
Citation: Gu, J.; Lind, A.; Chhetri,

T.R.; Bellone, M.; Sell, R. End-to-End

Multimodal Sensor Dataset Collection

Framework for Autonomous Vehicles.

Sensors 2023, 23, 6783. https://

doi.org/10.3390/s23156783

Academic Editors: Arturo de la

Escalera Hueso and Felipe Jiménez

Received: 18 May 2023

Revised: 13 July 2023

Accepted: 20 July 2023

Published: 29 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

End-to-End Multimodal Sensor Dataset Collection Framework
for Autonomous Vehicles
Junyi Gu 1,* , Artjom Lind 2 , Tek Raj Chhetri 3,4 , Mauro Bellone 5 and Raivo Sell 1

1 Department of Mechanical and Industrial Engineering, Tallinn University of Technology Tallinn,
12616 Tallinn, Estonia; raivo.sell@taltech.ee

2 Intelligent Transportation Systems Lab, Institute of Computer Science, University of Tartu,
51009 Tartu, Estonia; artjom.lind@ut.ee

3 Semantic Technology Institute (STI) Innsbruck, Department of Computer Science, Universität Innsbruck,
6020 Innsbruck, Austria; Tek-Raj.Chhetri@uibk.ac.at

4 Center for Artificial Intelligence (AI) Research Nepal, Sundarharaincha 56604, Nepal
5 FinEst Centre for Smart Cities, Tallinn University of Technology, 19086 Tallinn, Estonia;

mauro.bellone@taltech.ee
* Correspondence: junyi.gu@taltech.ee

Abstract: Autonomous driving vehicles rely on sensors for the robust perception of their surround-
ings. Such vehicles are equipped with multiple perceptive sensors with a high level of redundancy to
ensure safety and reliability in any driving condition. However, multi-sensor, such as camera, LiDAR,
and radar systems raise requirements related to sensor calibration and synchronization, which are
the fundamental blocks of any autonomous system. On the other hand, sensor fusion and integra-
tion have become important aspects of autonomous driving research and directly determine the
efficiency and accuracy of advanced functions such as object detection and path planning. Classical
model-based estimation and data-driven models are two mainstream approaches to achieving such
integration. Most recent research is shifting to the latter, showing high robustness in real-world appli-
cations but requiring large quantities of data to be collected, synchronized, and properly categorized.
However, there are two major research gaps in existing works: (i) they lack fusion (and synchro-
nization) of multi-sensors, camera, LiDAR and radar; and (ii) generic scalable, and user-friendly
end-to-end implementation. To generalize the implementation of the multi-sensor perceptive system,
we introduce an end-to-end generic sensor dataset collection framework that includes both hardware
deploying solutions and sensor fusion algorithms. The framework prototype integrates a diverse
set of sensors, such as camera, LiDAR, and radar. Furthermore, we present a universal toolbox to
calibrate and synchronize three types of sensors based on their characteristics. The framework also
includes the fusion algorithms, which utilize the merits of three sensors, namely, camera, LiDAR,
and radar, and fuse their sensory information in a manner that is helpful for object detection and
tracking research. The generality of this framework makes it applicable in any robotic or autonomous
applications and suitable for quick and large-scale practical deployment.

Keywords: multimodal sensors; autonomous driving; dataset collection framework; sensor
calibration and synchronization; sensor fusion

1. Introduction

Nowadays, technological advancements such as deep learning and the introduction of
autonomous vehicles (AVs) have altered every aspect of our lives and become an integral
part of our economy. According to the Boston Consulting Group, the value of the AV
industry in 2035 is projected to be $77 billion [1]. In addition, the Brookings Institution
and IHS predict that by 2050, almost all users will possess AVs [2]. As AVs such as Tesla
self-driving cars and AuVe Tech autonomous shuttles become more prevalent in our daily
lives and an alternative to conventional vehicles, the safety and security concerns of AVs

Sensors 2023, 23, 6783. https://doi.org/10.3390/s23156783 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23156783
https://doi.org/10.3390/s23156783
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5976-6698
https://orcid.org/0000-0002-8498-3547
https://orcid.org/0000-0002-3905-7878
https://orcid.org/0000-0003-3692-0688
https://orcid.org/0000-0003-1409-0206
https://doi.org/10.3390/s23156783
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23156783?type=check_update&version=1

Sensors 2023, 23, 6783 2 of 25

are growing [2]. Refining the current techniques can address concerns regarding AV safety
and security. For instance, by enhancing object detection, we can enhance perception and
reduce the probability of accidents.

Improving AV, particularly techniques such as object detection and path planning,
requires field-collected AV data because field-collected AV data provide important insights,
for example, human–machine interactive situations like merges, and unprotected turns [3],
which are otherwise difficult to obtain from any simulated environment.

Moreover, diverse field-collected data can help AV technology to mature faster [4]. This
is also why the amount of field-collected data for AVs is growing despite the availability
of simulation tools such as CARLA [5] and SUMO (Simulation of Urban Mobility) [6].
Waymo’s open motion [3] and perception [7] dataset and the nuScenes [8] dataset are two
examples.

However, collecting AV field data is a complex and time-consuming task. The difficulty
stems from the multi-sensory (e.g., using multiple sensors such as camera, light detection
and ranging (LiDAR), and radar) nature of AV environments, which are used to overcome
the limitations of individual sensors. For example, the camera input can correct the
abnormalities of inertial sensors [9]. However, the challenge lies in the fact that different
sensors, such as LiDAR and radar sensors, have different sensing rates and resolutions
and require the fusion of multimodal sensory data [10], thereby making the task of data
collection even more difficult. For example, the LiDAR sensor can capture more than a
million three-dimensional (3D) points per second, while the radar sensor has poor 3D
resolution [11], which needs to be synchronized before use in other AV tasks such as object
detection. Moreover, the data collection task is often performed alongside other regular
duties, making it even more time-consuming and prone to error, which we conclude from
our experience of iseAuto dataset collection [12].

With respect to the advantages of real-world field data, studies such as those by
Jacob et al. [4] (see Section 2 for more) have focused on data collection frameworks for
AVs. However, the work by Jacob et al. [4] does not consider the radar sensor; therefore,
extra effort is required when the data are collected from a vehicle equipped with the
radar sensor. Additional limitations of the work include the multi-sensor fusion of the
camera, LiDAR, and radar data to provide rich contextual information. Muller et al. [13]
leverage sensor fusion to provide rich contextual information like velocity, as in our work.
However, the work of Muller et al. [13] does not include the radar sensor, and it is based
on the CARLA simulator; hence, its effectiveness with real-world physical AVs is still
being determined. Therefore, we present our work, an end-to-end general-purpose AV
data collection framework featuring algorithms for sensor calibration, information fusion,
and data space to collect hours of robot-related application that can generate data-driven
models. The novelty of our dataset collection framework is that it covers the aspects from
sensor hardware to the developed dataset that can be easily accessed and used for other
autonomous-driving-related research. We provide detailed hardware specifications and
the procedures to build the data acquisition and processing systems. Our dataset collection
framework has backend data processing algorithms to fuse the camera, LiDAR, and radar
sensing modalities together.

In summary, the contributions of this work are given below.

• We present a general purpose scalable end-to-end AV data collection framework for
collecting high-quality multi-sensor radar, LiDAR, and camera data.

• The implementation and demonstration of the framework’s prototype, whose source
code is available at: https://github.com/Claud1234/distributed_sensor_data_collector
(accessed on 14 May 2023).

• The dataset collection framework contains backend data processing and multimodal
sensor fusion algorithms.

The remainder of the paper is as follows. Section 2 reviews the autonomous driving
dataset, the existing data collection frameworks, and the mainstream multimodal sen-
sor systems related to autonomous data acquisition. Section 3 introduces the prior and

https://github.com/Claud1234/distributed_sensor_data_collector

Sensors 2023, 23, 6783 3 of 25

post-processing of our dataset collection framework, including sensor calibration, syn-
chronization, and fusion. Section 4 presents the prototype mount used for testing and
demonstrating the dataset collection framework. Specifically, there are detailed descrip-
tions of the hardware and software setups of the prototype mount and the architecture
configurations of the system operating, data communication, and cloud storage. Section 5
evaluates the performance of our dataset collection framework based on the hardware of
prototype we built for testing. Finally, Section 6 provides a summary and conclusion.

2. Related Work

Given the scope of this work, we present relevant studies distinguishing dataset
collection frameworks for autonomous driving research from multimodal sensor systems
for data acquisition. The reason is that many studies typically focus on one aspect or the
other, while we intend to merge these concepts in a general-purpose framework.

2.1. Dataset Collection Framework for Autonomous Driving

Recently, data have been regarded as valuable property. For autonomous driving
research, collecting enough data covering different weather and illumination conditions
requires a lot of investment. Therefore, most research groups use open datasets for the
experiments. For example, KITTI [14] has been one of the most successful open datasets
for a long time. Because of the development of sensor technology and the increasing
requirements for datasets to cover more weather and traffic conditions, the latest datasets,
such as Waymo [7] and nuScenes [8], have adopted modern perceptive sensors and covered
various scenarios. Other similar datasets include PandaSet [15], Pixset [16], and CADC [17].
Although public datasets offer researchers the convenience of obtaining data, their limi-
tations in practical and engineering applications must be addressed. Most open datasets
aim to provide well-synchronized, denoised, and ready-to-use data but are reckless in
publishing the details of their hardware configurations and open sourcing the developing
tools, which causes problems for other researchers to create the dataset they need. As a
result, dataset collection frameworks are proposed. These frameworks focus on analyz-
ing the feasibility of modern sensors and improving the system’s versatility on different
platforms. Yan et al. [18] introduced a multi-sensor platform for vehicles to perceive their
surroundings. Details of all the sensors, such as brand, model, and specifications, were
listed in the paper. The robot operating system (ROS) was used for calibrating the sen-
sors. Lakshminarayana et al. [19] focused on the protocols and standards for autonomous
driving datasets. The author proposed an open-source framework to regularize datasets’
collection, evaluation, and maintenance, especially for their usage in deep learning. By
contrast, the hardware cost was discussed in [4] as the budget is always critical for the
large-scale deployment of a framework. Therefore, some researchers build the dataset
pipelines by simulated vehicles and sensors to avoid the heavy investment of hardware
purchase and repeated human–labor work, for example, manual object labeling. Moreover,
simulation-based data generation frameworks can be used in applications that are difficult
to demonstrate in the real world. For example, Beck et al. [20] developed a framework to
generate camera, LiDAR, and radar data in the CARLA [21] simulator to reconstruct the
autonomous-vehicles-involved accidents. Muller et al. [13] used the same CARLA plat-
form to build a data collection framework to produce data with accurate object labels and
contextual information. In summary, very few works provide a comprehensive end-to-end
framework from hardware deployment to sensor calibration and synchronization, then
to the backend camera–LiDAR–radar fusion that can be easily implemented into the end
applications such as motion planning and object segmentation.

