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A B S T R A C T

Food security is currently a major concern due to the growing global population, the exponential increase in
food demand, the deterioration of soil quality, the occurrence of numerous diseases, and the effects of climate
change on crop yield. Sustainable agriculture is necessary to solve this food security challenge. Disruptive tech-
nologies, such as of artificial intelligence, especially, deep learning techniques can contribute to agricultural
sustainability. For example, applying deep learning techniques for early disease classification allows us to take
timely action, thereby helping to increase the yield without inflicting unnecessary environmental damage, such
as excessive use of fertilisers or pesticides. Several studies have been conducted on agricultural sustainability
using deep learning techniques and also semantic web technologies such as ontologies and knowledge graphs.
However, the three major challenges remain: (i) the lack of explainability of deep learning-based systems (e.g.
disease information), especially to non-experts like farmers; (ii) a lack of contextual information (e.g. soil or
plant information) and domain-expert knowledge in deep learning-based systems; and (iii) the lack of pattern
learning ability of systems based on the semantic web, despite their ability to incorporate domain knowledge.
Therefore, this paper presents the work on disease classification, addressing the challenges as mentioned earlier
by combining deep learning and semantic web technologies, namely ontologies and knowledge graphs. The
findings are: (i) 0.905 (90.5%) prediction accuracy on large noisy dataset; (ii) ability to generate user-level
explanations about disease and incorporate contextual and domain knowledge; (iii) the average prediction
latency of 3.8514 s on 5268 samples; (iv) 95% of users finding the explanation of the proposed method useful;
and (v) 85% of users being able to understand generated explanations easily—show that the proposed method
is superior to the state-of-the-art in terms of performance and explainability and is also suitable for real-world
scenarios.
1. Introduction

With one-third of the global population (2.37 billion) already expe-
riencing moderate or severe food insecurity (UN, 2021) and a rapidly
expanding global population, which is expected to reach 9–10 billion
by 2050 (Sharma et al., 2020), the agriculture sector is under immense
pressure to increase food production. This pressure is further exacer-
bated by climate change, which has led to a decline in soil quality and
the occurrence of numerous diseases such as paddy stackburn (Ayoub
Shaikh et al., 2022; Chen et al., 2021), which have a significant effect
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on the economy. According to the United Nations Food and Agriculture
Organisation, plant diseases cost the global economy over $220 billion
annually (Food and Agriculture Organization of the United Nations,
2021).

Today, modern technologies, specifically artificial intelligence (AI),
are used to combat the issue of plant disease. This is due to the
predictive capacity of AI technologies, which enables early identifica-
tion of potential diseases and prompt preventative measures, thereby
reducing loss. As a result, a large number of studies (see Section 2)
vailable online 8 July 2023
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Fig. 1. Explainability using SHAP. (a) Input image with disease label ‘‘Cassava Mosaic Disease’’ (b) The leftmost image with different colours highlights the features that had an
impact on the prediction. The four images on the right, labelled ‘‘Cassava Mosaic Disease’’, ‘‘Healthy’’, ‘‘Cassava Brown Streak Disease’’, and ‘‘Cassava Green Mottle’’, are the top
4 predictions.
have been conducted on plant disease detection and classification using
AI technologies, particularly deep learning (DL), a sub-field of machine
learning (ML). There has been a substantial improvement in the pre-
diction performance of DL, with an increased prediction accuracy of
90 percent (or even higher in some cases) for disease detection and
classification (Emmanuel et al., 2023). However, DL-based techniques
suffer from the explainability issue (Chaddad et al., 2023; Gaur et al.,
2021).

To combat the issue of explainability in DL, the AI academic
community has been actively investigating mathematical approaches,
such as LIME (local interpretable model-agnostic explanations) (Ribeiro
et al., 2016) and SHAP (SHapley Additive exPlanations) (Lundberg &
Lee, 2017), to improve the DL model explainability (Yang et al., 2021).
However, explainability techniques based on SHAP and LIME are not
suitable for non-experts (or end users). Additionally, Yang et al.’s (Yang
et al., 2021) study confirms the same: the explainability techniques
based on SHAP and LIME provide an explanation from the computer
scientists’ perspective, not the user’s, thereby widening the gap in
user-centred explainability techniques.

Agriculture is one of the sectors dominated by non technological
experts (or non-experts), such as farmers. Therefore, any technological
solution aimed at the agricultural sector, e.g. for disease detection and
classification, must be centred on farmers, as they are the end users, in
order to be effective. The use of SHAP and LIME based explanations is
therefore ineffective. For example, say there are the three input features
(or independent variables) 𝐴, 𝐵, and 𝐶 and the dependent variable (or
target label) 𝑌 . Using SHAP, information about, for example, the impact
of 𝐴, 𝐵, and 𝐶 on predicting Y but not the explanation of 𝑌 can be ob-
tained. These SHAP-derived explanations are helpful for understanding
model choices, but they are not very useful for farmers (or non-
experts), for whom knowing about the disease would be most helpful.
Fig. 1 shows the explainability using SHAP for cassava (Fig. 1(a)).
Fig. 1(b) (leftmost image) displays the explanations generated by the
SHAP that illustrate the importance of the features upon which the
predictions were based. As can be observed from Fig. 1(b), SHAP-based
explanations are not useful for users, i.e. farmers. Existing studies,
particularly those based on DL in agriculture (see Section 2), are mostly
concentrated on performance improvement and therefore lack user-
level explainability. This therefore constitutes the first motivation for
this work. However, the importance of the performance improvement
2

made by existing works (Section 2) cannot be understated. This is
because having just explainability would not solve the problem, as the
identification of a potential disease must also be correct, which is the
other focus of this work. Therefore, both explainability and prediction
accuracy are equally important.

The second motivation is the limited contextual information in
existing studies and the exclusion of the domain knowledge, such as
in DL (or DL-based studies) (Chhetri, Kurteva, et al., 2022; Holzinger
& Müller, 2021). Domain knowledge is knowledge acquired by domain
experts over time and is a valuable source of information unavailable
in datasets like images. Moreover, images have limited contextual
information (Gaur et al., 2022). For example, images lack information
about the relationship between plant types, the area they are grown
in, and the environmental conditions, such as soil moisture, of that
region and their impact on plant health. Both domain knowledge
and contextual information help in the improvement of performance,
support explainability, and ensure the safety of AI by preventing, for
example, hallucinations (Gaur et al., 2022). Semantic technologies,
namely ontologies and knowledge graphs (KGs), on the other hand,
can incorporate domain expert knowledge, provide reasoning capa-
bility, and also enables context awareness to support explainability
(Chhetri, Kurteva, et al., 2022; Sharma et al., 2019). Studies have
also been conducted using semantic technology for disease classifica-
tion such as by (Jearanaiwongkul et al., 2018) and (Lacasta et al.,
2018). However, such approaches based on semantic technology are
limited in terms of their capabilities, such as their ability to learn
complex patterns like statistical approaches like DL. Therefore, there
is a need to synergise DL-based approaches with semantic technology-
based approaches, particularly in the domain of agriculture, so that the
benefits of both worlds can be obtained, which are lacking in current
work. In the Dagstuhl Seminars report (Benedikt et al., 2020), Claudia
d’Amato made a similar point about combining symbol-based methods,
e.g. methods based on KGs, and numerical methods like ML.

Therefore, to address the limitations discussed above, this paper
presents the research to improve the classification of plant diseases
by combining semantic technologies and DL. The main objectives
of this research are as follows: (i) to generate user-level (or user-
comprehensible natural language) explanations about diseases; and
(ii) to improve the prediction accuracy of disease classification by
incorporating domain knowledge and contextual information, such as
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effects of soil moisture and relative humidity on plant health, using
semantic technology and combining it with DL. This study on plant
disease classification focuses on cassava plants. This is because of the
importance of cassava plants. Cassava, which is mostly grown in Africa,
is the fourth most important staple crop and plays a significant role in
the diets of over a billion people around the world (Ajayi & Olutumise,
2018). The following contributions are made in response to this study’s
objectives:

1. A generic approach is proposed to combine semantic technology
and DL in order to improve prediction accuracy and gener-
ate user-comprehensible natural language explanations using
cassava disease classification as a case study.

2. The reusable cassava disease ontology is developed to enable the
incorporation of domain-specific cassava disease knowledge.

3. The proposed approach is designed and implemented as deploy-
able software to facilitate reusability and evaluated the proposed
method for both performance and explainability.

The remainder of the paper is organised as follows. Section 2
resents the related works. Section 3 details the proposed approach and
ection 4 provides details about the experiment, including the dataset,
ystem information, evaluation metrics used, and the implementation.
ection 5 discusses the results and finally, Section 6 provides the
onclusion.

. Related work

This section provides an overview of the related work. Section 2.1
rovides a brief overview of the explainable AI techniques. Section 2.2
rovides an overview of the ML-based studies, whereas Section 2.3
rovides an overview of the semantic technology-based studies. In the
eview, the studies (Chan et al., 2022; Zhang et al., 2020) that focus on
he explainability of DL, for example, using SHAP have been excluded
s this study is focused on user-level explanations for non-experts.

Additionally, because the focus of this work is on plant diseases,
he review of the work only examines related works in this area with
articular focus on cassava plant.

