers are biased 
towards choosing low-complexity instances (Neyshabur et al., 2014). Apart from the 
very strong optimisation component, this has once again brought forward the necessity 
of defning and capturing complexity. One of the most recent works on this topic provides 
a data-centric argument (Yang et al., 2022) which is in line with our intuition and that 
of Wilson and Izmailov. We will discuss Yang et al.’s work in more detail later in this 
chapter but for the moment we note that they use the structure of the data to motivate 
the reduced complexity of the learnt models. Thus, most a priori methods revolve in one 
way or another around the idea of complexity which stems from the classical framework. 



79 Chapter 4 Steps Towards a Data-centric Evaluation of Empirical Predictors 

These complexity-centric attempts have proven to be insufcient for capturing a model’s 
ability to generalise. It is only most recently that researchers started to shift their 
attention to alternative ways of estimating generalisation performance. We argue that 
although not explicitly stated, many of them rely on concepts from information theory. 
We will next provide a concise review of expressive power-based results in empirical 
generalisation studies. We then succinctly introduce information theory to which we 
will relate the more recent research directions. 

4.1.2 Measures Based on Expressive Power 

We have seen in Chapter 2 that class capacity represents the cornerstone of classical 
studies. As Neyshabur et al. (2017) recount, the class capacity has previously been 
bounded by the number of network parameters (e.g. Bartlett et al., 1998c; Harvey et al., 
2017). Note that the number of parameters is not an exact indicator of the network 
capacity (see Maddox et al. (2020) and Dwivedi et al. (2020), for example). However, 
capacity can be bounded using the number of network parameters. 

As we will see, early attempts have been made to incorporate information about the data. 
However, the necessity of doing so became evident with the advent of deep learning. 
Bounds based on network size were provably tight and yet highly overparametrised 
models (e.g. Karpathy et al., 2014) were increasing in popularity due to their outstanding 
reported generalisation performance. Below, we review the attempts to incorporate 
information about the data both before and after the deep learning era. 

The frst step towards fnding a task-dependent class complexity was the proposition 
of the Structural Risk Minimisation framework (Vapnik and Chervonenkis, 1971). Just 
like the classical statistical learning theory on which it is based, this framework is highly 
theoretical and has little practical relevance. Although important for an in-depth un-
derstanding of the techniques to capture generalisation, presenting it in detail does not 
ultimately add to the story told in this chapter. Its proposal, however, marks a shift 
in the generalisation studies narrative, with researchers now needing to go beyond the 
worst-case approach. In the bounding literature, this has largely led to an alternative 
framework termed PAC-Bayes (McAllester, 1999), and the emergence of new notions of 
expressive power that incorporate some information about the data, which we discuss 
next. 

PAC-Bayes Bounds. A direction that aims to incorporate information about the data 
is represented by the PAC-Bayes literature. As mentioned in Chapter 1, this has been 
extensively covered and we will only briefy mention it for completeness. In this setting, 
one considers the output of the learning algorithm to be a probability distribution over 
the hypotheses in the class rather than a single learner. Notably, this distribution can 
depend on the training data. The tight results derived by Dziugaite and Roy (2017) 
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have led to a resurgence in interest for the PAC-Bayes framework. It is notable that, 
as Alquier (2021) and Banerjee and Montúfar (2021) point out, some of the recent 
PAC-Bayes bounds have strong connections to bounds based on the mutual information 
between the training sample and the learner. Banerjee and Montúfar provide a unifed 
view of these approaches. For a comprehensive introduction to the PAC-Bayes setting 
and existing bounds, we direct the reader to the work of Alquier (2021). 

Class Expressivity. We introduced the VC dimension in Chapter 2 as a notion of the 
expressive power of a model class. The data-aware alternatives to the VC dimension 
are the Rademacher Complexity and the covering number of the input space. The 
covering number gives the number of fxed-radius balls that can cover a space; in this 
case, the space considered is that given by the training data. Informally, the empirical 
Rademacher Complexity gives an indication of the ability of the functions in a hypothesis 
class to ft random noise. This quantity is “empirical” because just like the covering 
number, it is dependent on the training data. To obtain the Rademacher Complexity, one 
would compute the expected empirical Rademacher Complexity. For formal defnitions, 
see Section A. 

What has followed since the introduction of these measures of class expressivity was a 
great variety of attempts to bound them. More specifcally, rather than guaranteeing 
performance based on the capacity of the entire hypothesis class, one could provide 
generalisation guarantees on a restricted subset of hypotheses. This subset can be con-
structed based on specifc hypothesis-dependent quantities. The goal then became to 
defne such quantities that would create informative bounds. Motivated by Zhang et al. 
(2017)’s randomised labels experiment, Neyshabur et al. (2017) popularised the idea 
that the purpose of such quantities must not only be to help bound generalisation but 
also to explain the performance of individual hypotheses. Therefore studies have re-
cently started transitioning from a class-centric perspective to a more hypothesis-aware 
view. One of the earliest types of such bounds that aim to bound expressivity is given by 
margin bounds. Here margin is to be interpreted as the notion of the minimum distance 
between points in the training set and the decision boundary. This notion of margin 
is encapsulated in a model known as “Support Vector Machine” (Cortes and Vapnik, 
1995). 

Support Vector Machines represented a big step in the evolution of machine learning 
technologies. They were achieving high performance showing the over-pessimistic re-
sults of the bounds at the time. The fact that the learnt classifers had good margins 
was questioning the relevance of the worst-case approach, calling for the need to include 
some notions relating to the data distribution. As a form of accounting for the data 
distribution, Bartlett and Shawe-Taylor (1999) expressed previously computed gener-
alisation results for Support Vector Machines in terms of their margin. The margin 
was taken to be an indication of how peculiar the data distribution is. Subsequently, 
a number of margin-based bounds had been proposed, seminal works including those 
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of e.g. Shawe-Taylor et al. (1998a); Bartlett et al. (1998a); Bartlett (1998b); Mason 
et al. (2000); Evgeniou et al. (2000); Seeger et al. (2001); Koltchinskii and Panchenko 
(2002); Bartlett and Mendelson (2002); Kakade et al. (2008); Balcan and Berlind (2014); 
Kuznetsov et al. (2015); Neyshabur et al. (2015); Bartlett et al. (2017); Chuang et al. 
(2021) to name but a few. The studies cited above focus on the Rademacher complexity, 
while works such as that of Zhang (2002) or Ng (2004) bound the covering number. 
Examples of quantities considered in margin-based bounds include weight norm (e.g. 
Koltchinskii and Panchenko, 2002; Bartlett, 1998b), spectral norm (e.g. Bartlett et al., 
2017), and path norm (e.g. Neyshabur et al., 2015). Another favour of margin bounds 
can be found in the PAC-Bayesian literature (e.g. Langford and Shawe-Taylor, 2002; 
Herbrich and Graepel, 2002; Biggs and Guedj, 2022). For a textbook introduction to 
margin bounds we refer the reader to Mohri et al. (2018) and Anthony and Bartlett 
(1999), while for exact results for some of the above-cited bounds, we refer the reader 
to He and Tao (2020). 

We briefy note that the “luckiness” framework (Shawe-Taylor et al., 1998a) was another 
attempt to provide data-dependent bounds and capture the success of SVMs. Informally, 
the intent was to use a function to rank hypotheses according to their level of compat-

ibility with the training samples, as measured by notions such as margin. Algorithmic 
luckiness, however, has not seen as much popularity as the previously-mentioned alter-
natives due to the rather complicated technical details which make this framework less 
applicable (Foster et al., 2019). 

It must be noted that within the margin literature cited above, one prominent idea was 
to stop the class expressivity from scaling with increasing network width and depth (e.g. 
Golowich et al., 2018). The aim was to have a notion of class complexity that could 
justify the performance of overparametrised models. As such, the objective was to bound 
the Rademacher complexity of overparametrised models in terms of notions that do not 
scale with the size of the network. 

As briefy mentioned earlier, an alternative take was that the optimisation methods 
lead to implicit regularisation. For example, it was argued that the success of over-
parametrised models is given by the use of gradient descent methods, which maximise 
margins (Poggio et al., 2017; Soudry et al., 2018). Later, Valle-Perez et al. (2019a) 
theoretically argue the existence of a strong implicit bias towards low-complexity so-
lutions and then derive a PAC-Bayes bound by looking at the input-output function 
space rather than parameter space, as in previous PAC-Bayes bounds. They empiri-

cally evaluate the bound, albeit on binary versions of benchmark vision data sets such 
as MNIST and CIFAR-10 and under the label randomisation setting only. As we will 
argue in Section 4.2, limited evaluation settings can result in misleading conclusions. 
Therefore, as with most of the methods we will discuss in this section, it is difcult to 
grasp how well their empirical evaluation refects the true ability of the estimators to 
capture generalisation. 
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This idea of accounting for the learning algorithm dates back to the early works on 
algorithmic stability. Stability of the learning algorithm, associated with low variance 
in the bias-variance trade-of, measures how dependent a learnt hypothesis is on the 
given training set. There are a number of possible defnitions for this. The core idea is 
measuring how much the loss changes when changing (or, more restrictively, removing) 
one of the training points. Just as with notions of expressivity, the randomisation 
experiment of Zhang et al. (2017) highlights the inability of stability measures to explain 
generalisation. Notice that there is an element of learnability captured by this notion. 
Bousquet and Elisseef (2002) give a concise history of stability approaches, the origins of 
this feld, and connections with the VC-centric perspective. For the reader interested in a 
more in-depth history of early ideas around margin bounds, PAC-Bayes, and connections 
with the stability literature, Boucheron et al. (2005) provide an extensive overview. In 
line with the belief that the optimization process is often biased towards low-complexity 
solutions, stability-based generalisation bounds have also been studied under Stochastic 
Gradient Descent (see e.g. Hardt et al., 2016; Kuzborskij and Lampert, 2018; Zhou et al., 
2018; Lei and Ying, 2020). 

Another feld linked to stability that empirically bounds generalisation, but which has 
not become equally popular among theoreticians, is algorithmic robustness (Xu and 
Mannor, 2012). The quantity of interest for obtaining the bounds is the covering num-

ber of the input space, which in real-world scenarios is too vast for the bounds to be 
relevant (Neyshabur et al., 2017). Highly related to the stability perspective are also 
those measures centred around the properties of the loss landscape. The intuition for 
these methods goes back to early classical works and has mostly surfaced in the optimi-

sation area of modern machine learning literature. Such examples are statistical physics 
studies of critical points of the energy surface in high dimensions (e.g Fyodorov and 
Williams, 2007) which subsequently inspired optimisation advancements (e.g Dauphin 
et al., 2014). Although the notion of fatness (or, alternatively, sharpness) of the minima 
was informally introduced by Hochreiter and Schmidhuber (1997), it was only through 
works such as Keskar et al. (2016)’s that fatness came back to the attention of general-
isation researchers. 

The ability of fatness to capture generalisation, however, has been contested (Dinh 
et al., 2017), as we will discuss later in this chapter. Subsequently, still centred around 
the idea of capacity reduction, Neyshabur et al. (2017) and Dziugaite and Roy (2017) 
concurrently note that sharpness must be coupled with some notion of weight norm 
to be able to control capacity. Neyshabur et al. (2017) goes on to empirically demon-

strate the limitations of this joint measure as well. Aiming to address the limitations 
of previous fatness approaches, Liang et al. (2019) propose a norm-based solution that 
is invariant to the rescaling issue of prior fatness approaches. However, Liang et al.’s 
geometry-based approach to bounding complexity was later found to correlate poorly 
with generalisation performance (Jiang et al., 2020). Another attempt to overcome the 
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limitations of previous norm, margin, and sharpness approaches proposes a hidden unit-
wise metric (Neyshabur et al., 2019). Neyshabur et al. (2019)’s metric weights the path 
norm of each hidden unit by its “impact” represented by the norm of the outgoing weight 
from that unit. They then use the sum of the unit-wise results to bound the Rademacher 
complexity of a model. This method was also found by Jiang et al. (2020) not to corre-
late well with generalisation. For more examples of such bounds as well as connections 
with PAC-Bayes and stability results, see the work of He and Tao (2020). For another 
view on the connection of fat minima to PAC-Bayes bounds and information-theoretic 
perspectives, see Achille and Soatto (2018). 

Subsequently, Maddox et al. (2020) propose the eigenspectrum of the training loss Hes-
sian as a notion of a model’s efective dimensionality. They relate it to notions of 
compression and fatness and fnd that it can better correlate with generalisation per-
formance when compared against path-norm bounds (Neyshabur et al., 2017), as well 
as the PAC-Bayes results of Jiang et al. (2020) and Dziugaite and Roy (2017). How-
ever, their experimental setting is very limited. They only vary the width and depth 
of convolutional networks and present experiments on the CIFAR-100 data set alone. 
Moreover, they do not compare their method against the most recent predictors. 

Also relating to stability and algorithmic robustness is the belief that the sensitivity of 
a network to perturbations can be used to capture its complexity. Novak et al. (2018) 
measure robustness to perturbations by computing the norm of the Jacobian of the 
logits. They claim that this quantity, in conjunction with the number of linear regions 
in the network provides a good notion of complexity, which correlates well with the 
generalisation performance. Prior studies such as those of Montufar et al. (2014) and 
Raghu et al. (2017) have also used the number of linear regions to defne complexity, and 
have noted the connection of this quantity with a network’s stability to perturbations. 
However, Novak et al. (2018) were the frst to evaluate the correlation with generalisation 
performance. Once again, their evaluation is limited and they do not compare against 
other empirical estimators. 

Note that Novak et al. (2018)’s proposal deviates from the rest of the studies we dis-
cuss in this section from two points of view. Firstly, their objective is not to bound 
generalisation, but rather to fnd a notion of complexity that directly correlates with 
generalisation. This situates Novak et al.’s approach among empirical estimators of gen-
eralisation, which we will discuss in Section 4.1.5. Secondly, it computes the norm on 
the test data, therefore it is an a posteriori study. Although the a posteriori setting 
is outside the scope of this thesis, we will briefy mention a few such studies in Sec-
tion 4.1.5. Despite being an a posteriori estimator, we believe Novak et al.’s quantity 
deserves to be mentioned in this section because it aims to directly capture expressive 
power. 
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Coming back to the notion of path norm, a concept that takes further the idea of 
characterising generalisation of a network based on the distance of the learnt weights 
from their initialisation is criticality. This was introduced by Zhang et al. (2022) as a 
layer-wise attribute. According to Zhang et al., a layer is considered critical if, after 
training, resetting the weights of that specifc layer to their initial value afects the 
overall performance of the trained network. In their analysis they found a large number 
of layers to be robust to reinitialisation. Consequently, Chatterji et al. (2020) studied 
criticality at diferent levels and defned a complexity measure that they claim correlates 
well with generalisation but bring little supporting evidence. 

Yang et al. (2022) propose a data-centric perspective. They computed the eigenspectrum 
of correlation matrices for a number of quantities considered in prior generalisation 
bounds. They noticed that the spectra of the considered quantities all follow a certain 
pattern which they argue is given by the structure of the data, whose eigenspectrum 
follows the same trend. The pattern is given by a small number of large eigenvalues 
followed by a large number of small eigenvalues which steadily decrease across orders 
of magnitude. Based on the eigenspectrum of the Hessian, Yang et al. propose to 
compute an efective dimensionality of a model, which is a very small fraction (less 
than 0.5%) of the weight count for the models they consider. Using this, they then 
propose numerical and analytical methods for computing tighter PAC-Bayes bounds 
than previously proposed. As such, Yang et al. (2022) argue that there exists a data-
induced capacity control. Note, however, that Yang et al.’s view does not give a sense 
of when a specifc model instance will be better than another and why. 

Which Directions Relating to Expressivity Are Promising? 

Most of the quantities we have discussed above were found not to correlate well with 
actual generalisation performance. Looking at some of the above propositions, Martin 
et al. (2021) categorise weight-based metrics into “shape” and “scale” metrics. They 
argue that the latter refect broad changes in architecture such as changes in depth, 
while the former are more appropriate for understanding the relationship with hyper-
parameters and the optimisation process. They note that neither of the two categories 
alone can explain generalisation. Moreover, Martin et al. (2021) observe a limitation 
of previous weight norm-based methods which they term scale collapse and refects a 
drastic scale change in specifc layers when the model is perturbed. Martin et al. also 
draw to the reader’s attention that weight-based methods must be used with care when 
comparing architectures with a diferent number of parameters. 

Spectral norm bounds as well as measures based on weight path (Neyshabur et al., 
2017) or distance from initialisation (Nagarajan and Kolter, 2019a) have been found not 
to correlate well with generalisation (Jiang et al., 2020). The limitations of norm and 
eigendecay-based methods at large have been brought to the attention of the community 
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by various studies (Belkin et al., 2018; Nagarajan and Kolter, 2019b; Wei et al., 2022), 
with Wei et al. (2022) also arguing for the necessity of capturing a form of model-problem 
alignment. 

Most similar in spirit to our calculations in Chapter 2 is the work of Wilson and Izmailov 
(2020). They propose a Bayesian perspective of generalisation where one marginalises 
over the set of possible hypotheses. They refer to the expressive power of the model 
class as the “model support”. Akin to us, they argue that we would beneft from a 
larger support as long as there is an overwhelming number of good hypotheses. In 
their framework, they refer to attunement as the model’s “inductive bias”. Wilson and 
Izmailov (2020) note that PAC-Bayes bounds worsen for an increase in the number of 
parameters and reward reduced model class expressivity. This is in contrast with what 
one can observe in practice, where models with a vast number of parameters outperform 
their smaller counterparts. 

A recent study by Jiang et al. (2020) compared a number of these methods and more, 
concluding that sharpness and optimisation-based methods represent good directions 
for future studies, while norm-based methods can sometimes negatively correlate with 
generalisation. However, sharpness methods have most recently been questioned (Dinh 
et al., 2017). The biggest limitation of sharpness-based approaches is the defnition of 
sharpness itself. As a proxy for fatness of minima, diferent noise stability measure-

ments have emerged (Langford and Caruana, 2002; Arora et al., 2018; Nagarajan and 
Kolter, 2019c) with more recent adaptations such as that of Morwani et al. (2020). But 
Dinh et al. (2017) shows that the fatness of minima can be greatly altered by simple 
reparametrisations, calling for more principled defnitions than the ones previously pro-
posed. Interestingly, Arora et al. (2018) link the notion of noise stability to network 
compression, which they in turn use to guarantee generalisation. 

The idea of compression has seen many faces in machine learning; from model compres-

sion to manifold compression, it is generally presented as a desirable attribute. For an 
overview of the former, we refer the reader to the work of Neill (2020), while we will 
focus here on compression of learnt representations. More precisely, we will dispel the 
central role of compression starting from studies arguing that lower intrinsic dimension 
of learnt representations necessarily means better generalisation. To better grasp why 
compression in itself is insufcient to capture generalisation, we frst introduce the In-
formation Bottleneck theory (Tishby and Zaslavsky, 2015) which will help us build an 
intuitive argument. 
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4.1.3 Information Bottleneck 

The Information Bottleneck theory is an alternative line of work that studies gener-
alisation of deep learning models and is rooted in information theory. Although dis-
puted (Goldfeld et al., 2019), we believe the intuition behind this theory provides a 
fresh and valuable perspective. However, just like statistical learning theory, the frame-

work’s generality impedes it from providing any concrete practical insights. For this 
reason, in the thesis we will focus on the general argument, rather than going into the 
technical details of this paradigm. 