2.2. Multimodal Sensor System for Data Acquisition

The data acquisition of the modern autonomous and assisted driving system relies on
the paradigm in which multiple sensors are equipped [22]. For autonomous vehicles, most
of the onboard sensors serve the purposes of proprioception (i.e., inertia, positioning) and

Sensors 2023, 23, 6783 4 of 25

exteroception (i.e., distance measurement, light density). As our work concerns only the
perceptive dataset collection, the review of multimodal data acquisition systems focuses on
the exteroceptive sensors system for object detection and environment perception.

From the hardware perspective, exteroceptive sensors such as camera and LiDAR,
and ultrasonic sensors, have to be installed in the exterior of the vehicles as they require a
clear view field and less interference. For independent autonomous driving platforms, the
typical solution is to install the sensors around the vehicles separately to avoid the body
frame’s dramatic changes. The testing vehicle [23] has 15 sensors installed on the front,
top, and rear sides to ensure the performance and appearance of the vehicles are not much
affected. Other autonomous driving platforms with similar sensor layouts include [24,25].
Furthermore, shuttle-like autonomous vehicles such as Navya [26] and iseAuto [27] also
adopt the same principle to fulfill the legal requirements for the real-traffic-deployed shuttle
bus. In contrast, another sensor installation pattern integrates all perceptive sensors as
an individual mount from the vehicle, which is often seen in the works related to dataset
collection and experimental platform validation. The authors of [28,29] showcase the
popular datasets in which all sensors are integrated. The experimental platforms examples
that have detachable mounts onto the vehicles are given by the authors of [30,31].

The multimodal sensor systems’ software mainly involves the sensors’ calibration
and fusion. Extrinsic and temporal calibration are two primary categories for multi-sensor
systems. Extrinsic calibration concerns the transformation information between different
sensor frames, and temporal calibration focuses on the synchronicity of multiple sen-
sors operating at various frequencies and latencies. The literature on extrinsic calibration
methodologies is rich. For example, An et al. [32] proposed a geometric calibration frame-
work that combines the planar chessboard and auxiliary 2D calibration object to enhance
the correspondences of 3D-2D transformation. Similarly, Domhof et al. [33] replaced the 2D
auxiliary object with a metallic trihedral corner to provide strong radar reflection, which
aims to reduce the calibration noise for radar sensors. In contrast to the calibration methods
that employ specific targets, there are approaches dedicated to calibrating sensors without
a target. Jeong et al. [34] utilized road markings to estimate sensor motions and then
determined the extrinsic information of sensors. In [35], the authors trained a convolutional
neural network to substitute humans to calibrate camera and radar sensors. The model au-
tomatically pairs radar point clouds with image features to estimate challenging rotational
information between sensors. The studies of multimodal sensor fusion for autonomous
driving perception and data acquisition were reviewed in [36,37]. Recent breakthroughs in
deep learning have significantly inspired researchers to fuse the multimodal data streams in
the level of feature and context [38,39]. On the other hand, neural-network-based fusion ap-
proaches require a significant amount of computing power. Remarkably, Pollach et al. [40]
proposed fusing the camera and LiDAR data at a probabilistic low level; the simple math-
ematical computation consumes less power and causes low latency. The authors of [41]
focused on the implementation feasibility of the multi-sensor fusion. Like our work, the
authors developed a real-time hybrid fusion pipeline composed of a fully convolutional
neural network and an extended Kalman filter to fuse the camera, LiDAR, and radar data.
Cost efficiency is the crucial point in [42]; the study resulted in a method that relies on Mi-
crosoft Kinect to produce color images and 3D point clouds. However, this data acquisition
and fusion system mainly works for road surface monitoring.

3. Methodology

Our dataset collection framework primarily focuses on exteroceptive sensors mainly
used in robotics for perception purposes, in contrast to sensors such as GPS and wheel-
encoder that record the status information of the vehicle itself. Currently, one of the primary
usages of the perceptive sensor data in the autonomous driving field is the obstacle-type-
objects (cars, humans, and bicycles) [43] and traffic-type-objects (traffic signs and road
surface) [44] detection and segmentation. The mainstream research in this field is fusing
different sensory data to compensate sensors for each other limitations. There is already

Sensors 2023, 23, 6783 5 of 25

a large amount of research focusing on the fusion of camera and LiDAR sensors [45], but
more attention should be given to the integration of radar data. Although LiDAR sensors
outperform radar sensors from the perspective of point-cloud density and object texture,
radar sensors have advantages in terms of moving object detection, speed estimation, and
high reliability in harsh environments such as fog and dust. Therefore, this framework
innovatively exploits the characteristics of radar sensors to highlight moving objects in
LiDAR point clouds and calculate their relative velocity. The radar and LiDAR fusion
result is then projected onto the camera image to achieve the final radar–LiDAR–camera
fusion. Figure 1 presents the framework architecture and data flow overview. In summary,
the framework is composed of three modules: sensors, processing units, and cloud server.
The radar, LiDAR, and camera sensors used in the framework’s prototype are TI mmwave
AWR1843BOOST, Velodyne VLP-32C, and Raspberry Pi V2, respectively. Sensor drivers
are the ROS nodes and forward data to the connected computing unit. The main computer
(ROS master) of the prototype is the Intel® NUC 11 with the Core™ i7-1165G7 Processor,
and the supporting computer (ROS slave) is the ROCK PI N10. The ROS master and salve
computers are physically connected by an Ethernet cable, and the ROS slave simply sends
sensory data coming from the camera and the radar to the ROS master for post processing.
The communication between the cloud server and the ROS master relies on the 4G network.

Camera
Raspberry Pi V2

 Radar
TI AWR1843BOOST

LiDAR
Velodyne VLP-32

ROCK PI N10

Intel® NUC 11

ROS master

ROS slave
File System

MySQL

Cloud Server

Timestamps
File path

Encryption
CSI

Post Processing

Serial ports

Ethernet

Ethernet

ROS nodes

sql over 4G

rsync over
4G

Decompressing
LiDAR camera projection
Radar-LiDAR-camera fusion

Bag files

Compressed images
Radar point clouds

LiDAR
packets

Bag
Files

Apache2

php fronted

Internet

Figure 1. Overview of the framework architecture and data flow. The bold arrow-pointers denote
data flow directions and corresponding protocols. Detailed descriptions of the sensor and other
framework prototype hardware are in Section 4.

3.1. Sensor Calibration

For any autonomous vehicle’s perceptive system equipped with both passive (camera)
and active (LiDAR, radar) sensors, referring to their capacity to measure the natural
electromagnetic radiation of objects or the reflected energy emitted by the sensor. The
sensor calibration is the calculation of the transformation matrices to bring all measurements
in the same reference frame in order to associate different readings of the same objects
coming from different sensors. A reliable calibration requires one to retrieve the intrinsic
and extrinsic parameters.

3.1.1. Intrinsic Calibration

The intrinsic calibration refers to the position and orientation of the sensor in real-
world coordinates by which the relative coordinate for the features is detected by the sensor.
Among all popular perceptive sensors in the autonomous driving field, there is already a
significant amount of work related to the intrinsic calibration of the camera and LiDAR

Sensors 2023, 23, 6783 6 of 25

sensors [46,47]. LiDAR and camera are the primary sensors in this work to perceive the
surrounding environment; therefore, they are the subject of intrinsic calibrations. Raspberry
Pi V2 is a pinhole camera that is a well-known and widely used model [48,49]. The intrinsic
calibration for the pinhole camera estimates the sensor’s internal parameters, such as
focal length and distortion coefficients, that comprise the camera matrix. Referring to the
classification in [50], we use the photogrammetric method to calibrate the Raspberry Pi
V2 camera. This method relies on planner patterns with precise geometric information
in the 3D real world. For example, using a checkerboard with known square dimensions,
the interior vertex points of the squares are used during the calibration. In addition, a
wide-angle lens (160°) was attached to the Raspberry Pi V2 camera, resulting in significant
image distortion. Therefore, rectifying the images before implementing them into any
post-processing is critical. The open-source ROS ‘camera_calibration’ package was used in
this work to calibrate the camera sensor. The ‘camera_calibration’ package is built upon
the OpenCV camera calibration and 3D reconstruction modules. It provides the graphic
interface for parameter tuning and gives the results of the distortion coefficients, camera
matrix, and projection matrix. Figure 2 compares the distorted image obtained directly
from the camera sensor and the processed rectified image based on the camera’s intrinsic
calibration results.

(a) (b)

Figure 2. Comparing images obtained directly from the sensor to those that have been processed.
(a) Raw distorted image obtained directly from the camera. (b) Rectified image.

As a highly industrialized and intact-sealed product, Velodyne VLP-32C LiDAR
sensors are usually factory calibrated before shipment. Referring to the Velodyne VLP-
32C’s user manual, the range accuracy is claimed to be up to ±3 cm [51]. In addition,
research works such as proposed by Glennie et al. [52] and Atanacio-Jiménez et al. [53] used
photogrammetry or planar structures to further calibrate the LiDAR sensors to determine
the error connection. However, considering the sparsity of the LiDAR points from spatial
perspective, factory calibration of the Velodyne LiDAR sensors is sufficient for most of the
autonomous driving scenarios. Therefore, no extra calibration work was conducted on the
LiDAR sensors in our framework.

Due to the characteristics of radar sensors in sampling frequency and spatial location,
the calibration of radar sensors usually concentrates on the coordinate calibration to match
the radar points and image objects [54]; points filtering to dismiss the noise and faulty
detection results [55]; and error correction to compensate the mathematical errors in mea-
surement [56]. The post-processing towards radar data in our work is overlaying radar
points with the LiDAR point clouds. Therefore, the intrinsic calibration for radar sensors
focuses on filtering out undesirable detection results and noise. A sophisticated method for
noise and ineffective target filtering was proposed by [57], which developed intra-frame
clustering and tracking algorithms to classify the valid objects signal from original radar
data. The straightforward approach to calibrate the radar sensors is given in [55], which

Sensors 2023, 23, 6783 7 of 25

filtered the point clouds by the speed and angular velocity information; thus, the impact of
stationary objects can be reduced in radar detection results. Our work implements a similar
direct method to calibrate the TI mmwave AWR1843BOOST radar sensor. The parameters
and thresholds related to the resolution, velocity, and Doppler shift were fine-tuned in
the environments where autonomous vehicles are operated. Most of the points for static
objects were filtered out in radar data (although the noise is inevitable in detection results).
As a result, there is a reduction in the number of points representing the dynamic objects in
each detection frame (shown in Figure 3). This issue could be addressed by locating and
clustering the objects’ LiDAR points through the corresponding radar detection result. This
part of the work will be detailed in Section 3.3.2.

Figure 3. Performance of the LiDAR and radar extrinsic calibration in visualization. Color dots are
radar points; white dots are LiDAR point clouds. The first row shows the relative locations of LiDAR
and radar points without the extrinsic calibration. The second row is the results after applying the
radar-LiDAR extrinsic calibration. The scene of (a,d) is indoor laboratory. (b,e) were captured in
city’s urban area. (c,f) are in the open area outside the city.

