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Abstract—This paper proposes a multi-cluster wireless pow-
ered Internet of Things (WP-IoT) network assisted by multi-
ple intelligent reflecting surfaces (multi-IRS). In this network,
a power station (PS) first broadcasts wireless energy to the
distributed IoT devices grouped into multiple clusters. The IoT
devices then use the harvested energy to convey their information
to an access point (AP), based on a hybrid time- and frequency-
division multiple access (TDMA-FDMA) protocol. Furthermore,
multiple IRSs are deployed to perform anomalous reflection for
energy and information transfer, to improve energy harvesting
and data transmission capabilities. Under the constraints of
the unit-modulus phase shifts, the transmission time shared
among clusters and the bandwidth shared by the devices in each
cluster, the considered system is optimized by maximizing its
sum throughput. The optimization problem is non-convex and
with complicatedly coupled variables. To solve this problem, we
propose to first apply the Lagrange dual method and the Karush-
Kuhn-Tucker (KKT) conditions to derive closed-form solutions
for transmission scheduling and bandwidth allocation, then the
quadratic transformation (QT) and the alternating optimization
(AO) algorithm are introduced to solve the downlink and uplink
IRS phase shifts, whilst the Majorization-Minimization (MM)
and Riemannian Manifold Optimization (RMO) methods are
applied to iteratively derive their closed-form solutions. Addi-
tionally, we provide a benchmark scheme to facilitate the system
design, where each IRS can control its “on/off” state to aid the
downlink and uplink transmissions in the condition of at most
one activated IRS during one certain time duration. Finally,
simulation results are presented to verify the optimality of our
proposed scheme and highlight the beneficial role of the IRS.

Index Terms—Intelligent reflecting surface (IRS), wireless
powered Internet of Things (WP-IoT) network, fractional energy
harvesting, hybrid TDMA-FDMA, Majorization-Minimization
(MM) and Riemannian Manifold Optimization (RMO).

I. INTRODUCTION

For next-generation wireless networks, an intelligent ra-
dio environment has attracted fast-growing attention from
academia and industry due to its holographic mode. This
environment introduces novel meta-surfaces to passively re-
flect the intended signals from the transmitter to the desired
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receiver via the surfaces, referred to as intelligent reflecting
surfaces (IRSs) [1], [2]. In structure, each IRS is composed
of massive reflecting elements with low-cost and small-size
features, managed by a smart controller for simultaneously
information reception and passive reflection. Each reflecting
element induces a reflection coefficient to control the radio
wave such that the reflected signals are coherently added at the
receiver [3]. Therefore, the intelligent radio environment can
effectively enhance spectral efficiency or throughput without
altering the existing communication network architectures and
the requirement of extra energy consumption.

On the other hand, Internet of Things (IoT) has been experi-
encing an explosive demand requiring massive connections of
myriads of wireless devices (WDs), including, smartphones,
wearable devices, sensors, etc., whereas most of these devices
are vulnerable to the constrained energy to support their
information transmission. In many applications, regular battery
maintenance or replacement, as the traditional endeavour to
extend the operational lifetime of IoT devices, might not be
feasible, since the IoT devices may be deployed in extreme
environments for remote monitoring of emergency services.
Furthermore, the energy-efficient management schemes de-
signed for the existing IoT networks may induce a high
algorithmic complexity and also can be challenging for the
configurations of the IoT sensors’ hardware architectures [4].
To address the energy-constrained issue, radio frequency (RF)
wireless energy transfer (WET) has been promoted, which
exploits the far-field propagation properties of electromagnetic
wave (EW) to extract energy wirelessly [5], [6]. The RF-WET
has recently emerged as a promising technique, namely, the
wireless powered communication network (WPCN), equipping
one or more dedicated energy source(s) to sustainably provide
WET to the WDs, thus, prolong WDs’ battery life and reduce
the cost of maintenance and replacement [5]. The WDs can
harvest energy from the RF environment, to support their
wireless information transfer (WIT). Typically, the “harvest-
then-transmit” protocol is used in WPCN to schedule the time
durations for WET and WIT and effectively circumvent the
interference between WDs [7].

A. State-of-the-Art

Recently, the integration of WPCN with IRS has been
promoted as a revolutionized paradigm in wireless-powered
IoT (WP-IoT) networks, where the design principle is to
improve the network throughput and energy efficiency of
the WPCN simultaneously with aid of the IRS to coordi-



nate its beam patterns. The existing works in literature have
studied some IRS-assisted simultaneous wireless information
and power transfer (SWIPT) systems [8]–[10]. Specifically,
in [8], IRS was applied to a multiple-input single-output
(MISO) SWIPT downlink system. The active beamformers for
information and energy transmissions as well as the passive
IRS phase shifts were jointly optimized to achieve the max-
imum weighted sum harvested power (WSHP). The benefits
introduced by IRS were highlighted via a rate-energy (R-E)
trade-off metric. The system in [8] was extended to the case
using distributed IRSs in [9] for transmit power minimization
(TPM), where the optimization problem was iteratively solved
by a penalty-based approach. It was confirmed that an energy-
efficiency gain can be obtained by IRS. In [10], a multiple-
input multiple-output (MIMO) SWIPT system with a single
IRS was investigated, supported by solving a weighted sum
rate maximization (WSRM) problem that was decomposed
into several subproblems to separately optimize the transmit
precoders and the IRS phase shifts, but iteration between them
is achieved via the block coordinate descent (BCD) algorithm.