.1. Explainable AI techniques

The majority of the work on explainability focuses on using tech-
iques like SHAP and LIME (Machlev et al., 2022). (Kuzlu et al., 2020)
nd (Mitrentsis & Lens, 2022) use the techniques SHAP and LIME in
heir work for explainability. Unlike the cases of SHAP and LIME,
oubeau et al.’s (Toubeau et al., 2022) explainability is based on the
ttention mechanism. However, similar to the case of the SHAP and
IME-based explanations, the explanations of Toubeau et al.’s (Toubeau
t al., 2022) work are also focused on understanding the impact of input
ariables on the prediction outcome. Unique to previous works, Bahani
t al.’s (Bahani et al., 2020) work uses the knowledge base, which
ontains the explanations of the target labels, to provide explainability
or the predictions made, a work inline to the proposed approach of
his study. The mapping is done via fuzzy logic. In addition, new
odel-agnostic approaches similar to SHAP and LIME have evolved

ecently for graph neural networks (GNNs) (Jiménez-Luna et al., 2020)
nd their variants. Examples of such explainability techniques include
NNExplainer (Ying et al., 2019) and CF-GNNExplainer (Lucic et al.,
022), where CF represents the counterfactual. Recently, (Sammani
t al., 2022) introduced a GPT (Generative Pre-Trained Transformer)-
ased language model that can simultaneously make predictions and
enerate natural language explanations, similar to the research in this
tudy. Two limitations exist: the first is the requirement for large
raining data, and the second is that the accuracy of the generated
xplanations may not be accurate due to the hallucinations (Gaur et al.,
022). Further, Sammani et al.’s (Sammani et al., 2022) approach lacks
3

he benefit that comes with the use of the KGs, which is the ability
ot incorporate additional contextual information. Yang et al.’s (Yang
et al., 2023) work focuses on generating knowledge aware explanations
for natural language inference using KGs, for which they propose a
generative model that makes use of the KGs. In particular, the KGs
are used to address the following problems: (i) lack of conformance
to the common sense of existing models; and (ii) their lack of in-
formativeness. However, the focus of this work is on language tasks,
and their application to a multimodal scenario such as in this study
remains unexplored. Moreover, Yang et al.’s (Yang et al., 2023) work
demonstrates the additional benefits that can be realised by utilising
KGs (or semantic technology). Similarly, other works, such as the
one by (Amador-Domínguez et al., 2023) focus on explainability to
understand the predictions made by ML models. Their work focuses on
generating explanations of KG embedding predictions.

In conclusion, the majority of works on explainability are not geared
towards non-experts and are primarily concerned with comprehending
predictions and the implications of input variables on final predictions.
Some works, such as the one by (Sammani et al., 2022), focus on
generating natural language explanations. However, their work lacks
the benefits that can be obtained through the use of KGs, and there
are limitations such as the need for a large amount of training data.
Therefore, there is still a need for further research on explainability
approaches that can be both reliable and useful to non-experts, the issue
that the proposed work addresses.

2.2. ML-based studies

(Emmanuel et al., 2023) conducted research on the classification
of cassava diseases utilising the pretrained models VGG16 and Mo-
bileNet V2. Emmanuel et al. demonstrated the utility of their proposed
hybrid kernel methods by attaining a 90.1% accuracy rate. The hy-
brid kernel methods combine the quadratic kernel with the squared
exponential kernel. Similarly, (Kumar et al., 2023) conducted a study
on cassava disease detection. Their work focuses on improving ac-
curacy by ensembling different computer vision models: EfficientNet,
SEResNeXt, ViT, DeIT and MobileNetV3. With their result of 90.75%
accuracy, (Kumar et al., 2023) have demonstrated the effectiveness
of their proposed approach. (Ravi et al., 2022) conducted a study
using attention-based models on cassava disease classification. Simi-
lar to the case of (Kumar et al., 2023), (Ravi et al., 2022) demon-
strated the advantages of ensembling by achieving the best accuracy
of 87.08%, where they combined the penultimate layer features of
A_EfficientNetB4, A_EfficientNetB5, and A_EfficientNetB6. The com-
bined final model is called A_L_EfficientNet. In a similar effort to
improve the prediction accuracy of cassava plant disease, (Ahishakiye
et al., 2023), proposed ensemble model combining Generalised Learn-
ing Vector Quantisation (GLVQ), Generalised Matrix LVQ (GMLVQ),
and Local Generalised Matrix LVQ (LGMLVQ). Their work achieves an
accuracy of 82% (100% with overfitting) using the ensemble model.
This work also builds on these findings about the advantage of en-
semble models, which in the case of this study combine semantic
technology with DL, and addresses the limitations of explainability
that have not been addressed by these studies. (Paiva-Peredo, 2023)
similarly conducted a study on the classification of cassava disease
using pretrained models such as VGG16, RASNET50, and MobileNetV2.
A total of 12 different models were examined for cassava disease
classification. Paiva-Peredo achieved the best accuracy of 74.77% with
DenseNet169.

Similar to other studies, (Chen et al., 2022) conducted studies on
cassava disease classification using pretrained models like EfficientNet.
However, unlike other works, (Chen et al., 2022) proposed a cross-
entropy loss and demonstrated the robustness of cross-entropy loss in
noisy datasets, achieving an accuracy of 89.3%. This work, particularly
the DL, makes use of the cross-entropy loss, takes advantage of the
findings of (Chen et al., 2022), and makes further improvements both in

terms of accuracy and explainability. Unlike previous studies, (Anitha &
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Saranya, 2022) demonstrated the benefits of the data augmentation for
cassava disease achieving an accuracy 90%. Their work makes use of
convolutional neural network (CNN). A similar benefit of data augmen-
tation has been demonstrated by (Riaz et al., 2022) for cassava disease
classification. Their work uses the pretrained DL model EfficiennetB3
and achieves an accuracy of 83.03%. As with the case of (Chen et al.,
2022), this work also takes advantage of these findings about the data
augmentation.

(Too et al., 2019) conduct a comparative study of the fine-tuning of
DL models: VGG 16, Inception V4, ResNet with 50, 101, and 152 layers,
and DenseNets with 121 layers, for identifying plant diseases based
on images of leaves. According to their analysis of the plantVillage
dataset, the DenseNets model outperforms other models, achieving
an accuracy of up to 99.75%. (Atila et al., 2021) also conducted a
comparative study and discovered that EfficientNet B5 and B4 were the
most effective models on the plantVillage dataset, even outperforming
Too et al.’s (Too et al., 2019) discovery of DenseNets.

(Chen et al., 2021) and (Ferentinos, 2018) investigated the plant
disease. Similar to (Too et al., 2019), their research focuses on using
plant leaf images for disease detection (or classification) and employs
computer vision based on DL. The (Ferentinos, 2018) study uses an
open database containing images of 25 different plants, and (Chen
et al., 2021) use the dataset from the Fujian Institute of Subtropical
Botany in Xiamen, China. (Chen et al., 2021) introduced location-
wise soft attention to pre-trained MobileNet-V2, improving disease
identification. On the other hand, (Ferentinos, 2018) evaluated the
specific convolutional neural network (CNN) models, such as AlexNe-
tOWTBn, GoogLeNet and VGG. (Ferentinos, 2018) made an important
discovery that CNN models trained on images of laboratory conditions
perform significantly worse in the real-world, dropping a success rate
(i.e. accuracy of detection) as low as 33%.

Similarly, (Abbas et al., 2021; Ashwinkumar et al., 2022; Bedi
& Gole, 2021; Nagasubramanian et al., 2019; Roy & Bhaduri, 2021;
Sahu & Sinha, 2022) and (Shah et al., 2022) conducted studies on
plant disease detection and classification using images (of plant leaves)
and CNN models such as VGG-FCN-VD16, VGG-FCN-S, DenseNet121,
and ResNet50. The study of (Shah et al., 2022), similarly to (Too
et al., 2019), uses the plantVillage dataset. However, unlike (Too
et al., 2019), which focuses on comparative studies, the work of (Shah
et al., 2022) concentrates on interpretability via visualisation. The
study of (Ashwinkumar et al., 2022), on the other hand, proposed an
automated model for detecting and classifying plant leaf diseases and
used MobileNet and emperor penguin optimiser algorithm. The pro-
posed model was evaluated by conducting a simulated experiment. The
study of (Abbas et al., 2021) focuses on tomato disease classification
and uses DenseNet121 and plantVillage datasets. However, unlike other
studies using the plantVillage dataset, the study of (Abbas et al., 2021),
in addition to DenseNet121, also employs conditional generative adver-
sarial networks to generate synthetic images to complement the lack
of data. (Roy & Bhaduri, 2021) conducted a multi-class plant disease
classification using an improved version of the YOLOV4 (Bochkovskiy
et al., 2020) algorithm, while (Sahu & Sinha, 2022) showed an improve-
ment in disease classification using transfer learning with models such
as VGG-16, Inception V3, and ResNet50. (Bedi & Gole, 2021), however,
proposed a hybrid approach based on CNN and a convolutional autoen-
coder (CAE) network, where CAE is used to reduce the dimensionality
of the input leaf images and CNN to classify the disease based on the
image.

This study addresses the three major limitations of previously dis-
cussed studies. They are: (i) not including domain knowledge; (ii) only
using the limited contextual information of images; and (iii) the lack of
user-level explainability along with the performance improvement.
4

2.3. Semantic-based studies

(Jearanaiwongkul et al., 2018) propose a semantics-based system
(i.e. system architecture) for identifying rice diseases. In addition, a
rice disease ontology (Detras et al., 2016) was developed by reusing
the rice ontology, plant protection ontology (Halabi, 2009), and plant
disease ontology (American Phytopathological Society, 2016). The au-
thors further show how the developed ontology can be used given a
farmer’s observation. However, the presented system architecture is
yet to be implemented. Similarly, (Lacasta et al., 2018) present their
work on an agricultural recommendation system based on SPARQL
(SPARQL Protocol and Resource Description Framework Query Lan-
guage) queries for crop protection to help with the identification of
pests and selection of suitable treatments. To facilitate the recommen-
dation system, the authors developed the ‘‘Pests in Crops and their
Treatments’’ ontology. (Rodríguez-García et al., 2021) present their re-
search on integrated pest management (IPM), a decision support system
for crop pest identification and disease recognition. The purpose of
their work is to reduce the virulence of the pests and also to manage the
disease. Their work incorporates the CropPestO ontology (Rodríguez-
García & García-Sánchez, 2020) and natural language processing (NLP)
into a symptom analyser to provide a diagnosis and treatment based
on the symptoms provided. Due to the fact that the ontology is pop-
ulated with information from the official Spanish guide, it is only
helpful for Spanish-speaking users. (Lagos-Ortiz et al., 2017), similar
to (Rodríguez-García et al., 2021), present a decision support system
to assist farmers in making effective decisions regarding the diagnosis
of plant disease. Similar to other semantics-based studies, their work
is dependent on ontology, specifically the phytopathology ontology.
The phytopathology ontology is developed by reusing the plant disease
ontology (American Phytopathological Society, 2016).