3.1.2. Extrinsic Calibration

For multimodal sensor systems, extrinsic calibration refers to the rigid transformation
of the feature from one coordinate system to another, for example, the transformation of
LiDAR points from the LiDAR coordinate frame to the camera coordinate frame. The
extrinsic calibration estimates transformation parameters between the different sensor
coordinates. The transformation parameters are represented as a 3 × 4 matrix containing
the rotation (R) and translation (t) information. Extrinsic calibration is critical for sensor
fusion post-processing in any multi-sensor system. One of the most important contributions
of our work is the backend fusion of the camera, LiDAR, and radar sensors; thus, the
extrinsic calibration was carried out between these three sensors. The principle of sensor
fusion in our work is filtering out the moving objects’ LiDAR points by applying the radar
points, augmenting the LiDAR point data with the object’s velocity readings from the
radar, and then projecting the enhanced LiDAR point clouds data (that contain the location
and speed information of the moving objects) onto camera images. Therefore, there is a
need to extract the Euclidean transformation between the radar and LiDAR sensors and
between the LiDAR and camera sensors. The standard solution is to extract the peculiar
and sensitive features from the different sensors in the calibration environment. The targets
used in extrinsic calibration usually have specific patterns such as planar, circular, and
checkerboard for simplicity to match the features between point clouds and images.

Pairwise extrinsic calibration between the LiDAR and camera sensors in our work
was inspired by the work [58]. The target for the calibration is a checkerboard with 9 and
7 squares in two directions. In practical calibration, several issues were raised and need to
be noted:

Sensors 2023, 23, 6783 8 of 25

• Before the extrinsic calibration, individual sensors were intrinsically calibrated and
published the processed data as ROS messages. However, to have efficient and reliable
data transmission and save bandwidth, ROS drivers for the LiDAR and camera
sensors were programmed to publish only Velodyne packets and compressed images.
Therefore, additional scripts and operations were required to handle the sensor data
to match the ROS message types for the extrinsic calibration tools. Table 1 illustrates
the message types of the sensors and other post-processing.

• The calibration relies on humans to match the LiDAR point and corresponding image
pixel. Therefore, it is recommended to pick the noticeable features, such as the
intersection of the black and white squares or the corner of the checkerboard.

• The point-pixel matches should be picked from the checkerboard in different locations
covering all sensors’ full field of view (FOV). For camera sensors, ensure that the
pixels from the image edges were selected. Depth varieties (the distance between the
checkerboard and the sensor) are critical for LiDAR sensors.

• It is a matter of fact that human errors are inevitable when pairing points and pixels.
Therefore, it is suggested to select as many pairs as possible and repeat the calibration
to ensure high accuracy.

Table 1. ROS message types for sensor drivers and calibration processes.

Sensor Message Type of Topic Published by Driver Message Type of Topic Subscribed by
Calibration Processes

LiDAR Velodyne VLP-32C velodyne_msgs/VelodyneScan

sensor_msgs/PointCloud2
(LiDAR-camera extrinsic)

velodyne_msgs/VelodyneScan
(radar-LiDAR extrinsic)

CameraRaspberry Pi V2 sensor_msgs/CompressedImage

sensor_msgs/Image
(camera intrinsic)

sensor_msgs/Image
(LiDAR-camera extrinsic)

RadarTI AWR1843BOOST sensor_msgs/PointCloud2
sensor_msgs/PointCloud2

(radar intrinsic) sensor_msgs/PointCloud2
(radar-LiDAR extrinsic)

Compared with the abundant resource for pairwise LiDAR and camera extrinsic
calibration, relatively little research addressed the multimodal extrinsic calibration that
includes the radar sensors. Radar sensors usually have smaller FoV than the camera and
LiDAR sensors, while they also lack elevation resolution and sparse point clouds. Therefore,
poor informativeness is the primary challenge for radar’s extrinsic calibration. To address
this problem, one of the latest references [59] proposed a two-step optimization method
in which the radar data was reused in the second step to refine the extrinsic information
gained from the first step calibration. However, the pursuit of our work is a universal
pipeline that can be easily adapted to different autonomous platforms. Therefore, a toolbox
bound with the standard ROS middleware is necessary to quickly deploy the pipeline
system and execute the calibrations on autonomous vehicles. In our work, radar sensors
were intrinsically calibrated to filter out most of the points for static objects. A minimum
number of points were kept in each frame to represent the moving objects. An ROS-based
tool was developed to compute the rotation and translation information between the
LiDAR and radar coordinate frames. The calibration is based on the visualization of the
Euclidean distance-based clusters of the point clouds data from two sensors. Corresponding
parameters of the extrinsic calibration, such as Euler angles and displacement in X, Y, and
Z directions, were manually tuned until the point cloud clusters overlapped. Please note
that to properly calibrate the radar sensor, a specific calibration environment with minimal
interference is required. Moreover, since the radar sensors are calibrated primarily to react

Sensors 2023, 23, 6783 9 of 25

to dynamic objects, the unique object in the calibration environment should move steadily
and ensure the preferable reflective capability (TI mmwave radar sensors showed higher
sensitivity to metallic surfaces than others during our practical tests). Figure 3 compares the
result of LiDAR and radar extrinsic calibration in visualization. Each pair of figures in the
column was captured from a specific environment related to the research and real-traffic
deployment of our autonomous shuttles. The first column (Figure 3a,d) shows an indoor
laboratory featuring a deficient interference; the only moving object is a human with a
checkerboard. The second and third columns represent the outdoor environment where
the shuttles were deployed. These two pairs also represent the different traffic scenarios.
The second column (Figure 3b,e) is the city’s urban area, which has more vehicles and other
objects (trees, street lamps, and traffic posts). The distance between the vehicles and sensors
is relatively small; in this condition, radar sensors can produce more points. The third
column (Figure 3c,f) is in the open area outside the city, which the vehicles run at a relatively
high speed and far away from the sensors. The color dots represent the radar points, and
the white dots are LiDAR point clouds data. The pictures in the first row illustrate the
Euclidean distance between the LiDAR and radar point clouds before implementing the
extrinsic calibration. The pictures in the second row show the results after the extrinsic
calibration. By comparing the pictures in rows and columns, it is possible to see that the
radar sensors produce less-noisy points data after the specific intrinsic calibration was
implemented onto them. They are also more reactive to the metal surface and objects at a
close distance. Moreover, after the extrinsic calibration of LiDAR and radar sensors, the
alignment of the two types of sensors’ point clouds data was obviously improved, which is
helpful for the further processing to identify and filter out the moving objects in LiDAR
sensor’s point clouds data by the detection results of the radar sensor.

3.2. Sensor Synchronization

For autonomous vehicles that involve multi-sensor systems and sensor fusion ap-
plications, it is critical to address the synchronization of multiple sensors with different
acquisition rates. The perceptive sensors’ operating frequencies are usually limited by
their own characteristics. For example, as the solid-state sensor, cameras operate at high
frequencies; on the contrary, LiDAR sensors usually scan at a rate of no more than 20 Hz
because of the internal rotating mechanisms. Although it is possible to set the sensors to
work at the same frequencies from the hardware perspective, the latency of the sensor data
streams is also a problem for matching the measurements.

In practical situations, it is not recommended to set all of the sensor frequencies
identically. For example, reducing the frame rate of the camera sensors to match the
frequencies of the LiDAR sensors means fewer images are produced. However, it is possible
to optimize the hardware and communication setup to minimize the latency caused by
the data transfer and pre-processing delays. The typical software solution to synchronize
sensors matches the message headers’ closest timestamps at the end-processing unit. One
of the most popular open-source approaches, ROS message_filter [60] developed an
adaptive algorithm that first finds the latest message as a reference point among the heads
of all topics (a term in ROS represents the information of sensing modality). The reference
point was defined as the pivot; based on the pivot and a given time threshold, messages were
selected out of all topics in the queues. The whole message-pairing process was shifted
along the time domain. Therefore, the messages that cannot be paired (the difference of
timestamps relative to other messages exceeds the threshold) would be discarded. One of
the characteristics of this adaptive algorithm is that the selection of the reference message
was not fixed into one sensor modality stream (shown in Figure 4a). For the systems with
multiple data streams, the number of synchronized message sets are always reconciled to
the frequency of the slowest sensor.

Sensors 2023, 23, 6783 10 of 25

Camera
Radar
LiDAR

Camera
Radar
LiDAR

Camera
Radar
LiDAR

Camera
Radar
LiDAR

(a)

(b)

(c)

(d)

Figure 4. Illustrations of the sensor synchronization logic for message_filter and our algorithms.
These illustrations are based on the real field data collected by our prototype. (a) shows the manner
that message_filter carry out the multi-sensor synchronization, (b,c) show the individual LiDAR-
camera and radar-LiDAR synchronization in our work, respectively. (d) is our final synchronized
radar–LiDAR–camera message triplet. The messages of each sensor modality were represented by
the blue points, the reference messages used for synchronization was highlighted in red. Green lines
indicate the synchronized message sets. Please refer to Section 3.2 for more details.

For any multi-sensor perceptive system, the sensor synchronization principle should
correspond to the hardware configuration and post-processing of the sensor fusion. As
discussed in Section 4.1.2 about the sensor configurations of our work, the camera sensor
has the highest rate of 15 FPS, and the LiDAR sensor operates at 10 Hz. Both camera and
LiDAR sensors work at a homogeneous rate, contrary to the heterogeneous radar sensors
that only produce data when moving objects are in the detection zone. Therefore, as shown
in Figure 4, depending on the practical scenarios, radar data can be sparser than the camera
and LiDAR data and also can scatter unevenly along the time domain. In this case, the
direct implementation of the synchronization algorithm [60] will cause significant data loss
of the camera and LiDAR sensors. For the generic radar–LiDAR–camera sensor fusion in
our work, we divide the whole process into three modules based on the frequencies of
the sensors. The first module is the fusion of the LiDAR and camera data because these
two sensors have constant rates. The second module is the fusion of the radar and LiDAR
sensors as they both produce the point clouds data. Finally, the last module is the fusion of
the result of the second module and the camera data, achieving the thorough fusion of all
three sensory modalities.

To address the issues of the hardware setup and fulfill the requirement of fusion
principles in our work, we develop a specific algorithm to synchronize the data of all sensors.
Inspired by the work [60], our algorithm also relies on the timestamps to synchronize the
messages. Instead of the absolute timestamp used in [60], we used the relative timestamp to
synchronize the message sets. The definitions of two types of timestamps are:

• Absolute timestamp is the time when data were produced in sensors. It was usually cre-
ated by the ROS drivers of the sensors and was written in the header of each message.

• Relative timestamp Relative timestamp represents the time data arrive at the central
processing unit. It is the Intel® NUC 11 in our prototype.