The coordination between IRS and WPCN has been in-
troduced to IoT networks to improve system throughput and
energy efficiency [11]–[15]. In [11], an IRS first assisted the
energy harvesting of IoT devices by reflecting the energy
signals radiated from a power station (PS). Then, the individual
device utilized its harvested energy to deliver information to
an access point (AP) with the assistance of the IRS, based
on time-division multiple access (TDMA). To demonstrate
the overall performance, the sum throughput was maximized
to optimally schedule the transmission time slots and set
the IRS phase shifts for downlink WET and uplink WIT.
Moreover, two novel protocols, named time switching and
power splitting, were proposed to harvest the RF energy at
the IRS for its control circuit operation [12], [13]. Specif-
ically, semidefinite programming (SDP) relaxation and one-
dimensional (1-D) line approach were adopted to numerically
solve the sum throughput maximization problem [12]. In [13],
a novel low-complexity scheme was proposed to optimally
derive the closed-form solutions for the time scheduling and
IRS phase shifts, which was verified to achieve comparable
performance with the numerical approaches. In [14], non-
orthogonal multiple access (NOMA) scheme was introduced
in an IRS-assisted WPCN, which optimized the IRS passive
beamforming to maximize the sum throughput. In [14], a
closed-form solution for the IRS passive beamforming was
attained via an iterative algorithm based on alternating opti-
mization (AO) algorithm. A similar approach was applied to
multi-cluster cases in [15], where a plethora of IoT devices
were grouped into different clusters, and each cluster is
TDMA-based with the IoT devices sharing one sub-time slot
for information transfer via NOMA. The study demonstrated
that the hybrid TDMA and NOMA protocol is capable of
achieving a good performance-complexity trade-off.

Despite the considerable efforts to research the IRS-aided
WP-IoT networks, the focus so far is mainly on the investiga-
tion of multiple IoT devices in a single cluster suffering from
the energy-constrained issue. In addition, an ideal yet over-
simplified linear model is typically employed to characterize

the energy harvesting at IoT devices. There is also a research
gap on using multiple IRSs (or multi-IRS) in a distributed
manner where each IRS can control its “on/off” state to serve
the IoT devices nearby, which can be a promising solution
to extend the network coverage and enhance throughput,
Inspired by these research motivations, we propose a multi-
IRS assisted multi-cluster WP-IoT network, where multiple
IRSs are deployed to participate in energy harvesting and
information transmission. It constitutes a novel paradigm to
optimally coordinate energy and information transmissions of
different clusters of IoT devices. The contributions of this
paper are summarized as follows:

1) Firstly, a multi-IRS-assisted multi-cluster WP-IoT net-
work is proposed. Specifically, in the downlink WET,
a PS wirelessly radiates RF energy to IoT devices that
are grouped into multiple clusters. Then, in the uplink
WIT, these devices utilize the harvested energy to deliver
their individual information to the AP in a hybrid TDMA-
FDMA fashion, where a dedicated time slot is scheduled
for every cluster via TDMA and dedicated bandwidth
is allocated for each device in each cluster via FDMA.
Meanwhile, multiple IRSs passively participate in the
energy/information reflection for downlink WET and
uplink WIT to improve energy harvesting and information
transmission capabilities. To the best of the authors’
knowledge, there are only a few existing works that have
investigated the multi-IRS-assisted multi-cluster WP IoT
network.

2) Secondly, the overall performance of the system model
under investigation is evaluated, where all IRSs partic-
ipate in energy/information reflection in the downlink
WET/uplink WIT. This involves a maximization prob-
lem formulation of the sum throughput, subject to the
constraints of IRS beam patterns, time scheduling, and
bandwidth allocation. The formulated problem includes a
sum of logarithm functions with multiple fractional pro-
grams (MFPs) with coupled variables and a unit-modulus
IRS phase shift constraint, leading to a non-convex issue
and cannot be solved directly. The existing works such as
[14]–[16] rely on the SDP relaxation, sequential rank-one
constraint relaxation (SROCR), and successive convex
approximation (SCA) techniques to reformulate the non-
convex problem into a convex one that can be numerically
solved by interior-point method [17]. This work aims to
facilitate the optimal design of the IRS beamforming,
and we propose to use the Lagrange dual method with
Karush-Kuhn-Tucker (KKT) conditions, which derives
the closed-form solutions of time scheduling and band-
width allocation and reformulates the sum of logarithm
functions into a sum of MFPs, proceeding to a quadratic
transformation (QT) for reformulation from a sum of
fractional functions to a subtractive form for the sake of
tractability. Then, majorization-minimization (MM) and
Riemannian manifold optimization (RMO) approaches
are adopted to iteratively derive the closed-form of the
downlink and uplink IRS beam patterns.

3) Thirdly, a benchmark scheme, namely, IRS selection, is



conceived to facilitate network design, which is based
on the premise that each IRS can control its “on/off”
state. Given a dedicated time period, only one IRS is
activated to participate in the downlink WET or uplink
WIT. For this configuration, a binary time scheduling
vector is induced to recast the formulated problem into a
linear programming (LP).

The remainder of this paper is organized as follows: Section
II describes the considered system model and formulates the
sum throughput maximization problem. The optimal solution
of this problem is investigated in Section III. The benchmark
scheme is exploited in Section IV. Numerical results are
demonstrated in Section V, and Section VI concludes this
paper. Here, Table I summarizes of notations being used in
this paper.

II. SYSTEM MODEL

We investigate a multi-IRS assisted multi-cluster WP-IoT
network as shown in Fig. 1. Specifically, in total Q IoT
devices are grouped into K clusters, and each cluster consists
of Qk, ∀k ∈ [1,K] IoT devices, i.e.,

∑K
k=1Qk = Q.