The Information Bottleneck principle highlights the underlying notion of information 
“relevance” in the information theory framework (Tishby et al., 2000). Informally, the 
relevance of a variable X can be established in relation to another variable Y . To 
illustrate this concept, Tishby et al. provide speech compression as an example. Com-

pressing the speech audio signal requires signifcantly more bits of information than a 
transcript of the speech, which would completely capture its meaning. The relevance 
of waveform details such as the pitch is entirely dictated by the purpose of the speech 
compression. That is, if the purpose of the compression algorithm is to simply retain 
the message, then waveform details are irrelevant. If the purpose is to compress in a way 
that preserves the voice infections, then the details become important. We will refer 
back to this idea later on in this section, clarifying it further in the context of machine 
learning. 

Under the Information Bottleneck perspective, the goal of learning becomes to fnd a 
compressed representation of X that preserves as much information about the target 
variable Y as possible. This simple sentence summarises the Information Bottleneck 
principle, through which Tishby and Zaslavsky (2015) propose analysing deep learn-
ing. Tishby and Zaslavsky argue that the objective of deep learning is to fnd a trade-
of between compressing the model’s internal representation and its predictive capabili-
ties. Viewing the successive intermediate representations of a model as a Markov chain, 
Tishby and Zaslavsky give a layer-wise measure of optimality, where each layer can be 
compared to the optimal Information Bottleneck limit. However, this limit is dependent 
on the true data distribution, which in real-world applications is not known. Although 
there exist empirical estimators of mutual information to account for this, they quickly 
become intractable when applied to real-world problems. 

Ultimately, Tishby and Zaslavsky (2015) go back to a traditional perspective and ab-
stractly argue for a trade-of between the generalisation gap and the complexity gap, 
with no concrete measure of generalisation performance. From the perspective of this 
thesis, the important takeaway from their study is the conceptual formulation of the 
Information Bottleneck goal, which we will further use for either disproving or motivat-

ing the success of some of the newly-proposed methods. Finally, we would like to point 
out that instead of aiming to empirically estimate the mutual information itself, a more 
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tractable, albeit less formal, solution could be to fnd attributes that simply indicate a 
high or low mutual information. This will play an important role in the fnal part of the 
thesis. 

An important observation to make is that Goldfeld et al. (2019) have criticised Tishby 
and Zaslavsky (2015)’s binning approach to estimating mutual information, claiming 
that the observed compression phase is in fact a result of geometrical class clustering, 
which is the true quantity of interest in Goldfeld et al.’s view. They, however, leave 
the study of the relationship of class clustering with generalisation for future work. 
Since estimating the mutual information for the types of models we are interested in 
is infeasible, it is less relevant to our study whether binning is or not the right way 
to measure mutual information. Instead, we argue that clustering implies a level of 
compression coupled with knowledge about the target variable. Thus, the conceptual 
argument, which is the part our thesis is concerned with, remains valid in both views. 
We will next use this conceptual argument to support our belief that lower intrinsic 
dimension of learnt representations (equivalent to higher compression in information 
theory) alone cannot be refective of generalisation performance. 

4.1.4 Intrinsic Dimension 

Another direction in the generalisation estimation literature is centred around the notion 
of the intrinsic dimension of learnt representations. We will briefy introduce this notion 
and unlike with the other approaches discussed so far, we will construct an empirical 
counter-argument to the previously proposed method of Ansuini et al. (2019). We do so 
because the Information Bottleneck perspective allows us to easily construct a case to 
illustrate the limitation of this approach. Secondly, as we will discuss in the latter part 
of this chapter, the notion of intrinsic dimension is a promising one and could provide a 
strong base for future work. 

It is commonly believed that data lies on a low-dimensional manifold of a high-dimensional 
space (e.g. Pearson, 1901; Brand, 2002). The manifold’s dimension refects the minimum 
number of variables required to describe the true data. In practice, we do not have ac-
cess to the true, low-dimensional data manifold. We can instead try to estimate it in the 
representational space. Note that the manifold dimension is dependent on the task at 
hand. For example, for reconstruction we might need more information than for classif-
cation. Therefore, the same original data could have a lower efective dimensionality in 
the latter case. Although this observation does not play a role in the present discussion, 
we believe it is important for constructing an understanding of the general notion of 
intrinsic dimension of the data. Note once again that in this part of the thesis we focus 
on classifcation tasks alone. 
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While it is difcult to know the true Intrinsic Dimension (ID), a number of estimation 
methods have been proposed (e.g. Granata and Carnevale, 2016; Duan and Dunson, 
2021; Facco et al., 2017; Denti et al., 2021). Given a good model, we can estimate the 
ID based on its representations by measuring how much its embedding space can be 
“compressed”. This is dependent on the quality of both the model and the estimator. 
Such estimators of intrinsic dimension have been used to analyse the relationship be-
tween local ID and adversarial robustness (Amsaleg et al., 2017; Ma et al., 2018). The 
connection between low ID and robustness that was discovered has motivated Ansuini 
et al. (2019) to investigate if ID can predict generalisation performance. 

Based on the belief that the lower the dimension of the representation manifold, the 
easier it is to generalise, Ansuini et al. (2019) propose a training-time generalisation 
estimate. Specifcally, using the TWO-NN (Facco et al., 2017) algorithm, they estimate 
the global ID of the last hidden layer manifold based on its representations of the training 
data. The TWO-NN algorithm computes the ratio of the distances to the closest two 
neighbours of each data point. Ansuini et al. claim that the generalisation performance 
can be predicted based on this quantity. As such, better performance should correspond 
to a lower ID value. 

Is lower ID the driving factor behind better learners? We show through a 
counter-example that higher ID representations can lead to better generalisation per-
formance, thus disproving the above correlation. We train the same model architecture 
on diferent versions of the training data so as to obtain representations with diferent 
ID and then compute the estimate of the obtained representation dimension. Following 
Ansuini et al. (2019), we use the TWO-NN estimator introduced by Facco et al. (2017) 
to approximate manifold dimension. We then argue that models with lower ID of learnt 
representations do not necessarily have a better generalisation performance than their 
high-dimension counterparts. Therefore, the ID is insufcient to determine a model’s 
generalisation performance. To give an intuition for this, we can go back to the In-
formation Bottleneck argument. In the Information Bottleneck framework, the idea is 
to fnd a compressed representation of the input variable X while preserving as much 
information about the output variable Y as possible. The ID perspective focuses on the 
former, without accounting for the latter. Although in a practical setting when training 
we could try to minimise the intrinsic dimension while maintaining good predictions, we 
do not have any notion of performance outside the training set. Thus, by simply min-

imising ID we cannot tell whether or not we are discarding information that is predictive 
of the true output variable Y. 

To construct our counter-example, we once again make use of MixUp’s reformulation (see 
Section 3.4.1). Ignoring one of the targets when mixing inputs is expected to create a 
data set where the instances can be represented in a more compressed manifold, decreas-
ing separability at the same time. We train a VGG-16 network on the CIFAR-10/100 
data sets using no mixed data augmentation (basic), original MixUp augmentation, and 
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Table 4.1: ID and accuracy of VGG models trained with MixUp, Reformulated MixUp and without 
mixed augmentation (basic) on CIFAR-10 and CIFAR-100. The basic and Reformulated MixUp models 
can have worse test performance but lower ID than the MixUp model. This provides a simple counter-

example to the argument that lower ID necessarily gives better generalisation performance. 

CIFAR-10 CIFAR-100 

ID Accuracy ID Accuracy 

basic 
MixUp 
Reformulated MixUp 

7.80±17 
9.14±0.31 
7.80±16 

93.04±0.17 
93.79±0.18 
92.40±0.34 

12.18±1.30 
14.11±1.31 
10.71±0.21 

71.70±0.37 
72.60±0.63 
69.00±0.41 

reformulated MixUp augmentation, obtaining three diferent types of models. Table 4.1 
shows the test accuracy and the estimated ID we obtain for these models. Note that 
although the models were trained diferently, the ID is estimated on the original train-
ing data so as to ensure fairness. The MixUp model has the highest test accuracy while 
having a signifcantly higher ID compared to the Reformulated MixUp model. This 
directly contradicts the idea that a model with minimum ID of learnt representations is 
necessarily better. 

One question that is immediately raised is if our counter-example would still hold given 
a more accurate method of capturing manifold dimension. We argue that even with 
further estimator refnements, the hypothesis that generalisation performance can be 
predicted based on learnt representation’s ID lacks a strong basis, and it is unlikely to 
hold in practice. 

Caveat. Does our argument invalidate all approaches that are solely based 
on compression or complexity? No. Theoretical studies centred around these no-
tions are valid within the setting they address. When assuming that training and test 
data are drawn from the same distribution, the amount of information the model has 
about the true variable Y is implicitly determined by the level of compression in the 
intermediate representation. In practical settings, however, mislabelled samples or poor 
data collection practices cause this assumption to almost never hold. As we have seen 
in this section, using these quantities outside of the setting which they were constructed 
for leads to incorrect generalisation predictors. 

4.1.5 Qualities of Learnt Representations 

An idea that is becoming more popular among generalisation studies is to move away 
from notions of class complexity and focus on qualities of learnt representations. That 
is, study a fxed model instance rather than the model class. While we strongly agree 
with Dziugaite et al. (2020) that a good theory of generalisation should ultimately be 
able to abstract away from all details of the learning problem, we have strongly embraced 
the recent beliefs in the feld independently of the concurrently published research. This 
is because we believe that the intuitions we have as a community are as yet insufcient 
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to allow us to build a comprehensive framework for understanding generalisation. Our 
belief is that closely studying the relationship between learnt representations and gen-
eralisation ability would allow us to build a principled understanding that when refned, 
could represent the starting point of a meaningful theory of generalisation. 

Researchers have not yet managed to identify those qualities that capture generalisation 
performance. We will next review the ideas that have been explored so far. As we 
will see, many approaches focus on notions of representation geometry or robustness. 
Most of them informally relate to some of the ideas discussed in Section 4.1.2 and merely 
propose diferent ways of defning or capturing them in practice. In essence, compression 
and stability seem to be the desired qualities. 

Many good notions of learnt representations quality have emerged during the “Predicting 
Generalization in Deep Learning” competition (Jiang et al., 2021). Most of the reported 
methods directly or indirectly propose measures of learnt representation quality. We 
focus on the top three methods according to the fnal ranking of the competition and note 
in passing the solutions of other participants that published a report of their approach. 

Henceforth, we will use the term “estimator” or “predictor” for methods that are used 
to estimate or evaluate the generalisation performance of a model. Here and in the 
following section we present a number of such methods. These generally lack a strong 
theoretical justifcation and have largely been supported through empirical evaluation. 
We focus for now on the proposed estimators and discuss the evaluation settings in 
the second part of this chapter. As a general observation, it must be pointed out that 
the evaluation settings only consider limited scenarios. This, coupled with a lack of a 
standard evaluation setting and baseline, make it difcult to put the reported results in 
perspective. 

Since our initial goal was to provide a large-scale study and comparison of empirical 
estimators, we carried out initial experiments with the frst four methods outlined below. 
For this, we have implemented or reimplemented them in PyTorch where a Tensorfow 
version was publicly available. Where the code was not provided and the report did 
not clearly specify the details of the approach, we briefy discuss the design decisions we 
have made. As we will outline in the Future Work section of this chapter, these methods 
will be included in a future study. 

• The winning solution of Natekar and Sharma (2020) takes the weighted sum of 
two scores: 1. the within-cluster to between-cluster ratio for learnt representa-
tions also known as the Davies-Bouldin Index (DB Index) (Davies and Bouldin, 
1979) in the clustering literature; 2. the accuracy after performing MixUp be-
tween same-class examples. Through the DB Index, Natekar and Sharma, aim to 
quantify representation consistency. They compute all their measures on the frst 
layer representations and do not report on results computed on the other layers. 

https://sites.google.com/view/pgdl2020
https://sites.google.com/view/pgdl2020
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Nonetheless, they mention that doing so leads to weaker results for the purpose 
of the competition. Another quality of learnt representations they consider but 
do not include is class separability as measured by an approximate distribution of 
margins. They argue that margins computed on MixUp samples are more predic-
tive of generalisation than those computed on original data alone. In Section 4.2.2 
we will come back to this method and argue that it cannot capture generalisation 
at large. Just as the other distortion-based approaches, it relies on intuitions that 
do not necessarily hold outside of the competition’s evaluation setting. 

• Similar to the winning solution, Kashyap et al. (2021) secure the second place 
by applying distortions to the training samples. A method is thus penalised if it 
changes the prediction when presented with altered data as opposed to the original 
images. The image manipulations they consider are random centre crop, fip, sat-
uration change, Sobel flter application, Virtual Adversarial Perturbation (Miyato 
et al., 2018) and Random Erase (Zhong et al., 2020b) – a rectangular version of 
the CutOut augmentation. 

• The third place approach, called label variation of penultimate layer with MixUp 
(VPM) (Lassance et al., 2020), couples the separability of learnt representations 
with robustness to MixUp interpolation. Lassance et al. (2020) measure the sepa-
ration of representations using Latent Geometry Graphs, where edges are weighted 
by the level of similarity of the representations. They compute the graph on the 
training data set on which MixUp has been applied and then measure the label 
variation by summing up all the edges that connect vertices from diferent classes. 

• Schif et al. (2021) also resort to MixUp-like distortions to estimate the performance 
of neural networks. Compared to the winning solution, they evaluate the efect of 
MixUp perturbation for a range of mixing coefcients. Computing the accuracy 
along diferent perturbation intensities allows them to compute what they refer 
to as the Perturbation Response Curve. They then compute a Gini coefcient 
and a Palma ratio-inspired score. The former is given by the area between the 
cumulative Perturbation Response Curve and the curve of an idealised network 
(i.e. one that is completely robust to the MixUp perturbation). The latter is 
computed by taking the ratio of response to the largest 60% perturbations and 
lowest 10%. This is inspired by the Palma-ratio income inequality metric used in 
economics, where the income of the richest 10% of a population is divided by that 
of the poorest 40% (Palma, 2011). Schif et al. (2021) do not justify the change of 
ratio. 

• Carbonnelle and De Vleeschouwer (2020) propose four measures for the presence 
of intraclass clusters which they believe occur as implicit forms of regularisation. 
However, since most of these measures rely on the existence of hierarchical labels, 
they only propose one for predicting generalisation: the variance of pre-activations 
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for samples of the same class compared to that of all samples. The rationale is 
that distinctive features would have a high such ratio. It is important to note that 
they only consider those activation maps with the k highest variance. 

At the time of writing, Carbonnelle and De Vleeschouwer had not yet published 
their code. We are thus unsure if the original design was to compute the ratio for 
the neurons that are most activated for all classes or only those most activated 
for each individual class. However, the latter is more informative and so we chose 
to implement this variant. Therefore, we take the preactivations to be the feature 
maps after the batch normalisation layers and consider a neuron to be the entire 
feature map. For selecting the top k most activated neurons for each class, we 
collect the activations of neurons across layers and select the ones with the highest 
standard deviation. Then, using the most activated neurons for each individual 
class we compute the ratio. 

• Mežnar and Škrlj (2020) explore 7 diferent metrics and their binary combinations. 
Note that they allow a metric to negatively contribute. Some of the quantities bear 
some similarities with previously proposed measures, such as the distance to weight 
initialisation, the percentage of weights that changed more than a certain amount, 
or the margin, defned here as the percentage of instances where the predictions for 
the top two classes is greater than a threshold. More interestingly, they continue 
the training for fve more epochs using learning rates of diferent magnitudes and 
compute statistics on the models that were obtained with each learning rate. They 
then use the statistics as indicators of the generalisation performance of the source 
model. 

While we focus here on attributes explicitly linked to generalisation, we note that there 
are cases in the literature where qualities of learnt representations were informally linked 
to generalisation. One such example can be found in the work of Geirhos et al. (2019), 
who argue that increasing the amount of shape information in a network increases both 
the robustness and generalisation performance of a model. Another example is the be-
lief that maximising the margin at intermediate layers improves generalisation (Elsayed 
et al., 2018). We will introduce more such informal propositions in the following sub-
section where we discuss miscellaneous attempts which do not directly fall in any of the 
categories outlined so far. 

What are the recurring ideas? The majority of methods use data modifcation in 
their evaluation as a means of identifying and penalising overftting. This can be used 
as an informal way of measuring robustness to perturbation. Some of the methods com-

bined this notion of robustness with diferent notions of representation clustering. Going 
back to the Information Bottleneck theory perspective, the former can be interpreted 
as a crude approximation of the mutual information between the representations and 
the output variable, while the latter crudely approximates the level of compression, or 
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the information between the representations and the input variable. Therefore, at an 
intuitive level, the combination has the potential to capture a relevant phenomenon. 
However, as we will argue, the distortions considered are too limited to provide reliable 
estimations. 

How are they diferent from what has been proposed before? While the ideas 
presented here bear similarities to the concepts proposed in the literature centred around 
expressive power, they are more fexible in their defnitions. For example, they do not 
aim to mathematically defne vicinity and then measure sensitivity to perturbations 
in that strictly defned vicinity. Instead, they focus on intuitive notions of vicinity. 
Although the approaches we presented above are not well justifed, as we will argue 
later in this chapter, we believe these studies open a new avenue for research and call 
for the community to reason about robustness from a diferent perspective. 

Other Directions 

Interesting proposals for capturing generalisation have been also made in the adversarial 
robustness literature. For example, Zahavy et al. (2016) argue that the adversarial 
robustness of an ensemble of models correlates well with generalisation. To this end, 
they perform multiple runs of the same hyperparameter confguration, the only diference 
between the runs stemming from the stochasticity of the SGD optimiser. They argue 
that although individual hypotheses might be sensitive to adversarial examples, it is the 
robustness of the average hypothesis that determines the generalisation performance. 
We will encounter a similar idea in the a posteriori setting, which we discuss later in 
this section. Zahavy et al. (2016) then use this correlation to explain how the models we 
obtain in practice are generalising well despite not being adversarially robust. Note that 
this estimator does not ft the evaluation frameworks proposed so far since it strictly 
requires access to multiple runs of the same network. 

Other lines of work that have gained attention but which we do not cover in this thesis 
include those which aim to relate training dynamics to generalisation performance. A 
prominent theoretical direction is represented by Neural Tangent Kernel-based methods 
(Jacot et al., 2018). The Neural Tangent Kernel is the kernel to which an infnite-width 
neural network would converge when trained with gradient descent. It has recently been 
noted that an increasing number of Neural Tangent Kernel-based studies (e.g Adlam 
and Pennington, 2020a; Bietti and Mairal, 2019; Belkin et al., 2018) rely on the test 
data to belong within the convex hull of the training data, which is extremely rarely 
the case (Balestriero et al., 2021). Nonetheless, the Neural Tangent Kernel remains an 
interesting theoretical direction to be explored and refned further. 

On the practical side, Gutiérrez-Fandiño et al. (2021) use measures related to training 
dynamics to predict the performance of neural networks. Note once again that we are 
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interested in predicting the performance of a learnt instance, not taking into account 
the learning process for the moment. Nonetheless, we also briefy mention this direction 
for completeness. 

Learning dynamics have also attracted the attention of some empirical researchers whose 
work broadly falls in the subfeld of empirical theory of generalisation. The empirical 
theory feld aims to explain certain phenomena in deep learning rather than create a 
framework to capture the mechanism behind generalisation at large. We regard this 
subfeld as complementary to our direction and strongly believe both are necessary for 
solving the generalisation puzzle. Examples of studies in this area include those of Power 
et al. (2022), Arpit et al. (2017), and Amari et al. (2021). 

Another set of studies that aim to explain certain phenomena related to generalisation 
is represented by the “memorisation” literature. Note that “memorisation” is used 
ambivalently by the machine learning community. It is either taken to mean achieving 
zero training loss, typically on noisy data, (e.g. Dherin et al., 2021) or learning to predict 
atypical samples (e.g. Sagawa et al., 2020). Note that here atypical samples are defned 
in the same way as in Chapter 3, namely those samples that, when removed from the 
training data, lead to the misclassifcation of a sample from the test data. This is 
considered by Sagawa et al. (2020) as an indicator that the train-test pair belongs to the 
tail of the data distribution. Both memorisation scenarios pose a number of important 
questions on how models generalise and, along with all directions in empirical theory of 
generalisation, complement our perspective. 

