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Abstract: The enforcement of the GDPR in May 2018 has led to a paradigm shift in data protection.
Organizations face significant challenges, such as demonstrating compliance (or auditability) and
automated compliance verification due to the complex and dynamic nature of consent, as well as
the scale at which compliance verification must be performed. Furthermore, the GDPR’s promotion
of data protection by design and industrial interoperability requirements has created new technical
challenges, as they require significant changes in the design and implementation of systems that
handle personal data. We present a scalable data protection by design tool for automated compliance
verification and auditability based on informed consent that is modeled with a knowledge graph.
Automated compliance verification is made possible by implementing a regulation-to-code process
that translates GDPR regulations into well-defined technical and organizational measures and,
ultimately, software code. We demonstrate the effectiveness of the tool in the insurance and smart
cities domains. We highlight ways in which our tool can be adapted to other domains.

Keywords: GDPR; privacy; compliance verification; informed consent; standard data protection
model; data sharing; data protection by design; knowledge graph; distributed systems

1. Introduction

The enforcement of the General Data Protection Regulation (GDPR) [1] has trans-
formed the landscape of personally identifiable information (PII) sharing (or processing).
Any company (or individual) dealing with the PII of EU citizens must first obtain informed
consent (Art. 6) from the data subject (i.e., an identifiable natural person according to
Art. 4 (1)) if none of the other options of Art. 6 apply, regardless of their location [2].
Further, specific requirements for informed consent need to be met as well. Consent should
be specific, unambiguous, freely given, and one should be able to withdraw it with the
same ease as when it was given (Art. 6). However, these requirements have also posed
significant challenges to companies regarding the automation of compliance verification.
Several software tools for GDPR compliance have already been developed that cover some
steps required for automated compliance verification (e.g., [3–7]). In most cases, these tools
address only a specific subset of the GDPR regulations, such as audit (or auditability) [8]
or only consent management. None of the surveyed tools implement a comprehensive
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process that translates technical and organizational measures (TOMs) into code that are
required by the GDPR but are insufficiently defined.

According to the International Association of Privacy Professionals (IAPP) [9] annual
privacy governance report (2020) [10], only 47% of the European companies are “fully”
or “very” compliant (up from 39% in 2019). There is a need for solutions that can help
companies automate GDPR compliance verification, as noncompliance with the GDPR can
result in severe fines (Art. 83).

Having reviewed the existing GDPR compliance verification tools and their limita-
tions, we have identified several issues (see Section 3) that many companies still face.
A major challenge for companies, when complying with the GDPR, is to adhere to the
“principles of data protection by design” and “data protection by default” (Rec. 78). Examples
of such principles include the implementation of technical and organizational measures
that ensure data integrity and confidentiality (Art. 32 (1) and Rec. 46) and the prevention
of unauthorized disclosure or access to personal data (Art. 32 (2)), which all add another
layer of complexity. A further challenge is the representation of consent in a consistent
and uniform manner, which is required for interoperability and is currently lacking in
existing GDPR solutions [4]. Companies also need to deal with dynamic consent (i.e., data
subjects have the right to withdraw their consent at any time according to Art. 7 (3)),
while remaining compliant with the regulation (or meeting compliance obligations). An
example of the dynamic nature of consent is a broken consent chain due to a property
ownership transfer, as described in [11], that is often encountered in the insurance domain.
A system that can handle dynamic consent should be able to not only successfully detect
broken consent chains but also support the re-establishment of valid consent. Finally,
the scalability of processes such as automated compliance and audit is still a significant
challenge, particularly in industries such as insurance and smart cities where time is critical
and delays can result in additional monetary charges for businesses [8].

In light of current challenges and industrial requirements, and building on our initial
idea [12], we present a scalable tool for automated GDPR compliance based on seman-
tically modeled informed consent (part of the the smashHit [13] project). Compliance
refers to the verification that a person’s data are used according to that person’s informed
consent. Our work adheres to data protection by design principles by implementing a
novel regulation-to-code process that translates GDPR regulations first into protection
goals defined by the Standard Data Protection Model (SDM) and then into well-defined
technical and organizational measures (TOMs; details in Section 4.1). Both the SDM and
TOM steps of this process are executed by the legal team associated with the smashHit
project. The same legal team is also supervising the implementation of TOMs into code.
Our tool makes extensive use of semantic technologies, specifically a knowledge graph
(KG) and an ontology (both developed in collaboration with legal experts), for representing
informed consent as defined by the GDPR. Semantic technology is also regarded as one
of the best practices in RegTech [14] and Ryan et al. [6]. Knowledge graphs, for example,
provide a consistent consent representation in a machine-readable format, support data
interoperability, and faster and easier knowledge discovery [15]. Numerous semantic
models for consent exist as shown in the survey by Kurteva et al. [16] and their use for
cases such as GDPR compliance verification is evident, as shown in, e.g., [17].

1.1. Goal

The primary objective of our work is to automate GDPR compliance verification with
the help of semantics and a regulation-to-code process. To achieve this, we present a
scalable, ready-to-be-deployed data protection by design tool, which utilizes a legal KG.
Automated compliance verification and the handling of broken consent chains are the
two main functionalities supported by our tool. The second objective is to show that
GDPR regulations can be translated into code via several intermediate steps. All system
requirements have been derived from our two business use cases related to data sharing
(see Appendix A.2).
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1.2. Contributions

With our work, we make the following contributions:

• We present a scalable tool for automated GDPR compliance verification based on
informed consent, with a use case in smart cities and insurance (see Appendix A.2)
that can be generalized to other domains. By “scalable”, we mean a system design
(i.e., architecture) that adapts to incoming requests, such as scaling up as the number
of requests increases.

• We present a process with a sequence of intermediate steps (regulation -> SDM—TOM
-> code) that translates legal regulations into code. We show that implemented TOMs
can be systematically evaluated and automatically tested (in Section 7.2).

• Our tool supports data interoperability through the use of semantic technology (ontol-
ogy and a KG).

• Our tool implements a solution for broken consent chains based on two industrial
use cases.

The rest of the paper is structured as follows. Section 2 provides background infor-
mation on the challenges of data sharing as a result of the GDPR. Section 3 provides an
overview of the related works. Section 4 summarizes the GDPR TOMs and the KG upon
which our work is based on. Section 5 discusses the architecture of compliance verification
tool and Section 6 provides details on its implementation. Section 7 presents the evaluation,
which is followed by conclusions in Section 8.

2. Background

This section provides a high-level overview of the GDPR’s impact on the data sharing
landscape (or data processing landscape), highlighting the importance of our work. As
shown in Figure 1, we observe two distinct data sharing scenarios: (i) situation prior to
GDPR implementation with no consent requirement, and (ii) situation with GDPR. Prior to
the GDPR, there was no requirement for consent, and thus the data sharing (or processing)
process was simple and straightforward, as the data controllers (DC) (Art. 4(7)) and data
processors (DP) (Art. 4(8)) were not required to deal with consent or any regulatory laws
such as the GDPR. However, with the implementation of the GDPR, the data sharing
and data processing landscape has shifted and has become more complicated. This shift
is illustrated in Figure 1. DP and DC are not only required to obtain consent, but they
must also comply with other GDPR requirements (see Table 1) and be able to demonstrate
compliance (i.e., show that they are doing only what was consented to by the data subject)
to regulatory bodies upon request.

For example, it is necessary to maintain a log of data processing operations in order
to demonstrate compliance by a DC (or a DP). This is to demonstrate to the appropriate
authority that only consent-based processing is being carried out. Additionally, it is
necessary to perform compliance checks on data sharing (or data processing) activities on
a regular basis to ensure that everything is performed in accordance with consent. For
example, regular checks need to verify that consents are actually still active and have
not been revoked or have expired. Moreover, performing these tasks manually becomes
impossible in cases such as smart cities and car insurance because of the scale at which they
must be performed. As a result, automated solutions that can handle these tasks on a large
scale are required.
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Table 1. GDPR principles and associated SDM protection objectives, their scope and purpose, as well as the associated technical–organizational measures (TOMs)
and their implementations in our compliance verification tool.

GDPR Principles SDM Protection Goal Scope and Purpose TOM Our TOM Implementation Our Tool’s Component

Purpose limitation
(Art. 5(1)(b)) Unlinkability

Takes the principle of purpose limitation
into account; defines the permissible pur-
pose changes.

Role concepts with gradu-
ated access rights on the ba-
sis of identity management
and secure authentication
process.

JavaScript Object Notation (JSON) [18]
Web Tokens (JWT) [19]-based access con-
trol is implemented. Further, customiza-
tion of standard JWT token-based ac-
cess is implemented, enabling role-based
endpoint access.

API layer

Storage limitation
(Art. 5(1)(e)) Availability

Ensuring the availability of data at a
certain time for those who require it at
that time.

Documentation of
data syntax.

PEP-8 [20] coding convention is followed
throughout the entire code base; code is
commented for better understandability.
Swagger (an interface description language
for describing RESTful APIs) is used to doc-
ument the RESTful APIs.

All components

Lawfulness,
fairness
and transparency
(Art. 5(1)(a))

Transparency

The extent and the form in which data
processing should be kept transparent to-
wards data subjects and supervisory au-
thorities; information and disclosure obli-
gations pursuant to Art. 12 et seq. GDPR,
the notification obligation pursuant to Art.
34 GDPR, the documentation of the pro-
cessing pursuant to Art. 30 GDPR.

Documentation of con-
sents, their revocations
and objections.

Consent and their states, such as revo-
cations, are stored in the GraphDB [21]
database, as well as logged in the MongoDB
[22] database.

Compliance,
Consent,
Audit

Accuracy
(5(1)(d)), Integrity
and confidentiality
(Art. 5(1)(f))

Intervenability

The extent to which data subject rights
are to be granted; how data subjects can
exercise their rights, how to ensure that
requests are made in a legitimate manner,
what corrections can be taken in the pro-
cessing of personal data (e.g., by rectifi-
cation, erasure, or limitation of the pro-
cessing of personal data) and in what
form data can be transferred by or to
other controllers.

Operational possibility of
compiling, consistently
rectifying, blocking and
erasure of all stored
personal data.

All data are stored in the KG with a unique
ID and these data are processed via REST
API endpoints; by providing personal infor-
mation that resolves to a unique ID, users
can access their data via a user interface.

Compliance, Consent
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Table 1. Cont.

GDPR Principles SDM Protection Goal Scope and Purpose TOM Our TOM Implementation Our Tool’s Component

Integrity
and confidentiality
(Art. 5(1)(f))

Confidentiality

Takes care that the disclosure of certain
data is denied to those who are not au-
thorized to have access to it; takes into
account the processes, systems, and ser-
vices potentially vulnerable to unautho-
rized access.

Encryption of data.

Deterministic searchable encryption tech-
nique is used to encrypt the data. The
Rivest–Shamir–Adleman (RSA) [23] with
Public Key Cryptography (PKCS) Stan-
dards) #1 Optimal Asymmetric Encryption
Padding (OAEP) is used for asymmetric Ad-
vanced Encryption Standard (AES) [24] ses-
sion key encryption and chained three lay-
ers AES for data encryption. Further, im-
plementation of authentication procedure.
& Identity management is used to ensure
that only registered components have ac-
cess to endpoints.

Security

Integrity and
confidentiality
(Art. 5(1)(f)), Ac-
countability (Art.
5(2))

Integrity

Ensuring that data related to an identi-
fied or identifiable person are kept in-
tact and up-to-date; ensuring that the pro-
cesses, systems, and services are correctly
planned, operated, and controlled accord-
ing to the intended purpose.