Dk,q, ∀k ∈ [1,K], ∀q ∈ [1, Qk] represents the q-th IoT
devices of the k-the cluster. We assume that multiple IRSs
are deployed to passively reflect the energy or information
signals by controlling their own reflecting coefficients. Each
IRS is equipped with Nl reflecting elements ∀l ∈ [1, L],
satisfying

∑L
l=1Nl = N , whereas other devices (i.e., PS, IoT

devices, AP) are equipped with single antenna each. During
the downlink WET, the PS wirelessly charges these groups
of IoT devices. During the uplink WIT, these devices use the
harvested energy to deliver their individual information to the
AP, for which a hybrid TDMA-FDMA protocol is adopted,
as shown in Fig. 2. Specifically, we divide the time resource
into periods, and in each period T , the downlink WET time
duration is set to τ0, and the uplink WIT time duration of each
cluster is given as τk. Within a cluster and a time duration of
τk, the IoT devices share the total bandwidth B to deliver
their information to the AP, with the q-th device assigned a
bandwidth of wq, ∀q ∈ [1, Qk], ∀k ∈ [1,K], which satisfies
that

∑Qk

q=1 wq = B.
In addition, we denote Θl,k = diag [θk,1, ..., θk,Nl

], θk,n =
βk,nl

exp(jαk,nl
) as the l-th IRS phase shift matrix serving

the k-th cluster, where βk,nl
∈ [0, 1] and αk,nl

∈ [0, 2π],
∀nl ∈ [1, Nl], ∀k ∈ [0,K], denote the amplitude and phase
shift of the corresponding reflecting element.1 In practice,
the phase shift of each IRS element is dynamically adjusted,
coordinated by the IRS controller. When an IRS aims to
participate in the downlink WET, it requires energy collection
to support the circuit operation at its controller. To fulfil this
technical requirement, our prior works have presented two
energy harvesting frameworks at the IRS, i.e., time switching
[13] and power splitting [18]. The focus of this work is
on developing a suitable optimization algorithm for the IRS
passive beam patterns and the transmission framework. To this

1To maximize the sum throughput, it requires a maximum energy and/or
information signal reflection of IRSs. For simplicity, each element of the IRSs
is set to have βk,nl

= 1, to maximize the reflection gain.

end, a general approach is to investigate the upper bounds
of the sum throughput performance of the system model,
by assuming the channel state information (CSI) perfectly
available. To elaborate more on the CSI acquisition: channel
estimation algorithms have been presented in [19], [20] to
acquire the cascaded CSI of the IRS-related links by utilizing
the passive pilots and message passing algorithms, respec-
tively; the effect of the imperfect cascaded CSI has been
investigated in [21]–[23], where it typically obeys bounded
and statistical CSI uncertainties. Considering the assumption
of the imperfect CSI, there works characterized the worst-
case and outage probability robust beamforming designs to
maximize achievable rate and minimize transmit power at the
AP, respectively, which can be tackled by using robust resource
allocations to alternately optimize active transmit precoding
and passive reflecting beamforming. The CSI uncertainty can
significantly increase network energy consumption or degrade
the achievable rate or system throughput [21]–[23].

Table II shows the notations of channel coefficients. For the
downlink WET, a widely considered linear energy harvesting
model is used, and the energy harvested by Dk,q is given as

Elineark,q = ητ0P0

∣∣∣∣∣gd,k,q +

L∑
l=1

g0,lΘ0,lgr,l,k,q

∣∣∣∣∣
2

, (1)

where η ∈ (0, 1] denotes the energy conversion efficiency,
and P0 is the transmit power of PS. Note that Elineark,q in (1)
can be treated as a linear function with respect to the term
P0|gd,k,q+

∑L
l=1 g0,lΘ0,lgr,l,k,q|2, and η is a constant aiming

to characterize the linear behaviour of a non-linear energy
harvester. However, this energy harvester’s circuit practically
implements the non-linear transform, making the output power
a non-linear function with respect to the RF input power
[24]. In this paper, we propose a fractional model at IoT
devices to characterize the approximated non-linear energy
harvesting (NLEH) properties and saturation region of this
energy harvester, where the harvested energy at Dk,q is given
by

Enonlineark,q = τ0
(ak,qck,q − bk,q)P0 |gd,k,q + g0Θ0gr,k,q|2

ck,qP0 |gd,k,q + g0Θ0gr,k,q|2 + c2k,q
,

(2)
where ak,q = 2.463, bk,q = 1.635, and
ck,q = 0.826 are positive constants [25]; g0 =[
g0,1 · · · g0,L

]
, Θ0 = diag [Θ0,1, · · · ,Θ0,L], and

gHr,k,q=
[
gr,1,k,q · · · gr,L,k,q

]H
.

For the uplink WIT, we consider a hybrid TDMA-FDMA
protocol to guarantee the connectivity of all IoT devices, where
the sum throughput of the k-th cluster is given at (3) on the top
of the next page, where σ2 is the noise power density at the AP,
hk,q =

[
hk,q,1 · · · hk,q,L

]
, Θk = diag [Θk,1, ...,Θk,L],

and hHr =
[
hr,1 · · · hr,L

]H
.

A. Problem Formulation

For the considered system, two types of passive IRS
beamformers are covered, i.e., for the downlink and the
uplink. We aim to maximize the sum throughput to jointly
design the optimal solutions for the passive IRS beamformers(

i.e, {Θk}Kk=0

)
, transmission time scheduling

(
i.e, {τk}Kk=0

)
,



TABLE I: Notations
Notations Descriptions Notations Descriptions Notations Descriptions

X A matrix x A vector conj(·) Conjugate operator
(·)H Conjugate transpose operator | · | Absolute operator ‖ · ‖ Euclidean norm operator
IN×N An identity matrix with size N exp(·) Exponential function arg Phase operation
W(·) Lambert W function <{·} Real part of a complex number diag[·] Diagonalization operator

Fig. 1: System model. Fig. 2: The hybrid TDMA-FDMA protocol.