Similar to the case of ML-based studies discussed in Section 2.2,
this work also takes advantage of existing semantic-based studies, such
as (Jearanaiwongkul et al., 2018). In particular, this study addresses the
following major limitations of semantic-based approaches: (i) their in-
ability to learn complex patterns like DL; and (ii) improving prediction
accuracy.

3. Materials and methods

This section describes the proposed approach. However, prior to
discussing the proposed approach, the ontology modelling will be
discussed in Section 3.1. This is because ontology is one of the core
components of the proposed approach and ontology also supports the
generation of user-comprehensible natural language explanations about
disease. Section 3.2 provides details about the proposed approach that
combines the semantic technology and DL.

3.1. Ontology modelling

This section describes the ontology utilised in this research. Sec-
tion 3.1.1 describes the ontology requirements (i.e. the ontology’s
scope). Section 3.1.2 describes the ontology’s development, which fol-
lows the ontology development guidelines from (Noy & McGuinness,
2001).

3.1.1. Ontology requirements
The first step to developing any ontology is to define the scope of

the ontology, such as what it covers (or should model). The scope of
the ontology in this research is as follows:

• The ontology should cover three different categories (or do-
mains), namely, sensor observations, cassava plant disease, and
cassava plant environments.

• The ontology should be able to classify the cassava disease based
on the sensor observations information in an understandable

manner.
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Fig. 2. Domain ontology.
Following the scope, the ontology should be able to answer the com-
petency questions (CQs), which were derived based on the research
question. The CQs are as follows:

1. What are all the possible diseases that cassava plants could have?
2. What is the possible disease that cassava plants can have the

following symptoms of A, B, . . . ?
3. How is the cassava plant’s environment and the sensor observa-

tion related to the cassava plant?
4. What are the symptoms of a cassava plant with disease X?
5. What diseases are caused by viruses (or bacteria, or fungi)?

3.1.2. Ontology development
Fig. 2 shows the ontology, which was developed based on the CQs

outlined in Section 3.1.1. The ontology makes use of the SOSA (Sensor,
Observation, Sample, and Actuator) ontology (Janowicz et al., 2019),
whose concepts are denoted by the prefix 𝑠𝑜𝑠𝑎 in Fig. 2. Numerous
ontologies exist for plant diseases, such as the plant stress ontology.1 In
addition, there is a cassava ontology2 that models information such as
cassava characteristics. The existing ontologies are modelled as exhaus-
tive knowledge sources, which differs from the use case of this study
and necessitates the creation of a new ontology for cassava disease. In
order to develop the ontology, the disease hierarchy from (Jearanai-
wongkul et al., 2018) study is adopted, in which they modelled the
rice disease. The ontology used in this study can be easily expanded
to include information from other ontologies, including the cassava
ontology and the plant stress ontology. The modelled cassava disease
in the ontology of this study is marked by the prefix 𝑐𝑎𝑠𝑠𝑎𝑣𝑎− 𝑑𝑖𝑠𝑒𝑎𝑠𝑒,
as can be seen in Fig. 2.

The 𝑐𝑎𝑠𝑠𝑎𝑣𝑎− 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝑃 𝑙𝑎𝑛𝑡𝐷𝑖𝑠𝑒𝑎𝑠𝑒 models the information about
the cassava disease with its subclass 𝑐𝑎𝑠𝑠𝑎𝑣𝑎−𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙𝑃 𝑙𝑎𝑛𝑡−
𝐷𝑖𝑠𝑒𝑎𝑠𝑒, 𝑐𝑎𝑠𝑠𝑎𝑣𝑎− 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝑉 𝑖𝑟𝑎𝑙𝑃 𝑙𝑎𝑛𝑡𝐷𝑖𝑠𝑒𝑎𝑠𝑒 and 𝑐𝑎𝑠𝑠𝑎𝑣𝑎− 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶
𝐹𝑢𝑛𝑔𝑎𝑙𝑃 𝑙𝑎𝑛𝑡𝐷𝑖𝑠𝑒𝑎𝑠𝑒 in a similar fashion as (Jearanaiwongkul et al.,
2018). The cassava disease symptoms are modelled using class 𝑐𝑎𝑠𝑠𝑎𝑣𝑎−
𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑆𝑦𝑚𝑝𝑡𝑜𝑚. To model the information about the field,
the classes 𝑐𝑎𝑠𝑠𝑎𝑣𝑎 − 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝑆𝑜𝑖𝑙 and 𝑐𝑎𝑠𝑠𝑎𝑣𝑎 − 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝐹 𝑖𝑒𝑙𝑑 were
used. The classes 𝑐𝑎𝑠𝑠𝑎𝑣𝑎−𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝑆𝑜𝑖𝑙 and 𝑐𝑎𝑠𝑠𝑎𝑣𝑎−𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝐹 𝑖𝑒𝑙𝑑
are also connected to the sensor ontology for observing specific prop-
erties such as humidity. Moreover, the classes 𝑐𝑎𝑠𝑠𝑎𝑣𝑎 − 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝑆𝑜𝑖𝑙
and 𝑐𝑎𝑠𝑠𝑎𝑣𝑎− 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝐹 𝑖𝑒𝑙𝑑 are also connected to the class 𝑐𝑎𝑠𝑠𝑎𝑣𝑎−
𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝑃 𝑙𝑎𝑛𝑡. This is because the conditions of the field will have an
impact on the plant’s disease and are connected via object properties
𝑐𝑎𝑠𝑠𝑎𝑣𝑎 − 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝑖𝑠𝑃 𝑙𝑎𝑛𝑡𝑒𝑑𝐼𝑛 and 𝑐𝑎𝑠𝑠𝑎𝑣𝑎 − 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ ℎ𝑎𝑠𝑃 𝑙𝑎𝑛𝑡. The

1 https://wiki.plantontology.org/index.php/Plant_Stress_Ontology
2 https://cropontology.org/ontology/CO_334
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concept 𝑐𝑎𝑠𝑠𝑎𝑣𝑎−𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is introduced to have more
fine-grained information about the cassava disease and represents the
conditions that are favourable for the occurrence of the disease. The
𝑐𝑎𝑠𝑠𝑎𝑣𝑎 − 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∶ 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 class is linked to a disease with
the property enablesDisease, and its inverse enabledByCondition, which
allows to infer the disease given certain disease conditions.

3.2. Proposed approach

This section describes the proposed approach in detail. Fig. 3 illus-
trates the proposed method, which combines DL and semantic technol-
ogy to improve cassava disease prediction and enable explainability.
As shown in Fig. 3, the proposed method consists of three major ele-
ments: the vision model, the semantic model, and the decision engine.
This is based on a microservices strategy where each component of
the software is built separately based on its functionality. Moreover,
the proposed approach is also implemented as deployable software
following the microservices strategy (see Section 4.3). The high-level
overview of the proposed approach, which is discussed in detail in the
subsequent sections, is summarised as follows:

• First, the cassava image is taken and passed through the vision
model, which performs the image classification using the vision
transformer, from which the prediction result is obtained in terms
of the prediction probability.

• Second, the sensor information, such as temperature and soil
moisture, is passed through the semantic model, which also per-
forms the classification but using semantic technology, i.e. do-
main ontology and reasoning using Semantic Web Rule Language
(SWRL) rules. Similar to the case of the vision model, the output is
obtained in terms of prediction probability. In addition to the pre-
diction probability, the symptoms information and explanations
are also obtained as outputs.

• Finally, the prediction results from the vision model and semantic
model are combined (or ensembled) using weighted majority
voting. In the proposed approach, the component that performs
this task is referred to as the decision engine. After combining
the predictions, the explanations are generated by fetching the
information from the domain ontology.

3.2.1. Vision model
The vision model performs the image classification task, making dis-

ease predictions based on cassava image data. This research utilises the
vision transformer within the vision model. However, the experiment

https://wiki.plantontology.org/index.php/Plant_Stress_Ontology
https://cropontology.org/ontology/CO_334


Expert Systems With Applications 233 (2023) 120955T.R. Chhetri et al.
Fig. 3. Proposed approach.
with other pre-trained models such as RESNEXT50_32X43 and Efficient-
NetV2S (Tan & Le, 2021b) were also performed. In contrast to CNN, the
vision transformer is the most recent advancement in computer vision
and is utilised by the vision model. The vision transformer, via the
attention mechanism, enables the modelling of long-range dependen-
cies and provides greater flexibility for modelling visual content (Yuan
et al., 2021). The vision model in this study employs the state-of-the-art
vision transformer, vision outlooker (VOLO), from (Yuan et al., 2021),
the first model of its kind to achieve an accuracy of greater than 87% on
the ImageNet4-1K benchmark dataset without additional training data.
VOLO improves by introducing a lightweight attention mechanism
that can represent fine-level information based on aggregation and
extrapolation and reduces the complexity of expensive dot products
(i.e. Softmax(𝑄𝑇𝐾∕

√

𝑑), where d is a dimension) by linear projection.
The vision model receives the image as input and generates a

prediction regarding the plant’s health, whether it is healthy or infected
with a particular disease. The output of the prediction is the predicted
probability, which indicates the likelihood that a particular disease will
occur.