Protection against external
influences.

Security measures such as encryption, role-
based access controls to prevent unautho-
rized data access. Audits and tests to docu-
ment functionality, risks, security gaps.

Security, Audit

Data minimization
(Art. 5(1)(c)) Data minimization

Implementation of the data minimization
requirement of the GDPR; establishment
of retention periods for personal data and
processes to ensure compliance.

Reduction of non-required
attributes of data subjects.

Consent creation REST API end-
point defines minimal set of variables
for processing.

Consent
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Figure 1. The areas of concern that need to be focused on in light of the changing data sharing/pro-
cessing landscape as a result of GDPR implementation.

3. Related Work

This section provides an overview of existing state-of-the-art solutions for GDPR
compliance verification. A summary of the existing solutions and their limitations is
presented in Section 3.2 and Table A1.

3.1. Compliance Verification

Ranise and Siswantoro [25] present a scalable approach for automated legal compli-
ance checking based on security policies, which were translated into formal rules, in the
context of the European Data Protection Directive (EU DPD) [26]. However, the work
was completed before the acceptance of GDPR, which can be seen as a limitation. Further,
formal rules are restrictive, and legal input is hard to implement. TOMs and semantics
have not been considered.

Robol et al. [27] propose a privacy-by-design framework, which supports the devel-
opment of GDPR compliant systems. The authors focus on the STS-ml extension of the
Socio-Technical Security (STS) [28] method, which can be used to express and verify privacy
policy rules. The implementation of a tool that enables automatic compliance based on
the STS-ml is planned as future work, which can be seen as a limitation. TOMs have not
been considered.

The use of semantics, specifically an ontology, for GDPR compliance is explored by
Westphal et al. [29], who propose a framework that consumes and transforms privacy poli-
cies into rules. In addition to compliance based on one’s informed consent, the framework
is also able to perform compliance based on relevant GDPR obligations. Evaluation details
have not been presented. The limitations of the framework with regards to performance
and scalability are unknown. TOMs have not been considered.

By deriving the main obligations of actors such as data protection officer (DPO), data
subject (DS), and requirements for compliance that need to be met, Rhahla et al. [3] propose
guidelines for implementing a GDPR compliance verification framework for Big Data
systems (i.e., systems that can handle high volumes of unstructured data [30]). However,
there is a lack of implementation details and information if the solution was developed
with input from and validated by legal experts, which can be seen as a limitation. Further,
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the study did not take into account any TOMs or the use of semantic technology to solve
issues such as information interoperability.

Brodin [31] present a framework for GDPR compliance to assist small and medium-
sized enterprises (SMEs) in adapting to GDPR. Compliance is achieved by adopting an
employee’s work style to the designed work routines, policies, and templates. The frame-
work involves practitioners and has been empirically and theoretically evaluated. However,
little to no details about the actual implementation and the used technologies are presented
in [31]. Further, the framework does not provide process automation, and scalability issues
are present.

Camilo [32] proposes a blockchain-based tool for GDPR consent management, which
allows individuals to exercise their rights (e.g., give, revoke consent), and supports auditing
of consent transactions and processing activities. Although several GDPR Articles have
been followed for compliance and a proof-of-concept prototype has been implemented,
specific implementation details have not been provided. The evaluation has shown that
blockchain supports transparency and traceability when it comes to data processing and
consent. However, blockchain’s immutability clashes with GDPR’s “rights to erasure” [33].
It is not clear if scalability and performance evaluations have been conducted and if TOMs
were considered.

Arfelt et al. [8] present a tool for automated GDPR compliance monitoring, which
focuses on auditing at scale. The authors use metric first-order temporal logic (MFOTL) [34]
to formalize GDPR requirements and the MonPoly [35] monitoring tool to determine
whether the logs confirm the given MFOTL formula and to check for violations. The work
is validated by using industry data logs. However, it focuses on compliance monitoring
and only implements a few of the GDPR clauses. Semantics were not utilized and TOMs
were not considered.

Piras et al. [36] present an architecture for a privacy-by-design platform for GDPR
compliance as part of the Data govErnance For supportiNg gDpr (DEFeND) [37] project.
The platform is capable of organizing and analyzing individual’s data privacy preferences
and the consent itself. Further, it is able to monitor run-time execution of functionalities
and to detect and respond to security breaches. However, there is a lack of implementation
details and the scalability is unknown.

Similarly to [32], Truong et al. [38] propose a blockchain-based platform for data
management in compliance with GDPR, which grants and validates permissions regarding
data usage by utilizing smart contracts. The performance evaluation of the implemented
tool has shown that with high workload, the latency rises and bottleneck issues are present.
Issues such as data interoperability have not been addressed.

Barati et al. [39], built upon their previous work in [5,40], and propose a GDPR
compliance verification method in the Internet of Things (IoT) based on multiple smart
contracts using blockchain (Etherium [41]). The evaluation shows that the execution
time of operations such as compliance verification is highly dependent on the interest of
the blockchain miners. Further, the authors acknowledge that focusing mainly on data
privacy (e.g., visibility of how data is used by smart devices) and less on the security of the
operations can be seen as a limitation in their work [39].

Kirrane et al. [17] present the SPECIAL-K platform for personal data processing
transparency and GDPR compliance, which makes use of semantic technology, namely
vocabularies. Compliance is achieved by using the HermiT [42] reasoner over semantically
modeled privacy policies and event logs. In addition, Kirrane et al. propose several “choke
points” such as increased number of users and different privacy policy complexity, which
can be used for the evaluation of similar compliance frameworks. Although using semantic
technology, TOMs have not been considered and latency issues are present when dealing
with different complexities of privacy policies.

Bonatti et al. [43] present the SPECIAL policy language that can be used to model
consent, obligations, and policies in a machine-understandable way with OWL [44] and
an approaches for automated GDPR compliance verification. Compliance is performed
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based on ad hoc reasoning algorithms (see [45] for details). Based on the evaluation results,
further process optimizations are needed. TOMs were not considered.

Mahindrakar and Joshi [46] also focus on utilizing semantics and blockchain for GDPR
compliance. Legal knowledge from privacy policies is transformed into a KG, which is
later integrated with blockchain to support auditing. Compliance is performed with the
help of reasoning over rules related to specific data operations. Although the proposed
decentralized solution eases compliance [46] and uses semantics, it also uses blockchain,
which is a limitation, as discussed in [16,33]. Addressing privacy-by-design issues has been
set as future work.

Barati and Rana [47] encode GDPR rules as opcodes in smart contracts in a cloud-
based environment to automatically verify data operations. The evaluation of the prototype
showed that as the number of operation increases, the consumed gas increases as well. The
authors found a correlation between the fee paid by a data subject and the rate of violation
detection—the violation detection increases when the number of operations decreases [47].
A current limitation of the study is that it has not yet investigated how the “right to be
forgotten” can be implemented, having in mind the use of blockchain.

Ryan et al. [6] present a set of requirements for GDPR compliance based on RegTech [14]
and a prototype implementation of a GDPR compliance verification tool that can assist
DPOs in maintaining GDPR accountability. The authors utilize semantics (the Data Privacy
Vocabulary (DPV) [48] and PROV-O [49] ontologies). The evaluation showed that the tool
helps achieve 100% compliance for accuracy, retention, and security, only 50% compliance
for data breaches, and 40% regarding data subject rights. However, TOMs were not
considered and the scope of the work is limited to providing information needed for
compliance verification to DPOs.

Semantics and blockchain are also used by Merlec et al. [7], who present a dynamic
consent management system for personal data usage in compliance with GDPR. The system
supports functionalities such as data provisioning, user management, and authentication.
Some of the known limitations, as mentioned by the authors in [7], include the complexity
of the presented solution, immutability of blockchain, and the automation of security
and privacy policies verification and GDPR compliance checking, which is planned as
future work.

Hamdani et al. [50] combine machine learning (ML) with rule-based reasoning and
propose a framework for automated GDPR compliance checking. Compliance is based on
Article 13 and 14 and uses the OPP-115 [51] taxonomy to capture 10 rules from these articles.
The combination of rules and ML has shown to accurately predict both coarse-grained and
fine-grained data processing. However, the framework is limited with regards to the types
of documents it covers. The use of multiple compliance documents, such as data protection
impact assessments (DPIAs) [52], is set as future work, and TOMs were not considered.

Similarly to our work, Daoudagh et al. [53] also focus on data sharing in smart cities
and propose a privacy-by-design platform for compliance. The implemented solution
preserves individuals’ privacy by utilizing various authentication mechanisms, such as
zero-knowledge proofs, it can support data management and traceability, and it is compliant
with GDPR principles such as data minimization and purpose limitation. Although the
system has been implemented and utilizes the DPV [48] ontology, details about how exactly
compliance verification is performed have not been provided, and only two TOMs have
been considered.

Finally, Tokas et al. [54] propose a policy language that models different GDPR
principles, purposes, access rights, and a static rule-based approach for compliance based
on specific privacy policies. Although the work is based on several GDPR articles, including
data protection by design, improvements are needed regarding the language’s expressivity
(e.g., to model DC (or DP), data retention periods). Further, the proposed static mechanism
does not fully automate GDPR compliance, and TOMs have not been considered.
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3.2. Summary

This section presents a comparison of our solution to the reviewed state-of-the-art
projects. Table A1 (see Appendix A.3) highlights several characteristics that we have
derived from our two use cases and the need for a scalable GDPR compliance solution
that supports data interoperability and compliance verification automation. Given the
volume of processing required for use cases such as smart cities, we considered scalability
as a critical factor. When comparing the solutions, we also considered the implementation
of GDPR-required TOMs. Details on TOMs are presented in Sections 4.1 and 7.2. The
industrial use case provides information on whether the work was conducted based on
real industrial use cases. Finally, we considered the implementation level of the solutions
as it helps distinguish between ready-to-be-deployed and proof-of-concept solutions. In
Table A1, a check mark indicates that a feature has been addressed, while a cross mark in
red color indicates that a feature is either not implemented, there is a limitation, or it is
unknown (i.e., no information was provided in the study).

The details on the implementation notation used in Table A1 are presented below.

• P indicates that GDPR compliance has only been proposed or guidelines provided
without actually implementing a proof of concept or implementation.

• PoC indicates the completion of a proof of concept (or experimental implementation
that is not at the prototype level).

• PT indicates that a prototype implementation has been completed.
• FM indicates ready-to-deploy work that can be integrated via Representational State

Transfer (REST) Application Programming Interface (API). With ready-to-deploy code,
we refer to an implementation that can be deployed and integrated with minimal
configuration.

As shown in Table A1, the solutions which utilize semantics and allow consent cre-
ation/revocation do not fully automate GDPR compliance and do not consider TOMs. The
studies which automate compliance have experimental PoC implementation; thus cannot
be directly deployed and used. Although all these solutions have undergone performance
evaluation, a scalability evaluation was performed only for [46,50]. Apart from [25], none
of the studies discussed the ease of adapting their respective approaches to other regula-
tory frameworks. Most importantly, a review of related works reveals that the majority
of current studies lack consent creation and revocation features. In comparison to all of
the studies in Table A1, our solution is not only capable of performing automated GDPR
compliance verification but it also implements a robust regulation-to-code process that
translates GDPR regulations into well-defined TOMs via the SDM. It also supports interop-
erability by using a KG. Further, it has undergone extensive performance and scalability
evaluation based on real-world industrial use cases and has a PT implementation, which
allows it to be deployed and used straight away. The following sections present the details
about its design, implementation, and evaluation.