The double descent literature is also concerned with explaining a specifc generalisa-
tion phenomenon. The term “Double Descent” was introduced by Belkin et al. (2019). 
Double Descent is illustrated in generalisation plots as a downward continuation of the 
typical U-shaped curves used to depict the complexity trade-of. Note that the gener-
alisation curve associated with this learning algorithm had been observed before (e.g. 
Opper, 1995; Engel and den Broeck, 2001) but it was made popular by the work of Belkin 
et al. (2019). To show the occurrence of the double descent, Belkin et al. performed 
ERM on two-layered networks with fxed input weights represented as Random Fourier 
Features (Rahimi and Recht, 2007). Importantly, out of the ERM subset, their learning 
algorithm chooses the hypothesis with the lowest l2 norm. Belkin et al. then plotted 
the generalisation error of the minimum-norm solution for models with an increasingly 
larger number of possible features. 

The setting that Double Descent is concerned with is not refective of the typical prac-
tical learning scenario; it is peculiar and over-regularised. More specifcally, Double 
Descent is mostly characteristic of overftting models (see Nakkiran et al. (2021); Mad-

dox et al. (2020)) and is a oddity of the learning dynamics (i.e. optimisation process) 
and choice of learning algorithm (i.e. selecting the model with minimum l2-norm) rather 
than a general observation. That is because a certain hypothesis chosen according to 
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specifc rules is not refective of the generalisation performance of the model one would 
normally expect to learn. The observation that Double Descent is a quirk of the choice 
of learning algorithm has also been recently made by Dwivedi et al. (2020) and Wilson 
and Izmailov (2020). Taking a probabilistic approach Wilson and Izmailov (2020) show 
that by marginalising over multiple predictors, the double descent curve disappears. 

For completeness, we also mention the “Efective Model Complexity” (Nakkiran et al., 
2021), another informal proposition that has not yet seen much popularity in the gener-
alisation community. Nakkiran et al. (2021) introduce an “Efective Model Complexity” 
measure when empirically studying Double Descent. This measure gives the maximum 
number of training examples such that the expected risk of a hypothesis obtained with 
a particular training procedure is smaller than a threshold. Nakkiran et al. then argue 
that it is this notion of complexity that allows them to show the existence of a Double 
Descent curve which cannot be captured by the VC dimension or Rademacher com-

plexity. However, this is not the quantity they measure in practice. It must be noted 
that this measure cannot be used to compare the complexity of two arbitrary models as 
this would depend on the learnability of the models under the same training procedure. 
Although studying learnability in an overparametrised regime could shed further light 
onto generalisation by helping the community understand overftting better, here we are 
interested in capturing generalisation performance at large. 

Motivated by the phenomena of exploding/vanishing gradient, another proposition is 
to approximate the level of nonlinearity in the network at initialisation (Philipp and 
Carbonell, 2018). Note that this difers from the setting we consider since Philipp and 
Carbonell (2018)’s approach is not concerned with a learnt model instance. It is, in a 
sense, trying to identify unfruitful initialisation states. The nonlinearity coefcient aims 
to measure the network’s output sensitivity to input distortions relative to the network’s 
overall output variability as measured by the output covariance matrix. They claim that 
the coefcient computed before training correlates well with the network’s generalisation 
performance after training. However, the empirical evaluation of this approach is very 
limited compared to other estimator proposals and does not seem to correlate sufciently 
well with generalisation on the explored settings. Note that closely related to Philipp and 
Carbonell’s measure of the level of “nonlinearity” are works that associate the number 
of linear regions in the network with its complexity (e.g. Novak et al., 2018), which we 
have mentioned in Section 4.1.2. As noted before, Novak et al. (2018) consider the a 
posteriori setting. 

Before concluding our overview, we would like to briefy explain the a posteriori setting 
in more detail and mention a number of additional works in this area. We remind the 
reader that we are interested in the evolution of proposed concepts. Thus, although 
these studies do not ft the setting we consider, the intuitions behind the approaches are 
still relevant to our work. 
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The A Posteriori Setting. The diference between a priori and a posteriori is given 
by the latter’s access to unlabeled test data at inference time. In other words, if in 
the a priori setting we aim to predict the generalisation performance of a model using 
information about the trained model instance and the labeled training data, in the a 
posteriori setting we also have access to a new set of samples for which we are not given 
the label. The target variable is the true accuracy of the model on the new set of samples. 
Therefore, the task is to estimate the accuracy of the model on input samples that we 
have access to. This problem should be easier than the a priori one since we do not 
have to estimate the population test accuracy, but instead that on specifc instances. 
We could, in theory, measure the distribution distance between the training and test 
samples. As we will discuss in Chapter 5, in practice this is not as straightforward. 

Note that this setting can have practical relevance if we see it as a way of guaranteeing 
performance on newly acquired data. For example, we could train a model and validate it 
on held-out data but ultimately we are interested in classifying unlabeled data. Finding a 
solution for the a posteriori setting would give us a tool that can tell when the predictions 
on the newly acquired data cannot be trusted. We will next present some a posteriori 
estimators. 

In Chapter 1 we mentioned that raw generalisation error is not all one cares about in 
practice when evaluating the quality of a learnt model instance. Model calibration mea-

sures how well the confdence of the model aligns with the expected accuracy (Niculescu-
Mizil and Caruana, 2005; Guo et al., 2017). Although initially not linked to generalisa-
tion, recent work aims to connect a small generalisation gap to good calibration (Carrell 
et al., 2022). Similarly, Jiang et al. (2022) train an ensemble of models using the same 
training procedure for all models, but diferent random seeds. Therefore the diference 
between models stems from the randomness of the SGD optimiser, the order in which 
the data is presented, and the initialisation point. They then look at the rate of disagree-
ment, also referred to as predictive churn (Bahri and Jiang, 2021). It has been claimed 
that the rate of disagreement closely tracks the generalisation performance (Nakkiran 
and Bansal, 2020). Jiang et al. (2022) build on this notion and argue that the generali-
sation performance can be predicted based on models’ rate of disagreement on unlabeled 
test data, provided that the model ensemble is well-calibrated. They then go further 
and argue that the rate of disagreement can also help predict models’ performance when 
varying batch or network size, therefore refecting even small changes in the network. 
However, the calibration assumption might be too strong in the case of modern deep 
networks (Guo et al., 2017). Jiang et al. (2022) do not compare their method against 
other empirical estimators, and theoretical concerns with respect to their approach have 
been raised (Kirsch and Gal, 2022). 

In a similar vein, Morcos et al. (2018) performed a small-scale study to argue higher 
representation similarity among generalising models as opposed to their overftting coun-
terparts. They refer to the latter as “memorising” networks, which were trained on 
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randomised labels. In their study, they trained multiple models starting from diferent 
initialisations. They computed a similarity measure at each layer and notice diferent 
behaviours between generalising and overftting networks at late layers. It is important 
to notice that the similarity level at the softmax layer is the same for the two types 
of networks when analysed on training data. It is only on test data that this measure 
becomes discriminative. While such a method could constitute a good a posteriori eval-
uator, it has a signifcantly higher computational cost than simple churn. Therefore, 
the question of whether it is more indicative than churn arises. We also note that this 
approach has not been empirically compared against other estimators. 

Finally, a few studies have tried to train linear predictors in order to estimate the 
generalisation performance of models. The frst such approach is that of Deng and Zheng 
(2021), who use the Fréchet Distance between the train and test data representations 
to predict the test accuracy. Note that the distance is computed on the feature maps 
obtained in the penultimate layer of the network evaluated. Similarly, Deng et al. 
(2021) aim to predict the generalisation performance of a network by evaluating it on 
the side task of recognising the angle at which images were rotated. To do this, they 
train networks on two simultaneous tasks, the standard task where the network predicts 
the class each image belongs to, and a rotation classifcation task where the network 
is trained to predict the angle at which the image was rotated, choosing between four 
diferent possible angles of rotation. They report a linear correlation between a network’s 
ability to identify the angle of rotation of an image and its ability to correctly classify 
that image. Note that this approach is more restrictive than that of Deng and Zheng 
(2021) as it requires training on an additional task. 

The methods proposed by Deng and Zheng (2021) and Deng et al. (2021) have little 
theoretical justifcation and have not been evaluated in large-scale settings with varied 
scenarios. They, however, propose a possibly simpler approach to understanding gener-
alisation which is to train a model to learn from the “generalisation data”, a meta data 
set. We argue that it is conceivable that none of the proposals in this chapter captures 
generalisation performance entirely, and one might have to consider combinations of 
these estimators. We believe that once a number of good individual estimators founded 
on solid intuitions are proposed, one could resort to such a meta data set to further 
understand the intricate mechanism behind generalisation. We will come back to this 
idea in the Future Work section of this chapter. 

Summary 

There is a great variety in modern approaches to capturing generalisation. We believe 
studying their evolution is important for understanding how ideas came to be and what 
they are fundamentally trying to model. An interesting evolution, for example, can be 
observed in the case of weight norm. As we have seen, the idea of norm started with 
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having a very close link to the notion of margin, as was the case for SVM classifers. It was 
much later translated to deep convolutional networks, resulting in increasingly complex 
notions of weight norm at diferent layers, units, or even norm of the weight distance from 
initialisation, as well as various combinations of the aforementioned quantities. It might 
be difcult to understand their essence if we take the resulting complex combinations in 
isolation. However, we believe understanding their history makes these concepts more 
tangible. 

Consequently, we believe that our overview can help the community abstract away from 
the exact techniques of each direction and gain a better high-level perspective. We hope 
that this will encourage researchers to refect on the direction of generalisation studies. 
We believe our work can help future researchers avoid unknowingly taking already ex-
plored paths, especially since many directions are based on the same fundamental ideas. 
For example, separability ultimately aims to quantify how close the network’s decision 
boundaries are to the training samples. We have seen above that separability can be 
linked to sensitivity, which can be linked to robustness and stability, which in turn can 
be related to properties of the loss landscape. Therefore, many directions try to capture 
the same notions from diferent angles, using other defnitions and tools. The inherent 
problem is that it is difcult to reason about and capture the essence of this idea in 
the dauntingly high dimensional spaces we are concerned with. Additionally, the focus 
until recently was on using these notions to bound complexity, which we see as one of the 
reasons why the feld has not yet managed to correlate good notions of separability with 
generalisation performance. As we have mentioned before, bounding generalisation re-
mains an important pursuit but the feld’s understanding is still too limited for creating 
bounds that are relevant in practice. 

As alluded to in Section 4.1.5, we believe the idea of separability, which is behind the 
above directions is promising and should be explored further. Using the language of 
robustness, we believe the key to achieving in-distribution generalisation is not robust-
ness to any type of distortion but rather to those that are “meaningful” or “natural”. 
Therefore, although separability is ultimately desirable in all directions in the represen-
tational space, it is sufcient to be well separated in the directions that matter. We will 
come back to this idea in Section 4.3, where we discuss future work. 

Lastly, we have seen that the feld is starting to search for notions that correlate well 
with generalisation performance. We believe the main limitation is that the notions that 
have been proposed are rather unfounded, and their empirical evaluations are limited. 
There is no large-scale study that evaluates measures from all the directions we have 
reviewed. Therefore it is difcult to get a clear image of how each estimator performs 
with respect to all other methods. To get a partial idea, throughout Section 4.1.1 we 
reviewed and outlined the fndings of the existing comparative studies. However, as we 
will see next, these comparative studies are still limited in the number of settings they 
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consider. Therefore it is possible that the above fndings do not refect the real ability 
of estimators to capture generalisation. 

4.2 Evaluating Empirical Estimators 

In the previous section we have seen the accelerated emergence of empirical general-
isation estimators over the past three years. The rampant evolution of the feld im-

mediately calls for establishing the validity of such estimators. The frst attempt to 
evaluate quantities relating to generalisation goes back to the complexity-focused lit-
erature of bounding approaches (Jiang et al., 2020). In this context, three possible 
ways of evaluating complexity measures have been considered: comparing the tightness 
of the obtained bound, using the notion of complexity as an explicit regulariser when 
training, or determining the correlation between the complexity measure and empirical 
generalisation performance. 

The former does not have an equivalent in the context of empirical estimators and we 
are therefore left with two possible approaches. Jiang et al. (2020) argues that explicitly 
regularising complexity is more problematic since regularisers change the optimisation 
problem, possibly increasing its difculty. Moreover, it could be hard to diferentiate 
between the regularising efect of the measure and the implicit regularisation of the opti-
miser. Although when measuring correlation with generalisation, one could accidentally 
capture spurious correlations, Jiang et al. (2020) chose this option, which became the 
norm in empirical generalisation studies. 

In this thesis we also chose to evaluate the correlation with empirical generalisation 
performance. To do so, one must evaluate the performance of the estimator on a large 
number of models. This creates a meta problem with an associated data set. In its 
simplest form, the input variable is represented by the learnt model instance, the data 
samples the model was trained on, and any additional variables we want to consider 
(e.g. details about the training procedure, initialisation point, or even unlabeled test 
data). The target variable is given by the test accuracy. To diferentiate between the 
data sets on which models are trained and the data set consisting of model instances 
and their generalisation performance, we call the latter the generalisation data set. 

There is no set standard for how these generalisation data sets are constructed, with 
each study defning its own points of interest and constraints. For example, some might 
only consider as input the model instance and the training samples while others provide 
more details. Some studies aim to predict the performance of a learnt model instance 
while others turn the problem into a comparative one: given two model instances, can 
an estimator rank the generalisation performance of the two models? Naturally, this 
slightly changes the structure of the data set and the evaluation criteria. Some studies 
consider a variety of learning scenarios while others are very limited. 
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We argue for a well-considered and unifed analysis and identify a number of limitations 
of the prior art. Particularly, we highlight important learning settings that are being 
neglected. Ideally, we would employ our arsenal of trained models used in this thesis so 
far to show that estimators which were found by previous large-scale comparison studies 
to correlate well with generalisation would perform poorly in the scenarios we describe. 
This, however, is infeasible due to the very specifc evaluation criteria set by previous 
comparison studies. We will discuss the criteria in detail in Section 4.2.2 and only 
note for the moment that it implies systematically changing each hyperparameter value. 
The reason behind choosing such criteria was to try to rule out spurious correlations. 
The implication is that we can only argue the importance of additional scenarios in an 
informal manner, with no experiments to support our claims. We leave these as future 
work that would build on the setting we propose. 

Systematic Changes or a Variety of Scenarios? Ideally, one would create an eval-
uation setting that systematically varies all hyperparameters in an exhaustive variety 
of settings. Given the current level of computing power, this is infeasible and we are 
therefore faced with a tradeof. So far, the balance has been in favour of systematic 
changes of hyperparameter values. This, we argue, has led to overoptimistic evaluations 
caused by the limited pool of scenarios. We, therefore, argue that increasing the num-

ber of considered settings is necessary for getting a more accurate picture. Coupling 
the newly proposed scenarios with systematic changes would signifcantly scale up the 
size of the generalisation data set. The societal issue associated with this is the huge 
environmental cost of validating approaches on such a computationally-intensive data 
set. Moreover, a practical limitation is storing and making publicly available a very 
large number of trained models. For this reason, we argue that the community must 
focus frst on identifying those estimates that perform well in a variety of settings. We 
argue for this approach since we believe it is easier to mistakenly design an estimator 
that is predictive of generalisation in a very limited number of scenarios than one that 
spuriously correlates with generalisation in a great variety of scenarios. 

Why Estimate the Test Accuracy? In the previous chapter we went from bounding 
the generalisation performance of models, which has the clear goal of providing guaran-
tees, to empirically estimating generalisation. So far we have broadly argued for practical 
experimentation as a way to build stronger intuitions. But why would estimating the 
test accuracy be the way forward? The hope is that predicting the test accuracy would 
allow researchers to get a better sense of what is important for generalisation and what 
is not. In other words, the idea is to identify notions that correlate well with general-
isation in practice. Studying then those notions and formalising them would hopefully 
lead to better generalisation theories. 

Why Would This Be Any More Fruitful Than What Has Been Attempted So 
Far? During one of the conversations with other researchers, were asked the following 
question: “People have been working on this problem for a long time. Why do you 
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think you are going to solve this problem?”. Our answer is that we do not necessarily 
believe in an individual breakthrough but rather in an iterative efort of the community. 
The research in this area is rapidly growing and we believe with each contribution the 
community as a whole is one step further to understanding generalisation. But we 
believe that it is important for the researchers working in the various subfelds to be 
aware of the direction in which the feld as a whole is headed. We therefore aim to 
provide this unifed understanding and help researchers refect on the bigger picture 
while proposing a new vision for the future of the feld. We believe that in order to solve 
the generalisation puzzle, the feld needs to make a coordinated efort through sustained 
collaboration, rigorous scrutiny of prior contributions, and a good understanding of 
the concepts already explored. We believe these are currently missing. This is, in 
our opinion, an important limitation of the generalisation community that must be 
addressed. 

For this reason, we aim to build a publicly available generalisation data set and appeal 
to the wider machine learning community to help extend it and, through time, expand 
it to include more challenging settings. Moreover, we aim to publish our overview of the 
decades-long research done in the generalisation feld to make it easier for the community 
to make informed contributions. We also advocate for transparent assumptions and a 
more meticulous evaluation of proposed approaches. Therefore, our goal is not to be the 
individuals that solve the generalisation puzzle, but rather to be part of the community 
that has done so. 

We will next go through the design choices of previous studies which we will draw 
inspiration from. We highlight the strengths and limitations of each one. Supporting our 
view using conceptual arguments, we then design a new setting for evaluating empirical 
estimators of generalisation. 

4.2.1 A Brief Overview of Prior Evaluations 

In this section we go back to some of the approaches introduced in Section 4.1.5. More 
precisely, we discuss the evaluation setting of those approaches that empirically evaluated 
estimators. Note that while Section 4.1.5 discussed how these estimators relate to each 
other, here we are only concerned with the design choices of their evaluation. 

We focus on the evaluation part of two types of studies: those that aim to provide large-
scale comparisons of already proposed methods; and, those that propose new estimators 
and aim to bring empirical evidence in support of their individual success. We discuss 
details such as the data sets and augmentations considered, the architectures, and the 
hyperparameter choices. We aim to highlight unique decisions made by each study where 
these exist. 
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Individual Studies 

Most of the works that solely aim to empirically support their proposed bound or estima-

tor tend to be very limited in scope. They all claim to fnd a correlation between their 
respective estimators and generalisation performance. Among early attempts, Arora 
et al. (2018) visually analyse the correlation between their bound and the test error of a 
single network. One remarkable diference is that they plot the error and the computed 
bound at diferent points throughout the learning trajectory. Likewise, Neyshabur et al. 
(2019) plot the generalisation performance of a two-layer network and the evolution of 
their complexity measures for an increasing number of hidden units. A similar visual 
analysis is carried out by Liang et al. (2019) in a label randomisation context. Liang 
et al. (2019) consider 9 width values, while Neyshabur et al. (2019) look at the correla-
tion for 8 width sizes. They do not vary any other hyperparameters. Neyshabur et al. 
(2019), however, repeat the plot for a ResNet architecture and consider more data sets 
(CIFAR-10/100 and SVHN (Netzer et al., 2011)). Nonetheless, this type of evaluation 
is insufcient for the empirical justifcation of the estimators. 