TABLE II: Notations of channel coefficients
Notations Descriptions Notations Descriptions Notations Descriptions

gd,k,q ∈ C1×1 PS to Dk,q g0,l ∈ C1×Nl PS to the l-th IRS gr,l,k,q ∈ CNl×1 The l-th IRS to Dk,q

hd,k,q ∈ C1×1 Dk,q to AP hk,q,l ∈ C1×Nl Dk,q to the l-th IRS hr,l ∈ CNl×1 The l-th IRS to AP

Rk = τk

Qk∑
q=1

wq log

1 +
τ0(ak,qck,q − bk,q)P0 |gd,k,q + g0Θ0gr,k,q|2 |hd,k,q + hk,qΘkhr|2

τk

(
ck,qP0 |gd,k,q + g0Θ0gr,k,q|2 + c2k,q

)
σ2wq

 , (3)

and bandwidth allocation
(

i.e., {wq}Qk,K
q=1,k=1

)
. The problem

can be formulated as:

max
ΩTDMA−FDMA

K∑
k=1

Rk

s.t. |θk,n| = 1,∀n ∈ [1, N ] , ∀k ∈ [0,K] , (4a)
K∑
k=0

τk ≤ T, τk ≥ 0, ∀k ∈ [0,K], (4b)

Qk∑
q=1

wq ≤ B,wq ≥ 0, ∀q ∈ [1, Qk], (4c)

ΩTDMA−FDMA=
[
{Θk}Kk=0 , {τk}

K
k=0 , {wq}

Qk,K
q=1,k=1

]
, (4d)

where (4a), (4b), and (4c) denote the constraints of the
IRS phase shifts, the transmission time scheduling, and the
bandwidth allocation, respectively. Problem (4) includes mul-
tiple coupled variables which lead to its non-convexity, and
therefore, it cannot be solved directly.

III. OPTIMAL RESOURCE ALLOCATION SCHEME FOR
PROBLEM (4)

In this section, we solve the problem (4) to obtain an optimal
resource allocation scheme. Let us denote θ0 = [θ0,1, ..., θ0,N ],
t0,k,q = |gd,k,q + g0Θ0gr,k,q|2 = |gd,k,q + θ0ak,q|2,
ak,q = diag (g0) gr,k,q , t1,k,q = |hd,k,q + hk,qΘkhr|2 =

|hd,k,q + θkbk,q|2, and bk,q = diag (hk,q) hr, it can be shown
that problem (4) is equivalently expressed as

max
ΩTDMA−FDMA

K∑
k=1

τk

Qk∑
q=1

wqlog

1+
τ0(ak,qck,q−bk,q)P0t0,k,qt1,k,q

τk

(
ck,qP0t0,k,q+c2k,q

)
σ2wq

 ,

s.t. (4a), (4b), (4c),

ΩTDMA−FDMA =
[
{θk}Kk=0 , {τk}

K
k=0 , {wq}

Qk

q=1

]
, (5)

Apparently (5) is still intractable. To solve it, we divide (5)
into the following two sub-problems:

1) Sub-problem 1:
fk(wq,θk)

= max
wq

Qk∑
q=1

wq log

1+
τ0(ak,qck,q−bk,q)P0t0,k,qt1,k,q

τk

(
ck,qP0t0,k,q+c2k,q

)
σ2wq

,
s.t. (4a), (4c). (6)

2) Sub-problem 2:

max
θk,τk

K∑
k=1

τkfk (wq,θk) , s.t. (4a), (4b). (7)

Then, we proceed to solve these two sub-problems to obtain
the optimal solutions of {wq}Qk

q=1 , ∀k ∈ [1,K], {θk}Kk=0 and
{τk}Kk=0.



A. Optimal Solutions of Bandwidth Allocation and Transmis-
sion Time Scheduling

The following theorem helps solve (6) to obtain
{wq}Qk

q=1 , ∀k ∈ [1,K], for given {θk}Kk=0:
Theorem 1: The sub-problem (6) can be equivalently for-

mulated as

fk(θk) = max
θk

B log

(
1 +

∑Qk

q=1Ak,q

B

)
, s.t. (4a), (8)

and the optimal solution of wq is

w∗q =
Ak,qB∑Qk

q=1Ak,q
, (9)

where Ak,q =
τ0(ak,qck,q−bk,q)P0t0,k,qt1,k,q

τk(ck,qP0t0,k,q+c2k,q)σ2
.

Proof: See Appendix A.
As seen from Theorem 1, the sub-problem (6) (i.e.,f(wq,θk))

can be simplified into (8) (i.e.,f(θk)), which involves {θk}Kk=0

only. Thus, substituting f(θk) into the sub-problem (7) yields

max
ΩTDMA−FDMA

K∑
k=1

τkB log

(
1 +

τ0
∑Qk

q=1 Ck,q

τkBσ2

)
,

s.t. (4a), (4b),

ΩTDMA−FDMA =
[
{θk}Kk=0 , {τk}

K
k=0

]
, (10)

where Ck,q =
(ak,qck,q−bk,q)P0t0,k,qt1,k,q

ck,qP0t0,k,q+c2k,q
. Since the objective

function in (10) is a sum of multiple concave functions,
and constraint (4b) is linear, the problem (10) is essentially
a convex optimization problem with respect to {τk}Kk=0 for
given {θk}Kk=0, which can be simplified as:

Theorem 2: Problem (10) is equivalent to the following
problem with

max
θk,τ0

f0

(
{θk}Kk=0 , τ0

)
=B(T−τ0) log

(
1+

τ0
∑K
k=1

∑Qk

q=1 Ck,q

(T−τ0)Bσ2

)
,

s.t. (4a), τ0 ∈ [0, T ], (11)
and the optimal solution of {τk}Kk=1 is

τ∗k =
(T − τ0)

∑Qk

q=1 Ck,q∑K
k=1

∑Qk

q=1 Ck,q
. (12)

Proof: See Appendix B.
It can be observed from Theorem 2 that problem (11) includes
only {θk}Kk=0 and τ0, but is still not jointly convex and in-
tractable. To circumvent this issue, we start with the derivation
of a closed-form optimal solution of τ0 for given {θk}Kk=0,
where the following theorem is required,

Theorem 3: The optimal solution of τ0 can be derived in
closed form as

τ∗0 =
TB

{
exp

[
W
(

C
B−1
exp(1)

)
+ 1
]
− 1
}

C +B
{

exp
[
W
(

C
B−1
exp(1)

)
+ 1
]
− 1
} . (13)

Proof: See Appendix C.