4. KG Overview and Legal Background

This section presents details about the two main tasks that allow us to implement a
scalable automated GDPR compliance verification tool based on semantically modeled
informed consent. A tool that implements a set of legal regulations (such as the GDPR)
requires a way of translating these regulations into a unified machine-readable format.
Modeling and verifying consent across a variety of domains (e.g., our two uses cases
discussed in Section 1 and Appendix A.2) can be achieved with the help of a semantic data
model (e.g., the KGs). Our approach to address the regulations-to-code task adds a software
implementation step to the previously established methodology that translates vaguely-
defined GDPR TOM requirements to so-called protection goals defined by SDM [55], and
finally, well-defined TOMs are important as they enable data protection by design, that can
be implemented in code. All legal entities that filter into the compliance verification process
(including protection goals) need to be semantically represented and readily accessible to
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other integrating components. A particularly flexible and extendable way of doing so is a
legal KG.

4.1. GDPR and Relevant TOMs

Our GDPR compliance verification tool follows the “data protection by design and by
default” principle to ensure GDPR compliance (Table 1). A key instrument here is the
implementation of “appropriate technical and organizational measures which are designed to
implement data protection principles [. . . ] in an effective manner and to integrate the necessary
safeguards into the processing in order to [. . . ] protect the rights of data subjects” (Art. 25 (1)).
This includes the adoption of internal policies (Rec. 78). It is the responsibility of the DC
(or DP) to implement TOMs to ensure and to be able to demonstrate that processing is
performed in accordance with the GDPR (Art. 4 (7), Art. 24). The implementation of
TOMs also mitigates the risk to the rights and freedoms of natural persons posed by the
processing of their personal data (Art. 32 (1)).

Legal requirements are not easily translated into technical implementations. The
SDM [55] was developed to serve this exact translation function. The SDM translates legal
requirements into corresponding protection goals that can be directly implemented as
TOMs. GDPR requirements and their mapped protection goals are summarized in [55]
(Table in Section C2, p. 28). The SDM:

• Systematizes data protection requirements in form of protection goals.
• Systematically derives generic measures from the protection goals, supplemented by

a catalog of reference measures.
• Systematizes the identification of risks in order to determine protection requirements

of the data subjects resulting from the processing.
• Offers a procedure model for modeling, implementation, and continuous control and

testing of processing activities.

Table 1 lists each SDM protection goal and its relation to the respective GDPR prin-
ciple(s). Further, Table 1 associates protection goals with specific TOMs and their current
implementation in the automated GDPR compliance verification tool.

4.2. Legal KG

The main data source for performing compliance verification is a KG, which is based
on the smashHitCore [56] ontology and is stored in the GraphDB graph database (see
Figure 2). The KG models informed consent as defined by GDPR Art. 7 and Rec. 32.
Concepts such as contracts, sensor data, data processing, and the involved entities are
represented as well. When it comes to the consent itself, the KG represents its (1) state (e.g.,
granted/not granted, revoked, withdrawn), (2) purpose, (3) duration, (4) the requested
data and its type (e.g., sensor data), (5) types of data processing (e.g., analysis, retrieval,
adaptation, collection) associated with consent, (6) entities related to consent (e.g., DC (or
DP), data subject, etc.), and (7) the time and date of a consent state change.

Consent is collected via consent forms, which have been evaluated against GDPR’s
requirements for informed consent (Art.7, 12, 13, and Rec. 32) by the legal experts (i.e.,
manual evaluation) participating in the smashHit project. With the help of APIs, the data
from the consent forms are sent to predefined Simple Protocol and Resource Description
Framework Query Language (SPARQL) [57] queries, which annotate and create unique
consent instances in the KG. The KG can be accessed directly via the SPARQL API [58]
provided by GraphDB. The advantages of using semantic models such as KGs for consent
are also discussed in [59,60].
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Figure 2. Architecture of the automated GDPR compliance verification tool.

5. System Architecture

In this section, we present the details of our architecture for an automated GDPR
compliance verification tool, which addresses current data sharing and processing chal-
lenges (see Section 3). The main goal of our work is to simplify and automate GDPR
compliance verification with the help of semantics and a regulation-to-code process, as
shown in Figure 1 (see Section 2).

Figure 2 presents the architecture of the automated GDPR compliance verification tool,
which follows a microservices architecture pattern. A microservices architecture pattern
is one in which all modules are cohesive, independent processes that interact through
messages [61]. This specific architectural pattern provides a solution to problems such
as technology lock-in for developers and dependency problems that monolithic patterns
suffer from [61,62]. Moreover, the microservices pattern supports scalability (one of the
challenges and industrial requirements in Section 1) by allowing for scaling of individual
small components [63,64]. Additionally, the flexibility and maintainability of microservices
architectures are reasons to consider them.

5.1. Service Layer

The service layer implements core functionality required for automated compliance
verification and related supporting operations such as consent creation. It is divided into
two parts: (i) the API layer and (ii) the core. The API layer and core components are discussed
in detail in the subsections below.

5.1.1. API Layer

The API layer serves as the primary entry point for the tool and exposes REST end-
points. The API layer provides access to the compliance verification tool’s functionalities
via REST endpoints. In addition to exposing the tool’s access, one of the major features of
the API layer is the ability to enable role-based access, which prevents unauthorized access
and is one of the GDPR TOMs (see Section 4.1). Algorithm 1 (more details in implementa-
tion Section 6.2.1) shows the steps for enabling role-based access. The organizational code
in Algorithm 1 is a unique identifier assigned manually (i.e., by an administrator) and is
provided to other parties accessing the compliance verification tool.
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Algorithm 1: Role-based API endpoint access.
Input: JWT token
Result: Returns grant access or HTTP 403 forbidden response

1 verify_jwt_in_request();
2 claims← extract_hashed_claims_value_from_jwt_token();
3 hasValidClaim← verify_hashed_claims_value_from_database(claims);
4 if hasValidClaimsl is True and hasValidOrganisationCode then
5 return grant access;
6 else
7 return HTTP 403 Forbidden response;
8 end

5.1.2. Data Processing

The data processing module is responsible for data management in order to support
required operations, such as compliance checking, consent creation, and auditing. The
data processing module is further subdivided into two components, the query processor
and storage, according to the type of data processing operations it supports. The query
processor module contains the SPARQL queries required to deal with consent (i.e., consent
data in KG), while the storage module handles the query processor’s execution.

5.1.3. Shared Service

The shared services include modules that assist other modules in their operations, such
as compliance, consent, and security. This shared service module’s purpose is to increase
reusability by abstracting away common functionality from other modules. As with data
processing, the shared services module is composed of two subcomponents: helper and
CRON. The CRON is a unique shared service shared by the scheduler and compliance that
initiates an automated compliance check in response to the scheduler’s trigger. The helper,
however, is shared across multiple modules, such as consent and security.

5.1.4. Security

The security module incorporates safeguards such as encryption to ensure confiden-
tiality, which is also one of the TOMs (see Section 4.1). Furthermore, the security module
supports the GDPR’s “data protection by design” and “data protection by default” principles.
To support “data protection by design”, the security module includes two critical features:
deterministic layered encryption and a decryption scheme, the architecture of which are
illustrated in Figures 3 and 4, respectively. Both the encryption and decryption schemes
employ a hybrid algorithm (implementation details in Section 6.2.4). This is motivated
by the established benefits of hybrid (i.e., using symmetric and asymmetric encryption
techniques) approaches, as demonstrated by Zou et al. [65]. Furthermore, deterministic
encryption enables secure querying of data over the database, and layered encryption
strengthens the security, which can be increased or decreased as required.

Figure 3. Architecture of encryption scheme.
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Figure 4. Architecture of decryption scheme.

5.1.5. Consent

The consent module assists in ensuring that only necessary and required consent
information is used, thereby minimizing data usage, which is one of the GDPR’s TOMs
(see Section 4.1). Figure 5 shows the consent JSON schema used by the consent module and
its representation in the legal KG. In particular, the consent module carried out this task of
ensuring that only required information is used by performing JSON schema (see Figure 5a)
validation. The JSON schema was created according to legal KG and, therefore, validation of
the JSON schema ensures that consent (i.e., input consent in JSON format) is in accordance
with legal KG. The steps for performing the consent validation are depicted in Algorithm 2
(implementation details in Section 6.2.5). The consent module also performs the task of
transforming consent information in JSON format into the KG. The reason for this approach
(i.e., not taking KG directly as opposed to JSON) is that not all businesses, particularly
small and medium-sized enterprises (SMEs), have expertise in semantic technology. Thus,
using the JSON format for interaction reduces the complexity and overhead associated
with dealing with semantics, while allowing SMEs to take advantage of its benefits.

Algorithm 2: Consent validation for consent creation.
Input: Consent in JSON format
Result: Returns success or error response

1 json_consent← validate_consent_json_schema();
2 if json_consent is valid then
3 map_consent← transform_and_map_to_legal_kg(json_consent);
4 response← create_consent(map_consent);
5 return response;
6 else
7 return Error response;
8 end

The consent validation (i.e., validate_consent_json_schema), for example, validates
that all the required fields, such as purpose information, are present. Further, the consent
validation validates that the consent input has the valid required data types. For instance,
the consent granted and the expiration date must be in a valid date and time format and
DataProcessing should be a list of string. Similarly, the transformation to legal KG step (i.e.,
trans f orm_and_map_to_legal_kg) transforms the JSON input to the KG representation
by adding appropriate details. For example, converting date and time format JSON
input (e.g., consent granted time) to SPARQL date format [66] and adding an appropriate
relationship, such as hasPurpose (see Figure 5b) for the purpose of consent input. Moreover,
the transformation step also performs additional validation, such as checking if the consent
granted time is in a specific date format (e.g., universal time format).
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(a)

(b)

Figure 5. A snapshot of the JSON schema used for consent and the consent module’s creation (or
representation) of consent in the legal KG. (a) Consent JSON schema. (b) KG representation of consent
in GraphDB after successful validation.

The Agent in the consent JSON schema represents the DC (or DP)’s information. The
Resource contains information about the actual data collected from the data subject that the
data processor or controller desires for data processing purposes, such as GPS data. The
DataProcessing signifies the purpose for which the data will be used, for example, marketing.

5.1.6. Auditing

One of the core principles of the GDPR is transparency (see Section 4.1), which requires
that information about the processing of personal data be readily available. Furthermore,
transparency aids accountability, which is defined as demonstrating compliance with GDPR
obligations in a measurable manner [67]. The auditing module promotes accountability
by enabling access to data processing details such as whether valid consent was obtained,
whether data processing was carried out in accordance with the consent, and whether no
data processing occurred in the event of consent expiration or revocation. Additionally,
this information assists a DC (or DP) in demonstrating compliance, as it is the informa-
tion required to be presented to authorities (implementation and auditing examples in
Section 6.2.6). The auditing module, which makes the personal data processing information
available to both the DC (or DP) and the data subject, is critical to transparency and is the
module’s major functionality.