3.2.2. Semantic model
The semantic model, as its name suggests, is based on semantic tech-

nology and is the second component of the proposed methodology. The
semantic model performs SWRL (Semantic Web Rule Language) (Hor-
rocks et al., 2004) reasoning over the input sensor observation, such as
soil temperature, soil moisture, and relative humidity, using the domain
ontology (see Section 3.1). The SWRL reasoning can be defined as a
reasoning that corresponds to finding new assertions �̂� ∋ 𝐴 ∈ 𝐻
based on the set of SWRL rules 𝑅 of the form 𝑅 = 𝐵 → 𝐻 applied
on the domain ontology 𝑂 of the form 𝑂 = (𝑇 ,𝐴), where 𝑇 refers
to the terms (also called the vocabulary) that capture the particular
domain and is the union of the classes (𝐶) and properties (𝑃 ). The
𝐴 ∋ 𝐴𝐶 ∪𝐴𝑃 in ontology denotes assertions made regarding classes and
properties. The 𝐵 in the SWRL rules represent the body axioms, also
called as antecedent and 𝐻 , which is also referred to as consequent,
is the head axiom. Fig. 4 shows the snippet of the SWRL rule used
in this study, where ℎ𝑎𝑠𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(?𝑝𝑙𝑎𝑛𝑡, 𝐶𝐵𝐵𝑆𝑜𝑖𝑙𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) ∈ 𝐻
and the remaining belongs to 𝐵. The SWRL rule in Fig. 4 is use for

3 Dhttps://pytorch.org/vision/main/models/generated/torchvision.models.
resnext50_32x4d.html

4 https://www.image-net.org
6

Fig. 4. A snippet of the CBB disease SWRL rule based on observations of soil
temperature that is utilised by the semantic model for disease classification.

predicting CBB (cassava bacterial blight) disease based on the soil
temperature (or sensor observation). The inference model component
of the semantic model performs the reasoning. Like the vision model,
the semantic model yields the final output in terms of probability. In
contrast to the vision model, the semantic model also generates disease
explanations based on the reasoning result (or prediction) using the
domain ontology. Since no sensor dataset is available, the simulated
sensor data (see Section 4.1) are used for the semantic model. Fig. 5
shows semantic model prediction.

Following is a summary of the overall steps involved in the semantic
model:

• First, inference model component of the semantic model obtains
the sensor observation, such as temperature and soil moisture.

• The inference model then populates (or annotates) the domain
ontology with the received sensor observation (i.e. creates KG
instance).

• Lastly, the corresponding SWRL based on sensor observations is
retrieved, and reasoning is performed for disease prediction.

3.2.3. Decision engine
The decision engine combines (or ensembles) the predictions from

the vision model and the semantic model to produce the final predic-
tion. The steps involved in combining the results of the semantic model
and vision model are depicted in Algorithm 1. As shown in Algorithm 1,
the predictions represented by the probabilities from the vision model
(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑉 𝑖𝑠𝑖𝑜𝑛𝑚𝑜𝑑𝑒𝑙) and semantic model (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑚𝑜𝑑𝑒𝑙)
are obtained. The predictions from the vision model and the semantic
model are then ensembled (𝑓𝑖𝑛𝑎𝑙𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛). The weighted majority

https://pytorch.org/vision/main/models/generated/torchvision.models.resnext50_32x4d.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnext50_32x4d.html
https://www.image-net.org
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Fig. 5. A snippet of prediction from the semantic model after performing SWRL reasoning over the sensor observation.
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voting (Raschka & Mirjalili, 2017), as indicated by Eq. (1), is used for
ensembling the prediction results. The reason for considering weighted
majority voting is that it allows for fine-grained control over the
prediction results, as a greater weight can be assigned to the classifier
on which one wishes to rely. This is beneficial in certain situations, like
those with poor visibility. For instance, during periods of poor visibility,
such as the winter or rainy season, it may be desirable to rely on sensor
observations that are not affected by inclement weather, which in the
case of this study is the semantic model. This can be accomplished
by assigning a greater weight to the semantic model’s predictions. 𝑖
epresents the classifier and 𝑝𝑐𝑖 represents the predicted probability.
𝑖 in Eq. (1) is the weight of the classifier. In this study, there are

wo different classifiers: the semantic model and the vision model, and
herefore, the value of 𝑖 in Eq. (1) is 2. The CBSD (cassava brown streak
isease), CMD (cassava mosaic disease), CBB (cassava bacterial blight),
GM (cassava green mite) and Healthy in Eq. (1) represent different
lasses (or target variable).

For example, let 𝑝𝑣𝑖𝑠𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙 = [0.21, 0.05, 0.05, 0.19, 0.5]5 be the
rediction (i.e. as predicted probability) from the vision model and
𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐_𝑚𝑜𝑑𝑒𝑙 = [0.49, 0.3, 0.4, 0.5, 0.19] be the prediction from the seman-
ic model. With only a vision model, the prediction would be ℎ𝑒𝑎𝑙𝑡ℎ𝑦
nd the prediction only based on a semantic model would be the 𝐶𝑀𝐷.
ow, if the weight 𝑤𝑣𝑖𝑠𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙 = 0.3 is assigned to the vision model
nd 𝑤𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐_𝑚𝑜𝑑𝑒𝑙 = 0.8 to the semantic model, the resulting prediction
ould be 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑒𝑛𝑔𝑖𝑛𝑒 = [0.414, 0.232, 0.305, 0.415, 0.275] and

he disease (or resulting target label) would be 𝐶𝑀𝐷. However, if the
eight is changed as 𝑤𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐_𝑚𝑜𝑑𝑒𝑙 = 𝑤𝑣𝑖𝑠𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙 = 0.5, the final pre-
iction would be 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑒𝑛𝑔𝑖𝑛𝑒 = [0.35, 0.175, 0.225, 0.345, 0.345]

and the disease would be disease 𝐶𝐵𝐵. This weighted majority voting
approach used by the decision engine, therefore, allows fine-grained
control over the predictions. At the same time, if the weights differ by
a large margin, say 0.8 (or 80%), that can have a negative impact on
the prediction. Therefore, it is recommended not to have a large weight
difference unless one wishes to rely more on one model (or classifier).
Moreover it is recommended to utilise the suitable weights and finding
the suitable weights necessitates experimentation as the weights differs
from use case to use case similar to other ML hyperparameters.

Following the combination of the predictions from the vision model
and the semantic model, the final prediction is obtained. The final
prediction about the disease is then used for generating the user-
comprehensible natural language explanations. The explanations are
generated by retrieving disease information from the domain ontology
based on the final results of the prediction. The final prediction results,
along with the user-comprehensible explanations and the confidence

5 The probabilities of occurrence are as follows: CBB, CBSD, CGM, CMD,
nd Healthy.
7

score from the individual vision and semantic models, are returned in
a JSON (JavaScript Object Notation) format as shown in Fig. 6.
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑒𝑛𝑔𝑖𝑛𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐

∑𝑛
𝑖=1 𝑤𝑖𝑝𝑐𝑖

𝑐𝜖{𝐶𝐵𝐵,𝐶𝐵𝑆𝐷,𝐶𝐺𝑀,𝐶𝑀𝐷,𝐻𝑒𝑎𝑙𝑡ℎ𝑦}
𝑖 = {𝑉 𝑖𝑠𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙, 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑚𝑜𝑑𝑒𝑙}

(1)

Algorithm 1: Algorithm to combine the prediction results from the
vision model and semantic model
Input: Disease predictions from the semantic model and vision model
Output: Disease prediction with user-level explanation about disease
predictionVisionmodel ← Vision model predicted probability score;
predictionSemanticmodel ← Semantic model predicted probability score;
inalPrediction ← combine_predictions(predictionVisionmodel,
predictionSemanticmodel);
xplanation ← get_explanation_about_disease(finalPrediction);
inalResult← combine_results_for_user(finalPrediction, explanation,
predictionVisionmodel, predictionSemanticmodel);

eturn finalResult;

4. Experiment

This section provides details about the experiment. Section 4.1
provides information about the datasets and Section 4.2 provides in-
formation about the libraries and system used for the implementation
and to conduct experiment. Section 4.3 details the implementation of
the proposed approach as deployable software. In a similar fashion,
Section 4.4 describes the evaluation metrics, and Section 4.5 describes
training and testing.

4.1. Datasets

This research utilises the cassava image dataset made available by
the Makerere University AI Lab6 for training the convolutional neural
networks (or image classification). The Makerere University AI Lab
provided two distinct datasets for a Kaggle competition, one in 20197

and one in 2020.8 (Mwebaze et al., 2019) In this study the combined
dataset from (2019 and 2020), which is available at (Gohil, 2021)
is utilised. The combined dataset consists of 27053 image samples in
total. The dataset, along with the healthy images, contains the four
most common cassava diseases: CBSD, CMD, CBB and CGM. The details
about these diseases are available in the study by (Mwebaze et al.,
2019). Fig. 7 shows the distribution of four prevalent cassava diseases
and the healthy images in this study’s dataset. From Fig. 7, it can
observed that the dataset contains only a small number of healthy
samples, which is 2893, out of the total dataset. Moreover, it can also
be observed that the occurrence of the CMD disease is more prevalent,

6 https://air.ug/
7 https://www.kaggle.com/c/cassava-disease
8
 https://www.kaggle.com/c/cassava-leaf-disease-classification

https://air.ug/
https://www.kaggle.com/c/cassava-disease
https://www.kaggle.com/c/cassava-leaf-disease-classification
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Fig. 6. The final prediction result after combining the predictions from the vision model and semantic model along with the user-level explanations about the disease and the
rediction confidence of the vision model (visual_certainty) and semantic model (knowledge_certainty).
Fig. 7. Distribution of cassava image data based on target class labels.
which is why CMD occupies a large number of samples in the dataset,
followed by CBSD, CGM, and CBB.