Theoretically, the absolute timestamp should be the basis of the sensor synchronization as
it represents the exact moment in which the data was created. However, absolute timestamp
is not always applicable and has certain drawbacks in practical scenarios. First of all, it can
be effectively implemented only if all sensors are capable of assigning the timestamp to
each message on the fly, which is not always possible because of the computational capacity
of the hardware, and software limitations. Regarding the cost consideration, some basic

Sensors 2023, 23, 6783 11 of 25

perceptive sensors are not integrated with the complex processing ability. For example,
our prototype’s Raspberry Pi V2 camera has no additional computing unit to capture the
timestamp. However, because it is a modular Raspberry camera sensor and is directly
connected with the ROCK Pi computer through the CSI socket, the absolute timestamp is
available in the header of each image message with the assistance of the ROCK Pi computer.
On the other hand, the radar sensors used in the prototype have only serial communications
with the computer, and there are no absolute timestamps for point clouds messages.

The second requirement for implementing the absolute timestamp is the clock synchro-
nization between all of the computers in the data collection framework. There are two
computers in our prototype; one serves as the primary computer performing all funda-
mental operations, and the second is the auxiliary computer used simply for launching the
sensor and forwarding data messages to the primary computer. There is a need to synchro-
nize the clock of all computers and sensor-embedded computing units to the precision of
millisecond if using the absolute timestamps for sensor synchronization. An important aspect
to be underlined in the specific field of autonomous driving is that sensor synchronization
becomes even more important as the speed of the vehicle increases, causing distortion in
sensors’ readings.

To simplify the deployment procedures of this data collection framework, our sen-
sor synchronization algorithms trade off simplicity with accuracy by using the relative
timestamps, which is the clock time of the primary computer when it receives the sensor
data. Consequently, the algorithm is sensitive to the delay and bandwidth of the local area
network (LAN). As mentioned in Section 4.1.1, all sensors and computers of the prototype
are physically connected by internet cables and in the same Gigabyte LAN. In practical
tests, before any payload was applied in the communication network, the average delay
times between the primary computer and LiDAR sensor, as well as the secondary com-
puter (camera and radar sensors), are 0.662 ms and 0.441 ms, respectively. By contrast,
the corresponding delay times were 0.703 ms and 0.49 ms when data were transferred
from the sensors to the primary computer. Therefore, the increasing time delay caused by
transferring data in LAN is acceptable in practical scenarios. For example, the camera and
LiDAR sensors’ time synchronization error of the Waymo dataset is mostly bounded from
−6 to 8 ms [7].

The reference frame selection is another essential issue for sensor synchronization, espe-
cially for the acquisition systems with various types of sensors. The essential difference be-
tween message_filter and our algorithms is that the ROS-implemented message_filter
selects the nearest upcoming message as a reference, while our algorithms fix the reference
onto the same modality stream (compare the red dot locations in Figure 4a–c). Camera
and LiDAR sensors have constant frame rates, but radar sensors produce data at a variable
frequency, e.g., in the presence of a dynamic object. Therefore, in this case, the single
reference frame is not applicable to synchronize all of the sensors. To address this problem,
we divide the synchronization process in two steps. The first step is the synchronization
of the LiDAR and camera data, as shown in Figure 4b. The LiDAR sensor was chosen as
the reference; thus, the frequency of the LiDAR-camera synchronized message set is the
same as the LiDAR sensor’s frame rate. The LiDAR-camera synchronization is continuous
until the radar sensors capture the dynamic objects; in that case, the radar-LiDAR synchro-
nization step begins, see Figure 4c. The radar sensor is the reference frame in the second
synchronization step, which means that every radar message has a corresponding matched
LiDAR message. As all LiDAR messages are also synchronized with the unique camera
image, for every radar message, there is a thorough synchronized radar–LiDAR–camera
message set (Figure 4d). The novelty of our synchronization method is separating the
LiDAR and camera synchronization process from the whole procedure. As a result, we
fully exploit the characteristics of density and consistency of the LiDAR and camera sensors
while also keeping the possibility of synchronizing the sparse and variable information
coming from radar sensors.

Sensors 2023, 23, 6783 12 of 25

3.3. Sensor Fusion

Sensor fusion is critical for most autonomous-based systems as it integrates acquisition
data from multiple sensors to reduce detection errors and uncertainties. Nowadays, most
perceptive sensors have advantages in specific perspectives but also suffer drawbacks when
working individually. For example, camera sensors may provide texture-dense information
but are susceptible to changes in illumination; radar sensors can detect the reliable relative
velocities of objects but struggle to produce dense point clouds; and state-of-the-art LiDAR
sensors are supposed to address the limitations of camera and radar sensors but lack color
and texture information. Relying on LiDAR data only makes object segmentation systems
more challenging to carry out. Therefore, the common solution is combining the sensors to
overcome the shortcomings of the independent sensor operation.

Camera, LiDAR, and radar sensors are considered the most popular perceptive sensors
for autonomous vehicles. Presently, there are three mainstream fusion strategies: cam-
era–LiDAR, camera–radar, and camera–LiDAR–radar. The fusion of camera and radar
sensors has been widely utilized in industry. Car manufacturers combine cameras, radar,
and ultrasonic sensors to perceive the vehicles’ surroundings. Camera–LiDAR fusion has
often been used in deep learning in recent years. The reliable X-Y-Z coordinates of LiDAR
data can be projected as three-channel images. The fusion of the coordinate-projected
images and the camera’s RGB images can be carried out in different layers of the neural
networks. Finally, the camera–LiDAR–radar fusion combines the characteristics of all three
sensors to provide the excellent resolution of color and texture, precise 3D understanding
of the environment, and velocity information.

In this work, we provide the radar–LiDAR–camera fusion as the backend of the dataset
collection framework. Notably, we divide the whole fusion process into three steps. The
first step is the fusion of the camera and LiDAR sensor because they work at constant
frequencies. The second step is the fusion of the LiDAR and radar point clouds data. The
last step combines the fusion result of the first two steps to achieve the complete fusion
of the camera, LiDAR, and camera sensors. The advantages of our fusion approach are as
follows:

• In the first step, camera–LiDAR fusion can have a maximum number of fusion results.
Only a few messages were discarded during the sensor synchronization because the
camera and LiDAR sensors have close and homogeneous frame rates. Therefore, the
projection of the LiDAR point clouds to the camera images can be easily adapted to
the input data of the neural networks.

• The second step fusion of the LiDAR and radar points grants the dataset the capability
to filter out moving objects from dense LiDAR point clouds and be aware of objects’
relative velocity.

• The thorough camera–LiDAR–radar fusion is the combination of the first two fusion
stage results, which consume little computing power and cause minor delays.

3.3.1. LiDAR Camera Fusion

Camera sensors perceive the real world by projecting the objects onto the 2D image
planes, while LiDAR point clouds data contain direct 3D geometric information. The study
of [61] classified the fusion of 2D and 3D sensing modalities into three categories: high-
level fusion, mid-level fusion, and low-level fusion. The high-level fusion first requires
independent post-processing, such as object segmentation or tracking for each modality,
then fuses the post-processing results; the low-level fusion is the integration of the basic
information such as 2D/3D geometric coordinates and image pixel values in raw data,
and the mid-level is an abstraction between high-level and low-level fusion, which is also
known as feature-level fusion.

Our framework’s low-level backend LiDAR-camera fusion focuses on the spatial
coordinate matching of two sensing modalities. Instead of deep learning sensor fusion
techniques, we use traditional fusion algorithms for LiDAR-camera fusion, which means
the input of the fusion process is the raw data, while the output is the enhanced data [62].

Sensors 2023, 23, 6783 13 of 25

One of the standard solutions for low-level LiDAR-camera fusion is converting 3D point
clouds to 2D occupancy grids within the FoV of the camera sensor. There are two steps of
LiDAR-camera fusion in our dataset collection framework. The first step is transforming
the LiDAR data to the camera coordinate system based on the sensors’ extrinsic calibration
results; the process follows the equation:

dx
dy
dz

 =

1 0 0
0 cos(θx) sin(θx)
0 −sin(θx) cos(θx)

cos(θy) 0 −sin(θy)
0 1 0

sin(θy) 0 cos(θy)

 cos(θz) sin(θz) 0
−sin(θz) cos(θz) 0

0 0 1

ax
ay
az

−
cx

cy
cz

 (1)

where ax,ay, and az are the 3D point coordinates as seen from the original frame (before the
transformation); cx, cy, and cz are the camera frame location coordinates; θx, θy, and θz are
the Euler angles of the corresponding rotation of the camera frame; and dx, dy, and dz are
the resulting 3D point coordinates as seen from camera frame (after transformation). The
following step is the projection of the 3D points to 2D image pixels as seen from the camera
frame; under assumption, the camera focal length and the image resolution are known, and
the following equation performs the projection:u

v
1

 =

 fx 0 W
2

0 fy
H
2

0 0 1

dx
dy
dz

 (2)

where dx, dy, and dz are the 3D point coordinates as seen from the camera frame; fx
and fy are camera horizontal and vertical focal length (which is known from the camera
specification or discovered during the camera calibration routine); W

2 and H
2 here are the

coordinates of a principal point (the image center) derived from image resolution W and H;
finally, u and v are the resulting 2D pixel coordinates. After transforming and projecting
the 3D points into a 2D image, the filtering step removes all of the points that fall outside
the camera view.

The fusion results of each frame are saved as two files. The first is an RGB image with
projected point clouds, as shown in Figure 5a. The 2D coordinate of LiDAR points was
used to pick out the corresponding pixels in the image. The assignment of the pixel color is
based on the depth information of the point, and the HSV colormap was used to colorize
the image. The RGB image is the visualization of the projection result, which helps evaluate
the alignment of the point clouds and image pixels. The second file contains the projected
2D coordinates and X, Y, and Z axis values of the LiDAR points within the camera view.
All the information was dumped as a pickle file, which can be quickly loaded and adapted
to other formats, such as array and tensor. The visual demonstrations of the information in
the second file are shown in Figure 5b–d, which represents the LiDAR footprint projections
in XY, YZ and XZ planes, respectively. The color of pixels in each plane is proportionally
scaled based on the numerical 3D axes value of the corresponding LiDAR points.

The three LiDAR footprint projections are effectively formatted by, first, projecting the
LiDAR points onto the camera plane and, second, assigning the value of the LiDAR axis to
a projected point. The overall algorithm can be seen in the following subsequent steps:

1. LiDAR point clouds are stored in sparse triplet format L3×N , where N is the number
of points in LiDAR data.

2. The transformation of LiDAR point clouds to the camera reference frame occurs
through the multiplication of the LiDAR matrix L with the LiDAR-to-camera transfor-
mation matrix Tlc.

3. The transformed LiDAR points are projected to the camera plane, preserving the
structure of the original triplet structure; in essence, the transformed LiDAR matrix
LT is multiplied by the camera projection matrix Pc; as a result, the projected LiDAR
matrix Lpc now contains the LiDAR point coordinates on the camera plane (pixel
coordinates).

4. The camera frame width W and height H are used to cut off all the LiDAR points
that fall outside the camera view. In consideration of the projected LiDAR matrix Lpc

Sensors 2023, 23, 6783 14 of 25

from the previous step, we calculate the matrix row indices where the values satisfy
the following:

• 0 <= Xpc < W
• 0 <= Ypc < H
• 0 <= Zpc

The row indices where Lpc satisfies the expressions are stored in an index array
Lidx; the shapes of the LT and Lpc are the same, therefore it is secure to apply the
derived indices Lidx to both the camera-frame-transformed LiDAR matrix LT and the
camera-projected matrix Lpc.