5.1.7. Compliance

The compliance module is the heart of the system; it conducts compliance checks
to ensure that DC (or DP)) have obtained informed consent from data subjects for both
accessing the data and the processing applied to it (i.e., no consent is violated). A consent
violation occurs when the DC (or DP) acts in a manner inconsistent with the consent. For
instance, if a user (or data subject) has provided informed consent for the DC (or DP) to
collect and use mobile Global Positioning System (GPS) data for research purposes, the DC
(or DP) should collect and use GPS data exclusively for research purposes. The use of data
for purposes other than research and the collection of data other than GPS would constitute
a violation of consent, a punishable offense under the GDPR. Furthermore, in the case
of automated compliance check (i.e., the compliance check instantiated by the scheduler
based on scheduled time), the detection of a consent violation triggers a notification alert
(details in implementation Section 6.2.7), thereby allowing DC (or DP) to take appropriate
actions. While in the case of manual compliance checks, such as the one instantiated by the
DC (or DP) for a particular data subject or consent, no alert is triggered.
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As illustrated by Equation (1), compliance is the conjunction of the core compliance
decision and the security and privacy compliance decision. The compliance module is
responsible for the core compliance decisions, and the security and privacy module for
security and privacy compliance decisions (details in Section 5.2). The core compliance
decision is the combination of consent validity, data processing purpose, data processing
rights, and data processing operations. Simultaneously, security and privacy compliance
decisions are made in conjunction with the data subject’s privacy preferences and the DC
(or DP) privacy policy.

compliance = (core_compliance_decision ∧ security_and_privacy_compliance_decision) (1)

Let ds represent the data subject and dc_dp the DC (or DP). Similarly, let
consentds = {Cds, Pds, Rds, Dds} represent the consent information from data subject and
processingdc_dp = {Pdc_dp, Rdc_dp, Ddc_dp} the data processing information obtained from
the DC (or DP), where P denote the purpose, R the resources from which the data is col-
lected (e.g., GPS), and D the information about the actual data processing to be carried out
(e.g., data analysis). The C, on the other hand, contains information about the expiration of
the granted consent. The core compliance decision then can be represented as shown by
Equation (2). The consent validity check verifies that the consent is still valid and has not
expired, while the purpose validity, processing rights validity, and data processing validity
checks compare the consent to information obtained from the data processor (or controller).

core_compliance_decision = hasValidConsent(Cds) ∧ hasValidPurpose(Pds, Pdc_dp)

∧ hasValidProcessingRights(Rds, Rdc_dp)

∧ isDoingValidDataProcessing(Dds, Ddc_dp)

(2)

Compliant behavior necessitates satisfying Equation (1), which begins with evaluating
the core compliance decision (i.e., Equation (2)). The process of determining compliance
is immediately halted if any of the conditions are determined to be false, as compliance
requires satisfying all of the conditions. The notification alert is then passed, providing the
detailed information, such as where the compliance check failed or everything is fine in the
case of success.

Consider the following consent information: (i) purpose = safety research on driving,
(ii) granted time = 2018-08-22:18T08:22:01.3474Z, (iii) resources = GPS, and (iv) data pro-
cessing activity = data analysis. Consider the following information as information about
processing obtained from a DC (or DP): (i) resources = GPS, VSS (vehicle speed sensor),
(ii) purpose = safety research on driving, and (iii) data processing activity = data analysis.

Example 1. Assume for the moment that the scheduler is set to run the compliance check daily at
time 21:01.3474Z. The current time is 2019-05-22:18T08:21:01.3474Z and the expiry time for the
consent is Cds = 2019-05-22:18T08:20:01.3474Z. When the compliance check operation is performed
(i.e., when Equation (1) is evaluated), the compliance module determines that the consent has expired
(i.e., at hasValidConsent(Cds)) and that no data processing should be permitted. The compliance
module begins by updating the consent status to invalid and notifying the DC (or DP).

Example 2. In this example, assume that consent is valid (i.e., it has not expired or has not been
revoked). The DS has granted consent for only GPS data (i.e., Rds = GPS) to be collected (i.e., the
DC (or DP) has only GPS data processing rights). The DC (or DP) does, however, collect data
from both GPS and VSS (i.e., Rdc_dp = {GPS, VSS}). The compliance status will then be invalid
during the compliance check (i.e., at hasValidProcessingRights(Rds, Rdc_dp)). A similar situation
can also exist if all core compliance decisions were to pass but security and privacy decisions were
to fail.

In the case of the broken consent chain, a similar compliance check step is performed,
thereby invalidating the existing consent. For example, DS A, who has given consent to
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share car data, sells the car (which is the source of the data) to a new DS B. Here, the existing
consent chain should be invalidated as it is no longer valid. Upon receiving this update
via an API, the compliance tool invalidates the existing consent. However, in the case
of revocation, the DS must initiate the compliance request by providing specific consent
information such as a consent ID. Our tool will invalidate the consent after performing the
necessary checks.

5.2. Security and Privacy

Security typically concerns itself with the objectives of confidentiality, integrity, and
availability of data. Privacy adds to these objectives a concern for the right of a person (DS)
to authorize and restrict the use of data that are about, or describe, that person to some
extent (personal data). The common aspects of security and privacy induce us to establish a
common framework within which to conceptualize and implement their related objectives.
When implementing security and privacy, we exploit the distinction between mechanism and
policy. Security and privacy policies are expressions of specific rules governing permissions
and restrictions to the access and use of data. Security and privacy mechanisms implement
data controls that may be applied in practice to enforce a policy. Ideally, mechanisms are
built to not embody a particular policy but rather a policy framework, and thus to be able
to interpret and enforce any policy expressed within that framework. The benefit of this
approach is that it provides the flexibility to make a broad range of modifications to policy
without the need to revisit the implementation of the mechanism.

5.2.1. Policy Tools

The policy tools provide a policy specification language for expressing security and
privacy policies for representing privacy preference and privacy policy within a framework
based on the Next Generation Access Control (NGAC) standard [68]. A preference on the
part of a data subject represents rules that constrain the handling of its data that the data
subject has expressed through a process of informed consent. A privacy policy on the
part of a data processor represents claims concerning what processing will be performed
on the data subject’s personal information, the purpose for which it is performed, and
commitments about the handling of personal data by the data processor and sharing with
third parties.

5.2.2. Policy Enforcement Points (PEP)

When a data processor seeks to perform a data processing operation on an item of
personal data associated with a data subject, the processor calls a policy enforcement point
to access the data. Although the PEP operates with the privilege to access the data of the
data subject, it is trusted to make that data available to its caller only if a query to the policy
decision point, citing the processor, the processing to be performed, and the purpose of the
processing, returns with a “grant” response. There may be multiple PEPs in a system, or a
PEP may even be within a remote data processing system.

5.2.3. Policy Decision Points (PDP)

Policies, including data processor privacy policies and data subject privacy preferences,
are stored within the PDP mechanism for use to compute response to queries from PEPs. A
query asks whether a specific operation on a particular data subject’s personal data by a
particular data processor is permissible under the policy, and if so, what the obligations are
that the data processor must fulfill after it uses the data.

5.2.4. Compliance-Related Policy Decisions

The PDP provides several policy query interfaces based on privacy preferences and
privacy policies. The queries carry out computations over policy representations that are
constructed from information gathered from the smashHitCore ontology [56] and from
the KGs. The first of these queries may come from the component tasked with obtaining
consent. It utilizes the combination of a data subject’s current privacy preference (as
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resulting from a consent) and a DC (or DP)’s privacy policy. The returned information may
be used by the consent-gathering user interface to confirm that the privacy policy of a data
processor complies with the data subject’s current preference, or to highlight the areas of
noncompliance. This information may be provided to the data subject for consideration in
modifying the subject’s consent/preference or in denying consent.

The second of the queries may come from any component tasked with responding
to a request from a data processor for permission to perform a particular data processing
operation on the personal data of a particular data subject. The computation of this query
uses the processor’s prior declared privacy policy and the data subject’s current preference
(corresponding to a valid consent) to determine whether the data processing operation, and
its purpose, conform to the parameters granted in the data subject’s consent. The returned
value is a “grant” or “deny”. In the case of “grant”, the return includes any obligations
that the processor must fulfill following the data access/use. A “grant” response may
also include a warrant, which is a unique token that may be presented to the PEP that is
enforcing access to the requested data item.

5.3. Scheduler

The scheduler supports time-based event scheduling. The scheduler is pivotal in our
work because it enables the automated compliance check to be performed on a regular
basis, based on the scheduled time using the shared service CRON.

5.4. Remote Storage

The remote storage facilitates storing of the consent and the compliance verifica-
tion tool decision for purposes such as auditing. The graph database and the NoSQL
database [69] are the two types of databases that make up the remote storage. The graph
database is because of the involvement of semantic technology (i.e., KG). Furthermore,
the reason for using an NoSQL database is because of the scalability it offers and the
schema-less data storage feature that is suitable for storing the information logs.

5.5. Serverless Layer

The serverless layer provides the serverless function for logging and querying compli-
ance verification tool decisions, such as consent revocation, that are necessary for auditing.
The reason for the use of serverless is the features serverless offers, such as scalability and
ease of deployment [70].

6. Implementation

This section provides detailed information on the implementation of the automated
GDPR compliance verification tool. Section 6.1 details the libraries used, and Section 6.2
provides details on the implementation of individual components of the tool.

6.1. Experimental Setup

Table 2 summarizes the libraries that were used in our implementation. The selection
of these libraries was made based on the requirements of our tool. For example, GraphDB
was selected for its ontological reasoning capabilities required for a KG and SQLite for
providing a lightweight relational database setup. Similarly, MongoDB was chosen due to
its support for horizontal scalability and its suitability for storing logs. In our implementa-
tion, MongoDB Atlas [71] was used to run three replicas hosted on Amazon Web Services
(AWS) [72].

The service layer is deployed using a Docker container in a system with 16 GB (gi-
gabyte) random-access memory (RAM), a 2.3 gigahertz (GHz) Quad-Core Intel Core i7
processor, and 500 GB storage. However, for scalability testing, the service layer was
deployed in a Kubernetes [73] cluster with a total of 12 CPU (central processing unit) cores,
24 GB RAM, and 480 GB storage. The cluster was divided into three nodes, each with
four CPU cores, 8 GB of RAM, and 160 GB of storage. For the Kubernetes cluster, we
used Linode [74], which provides infrastructure as a service. The security and privacy
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component is deployed on a virtual machine with two virtual CPUs, 4 GB of RAM, and
40 GB storage. Similar to the service layer, the OpenFaaS layer is deployed on a virtual
machine using a Docker container. The virtual machine has four virtual CPUs, 8 GB of
RAM, and a storage capacity of 12 GB. GraphDB is installed on a server powered by an Intel
Core i9-9900K processor, 64 GB of RAM, and a 1 TB NVMe storage. All of the deployment
setups use Linux [75] with variant distributions such as Ubuntu [76] and Debian [77].

Table 2. Information about the software (or libraries) that were used in the implementation.

Software (or Libraries) Version
Python [78] 3.8

SWI-Prolog [79] 7.6.4
Flask [80] 1.1.2

Flask-RESTful [81] 0.3.8
Flask-SQLAlchemy [82] 2.5.1

Requests [83] 2.25.1
Flask Apispec [84] 0.11.0
Pycryptodome [85] 3.10.1

Flask-JWT-Extended [86] 4.2.1
FuzzyWuzzy [87] 0.18.0

NLTK [88] 3.6.2
Spacy [89] 3.0.6

SPARQLWrapper [90] 1.8.5
PyMongo [91] 3.11.4

Docker ([92] Community Edition) 20.X
SQLite [93] 2.6

GraphDB free edition 9.4.1
MongoDB [22] 5.0.6

6.2. Automated GDPR Compliance Verification Tool Implementation

This section provides detailed information about the implementation of the compo-
nents that make up our tool, such as the API and compliance layers.