The dataset was collected via crowd sourcing from approximately
200 farmers whose farms were located in various regions of Uganda
(Mwebaze et al., 2019); as a result, their quality varies, making it
challenging to perform computer vision tasks. Fig. 8 depicts the visu-
alisation of the images extracted from the dataset for each disease and
the healthy sample. The 2020 dataset contains additional complexities,
such as multiple diseases associated with each plant, in comparison to
the 2019 dataset (Mwebaze et al., 2019). Therefore, the complexity of
the combined dataset is anticipated to be greater.

The semantic model (or for semantics-based disease classification)
requires sensor data, such as soil information for cassava plants, but no
such dataset exists. Because of this, the simulated data were generated.
This approach to the generation and use of simulated data is inspired
by other areas of computer science like cloud computing, ML, and
predictive maintenance research, where, in the absence of real-world
data, simulated data is generated and used (Anzolin et al., 2021;
Fakhfakh et al., 2017; Greff et al., 2022; Kannammal et al., 2023;
Rawat et al., 2021). For example, in a study by Chhetri et al. in the
absence of target labels in the dataset, the target labels were generated
manually following the failure characteristics of the cloud computing
8

environment (Chhetri, Dehury, et al., 2022), which is a situation analo-
gous to the generation of cassava disease sensor data in this study. The
dataset was created using information obtained from experts about the
cassava plant. The simulated sensor data was generated with a uniform
distribution range for each of the five classes, simulating the favourable
disease condition. On the basis of available expert knowledge about
cassava plants, the distribution’s limits were chosen manually so that
the probability 𝑝 of a certain condition occurring is 50 < 𝑝 <= 65.
Moreover, Table 1 shows the simulated sensor data for each of the
cassava diseases. The minimum and maximum values (i.e. indicated
by 𝑀𝑖𝑛 and 𝑀𝑎𝑥) in Table 1 indicate the limits of the uniform dis-
tribution, while the 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 indicates the likelihood that the input
will fall within the specified disease. The lower and upper boundaries
(i.e. 𝐿𝑜𝑤𝑒𝑟 and 𝑈𝑝𝑝𝑒𝑟 in Table 1) indicate the rule boundaries used
in the SWRL reasoning for semantics-based classification. In the case
of ‘‘healthy’’, however, there is no probability value. This is because,
for other diseases, the same value of sensor observation can cause
different diseases. For example, if the soil moisture value is 0.5, then
it could lead to both CBB and CBSD. This is not the case in the case
of ‘‘healthy’’ and is the reason for not having the probability value.
The effects of moisture, humidity, PH (Potential of Hydrogen), and

temperature on crops (i.e. including cassava) have been extensively
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Fig. 8. Images of cassava corresponding to the five classes in the dataset, including healthy cassava leaves and four prevalent diseases.
Table 1
The rules that are used for generating sensor data. Moisture and relative humidity are
measured in percentage, indicated by the range 0–1, and temperature in degrees Celsius
(0–100). The PH is measured in units between 0–14.

Disease Sensor Lower Upper Min Max Probability

CBB
Soil moisture 0.3 1 0.1 1 77.78%
Soil PH 6.5 7.2 6.3 7.5 58.33%
Soil temperature 25 30 23 31 62.50%

CBSD
Relative humidity 0.7 0.85 0.65 0.88 65.22%
Soil moisture 0.1 1 0 1 90.00%
Soil temperature 10 32 5 33 78.57%

CGM
Soil moisture 0.7 1 0.55 1 66.67%
Relative humidity 0.7 1 0.6 1 75.00%
Soil temperature 27 40 24 40 81.25%

CMD

Temperature 30 50 24 50 76.92%
Soil moisture 0.3 1 0.1 1 77.78%
Soil temperature 20 32 18 34 75.00%
Relative humidity 0.8 1 0.7 1 66.67%

Healthy

Soil moisture – – 0.2 0.8 –
Soil moisture – – 0.2 0.8 –
Soil temperature – – 5 40 –
Relative humidity – – 0.2 0.8 –
temperature – – 10 50 –
Soil PH – – 3 10 –

studied, therefore, the readers are recommended to studies (Luampon
& Charmongkolpradit, 2019; Seena Radhakrishnan et al., 2022) for
additional information on their implications.

4.2. System setup

This section describes the software and libraries utilised in the im-
plementation of the proposed system. In addition, this section includes
details about the systems used to conduct the experiment.

Table 4 shows the list of the libraries and software that were utilised
to implement the proposed work. The implementation is performed
in the Python,9 programming language. Docker10 FastAPI,11 and Re-
quests12 are used to modularise the implementation. Owlready213 is
used to deal with the semantic model, namely, ontologies and KGs,
and to perform reasoning. PyTorch14 is used for the implementation
of the vision model and BentoML15 is used for model serving purposes.
The library timm16 is used for model implementations and ImageNet
weights.

The supercomputer LEO417 is used to perform the experiment. LEO4
is a high performance compute cluster at the University of Innsbruck.
Table 2 shows the overall configuration of the LEO4. LEO4 consists
of a total of 50 nodes totalling 1452 cores and a total memory of 8.4
terabytes. LEO4 is powered by either Broadwell or Skylake Intel Xeon

9 https://www.python.org/
10 https://www.docker.com/
11 https://fastapi.tiangolo.com/
12 https://requests.readthedocs.io/en/latest/
13 https://owlready2.readthedocs.io/en/v0.37/
14 https://pytorch.org/
15 https://docs.bentoml.org/en/latest/
16 https://timm.fast.ai/
17 https://www.uibk.ac.at/zid/systeme/hpc-systeme/leo4/
9

Table 2
Overall configuration of the LEO4.

Node type Nodes Cores/Nodes Memory/Nodes GPUs

Standard 44 28 × Broadwell 64 GB –
Big memory 4 28 × Broadwell 512 GB –
Fat memory 1 80 × Skylake 3000 GB –
GPU 1 28 × Skylake 384 GB 4 × Nvidia Tesla V100

Table 3
Specification of Nvidia Tesla V100 GPU used in LEO4.

Performance

Double precision 7.8 TFlop/s (Teraflops per second)
Single precision 15.7 TFlop/s
Tensor 31.3 TFlop/s

125 TFlop/s

Interconnect NVLINK 300 GB/s

Memory Capacity 32 GB
Bandwidth 900 GB/s

Table 4
A list of the libraries and software used to implement
the proposed method.
Libraries/Software Version

Python 3.10
Docker 20.10
Owlready2 0.37
FastAPI 0.75.1
Requests 2.27.1
BentoML 1.0.0a7
PyTorch 1.12.0
timm 0.6.5

processors. Similarly, the LEO4 GPU (graphics processing unit) node
utilised in the experiment consists of 4 Nvidia Tesla V10018 GPUs with a
total memory of 384 GB (gigabytes) per node. Table 3 shows the detail
specification of the LEO4 GPU, Nvidia Tesla V10019 providing details on
performance, memory and interconnectivity. In particular, GPU used in
LEO4 has NVLink20 connectivity for high-speed data transfer. Moreover,
the LEO4 uses a high-performance, low latency 100 Gb/s (gigabits per
second) infiniband interconnect for MPI (Message Passing Interface)
communications in order to communicate between nodes and GPFS
(General Parallel File System) file system.

4.3. Implementation

This section describes the implementation details of the proposed
approach as deployable software to facilitate the reusability and acces-
sibility of the proposed work in real-world deployment scenarios. The
implementation follows the microservices strategy (or architecture).
This is because of the scalability that microservices offer. The microser-
vices allow scaling of the individual components independently. With
the microservices architecture, for instance, compute-intensive system

18 https://www.nvidia.com/en-us/data-center/v100/
19 https://www.uibk.ac.at/zid/systeme/hpc-systeme/common/software/

leo-gpu.html
20 https://www.nvidia.com/en-us/data-center/nvlink/

https://www.python.org/
https://www.docker.com/
https://fastapi.tiangolo.com/
https://requests.readthedocs.io/en/latest/
https://owlready2.readthedocs.io/en/v0.37/
https://pytorch.org/
https://docs.bentoml.org/en/latest/
https://timm.fast.ai/
https://www.uibk.ac.at/zid/systeme/hpc-systeme/leo4/
https://www.nvidia.com/en-us/data-center/v100/
https://www.uibk.ac.at/zid/systeme/hpc-systeme/common/software/leo-gpu.html
https://www.uibk.ac.at/zid/systeme/hpc-systeme/common/software/leo-gpu.html
https://www.nvidia.com/en-us/data-center/nvlink/
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components can be deployed on high-performance servers or cloud
systems. The source code for the implementation and other resources,
such as ontology, are available at (Chhetri, Hohenegger, et al., 2022).

For the implementation of the vision model service, BentoML is
used, which is an open-source model serving framework at a production
scale and provides easy deployment of the ML models (see footnote
15). The implementation of BentoML for model serving includes the
following steps: (i) saving the trained model weight with BentoML; (ii)
defining the service configuration, such as defining the API (Application
Programming Interface) service for prediction using the @svc.api dec-
orator; and (ii) performing input image preprocessing, such as resizing.
The runner is then invoked, which translates the API definition into an
HTTP (Hypertext Transfer Protocol) endpoint /predict for making a
rediction.

The semantic model (or semantic classifier) REST (Representational
tate Transfer) Service implementation makes use of libraries such
s FastAPI and Owlready2 and the domain ontology. The seman-
ic model consists of the three endpoints. /soils/{soil_id}/
bservations is used for sensor observations of soil data, such
s soil temperature. The second endpoint, /fields/{field_id}/
bservations, is used for observations in the field, such as whether

t rained. The endpoint /plants/{plant_id}/disease-vector
s used to retrieve the specific disease information about the particular
lant based on its unique identifier (ID). The ID in this study is
nitialised as a number between 1–6. Using the domain ontology and
WRL reasoning, the disease information is retrieved. Pellet Reasoner
vailable in Owlready2 is used to perform the reasoning. In addition,
n order to prevent any unnecessary inconsistencies in predictions, the
revious observations are deleted. The domain ontology, which is saved
s OWL file, is loaded at service startup and stored in an internal triple
tore.