B. Optimal Solution of IRS Phase Shifts

In this subsection, we continue to solve problem (11) to
derive the optimal solution of the IRS phase shifts, i.e.,

{θk}Kk=0. It is obvious that solving problem (11) is equivalent
to:

max
θk

K∑
k=1

Qk∑
q=1

Xk,q |gd,k,q + θ0ak,q|2 |hd,k,q + θkbk,q|2

Yk,q |gd,k,q + θ0ak,q|2 + c2k,q
,

s.t. (4a), (14)
where Xk,q = (ak,qck,q − bk,q)P0, Yk,q = ck,qP0. As the
multiple IRS phase shifts lead to the non-convexity of problem
(14), an AO algorithm is proposed to alternately design the IRS
beamformers, indicating θ0 and {θk}Kk=1.

1) Optimal solution of {θk}Kk=1: Firstly, we optimize
{θk}Kk=1 with a fixed θ0. Let us denote Dk,q =
Xk,q|gd,k,q+θ0ak,q|2

Yk,q|gd,k,q+θ0ak,q|2+c2k,q

, then problem (14) can be rewritten,

with respect to {θk}Kk=1, as

max
θk

Qk∑
q=1

Dk,q |hd,k,q + θkbk,q|2 (15a)

s.t. |θk,n| = 1,∀n ∈ [1, N ], ∀k ∈ [1,K]. (15b)
Let us further expand the objective function (15a), and express
it as
Qk∑
q=1

Dk,q |hd,k,q + θkbk,q|2 = θk∆̃kθ
H
k + 2<{θkγk}+ d,

(16)
where ∆̃k =

∑Qk

q=1Dk,qbk,qb
H
k,q, γk =∑Qk

q=1Dk,qconj(hd,k,q)bk,q, d =∑Qk

q=1Dk,qhd,k,qconj(hd,k,q). Then, problem (15) can
be represented as

min
θk

θk∆kθ
H
k − 2<{θkγk} , s.t. (15b) (17)

where ∆k = −∆̃k. To solve problem (17), the MM and RMO
algorithms are proposed below to iteratively optimize {θk}Kk=1

for a given θ0.

a. MM Algorithm: The MM algorithm is adopted here
to transform problem (17) into a tractable sequence of
form, which utilizes the linear approximation to handle
the objective function and constraint of (17), and its
approximated solution is iteratively updated in an alter-
nating manner [26]. To apply this algorithm, we first
denote f1,k(θk) as the objective function of (17), and
then present the following lemma,
Lemma 1: For the k-th cluster at the m-th iter-
ation, the objective function f1,k(θk) can be ap-
proximated for any given θ

(m)
k [26], [27]. Let

dk = θ
(m)
k (λmax (∆k) IN×N −∆k)

(
θ
(m)
k

)H
, Γk =

λmax (∆k) IN×N ; λmax (∆k) and θ
(m)
k denote the max-

imum eigenvalue of ∆k and the approximated solution



of θk at the m-th iteration, respectively. We have
f1,k(θk) , θk∆kθ

H
k −2<{θkγk}

≤θkΓkθ
H
k −2<

{
θk

[
(Γk−∆k)

(
θ
(m)
k

)H
+γk

]}
+ θ

(m)
k (Γk−∆k)

(
θ
(m)
k

)H
= λmax (∆k) ‖θk‖2−2<{θk [(λmax (∆k) IN×N

−∆k)
(
θ
(m)
k

)H
+γk

]}
+dk

, g1,k

(
θk|θ(m)

k

)
, ∀k ∈ [1,K], (18)

As shown in (18), f1,k(θk) is transformed to its surrogate
g1,k

(
θk|θ(m)

k

)
, which guarantees the conditions of [27,

Eq. 46] and the equivalence of the problem (17) to:
min
θk

λmax ‖θk‖2−2<{θk [(λmax (∆k) IN×N

−∆k)
(
θ
(m)
k

)H
+γk

]}
, s.t. (15b). (19)

In (19), we set ‖θk‖2 = N such that the first term of the
objective function is constant. In this case, the optimal

solution of θk and (λmax (∆k) IN×N −∆k)
(
θ
(m)
k

)H
+

γk should be identical. Therefore, we have
θ∗k,n = exp (j arg [γ̄k(n)]) , ∀k ∈ [1,K], ∀n ∈ [1, N ],

(20)

where γ̄k = (λmax (∆k) IN×N −∆k)
(
θ
(m)
k

)H
+ γk.

The proposed MM algorithm can be elaborated as in
Algorithm 1.