6.2.1. API Layer

The API layer implements the REST endpoints. Furthermore, the API layer pro-
vides a custom JWT implementation (see Algorithm 1) to enable role-based access as
demanded by GDPR’s integrity and confidentiality principle (Art. 5(1)(f)) by extending
Flask-JWT-Extended. JWT is an Request for Comments (RDF) 7519 [94] open industry-
standard method for securely representing claims between two parties. As demonstrated
in Algorithm 1, the hashed claim value is extracted first from the JWT token after verifying
JWT in the request (i.e., a valid JWT token exists in the request header). The extracted claim
value is then compared to the database containing the user’s information. Additionally, a
check is made against the organization’s unique identifier. After passing both checks on
hashed claims and organizational identifiers, the valid token is returned, enabling grant
access. If the request fails, an HTTP 403 Forbidden response is returned, effectively blocking
access to the compliance verification tool (or REST endpoints). This customized imple-
mentation of JWT to enable role-based access is designed with a focus on user-friendliness
and thus follows a similar approach to enabling JWT via decorators. As a result, enabling
role-based access is as simple as including the appropriate decorator, which is accomplished
by using the syntax @decorator_name(). Furthermore, our API layer implementation uses
standard REST practices such as the OpenAPI [95] Specification (OAS) version 2.0 and
Swagger to describe the REST endpoints (see Figure 6).

Figure 7 summarizes our role-based endpoint access implementation. As shown in
Figure 7b, valid JWT credentials must be transmitted in order to obtain a JWT token; thus, a
registration (with user credentials such as username and password and an unique organiza-
tional identifier) is needed. Figure 7a shows the sequence diagram for JWT user (human or



Sensors 2022, 22, 2763 19 of 35

software agent) registration. The organization’s identifier is assigned manually (i.e., by an
administrator) and is provided to other parties accessing the compliance verification tool.
Using the organizational identifier, a unique hash token (or role or role token) generated
based on timestamp is assigned. This hash token, together with the organizational identifier,
is used to verify the role and access authorization to the appropriate REST endpoint(s).

Figure 6. A snapshot of the REST API’s endpoints in Swagger.

(a) (b)

Figure 7. Sequence diagram for JWT user registration and role-based endpoint access by other
software components. Any third-party application that interacts with our tool is represented by the
other software components. (a) Sequence diagram JWT user registration. (b) Sequence diagram for
role-based service access.

6.2.2. Data Processing

The implementation of the data processing module consists of predefined SPARQL
queries with the necessary consent information to be filled in during run-time. The queries
are organized according to the various operations supported by the tool, such as au-
diting and compliance checking. Figure 8 illustrates a snapshot of the SPARQL query
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used to obtain consent ID information as part of the data processing module’s query
processor component.

Figure 8. A snippet of code from the query processor module.

6.2.3. Shared Service

The shared service module implements functions, such as f unction_map and list_to_query
(see Figure 9), that are used by other modules, such as data processing, thereby improving
code reusability and abstracting complexity. The f unction_map performs the mapping to
the actual function, while the list_to_query function converts the array of JSON inputs into
the SPARQL query format for supporting consent creation activities by the consent module.

Figure 9. Sample code snapshot of the helper component of shared service module.

6.2.4. Security

The security module implements encryption and decryption following the encryption
and decryption architectures presented in Section 5.1.4 by using Pycryptodome. Asymmet-
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ric encryption, RSA [23], is used as Algorithm 1 (see Figure 3) and a symmetric encryption,
AES [24], as Algorithm 2 (see Figure 4).The reason for the selection of RSA is because of
its proven capability and security robustness over the last nearly 30 years. The reason for
considering AES, an encryption technique standardized by National Institute of Standards
and Technology (NIST) [96], is that AES is considered the de facto standard for symmetric
encryption and it is fast and secure [97]. When asymmetric encryption is used, storing
encrypted data in a database presents a challenge when it comes to querying the data.
The encryption must be deterministic, which is why symmetric encryption was chosen to
encrypt the actual data as in Algorithm 2. Our AES implementation allows for searchable
encryption while preserving the required confidentiality.

The RSA implementation uses the PKCS #1 OEAP [98] padding scheme, which is
defined by RFC 8017 [99]. RSA is used in our implementation to encrypt and decrypt the
keys of the symmetric encryption algorithm. The RSA key is generated dynamically at
run-time, the first time the application is deployed, if the key does not already exist. A
key with a length of 1024 bits is generated and exported. The exported key is password
protected using PKCS#8, an RFC 5208 [100] standard for storing and transferring keys. To
protect the generated RSA keys, we used the PKCS#8 protection scheme scryptAndAES128-
CBC in our implementation. Similarly, the AES (or Algorithm 2) implementation, as
shown in Figures 3 and 4, is multilayered, three in our case. For example, when our
layered AES implementation generates the ciphertext C, the plain text P is passed through
multiple encryptions (E) as E(E(E(P, k1, iv1), k2, iv2), k3, iv3) using unique secret keys
K = {k1, k2, k3} and IV keys IV = {iv1, iv2, iv3} at each step. This multilayered AES
encryption enhances security and makes it more difficult for attackers to decrypt the
encrypted ciphertext. In the case of decryption (D), similar steps as in encryption are
performed, but in the reverse order, as D(D(D(C, k3, iv3), k2, iv2), k1, iv1), to obtain the
plain text P. By changing the layers in the security module, the AES layers can be adjusted
(increased or decreased) as needed. A 32-bit secret key and a 16-bit IV key are used in our
AES implementation. The implementation also employs Bellare et al. [101] encrypt-then-
authenticate-then-translate (EAX) mode, which enables both authentication and privacy
of the encrypted message. Moreover, when the application is deployed, all of the keys for
each AES layer are generated dynamically during runtime, just like RSA if the key does
not exist.

6.2.5. Consent

The implementation of consent module comprises the realization of Algorithm 2,
which performs the consent validation, taking consent in a consent JSON format following
consent JSON schema (see Figure 5a) and transforming it into KG for consent creation. The
marshmallow [102] is used to validate consent (i.e., the consent JSON schema validation).
Marshmallow is a framework-agnostic object serialization library for converting complex
data types, such as objects, to and from native Python data types [102].

Figure 5b shows the KG representation (or creation) of informed consent, while
Figure 10 depicts the response that is sent following a successful creation of a consent
instance. Additionally, as illustrated in Figure 5b, the consent information is encrypted.
This is to prevent gaining insights about the data subject.

Figure 10. A snapshot of the consent creation response.
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6.2.6. Auditing

The auditing module implements two categories of auditing, namely, partial auditing
and full auditing. Both the partial and full audits can be conducted with consent or
by the data provider using a unique consent (or data provider) identifier. The partial
auditing provides only high-level information, such as consent decision and its status (e.g.,
revoked). Full auditing provides complete information including the consent itself, consent
status, and compliance check decisions. Figures 11 and 12 show the partial auditing and
full auditing response, respectively. Moreover, auditing based on a single consent only
provides information about that individual consent, whereas auditing based on the data
provider provides information on all consents provided by that data provider.

Figure 11. Sample response to a request for partial auditing based on consent.

Figure 12. Sample response to a request for full auditing based on consent.

6.2.7. Compliance

The compliance module implements three different levels of compliance checking,
namely, consent-based, data provider-based, and automated compliance checking by
executing Equation (1). Similar to consent-based auditing, consent-based compliance
checking performs a compliance check of the single consent. In contrast, data provider-
based compliance checking performs a compliance check on all the consents associated with
the particular data provider whose compliance is being checked. In the case of automated
compliance checking, however, the compliance check is performed for all active consents.
The sample responses to compliance checks based on data provider, individual consent, and
automated compliance checks are shown in Figures 13a,b and 14. Additionally, as discussed
in Section 5.1.7, when an automated compliance check is performed, a notification alert
is created. This requires configuring an external notification URL to receive notifications
about the result of the compliance check. The external notification URL is a URL that the
DC (or DP) must provide in order for the alert to be received. No notification is sent in
the case of consent-based and data provider-based compliance checks. This is because
consent-based and data provider-based compliance checks are initiated manually via REST
endpoints and the result of the compliance check is returned as a response to the same
REST endpoint that initiated the check.

The implementation employs a fuzzy string matching technique based on the Lev-
enshtein distance (i.e., edit distance) and computes the token set ratio, which is used to
determine the match’s similarity. FuzzyWuzzy [87], a fuzzy string matching Python library,
was used to implement a fuzzy string matching technique. Additionally, natural language
processing techniques such as tokenization and stemming were used to address grammar
and spelling errors.
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(a) (b)

Figure 13. Compliance check response. (a) Compliance check based on data provider. (b) Compliance
check based on a single consent.

Figure 14. Sample response for an automated compliance check.

6.2.8. Security and Privacy

The security and privacy implementation extends the NGAC languages and tools for
privacy policy specification and enforcement, by the inclusion of purposes for processing
of personal data, retention periods for data, fine-grained data processing operations, and
other concepts common in extant privacy policy frameworks. In addition to the extension
to the NGAC declarative policy language, the implementation of the security and privacy
modules also includes an experimental implementation of the SecPAL for Privacy (S4P)
language [103] that provides more explicit representation of delegation and distinction of
roles in the handling of personal information.

6.2.9. Serverless Layer

The serverless layer implements the store and query serverless functions as shown in
Figure 15 to support logging and querying operations of decisions made by the compliance
verification tool using OpenFaaS [104]. OpenFaaS (or the Functions as a Service) is an
open-source framework which allows building serverless functions on top of the containers.

Figure 15. Deployed OpenFaas functions.
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6.2.10. Scheduler

The scheduler makes use of Ofelia, a docker-based job scheduler [105], to handle
time-based job scheduling tasks. Listing 1 shows the script used in our implementation
to schedule the job. The time interval for the automated compliance checking can be
adjusted by updating time in Listing 1. Further, in the script we can see tekactool and parser.
tekactool is the docker deployment of our compliance verification tool that Ofelia scheduler
depends on to run (or trigger) automated compliance check via shared service component
CRON, while parser is the other docker image that the Ofelia scheduler requires.

Listing 1. Ofelia scheduler docker script.

ofelia:
image: mcuadros/ofelia:latest
depends_on:

- tekactool
- parser

command: daemon --docker
restart: always
volumes:

- ./:/app
- /var/run/docker.sock:/var/run/docker.sock:ro

labels:
ofelia.job-run.datecron.image: "parser"
ofelia.job-run.datecron.schedule: "@every 86400s"
ofelia.job-run.datecron.command: "python3 /app/core/cron/Cron.py"

7. Evaluation

This section presents the evaluation of our tool with regards to performance and
scalability. We have evaluated the execution overhead of our tool’s key functionalities
(consent creation, auditing, and compliance verification). Scalability testing was completed
as well. This is due to the fact that our tool is a part of smashHit, and smashHit is driven
by two business use cases in industries such as automobile insurance and smart cities [11].
Both use cases require a scalable solution to handle a large number of users. Our tool was
also evaluated in terms of GDPR compliance to ensure that it, itself, is GDPR-compliant.
Section 6.1 provides details about the testing system setup. Section 7.1 describes the
performance evaluation, while Section 7.2 presents the evaluation based on GDPR.