5. The resulting footprint images XY, YZ, and XZ are initialized following the camera
frame resolution W × H and subsequently populated with black pixels (zero value).

6. Zero-value footprint images are populated as follows:

• XY[Lidx] = L[Lidx, 0]
• YZ[Lidx] = L[Lidx, 1]
• XZ[Lidx] = L[Lidx, 2]

Figure 5. The projection of the LiDAR point clouds onto the camera plane in X, Y, and Z channels.
(a) is RGB image, (b) is X channel projection, (c) is Y channel projection, and (d) is Z channel footprint.
The color map of (a) is HSV, and (a–c) is JET.

The Algorithm 1 illustrates the procedures described above.

Algorithm 1 LiDAR transposition, projection populating the images

1: L[3× N]← nextFrame
2: Tlc ← conf
3: Pc ← conf
4: Lpr = L ∗ Tlc ∗ Pc
5: Lidx = argwhere(Lpr >= {0, 0, 0} & Lpr < {W, H,+∞})
6: XY[W × H]← 0
7: YZ[W × H]← 0
8: XZ[W × H]← 0
9: XY[Lidx] = L[Lidx, 0]

10: YZ[Lidx] = L[Lidx, 1]
11: XZ[Lidx] = L[Lidx, 2]

Sensors 2023, 23, 6783 15 of 25

3.3.2. Radar LiDAR and Camera Fusion

This study uses millimeter wave (mmwave) radar sensors installed on the prototype
mount. The motivations of equipping mmwave radar sensors on autonomous vehicles
are to robustify perception against adverse weather; to prevent individual sensor failures;
and, most importantly, to measure the target’s relative velocity based on the Doppler
effect. Currently, mmwave radar and vision fusion can be seen as a promising approach to
improve object detection [63]. However, most research relies on advanced image processing
methods to extract the features from the data. Therefore, an extra process is needed to
process the radar points into an image-like data format. Moreover, data conversion and
deep-learning-based feature extraction consume a great amount of computing power and
require noise-free sensing streams. As radar and LiDAR data are both represented as 3D
Cartesian coordinates, the most common solution for data fusion is simply applying a
Kalman Filter [64]. Another example work [65] first converted the 3D LiDAR point clouds
to virtual 2D scans and then converted the 2D radar scans to 2D obstacle maps. However,
their radar sensor is the mechanical pivoting radar, which differs from our mmwave
radar sensors.

In our work, the entire radar–LiDAR–camera fusion operation is divided into two steps.
The first step is the fusion of radar and LiDAR sensors. The second step uses the algorithms
proposed in Section 3.3.1 to fuse the first step’s results and camera images. As discussed in
Section 3.1, we calibrate the radar sensors primarily reactive to the dynamic objects. As a
result, the principle of the radar-LiDAR fusion in our work is selecting the LiDAR point
clouds of the moving objects based on the radar detection results. Figure 6 illustrates four
subsequent procedures of the radar-LiDAR fusion. The first involves transforming the radar
points from the radar frame coordinate to the LiDAR frame coordinate. Corresponding
transformation matrices are attained from the extrinsic sensor calibration. The second
involves applying the density-based spatial clustering of applications with noise (DBSCAN)
algorithm to the LiDAR point clouds to cluster out the points that potentially represent
the objects [66]. The third involves looking up the nearest LiDAR point clusters for the
radar points that were transformed into the LiDAR frame coordinate. The fourth involves
marking out the selected LiDAR point clusters in raw data (arrays contain the X, Y, and
Z coordinate values) and appending the radar’s velocity readings as an extra channel for
selected LiDAR point clusters (or −∞ in case a LiDAR point belongs to no cluster).

Figure 7 demonstrates the relative locations of the original and coordinate-transformed
radar points, and the results of the radar-LiDAR fusion in our work (LiDAR point clusters of
the moving objects). The reference frame for the point-cloud scattering is the one positioned
at the center of the LiDAR sensor. Green dots symbolize the original radar points, whereas
red dots stand for the radar points transformed to the LiDAR frame coordinate, which are
the result of the first subsequent of our radar-LiDAR fusion. Blue dots are the LiDAR point
of the moving objects. The selection of the LiDAR point clusters, representing the detected
moving object, relies on the nearest neighbor lookup based on the Euclidean distance
metric that takes coordinate-transformed radar points as the reference. Due to inherent
characteristics and post-intrinsic calibration, radar sensors in our prototype only produce a
handful of points for moving objects in each frame, which means the computation of the
whole radar-LiDAR fusion operation is computationally efficient and can be executed on
the fly.

Sensors 2023, 23, 6783 16 of 25

Transformed radar pointsseq 1
Transformation from radar
frame to LiDAR frame

seq 2
DBSCAN the 3D points to
find the clusters of objects

Radar points (sparse)

mmwave radar

LiDAR point clouds (dense)
Velodyne LiDAR

seq 3
Nearest Euclidean lookup of the
lidar clusters to radar points, to
highlight the moving objects

seq 4
Augmenting the selected clusters
and assigning radar velocity
readings

LiDAR point clusters

LiDAR point clusters
of moving objects

X
Y
Z

object_id
velocity

Figure 6. The workflow of radar-LiDAR fusion procedures.

Figure 7. Relative locations of the original radar points (green), transformed radar points (red), and
LiDAR point clusters of the moving object (blue). Scenario taken from a sequence similar to Figure 8.

The second step of the radar–LiDAR–camera fusion is the continuous process toward
the results of the first step of radar-LiDAR fusion. The LiDAR point clusters that belong to
the moving objects will be projected onto the camera plane. Figure 8a visualizes the final
outcome of the radar–LiDAR–camera fusion in our dataset collection framework. LiDAR
point clouds representing moving objects were filtered from the raw LiDAR data and
projected onto the camera images. For each frame, moving objects’ LiDAR point clusters
were dumped as a pickle file containing 3D-space and 2D-projection coordinates of the
points and the relative velocity information. Because of the sparsity of the radar points
data, the direct projection of the radar points onto camera images has very little practical

Sensors 2023, 23, 6783 17 of 25

significance (see Figure 8b). In fact, only two radar points are shown in this frame, and for
this reason the significant result is the LiDAR point cluster in Figure 8a.

Figure 8. Illustration of the radar-LiDAR-camera. (a) Overposed LiDAR point cluster as extracted
using the radar point as a reference, and (b) projection of the radar data onto the camera image.

4. Prototype Setup

This section presents our prototype for demonstrating and testing the dataset col-
lection framework. In addition, we provide detailed introductions of the hardware in-
stallation, framework operating system, data transferring protocols, and architecture of
cloud services.

4.1. Hardware Configurations

This work aims to develop a general framework for autonomous vehicles to collect
sensory data when performing regular duties. In addition, process the data in formats
that can be used in other autonomous-driving-related technologies, such as sensor-fusion-
based object detection and real-time environment mapping. A Mitsubishi i-MiEV car was
equipped with a mount on the top (shown in Figure 9b), and all the sensors were attached
to the mount. To increase the hardware compatibility, two processing units were used for
the prototype mount to initiate the sensors and collect data. The main processing unit,
which initiates the LiDAR sensor and handles the post-processing of the data, is located
inside the car. Another supporting processing unit connected to the camera and radar
sensors stays on the mount (outside the car and protected by water-dust-proof shells).
The dataset collection framework was operated upon by the ROS; all sensory data were
captured in corresponding ROS formats.

Figure 9. The prototype of the dataset collection framework. (a) is the Mitsubishi i-MiEV testing
vehicle with the sensors mounted on the top. (b) shows the locations of sensors and other hardware.
(c) shows the inside of the waterproof shell, which has one supporting computer, one camera, and
two radar sensors.

Sensors 2023, 23, 6783 18 of 25

4.1.1. Processing Unit Configurations

Three requirements have to be satisfied for the processing units and sensor components
for the prototype:

• All the sensors must be modular, in a manner that they can work independently and
can be easily interchanged. Therefore, there is a need for independent and modular
processing units to initiate sensors and transfer the data.

• Some sensors have hardware limitations. For example, our radar sensors rely on
serial ports for communication, and the cable’s length affects the communication
performance in practical tests. A corresponding computer for radar sensors has to
stay nearby.

• The main processing unit hardware must provide enough computation resources to
support complex operations such as real-time data decompression and database writing.

The main computer for the prototype is an Intel® NUC 11 with a Core™ i7-1165G7
Processor, and the supporting computer is a ROCK PI N10 with four Cortex-A53 processors.
The main computer is connected to the LiDAR sensor and 4G router, subscribes to data
streams of the camera and radar sensors (published by supporting processing unit), carries
out the data post-processing, and then sends corresponding information to the remote
database server. The supporting computer is connected to the camera and radar sensors
and stays inside the water-dust-proof shell that protects other electronic devices outside
the vehicle (shown in Figure 9c). The communication between the two computers relies on
the LAN.

4.1.2. Sensor Installation

All the sensors installed in the prototype have been used and tested by other autonomous-
driving-related projects [67,68] in the autonomous driving lab. Four perceptive sensors are
installed on the prototype mount: one LiDAR, one camera, and two radars.

Currently, LiDAR and camera sensors are the mainstream in the autonomous driving
field. Although it is a relatively new technology, LiDAR has become an essential sensor
for many open datasets [28,69] and autonomous driving platforms [23,70]. The trend
in the research community towards LiDAR sensors is using high-resolution models to
produce the dense point clouds data; the maximum number of the vertical channels of
the LiDAR sensors can be 128, and the range can reach 240 m. Correspondingly, dense
point clouds data requires a large amount of bandwidth transference and processing power.
To explicitly demonstrate our dataset collection framework and simplify the hardware
implementation process, the LiDAR sensor used on the prototype is the Velodyne VLP-32C,
which has 32 laser beams and vertically 40° FoV. The LiDAR sensor was connected to the
main computer (NUC 11) by ethernet cable.

Camera sensors have a long developing history and are still important in modern
autonomous driving technologies because of their advantages, such as reliability and cost-
effectiveness. Moreover, the recent breakthrough of vision-based deep learning algorithms
for object detection and segmentation has brought the researchers’ focus back to the camera
sensor. Therefore, it is critical for our framework to have the capability to produce and
process the camera data. Since the supporting computer (Rock Pi) has the specific camera
serial interface (CSI) socket, the choice of the camera sensor for the prototype mount is the
Raspberry Pi V2 camera with a wide angle (160° diagonal FoV). The camera can capture
3280 × 2464 pixel static images and up to 90 Hz video mode in resolution 640 × 480.