Later attempts have aimed to investigate generalisation in broader settings. A frst ex-
ample is that of Philipp and Carbonell (2018) who study fully connected networks. They 
vary the size of the network, the activation function used as well as the presence, loca-
tion, and strength of skip connections. They also experiment with either batch (Iofe and 
Szegedy, 2015) or layer normalisation (Ba et al., 2016). The vision data sets they con-
sider are MNIST and CIFAR-10, alongside the Waveform data set (Breiman et al., 1984). 
Interestingly, for each network confguration they consider 40 learning rate regimes and 
only select the best performing one for constructing their generalisation data set. SGD 
is the only optimiser they use. Out of all the empirical evaluations we present, Philipp 
and Carbonell’s has the highest variety of activation functions, with eight diferent op-
tions considered. This design choice is justifed by the intuition behind the estimator 
they propose, which is to measure the level of nonlinearity in the network based on the 
activation regions in the network. 

Morcos et al. (2018) focus on studying the efect of the learning rate. To this end, they 
train 200 diferent networks where the learning rate was varied. The vision data set 
they chose to experiment with is CIFAR-10 and they have only considered the Adam 
optimiser. 

Gutiérrez-Fandiño et al. (2021)’s estimator requires the representations to belong to a 
fully connected layer. Nonetheless, apart from purely fully connected architecture, they 
experiment with pretrained Convolutional Neural Networks on top of which they train 
a Multilayer Perceptron and use its representations for evaluation purposes. Gutiérrez-

Fandiño et al. vary the number of units per layer, but not the number of layers. They 
consider 5 diferent learning rates and 5 diferent Dropout (Srivastava et al., 2014) prob-
abilities but fx the batch size. Most notably, they experiment with modifying the data 
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sets by removing classes altogether. However, they do not motivate this choice, nor do 
they provide a separate analysis for this case. 

Jiang et al. (2022) evaluate their estimator on ResNet, simple Convolutional Neural 
Networks, and fully connected models trained until close to zero training loss is achieved 
on the CIFAR-10/100 and SVHN data sets. They consider a number of diferent batch 
sizes and network confgurations, as well as diferent weight decay regimes. The optimiser 
used is SGD. Jiang et al. (2022) also use data augmentation without specifying the exact 
augmentation applied. They similarly vary the size of the training set but do not mention 
the details. Lastly, they report results on some out-of-distribution settings. 

Carbonnelle and De Vleeschouwer (2020) consider CIFAR-10/100 and the 20-classes 
version of CIFAR-100, training Wide ResNets and VGGs models on them. They vary 
the network size, the learning rate, batch size, the level of weight decay, and Dropout 
probability. They also consider the Adam optimiser alongside SGD, which few of the 
individual studies do. 

Comparative Studies 

One of the frst studies that is not concerned with a single estimator is that of Novak 
et al. (2018). In their evaluation they only considered the CIFAR-10 and CIFAR-100 
data sets. Just like some of the individual studies, they vary hyperparameters such as 
learning rate, batch size, and network size. Importantly, they consider image translation 
and fip as augmentations, as well as label randomisation. 

Subsequently, Jiang et al. (2020) proposed the frst large-scale comparison of generali-
sation measures, which became the backbone of most ulterior comparative studies. It 
represents a valuable contribution to the community not only through the scientifc fnd-
ings but most importantly by the standard of evaluation they set. In particular, they 
aim to design an evaluation metric that would allow them to rule out misleading cor-
relations between estimators and generalisation. This implies training a large number 
of models by systematically changing a chosen set of parameters. Thus, in a sense, the 
focus falls on the relationship between generalisation and various hyperparameters. 

Jiang et al. (2020) train their fully connected models on CIFAR-10 and only present some 
results on SVHN in their supplementary material. They consider 3 diferent values for 
the weight decay, network width and depth, batch size, learning rate, Dropout fraction, 
and optimiser and train models with all combinations of values. They optimise the 
cross-entropy loss until it reaches a near-zero value of 10−3 . 

We see their decision to only include models that reach a close to zero training loss as 
one of the main limitations of the experiment conducted by Jiang et al. (2020). As we 
will argue in Section 4.2.2, this is highly constrictive and fails to capture a wide range 
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of phenomena in machine learning. Similarly to us, Vakanski and Xian (2021) argue 
that studying measures in a zero-training loss regime only is not refective of practical 
settings. The limitation of this regime is also noted by Carbonnelle and De Vleeschouwer 
(2020). 

Another direction that was not included in Jiang et al. (2020)’s analysis is data variation. 
The one case they consider, but do not experiment with, is label randomisation. They 
argue that altering labels could be misleading since this is not a typically encountered 
situation in practical settings. We agree that this is true for extreme cases of label ran-
domisation. However, one could expect the data collected in practice to be signifcantly 
noisier than the standard vision data sets. For this reason we believe models should 
also be evaluated under mild label randomisation when the data set in case is known 
to be well-curated. Nonetheless, we argue that one can include many other scenarios of 
data modifcation when evaluating models. Most studies do not investigate this area or 
consider only a limited setting. 

Jiang et al. (2020)’s work has inspired a number of subsequent studies, one of which 
is that of Vakanski and Xian (2021). They focus on generalisation for medical image 
predictors and aim to incorporate more architectures, data sets, optimisers, etc., than 
previous studies. Some of the challenges of the medical imaging setting are the small 
size of the data sets and the large image resolution. An important attribute of the data 
Vakanski and Xian consider is that the images were collected in diferent conditions and 
on varied populations. This makes it a good candidate for evaluating models in an out-
of-distribution scenario. Although such a targeted study highlights that the superiority 
of a generalisation method is dependent on the type of problem being addressed, we 
believe an evaluation of the like is insufcient for drawing more general conclusions. 
Some of the limitations of Vakanski and Xian’s study are that only two data sets are 
considered, the evaluated measures are exclusively complexity-based and no form of 
regularisation is used. 

A highly rigorous evaluation of predictors can be found in the work of Dziugaite et al. 
(2020). However, we believe the rigour made it difcult for Dziugaite et al. (2020) to 
explore more settings and data sets. Just like Jiang et al. (2020), they were limited to 
the CIFAR-10 and SVHN data sets. Apart from the choice of data set, they vary 4 
hyperparameters: the learning rate, model width and depth, and the training set size. 
For optimisation they only consider SGD with fxed momentum, do not use weight decay, 
and do not change the learning rate throughout training. Dziugaite et al. and Jiang 
et al. made use of architectures that do not refect the types of architectures commonly 
used in the feld. This is due to the complexity measures they evaluate, which either 
quickly become infeasible or are not properly defned for models with skip connections. 

Although atypical, another piece of work inspired by Jiang et al. (2020) that deserves 
mentioning is the “Predicting Generalization in Deep Learning” (PGDL) contest (Jiang 

https://sites.google.com/view/pgdl2020
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et al., 2021) from which many new estimators have emerged. This contest closely follows 
the methodology established in Jiang et al. (2020) and, in our opinion, provides a good 
platform for initial evaluations. 

Jiang et al. (2021) train VGG-like and fully connected networks until close to zero 
training loss is achieved. Note that they do not consider networks with skip connections. 
The data sets included in their study are CIFAR-10, SVHN, CINIC-10 (Darlow et al., 
2018), Oxford Flowers (Nilsback and Zisserman, 2008), Oxford Pets (Parkhi et al., 2012) 
and Fashion-MNIST. For each data set, they vary the size of the network, the weight 
decay, batch size, and Dropout rate. Just as we are intending to do, Jiang et al. (2021) 
make their data set publicly available, facilitating the community’s ability to empirically 
validate generalisation estimators. 

It must be noted, however, that this approach to understating generalisation has also 
received criticism. In particular, Martin and Mahoney (2021) argue that such compe-

titions provide a distorted image of estimators’ performance. In their view, it is most 
often the case that good solutions often get outshined by solutions that are specifcally 
tailored to win in the fxed setting of the competition. Thus, Martin and Mahoney aim 
to more closely analyse the methods proposed. They only study measures concerned 
with the norm and shape of the learnt model instance weights. They argue that no met-

ric can fully describe the generalisation performance and that researchers should rather 
seek a combined approach. 

We agree with Martin and Mahoney that having a fxed generalisation data set could 
lead to the emergence of estimators that “overft” to the considered setting. By the 
nature of Jiang et al. (2021)’s study, a thorough justifcation for the proposed methods 
was not relevant. As such, retrospectively, the winning solutions could seem to lack 
soundness in places, as we will discuss later. However, we also believe they deserve 
attention. This is not only to highlight their limitations but also to understand their 
strengths and exploit them further. 

Importantly, Martin and Mahoney also criticise the use of augmentation for the purpose 
of the experiment, this being seen as an attempt to artifcially get better results. While 
this could be true of many competitions, we believe in this case Martin and Mahoney 
omitted the power of data manipulation to capture learnt representations’ quality which 
we see as an important direction for future research. 

Martin et al. (2021) follow up on Martin and Mahoney (2021)’s work. In their exper-
iments, Martin et al. (2021) used 17 diferent architectures. The main data sets they 
train on are a reduced version of ImageNet, CIFAR-10/100, and SVHN. We could not 
fnd details on their choice of hyperparameters such as optimiser or learning rate. One 
unique design choice is not to use the training data when estimating the generalisation 
performance. We will come back to this decision later in this chapter. 
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Summarising, the key quality of previous comparative studies lies in the extensive num-

ber of models they consider and in the systematic evaluation under very specifc param-

eter changes. Important limitations include the stringent nature of the ERM setting and 
the restricted pool of architecture types. To these, we add the lack of data variations 
and little diversity in the learnt representations. Moreover, to the best of our knowledge, 
there is no large-scale study that analyses newly proposed measures that go beyond the 
notion of complexity. This motivates the following section where we take the frst steps 
towards such a study. We discuss the setting we choose for the study that will be part 
of future work. 

4.2.2 Our Proposed Setting 

In the future we aim to create an up-to-date study that evaluates the new directions 
in generalisation prediction while arguing for the consideration of a broader setting 
than has been achieved currently. Importantly, note that although we started creating a 
generalisation data set, this is mostly left as future work. Therefore, this section presents 
a draft of the proposed design, not the details of a fully-built data set. 

We propose to vary the hyperparameters very little, both because this has been thor-
oughly discussed in previous studies and because saving computation allows us to explore 
other important aspects of generalisation. Our focus is on having a large variety of learnt 
representations through modifying the training data. Thus, central to our work is the 
relationship between data and generalisation. As such, our proposed setting does not 
aim to replace existing studies but rather to complement them. Below, we detail and 
justify each design choice, positioning our future work with respect to prior art. In our 
vision, one could use our proposed setting as a way to flter out those estimators that 
do not refect changes in the data well. The remaining estimators could subsequently 
be evaluated on the data set proposed by Jiang et al. (2021). 

Assumptions About the Data and Hyperparameters Availability 

Most a priori estimator evaluation studies assume the learnt model instance and the 
training data are provided. One of the exceptions is the work of Martin et al. (2021), 
who analyse pretrained models assuming that neither train nor test data is provided 
and that no information about the training process or hyperparameters used is made 
available. Martin et al. aim to replicate the case where the model user does not coincide 
with the model developer. This setting is interesting but we believe it is too stringent 
especially given how poorly generalisation is understood. As we have argued throughout 
the thesis, we believe integrating the data is a crucial step in furthering the understanding 
of generalisation and since there is no universally good solution, one must consider the 
problem of interest. 
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The estimators we have discussed do not make use of the choice of hyperparameters 
or initialisation state when predicting the generalisation performance of models. The 
exceptions are those which, in one way or another, account for the training dynamics. 
Although we have explicitly excluded these from our setting, there is a question related to 
the future scalability of generalisation data sets. Our take on this is that not including 
the initialisation state and training hyperparameters would allow the community to 
make use of a variety of publicly available pretrained models, signifcantly reducing the 
computational cost of building such a data set. In this sense, we have developed a 
script that makes models trained by Jiang et al. (2021) for the purpose of the Predicting 
Generalisation in Deep Learning competition compatible with PyTorch code, such that 
we can more easily access a wide pool of already pretrained models. 

At the same time we appeal to the wider machine learning community to store details 
about their hyperparameter choices, training procedure, initialisation state, etc., and 
make them publicly available alongside the pretrained models. This would allow us 
to expand generalisation data sets in the future so as to account for dynamics-centred 
approaches as well, as these could play a role in solving the generalisation puzzle. 

Types of Estimators Considered 

The assumptions about what information is available implicitly restrict the type of 
predictors we can consider. Naturally, an initial study would exclude all estimators that 
need more information than the learnt model instance and the training data. The hope 
is that a collective community efort to gather complete information for a large number 
of models would allow us to expand the scope of the study. 

No large-scale comparisons have yet been conducted on measures that move away from 
classical notions of generalisation. The closest such comparison is the Predicting Gener-

alisation in Deep Learning competition, although it only includes those methods which 
were submitted to the competition and does not provide an in-depth follow-up anal-
ysis. Given both the extensive coverage of complexity-based measures as well as the 
reported success of the non-complexity approaches, we choose to primarily focus on cre-
ating a data set for evaluating the latter. Since they are generally less computationally 
intensive, the immediate implication is that we can extend the experiments to include 
architectures commonly used in practice. 

Architectures 

As highlighted in the overview, previous studies have mostly trained simplistic models, 
with no skip connections or reduced number of parameters (e.g. small-scale versions 
of the VGG network). This is mostly because at the time when the evaluations were 
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proposed, most empirical predictors could not be computed for the types of architectures 
that were achieving state-of-the-art results. Our proposal is to construct, in a data-
centric way, two subsets of the generalisation data set. One that is compatible with early 
proposals, and a second one, which incorporates the most recent advances in machine 
learning architectures. 

One exception among prior studies can be found in the work of Martin et al. who, like 
us, aim to also incorporate ResNets, full-sized VGGs, and DenseNets (Huang et al., 
2017). To these, we also add BagNets, since the small receptive feld restricts the 
model to learn more localised features. This brings further diversity in the types of 
learnt representations included in the study. Importantly, we believe more up-to-date 
architectures must be included, in particular transformer models, which are currently 
achieving state-of-the-art results in vision applications (e.g. Dosovitskiy et al., 2021; Yu 
et al., 2022) as well as large convolutional networks such as PyramidNet (Han et al., 
2017b), GoogLeNet (Szegedy et al., 2015), large-kernel models (e.g. Ding et al., 2022). 

We remind the reader that the intent is to provide an evaluation where the focus is on 
the relationship between data modifcation and generalisation performance. This would 
be followed up by the hyperparameter-centric evaluation of Jiang et al. (2021) for which 
we would use the already trained models made publicly available. To make the transition 
between the two scenarios less abrupt, we will choose a small number of architectures 
used in Jiang et al. (2021)’s study and train models under various data-centric scenarios. 
Note that we would generally fx a hyperparameter setting and only modify the data. 
For each architecture we plan to base the hyperparameter settings on values that are 
reported in the literature to lead to good generalisation. We will discuss hyperparameter 
settings later in this chapter. 

We remind the reader that most prior studies trained their models for a very large 
number of epochs or until close to zero loss was achieved. Before discussing how we 
train the architectures we chose, we make an observation about the setting typically 
adopted by generalisation studies. 

To What Extent Is Replicating ERM Relevant? 

The context in which the zero-loss setting was proposed is necessary for understanding 
why it is restrictive when aiming to fnd estimators that are relevant in practice. The 
Empirical Risk Minimisation setting is fundamental for providing guarantees in classical 
statistical learning without making further assumptions about the data distribution. 
The early empirical estimators sought tight links with theoretical generalisation bounds 
since this is the literature they have evolved from. For this reason, the zero training 
loss regime was a natural setting to study. More recent approaches are not concerned 
with bounds anymore but rather, as we argue, with building an initial understanding 
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based on practical experimentation. We believe the accent must fall on verifying the 
estimators in scenarios that are likely to occur in practice. Although one can train to 
zero training loss, this is not necessary, especially in non-standardised data sets. 

Real-world data sets are bound to have mislabelled data. Even the standard data sets 
used in computer vision are known to contain incorrect data samples. Learning the in-
correct train data automatically leads to choosing suboptimal hypotheses. More specif-
cally, it turns the study into an overftting regime study. Thus, forcing all the models to 
achieve zero loss captures only a specifc part of the generalisation spectrum, whereas we 
would like to be able to predict the generalisation performance of any model instance. 

This is not the only limitation of the zero-loss setting. Jiang et al. (2020) fnd that 
data augmentation makes it difcult to reach zero loss and choose to not use data 
augmentation in their study. This is only one example of how training in this regime 
restricts the types of learning scenarios one can explore. We therefore do not aim to 
train our models in this regime. 

Loss Function, Optimisers, Learning Rate, and Other Hyperparameters 

As mentioned in the introduction of Section 4.2, there exists a generalisation data set 
with systematic parameter changes and therefore we focus instead on changes to the 
data. Nonetheless, the data set we intend to create as part of future work should also 
consider a variety of hyperparameters. Part of the variety will arise naturally since to 
reduce our carbon footprint we aim to include as many pretrained models made publicly 
available as possible. Such models are published by a variety of authors, each with their 
own training procedure, typically optimised for achieving generalisation on particular 
data sets. 

Additionally, we aim to train new models specifcally for constructing the generalisation 
data set. Since the objective is to couple our evaluation with that of Jiang et al. (2021), 
for those architectures and data sets that both them and us consider, we will replicate 
roughly half of their settings while the other half will be used to explore new parameter 
confgurations. This is to ensure variety in data-centric scenarios both within similar 
settings and outside of them. The precise values used will be determined when building 
the data set. 

Note that although we plan to vary the hyperparameters, we will not generate a large 
body of models where a single hyperparameter value difers between them. Our aim is 
to encompass a high variety of fnal learnt representations with a focus on variations 
caused by changes in the data. The long-term vision, as we will outline in Section 4.3, 
is to create a much broader study that can evaluate models which use hyperparameter 
information. Therefore, where known, we plan to document and store information about 
the hyperparameters for this initial phase as well. 
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Unlike prior studies, we also aim to train models with a variety of loss functions. Studies 
such as that of Kornblith et al. (2021) and Müller et al. (2019) show that the choice 
of loss function impacts the learnt representations. Therefore, apart from the cross-
entropy loss, we aim to experiment with both classical losses such as the mean squared 
error or hinge loss, as well as techniques designed to improve calibration such as focal 
loss (Mukhoti et al., 2020) or label smoothing (Szegedy et al., 2016). 

Estimators that depend on the learning trajectory are outside the scope of our study. 
However, it would be interesting to evaluate estimators on instances “sampled” along 
that trajectory. For example, when training a model for 250 epochs, we could save model 
instances at the 100th and 200th epoch as well. Note that this is diferent from varying 
the number of epochs since in that case one starts from another initial state with each 
experiment. We believe it could be interesting to see if estimators could diferentiate 
between the generalisation ability of two points along the training path. It must be 
noted that in order to then understand what the estimator can capture in this case, we 
would need to incorporate information about the training process, such as changes in 
learning rate, to be used for the analysis step. Therefore, although the estimators we 
evaluate do not use hyperparameter details, the information could be useful for better 
understanding the results obtained on the generalisation data set. 

As mentioned in the introduction of Section 4.2, one of our main proposals is to obtain a 
large number of models which vary in their learnt representations. Although of primary 
interest are generalising models, we believe that it is important to aim for variety in 
learnt representations for models belonging to a wider spectrum on the underftting– 
overftting scale. This brings to the discussion the problem of randomising labels so as 
to force models to learn spurious rules, a commonly considered practice, especially in 
the memorisation literature. 