7.1. Performance and Scalability

As presented in Section 7, our performance evaluation focuses on auditing, compliance
verification, and consent creation. We measured the time it takes to create ten different
consent instances. The required consent information was provided manually. The X-axis
in Figure 16 represents the consent creation indicated by CS. The Y-axis represents the
time taken in seconds. Figure 16 shows a steady curve with few rises and falls in time.
The decrease in time, particularly for CS4, and the increase for CS9 and CS10, are due to
the amount of payload sent while requesting to create consent. The size of the payload
depends on the amount of the information present in the consent (or JSON input). For CS4,
856 bytes were sent, while for CS9 and CS10, it was around 1023 bytes, and the rest of the
payload was around 950 bytes. With the increasing payload, more consent information,
such as processing details, was passed. According to our observations, the average time
required to create consent is approximately 7.3 s. This time period for consent creation also
includes the time required for intermediate steps such as consent validation and conversion
to legal KG, and also the time required for consent information encryption, as consent
information is stored encrypted.
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Figure 16. Time spent on consent creation.

Figure 17a depicts the compliance evaluation based on consent, while Figure 17b
depicts the compliance checking evaluation time based on the data provider. The data
provider is a data subject who owns the data and retains the right to decide whether or
not to share it with the DC (or DP) for processing. Similar to consent creation, Y-axis of
both Figure 17a,b represents the execution time in seconds. The X-axis, on the other hand,
represents compliance based on consent, indicated by CC in Figure 17a, and compliance
based on data provider, indicated by DPC in Figure 17b. The term DPC stands for data
provider compliance (or also compliance based on data provider). The observed variation
in compliance checking in Figure 17a, similar to consent creation, is due to the amount of
information present in the consent that must be assessed.

Overall, compliance checking (i.e., core compliance) based on consent took an average
of 6.6 s. However, the time required for compliance checking varies greatly depending on
the data provider, as a data provider may have multiple consents. Data providers 1 and 3
each have only one consent; thus, we observed a similar time in compliance checking as
indicated by DPC1 and DPC2 in Figure 17b. Similarly, data provider 2 had two consents,
so the time required for compliance checking is nearly twice (see DPC2 in Figure 17b)
that of data provider 1. Other data providers such as 4, 5, and 6, exhibited a similar
pattern as can be observed in Figure 17b from the graph indicated by DPC4, DPC5, and
DPC6, respectively. Regardless of the number of consents, we observed a similar time to
a compliance check based on consent on average, which is 6.12 s. This compliance check
evaluation, however, excluded the privacy and security component as it is only called when
all of the core compliance decisions are evaluated as true. As a result, we assessed privacy
and security separately. In the case of granted case, the privacy and security component
takes an average of 0.12392 milliseconds and 0.1234 milliseconds in a denied decision case.
If security and privacy are also utilized, a compliance check takes an additional 0.12392
and 0.1234 milliseconds to that of core compliance checking time.

The evaluation for auditing based on consent and data provider, such as compliance
checking, is shown in Figure 18a,b. The Y-axis represents time in seconds. The X-axis
represents auditing based on consent, as indicated by FCA in Figure 18a, and auditing
based on data provider, as indicated by FDPA in Figure 18b. The letter F in both figures
denotes full auditing (discussed in Section 6.2.6). The full auditing is expected to take
more time because it considers all information. Auditing exhibits a similar pattern to
compliance checking, as shown in Figure 18a,b. Auditing based on consent took about 7 s
on average, and auditing based on data provider took about 22 s. The delay in auditing
based on data provider is due to checking all consents and decision logs specific to the
data provider. In comparison to compliance checking based on data providers, which only
checks active consent, auditing provides an audit for all consent, even if it is not active (e.g.,
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revoked consent). Similar to the consent creation, both the compliance checking and the
auditing time also involve the time for activities such as performing decryption, which is a
time-consuming activity [106].

(a) (b)

Figure 17. Time spent on compliance checks. (a) Execution time for compliance check based on
consent. (b) Execution time for compliance check based on data provider.

(a) (b)

Figure 18. Time spent on auditing. (a) Execution time for full audit based on consent. (b) Execution
time for full audit based on data provider.

To summarize, we can observe a higher time in the performance evaluation. This is
because of the associated additional time-consuming activities such as layered encryption
and decryption (see Figures 3 and 4). This is also a known trade-off that comes with
increased security [107].

From the loosely coupled architecture of the tool and the use of scalable technologies,
such as Docker and serverless, we can observe the scalability features, as this allows scaling
of the individual components. Numerous studies, such as [108–110], have demonstrated
the scalability of the loosely coupled architecture and the support provided by technologies
such as Docker and serverless. Moreover, to the observed scalability of the tool from the
loosely coupled architecture, we also performed a scalability testing with the Kubernetes
platform, as discussed in Section 6.1. When evaluating the scalability, we only looked at
resource consumption and the number of scaled pods [111] (i.e., the smallest deployable
computing units that Kubernetes [73] allows you to create and manage). The horizontal
pod autoscaler, which we used in our scalability testing deployment, automatically scales
the number of pods into the number of replicas based on the set observed metrics such
as average CPU utilization and average memory utilization [112]. Three replicas and a
load balancer are used in the initial deployment. The load was generated using a load
generation script. The autoscale replicas of pods were limited to 40, and the observed
metrics for the scale used in our testing were average CPU utilization. The CPU utilization
scalability threshold was set to 95%. We were able to successfully autoscale the application
to the defined number of pods as the load generation script increased the load. The time
it took to create new replicas was approximately 5–6 s. On Linode cluster 1, which also
includes the load balancer, we observed nearly the maximum 324.58% CPU utilization.
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Similarly, on Linode clusters 2 and 3, we observed maximum CPU utilization of 96.91%
and 119.16%, respectively, and I/O rates of 81.97, 28.74, and 12.60 blocks/s. However,
network utilization was around 4.77 Mb/s for cluster 1 and 1.05 Mb/s and 132.36 Kb/s for
clusters 2 and 3. Finally, to simulate virtual users, we used the open-source load-testing
tool locust [113]. We observed a similar result for scalability with a locust, an automated
load generator, simulating 52,200 users, making a maximum of 241 requests per second
(minimum 100 requests per second). With the scalability testing, we observed that the tool
is able to scale with the growing load (i.e., requests), proving that the application supports
scalability provided that the necessary setup (i.e., configuration of appropriate scaling such
as autoscaling) is made.

7.2. TOMs

The goal of our tool is to enable transparency in data sharing (and processing) by
automatically performing tasks such as compliance verification based on informed consent
granted by data subjects. In this section, we present the evaluation of the implemented
TOMs (see Table 1), which is also one of our work’s contributions (see Section 1). The
qualitative evaluation was conducted in accordance with the TOMs. This is also a common
method of privacy evaluation used by researchers such as Ryan et al. [6] to assess their
work using the Irish Data Protection Commission’s self-assessment checklist [114].

We have considered seven protection goals identified in relation to GDPR principles,
as shown in Table 1. The SDMs’ protection goals are implemented in our compliance
verification tool as TOMs. Table 1 contains information about the SDMs’ protection goals
as well as the relevant TOMs. Both automated and manual evaluations were performed.
For the automated method, the test cases were written and executed using Python’s
unittest [115] test framework. The unit test was written with various conditions, with some
expected to fail and others expected to pass. For example, we ran three different tests for
role-based access, which is also one of the TOMs. We tested endpoint access without a
valid JWT in the first test case. In the second test case, we tested endpoint access using a
valid JWT token but an unauthorized role, and in the third test case, we tested endpoint
access using a valid JWT token and an authorized role. We expected the test to fail in the
first two cases. The failure here indicates that the application is inaccessible and returns an
invalid HTTP status code as defined in the application, such as 403, indicating forbidden
access, which is then asserted to be true in order to pass the unit test. When we pass
everything valid in the third case, we expect the application to be accessible with the valid
response and HTTP status code. To pass the test, the response is asserted to evaluate to
true. Additionally, for tasks such as auditing, a manual evaluation was conducted. For
example, in the case of auditing, when the audit responses were manually retrieved, a
manual verification that everything was as expected was performed. Based on the testing,
we were able to meet all of the SDMs protection objectives. The scope of our study’s SDM
protection goals was constrained by the identified TOMs, which are listed in Table 1.

8. Conclusions

In this paper, we present a data protection By design tool for automated GDPR
compliance verification based on semantically modeled informed consent. We also present a
novel systematic approach for translating the GDPR legislation into code while considering
industrial requirements such as interoperability and scalability (see Table A1). This includes
the systematization of the steps that are required for automating compliance checks and
implementing necessary security measures (i.e., such as TOMs). Further, we present the
technical factors that must be considered in order to satisfy industrial requirements. Our
tool follows a microservices architecture, which supports scalability and flexibility and
utilizes semantic technology (e.g., KG) to facilitate data interoperability. By conducting
scalability testing (i.e., testing with simulated users and checking if the tool scales with the
growing number of users) (see Section 7.1), we have validated our tool’s scalability. The
performance evaluation (see Section 7.1) provides information on the associated overhead
for tasks such as compliance checking and consent creation, which is useful for the future
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improvements of the tool. The conducted GDPR TOMs evaluation (see Section 7.2) has
confirmed that GDPR requirements, such as confidentiality and the adoption of data
protection by design principles, have been satisfied and utilized. Finally, the comparative
analysis with existing work, presented in Table A1, indicates that our work advances the
field by addressing the limitations of current studies (see Section 3) and industrial needs.
As a result of the collaboration with legal experts and industrial partners, our work can
support SMEs, which usually lack the necessary resources to implement their own GDPR
compliance tools. The source code of our tool is publicly available on GitHub [116].

While our work can be generalized to other domains, it was driven by specific use
cases (see Appendix A.2) and thus may fall short of requirements from other domains. We
consider this as one of its limitations. Another limitation is the compliance performance
bottleneck in the long run due to the growing number of compliance checks that must
be performed.

In addition to addressing the existing challenges (see Section 3), we have also learned
some valuable lessons. These lessons include the following:

• Translating regulations into a machine-readable format requires a considerable effort
with regard to the collaboration between legal and technology experts. Both the
law and computer science fields necessitate the precise definition of concepts. The
translation of these concepts to a machine-readable format needs to be precise as well.

• A well-designed core semantic model is key to achieving a common understanding of
specific information across different systems. However, the integration of existing on-
tologies is challenging, as each ontology presents concepts from a different perspective.

• The early and consistent collaboration with business (or industry) use case partners
and legal experts helps understand the requirements and implications from both
perspectives. This helps the system design and implementation adapt to business
needs, while fulfilling legal requirements.

• The use of semantic technology has shown to have various benefits for our work.
However, existing and well-established industry systems do not always utilize seman-
tics. This required us to to adapt our implementation to the industry requirements.
To ease the process, we have selected a JSON format to communicate the consent
information and compliance check results.

• Scalability, interoperability, and the simplification of the integration processes are
critical for use case partners, as is the tool’s consent creation functionality. Any tool’s
design and implementation must be tailored to such requirements.

In conclusion, the main benefits of our work are (i) systematization of the translation of
legal requirements into code following specific industrial needs (i.e., such as the problem of
broken consent chains), (ii) generalizability into other data sharing domains and regulatory
frameworks, and (iii) lessons learned, which would benefit anyone working in this domain,
particularly new researchers and developers. We have also addressed existing limitations
such as interoperability and scalability. Future work will include the following: (i) extend-
ing the work to other data-sharing domains and regulatory frameworks; (ii) improving
performance of the tool by parallelizing core processes. A possible direction in relation to
our future work could be to incorporate additional functionalities, such as audit search,
and to incorporate other GDPR legal bases, such as contracts.
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Appendix A

Appendix A.1. Maths Symbols

∧ Logical conjunction operator.