The decision engine, which is implemented as another service com-
onent, consists of the realisation of the decision engine steps out-
ined in Section 3.2. The decision engine takes the image and plant
nformation as an input and calls REST endpoints /predict and
plants/{plant_id}/disease-vector from the image classi-

ier service component and semantic models service component to
btain the predictions. The obtained predictions are then combined to
roduce the final prediction along with their explanations. The relevant
nformation is retrieved from the domain ontology and the explanations
re generated based on the obtained predictions.

.4. Evaluation metrics

In ML, the evaluation metrics help to understand the performance
f the model (or how well the model is likely to perform) in an untested
cenario. In this study, the evaluation of the proposed approach is made
n terms of accuracy and prediction latency to make the inference.

.4.1. Accuracy, precision, recall and F1 score
The accuracy measures the overall correct predictions made by the

odel. Precision, also known as the positive predicted value, measures
he model’s exactness, i.e. the proportion of positives correctly identi-
ied, whereas recall measures the actual positives correctly identified.
ecall is also known as sensitivity or the rate of true positives. The F1
core represents the harmonic mean of the precision and recall.

Accuracy, precision, recall and F1 score can be calculated using Eqs.
2), (3), (4) and (5) respectively. In Eqs. (2), (3), and (4), the 𝑇𝑃 stands
or the true positive value and the 𝑇𝑁 for the true negative. In the
ame way, 𝐹𝑃 in represents a false positive, and 𝐹𝑁 is a false negative.

True positives and true negatives are values that the model accurately
predicts for both the positive and negative class labels, in this case,
cassava disease and healthy. The false positive, on the other hand, is the
10

prediction that is identified by the model as positive while in reality, it
is not. The false negative, however, is similar to the false positive but
for the negative class.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(3)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(4)

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(5)

4.4.2. Prediction latency
The prediction latency quantifies the time required to make a

prediction. The prediction latency is measured by calculating the dif-
ference between the invocation and response time using Eq. (6). The
𝑡𝑖 in Eq. (6) represents the prediction invocation time and 𝑡𝑟 is the
esponse time.

𝑎𝑡𝑒𝑛𝑐𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑡𝑖 − 𝑡𝑟 (6)

.5. Training and testing

This section describes the training and testing of the different pre-
rained models, RESNEXT50 (Xie et al., 2017), EfficientNetV2S (Tan

Le, 2021a) and VOLO, that were experimented with. These models,
ESNEXT50, EfficientNetV2S, and VOLO, were chosen based on their
uperior performance, which has been shown in earlier studies such
s (Chen et al., 2022) and (Ravi et al., 2022). In addition, this sec-
ion describes the testing of the proposed method that combines the
redictions from the vision model and the semantic model.

The training and testing of the different pre-trained models, VOLO,
fficientNetV2S and RESNEXT50 was performed using the cassava
mage dataset (see Section 4.1). 80% of the dataset was used for
raining, and the remaining 20% was used for testing. Fig. 9 illustrates
he distribution of the test data, which demonstrates that, similar to
he original dataset, the test data is unbalanced. Transfer learning was
tilised for the model’s training using Pytorch. Similarly, the library
imm was used to load the model and pretrained ImageNet weights.
he hyperparameters used for different pre-trained models for training
re specified in Table 5. The values of the hyperparameters in this
tudy were determined based on experimentation and the authors’ prior
xperience with ML research (Chhetri, Dehury, et al., 2022; Chhetri,
urteva, et al., 2022). The training was performed over 10 epochs with
batch size of 32 for RESNEXT50_32X4D and 16 for EfficientNetV2S

nd VOLO. The other significant criterion is the learning rate, which
etermines the success of the learning process (how well the algorithm
earns). The Adam optimiser21 with a learning rate of 10−4 and weight
ecay of 10−6 is employed. The Adam optimiser is an adaptive learning
ate optimiser capable of handling dynamic situations, such as a loss
hat is either increasing or decreasing. Moreover, the learning rate
cheduler is also used with a cosine annealing schedule with warm
estarts (Loshchilov & Hutter, 2016). As a loss function, the Taylor
ross Entropy Loss (Feng et al., 2021) with label smoothing (Müller
t al., 2019) is used, which has been demonstrated to be robust against
he noisy dataset (Chen et al., 2022). A value of 0.05 is used for label
moothing. Additionally, following the findings of the previous works,
he different data augmentation techniques are used, details of which
re available in Table 5. In the case of the semantic models, however,
o training is required as the semantic models are based on SWRL rules
nd the rules are defined manually.

In the case of the testing, however, different levels of testing were
erformed. The different tests that were performed are presented be-
ow.

21 https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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Fig. 9. Class-based distribution of test cassava image data.
Table 5
Hyperparameters of various CNN-based vision models and a vision transformer, where LR is the learning rate, p is the probability, std is the
standard deviation, T_0 represents the number of iterations for the first restart, T_mult is a factor increase for 𝑇𝑖 after restart and eta_min is
the minimum LR.

Model Batch
size

Hyperparameters

LR Loss LR scheduling Data augmentation

RESNEXT50_32X4D 32 1.00E−04 Taylor cross
entropy loss
with label
smoothing

Cosine
annealing
warm restarts
scheduling
with T_0 =
10,
T_mult = 1
and
eta_min =
1e-6

RandomResizedCrop
HorizontalFlip (p = 0.5)
Transpose (p = 0.5)
VerticalFlip (p = 0.5)
ShiftScaleRotate (p = 0.5)
Normalise(
mean = [0.485, 0.456, 0.406],
std = [0.229, 0.224, 0.225],)

EfficientNetV2S (256 × 256) 16
EfficientNetV2S (384 × 384) 16
VOLO-D1 (224 × 224) 16
VOLO-D2 (224 × 224) 16
VOLO-D1 (384 × 384) 16
VOLO-D2 (384 × 384) 16
1. The first test are conducted on the various pre-trained computer
vision models that are being examined. 20% of the test cassava
dataset was used for this purpose.

2. The second evaluation concerned the proposed method, which
combines a semantic model and a vision model to improve the
accuracy of disease predictions and provide user-level disease
explanations. As different computer vision models are experi-
mented with, the one with the highest performance is selected
(evaluated in Step 1) to combine with the semantic model. The
explainability was evaluated qualitatively using three identified
dimensions: (i) correctness, i.e. if the generated explanations are
correct; (ii) usefulness, i.e. whether the generated explanations
are helpful to the users; and (iii) comprehension, i.e. whether the
generated explanations are understandable to the users. The ac-
curacy of the explanations was manually examined by inspecting
the explanations that were generated. Regarding the remaining
two dimensions, comprehension and usefulness, an online sur-
vey22 was conducted. The survey asked participants if they were
able to understand the SHAP-based explanations as well as the
explanations provided by the proposed approach. The survey

22 The survey questions are available in GitHub where the code is stored.
11
also asked about the usefulness of these explanations, both based
on SHAP and the proposed method in terms of understanding the
disease. In addition to questions about explainability, the survey
also asked questions related to demographics, age groups, and
education. The details of how the survey is conducted and the
evaluations will be presented in Section 5

3. The third test is about latency. As this study implements the pro-
posed approach into a fully deployable system (see Section 4.3),
the prediction latency is also evaluated.

The results of the tests conducted will be discussed in Section 5.

5. Results and discussion

This section provides the experimental results from the experiment
in this study. Moreover, this study also provides a comparison of the
experimental results with the state-of-the-art study.

As discussed in Section 4.5, the first evaluation is about pre-trained
models. Table 6 shows the accuracy of the vision transformer, VOLO,
and also other CNN models, such as EfficientNetV2S and RESNEXT50,
that were experimented with. In the result of the vision model, only
the accuracy score of the models experimented with except for the
best model, for which the precision, recall, and f1 score were also
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Table 6
A performance comparison of various CNN-based vision models and a
vision transformer.
Model Image size Accuracy (%)

RESNEXT50_32X4D 256 × 256 0.8721
EfficientNetV2S 256 × 256 0.8785
EfficientNetV2S 384 × 384 0.8840
VOLO-D1 224 × 224 0.8256
VOLO-D2 224 × 224 0.8764
VOLO-D1 384 × 384 0.8914
VOLO-D2 384 × 384 0.8964

recorded. The reason for only recording accuracy, despite the fact
that sometimes accuracy can be deceptive, is because of the test data
distribution (see Section 4.5), which is unbalanced but not in such a
manner that it can lead to deceptive results. This is also consistent
with other studies (Chen et al., 2022; Paiva-Peredo, 2023) that are
used for comparison with the work of this study, which also only
records accuracy. From Table 6, it can be observed that the VOLO
(or vision transformer) clearly outperforms the corresponding CNN
models. The other interesting observation that can be made is that the
VOLO is also the model with the lowest performance. The VOLO-D1
with an image size of 224 is the model with the lowest performance,
while the VOLO-D2 with an image size of 384 is the model with the
highest performance. Moreover, the precision, recall, and F1 scores for
the best performing model, VOLO-D2, are 0.828, 0.807, and 0.818,
respectively, indicating the robustness of the model. However, the
accuracy of the VOLO in this study is consistent with the original study,
in which VOLO-D1 was the lowest performing model. The second best-
performing model is EfficientNetV2S, with an image size of 384. This
is similar to the VOLO where both VOLO-D1 and VOLO-D2 with an
image size of 384 are performing better. This is because as the size gets
smaller, the features get lost and have an impact on the performance
as observed. The EfficientNetV2S and RESNEXT50, with an image size
of 256, have a comparable performance with a small variation of
0.0063%. The best performing VOLO model makes an improvement of
0.012% compared to the best performing EfficientNetV2S model and
an improvement of 0.024% compared to that of RESNEXT50.