Label Randomisation 

Jiang et al. (2020) criticise the use of random labels for evaluating generalisation per-
formance claiming that this leads to conclusions that are not representative of what 
one observes in practice. We do not entirely agree with this argument since it is often 
the case that real-world data is not perfectly labelled. However, Jiang et al.’s claim is 
justifed considering that the metrics they evaluate stem from the bonding literature, 
which is centred around ERM. As discussed earlier, the choice of loss function impacts 
the learnt representations, with cross-entropy being known to lead to overconfdent pre-
dictions (Müller et al., 2019; Guo et al., 2017). Thus the setting automatically becomes 
one of being infuenced by the peculiarities of the chosen loss function. In such a case, 
randomising labels only exacerbates the level of overftting. 
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Thus, we advocate for including the label noise scenario outside the zero-loss regime. 
Although both introducing label noise and testing until zero loss is reached lead to an 
overftting regime, the learning dynamics are diferent and, as a result, the learnt repre-
sentations are diferent, and we believe both must be studied. Thus, to avoid extreme 
overftting we only perturb small percentages of labels for models trained for a moder-

ate number of epochs. Note that the estimator and generalisation performance will be 
computed on the original data so that there is no distribution shift when evaluating the 
estimator. As we will detail later on, our generalisation data set will contain a number of 
separate, more difcult scenarios for researchers to experiment with. Given the disputed 
nature of the label randomisation scenario, we believe estimator’s performance on this 
task should also be evaluated separately. 

Regularisers 

In practical scenarios it is common to rely on implicit or explicit forms of regularisation. 
Prior comparative studies typically treat regularisers as part of the ablatable parameters, 
considering weight decay or Dropout most often. As we have seen in Section 3.4.1.1, 
the frequently used method of mixed augmentation increases the complexity of the 
data, acting as a regulariser. Viewing data modifcation as a form of regularisation is 
important for the scope of the study. 

Going back to the core assumption of many generalisation studies that the data is i.i.d., 
one could argue that modifying the training data violates this assumption. However, the 
estimators are computed on the original training data. The modifcations are used merely 
for the training phase and, therefore, can be seen as another form of regularisation. As 
previously mentioned, in this study we are interested in capturing generalisation in its 
wider sense. For this reason, we strive to include overftting as well as underftting 
models and regularisers can help achieve this. 

The complexity of the problem can more generally be altered through multiple forms 
of data modifcation, not necessarily augmentation. We next discuss the data sets and 
alterations we consider. 

Data Sets 

As mentioned in the frst part of the thesis, we are strictly interested in evaluating 
computer vision models. This is the most commonly considered type of task in empirical 
generalisation studies. We aim to incorporate a wider variety of data sets than previously 
considered by each individual study. In particular, we aim to look at all the publicly 
available data sets evaluated in the studies we review. Namely, we include CIFAR-
10/20/100 (Krizhevsky et al., 2009), Fashion MNIST (Xiao et al., 2017), SVHN (Netzer 
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et al., 2011), Oxford Pets (Parkhi et al., 2012), Oxford Flowers (Nilsback and Zisserman, 
2008), CINIC-10. To these, we add Tiny ImageNet (Karpathy et al., n.d.), Bengali 
grapheme classifcation (Alam et al., 2021). Details on these data sets can be found in 
Section F. The major modifcation we propose compared to previous studies is altering 
the data, which we introduce below. 

Varying the Structure of the Data Set 

In this thesis we look at two types of data alterations: we can either modify individual 
instances according to some rule, or we can modify the number of classes or instances 
available. We refer to the latter as modifying the data set “structure”. 

We aim to experiment with changing the number of classes of a problem. Similar to 
the experiment presented in Chapter 3 where we remove the class “Truck”, we create 
problem instances where one or more classes are removed, modifying the complexity, or 
separability, of the problem. Note that we remove the class from both training and test 
data. 

Similarly, one can experiment with modifying the number of training samples available. 
Dziugaite et al. (2020) also consider this in their setting, although only do so for the 
CIFAR-10 and SVHN data sets. For removing samples, they randomly select the images 
to be removed. We aim to randomly remove samples from all the data sets we consider, 
as well as to remove specifc subclasses from the data. For example, for those data sets 
where the distinction between tail and typical data is made available by Feldman and 
Zhang (2020), we can experiment with either removing the tail data or a percentage of 
the typical data. 

Modifying Samples 

So far we have argued that modifying the data is important for its regularising efect. 
We next informally argue that integrating data modifcation can expose limitations of 
previously proposed estimators of generalisation. 

A number of estimators from the Predicting Generalisation in Deep Learning compe-

tition have measured sensitivity to MixUp-like distortions. More precisely, a lack of 
robustness to this distortion was taken as an indicator of reduced generalisation perfor-
mance. We emphasise that none of the models in the competition have been trained on 
distorted data and remind the reader that the models achieve near-zero training loss. 
In these circumstances, it is possible that a lack of robustness to structured noise (i.e. 
MixUp perturbation) could indicate a stronger overft. But is robustness to MixUp per-
turbation necessarily indicating a better generalising model? Is MixUp perturbation a 
sufciently good way of measuring robustness of representations? 
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We argue that MixUp robustness is neither necessary nor sufcient for a model to have 
good generalisation performance. The former is because there is no particular reason 
why a model that is more robust to MixUp distortion would necessarily be better than 
one that is more robust to, say, occlusion. A clear example here can be constructed 
using the models trained in Chapter 3. On CIFAR-10, when evaluating the FMix model 
on MixUp-distorted training samples, we obtain a lower accuracy (87.18±0.19) than for 
the MixUp model (90.17±0.09). However, the accuracy on undistorted test data for FMix 
(95.51±0.10) is higher than that of MixUp (95.15±0.12). Therefore, the FMix model has 
a better generalisation performance than MixUp, although it is less robust to MixUp 
distortion. Moreover, we have argued earlier that it is sometimes difcult for humans to 
identify the objects depicted in images on which MixUp distortions have been applied. 
It is unclear why a model that perceives inputs in this interpolative manner would have 
better generalisation capabilities. 

To argue that robustness to MixUp is not sufcient for a model to have good generalisa-
tion performance, we construct an overftting model that is robust to MixUp distortions. 
To do this, we randomised the labels of the CIFAR-10 training set and used it to train 
a model with MixUp augmentation. We refer to this model as “the randomised MixUp 
model”. We then evaluate the model on the randomly labeled training data without 
applying the MixUp distortion at evaluation time. we fnd that the randomised MixUp 
model achieves perfect accuracy on the on the randomly labeled training data. In other 
words, the model is perfectly ftting the mislabeled data. Yet, it is more robust to the 
MixUp distortion than some generalising models. For example, the basic model trained 
on the original CIFAR-10 data, has a lower accuracy on MixUp-distorted training data 
(86.83±0.03) than that achieved by the randomised MixUp model (90.58±00.32). As such, 
a model with no better than random test performance can be more robust to MixUp 
distortion than a generalising model. Therefore robustness to MixUp distortion on the 
training data is not necessarily an indicator of a generalising model. Note that similar 
results can be obtained for robustness to occlusion, by training randomised models with 
mask-based distortions such as CutMix and FMix. More specifcally, just as we did in 
Section 3.3.2, we can obtain a model that completely overfts the training data and yet is 
still robust to patch-based distortions. Therefore robustness on training data to any one 
specifc type of distortion is not necessarily an indicator of generalisation performance. 

The randomisation example above, however, has two limitations. In practice, MixUp 
distortion has been used for the task of ranking models, and in conjunction with a notion 
of separability or compression of learnt representations (e.g. Natekar and Sharma, 2020; 
Lassance et al., 2020). Note that by randomly shufing labels for one model and using 
the original labels for the other, we are not providing a fair one-to-one comparison. 
Our intent was rather to show that even completely overftting models can be robust to 
MixUp (and other) distortions. We can very easily construct an example for the ranking 
case, where two models are evaluated on the same problem. To also couple this with a 

https://90.58�00.32
https://86.83�0.03
https://95.15�0.12
https://95.51�0.10
https://90.17�0.09
https://87.18�0.19
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notion of separability, we use the measure proposed by the winning solution (Natekar 
and Sharma, 2020) of the Predicting Generalisation in Deep Learning competition. 

Natekar and Sharma (2020)’s DB Index, introduced in Section 4.1.5, captures geometri-

cal properties of learnt representations that are generally associated with good separa-
bility of the training data at a certain layer. How does one choose that layer, especially 
when comparing models with diferent architectures? Natekar and Sharma (2020) choose 
to compute the DB Index on the frst convolutional layer of the network for all architec-
tures. However, we argue that this is uninformative. It has been shown that models can 
decrease separability in early layers and only monotonically increase it after the feature 
extraction phase (Tsitsulin et al., 2020). This is also supported by Ansuini et al. (2019), 
which fnd that neural networks initially expand the manifold of representations and it 
is the deeper layers where the increasing compression takes place. It is thus unclear why 
a better DB Index on the early representations would be indicative of generalisation. In 
fact, we argue that the separability of intermediate representations is not refective of 
generalisation performance in general. Nonetheless, we compute this quantity to expose 
the inability of Natekar and Sharma (2020)’s approach to distinguish the generalisation 
performance of models trained under mixed augmentation. 

We evaluate PreAct ResNet-16 models trained on CIFAR-10 with FMix and reformu-

lated MixUp augmentation (see Chapter 3 for a description of the augmentations). For 
reference, we also provide results for the basic model, trained with no mixed augmen-

tation. We compute the DB Index at the frst convolutional layer, as in Natekar and 
Sharma (2020), as well as on the last convolutional layer. In both cases, we fnd exam-

ples of models that would be misranked by Natekar and Sharma (2020)’s estimator, as 
we will discuss below. This experiment provides a limited and simplistic example. We 
believe, however, that a large-scale comparison that includes a bigger variety of learnt 
representations will expose more such cases. 

In Table 4.2 we give the generalisation performance of the models, along with their DB 
Index and accuracy on MixUp-distorted training data. We frst note that the DB Index 
for the frst layer is the same for all three models, which empirically confrms that this 
is not an informative quantity. We next focus on comparing FMix and reformulated 
MixUp. The test accuracy of FMix is higher than that of reformulated MixUp. Yet, the 
accuracy on MixUp-distorted train data is comparable for the two models. Therefore, 
using the DB Index and robustness to MixUp, one would be unable to distinguish the 
generalisation performance of these two models. 

We also computed the DB Index for the last layer. Although this quantity is smaller on 
average for the FMix model, therefore indicating better generalisation performance, it 
is within the margin of error of the DB Index computed for reformulated MixUp. We 
argue then that although computing the DB Index on the last convolutional layer could 
be more informative, it still does not correlate sufciently well with generalisation. 
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Table 4.2: Test accuracy, accuracy on training data distorted with MixUp-like modifcations and 
DB Index on frst and last convolutional layers for ResNet-18 models trained on CIFAR-10. The 
test accuracy is taken to be an estimation of the generalisation performance. A lower DB Index is 
associated with better separability and therefore better generalisation performance. Although the 
FMix and reformulated MixUp models have the same level of MixUp accuracy and the same DB Index 

for the frst layer, FMix has a better generalisation performance. 

basic FMix reformulated MixUp 

test accuracy 
MixUp accuracy 
DB frst layer 
DB last layer 

94.52±0.10 
86.83±0.03 
4.26±0.05 
3.44±0.03 

95.51±0.10 
87.18±0.19 
4.25±0.03 
2.98±0.04 

93.39±0.52 
87.53±0.62 
4.27±0.02 
3.05±0.03 

We conclude that robustness to MixUp distortion, even when coupled with notions of sep-
arability of learnt representations, is a limited indicator of generalisation performance. 
Although we have only presented one example, we believe creating a generalisation data 
set that is more diverse will further expose the weak correlation between robustness to 
MixUp distortion and generalisation performance. 

We therefore aim to integrate a variety of sample modifcations when creating the gen-
eralisation data set. Among the modifcations we would consider are those used in 
Chapter 3: the mixed data augmentations (i.e. MixUp, CutMix, FMix), CutOut, Hide-
and-seek and even patch-shufing. To these we add commonly used augmentations such 
as Gaussian noise, fip, random crop, colour jitter, shear, rotation, etc. 

In the case of mixed augmentations, to obtain a greater variety of representations we will 
experiment with diferent ways of choosing the mixing ratio. We will also experiment 
with mixing multiple augmentations during training as it is done in Harris et al. (2020), 
where augmentations are alternated between batches. Harris et al. claim that combining 
interpolating and masking augmentations gives improved generalisation performance, 
leveraging the benefts of both types of augmentations. We also plan to include models 
trained in the reformulated regime and models trained with inter-data set mixing. 

Evaluation Criteria 

Most commonly, models are evaluated in a comparative manner (e.g Dziugaite et al., 
2020; Vakanski and Xian, 2021; Jiang et al., 2020). That is, models are ranked according 
to their generalisation gap. The previous studies use diferent variants of the Kendall 
ranking coefcient (Kendall, 1938), also known as Kendall’s-τ , as evaluation criteria. 
When applied to the estimator evaluation problem, the standard Kendall ranking coef-
fcient gives the correlation between the ranking of each pair of models and the ranking 
of their generalisation performance. Informally, when a model A has a higher generali-
sation performance than a model B, we would like the estimator to also predict a higher 
value for model A than for model B. This can be measured by the Kendall’s-τ . 
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Jiang et al. (2020) bring to the reader’s attention the scenario in which a measure can 
correctly capture the efect of a single hyperparameter change, but not perform so well 
when multiple hyperparameters are changed. To address such scenarios, they propose 
a variant of Kendall’s coefcient, the granulated Kendall coefcient. They consider 
each hyperparameter at a time. Fixing a value for the considered hyperparameter, one 
computes the average Kendall coefcient for all combinations of other hyperprameter 
values. Averaging this for all possible values of the considered hyperparameter, one 
obtains the coefcient of that hyperparameter variable. Lastly, averaging the hyperpa-
rameter coefcients across all hyperparameters gives the granulated Kendall coefcient. 
Jiang et al. (2020) emphasise that this proposition cannot capture true causality. They 
propose conditional independence testing for those measures that exhibit a correlation 
with generalisation performance. Dziugaite et al. (2020) criticise Jiang et al. (2020)’s 
independence test, arguing it is limited for determining causality. 

Instead, Dziugaite et al. (2020) propose a worst-case comparison of generalisation esti-
mators across a fxed experimental setting (i.e. fxed values for each hyperparameter, 
a choice of architecture, dataset, optimiser, etc.), referred to as an environment. They 
draw inspiration from the feld of distributional robustness, therefore calling their eval-
uation robust ranking. They are interested in fnding the robust error of estimators, 
which is the supremum expected loss of the estimator over a family of environments. 
This is a more challenging setting and, in our opinion, a more relevant one for the task 
of identifying the true mechanism behind generalisation. Note that in their loss function 
Dziugaite et al. (2020) weight the ranking coefcient by the diference in generalisation 
performance between the ranked models. 

Dziugaite et al. (2020) consider both the task of ranking two models and the task of 
predicting the test accuracy of a specifc model. For the former, they use as a metric 
the above-mentioned robust ranking. For the latter, they once again take the supremum 
over a family of environments of the mean squared error. They only briefy present these 
results in their supplementary material. 

Other Design Choices 

Dziugaite et al. (2020) discard those pairs of models for which the generalisation per-
formance does not difer more than a specifed threshold. In a similar vein, Jiang et al. 
(2020) concluded that including models trained from the same initialisation is not com-

putationally justifable for such large-scale experiments. Jiang et al. (2021) then adopt 
the same view. Since we will include previously trained models to reduce the computa-

tional burden, we choose to have repeats in our data set where they exist. However, as 
this signifcantly increases the complexity of the generalisation estimation problem, we 
will provide the repeats as a separate task so that practitioners can choose whether or 
not they want to experiment with them. 
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Given the setting considered for empirical predictors of generalisation, a successful pre-
dictor should be able to estimate the performance of any model, regardless of how that 
model was obtained. Therefore, following the procedure employed in Chatterji et al. 
(2020) to test for network criticality, we could assess a predictor’s ability to account for 
changes in the weights that are not caused by the learning algorithm. We would include 
a number of scenarios: modifying critical layers, modifying layers that are not critical, 
and marginally modifying random weights that do not necessary belong to the same 
layer. 

Summary 

The aim of the proposed study designed in this chapter is to capture an estimator’s ability 
to refect the generalisation performance of models trained in a variety of settings. The 
emphasis falls on obtaining a large pool of learnt representations and less on the precise 
impact of the optimisation hyperparameters. We aim to incur as low a computational 
and environmental cost as possible. For our measure to be relevant to practitioners, we 
aim to incorporate a larger number of real-world data sets. To further minimise our 
environmental impact we choose to reuse the models trained in previous chapters and 
couple these with trained models from other sources. 
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4.3 Future Work 

As mentioned in the introduction of this chapter, our initial goal was to create a data set 
for a large-scale, data-centric evaluation of empirical estimators. However, to rigorously 
do this we must train a large number of models exploring combinations of the scenarios 
we have described in our proposed setting. This would allow us to apply the granulated 
Kendall coefcient to evaluate estimators, using Dziugaite et al. (2020)’s methodology. 

Thus, an immediate next step is to create the data set; that is to train a variety of 
models. We have already created scripts for each individual scenario. We only need to 
integrate them in a single pipeline, and most importantly, we need the time to train the 
models. The intention is to make this data set publicly available and easy to use for 
future research. Once we have the data set, evaluation should be straightforward. For 
this, we would use the code we have adapted from Jiang et al. (2021)’s competition. 

We would then do a case-wise analysis to identify the precise scenarios in which prior 
estimators fail to correlate well with generalisation performance. This will provide sup-
porting empirical evidence for the limitations that we have highlighted in this chapter. 

Once the limitations have been thoroughly explored and documented, the next step 
is to address them. In this regard, we have two possible initial directions that will 
hopefully be further refned by the insights we will gain from the initial analysis. Both 
of these directions are informally based on the Information Bottleneck Theory. We 
remind the reader that the issue with the Intrinsic Dimension approach proposed by 
Ansuini et al. (2019) is that it does not account for the mutual information between the 
learnt representations and the target variable. So, could we then devise a task-aware 
notion of Intrinsic Dimension? One idea we briefy explored was to project the learnt 
representations onto the class vectors. This, however, raises the problem of fnding a 
principled way to learn this projection. We believe care must be taken in order to ensure 
we are measuring something meaningful. 

The second direction is to design a more exhaustive notion of learnt representation ro-
bustness. Let us go back to our simple counter-example against the predictiveness of 
Intrinsic Dimension alone (see Section 4.1.1). We presented the hypothetical case of a 
binary classifcation problem where a collection artefact such as a timestamp is present 
on all training samples of a class. Such cases are known to occur in practice, and we 
have given the real-life incident with chest X-ray scans as an example. We argue that 
in such cases, the missing ingredient is a notion of robustness of learnt representations. 
Abusing terminology, we can think of notions of robustness as informal indicators of the 
mutual information between the learnt representations and the true target variable. In 
a sense, a model that is not robust to natural perturbations cannot have a satisfactory 
level of mutual information between its representations and the target variable, since it 
is relying on spurious information. Although related, note that the robustness to the 
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perturbations we are looking for is diferent from determining robustness against adver-
sarial perturbations at large. This is because adversarial robustness is sometimes looking 
for “low probability pockets” in the data distribution. Like Novak et al. (2018), we aim 
for a study of the expected generalisation performance rather than the performance on 
a specifc and possibly peculiar small set. This raises further questions: Which per-
turbations are “natural” and diverse enough to capture a meaningful notion 
of robustness? Could our breakdown of distortion into local and global help 
us explore perturbation diversity in a more informative way? 