Appendix A.2. Use Case Overview

Figure A1 provides a high-level overview of the insurance use case where data subject
(or customer) vehicle data are shared with the insurer after receiving consent from the
data subject. The automated compliance verification tool performs necessary tasks such as
consent creation and validation to allow for data sharing. Similarly, Figure A2 provides an
overview of the smart city use case. As shown in Figure A2, the data from the data subject
are shared with the company providing (or handling) data services to the city maintenance
department. The shared data consist of feedback about the city, such as potholes in the
road and the data subject information.

Figure A1. High-level overview of the insurance use case.

Figure A2. High-level overview of the smart city use case.
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Appendix A.3. Comparison with State-of-the-Art

Table A1. Comparison of our automated GDPR compliance verification tool with reviewed state-of-the-art.

Study Create/Revoke
Consent Automated Compliance

Checking Interoperability Scalability TOMs Implemented Implementation into Other Laws
Ease of Incorporation

Evaluation
Performance

Use Case
Industrial

Ranise and Siswantoro [25] é /é Ë é é é PoC Ë Ë Ë
Robol et al. [27] é /é é Ë Ë é PoC é é é
Westphal et al. [29] é /é é Ë é é PoC é é é
Rhala et al. [3] é /é é é é é P é é é
Brodin [31] é /é é é é é P é é Ë
Camilo [32] Ë /Ë é é é é PoC é é é
Alfred et al. [8] é /é é é é é PoC é é Ë
Piras et al. [36] é /é é é é é P é é Ë
Truong et al. [38] Ë /Ë é é Ë é PT é Ë é
Barati et al. [39] Ë /é é é Ë é PoC é Ë é
Kirrane et al. [17] Ë /Ë é Ë Ë é PT é Ë é
Bonati et al. [43] Ë /Ë Ë Ë é é PoC é Ë é
Mahindrakar and Joshi [46] Ë /é Ë é Ë é PoC é Ë é
Barati and Rana [47] Ë /Ë é Ë Ë é PoC é Ë Ë
Ryan et al. [6] é /é é é é é PoC é é Ë
Merlec et al. [7] Ë /é é é Ë é PT é Ë é
Hamdani et al. [50] Ë /é Ë Ë Ë é PoC é Ë Ë
Daoudagh et al. [53] Ë /Ë é Ë Ë é FM é Ë Ë
Tokas et al. [54] Ë /Ë é é é é PoC é Ë é
Our work Ë /Ë Ë Ë Ë Ë FM Ë Ë Ë
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35. Basin, D.; Harvan, M.; Klaedtke, F.; Zălinescu, E. MONPOLY: Monitoring usage-control policies. In International Conference on
Runtime Verification; Springer: Berlin/Heidelberg, Germany, 2011; pp. 360–364.

36. Piras, L.; Al-Obeidallah, M.G.; Praitano, A.; Tsohou, A.; Mouratidis, H.; Crespo, B.G.N.; Bernard, J.B.; Fiorani, M.; Magkos, E.;
Sanz, A.C.; et al. DEFeND architecture: A privacy by design platform for GDPR compliance. In Proceedings of the International
Conference on Trust and Privacy in Digital Business, Linz, Austria, 26–29 August 2019; Springer: Berlin/Heidelberg, Germany,
2019; pp. 78–93. [CrossRef]

37. The DEFeND Project. Available online: https://www.defendproject.eu (accessed on 27 December 2021).
38. Truong, N.B.; Sun, K.; Lee, G.M.; Guo, Y. GDPR-Compliant Personal Data Management: A Blockchain-Based Solution. Trans. Inf.

Forensics Secur. 2020, 15, 1746–1761. [CrossRef]
39. Barati, M.; Rana, O.; Petri, I.; Theodorakopoulos, G. GDPR Compliance Verification in Internet of Things. IEEE Access 2020,

8, 119697–119709. [CrossRef]
40. Basin, D.; Debois, S.; Hildebrandt, T. On Purpose and by Necessity: Compliance Under the GDPR. In Financial Cryptography;

Springer: Berlin/Heidelberg, Germany, 2018. [CrossRef]
41. Ethereum. Available online: https://ethereum.org/en/ (accessed on 7 October 2021).
42. Data and Knowledge Group, University of Oxford. HermiT OWL Reasoner. Available online: http://www.hermit-reasoner.com

(accessed on 20 October 2021).
43. Bonatti, P.A.; Kirrane, S.; Petrova, I.M.; Sauro, L. Machine Understandable Policies and GDPR Compliance Checking. KI-Künstliche

Intell. 2020, 34, 303–315. [CrossRef]
44. Bechhofer, S.; van Harmelen, F.; Hendler, J.; Horrocks, I.; McGuinness, D.L.; Patel-Schneider, P.F.; Stein, L.A. OWL Web Ontology

Language. Available online: https://www.w3.org/TR/owl-ref/ (accessed on 20 December 2021).
45. Bonatti, P.A. Fast Compliance Checking in an OWL2 Fragment. In Proceedings of the Twenty-Seventh International Joint

Conference on Artificial Intelligence, IJCAI-18, International Joint Conferences on Artificial Intelligence Organization, Stockholm,
Sweden, 13–19 July 2018; pp. 1746–1752. [CrossRef]

46. Mahindrakar, A.; Joshi, K.P. Automating GDPR Compliance using Policy Integrated Blockchain. In Proceedings of the 2020 IEEE
6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart
Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Baltimore, MD, USA, 25–27 May 2020; pp.
86–93. [CrossRef]

47. Barati, M.; Rana, O. Tracking GDPR Compliance in Cloud-based Service Delivery. IEEE Trans. Serv. Comput. 2020, 1. [CrossRef]
48. Data Protection Vocabularies and Controls W3C Community Group. Data Privacy Vocabulary (DPV). Available online:

https://github.com/dpvcg/dpv (accessed on 4 January 2022).
49. Lebo, T.; Sahoo, S.; McGuinness, D.; Belhajjame, K.; Cheney, J.; Corsar, D.; Garijo, D.; Soiland-Reyes, S.; Zednik, S.; Zhao, J.

PROV-O: The PROV Ontology; W3C Recommendation, World Wide Web Consortium: Boston, MA, USA, 2013.
50. Hamdani, R.E.; Mustapha, M.; Amariles, D.R.; Troussel, A.; Meeùs, S.; Krasnashchok, K., A Combined Rule-Based and Machine

Learning Approach for Automated GDPR Compliance Checking. In Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Law, São Paulo, Brazil, 21–25 June 2021; Association for Computing Machinery: New York, NY, USA,
2021; pp. 40–49.

51. Wilson, S.; Schaub, F.; Dara, A.; Liu, F.; Cherivirala, S.; Leon, P.; Andersen, M.; Zimmeck, S.; Sathyendra, K.; Russell, N.; et al. The
Creation and Analysis of a Website Privacy Policy Corpus. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 1330–1340. [CrossRef]

52. GDPR. Data Protection Impact Assessments, Article 35 of GDPR. Available online: https://gdpr-info.eu/art-35-gdpr/ (accessed
on 20 December 2021).

53. Daoudagh, S.; Marchetti, E.; Savarino, V.; Bernabe, J.B.; García-Rodríguez, J.; Moreno, R.T.; Martinez, J.A.; Skarmeta, A.F. Data
Protection by Design in the Context of Smart Cities: A Consent and Access Control Proposal. Sensors 2021, 21, 7154. [CrossRef]
[PubMed]

54. Tokas, S.; Owe, O.; Ramezanifarkhani, T. Static checking of GDPR-related privacy compliance for object-oriented distributed
systems. J. Log. Algebr. Methods Program. 2022, 125, 100733. [CrossRef]

55. Conference of the Independent Data Protection Supervisory Authorities of the Federation and the Länder. The Standard Data
Protection Model—A Method for Data Protection Advising and Controlling on the Basis of Uniform Protection Goals, Version
2.0b. 2020. Available online: https://www.datenschutzzentrum.de/uploads/sdm/SDM-Methodology_V2.0b.pdf (accessed on
15 December 2021).

http://dx.doi.org/10.1007/s10115-018-1248-0
http://dx.doi.org/10.1007/s41125-019-00042-z
http://dx.doi.org/10.1109/BigData47090.2019.9006455
http://dx.doi.org/10.1145/2699444
http://dx.doi.org/10.1007/978-3-030-27813-7_6
https://www.defendproject.eu
http://dx.doi.org/10.1109/TIFS.2019.2948287
http://dx.doi.org/10.1109/ACCESS.2020.3005509
http://dx.doi.org/10.1007/978-3-662-58387-6_2
https://ethereum.org/en/
http://www.hermit-reasoner.com
http://dx.doi.org/10.1007/s13218-020-00677-4
https://www.w3.org/TR/owl-ref/
http://dx.doi.org/10.24963/ijcai.2018/241
http://dx.doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00026
http://dx.doi.org/10.1109/TSC.2020.2999559
https://github.com/dpvcg/dpv
http://dx.doi.org/10.18653/v1/P16-1126
https://gdpr-info.eu/art-35-gdpr/
http://dx.doi.org/10.3390/s21217154
http://www.ncbi.nlm.nih.gov/pubmed/34770462
http://dx.doi.org/10.1016/j.jlamp.2021.100733
https://www.datenschutzzentrum.de/uploads/sdm/SDM-Methodology_V2.0b.pdf


Sensors 2022, 22, 2763 34 of 35

56. smashHitCore Ontology. Available online: https://smashhiteu.github.io/smashHitCore/ (accessed on 9 January 2022).
57. SPARQL Query Language for RDF. Available online: https://www.w3.org/TR/rdf-sparql-query/ (accessed on

5 November 2021).
58. smashHitCore GraphnDB SPARQL Endpoint. Available online: https://smashhitactool.sti2.at/sparql (accessed on

5 January 2022).
59. Kurteva, A. Implementing Informed Consent with Knowledge Graphs. In The Semantic Web: ESWC 2021 Satellite Events; Verborgh,

R., Dimou, A., Hogan, A., d’Amato, C., Tiddi, I., Bröring, A., Mayer, S., Ongenae, F., Tommasini, R., Alam, M., Eds.; Springer
International Publishing: Cham, Switzerland, 2021; pp. 155–164. [CrossRef]

60. Bless, C.; Dötlinger, L.; Kaltschmid, M.; Reiter, M.; Kurteva, A.; Roa-Valverde, A.J.; Fensel, A. Raising Awareness of Data Sharing
Consent Through Knowledge Graph Visualisation. In Further with Knowledge Graphs; IOS Press: Amsterdam, The Netherlands,
2021; pp. 44–57. [CrossRef]

61. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L. Microservices: Yesterday, Today, and
Tomorrow. In Present and Ulterior Software Engineering; Mazzara, M., Meyer, B., Eds.; Springer International Publishing: Cham,
Switzerland, 2017; pp. 195–216. [CrossRef]

62. Subramanian, H.; Raj, P. Hands-On RESTful API Design Patterns and Best Practices: Design, Develop, and Deploy Highly Adaptable,
Scalable, and Secure RESTful Web APIs; Packt Publishing Ltd.: Birmingham, UK, 2019.