Fig. 10 likewise shows the confusion matrix of the VOLO (best
performing) model and Table 7 shows the individual class-level per-
formance evaluation of VOLO. As can be observed from the confusion
matrix and also from the precision and recall, there is still high misclas-
sification. For example, the higher accuracy can be seen in the case of
CBB but a huge drop in precision and recall. This is because of the class
imbalance. A similar observation has been made by (Chen et al., 2022)
and (Paiva-Peredo, 2023) in their study, observing misclassification due
to a large class imbalance. In the case of CMD, however, no such drop
is observed, all precision, recall, and accuracy are higher, greater than
or equal to 94%. However, upon close observation of the precision and
recall, there is no significant difference between them, indicating no
case of overfitting or underfitting. Moreover, similar conclusions can
be drawn from the F1 score. The reason for this is that the dataset
that is used in this study contains noisy data. The images were taken
by farmers and have different lighting conditions, for example, and
therefore, have an impact on the performance. Moreover, studies such
as (Ferentinos, 2018) have demonstrated that the accuracy of computer
vision models in real-world datasets can drop as low as 33 percent.

As discussed in Section 4.5, the second evaluation focuses on the
proposed method, which is to combine the vision model with the
semantic model. For this, the best performing vision model is taken,
which in the case of this study is VOLO-D2 with an image size of
384 × 384 (or VOLO-D2@384x384). Table 8 shows the accuracy after
combining the vision model with the semantic model. Moreover, Ta-
ble 8 also shows the weight that is used for weighted majority voting.
As can be clearly observed that by integrating the semantic model,
an improvement in the accuracy has been made. The enhancement is
12
Table 7
Individual class-level performance evaluation of the VOLO-D2 model with an image
size of 384 × 384, i.e. the best performing vision model.

Class name Precision Recall Accuracy F1-score

CBB 0.699 0.652 0.964 0.675
CBSD 0.864 0.853 0.963 0.859
CGM 0.864 0.801 0.963 0.831
CMD 0.949 0.975 0.955 0.962
Healthy 0.768 0.754 0.948 0.761

Fig. 10. Confusion matrix of the VOLO-D2 model with an image size of 384x384,
i.e. the best performing vision model.

0.0086%. While the accuracy improvement is modest, it is still superior
to the state-of-the-art.

In addition to the evaluation of the performance, explainability is
also evaluated. A qualitative evaluation was performed using the three
dimensions: (i) correctness; (ii) usefulness; and (iii) comprehension to
determine whether the generated natural language explanations about
disease (see Section 3.2.3) were helpful and informative enough to
convey the disease information to users. For correctness, the generated
explanations were checked by manually inspecting the explanations
by the authors and comparing the explanations against the informa-
tion present in the ontology, as the explanations were based on the
information present in the ontology. The generated explanations were
found to be correct (100%) and aligned with the predictions. The
second dimension is usefulness, where the generated explanations were
evaluated to see whether they were informative enough. The compre-
hension dimension is the third. This evaluation examines the generated
natural language explanations to determine if they are sufficiently
comprehensive and written in a natural language that avoids technical
jargon that is incomprehensible to non-expert users. Regarding the
evaluation of the second and third dimensions, i.e. usefulness and
comprehension, an online survey was conducted following the study
by (Ball, 2019). Fig. 11 depicts the steps taken to assess the second
and third dimensions.

First, the designed survey was shared among the participants to
gather their opinions. The participants were invited via private chan-
nels and their peer group. The following criteria were used for inviting
the participants: (i) they had to be over 18 years old; and (ii) they
had to have a valid email address and access to a computer or mobile
phone in order to be able to take the survey. In addition, the farming
experience, which is a major focus, is also considered but not a hard
requirement. This is to evaluate the benefits of the explanations of
the proposed approach in other domains, as the proposed approach is
generalisable. While inviting participants from other domains, the edu-
cation level was taken into account. The final invited participants had
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Fig. 11. The evaluation process for an online survey.
backgrounds in computer science, healthcare, social science, agricul-
ture, finance, education, and engineering. A total of 22 responses were
collected. Since the survey was conducted online, random responses
are possible. To avoid random responses, the collected survey data
was subsequently filtered based on the free-text responses provided
in the survey. Following data filtering, two responses were eliminated
from the survey. The responses were removed when they were highly
inconsistent, no corresponding explanations were provided, or random
answers were given in the free-text option. After preprocessing, the
remaining 20 responses were used for additional analysis and to draw
conclusions. The responses were anonymised, cleaned,23 i.e. removing
free-text responses as they were not consistent and organised as part
of the preprocessing. Furthermore, as a part of the preprocessing,
adjustments to the responses,24 were also made for the question that
asked the participants to rate the usefulness of the explanations (mea-
sured on a scale between 1 and 5). This is because of the observed
anomaly. For example, the participants responded that they did not find
the explanations useful and also did not understand the explanations,
but despite this, some participants rated the explanations as useful
(measured on a scale between 1 and 5). Corrections to such responses
were made by adjusting the given rating to 1, which means ‘‘not at all
useful’’. The analysis is performed using Tableau25 a data visualisation
and analysis tool.

The participants were from different age groups and geographical
distributions. 50% of the participants were in the age group of 25–
34, 25% were in the 18–14 age group, 10% were in the 35–44 age
group, 10% were in the 45–54 age group, and the remaining 5% were
in the age group of 65 and above. Similarly, the 55% of the participants
were from Nigeria, 15% were from Ghana, and the remaining 10% each
came from Austria, the Netherlands, and the United States of America.
In terms of educational qualifications, a majority of the participants
(50%) have either a bachelor’s degree completed or are pursuing one.
Similarly, 30% of respondents are either studying for or have completed
a PhD, followed by those with a master’s degree (completed or studying
for), who constitute 15% of the participants. 5 percent of the partici-
pants are at the diploma level. The occupational backgrounds, which
are shown in Fig. 12, of the participants vary widely. However, despite
the varying occupational backgrounds, the majority of the respondents
are either still involved in or were involved in farming in the past. Sixty-
five percent of respondents indicated that they are currently engaged
in farming or have been in the past.

In terms of AI familiarity, the majority of survey respondents,
90%, were familiar with AI. However, as can be observed in Fig. 13,
the majority of them were not experts, only around 5% had a good
understanding of AI. The remainder had either heard of AI or had
a moderate understanding of it. Following the occupational data, a
conclusion can be made that the majority of respondents are non-
expert AI users, which makes the survey results more useful for the
evaluation, as the explainability is geared towards regular users and
not AI specialists.

23 The cleaned version of the survey data is available in the GitHub
epository where the code is present.
24 Only the responses related to SHAP explanations (or the breakdown of
HAP explanations’ usefulness) were modified. Adjustments were made to four
esponses.
25
13

https://www.tableau.com/
The original input image, the corresponding prediction (top 1), and
the SHAP explanation values were displayed in order to assess the ex-
plainability of the SHAP. The SHAP explainability image from Section 1
is used. Then, a yes-or-no question is asked to determine whether the
survey participants found the explanation helpful for understanding
the disease, i.e. the predicted disease. However, prior to posing a
question, the information regarding the meaning of SHAP values is
provided. After analysing the survey data, an insightful observation
can be made. Fig. 14 compares the SHAP-based explanations and the
explanations based on the proposed approach in terms of usefulness
and comprehension. As can be observed from Fig. 14(a), 65% of the
respondents find the SHAP explanations (see Fig. 1) useful, while 35%
did not find the SHAP explanations helpful. However, in terms of
comprehension (see Fig. 14(b)), 65% of respondents were not able
to understand the disease following SHAP-based explanations. The
remaining 35% of survey participants who were able to understand
the SHAP-based explanations could be attributed to those with higher
education qualifications and someone with a background in computer
science or someone who has been working in a related field. Moreover,
Fig. 15 shows the fine-grained analysis of the SHAP-based explanations.
As can be observed from Fig. 15, 25% of the participants find the
SHAP-based explanations very useful, 20% find them slightly useful,
15% find them moderately useful, and 5% find them extremely useful.
Moreover, following the occupational statistics (see Fig. 12), it can said
that the SHAP-based explanations are not very useful, even for highly
qualified people such as researchers. Overall, a significant proportion of
participants find the SHAP-based explanations to be little to moderately
useful.

Similarly, when it comes to the explainability of the proposed
method for this study, as shown in Fig. 14(c), 95% of participants
find the explanations helpful (or useful), with 5% being the exception.
Regarding the comprehension, 85% of the participants (see Fig. 14(d))
were able to understand the explanations of the proposed approach,
while 15% were not able to understand. This indicates that there is
still room for improvement in the proposed approach, which can be
one of the future research directions. Similar feedback was received
in the open-text response, where participants mentioned that there
is a need to add examples of symptoms in explanations, suggested
adding images along with textual explanations, and also suggested
providing explanations on how to prevent the illness. A similar response
to not being able to see the images is also provided in the case of
the usefulness of proposed method explainability where it was marked
with response ‘‘no’’, i.e. participants did not find useful. Table 10 in
Appendix provides the free-text survey responses from the participants
for both SHAP and the proposed approach. Additionally, in comparison
with the comprehension of SHAP-based explainability, the proposed ap-
proach’s comprehension is 50% higher, demonstrating the advantages
of this study’s explainability approach.

Furthermore, Fig. 16 further depicts a fine-grained evaluation of
the usefulness (or helpfulness) of the explanations generated by the
proposed method. As can be observed from Fig. 16, with the exception
of 5% of participants, all of them find the explanations generated by the
proposed approach useful. Overall, 10% find the explanations of the

https://www.tableau.com/
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Fig. 12. Occupation-based distribution of survey respondents.
Fig. 13. The familiarity of the participants with AI, which is measured on a scale of 1–5. The respective options are: (1) never heard of it, (2) heard of it, (3) know a little, (4)
know a fair amount, and (5) know it well.
proposed approach extremely useful, 60% find them very useful, 20%
find them moderately useful, and 5% find them slightly useful. Upon
comparing the usefulness of the proposed approach with the SHAP-
based explanations, it clearly shows the benefit of the explainability
based on the proposed approach and validates the claim about the
benefits of the proposed explainability approach.