The main limitation of the directions we propose is that they are not straightforward; 
they often imply solving questions related to generalisation that are themselves known to 
be difcult. A more simplistic approach could be to try to build a linear “meta-model” 
to predict the generalisation performance. Note that this would turn the problem from 
a ranking one to a regression one. The meta-model could take estimates from a num-

ber of predictors associated with a model instance as input and output its generalisation 
performance. We could train this model to learn the relationship between various predic-
tors and generalisation performance. The reason behind doing this is that it is possible 
that no predictor is indicative of generalisation but a combination of predictors could 
correlate better with generalisation. One data set design detail that will need to be 
established for this is the train-test split. Naturally, we would like the test data to be 
as challenging as possible while remaining realistic. We would therefore like to save a 
number of scenarios for the test data alone. This raises more questions: What is a 
principled way of choosing the scenarios saved for test time? How do we 
ensure that newly proposed methods will not “overft” to these scenarios? 
These are very important issues for the validity of the analysis and we are as yet unsure 
what the right answer is. The hope is that once a good meta-model is created, we can 
create stronger proposals by looking for the most relevant features and investigating how 
existing notions of representation quality interact. 

We also aim to expand our study, both in terms of the tasks and the setting we consider. 
With regard to the former, we would like to also include models trained on language or 
audio problems. In terms of the setting, we plan to consider estimators that require more 
information about the given problem than the learnt model instance and the training 
data alone. We will discuss adding more information about the data in the Future Work 
section of Chapter 5, as the answer is part of our larger vision on a data-centric future 
for generalisation studies. Apart from the data, we could consider incorporating the 
hyperparameters used during training and the initial state of the model. 

Lastly, when defning the scope of our thesis we explicitly ruled out the learning process 
and focused on a learnt model instance. But learning dynamics also play an important 
part in understanding deep learning. Can we get a better intuition of what are 
the important qualities of learnt representation by analysing their evolution 
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throughout the learning process? More importantly, is the setting that dis-
cards learnability relevant in practice? In other words, must an estimator 
correctly predict the generalisation of peculiarly trained models that would 
never be learnt using standard training? Our personal answer to this question 
is that a generalisation estimator must be complete and account for all learners in the 
model class, even those that might not be learnt in conventional ways. However, it is 
possible that this is a naively optimistic goal whose validity remains an open question. 

4.4 Conclusions 

Despite the various attempts to capture generalisation, the feld seems to be far from 
solving this fundamental puzzle. In this thesis we expressed the belief that stronger 
intuitions are needed in order to propose a theoretical framework able to explain gener-
alisation in a way that is meaningful and informative. We believe that practical exper-
imentation can help build the required intuitions. Therefore in this chapter we started 
building the basis for an empirical approach to furthering the community’s understand-
ing of generalisation. 

To form a coherent picture of what the promising future directions are, we frst reviewed 
and contextualised the broad evolution of ideas in generalisation studies. We noted 
that most studies fundamentally aim to capture separability and compression of learnt 
representations. The questions that remain to be addressed are centred around separa-
bility and compression. How do we meaningfully capture these? If they can be 
captured, are they necessary and sufcient for generalisation? 

In our review we looked more closely at empirical predictors, which are part of a new 
and rising subfeld of generalisation studies. The novelty of this subfeld, however, comes 
with fairly limited standards of evaluation. In our opinion, this has caused approaches 
that are not well-founded, to appear successful. We motivated our claims at a conceptual 
level but also brought preliminary empirical evidence to support our view. 

We argued the need for more extensive and rigorous evaluation and analysis of empirical 
estimators. Prior art focuses only on capturing those diferences in model performance 
caused by changes in the hyperparameter values. Following the broad theme of this 
thesis, we advocated for the integration of a data-centric set of experiments. We therefore 
proposed and laid the initial design for a new generalisation data set on which to evaluate 
estimators. The emphasis falls on varying the data set structure and including data 
distortions as alternative ways of regularising models. Creating this data set remains 
part of future work. 



Chapter 5 

Closing Remarks and Future 
Directions 

This chapter briefy recounts the high-level contributions of our work. We review the 
objectives of the thesis and how they were achieved. We then revisit our vision for the 
future of generalisation studies and acknowledge the factors which have shaped it. We 
discuss limitations and a broad range of future work. Lastly, we briefy refect on the 

learning experience of writing this thesis. 

As outlined in the Foreword, this thesis is a modern exploration of generalisation in 
machine learning. Undoubtedly, there are many more details of this complex problem 
that are worth mentioning than we have managed to cover. Our intent was to provide 
a high-level perspective on generalisation and then focus on the specifcs of those topics 
that we see as most important. 

One of the objectives of the thesis was to advance our current understanding of gener-
alisation. We started from the perspective of classical theory. Engaging at a deep level 
with this theory, we slowly developed the belief that data plays a much more fundamen-

tal role than has been attributed before, and that the feld lacks sufcient insight from 
practical experimentation. 

These beliefs shaped the idea of constructing a data-centric approach to studying gen-
eralisation in the future. With this intent in mind, we focused on analysing data modi-

fcation. We discovered that although data modifcation is extensively used, it is often 
poorly understood. We refected on the regularising role of data modifcation and raised 
a number of questions around distribution shift. Although time constraints meant we 
did not go into further detail in this thesis, we believe that studying the efect of data 
modifcation plays an important role in understanding generalisation at large and we 
would like to study it in more depth in the future. 

121 
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During our analysis of data modifcation, the idea of empirically predicting the gener-
alisation performance in settings where the data is varied has started to form. Concur-
rently, hyperparameter-centric empirical studies started to appear in the literature. We 
therefore aimed to understand how other researchers also converged to this empirical 
direction. As a result, we started reconstructing the evolution of ideas in generalisation 
studies. We presented, classifed, and contextualised the main lines of thought, with 
a focus on the most recent direction of empirically estimating generalisation. This has 
given us a sense of the recurring ideas in the diferent generalisation subfelds and refned 
the beliefs we had prior to this extended literature review. More importantly, it has now 
enabled us to construct an informed vision for the future of generalisation studies. 

Our data-centric perspective, coupled with insights gained from analysing data modif-

cation, has allowed us to identify limitations of the previously proposed estimators and 
their evaluation. This further motivated the need for the data-centric view we propose. 

Therefore, throughout the thesis we explored a number of topics, each requiring diferent 
tools and research methodologies. For example, to show the importance of the data, in 
Chapter 2 we performed a theoretical analysis. This was followed by extensive empirical 
experimentation in Chapters 3 and parts of Chapter 4, where we carry out various 
quantitative evaluations. Lastly, Chapter 4 provides a rich review and a qualitative 
analysis of prior evaluation settings for empirical estimators. As such, our main concrete 
contributions are: 

Chapter 2: 

• Under the annealed approximation we propose the β-Risk model for classif-
cation (Section 2.2.1); 

• We validate our model on learning with a perceptron (Section 2.3.1); and, 

• Our calculations emphasise the need to account for the data (Section 2.2.1). 

Chapter 3: 

• We identifed the presence of data interference when modifying data (Sec-
tion 3.2); 

• We introduced a quantity for detecting data interference (Section 3.2); 

• We identifed three limitations of measuring robustness through the most 
popular method currently used in the feld (Section 3.3.2); 

• We proposed iOcclusion, a method of measuring robustness to occlusion that 
addresses the limitations of prior art (Section 3.3); 

• We designed and carried out a series of experiments to support our proposed 
method (Section 3.3.2); and, 

• We showed that, contrary to what is currently assumed, an augmentation that 
better preserves the data distribution is not necessarily better (Section 3.4). 
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Chapter 4: 

• We provide an overview of the main lines of thought in generalisation studies 
(Section 4.1.1); 

• We give, to the best of our knowledge, the frst literature review of empirical 
estimators of generalisation (Section 4.1.1); 

• We argue that estimators previously considered successful are limited in their 
ability to capture generalisation (Sections 4.1.4 and 4.2.2); 

• We overview prior settings for evaluating empirical estimators (Section 4.2.1); 
and, 

• We design a new evaluation for empirical estimators (Section 4.2.2). 

During the course of this work we also contributed to creating FMix (Harris et al., 2020), 
a new mixed sample data augmentation (MSDA). This work started as an attempt to un-
derstand the success of MixUp (Zhang et al., 2018a). At the time, our reasoning about 
generalisation was deeply rooted in the statistical learning paradigm. MixUp breaks 
two fundamental assumptions: that the samples are independent; and that the train 
and test samples are drawn from the same distribution. Yet, breaking these assump-

tions leads to better generalisation. We, therefore, started exploring augmentation. We 
studied the Vicinal Risk Minimisation framework, existing justifcations for the success 
of MSDA, and other mixed augmentations such as CutMix. This has further shaped our 
data-centric vision for understanding the mechanism behind generalisation and further 
motivated us to take a practical approach. 

We would lastly like to refect on the inspiring experience of presenting our work at peer-
reviewed venues, and how this shaped our research direction and ideas for future work. 
As we already discussed our contributions above, we will focus here on the reception of 
our work and fruitful discussions with fellow researchers. 

Rethinking Generalisation at the NeurIPS 2019 Workshop on Machine Learning 
with Guarantees: 

Based on the work presented in Chapter 2, the paper proposed the β-Risk model for 
classifcation and the realisable perceptron. The central message of the paper was 
the importance of attunement. Our calculations contrasted with the bound-centric 
theme of the workshop. As explained throughout the thesis, we believe useful 
guarantees are not yet attainable with the feld’s current level of understanding. 
Although we discussed possible ways of starting to reason about attunement with 
the audience, a concrete direction had not caught form at the time. Nonetheless, 
we were encouraged to see that one year later, as part of the same conference, 
the Predicting Generalisation in Deep Learning competition was organised. This 

https://drive.google.com/file/d/1DpEpPmd7JS7vi448YSW0mnC2s1D1ouhM/view
https://sites.google.com/view/mlwithguarantees/accepted-papers
https://sites.google.com/view/mlwithguarantees/accepted-papers
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signalled that the feld was starting to take a more practical approach to capturing 
generalisation, which was in line with our belief. 

On data-centric myths at the NeurIPS 2021 Workshop on Data-Centric AI: 

This paper provides a diferent perspective to the results presented in Section 4.1.4 
and Section 3.4. Motivated by the fndings on data modifcation side-efects (Chap-
ter 3) we wanted to fnd qualities of the data and ways of quantifying them. Since 
the literature on this topic is limited, we wanted to identify intuitions about data 
quality from various felds. We frst looked at empirical predictors of generalisation 
and came across the idea that learning low-dimensional representations was asso-
ciated with better generalisation (Ansuini et al., 2019). Reversing the perspective, 
then a data set that lies on a low-dimensional manifold should be desirable. Using 
the same reasoning as in Section 4.1.4, we show that this is not the case. Then, as 
in Section 3.4 we argue that the data distribution doesn’t necessarily have to be 
preserved when modifying samples. 

During an interesting discussion, we were introduced to a new perspective on 
learning which we would like to come back to in the future. Vieira et al. (2022) 
argue that the whole learning process is simply given by iterative manipulations of 
the data manifold and therefore analyse the learning dynamics from a vector feld 
perspective. More precisely, they see data points as particles moved around until 
a confguration where they can be separated is reached. Although Vieira et al. 
(2022) focused on proposing a new architecture starting from this perspective, 
they believe that interesting insights on generalisation could be gained from this 
perspective. Similarly, we were encouraged to see that the authors of this work 
agreed with our vision that intrinsic dimension needs to be coupled with good 
notions of robustness in order to obtain meaningful results. 

On pitfalls of measuring occlusion robustness through data distortion at the 
International Conference on Learning Representations Workshop on RobustML: 

This paper shows the limitations of classical robustness evaluations and proposes 
a fairer alternative. We introduce the DI index (Section 3.2) and iOcclusion (Sec-
tion 3.3) and construct a number of experiments to empirically demonstrate that 
our method addresses the limitations of CutOcclusion. The idea of extending our 
observations to audio data has emerged while presenting our work. We refected 
along with our audience on what are the artefacts of occluding audio signals and 
how one would approach fairer alternatives in this case. We were enthusiastic 
about the impact of our work in other domains and would like to explore this 
more in the future. 

https://datacentricai.org/neurips21/papers/86_CameraReady_Data_centric_AI_workshop(2).pdf
https://datacentricai.org/neurips21/
https://sites.google.com/connect.hku.hk/robustml-2021/accepted-papers/paper-025
https://sites.google.com/connect.hku.hk/robustml-2021/accepted-papers/paper-025
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On the efects of artifcial data modifcation at the International Conference on 
Machine Learning: 

This paper presents a concise version of Chapter 3. We were encouraged to discuss 
with practitioners and theoreticians alike who found our work relevant. On the 
practical side, fellow researchers were particularly interested in insights about data 
augmentation as well as discovering which attributes of the data matter. On 
the theoretical side, researchers were interested in our vision for a data-centric 
future of generalisation studies. It was during these discussions that we understood 
the potential impact of writing an overview of ideas in the various subfelds of 
generalisation. 

During the creation of this thesis we have acquired many partial intuitions and insights. 
However, in our opinion, the most valuable outcome is shaping our future research di-
rection: building a new, more fexible framework for reasoning about generalisation. 
As such, the overall understanding we have built is that practical experimentation has 
a great potential to solidify and correct our beliefs regarding the true mechanism be-
hind generalisation. Researchers are approaching generalisation in various interesting 
ways. However, despite the paramount importance of the data, a data-centric view of 
generalisation still seems to be missing. 

The vision that was shaped while creating this thesis is to build a new theo-
retical framework starting from data-centric practical experimentation. The 
present work is merely the birth and introduction of what is likely to be a years-long 
endeavour. Below we briefy sketch the ideas we would like to pursue in the future to 
achieve this goal. 

5.1 Future Work 

At the end of each chapter so far we have outlined a number of concrete directions that 
we would like to explore in future. We mostly dedicate this section to our perspective 
on building a data-centric future for generalisation studies. 

From Practice to Theory 

The plan outlined in Chapter 4 is to fnd an estimator or a combination of estimators 
that correlates well with generalisation. As previously motivated, a good estimator 
should also be able to capture variations in the learnt representations caused by changes 
in the data. Once the difcult task of fnding a good estimator has been achieved, the 
next step would be to formalise the understanding that is gained. This will allow us 

https://proceedings.mlr.press/v162/marcu22a.html
https://icml.cc/virtual/2022/spotlight/16088
https://icml.cc/virtual/2022/spotlight/16088


126 Chapter 5 Closing Remarks and Future Directions 

to more rigorously reason about generalisation. The hope is to be able to provide the 
practical guarantees required for determining trust in the machines used in sensitive 
applications. At this stage, it is difcult to draw a more precise set of steps for bridging 
theory and practice. However we believe it is important to keep this long-term goal in 
mind both because it provides a strong motivation, but also because it constantly steers 
our attention towards the core problem we are trying to address. 

The Data 

Our main criticism of prior approaches was their inability to account for the data. 
However, we believe there is a question on the extent to which our proposed direction 
could account for the data to a sufcient level. As mentioned in Chapters 1 and 3, it is 
often the case that real-world data is more problematic than the standard data sets in 
vision applications. These could range from relatively small deviations from the training 
data distribution to very signifcant ones. While the signifcant ones might be easier to 
spot in some cases, and therefore the problem is identifed from the start as an “out-of-
distribution” one, it is possible that milder cases could be treated as “in-distribution”, 
just as in the chest X-Ray example from Chapter 1. Ideally, we would like an estimator 
to be able to address these cases. The question is whether it would be possible to do so 
in our original setting. Although peculiar cases, such as the chest X-Ray problem, could 
possibly be addressed by incorporating better notions of robustness, there is a question 
on the extent to which an estimator should be expected to perform even in “mild” out-
of-distribution settings. Therefore, given that our aim is to create a framework that is 
relevant in practice, we might have to account for distribution diferences. 

In our view, there are two possible ways to deal with the very stringent assumption 
about the data. In the a priori view, one could integrate notions of data quality. In an 
a posteriori world, a solution would be to use measures of distribution similarity. We 
will discuss these next. 

A Priori – Data Quality 

A question that we have faced while researching prior art and creating our proposal 
for the generalisation data set is: Can we even predict generalisation without 
notions of data quality? Could data quality be implicitly captured in the 
learned representations or do we need to explicitly account for it? We do not 
know what the desirable attributes of a data set are. Nor do we how one would start 
reasoning about data quality in a formal manner. Intuitively, we would initially consider 
notions of problem complexity or separability. However, addressing these problems 
usually boils down to solving problems highly related to those of generalisation. For 
example, Zhang et al. (2017)’s label randomisation experiment has shown that even 
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ImageNet with randomised labels, a highly complex problem, can be separated. To 
address this, one could couple separability with the complexity of the function that is 
separating it or with its margin, therefore directly relating this problem to generalisation. 
However, we would be interested in researching alternatives that do not imply solving 
generalisation frst. 

A Posteriori – Distance Between Distributions 

An alternative way of accounting for mild distribution changes could be to provide 
unlabelled test data and use the distance between the representations of the train and 
test data as a proxy for the perceived distribution distance. We do not know to which 
extent this method would allow us to detect the magnitude or even the presence of minor 
shifts. One possible avenue would be to measure the representation similarity using 
established methods such as canonical correlation analysis (Kornblith et al., 2019). The 
issue here, however, is that the perceived distance is dependent on the quality of the 
model. Modern-sized networks can make confdent mispredictions (e.g. Guo et al., 2017). 
Therefore, it is possible that the perceived distance is not refective of the expected 
generalisation gap for weak models. 

Quantifying changes in the generalisation performance based on distributional distance 
has been attempted in digital pathology (Stacke et al., 2020). For each sample in the 
set, Stacke et al. compute the mean value of every feature map in a hidden layer. They 
then measure the distance between the distribution of those mean values on the train 
versus test data. However, Stacke et al. (2020) do not justify why they choose to look 
at the average values of the feature maps. They fnd that their notion of representa-
tion similarity can sometimes correlate with drops in the generalisation performance 
but their empirical evaluation is very limited. Although Stacke et al. (2020)’s notion 
could indicate broad distribution shifts, the problem of representation similarity is very 
challenging (Morcos et al., 2018) and subtle. We believe a more informative quantity 
would be needed to capture the fner-grained diferences that are needed to predict the 
magnitude of the change in generalisation performance. 

Note that there exist model-agnostic alternatives for measuring distributional distance, 
such as those proposed in the domain adaptation feld (e.g. Alvarez-Melis and Fusi, 2020). 
However, these model-agnostic notions of distribution distance cannot necessarily inform 
on the impact the shift will have on the generalisation performance of each model, which 
is what we are interested in. Therefore, they do not represent a viable alternative in our 
case. 
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Widening the Perspective 

Although the problem of generalising to out-of-distribution settings is currently treated 
as a separate feld, we believe it is relevant to ask whether the insights gained from 
the in-distribution generalisation studies would be relevant to this related feld and vice 
versa. There are two implications here, which we discuss separately below. 

Can a theory for out-of-distribution generalisation solve in-distribution gen-
eralisation? Solving the former would theoretically solve the latter as well since in-
distribution generalisation should be a special case of the more general scenario. How-
ever, the efort in the out-of-distribution literature is mostly invested in making models 
generalise across distribution shifts rather than capturing and formalising generalisation. 
In other words, the interest is mostly in achieved performance, rather than building a 
theoretical framework or understanding. Moreover, the tools used to advance out-of-
distribution performance are rather diferent from the ones we discussed in this thesis, 
which are employed in generalisation studies. Therefore, bridging the two felds is not 
immediate. 

We believe there is a subtle but important diference between in-distribution and out-of-
distribution in terms of causality. In the in-distribution setting, one could beneft from 
leveraging contextual information. However, in an out-of-distribution setting, one would 
need to more closely identify true causality to ensure generalisation. Models that are 
highly robust to occlusion because they also learn contextual information, such as FMix 
and CutMix, are generalising better in an i.i.d. setting than the basic model, which 
uses less information overall (Chapter 3). Therefore, we would like an in-distribution 
notion of model quality to capture this increase in generalisation performance, while 
a good out-of-distribution notion would likely penalise models that employ non-causal 
relationships. It is, however, likely that there are many confounding factors in the 
example above. Therefore, the feasibility of bridging the two settings remains to be 
determined. 