Algorithm 1: MM algorithm to solve problem (17).

a) for k = 1 : 1 : K

i) Initialization: the iterative index m, and the ini-
tialized solution of θk, i.e., θ(1)

k .
ii) Calculate f1,k

(
θ
(1)
k

)
.

iii) Repeat:
A) Compute θ

(m+1)
k = θ∗k = [θk,1, ..., θk,N ] using

(20).
B) Calculate f1,k

(
θ
(m+1)
k

)
and set m = m + 1

until convergence is achieved.
b) end
c) Output the optimal solution of θk, ∀k ∈ [1,K].

b. RMO Algorithm: The RMO algorithm can also be
adopted for solving problem (17), which mainly relies on
the derivation of the gradient descent over the manifold
space [28]. To apply this algorithm, we modify (17) to
max
θk

f2,k (θk) = θk (∆k + ξkIN×N )θHk − 2<{θkγk} ,

s.t. (15b), (21)
where ξk > 0, ∀k ∈ [1,K] is a constant used to
control the convergence of the RMO algorithm. Problem
(21) can be equivalent to (17) with ξkθkθ

H
k = ξkN .

The unit-modulus constraint (15b) can be denoted by the
manifold, which is the product of N complex sets, i.e.,
SNθk

,
{
xk ∈ CN : |xk| = 1, n ∈ [1, N ]

}
, where each set

is a sub-manifold.

At the m-th iteration, we first consider the direction of
(21), the opposite of the gradient in the Euclidean space
of f2,k

(
θ
(m)
k

)
, which can be written as

−∇θk
f2,k

(
θ
(m)
k

)
=−2 (∆k+ξkIN×N )

(
θ
(m)
k

)H
+2γk, ∀k ∈ [1,K]. (22)

Next, we derive the Riemannian gradient of f2,k
(
θ
(m)
k

)
for any feasible θ

(m)
k ∈ SNθk

, which is implemented
within the tangent space T

θ
(m)
k

SNθk
[29]. Therefore, the

Riemannian gradient is given by the steepest descent as
Grad

(m)

TθkS
N
θk

=−∇θk
−<

{
conj (−∇θk

)�θ(m)
k

}
� θ

(m)
k ,

∀k ∈ [1,K]. (23)
Then θ

(m)
k is updated in the tangent space T

θ
(m)
k

SNθk
as

θ̃
(m)
k = θ

(m)
k + ϕkGrad

(m)

TθkS
N
θk

, ∀k ∈ [1,K], (24)

where ϕk, ∀k ∈ [1,K], denotes a step size. The last
step is to perform the normalization operation to map the
updated θ̃

(m)
k into the manifold SNθk

, which is given by

θ
(m+1)
k = θ̃

(m)
k � 1

θ̃
(m)
k

, ∀k ∈ [1,K]. (25)

Note that the above steps can be carried out after de-
termining the parameters ξk and ϕk, which is important
for controlling the convergence of the RMO algorithm.
The following lemma demonstrates the range of these
parameters,
Lemma 2: The RMO algorithm tends to a non-increasing
behaviour until convergence when the parameters ξk and
ϕk satisfy the following relations,

ξk ≥
N

8
λmax (∆k) + ‖γk‖2 , (26a)

0 < ϕk <
1

λmax (∆k + ξkIN×N )
. (26b)

Proof: See [28].
Based on the above derivations, we elaborate on the
procedures of the RMO algorithm as follows.

Algorithm 2: RMO algorithm to solve problem (17).

1) for k = 1 : 1 : K

a) Initialization: the iterative index m, and the initialized
solution of θk, i.e., θ(1)

k .
b) Calculate: f2,k

(
θ
(1)
k

)
.

c) Determine: the parameters ξk and ϕk via (26).
d) Repeat:

i) Obtain the searching direction of (21) as,
−∇θk

f2,k

(
θ
(m)
k

)
via (22).

ii) Project the searching direction onto the tangent
space, i.e., Grad

(m)

TθkS
N
θk

via (23).

iii) Update θ̃
(m)
k via (24).

iv) Normalize θ
(m+1)
k via (25).

v) Calculate f1,k
(
θ
(m+1)
k

)
and set m = m+ 1 until

convergence.
2) end
3) Output the optimal solution of θk. ∀k ∈ [1,K].



2) Optimal Solution of θ0: In this subsection, we solve
problem (14) to obtain the optimal solution of θ0, taking into
account {θk}Kk=1 obtained in Section III-B1. Let us denote
X̃k,q = Xk,q |hd,k,q + θkbk,q|2. Then, (14) is reformulated as

max
θ0

K∑
k=1

Qk∑
q=1

X̃k,q |gd,k,q + θ0ak,q|2

Yk,q |gd,k,q + θ0ak,q|2 + c2k,q
(27a)

s.t. |θ0,n| = 1,∀n ∈ [1, N ]. (27b)
Explicitly, problem (27) is a sum of the multiple fractional
functions with respect to θ0, which is a non-convex problem
and intractable. To make it tractable, we propose to use the
QT method to transform the fractional function into its sub-
tractive counterpart. Then, by introducing an auxiliary variable
κk,q, ∀k ∈ [1,K], ∀q ∈ [1, Qk], the objective function (27a)
can be equivalently expressed as
f̃ (θ0)

=

K∑
k=1

Qk∑
q=1

2
(
X̃k,q

) 1
2 <{conj(κk,q)gd,k,q+conj(κk,q)θ0ak,q}

−
K∑
k=1

Qk∑
q=1

|κk,q|2
(
Yk,q |gd,k,q+θ0ak,q|2+c2k,q

)
, (28)

where

κ∗k,q =

(
X̃k,q

) 1
2

(gd,k,q + θ0ak,q)

Yk,q |gd,k,q + θ0ak,q|2 + c2k,q
. (29)

Substituting (28) into (27) yields
max
θ0

f̃0 (θ0) , s.t. (27b), (30)

which can be solved by iteratively optimizing the variables θ0
and κk,q . In each iteration, we first derive the optimal solution
of θ0 for a given κk,q , which is then updated using (29) for
a given θ0. Specifically, for a fixed κk,q , f̃0 (θ0) is expanded
to transform problem (30) to
max
θ0

− θ0∆0θ
H
0 +2<{θ0 (φ1−φ0)}+(d1−d0), s.t. (27b).