In summary, the following conclusions can be drawn from the
evaluation of the survey response: (i) the visualisation of SHAP-based
explanations is still useful even if they are not comprehensible, (ii)
the proposed approach’s explainability is very effective both in terms
of usefulness and comprehension compared to explanations based on
SHAP (or LIME), which are the popular and becoming a de-facto
standard in ML explainability (Scapin et al., 2022), (iii) the fact that
14
participants from diverse fields were able to understand and find the
explanations useful demonstrates the very high value of the proposed
explainability approach, even in other domains, and (iv) despite being
highly effective, there is still room for improvement in the explainabil-
ity of the proposed approach, which is to show where in the plant the
diseases are and add more explanations to the cause and remedy of the
diseases.

Table 9 shows the comparison of the proposed approach results
with the state-of-the-art studies in terms of the accuracy. The study’s
relevance (i.e. the study utilises the same dataset as in this study) is
the primary criterion for its selection. The second criterion is based
on its recency (2022 and 2023). In addition, the best performance is
selected from state-of-the-art studies when selecting performance for
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Fig. 14. Comparison of the usefulness and comprehension of the SHAP-based explanations (top) and the proposed approach (bottom). (a) Distributions of the participants responses
according to the usefulness of the explanations generated using SHAP. (b) Participant distributions based on their comprehension of SHAP-based explanations. (c) Distributions of
the participants responses based on the usefulness of the explanations generated using the proposed approach. (d) Participant distributions based on their comprehension of the
proposed approach explanations.

Fig. 15. The level of usefulness of the SHAP explanations that are measured on a scale of 1–5. The respective options are: (1) not at all useful, (2) slightly useful, (3) moderately
useful, (4) very useful, and (5) extremely useful.
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Fig. 16. The level of usefulness of the explanations that are measured on a scale of 1–5 and that are based on the proposed approach of this study. The respective options are:
(1) not at all useful, (2) slightly useful, (3) moderately useful, (4) very useful, and (5) extremely useful.
Fig. 17. The average prediction time (or prediction latency) measured for 5268 samples for vision models, semantic models, and the combination of predictions from vision and
semantic models (i.e. decision engine), i.e. a proposed approach.
comparison. Table 9 clearly demonstrates that the proposed method
outperforms state-of-the-art methods, with the exception of Kumar
et al.’s (Kumar et al., 2023) work, which outperforms the result of this
study by 0.0025. However, there are two important differences to take
into account: (i) Kumar et al.’s (Kumar et al., 2023) work does not
provide explainability, and (ii) this study uses a large, noisy cassava
image dataset. This is because this study uses the combined datasets
released by the Makerere University AI Lab in 2019 and 2020 (see
Section 4.1), while Kumar et al.’s (Kumar et al., 2023) work only uses
the dataset from 2019. A similar situation is present in other studies.
Therefore, conclusion can be made that the proposed method is robust.

The third evaluation is on latency, as discussed in Section 4.5.
Fig. 17 illustrates the average inference time for of the proposed
16
Table 8
The accuracy after combining the predictions from the vision model and the semantic
model, i.e. the proposed approach.

Vision model weight Semantic model weight Combined accuracy

0.5 0.5 0.905

approach. The semantic model requires an average of 2.91 s, while
the vision model requires only 0.91 s. The vision model utilises GPUs,
whereas the semantic model does not. This is one reason for the
significant difference in inference time between the vision model and
semantic model. In addition, the combined average inference time
is 3.85 s, which is acceptable given the nature of the task (i.e. no
hard real-time requirements). Therefore, with this, a conclusion can
be drawn that the proposed approach is also suitable for real-world
deployment.
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Table 9
A comparison of the proposed method to the state-of-the-art studies in terms of accuracy and user-level explainability.

Study Model/Methods Accuracy User-level
explanation

(Emmanuel et al., 2023)
MobileNet V2 0.901 No

(Ahishakiye et al., 2023) Ensemble of GLVQ,
GMLVQ and LGMLVQ

0.82 No

(Kumar et al., 2023) Ensemble of EfficientNet,
SEResNeXt, ViT, DeIT and
MobileNetV3

0.9075 No

(Paiva-Peredo, 2023) DenseNet169 0.7477 No
(Chen et al., 2022) Smooth-Taylor CE 0.893 No
(Ravi et al., 2022) A_L_EfficientNet 0.8708 No
(Riaz et al., 2022) EfficiennetB3 0.8303 No
(Anitha & Saranya, 2022) CNN with data

augmentation
0.90 No

The proposed
approach

Fusion of DL and
semantic technology

0.905 Yes
6. Conclusion

This study presents novel work on combining semantic technology
and DL with a focus on cassava disease. This research demonstrated
how semantic technology and DL can be combined to address the
following limitations: (i) the lack of domain knowledge and contextual
information in DL (see Section 3), and (ii) the lack of user-level ex-
plainability of DL (see Section 3.2.3). Moreover, by combining semantic
technology and DL, as demonstrated by the results and comparison
with the state-of-the-art works (see Section 5), this study also addressed
the limitations of semantic technology, which are their limited abilities
to learn complex patterns like DL. Furthermore, through the latency
evaluation, this study demonstrated the suitability of the proposed
approach for real-world scenarios.

From the performance evaluation and comparison with state-of-
the-art studies, this study demonstrated the benefits of the proposed
method and its robustness. However, the true benefit lies in the gen-
eralisability of the proposed approach, which can be used to solve
other problems in the agricultural (and also other) domain, its ability
to incorporate domain knowledge and generate, generate user-level
explainability (see Section 3.2.3) and combine the symbolic approach
based on semantic technology with a non-symbolic approach, also
referred to as a numeric approach (or neuro-symbolic approach). This
is particularly important when building AI (or AI systems) in a societal
context, as the majority of the users are non-experts, and it is essential
that they do not blindly trust predictions from the AI system. Moreover,
this work enables the ability to include knowledge and rich contextual
information that is not available in data, e.g. images, that helps in
improving prediction, as demonstrated by the result (see Table 8), and
build trustworthy AI systems.

However, if the domain knowledge is inaccurate or highly biased, it
can act as a bottleneck, decreasing rather than increasing the accuracy
of the prediction. Therefore, the information (or domain knowledge)
should be incorporated with extreme caution, and multiple domain
experts should be involved to eliminate (or reduce) bias. In the case
of strict real-time requirements, the semantic model’s performance can
be a bottleneck, and this is therefore regarded as a limitation of this
study that requires future improvement.

As potential future work, three directions are identified. The first is
to make additional performance enhancements and incorporate more
domain knowledge. The second objective is to apply the proposed
work to domains, such as healthcare, that require AI systems that are
explainable, have good performance, and can also make use of domain
knowledge. The third research direction is to improve the explainability
further following the user response, as discussed in Section 5.
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Table 10
The responses from the participants that provides reasons why they selected a particular option. The responses presented in
this table remove responses that include text such as ‘‘I don’t understand’’ or incomplete answer.

SHAP-based explanations Explanations based on proposed approach

Free-text response providing the reasons why participants selected the option ‘‘yes’’ for usability and
comprehension for the yes-or-no question.

1. The colour in the prediction and explanation
is same.
2. The spots show the affected area.
3. It affects chlorophyll production and leads to
the reduction in crop yield.

1. It gave a written explanation of the disease.
2. It is clear what the disease is, the explanation is
given and the percentage certainty are given as well.
3. The written text helps.
4. Learnt that the disease occurs mostly in moist soil.
5. Because the text tell the exact thing and it can be
understood.
6. The generated explanation gave a view of how the
disease thrives and this will aid in how to combat it.
7. Form the generated explanation, I could decipher
that cassava mosaic is a high casualty disease that
affects cassava plants.
8. There is a proper breakdown on the casual
environment for this particular disease.
9. It explains the predisposing factors that could
promote the disease growth.
10. I learnt that the disease could be devastating
during the rainy season.

Free-text response providing the reasons why participants selected the option ‘‘no’’ for usability and
comprehension for the yes-or-no question.

1. Prediction is not clear to me.
2. The explanation is just a series of dots on a
canvas. However, from the text above the
prediction image, I am able to tell what the
disease is.
3. Not clear how the cassava disease affects
plants and where it shows up on the plant.

The explanation is not visible.

Free-text response providing the reasons why
participants gave particular scores for usefulness ratings
that are measured on a scale between 1 and 5.

1. I did not understand How the prediction
model is made and how the explanation helps
or adds to diagnose and explain additional
information about the disease.
2. Not clear if the photo shows a distribution
of the disease on the plant as in location
(leaves or roots).
3. Because the colour is based on the
observations. Some people may perceive the
colour in different way.
4. I responded NO because I am not an avid
user of AI and the generated images could not
be easily understood.
5. It requires a high level of knowledge to
understand.
6. It will help farmers to identify the disease
faster.
7. It explains how wide the disease has spread.

1. Since the prediction and explanation are correct, it
is helpful to know when the disease is worse, what
soil condition and temperature.
2. It is straight forward.
3. The explanation could be improved in terms of for
instance cause, how it can be fixed and perhaps, other
diseases that may look the same even to a human
observer
4. Should add examples of the symptoms in the text.
5. Having more explanation with some graphics as
well would be helpful.
6. I gave the above rating because seeing the
explanation above is an Avenue to know how to move
with the precautions necessary to combat the disease
7. Easily understood.
8. It gave detailed information about the disease
9. I often see the plants on the field
10. Not technical to understand.
A

A
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