Radar sensors have been comprehensively used on commercial cars for driving as-
sistance. However, most of the radar-based assistant functions, such as collision warning
and distance control, simply use the character of reflectivity of the radar sensors. Another
iconic characteristic of the mmwave radar sensors is their capability to detect moving
objects. The velocity of the moving objects can be derived based on the Doppler effect. In
addition, compared with the LiDAR sensors’ point clouds data that homogeneously project
to all surrounding objects and whose total number of points are counted in millions, radar

Sensors 2023, 23, 6783 19 of 25

sensors can only focus on moving objects and produce much more sparse point clouds
data that is friendly to the data transfer and storage. As mentioned in Section 3, one of the
contributions of our work is using the mmwave radar sensors to detect moving objects
and enhance them in LiDAR and camera data. The testing mmwave radar sensor used for
our data collection framework is Texas Instruments mmwave AWR1843BOOST with 76 to
81 GHz frequency coverage and 4 GHz available bandwidth.

Figure 9 and Table 2 show all sensors’ aspects and detailed specifications. Please note
that the parameters in Table 2 are the maximum values sensors can manage under the
firmware and developing kit versions used in our experiments. In practical terms, the
resolution and frame rate were reduced to meet the bandwidth and computation power
limits. The LiDAR sensor operates at 10 Hz, and the camera runs at 15 Hz with a resolution
of 1920 × 1080. Moreover, the maximum unambiguous range of the radar sensor was set
as 30 m, and the maximum radial velocity is 15.37 m/s. The corresponding resolution
of range and radial velocity is 0.586 and 0.25 m, respectively. To address the common
problems of the radar sensors, such as sparse and heterogeneous point clouds, and a high
level of uncertainty and noise for moving object detection, there are two radars installed
next to each other in the box, as shown in Figure 9c. Camera and radar sensors are in
close proximity, so the image and points data are consistent with each other and produce
accurate perceptive results. Unlike the camera and radar sensors with limited horizontal
FoV, LiDAR sensors have 360° horizontal views. To fully utilize this characteristic of the
LiDAR sensors, one of the most popular methods is installing multiple camera and radar
sensors in all directions. For example, the acquisition system of Apolloscape [29] has up to
six video cameras around the vehicle; multiple LiDAR and radar sensors were installed in
pairs in [23] to cover most of the blind spots. It is a fact that the prototype mount in this
work only records camera and radar data in front view. However, the scope of this work is
demonstrating a generic framework for data collection and enhancement. Future work will
include setting more camera–radar modules in different directions.

Table 2. Specifications of the sensors ion prototype mount.

FoV (◦) Range (m)/Resolution Update Rate (Hz)

Velodyne VLP-32 40 (vertical) 200 20

Raspberry Pi V2 160 (D) 3280 × 2464 90 in 640 × 480

TI mmwave
AWR1843BOOST

100 (H)
40 (V)

4 cm (range resolution)
0.3 m/s (velocity resolution) 10–100

4.2. Software System

The software infrastructure of the dataset collection framework was adapted from the
iseAuto, the first autonomous shuttle deployed in real-traffic scenarios in Estonia. Based
on the ROS and Autoware [71], the software infrastructure of the iseAuto shuttle is a
generic solution for autonomous vehicles for sensor launching, behavior making, motion
planning, and artificial intelligence-related tasks. The infrastructure contains a set of
modules, including human interface, process management, data logging, and transferring.
Like the iseAuto shuttle, the pipeline of the dataset collection framework was operated
upon the ROS and captures all the sensory data in the corresponding ROS formats. As ROS
is designed with distributed computing capability, multiple computers can run the same
ROS system with only one master; thus, the ROS data from different slaves is visible to the
whole network. In this work, the supporting computer connected to the camera and radar
sensors works as an ROS slave, and the main computer hosts the ROS master. Complete
and bi-directional connectivity exists between the main and supporting computers on all
ports. In addition, the Gigabyte Ethernet connection guarantees low latency to transfer the
camera and radar data from the supporting computer to the main computer.

Sensors 2023, 23, 6783 20 of 25

4.3. Cloud Server

In our work, the cloud server is another important component because it hosts the
database module, which stores the post-processing data. The private cloud server plays a
critical role in the processes of data storage and public service requests. For the iseAuto
shuttle, multiple database architectures were used in the cloud server to store all kinds
of data produced by the vehicle. Log data related to the low-level control system, such
as braking, steering, and throttle, were stored in a PostgreSQL database. Perceptive data
from the sensors were stored in a MySQL database set in parallel in the cloud server.
We deploy a similar MySQL database in a remote server to store original sensory and
post-processed data collected by prototype, such as camera-frame-projected and radar-
enhanced LiDAR data. The database module communicates with the main computer
through 4G routers. Moreover, we develop the database in a manner to be able to adapt
to other autonomous platforms quickly. There is an interface that allows users to modify
the database structure for different sensors and their corresponding configurations. The
data that were stored in the database have the labels of the timestamps and path in file
systems, which will be useful for the database query tasks. We also deploy this data
collection framework onto our autonomous shuttle and publish the data collected by the
shuttles when they are on real-traffic duty. The web page interface to access the data is
https://www.roboticlab.eu/finest-mobility (accessed on 14 May 2023).

5. Performance Evaluation

We developed this dataset collection framework primarily for the purpose of deploying
on low-speed urban autonomous vehicles such as autonomous shuttles and food-delivery
robots. Perceptive data were collected while autonomous vehicles were performing routine
duties. Post-processing such as data decompression, sensor synchronization, and fusion
were supposed to be carried out on board. Considering the computational limit of vehicles’
in-built computers, it is critical to evaluate the efficiency of dataset collection framework
regarding time and storage space consumption. Please note that the scope of our work is to
build a generic practical solution for autonomous vehicles to collect and process perceptive
data. The potential usages of the published dataset include scooter speed monitoring, and
traffic-sign enhancement, which serve as transportation management for smart cites [72].
Benchmarks for other kinds of autonomous-driving-related research such as object seg-
mentation, tracking, and path completion might benefit from the implementation of this
framework, but remain out of the scope of this work.

Tables 3 and 4 evaluate the performance of this dataset collection framework in our
prototype. Table 3 shows the storage occupation and time consumption of the framework’s
different modules to process the whole data sequence. The raw data collected from the
sensors are stored as ROS bag files. There are two examples listed in this table: the first
sequence is the filed-test data collected at the scene where our autonomous shuttles were
deployed in Tallinn urban area. The second sequence was recorded at the indoor laboratory.
The duration of our tests is 301 and 144 s, corresponding to the size of 3.7 and 0.78 GB.
The output of the decompression and fusion operations in our framework are portable
network graphics (PNG) images and binary pickle files for each frame, which are explained
in detail in Section 3. The final output of our dataset collection framework for these two
example sequences is available at https://www.roboticlab.eu/claude/finest_framework/
(accessed on 14 May 2023). As there are two radar sensors installed in our prototype, the
‘radar–LiDAR–camera Fusion’ in Table 3 indicates the time consumption and data size for
two radar streams. Please note that the post-processing in our framework was executed in
parallel using multiple threads; therefore, the time consumption of the decompression and
fusion might vary for different hardware setups and conditions. The data in Table 3 were
computed by the main onboard computer of our prototype, which is Intel® NUC 11 with
Core™ i7-1165G7 featuring 8 processing threads.

Table 4 shows our evaluation on the framework’s per-frame performance. The first
row shows the size of the RGB image and binary LiDAR points per frame. The second row

https://www.roboticlab.eu/finest-mobility
https://www.roboticlab.eu/claude/finest_framework/

Sensors 2023, 23, 6783 21 of 25

is the sum of the time consumption to produce one image, and one point-cloud binary file
since the camera and LiDAR data were synchronized to the same frequency before being
forwarded to the post-processing modules. The input of the ’LiDAR Projection’ process is
all of the LiDAR point clouds; therefore, this process takes the longest time compared with
the other processes.

Table 3. Data size and time duration of framework’s modules to process the data sequence. The unit
of the data size is gigabyte (GB), and the unit of the time is second (s).

Sequence 1
City Urban

Sequence 2
Indoor Lab

Sequence Duration (s) 301 144

Raw Bag File Size (GB) 3.7 0.78

Synchronization (s) 4.28 1.24

Raw Data Decompressing (s) 0.36 0.09

Raw Data Writing (s)/(GB) 116.63/16.4 54.74/7.4

LiDAR-Camera Fusion (s)/(GB) 510.94/9.2 261.34/4.6

radar–LiDAR–Camera Fusion (s)/(GB) 61.97/5.8 39.38/3.3

Table 4. Data size and average time consumption of the framework’s post-processing for each frame.
The output of each post-processing is an RGB image with resolution of 1920 × 1080, and the binary
pickle file contains the coordinates and the velocity information of the points in each corresponding
frame. The unit of the data size is megabyte (MB), and the unit of the time is millisecond (ms).

Raw Data
Decompressing

and Writing

LiDAR
Projection

Radar-LiDAR
Clustering

Size per frame
RGB image in 1920 × 1080 3 MB 3 MB 3 MB

LiDAR points in binary 1.2 MB 0.9 MB <0.1 MB

Average time per frame
(RGB image in 1920 × 1080 +

LiDAR points in binary)
79.7 ms 647.7 ms 108.44 ms

6. Conclusions

In conclusion, this study successfully presents a comprehensive end-to-end generic
sensor dataset collection framework for autonomous driving vehicles. The framework
includes hardware deploying solutions; sensor fusion algorithms; and a universal toolbox
for calibrating and synchronizing camera, LiDAR, and radar sensors. The generality of this
framework allows for its application in various robotic or autonomous systems, making it
suitable for rapid, large-scale practical deployment. The promising results demonstrate the
effectiveness of the proposed framework, which not only addresses the challenges of sensor
calibration, synchronization, and fusion, but also paves the way for further advancements
in autonomous driving research. Specifically, we showcase a streamlined and robust
hardware configuration that maintains ample room for customization while preserving a
generic interface for data gathering. Aiming to simplify cross-sensor data processing, we
introduce a framework that efficiently handles message synchronization, and low-level
data fusion. In addition, we develop a server-side platform allowing for the redundancy of
connections from the recording of multiple in-field operational vehicles and the uploading
of sensors data. Finally, we feature the framework with the basic web interface allowing
one to overview and download the collected data (both raw and processed). Moreover,
the framework has the potential for expansion through the incorporation of high-level
sensor data fusion, which would enable one to track dynamic objects more effectively. This

Sensors 2023, 23, 6783 22 of 25

enhancement can be achieved by integrating LiDAR-camera deep fusion techniques that
not only facilitate the fusion of data from these sensors, but also tackle the calibration
challenges between LiDAR and camera devices. By integrating these advanced methods,
the framework can offer even more comprehensive and efficient solutions for autonomous
vehicles, and other applications, requiring the robust and precise tracking of objects in
their surroundings. In addition, we view comprehensive evaluations, such as the image
quality assessment described by Zhai and Min [73] and the real-traffic object detection
benchmark [74] of the results, as future work.