(31)
where ∆0 =

∑K
k=1

∑Qk

q=1 |κk,q|
2
Yk,qak,qa

H
k,q, φ0 =∑K

k=1

∑Qk

q=1 |κk,q|
2
Yk,qconj(gd,k,q)ak,q,φ1 =∑K

k=1

∑Qk

q=1

(
X̃k,q

) 1
2

conj(κk,q)ak,q , d0 =∑K
k=1

∑Qk

q=1 |κk,q|
2
Yk,qgd,k,qconj(gd,k,q) +∑K

k=1

∑Qk

q=1 |κk,q|
2
c2k,q , and d1 =

2<
{∑K

k=1

∑Qk

q=1

(
X̃k,q

) 1
2

conj(κk,q)gd,k,q

}
. Furthermore,

without loss of generality, (31) can be represented in a
simpler form as

min
θ0

θ0∆0θ
H
0 − 2<{θ0γ0} , s.t. (27b). (32)

where γ0 = φ1 − φ0. Now, problem (32) can be iteratively
solved in a similar way to Algorithm 1 and Algorithm 2 as
shown in Section III-B1, which is omitted here to conserve
space.

C. Overall Algorithm To Solve Problem (4)
Based on the discussions in Sections III-A and III-B on

the design of the transmission time scheduling, the bandwidth
allocation, and the IRS phase shifts, the overall algorithm

for solving problem (4) can be established, as detailed in
Algorithm 3. The convergence of Algorithm 3 was analyzed
in [30], [31], and thus is not repeated here.

Algorithm 3: Overall algorithm to solve problem (4).

1) Initialization: the iteration index r and initialized solu-
tions of θk, ∀k ∈ [0,K], i.e., θ(1)

k .
2) Calculate the objective value of problem (14), i.e.,

f0

(
θ
(1)
0 ,θ

(1)
1 , ...,θ

(1)
K

)
.

3) Repeat: AO algorithm at the r-th iteration
a) Given θ

(r)
0 , solve (17) to calculate θ

(r+1)
k , ∀k ∈

[1,K], by Algorithm 1 or Algorithm 2.
b) Given θ

(r+1)
k , ∀k ∈ [1,K], update κ

(r+1)
k,q =

κ∗k,q, ∀k ∈ [1,K], ∀q ∈ [1, Qk] via (29).
c) Given θ

(r+1)
k , κ

(r+1)
k,q , ∀k ∈ [1,K], ∀q ∈ [1, Qk],

solve (32) to calculate θ
(r+1)
0 by an algorithm, which

is similar to Algorithm 1 or Algorithm 2.2

d) Calculate f0
(
θ
(r+1)
0 ,θ

(r+1)
1 , ...,θ

(r+1)
K

)
and set r =

r + 1 until convergence.
4) Output the optimal IRS phase shifts θ∗k, ∀k ∈ [0,K].
5) Substitute θ∗k, ∀k ∈ [0,K], into (13) to calculate the

optimal WET time scheduling τ∗0 , which is applied to (12)
to calculate the optimal WIT time scheduling τ∗k , ∀k ∈
[1,K].

6) Substitute θ∗k, τ
∗
k , ∀k ∈ [0,K], into (9) to calculate the

optimal bandwidth allocation w∗q , ∀q ∈ [1, Qk], ∀k ∈
[1,K].

To proceed, we discuss the computational complexity of
Algorithm 3, which mainly applies to the AO iteration in
Step 3, and to the MM or RMO algorithm in Algorithm 1
or Algorithm 2, and the QT algorithm. On this basis, we
further denote the iteration number to guarantee the con-
vergence of the AO, QT, MM, RMO as IAO, IQT , IMM ,
and IRMO, respectively. The complexity of the MM/RMO
algorithm can be calculated as O

(
N3 + IMM/RMON

2
)

[32],
and the total complexity of Algorithm 3 can be given as
O
[(
N3 + IMM/RMON

2
)

(K + IQT )IAO
]
.

IV. A BENCHMARK SCHEME: IRS SELECTION SCHEME

In Section III, we have considered a scenario where all
IRSs aid the energy or information reflections during downlink
WET or uplink WIT. In this section, we consider a benchmark
scheme, namely, the IRS selection scheme, for the comparison
of the system design. In this scheme, each IRS can control
its “on/off” state to aid the downlink WET and uplink WIT.
We assume that there is at most one IRS activated within
a time duration τk, ∀k ∈ [0,K], to assist the multi-cluster
IoT devices for energy harvesting or the AP for information
reception, respectively. To carry out this scheme, we first
define a scheduling vector χk = [χ0,l, ..., χK,l], where each
element is a binary variable. The l-th IRS is active during τk
if χk,l = 1, otherwise inactive. Furthermore, the scheduling
variables satisfy

∑L
l=1 χk,l = 1, χk,l ∈ {0, 1} , ∀k ∈ [0,K].

2Set k = 0 in Algorithm 1 or Algorithm 2.



We then express the harvested energy at Dk,q during the
downlink WET, as
Enonlineark,q

=τ0
(ak,qck,q−bk,q)P0

∣∣∣gd,k,q+
∑L
l=1 χ0,lg0,lΘ0,lgr,l,k,q

∣∣∣2
ck,qP0τ0P0

∣∣∣gd,k,q+
∑L
l=1 χ0,lg0,lΘ0,lgr,l,k,q

∣∣∣2+c2k,q

.

(33)
By contrast, during the uplink WIT, the sum throughput of
the k-th cluster can be expressed as (34) on the top of the
next page, where al,k,q = diag (g0,l) gr,l,k,q , and bl,k,q =
diag (hk,q,l) hr,l.