Can a theory for in-distribution generalisation solve out-of-distribution gen-
eralisation? We believe that scaling a theory for i.i.d. generalisation to an out-of-
distribution one is more challenging than the reverse. However, we believe this direction 
has a signifcant head-start, with many active eforts invested in capturing and formal-

ising generalisation. We believe drawing inspiration from the work done in the out-of-
distribution feld could be benefcial for building stronger intuitions. Importantly, it can 
also motivate the community to reason about and aim for a unifed theory. 

We therefore plan to familiarise ourselves with the literature on out-of-domain gener-
alisation and try to establish if and how the two can be connected. Although making 
connections with the literature on out-of-distribution generalisation is the most imme-

diate proposal, we believe in a wider cross-pollination of ideas across felds. In essence, 
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many of the studies proposing advances in machine learning provide some informal justi-
fcation for their success. It would be interesting to collect and classify them to identify 
what is currently believed outside of the generalisation literature to be predictive of a 
model’s performance. 

Community Engagement 

We would also like to raise the feld’s awareness with respect to the importance of better 
understanding generalisation. A wider engagement with the subject can ensure better 
scrutiny of the proposed methods and can accelerate the pace of advancement. Although 
the generalisation feld is seeing an increase in interest, we believe this is insufcient given 
the importance of the problem. Pushing the state-of-the-art performance is challenging, 
but we argue that fnding the fundamental reason for the achieved improvement has a 
much higher impact in the long term. 

We believe that being able to properly understand and guarantee the performance of 
models could revolutionise the modern world, with applications in healthcare, trans-
portation, renewable energies, and many more. A good understanding would also lead to 
much faster development and a reduced environmental cost for model training. There-
fore it is important for the community to address this problem and we would like to 
motivate more researchers to join us in this quest. 

In summary, studying generalisation remains a highly challenging problem. Although 
bounding has been the default way of approaching it, the paradigm is starting to change. 
There is a broad range of possible ways to approach generalisation estimation and we 
believe seeking inspiration outside of the established generalisation literature has great 
potential. 

We are encouraged to see that the ideas we had while working on this thesis are starting 
to emerge independently of our work. They have given us the enthusiasm to pursue the 
directions we believe in. Specifcally, we were motivated by the proposal of the Predicting 
Generalisation in Deep Learning competition and the distortion-centric methods which 
emerged as well as by the organisation of the frst Data-Centric workshop, in which 
we participated. We were also encouraged by the reception of our work at conferences 
and workshops, and are excited and highly motivated by the large number of future 
directions that can be pursued. 

5.2 Final Refections 

In this thesis we have, in turn, computed the risk in a classical theory-like framework, 
discussed model attributes evaluation, data augmentation, the evolution of ideas in gen-
eralisation studies, empirical predictors, and the evaluation of generalisation estimators. 
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We did not go into too much detail for any of these topics. This is due to our search for 
a direction that has the potential to provide meaningful insights. 

Refecting back on this wide search, we believe it has greatly helped us quickly adapt to 
new perspectives, ideas, and tools. We see this as an important learning outcome at this 
stage of our research journey. We believe it has given us the openness to embrace new 
research directions, the ability to critically analyse ideas from a high-level perspective 
and, overall, started shaping us as well-rounded researchers. We hope that the fexibility 
acquired will facilitate collaborations with experts from a variety of felds in the future, 
which is part of our vision. 

The motivation of all directions we pursued remained deeply anchored in the original 
objective, which was to understand generalisation. We hope our work will help the 
community solve this complex and fascinating problem, whose solution we believe will 
reshape the modern world. 
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Alaiz-Rodŕıguez, R. and Japkowicz, N. (2008), Assessing the impact of changing envi-
ronments on classifer performance, in ‘Conference of the Canadian Society for Com-

putational Studies of Intelligence’, Springer, pp. 13–24. 

Alam, S., Reasat, T., Sushmit, A. S., Siddique, S. M., Rahman, F., Hasan, M. and 
Humayun, A. I. (2021), ‘A large multi-target dataset of common Bengali handwritten 
graphemes’, International Conference on Document Analysis and Recognition pp. 383– 
398. 

Alquier, P. (2021), User-friendly introduction to PAC-Bayes bounds, in ‘arXiv preprint 
arXiv:2110.11216’. 

Alvarez-Melis, D. and Fusi, N. (2020), Geometric dataset distances via optimal trans-
port, in ‘Advances in Neural Information Processing Systems’, pp. 21428–21439. 

Amari, S., Ba, J., Grosse, R. B., Li, X., Nitanda, A., Suzuki, T., Wu, D. and Xu, 
J. (2021), When does preconditioning help or hurt generalization?, in ‘International 
Conference on Learning Representations’. 
URL: https://openreview.net/forum?id=S724o4 WB3 

Amsaleg, L., Bailey, J., Barbe, D., Erfani, S., Houle, M. E., Nguyen, V. and Radovanović, 
M. (2017), The vulnerability of learning to adversarial perturbation increases with in-
trinsic dimensionality, in ‘2017 IEEE Workshop on Information Forensics and Security 
(WIFS)’, IEEE, pp. 1–6. 

Ansuini, A., Laio, A., Macke, J. H. and Zoccolan, D. (2019), Intrinsic dimension of 
data representations in deep neural networks, in ‘Advances in Neural Information 
Processing Systems’, p. 6111–6122. 

131 

https://openreview.net/forum?id=S724o4


132 Chapter 5 Closing Remarks and Future Directions 

Anthony, M. and Bartlett, P. L. (1999), Neural Network Learning: Theoretical Founda-
tions, Cambridge University Press. ISBN 9780511624216. 

Arora, S., Ge, R., Neyshabur, B. and Zhang, Y. (2018), Stronger generalization bounds 
for deep nets via a compression approach, in ‘International Conference on Machine 
Learning’, PMLR, pp. 254–263. 

Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., Maharaj, 
T., Fischer, A., Courville, A., Bengio, Y. et al. (2017), A closer look at memorization 
in deep networks, in ‘International Conference on Machine Learning’, PMLR, pp. 233– 
242. 

Ba, J. L., Kiros, J. R. and Hinton, G. E. (2016), Layer normalization, in ‘arXiv preprint 
arXiv:1607.06450’. 

Bahri, D. and Jiang, H. (2021), Locally adaptive label smoothing improves predictive 
churn, in ‘International Conference on Machine Learning’, PMLR, pp. 532–542. 

Bai, Y., Yang, Y., Zhang, W. and Mei, T. (2022), Directional self-supervised learning 
for heavy image augmentations, in ‘Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition’, pp. 16692–16701. 

Balcan, M.-F. and Berlind, C. (2014), A new perspective on learning linear separators 
with large l ql p margins, in ‘Artifcial Intelligence and Statistics’, PMLR, pp. 68–76. 

Balestriero, R., Pesenti, J. and LeCun, Y. (2021), Learning in high dimension always 
amounts to extrapolation, in ‘arXiv preprint arXiv:2110.09485’. 
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Supplementary Material 

A Supplementary Material for Directions in Generalisa-

tion: a Short Introduction 

In this section we give the function defnitions, inequalities, and theorems that we use in 
the calculations presented in Directions in Generalisation: a Short Introduction, as well 
as other quantities mentioned throughout the thesis, such as the Rademacher complexity 
and the covering number. 

For every positive integer n, the Gamma function is given by 

Γ(a) = (a − 1)! . 

The integral form of the Gamma function for complex numbers with positive real 
part can be written as 

∫∞ 

τa−1Γ(a) = e −τ dτ , 
0 

while the probability density function of the Gamma distribution is given by 

ba −b τ τa−1e 
f(τ |a, b) = . 

Γ(a) 

The Beta function for complex numbers with positive real parts is given by 

∫1 

Beta(a, b) = r a−1 (1 − r)b−1dr . 
0 

The Beta function can also be written using the Gamma function as such 
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Γ(a) Γ(b)
Beta(a, b) = . 

Γ(a, b) 

a a b The mean of the beta distribution is given by while the variance is . a+b (a+b)2 (a+b+1) 

The probability mass function of the Binomial distribution is given by 

( )
m 

Binom(ℓ |m, R) = Rℓ (1 − R)m−ℓ ,
ℓ 

with mean mR and variance mR (1 − R). 

The Normal distribution with a mean of 0 and standard deviation of 1 has a probability 
density function of 

1 2 

Φ(x) = √ e − x 
2 . 

2 π 

For a p-dimensional sphere, the surface area is given by 

p+1 
2 π 2 

pSp(r) = r , 
Γ(p+1 )2 

where r is the radius of the hypersphere. 

For defning the Rademacher complexity and the covering number, we follow the no-
tation of Shalev-Shwartz and Ben-David (2014). Given a set of vectors A ∈ Rm and( ) ( ) 
i.i.d. random variables σ1, . . . , σm such that P σi = 1 = P σi = −1 = 1/2, the 
Rademacher complexity is given by 

[ ] 
m∑ 1 

R(A) = Eσ sup ai σi .a∈A m 
i=1 

Conversely, the covering number of the set A is given by the cardinality of the smallest 
set A ′ that covers the set A with balls of radius r. We say that the set A is covered by 

′ a set A ′ if ∀a ∈ A, ∃a ∈ A ′ such that ∥a − a ′ ∥ ≤ r. 

Jensen’s inequality states that given a concave function f , and a random variable X, 

[ ] ( [ ]) 
E f(X) ≤ f E X . 
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B Supplementary Material for The Theoretical Approach: 
the Importance of the Data 

B.1 Asymptotic Generalisation Performance 

In this section we show that generalisation performance is driven by the power-law 
growth in the distribution of risks. Consider the case of a realisable problem with 
an infnite hypothesis space such that a randomly chosen hypothesis has a risk, Rh, 
distributed according to 

∞∑ 
a−1 iρ(r) = r ci r . 

i=0 

In this scenario a hypothesis h ∈ HERM will be distributed according to 

(1 − r)m ρ(r)
(r) =fRERM ∫ 1 . 

′ (1 − r ′ )m ρ(r ′ ) dr 
0 

The expected generalisation performance is thus given by 

∞∑ 
ciB(a + 1 + i, m + 1) [ ] 

i=0 c0 B(a + 1,m + 1) + c1 B(a + 2,m + 1) + · · · 
E RERM = ∞ = ∑ c0 B(a + 1,m + 1) + c1 B(a + 2,m + 1) + · · · 

ciB(a + i, m + 1) 
i=0 

B(a+1,m+1) c1 B(a+2,m+1) ( ) + + · · · B(a,m+1) c0 B(a,m+1) a 1 
= = + O .

2
1 + c1 B(a+1,m+1) m m+ · · · c0 B(a,m+1) 

where we have used 

B(a + i, m + 1) Γ(a + i) Γ(a + m + 1) 
= 

B(a, m + 1) Γ(a) Γ(a + i + m + 1) 

a (a + 1) · · · (a + i − 1) 
= . 

(a + m + 1) (a + m + 2) · · · (a + m + i) 

Thus, the generalisation error in the limit of large m depends only on the exponents 
describing the polynomial growth in the distribution of risk. As mentioned in Section 2.2, 
this observation will make our results more general. 
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C The Distribution of Risks: Case Study 

In this section we compute the distribution of risks for two problems. The frst one 
is a hypothetical scenario where we have a hypothesis space that includes all binary 
functions. We use this example to reason about the label randomisation experiment from 
the perspective of model attunement. Subsequently, we compute ρ(r) for an unrealisable 
perceptron. 

C.1 All Binary Functions 

Let E denote the number of errors made by a randomly chosen hypothesis. If the 
hypothesis space, H, consists of all Boolean functions, f : X → {T, F }, where X is the 
set of all possible inputs, then the probability distribution of the risks for a randomly 
chosen hypothesis is given by 

( ) ( ) ( ⃓ ) 2|X | ⃓ 1 ⃓ 2|X | 1ρ(r) = P E = r N = Binom E , = . (1)2 22
|X | E 

In most machine learning applications |X | is exponential in the number of features. For 
example, for binary strings of length n, |X | = 2n . This distribution is very sharply[ ] 
concentrated around the mean E R = 1/2, having a variance of |X |/4. We can ap-
proximate this distribution with a Beta distribution where a = b = |X |/2, which has the 
same mean and almost identical variance as the binomial distribution.1 The expected 
ERM error for the Beta distribution approximation is |X |/(2 |X | + m). We therefore 
require m to be of order |X | before we obtain any generalisation performance. In this 
case, the lack of generalisation is a result of the huge value of the attunement parameter 
rather than the size of the hypothesis space. 

Zhang et al. (2017) trained models on randomly labeled CIFAR-10 training data to near-
zero training loss. The CIFAR-10 training data consists of 50 000 samples belonging 
to 10 diferent classes. This suggests a hypothesis space consisting of at least 1050 000 

hypotheses. However, this is much smaller than 2|X |, which for colour images with 32×32 
pixels taking 256 possible values, is 22563072 

. Provided |H| is substantially smaller than 
2256

3072 
we can still achieve a relatively high degree of attunement (i.e. small value of a). 

The simple problem of learning all binary functions illustrates a case of poor attunement, 
which leads to no generalisation. 

1Recall that for a Beta distribution, Beta(r|a, b), the mean is a/(a + b) and the variance is equal to( ) 
a b/ (a + b)2(a + b + 1) . So for a = b the mean is 

2
1 and the variance is 1/(8a + 4). 
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C.2 Unrealisable Perceptron 

We now consider using a perceptron with a diferent distribution of data. Consider a 
two-class problem with data (x, y) where y ∈ {−1, 1} and x is 

( ⃓ ) ∗ fX (x|y) = N x⃓∆ y w , I , 

∗where w is some arbitrary unit norm vector. The parameter ∆ determines the separa-
tion between the means of the two classes. The Bayes optimal classifer corresponds to 

∗ a hyperplane orthogonal to w . We consider learning a perceptron defned by the unit 
T ∗variance weight vector w. Defning η = y wT(x−y ∆, s ∗) ∼ N (0, I) and cos(θ) = w w 

we can write vector w = cos(θ) w ∗ + sin(θ) xT , such that 

T ∗ ∗ x w = (y ∆ w + η)T (cos(θ) w + sin(θ) w T) 

∗ = y ∆ cos(θ) + ηT (cos(θ) w + sin(θ) w T) 

= y ∆ cos(θ) + ηT w . 

We denote ξ = ηT w. As a sum of independent normal components, ξ will also be 
normally distributed. And since the expected value of η is 0, ξ will also have 0 mean,[ ] [ ] 

ξ2 T E Twhile E = w η ηT w = 1. Thus, ξ ∼ N (0, I) and y x w = ∆ cos(θ) + ξ. The 
expected risk is 

( ) ( ) 
TRw = P y x w < 0 = P ∆ cos(θ) < −ξ = Φ(−∆ cos(θ)) , 

where Φ(z) is the cumulative probability distribution for a zero mean, unit variance 
normally distributed random variable. The distribution of weight vectors at an an-

∗gle θ to w is the same as that for the realisable perceptron (Equation (2.10)). The 
distribution of risks is given by ρ(r) = fΘ(θ(r))/dd 

r
θ , where r = Φ(−∆ cos(θ)) or 

θ(r) = arccos(Φ−1(r)/∆). Noting that 

−∆2 cos2(θ)/2dr e 
= ∆ sin(θ) √ 

dθ 2 π 

and writing 

( ) p−3( )2( ) p−3 Φ−1(r) 2 
2sinp−3(θ) = 1 − cos 2(θ) = 1 − ,

∆ 

we get 

√ ( ) p−3( 
Φ−1(r)

)2 22 π (Φ−1(r))2/2ρ(r) = 1 − e . 
∆ B(12 , 

p−1 ) ∆ 
2 
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Figure C.1: Probability density, fR(r), plotted on a logarithmic scale against the risk, r, for Rmin = 
0.25 (left) so that ∆ ≈ −0.674 with p = 10 and p = 50, and Rmin = 0.001 (right) so that ∆ ≈ −3.090 

with p = 20 and p = 100. The vertical dotted lines show the maximum and minimum risks in H. 

To help understand this equation, in Figure C.1 we depict the probability density, ρ(r), 
plotted against the risk, r, on a logarithmic scale for two diferent levels of class separa-
bility which correspond to Rmin = 0.25 (Figure C.1a) and Rmin = 0.001 (Figure C.1b). 
For each level of separability, we look at varying the number of features. Just as in 
the case of the realisable perceptron, a reduction in the number of features changes the 
distribution of risks and therefore directly infuences the attunement. 

We note that for unrealisable models the distribution of risks, ρ(r), will be 0 for r < Rmin.[ ] 
When E RERM is substantially greater than Rmin, then the generalisation behaviour will

[ ] 
be similar to a realisable model with the same attunement. As m increases, E RERM 

will converge to Rmin. The two quantities that characterise the asymptotic behaviour in 
the unrealisable case are Rmin, and the power-law growth of ρ(r) as we increase r from 
Rmin. 

A More Detailed Analysis. Revisiting Assumptions 

In our analysis, we assumed the independence of the losses. We also replaced the ex-
pectation of a ratio by the ratio of expectations. This is clearly only an accurate ap-
proximation if the values are heavily concentrated around their mean. In this section, 
we treat these assumptions and approximations more carefully. 

Corrections due to Fluctuations 

µFor any independently chosen fnite data set, D = {(x , yµ) | µ = 1, 2, . . . , m}, there 
will be chance fuctuations between the features vectors, xµ, that lead to variations in 
the generalisation performance, which in turn lead to a change in the mean behaviour. In 
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0 r

log(p(r,D))

0 1

m log(1− r)

(a) (b) 

Figure C.2: Schematic illustration of the proportion, p(r, D) of parameter space with risk r that 
correctly classifes the training examples for a realisable perceptron. (a) Shows the weight space for 
a perceptron with three inputs. The white area represents the parameters that correctly classify the 

∗examples. The vector w represents the correct concept. The proportion p(r, D) would corresponds to 
the fraction of weight space at a given value of r that correctly classifes the inputs. For the perceptron, 
constant risk would correspond to line of constant latitude as illustrated by the dashed blue line. (b)[ ] 

Shows an illustrate of log(p(r, D)) together with log(E p(r, D) ) (dashed curve). 

this section we derive an approximation to these corrections which depend on the detail 
of the learning machine beyond the distribution of the risks, so cannot be computed in 
general. We derive these corrections for the realisable perceptron. For any realisable 
model we have shown that 

[ ] 
[ ] Er∼ρ(r) r p(r, D)M1E RERM|D = = [ ] ,

M0 Er∼ρ(r) p(r, D) 

where p(r, D) is the proportion of hypotheses with risk r that correctly classify all train-
ing examples (i.e. ∀ (x, y) ∈ D, h(x) = y, where h(x) denotes the prediction of hypoth-
esis h given a feature vector y). In Figure C.2 we illustrate schematically what p(r, D) 
might look like for the realisable perceptron. 

Denoting the set of hypotheses with risk r that correctly classify the frst k training 
examples by 

{ ⃓ } 
Hk µ= h ∈ H⃓Rh = r ∧ ∀ µ = 1, 2, . . . , k, h(xµ) = y ,r 

then p(r, D) = |Hm|/|H0|, where H0 is the set of hypotheses with risk r. We note thatr r r 

we can also write p(r, D) as 

m∏ |Hk| |Hm| |Hm−1| |H1| |Hm|r r r r r p(r, D) = = . . . = . 
|Hr

k−1| |Hr
m−1| |Hr

m−2| |Hr 
0| |H0 

r |k=1 

kDefning p = |Hk|/|Hk−1| thenr r r 

m∏ 
k p(r, D) = p .r 

k=1 



158 Chapter 5 Supplementary Material 

The quantity pkr that correctly classify theis the proportion of hypotheses in Hk−1 [ r] 
kth data point. By the defnition of risk, E k

r = 1 − r. However, due to chance p 
k
rcorrelations between training examples, p , will fuctuate. As the training examples are 

will be independent random variables when k ̸= j. 