Author Contributions: Conceptualization, J.G.; Methodology, J.G. and A.L.; Software, J.G. and A.L.;
Validation, J.G. and A.L.; Formal analysis, J.G.; Investigation, J.G. and T.R.C.; Resources, J.G.; Data
curation, J.G. and A.L.; Writing—original draft, J.G.; Writing—review & editing, J.G., A.L., T.R.C. and
M.B.; Visualization, J.G. and A.L.; Supervision, R.S.; Project administration, R.S.; Funding acquisition,
R.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research has received funding from two grants: the European Union’s Horizon 2020
Research and Innovation Programme, under the grant agreement No. 856602, and the European
Regional Development Fund, co-funded by the Estonian Ministry of Education and Research, under
grant agreement No. 2014-2020.4.01.20-0289.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The source code of the implementation and demonstration of our frame-
work’s prototype is available at https://github.com/Claud1234/distributed_sensor_data_collector
(accessed on 14 May 2023). The web interface to access the data collected by the framework that
was deployed on real-traffic autonomous shuttle is at https://www.roboticlab.eu/finest-mobility
(accessed on 14 May 2023). The final output of our dataset collection framework for two example se-
quences in Section 5 is available at https://www.roboticlab.eu/claude/finest_framework/ (accessed
on 14 May 2023).

Acknowledgments: The financial support from the Estonian Ministry of Education and Research
and the Horizon 2020 Research and Innovation Programme is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Le Mero, L.; Yi, D.; Dianati, M.; Mouzakitis, A. A Survey on Imitation Learning Techniques for End-to-End Autonomous Vehicles.

IEEE Trans. Intell. Transp. Syst. 2022, 23, 14128–14147. [CrossRef]
2. Bathla, G.; Bhadane, K.; Singh, R.K.; Kumar, R.; Aluvalu, R.; Krishnamurthi, R.; Kumar, A.; Thakur, R.N.; Basheer, S. Autonomous

Vehicles and Intelligent Automation: Applications, Challenges, and Opportunities. Mob. Inf. Syst. 2022, 2022, 7632892. [CrossRef]
3. Ettinger, S.; Cheng, S.; Caine, B.; Liu, C.; Zhao, H.; Pradhan, S.; Chai, Y.; Sapp, B.; Qi, C.R.; Zhou, Y.; et al. Large Scale Interactive

Motion Forecasting for Autonomous Driving: The Waymo Open Motion Dataset. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9710–9719.

4. Jacob, J.; Rabha, P. Driving data collection framework using low cost hardware. In Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018.

5. de Gelder, E.; Paardekooper, J.P.; den Camp, O.O.; Schutter, B.D. Safety assessment of automated vehicles: How to determine
whether we have collected enough field data? Traffic Inj. Prev. 2019, 20, S162–S170. [CrossRef]

6. Lopez, P.A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flötteröd, Y.P.; Hilbrich, R.; Lücken, L.; Rummel, J.; Wagner, P.; Wießner, E.
Microscopic traffic simulation using sumo. In Proceedings of the 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2575–2582.

7. Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in
Perception for Autonomous Driving: Waymo Open Dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.

8. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A
Multimodal Dataset for Autonomous Driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.

https://github.com/Claud1234/distributed_sensor_data_collector
https://www.roboticlab.eu/finest-mobility
https://www.roboticlab.eu/claude/finest_framework/
http://doi.org/10.1109/TITS.2022.3144867
http://dx.doi.org/10.1155/2022/7632892
http://dx.doi.org/10.1080/15389588.2019.1602727

Sensors 2023, 23, 6783 23 of 25

9. Alatise, M.B.; Hancke, G.P. A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods. IEEE Access 2020,
8, 39830–39846. [CrossRef]

10. Blasch, E.; Pham, T.; Chong, C.Y.; Koch, W.; Leung, H.; Braines, D.; Abdelzaher, T. Machine Learning/Artificial Intelligence for
Sensor Data Fusion–Opportunities and Challenges. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 80–93. [CrossRef]

11. Wallace, A.M.; Mukherjee, S.; Toh, B.; Ahrabian, A. Combining automotive radar and LiDAR for surface detection in adverse
conditions. IET Radar Sonar Navig. 2021, 15, 359–369. [CrossRef]

12. Gu, J.; Bellone, M.; Sell, R.; Lind, A. Object segmentation for autonomous driving using iseAuto data. Electronics 2022, 11, 1119.
[CrossRef]

13. Muller, R.; Man, Y.; Celik, Z.B.; Li, M.; Gerdes, R. Drivetruth: Automated autonomous driving dataset generation for security
applications. In Proceedings of the International Workshop on Automotive and Autonomous Vehicle Security (AutoSec), San
Diego, CA, USA, 24 April 2022.

14. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [CrossRef]
15. Xiao, P.; Shao, Z.; Hao, S.; Zhang, Z.; Chai, X.; Jiao, J.; Li, Z.; Wu, J.; Sun, K.; Jiang, K.; et al. PandaSet: Advanced Sensor Suite

Dataset for Autonomous Driving. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference
(ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 3095–3101. [CrossRef]

16. Déziel, J.L.; Merriaux, P.; Tremblay, F.; Lessard, D.; Plourde, D.; Stanguennec, J.; Goulet, P.; Olivier, P. PixSet: An Opportunity for
3D Computer Vision to Go beyond Point Clouds with a Full-Waveform LiDAR Dataset. arXiv 2021, arXiv:2102.12010.

17. Pitropov, M.; Garcia, D.E.; Rebello, J.; Smart, M.; Wang, C.; Czarnecki, K.; Waslander, S. Canadian adverse driving conditions
dataset. Int. J. Robot. Res. 2021, 40, 681–690. [CrossRef]

18. Yan, Z.; Sun, L.; Krajník, T.; Ruichek, Y. EU Long-term Dataset with Multiple Sensors for Autonomous Driving. In Proceedings of
the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24
January 2021; pp. 10697–10704. [CrossRef]

19. Lakshminarayana, N. Large scale multimodal data capture, evaluation and maintenance framework for autonomous driving
datasets. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea,
27–28 October 2019.

20. Beck, J.; Arvin, R.; Lee, S.; Khattak, A.; Chakraborty, S. Automated vehicle data pipeline for accident reconstruction: New insights
from LiDAR, camera, and radar data. Accid. Anal. Prev. 2023, 180, 106923. [CrossRef]

21. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. In Proceedings of the
Conference on Robot Learning, PMLR, Mountain View, CA, USA, 13–15 November 2017; pp.1–16.

22. Xiao, Y.; Codevilla, F.; Gurram, A.; Urfalioglu, O.; López, A.M. Multimodal end-to-end autonomous driving. IEEE Trans. Intell.
Transp. Syst. 2020, 23, 537–547. [CrossRef]

23. Wei, J.; Snider, J.M.; Kim, J.; Dolan, J.M.; Rajkumar, R.; Litkouhi, B. Towards a viable autonomous driving research platform. In
Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 763–770.

24. Grisleri, P.; Fedriga, I. The braive autonomous ground vehicle platform. IFAC Proc. Vol. 2010, 43, 497–502. [CrossRef]
25. Bertozzi, M.; Bombini, L.; Broggi, A.; Buzzoni, M.; Cardarelli, E.; Cattani, S.; Cerri, P.; Coati, A.; Debattisti, S.; Falzoni, A.; et al.

VIAC: An out of ordinary experiment. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden,
Germany, 5–9 June 2011; pp. 175–180. [CrossRef]

26. Self-Driving Made Real—NAVYA. Available online: https://navya.tech/fr (accessed on 2 May 2023).
27. Gu, J.; Chhetri, T.R. Range Sensor Overview and Blind-Zone Reduction of Autonomous Vehicle Shuttles. IOP Conf. Ser. Mater. Sci.

Eng. 2021, 1140, 012006. [CrossRef]
28. Chang, M.F.; Lambert, J.; Sangkloy, P.; Singh, J.; Bak, S.; Hartnett, A.; Wang, D.; Carr, P.; Lucey, S.; Ramanan, D.; et al. Argoverse:

3D Tracking and Forecasting with Rich Maps. arXiv 2019, arXiv:1911.02620.
29. Wang, P.; Huang, X.; Cheng, X.; Zhou, D.; Geng, Q.; Yang, R. The apolloscape open dataset for autonomous driving and its

application. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 1, 2702–2719.
30. Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.; Diebel, J.; Fong, P.; Gale, J.; Halpenny, M.; Hoffmann, G.; et al.

Stanley: The robot that won the DARPA Grand Challenge. J. Field Robot. 2006, 23, 661–692. [CrossRef]
31. Zhang, J.; Singh, S. Laser–visual–inertial odometry and mapping with high robustness and low drift. J. Field Robot. 2018, 35,

1242–1264. [CrossRef]
32. An, P.; Ma, T.; Yu, K.; Fang, B.; Zhang, J.; Fu, W.; Ma, J. Geometric calibration for LiDAR-camera system fusing 3D-2D and 3D-3D

point correspondences. Opt. Express 2020, 28, 2122–2141. [CrossRef]
33. Domhof, J.; Kooij, J.F.; Gavrila, D.M. An extrinsic calibration tool for radar, camera and lidar. In Proceedings of the 2019

International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: Piscataway, NJ,
USA, 2019; pp. 8107–8113.

34. Jeong, J.; Cho, Y.; Kim, A. The road is enough! Extrinsic calibration of non-overlapping stereo camera and LiDAR using road
information. IEEE Robot. Autom. Lett. 2019, 4, 2831–2838. [CrossRef]

35. Schöller, C.; Schnettler, M.; Krämmer, A.; Hinz, G.; Bakovic, M.; Güzet, M.; Knoll, A. Targetless rotational auto-calibration of radar
and camera for intelligent transportation systems. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), Auckland, New Zealand, 27–30 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3934–3941.

http://dx.doi.org/10.1109/ACCESS.2020.2975643
http://dx.doi.org/10.1109/MAES.2020.3049030
http://dx.doi.org/10.1049/rsn2.12042
http://dx.doi.org/10.3390/electronics11071119
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1109/ITSC48978.2021.9565009
http://dx.doi.org/10.1177/0278364920979368
http://dx.doi.org/10.1109/IROS45743.2020.9341406
http://dx.doi.org/10.1016/j.aap.2022.106923
http://dx.doi.org/10.1109/TITS.2020.3013234
http://dx.doi.org/10.3182/20100906-3-IT-2019.00086
http://dx.doi.org/10.1109/IVS.2011.5940531
https://navya.tech/fr
http://dx.doi.org/10.1088/1757-899X/1140/1/012006
http://dx.doi.org/10.1002/rob.20147
http://dx.doi.org/10.1002/rob.21809
http://dx.doi.org/10.1364/OE.381176
http://dx.doi.org/10.1109/LRA.2019.2921648

Sensors 2023, 23, 6783 24 of 25

36. Huang, K.; Shi, B.; Li, X.; Li, X.; Huang, S.; Li, Y. Multi-modal sensor fusion for auto driving perception: A survey. arXiv 2022,
arXiv:2202.02703.