63. De Lauretis, L. From Monolithic Architecture to Microservices Architecture. In Proceedings of the 2019 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), Berlin, Germany, 28–31 October 2019; pp. 93–96.
[CrossRef]

64. Hasselbring, W.; Steinacker, G. Microservice Architectures for Scalability, Agility and Reliability in E-Commerce. In Proceedings
of the 2017 IEEE International Conference on Software Architecture Workshops (ICSAW), Gothenburg, Sweden, 5–7 April 2017;
pp. 243–246. [CrossRef]

65. Zou, L.; Ni, M.; Huang, Y.; Shi, W.; Li, X. Hybrid Encryption Algorithm Based on AES and RSA in File Encryption. In Frontier
Computing; Hung, J.C., Yen, N.Y., Chang, J.W., Eds.; Springer: Singapore, 2020; pp. 541–551.

66. SPARQL 1.1 Query Language. Available online: https://www.w3.org/TR/sparql11-query/ (accessed on 15 December 2021).
67. Lindqvist, J. New challenges to personal data processing agreements: Is the GDPR fit to deal with contract, accountability and

liability in a world of the Internet of Things? Int. J. Law Inf. Technol. 2017, 26, 45–63. [CrossRef]
68. INCITS 565-2020; Information Technology—Next Generation Access Control (NGAC). ANSI: Washington, DC, USA,

2020. Available online:https://standards.incits.org/apps/group_public/project/details.php?project_id=2328 (accessed on
29 December 2021).

69. NoSQL Database. Available online: https://hostingdata.co.uk/nosql-database/ (accessed on 9 December 2021).
70. Eismann, S.; Scheuner, J.; van Eyk, E.; Schwinger, M.; Grohmann, J.; Herbst, N.; Abad, C.L.; Iosup, A. Serverless Applications:

Why, When, and How? IEEE Softw. 2021, 38, 32–39. [CrossRef]
71. Atlas Database. Deploy a Multi-Cloud Database. Available online: https://www.mongodb.com/atlas/database (accessed on 10

December 2021).
72. Amazon Web Services (AWS). Available online: https://aws.amazon.com (accessed on 6 December 2021).
73. Kubernetes. Available online: https://kubernetes.io (accessed on 6 December 2021).
74. Linode. Available online: https://www.linode.com (accessed on 6 December 2021).
75. Linux. Available online: https://www.linux.org (accessed on 22 December 2021).
76. Ubuntu. Available online: https://ubuntu.com (accessed on 4 December 2021).
77. Debian. Available online: https://www.debian.org (accessed on 14 December 2021).
78. Python. Available online: https://www.python.org (accessed on 1 December 2021).
79. SWI Prolog. Available online: https://www.swi-prolog.org (accessed on 10 January 2022).
80. Flask. Available online: https://flask.palletsprojects.com/en/2.0.x/ (accessed on 19 December 2021).
81. Flask-RESTful. Available online: https://flask-restful.readthedocs.io/en/latest/ (accessed on 17 December 2021).
82. Flask-SQLAlchemy. Available online: https://flask-sqlalchemy.palletsprojects.com/en/2.x/ (accessed on 28 December 2021).
83. Requests: HTTP for Humans. Available online: https://docs.python-requests.org/en/latest/ (accessed on 10 December 2021).
84. Flask-Apispec: Auto-Documenting REST APIs for Flask. Available online: https://flask-apispec.readthedocs.io/en/latest/

(accessed on 15 December 2021).
85. PyCryptodome. Available online: https://www.pycryptodome.org/en/latest/src/introduction.html (accessed on

9 January 2022).
86. Flask-JWT-Extended’s Documentation. Available online: https://flask-jwt-extended.readthedocs.io/en/stable/ (accessed on 14

December 2021).
87. FuzzyWuzzy. Available online: https://github.com/seatgeek/fuzzywuzzy (accessed on 29 November 2021).
88. NLTK. Available online: https://www.nltk.org (accessed on 18 December 2021).
89. spaCy: Industrial-Strength Natural Language Processing. Available online: https://spacy.io (accessed on 15 December 2021).
90. SPARQL Endpoint Interface to Python. Available online: https://sparqlwrapper.readthedocs.io/en/latest/ (accessed on 4

January 2022).
91. PyMongo. Available online: https://pymongo.readthedocs.io/en/stable/ (accessed on 7 December 2021).
92. Docker. Available online: https://www.docker.com (accessed on 4 January 2022).

https://smashhiteu.github.io/smashHitCore/
https://www.w3.org/TR/rdf-sparql-query/
https://smashhitactool.sti2.at/sparql
http://dx.doi.org/10.1007/978-3-030-80418-3_28
http://dx.doi.org/10.3233/SSW210034
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1109/ISSREW.2019.00050
http://dx.doi.org/10.1109/ICSAW.2017.11
https://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1093/ijlit/eax024
https://standards.incits.org/apps/group_public/project/details.php?project_id=2328
https://hostingdata.co.uk/nosql-database/
http://dx.doi.org/10.1109/MS.2020.3023302
https://www.mongodb.com/atlas/database
https://aws.amazon.com
https://kubernetes.io
https://www.linode.com
https://www.linux.org
https://ubuntu.com
https://www.debian.org
https://www.python.org
https://www.swi-prolog.org
https://flask.palletsprojects.com/en/2.0.x/
https://flask-restful.readthedocs.io/en/latest/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://docs.python-requests.org/en/latest/
https://flask-apispec.readthedocs.io/en/latest/
https://www.pycryptodome.org/en/latest/src/introduction.html
https://flask-jwt-extended.readthedocs.io/en/stable/
https://github.com/seatgeek/fuzzywuzzy
https://www.nltk.org
https://spacy.io
https://sparqlwrapper.readthedocs.io/en/latest/
https://pymongo.readthedocs.io/en/stable/
https://www.docker.com


Sensors 2022, 22, 2763 35 of 35

93. SQLite. Available online: https://sqlite.org/index.html (accessed on 14 December 2021).
94. Data Tracker. Available online: https://datatracker.ietf.org/doc/html/rfc7519 (accessed on 29 December 2021).
95. OpenAPI Initiative. Available online: https://www.openapis.org (accessed on 19 December 2021).
96. National Institute of Standards and Technology (NIST). Available online: https://www.nist.gov (accessed on 11 December 2021).
97. FIPS 197; Advanced Encryption Standard (AES). National Institute of Standards and Technology: Gaithersburg, MD, USA, 2001.
98. Garg, N.; Yadav, P. Comparison of asymmetric algorithms in cryptography. J. Comput. Sci. Mob. Comput. (IJCSMC) 2014,

3, 1190–1196.
99. RFC 8017. Available online: https://www.rfc-editor.org/info/rfc8017 (accessed on 11 January 2022).
100. RFC 5208. Available online: https://www.ietf.org/rfc/rfc5208.txt (accessed on 11 January 2022).
101. Bellare, M.; Rogaway, P.; Wagner, D. EAX: A Conventional Authenticated-Encryption Mode. IACR Eprint Archive. 2003.

Available online: https://ia.cr/2003/069 (accessed on 5 January 2022).
102. Marshmallow: Simplified Object Serialization. Available online: https://marshmallow.readthedocs.io/en/stable/index.html

(accessed on 19 October 2021).
103. Becker, M.; Malkis, A.; Bussard, L. S4P: A Generic Language for Specifying Privacy Preferences and Policies; Technical Report

MSR-TR-2010-32; Microsoft Research: Cambridge, UK, 2010.
104. Alex Ellis. OpenFaas. Available online: (accessed on 5 December 2021).
105. Ofelia Scheduler. Available online: https://github.com/mcuadros/ofelia (accessed on 10 November 2021).
106. Padmavathi, B.; Kumari, S.R. A Survey on Performance Analysis of DES; AES and RSA Algorithm along with LSB Substitution

Technique. Int. J. Sci. Res. (IJSR) 2013, 2, 170–174.
107. Nadeem, A.; Javed, M. A Performance Comparison of Data Encryption Algorithms. In Proceedings of the 2005 International

Conference on Information and Communication Technologies, Karachi, Pakistan, 27-28 Aug. 2005; pp. 84–89. [CrossRef]
108. Dehury, C.K.; Srirama, S.N.; Chhetri, T.R. CCoDaMiC: A framework for Coherent Coordination of Data Migration and

Computation platforms. Future Gener. Comput. Syst. 2020, 109, 1–16. [CrossRef]
109. Kakkar, A.; Farshori, A. Server-Less Cloud Computing—An Economical Solution for Business Operations. In Innovations in

Computer Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 145–154.
110. Chung, M.T.; Quang-Hung, N.; Nguyen, M.T.; Thoai, N. Using Docker in high performance computing applications. In

Proceedings of the 2016 IEEE Sixth International Conference on Communications and Electronics (ICCE), Ha-Long, Vietnam,
27–29 July 2016; pp. 52–57. [CrossRef]

111. Kubernetespods. Available online: https://kubernetes.io/docs/concepts/workloads/pods/ (accessed on 1 November 2021).
112. Horizontal Pod Autoscaling. Available online: https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

(accessed on 2 January 2022).
113. Locust. Available online: https://locust.io (accessed on 11 December 2021).
114. Data Protection Commissioner. Self-Assessment Checklist GDPR Readiness Checklist Tools. Available online: https://www.

dataprotection.ie/en/organisations/resources-organisations/self-assessment-checklist (accessed on 6 October 2021).
115. Uniitest. Available online: https://docs.python.org/3/library/unittest.html (accessed on 5 December 2021).
116. GDPR Compliance Tool. Available online: https://github.com/tekrajchhetri/GDPR_compliance_tool (accessed on 12

January 2022).

https://sqlite.org/index.html
https://datatracker.ietf.org/doc/html/rfc7519
https://www.openapis.org
https://www.nist.gov
https://www.rfc-editor.org/info/rfc8017
https://www.ietf.org/rfc/rfc5208.txt
https://ia.cr/2003/069
https://marshmallow.readthedocs.io/en/stable/index.html
https://github.com/mcuadros/ofelia
http://dx.doi.org/10.1109/ICICT.2005.1598556
http://dx.doi.org/10.1016/j.future.2020.03.029
http://dx.doi.org/10.1109/CCE.2016.7562612
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://locust.io
https://www.dataprotection.ie/en/organisations/resources-organisations/self-assessment-checklist
https://www.dataprotection.ie/en/organisations/resources-organisations/self-assessment-checklist
https://docs.python.org/3/library/unittest.html
https://github.com/tekrajchhetri/GDPR_compliance_tool

	Introduction
	Goal
	Contributions

	Background
	Related Work
	Compliance Verification
	Summary

	KG Overview and Legal Background
	GDPR and Relevant TOMs
	Legal KG

	System Architecture
	Service Layer
	API Layer
	Data Processing
	Shared Service
	Security
	Consent
	Auditing
	Compliance

	Security and Privacy
	Policy Tools
	Policy Enforcement Points (PEP)
	Policy Decision Points (PDP)
	Compliance-Related Policy Decisions

	Scheduler
	Remote Storage
	Serverless Layer

	Implementation
	Experimental Setup
	Automated GDPR Compliance Verification Tool Implementation
	API Layer
	Data Processing
	Shared Service
	Security
	Consent
	Auditing
	Compliance
	Security and Privacy
	Serverless Layer
	Scheduler


	Evaluation
	Performance and Scalability
	TOMs

	Conclusions
	Appendix A
	Appendix A.1Maths Symbols
	Appendix A.2Use Case Overview
	Appendix A.3Comparison with state-of-the-art

	References