∑m 

drawn independently, pkr and pjr Now, 

( ) ( ) 
k
rln p(r, D) = ln p 

k=1 

k
r 

r 

[ ] 

is of independent random variables and by the central limit theorem this willa sum sum 
2 Dtowards normal distribution As ( ) will be close toconverge a a consequence, p r, a. 

log-normal distribution and its median value will typically be smaller than its Themean. 
E |D Dtypical value of R is going be given when ( ) takes its likely value mostp r, ERM 

its median, mode and all the Thus the typical value ofto computemean are same. 
E |D DR the likely value of ( ) which will be mostwe can use p r, ERM 

m 

( ) ( ) 
or equivalently by the median of ln p(r, D) . Since ln p(r, D) is normally distributed, 

[ ] 

( [ ( )]) 
p E p(r, D)ˆ(r, D) = exp ln 

where 

∑ |H | 
|Hk−1 

[ ] [ ( )] [ ( )] m∑ 
E ln p(r, D) = E k

r Eln p = . 
|

k=1 k=1 

[ ( )] ( [ ]) 
By Jensen’s inequality E ln p(r, D) ≤ ln E p(r, D) . This does not tell us whether 
the fuctuations improve or worsen the generalisation performance (which depends on( ) 
the gradient of ln p(r, D) ). However, for r = 0 we know that p(r, D) = 1 so that the 

[ ( )] 
fuctuations can only increase the gradient of E ln p(r, D) around r = 0. As this 
gradient determines the asymptotic generalisation performance (what we have termed 
the attunement) we see that the ‘annealed approximation’ will be an upper bound on 
the asymptotic generalisation performance (i.e. it will be overly conservative). 

To get an understanding of the quantitative corrections we need to model the fuctuations 
that we are likely to get in pkr . As pkr is a random variable that lies in the range 
from 0 to 1 it is reasonable to approximate its distribution by a beta distribution, 
pkr ∼ Beta(Ak

r , B kr 

m 

). This distribution is unrelated to that used in the β-Risk model 

∑ 

— 
we use a beta distribution as in both cases we are modelling a random variable that lies 

k
rin the range 0 to 1. If p is beta distributed then 

[ ( )] 
rrr 

( ) 
ψ(Ak) − ψ(Ak + BkE ln p(r, D) )= . 

k=1 ( ) 
2 m is usually sufciently large that the distribution of ln p(r, D) will be very closely approximated 

by a normal distribution 
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[ ] 
k k kUsing the fact that E p = 1 − r and denoting the variance of p by v we getr r r 

Ak Ak Bk 
r k r r1 − r = , v = ,rAk + Bk (Ak + bk)2 (Ak + Bk + 1) r r r r r r 

from which we fnd 

k1 − r r vrAk = , Bk = , ∆k = .r r r k∆k ∆k r(1 − r) − vr r r 

By defnition 
[ ] 

k k v = E (p )2 − (1 − r)2 ,r r 

where 

[ ] [ |2 ] |Hk 
k rE (p )2 = Er |Hr

k−1|2 

⎡ ⎤ 
∑ ∑ [ r z r z] 1 k k⎣ ⎦= E E(xk,yk) h(x k) = y h ′ (x k) = y . 

|Hr
k−1|2 

h∈Hk
r 
−1 h ′ ∈Hk

r 
−1 

We observe that the fuctuations depend on the expected correlation between hypotheses 
of a given risk. Denoting the joint probability of a pair of hypotheses making a particular 
prediction for a randomly sampled data-point, (x, y), by 

(r z r z ) 
P h(x) = y = w, h ′ (x) = y = z = pwz(h, h ′ ) 

(with w, z ∈ {0, 1}) then 

[ ] ∑ ∑ 
)2 1kE (p = p11(h, h ′ ) .r |Hk

r 
−1|2 

h∈Hk
r 
−1 h ′ ∈Hk

r 
−1 

( ) 
We note that p11(h, h ′ ) + p01(h, h ′ ) = P h(x) = y = 1 − r. Also for randomly 
selected hypotheses, by symmetry, p10(h, h ′ ) = p01(h, h ′ ), while for any pair of hy-( ) 
potheses p10(h, h ′ ) + p01(h, h ′ ) = P h(x) ̸= h ′ (x) . From this we fnd p11(h, h ′ ) = 

( ) 
1 − r − P h(x) ̸= h ′ (x) /2 and the variance in p(r, D) is given by 

∑ ∑ ( ) 
k v = r(1 − r) − 

1 
P h(x) ̸= h ′ (x) .r 

2 |Hr
k−1|2 

h∈Hk
r 
−1 h ′ ∈Hr

k−1 

Up to now the only information we have required about the problem was the distribution ( ) 
of risks. However, to compute P h(x) ̸= h ′ (x) we need to know more about the 
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Figure C.3: Plot of the expected ERM error versus the ratio m/p for the realisable perceptron in the 
limit p → ∞ plotted on a log-log scale. The solid blue line shows the approximation developed in this 
paper. The black dotted line shows the Gardner solution while the red dashed line shows the annealed 

solution. 

learning algorithm. We consider the realisable perceptron where 

( ) θhh ′ P h(x) ≠ h ′ (x) = ,
π 

Twhere θhh ′ = arccos(wh wh ′ ) is the angle between the weight vectors corresponding to 
hypotheses h and h ′ . For any hypothesis, h, with risk r, the weight vector can be written 
as 

wh = w ∗ cos(π r) + w ⊥ sin(π r) ,h 

∗ ⊥where w is a unit vector in the direction of the perfect perceptron and wh is some unit 
∗orthogonal to w . For two hypotheses with risk r 

⊥T ⊥θhh ′ = arccos(cos2(π r) + w wh ′ sin
2(π r)) .h 

If there are a large number of features w⊥Tw⊥ ≈ 0 for the vast majority of hypothesis h h ′ 

pairs so that θhh ′ ≈ arccos(cos2(π r)). Ignoring other correlations 

1 ( ) 
k v = r(1 − r) − arccos cos 2(π r)r 2 π 

and 

2 π r (1 − r)
∆k = − 1 .r arccos(cos2(π r)) 

In Figure C.3 we show the expected ERM risk versus m/p (recall p is the number of 
features in the perceptron) in the limit when p → ∞. For comparison, the annealed 
approximation is also shown in Figure C.3. Finally, we also show the Gardner solution, 
which is only defned in this limit (Gardner, 1988; Engel and den Broeck, 2001). As we 
can see, our approximation is very close to the Gardner solution in the limit when m/p 
becomes large. There are discrepancies for smaller values of m/p due to ignoring other 
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µ νfuctuations. There will be fuctuations because pairs of training examples x and x 
will typically have small chance correlations. These are of order 1/p, but because there 
are m − 1 other training examples, the fuctuations will grow. 

Although the Gardner solution strictly requires us to take the limit p → ∞ it has been 
shown that it provides a reasonable approximation to Gibb’s learning for perceptrons 
with a smaller number of features (see Figure 1.4 in Engel and den Broeck (2001)). 
Gibb’s learning for the perceptron can be well approximated by the perceptron learning 
algorithm with some added noise to ensure that diferent parts of HERM are explored 
(Engel and den Broeck, 2001, Section 3.2). The Gardner approach has been used to 
examine other learning rules, noisy training sets, etc. See Engel and den Broeck (2001) 
for a review of the literature. The approach has also been extended to SVMs see, for 
example, Opper and Urbanczik (2001). These calculations are very involved and model 
specifc. In this section, we have proposed understanding generalisation behaviour more 
generally by considering ρ(r). However, to obtain results applicable to any learning 
machine we use the annealed approximation. 

D Supplementary Material for Steps Towards the Empir-

ical Approach: Understanding by Distorting 

D.1 Experimental details 

Throughout Chapters 3 and 4, we use PreAct-ResNet18 (He et al., 2016b) models, 
trained for 200 epochs with a batch size of 128. For the MSDA parameters we use the 
same values as Harris et al. (2020). All models are augmented with random crops and 
horizontal fips and results are averaged across 5 runs. We train using SGD with a 
momentum of 0.9, learning rate of 0.1 up until epoch 100 and 0.001 for the rest of the 
training. This is due to an incompatibility with newer versions of the PyTorch library 
of the ofcial implementation of Harris et al. (2020), which we use as a starting point 
for model training. However, the diference in learning rate schedule between our work 
and prior art does not afect our fndings since we are not introducing a new method to 
be applied at training time. In our case, it is sufcient to show that the bias exists in 
at least one confguration. 

For the analysis we also used adapted code from Carlucci et al. (2019) for patch-shufing. 
The models were trained on either one of the following GPUs: Titan X Pascal, GeForce 
GTX 1080ti or Tesla V100. For the analyses, a GeForce GTX 1050 was also used. The 
average training time was less than two hours, with the exception of models trained on 
Tiny-ImageNet, which took around 10 hours to run. 
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Table D.1: DI index for alternative grid sizes. Gaps can be identifed for various grid sizes, with more 
pronounced diferences for fner-grained grids. 

basic MixUp FMix CutMix 

CIFAR-10 2 × 2 
8 × 8 

0.61±0.24 
6.41±0.55 

0.56±0.33 
6.95±1.96 

0.19±0.14 
2.75±1.46 

0.12±0.06 
1.41±1.15 

CIFAR-100 2 × 2 
8 × 8 

1.03±0.29 
9.16±6.15 

0.46±0.14 
3.10±4.59 

0.21±0.14 
1.62±0.89 

0.12±0.07 
0.65±0.50 

Tiny ImageNet 8 × 8 
16 × 16 

5.76±6.61 
44.01±36.47 

5.73±3.82 
14.06±14.63 

2.49±1.38 
11.94±17.79 

0.60±0.69 
1.86±1.98 

ImageNet 16 × 16 
64 × 64 

0.72 
4.89 

1.38 
41.16 

0.55 
12.77 

− 
− 

Training models 

The code for model training is largely based on the open-source ofcial implementation 
of FMix, which also includes those of MixUp, CutOut, and CutMix. For the experiment 
where we use the reformulated objective to combine data sets, instead of mixing with 
a permutation of the batch, as it is done in the original implementation of the mixed-

augmentations, we draw a batch from the desired data set. To ensure a fair comparison, 
for the basic we also perform inter-batch mixing. 

Evaluating robustness 

For the CutOcclusion measurement, we modify open-source code to restrict the occluding 
patch to lie withing the the margins of the image to be occluded. This is to ensure that 
the mixing factor λ matches the true proportion of the occlusion. For iOcclusion, the 
implementation of Grad-CAM is again adapted from publicly available code. With 
both methods, we evaluate 5 instances of the same model and average over the results 
obtained. The added computation time of iOcclusion over the regular CutOcclusion for 
a fxed occlusion fraction is that of performing Grad-CAM on train and test data, as 
well as evaluating on the latter. With a batch size of 128, this takes under half an hour. 

D.2 Varying the grid size 

Table D.1 gives the results obtained when varying the number of image tiles to be 
randomly rearranged. We observe that data interference appears for diferent grid sizes. 
Note that the considered grid sizes are chosen according to the size of the images. For 
example, for samples of 32 × 32 pixels we consider 2 × 2 and 8 × 8 grids in addition to 
the 4 × 4 used in the main body of the thesis. Conversely, for 224 × 224 images, we use 
larger grid sizes (16 × 16 and 64 × 64). 
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Table D.2: DI index for occluding with images from another data set. Again, a gap can be identifed. 

basic MixUp FMix CutMix 

CIFAR-10 1.71±0.15 1.05±0.22 0.14±0.03 0.16±0.05 
CIFAR-100 0.48±0.09 0.61±0.27 0.90±0.15 1.25±0.25 
Fashion MNIST 3.40±0.29 3.06±1.07 1.81±0.55 2.61±0.80 
Tiny ImageNet 0.25±0.12 0.17±0.04 0.06±0.03 0.12±0.04 

Table D.3: DI index for patching using masks sampled from Fourier space. Just as in the case of 
rectangular masks, a gap can be identifed. 

basic MixUp FMix CutMix 

CIFAR-10 2.08±1.13 1.79±1.09 1.32±0.99 4.21±1.23 
CIFAR-100 4.06±01.47 3.11±02.29 9.90±14.32 2.89±05.36 
Fashion MNIST 49.55±20.45 40.69±21.63 27.87±17.57 61.04±17.92 
Tiny ImageNet 4.37±0.85 6.95±1.84 3.60±1.73 5.92±4.38 
ImageNet 3.27 2.24 6.08 − 

D.3 Patch-shufing 

We look at the classes which have the highest increase in incorrect predictions and note 
that their shapes are characterised by strong horizontal and vertical edges. For example, 
on CIFAR-100, varying the grid size between 2 × 2, 4 × 4 and 8 × 8 gives “Lamp”, “Bus” 
and “Table” as dominant cmax classes, while the model trained on Fashion MNIST with 
the standard procedure tends to predict grid-shufed images as “Bag”. On ImageNet, 
the basic model tends to wrongly identify the patch-shufed images as belonging to the 
550th class “Espresso Maker”. 

D.4 CutOcclusion 

In this section we experiment with alternative masking methods when computing Cu-
tOcclusion. We note that the bias exists when occluding with patches taken from images 
belonging to diferent data sets (Table D.2). Figure D.1 gives a visual account of the 
results obtained for CIFAR-10 when mix-patching. Note that for Fashion MNIST we 
use MNIST, for Tiny ImageNet we use ImageNet, while for CIFAR-10 we mix with 
CIFAR-100 and vice versa. Since ImageNet images are signifcantly larger than those of 
the other data sets, mixing would imply padding large areas, which would give results 
very similar to uniform patching. We also experiment with VGG models, where on 
CIFAR-10 the basic has a DI index of 0.80±0.40 compared to 0.18±0.11 of MixUp. 

We then use masks sampled from Fourier space (Table D.3) and note that even for these 
irregularly shaped distortions, we can identify a gap in most cases. The only exception 
is in the case of Fashion MNIST. It must be stressed that although all the models we 
experimented with presented Data Interference for this problem, this does not exclude 
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https://6.95�1.84
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Figure D.1: Diference between wrongly predicted classes when testing on original data versus CutMix-
distorted images. The evaluated models from left to right, top to bottom are trained on CIFAR-10 

with: no mixed-data augmentation (basic), MixUp, CutMix, and FMix. 

the possibility of constructing a diferent model that is insensitive to this distortion. For 
example, we identify a gap for this problem when mix-masking (DI index of 4.09±1.74 

for the basic model as opposed to 1.87±0.27 for a model trained on images that were 
masked out using FMix-like masks). Thus, when occluding with a particular shape we 
implicitly disfavour models in which learnt representations are related to the features 
introduced by that shape. 

D.5 Alternative CutOcclusion 

Table D.4 gives the DI index when forcing the occluding patch to lie within image 
boundaries for patch sizes sampled uniformly from [0.1, 1]. Note that in the case of 
Tiny ImageNet the bias is more visibly present for larger occluders. As such, uniformly 
sampling the patch size from the interval [0.3, 1] results in a DI index of 13.46±5.74 for the 
basic model, while the level of data interference from MixUp is only 4.75±1.93. Similarly, 
for Fashion MNIST, when we increase the size of the occluder we obtain 0.65±0.20 for 
Mixup as opposed to 0.07±0.11 for the basic model. However, this does not change the 
conclusions of our experiments since, as mentioned in the main paper, robustness studies 
are usually carried out with large occluder sizes. 

https://0.07�0.11
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Table D.4: DI index for sampling occluder size from a uniform distribution when the patch is restricted 
to lying within image boundaries and the size is sampled from [0.1, 1] uniformly. 

basic MixUp FMix CutMix 

CIFAR-10 
CIFAR-100 
Fashion MNIST 
ImageNet 

5.74±1.86 
28.63±9.85 
1.88±3.36 
0.25 

0.75±0.69 
6.31±7.03 
3.54±1.33 
0.48 

1.25±1.24 
5.86±5.86 
1.91±3.33 
0.14 

3.61±3.60 
12.63±24.69 
1.76±2.91 
− 

D.6 Data Interference across Architectures 

To verify if a shape bias evaluation based on patch-shufing would give unfair results 
when comparing across architectures, we compute the DI index for a number of models 
trained with the basic approach (without mixed data augmentation) on CIFAR-10. The 
DI index of models such as WideResNet and ResNet is high (0.95±0.20 and 1.27±0.39 

respectively), while for PyramidNet, BagNet17 and BagNet9 it is small (0.26, 0.53±13, 
54±0.16). DenseNet (0.66±0.48) and VGG (0.60±0.15) have comparable DI indices. 

Thus, we fnd that intensity with which distortions interfere with learnt representations 
is diferent for diferent architectures. Comparing robustness to occlusion using CutOc-

clusion would give biased results when comparing architectures trained under the same 
conditions. 

E Sensitivity to the Patch Shape 

In Section 3.3.1 we created a new augmentation method, RM, which samples 3 random 
masks from Fourier space and uses only those for the whole training. This was used 
to obtain a model that learns some robustness to occlusion but does not see sufcient 
variety in the masks so as to learn invariance to the strong edges. As a result, it will 
have a higher DI index compared to the FMix model while having a robustness level 
close to that of mask-trained models. 

In Figure E.1 we provide the results for a range of occlusion fractions. When evaluated 
using CutOcclusion, the robustness of CutMix models has a high standard deviation. 
Nonetheless, we can see that the RM model appears to be closer to MixUp than to FMix 
or CutMix. On the other hand, when robustness is evaluated using iOcclusion, the curve 
obtained for RM is closer to the mask-trained models. Therefore, our method provides 
a fairer evaluation for models which, like RM, are afected by data interference. 

https://0.60�0.15
https://0.66�0.48
https://1.27�0.39
https://0.95�0.20
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Figure E.1: Robustness to occlusion as measured by CutOcclusion (left) and iOcclusion (right). The 
occluding patches are non-uniform in this case. The robustness curve for RM very closely follows that 
of the MixUp model when evaluated with CutOcclusion. However, iOcclusion captures the robustness 

that RM gains with mask-training, situating it closer to the curves of FMix and CutMix. 

F Description of Data Sets Used 

Table F.1 provides the essential information describing the data sets used in the thesis. 

Table F.1: Basic information regarding the main data sets referenced in the thesis. Note that for 
SVHN, Oxford Pets, Oxford Flowers, Bengali we have rounded up the number of available training 

and test samples. 

Name Short description #Classes Image size #Training 
samples 

#Test 
samples 

CIFAR-10 images of animals 
and vehicles 10 32×32 50 × 103 10 × 103 

images of animals, 
CIFAR-100 man-made items, 100 32 × 32 50 × 103 10 × 103 

food, etc. 

MNIST grayscale images of 
handwritten digits 10 28×28 60 × 103 10 × 103 

Fashion-
MNIST 

grayscale images of 
garments and shoes 10 28×28 50 × 103 10 × 103 

SVHN images of digits in 
real-world scenes 10 32×32 610 × 103 27000 

images of animals, 
Tiny man-made items, 200 64×64 110 × 103 10 × 103 

Imagenet food, etc. 

Bengali.AI Bengali Handwritten 
Graphemes 168 64×64 200 × 103 200 × 103 

Oxford Pets images of breeds of 
cats and dogs 37 32×32 9 × 103 1800 

Oxford 
Flowers 

images of fower 
species 102 32×32 7 × 103 103 

CINIC-10 images of animals 
and vehicles 10 32×32 180 × 103 90 × 103 
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