37. Cui, Y.; Chen, R.; Chu, W.; Chen, L.; Tian, D.; Li, Y.; Cao, D. Deep learning for image and point cloud fusion in autonomous
driving: A review. IEEE Trans. Intell. Transp. Syst. 2021, 23, 722–739. [CrossRef]

38. Caltagirone, L.; Bellone, M.; Svensson, L.; Wahde, M. LIDAR–camera fusion for road detection using fully convolutional neural
networks. Robot. Auton. Syst. 2019, 111, 125–131. [CrossRef]

39. Caltagirone, L.; Bellone, M.; Svensson, L.; Wahde, M.; Sell, R. LiDAR–camera semi-supervised learning for semantic segmentation.
Sensors 2021, 21, 4813. [CrossRef]

40. Pollach, M.; Schiegg, F.; Knoll, A. Low latency and low-level sensor fusion for automotive use-cases. In Proceedings of the 2020
IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: Piscataway, NJ,
USA, 2020; pp. 6780–6786.

41. Shahian Jahromi, B.; Tulabandhula, T.; Cetin, S. Real-time hybrid multi-sensor fusion framework for perception in autonomous
vehicles. Sensors 2019, 19, 4357. [CrossRef] [PubMed]

42. Chen, Y.L.; Jahanshahi, M.R.; Manjunatha, P.; Gan, W.; Abdelbarr, M.; Masri, S.F.; Becerik-Gerber, B.; Caffrey, J.P. Inexpensive
multimodal sensor fusion system for autonomous data acquisition of road surface conditions. IEEE Sensors J. 2016, 16, 7731–7743.
[CrossRef]

43. Meyer, G.P.; Charland, J.; Hegde, D.; Laddha, A.; Vallespi-Gonzalez, C. Sensor fusion for joint 3d object detection and semantic
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long
Beach, CA, USA, 16–17 June 2019.

44. Guan, H.; Yan, W.; Yu, Y.; Zhong, L.; Li, D. Robust traffic-sign detection and classification using mobile LiDAR data with digital
images. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2018, 11, 1715–1724. [CrossRef]

45. Yeong, D.J.; Velasco-Hernandez, G.; Barry, J.; Walsh, J. Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review.
Sensors 2021, 21, 2140. [CrossRef]

46. Liu, Z.; Wu, Q.; Wu, S.; Pan, X. Flexible and accurate camera calibration using grid spherical images. Opt. Express 2017, 25,
15269–15285. [CrossRef]

47. Vel’as, M.; Španěl, M.; Materna, Z.; Herout, A. Calibration of RGB Camera with Velodyne Lidar. In Proceedings of the 22nd
International Conference in Central Europeon Computer Graphics, Visualization and Computer Visionin Co-Operation with
EUROGRAPHICS Association, Plzen, Czech Republic, 2–5 June 2014; pp. 135–144.

48. Pannu, G.S.; Ansari, M.D.; Gupta, P. Design and implementation of autonomous car using Raspberry Pi. Int. J. Comput. Appl.
2015, 113, 22–29.

49. Jain, A.K. Working model of self-driving car using convolutional neural network, Raspberry Pi and Arduino. In Proceedings
of the 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore,
India, 29–31 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1630–1635.

50. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]
51. Velodyne-VLP32C Datasheet. Available online: https://https://www.mapix.com/wp-content/uploads/2018/07/63-9378_Rev-

D_ULTRA-Puck_VLP-32C_Datasheet_Web.pdf (accessed on 6 June 2023).
52. Glennie, C.; Lichti, D.D. Static calibration and analysis of the Velodyne HDL-64E S2 for high accuracy mobile scanning. Remote

Sens. 2010, 2, 1610–1624. [CrossRef]
53. Atanacio-Jiménez, G.; González-Barbosa, J.J.; Hurtado-Ramos, J.B.; Ornelas-Rodríguez, F.J.; Jiménez-Hernández, H.; García-

Ramirez, T.; González-Barbosa, R. Lidar velodyne hdl-64e calibration using pattern planes. Int. J. Adv. Robot. Syst. 2011, 8, 59.
[CrossRef]

54. Milch, S.; Behrens, M. Pedestrian detection with radar and computer vision. In Proceedings of the PAL 2001—Progress in
Automobile Lighting, Laboratory of Lighting Technology, 25–26 September 2001; Herbert utzverlag GMBH: Munchen, Germany,
2001; Volume 9.

55. Huang, W.; Zhang, Z.; Li, W.; Tian, J. Moving object tracking based on millimeter-wave radar and vision sensor. J. Appl. Sci. Eng.
2018, 21, 609–614.

56. Liu, F.; Sparbert, J.; Stiller, C. IMMPDA vehicle tracking system using asynchronous sensor fusion of radar and vision. In
Proceedings of the 2008 IEEE Intelligent Vehicles Symposium, Eindhoven,The Netherlands, 4–6 June 2008; IEEE: Piscataway, NJ,
USA, 2008; pp. 168–173.

57. Guo, X.-p.; Du, J.-s.; Gao, J.; Wang, W. Pedestrian detection based on fusion of millimeter wave radar and vision. In Proceedings of
the 2018 International Conference on Artificial Intelligence and Pattern Recognition, Beijing, China, 18–20 August 2018; pp. 38–42.

58. Yin, L.; Luo, B.; Wang, W.; Yu, H.; Wang, C.; Li, C. CoMask: Corresponding Mask-Based End-to-End Extrinsic Calibration of the
Camera and LiDAR. Remote Sens. 2020, 12, 1925. [CrossRef]

59. Peršić, J.; Marković, I.; Petrović, I. Extrinsic 6dof calibration of a radar–lidar–camera system enhanced by radar cross section
estimates evaluation. Robot. Auton. Syst. 2019, 114, 217–230. [CrossRef]

60. Message_Filters—ROS Wiki. Available online: https://wiki.ros.org/message_filters (accessed on 7 March 2023).
61. Banerjee, K.; Notz, D.; Windelen, J.; Gavarraju, S.; He, M. Online camera lidar fusion and object detection on hybrid data for

autonomous driving. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 1632–1638.

http://dx.doi.org/10.1109/TITS.2020.3023541
http://dx.doi.org/10.1016/j.robot.2018.11.002
http://dx.doi.org/10.3390/s21144813
http://dx.doi.org/10.3390/s19204357
http://www.ncbi.nlm.nih.gov/pubmed/31600922
http://dx.doi.org/10.1109/JSEN.2016.2602871
http://dx.doi.org/10.1109/JSTARS.2018.2810143
http://dx.doi.org/10.3390/s21062140
http://dx.doi.org/10.1364/OE.25.015269
http://dx.doi.org/10.1109/34.888718
https://https://www.mapix.com/wp-content/uploads/2018/07/63-9378_Rev-D_ULTRA-Puck_VLP-32C_Datasheet_Web.pdf
https://https://www.mapix.com/wp-content/uploads/2018/07/63-9378_Rev-D_ULTRA-Puck_VLP-32C_Datasheet_Web.pdf
http://dx.doi.org/10.3390/rs2061610
http://dx.doi.org/10.5772/50900
http://dx.doi.org/10.3390/rs12121925
http://dx.doi.org/10.1016/j.robot.2018.11.023
https://wiki.ros.org/message_filters

Sensors 2023, 23, 6783 25 of 25

62. Fayyad, J.; Jaradat, M.A.; Gruyer, D.; Najjaran, H. Deep learning sensor fusion for autonomous vehicle perception and localization:
A review. Sensors 2020, 20, 4220. [CrossRef]

63. Wei, Z.; Zhang, F.; Chang, S.; Liu, Y.; Wu, H.; Feng, Z. Mmwave radar and vision fusion for object detection in autonomous
driving: A review. Sensors 2022, 22, 2542. [CrossRef]

64. Hajri, H.; Rahal, M.C. Real time lidar and radar high-level fusion for obstacle detection and tracking with evaluation on a ground
truth. arXiv 2018, arXiv:1807.11264.

65. Fritsche, P.; Zeise, B.; Hemme, P.; Wagner, B. Fusion of radar, LiDAR and thermal information for hazard detection in low
visibility environments. In Proceedings of the 2017 IEEE International Symposium on Safety, Security and Rescue Robotics
(SSRR), Shanghai, China, 11–13 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 96–101.

66. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with
noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA,
2–4 August 1996; Volume 96, pp. 226–231.

67. Pikner, H.; Karjust, K. Multi-layer cyber-physical low-level control solution for mobile robots. IOP Conf. Ser. Mater. Sci. Eng. 2021,
1140, 012048. [CrossRef]

68. Sell, R.; Leier, M.; Rassõlkin, A.; Ernits, J.P. Self-driving car ISEAUTO for research and education. In Proceedings of the 2018
19th International Conference on Research and Education in Mechatronics (REM), Delft, The Netherlands, 7–8 June 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 111–116.

69. Geyer, J.; Kassahun, Y.; Mahmudi, M.; Ricou, X.; Durgesh, R.; Chung, A.S.; Hauswald, L.; Pham, V.H.; Mühlegg, M.; Dorn, S.; et al.
A2d2: Audi autonomous driving dataset. arXiv 2020, arXiv:2004.06320.

70. Broggi, A.; Buzzoni, M.; Debattisti, S.; Grisleri, P.; Laghi, M.C.; Medici, P.; Versari, P. Extensive tests of autonomous driving
technologies. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1403–1415. [CrossRef]

71. Kato, S.; Tokunaga, S.; Maruyama, Y.; Maeda, S.; Hirabayashi, M.; Kitsukawa, Y.; Monrroy, A.; Ando, T.; Fujii, Y.; Azumi,
T. Autoware on board: Enabling autonomous vehicles with embedded systems. In Proceedings of the 2018 ACM/IEEE 9th
International Conference on Cyber-Physical Systems (ICCPS), Porto, Portugal, 11–13 April 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 287–296.

72. A Conceptual Ecosystem Solution to Transport System Management. Available online: https://www.finestcentre.eu/mobility
(accessed on 23 June 2023).

73. Zhai, G.; Min, X. Perceptual image quality assessment: A survey. Sci. China Inf. Sci. 2020, 63, 211301. [CrossRef]
74. Fritsch, J.; Kühnl, T.; Geiger, A. A new performance measure and evaluation benchmark for road detection algorithms. In

Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), Hague, The Netherlands,
6–9 October 2013; pp. 1693–1700. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s20154220
http://dx.doi.org/10.3390/s22072542
http://dx.doi.org/10.1088/1757-899X/1140/1/012048
http://dx.doi.org/10.1109/TITS.2013.2262331
https://www.finestcentre.eu/mobility
http://dx.doi.org/10.1007/s11432-019-2757-1
http://dx.doi.org/10.1109/ITSC.2013.6728473

	Introduction
	Related Work
	Dataset Collection Framework for Autonomous Driving
	Multimodal Sensor System for Data Acquisition

	Methodology
	Sensor Calibration
	Intrinsic Calibration
	Extrinsic Calibration

	Sensor Synchronization
	Sensor Fusion
	LiDAR Camera Fusion
	Radar LiDAR and Camera Fusion

	Prototype Setup
	Hardware Configurations
	Processing Unit Configurations
	Sensor Installation

	Software System
	Cloud Server

	Performance Evaluation
	Conclusions
	References