Now, an optimization problem for the benchmark scheme
to maximize the sum throughput via jointly design of the
IRS phase shifts, the transmission time slots, the bandwidth
allocation, as well as the scheduling variable can be stated as

max
ΩTDMA−FDMA

K∑
k=1

RTDMA−FDMA
k ,

s.t. (4b), (4c), |θk,n|≤1,∀n∈ [1, Nl],∀l∈ [1, L],∀k∈ [0,K],
L∑
l=1

χk,l ≤ 1, χk,l ∈ {0, 1} , ∀k ∈ [0,K], ∀l ∈ [1, L],

ΩTDMA−FDMA

=
[
{Θk,l}K,Nl

k=0,l=1 , {τk}
K
k=0 , {wq}

Qk

q=1 , {χk,l}
K,L
k=0,l=1

]
. (35)

To solve problem (35), we start with the similar method as
discussed in Section III-A to derive the closed-form solutions
for the optimal transmission time slots and bandwidth allo-
cation (to conserve space, the details are not repeated here).
Following upon this, we derive the optimal solutions of the IRS
phase shifts θk,l, ∀k ∈ [0,K], ∀l ∈ [1, L], and the scheduling
variable χk, ∀k ∈ [0,K], by solving the optimization problem
(36) on the top of the next page. Problem (36) can be addressed
by using the AO algorithm in Section III-C. Specifically, we
can optimize θk,l and χk,l, ∀k ∈ [1,K], ∀l ∈ [1, L], first, for
the given θ0,l and χ0,l, ∀l ∈ [1, L], which are then optimized
for given θk,l and χk,l, ∀k ∈ [1,K], ∀l ∈ [1, L]. Note that the
optimal solutions of θk,l, ∀k ∈ [0,K], ∀l ∈ [1, L] have been
derived in Section III-B. Now we have relaxed problems that
can be iteratively solved to optimize χk,l, ∀k ∈ [0,K], ∀l ∈
[1, L].

1) For a given χ0,l, χk,l, ∀k ∈ [1,K], is optimized as

max
χk,l

K∑
k=1

Qk∑
q=1

D̃k,q

L∑
l=1

χk,l |hd,k,q+θk,lbl,k,q|2

s.t.

L∑
l=1

χk,l=1, 0 ≤ χk,l≤1,∀k∈ [1,K],∀l∈ [1, L],

(37)

where D̃k,q =
Xk,q|gd,k,q+

∑L
l=1 χ0,lθ0,lal,k,q|2

Yk,q|gd,k,q+
∑L

l=1 χ0,lθ0,lal,k,q|2+c2k,q

.

2) For the given χk,l, ∀k ∈ [1,K], χ0,l is optimized as

min
χ0,l

L∑
l=1

χ0,lf̃l,

s.t.

L∑
l=1

χ0,l=1, 0≤χ0,l≤1, ∀l∈ [1, L], (38)

where f̃l = θ0,lΣ̃0,lθ
H
0,l − 2<

{
θ0,lφ̃l

}
− d̃,

Σ̃0,l =
∑K
k=1

∑Qk

q=1 |κk,q|
2
Yk,qal,k,qa

H
l,k,q,

φ̃l =

(∑K
k=1

∑Qk

q=1

(
X̃k,q

) 1
2

conj(κk,q)al,k,q

)
−(∑K

k=1

∑Qk

q=1 |κk,q|
2
Yk,qconj(gd,k,q)al,k,q

)
,

X̄k,q = Xk,q

∣∣∣hd,k,q +
∑L
l=1 χk,lθk,lbl,k,q

∣∣∣2, and

d̃ = 2<
{∑K

k=1

∑Qk

q=1

(
X̃k,q

) 1
2

conj(κk,q)gd,k,q

}
−∑L

l=1 χ0,l

∑K
k=1

∑Qk

q=1 |κk,q|
2
Yk,qgd,k,qconj(gd,k,q) −∑K

k=1

∑Qk

q=1 |κk,q|
2
c2k,q .

It is observed that both problems (37) and (38) are linear
programmes (LPs), which can be readily solved by the stan-
dard convex optimization [17]. Correspondingly, we have the
following lemma:

Lemma 3: The optimal solutions of the relaxed problems
(37) and (38), denoted by χk,l, ∀k ∈ [0,K], ∀l ∈ [1, L]
guarantee their binary nature.

Proof: See [33].
Here we also discuss the computational complexity of the

benchmark scheme. Following the similar discussion as for
Algorithm 3, the benchmark scheme uses the LP to solve
problem (37) and problem (38), and the complexity of which
can be calculated as O (KQL) and O (L), respectively. Thus,
the total computational complexity of the benchmark scheme
is given by
O
{[(

N3
l∗ +IMM/RMON

2
l∗
)

(K+IQT )+L(Q ∗K+IQT )
]
IAO

}
,

(39)
where l∗ denotes the index of the activated IRS.

V. NUMERICAL RESULTS

This section demonstrates the numerical results to val-
idate the proposed schemes, verify the theoretical deriva-
tions, and show the achievable performance. We use a three-
dimensional (3-D) coordinate system to describe the network
deployment as shown in Fig. 3. In detail, the coordinates
of the PS and AP are (XPS = −10, YPS = 0, ZPS = 0)
and (XAP = 10, YAP = 0, ZAP = 0), and those of the l-
th IRS and of Dk,q, ∀q ∈ [1, Qk], ∀k ∈ [1,K],
are (XIRS = XIRS,l = −2, YIRS = YIRS,l = 6, ZIRS,l) and
(XU,k,q, YU,k,q = 0, ZU,k,q), respectively. The z-coordinates
of IRSs are ZIRS,l = x∗y

2 for x = 1, ...., 2 ∗ l + 1, and
ZIRS,l = − (x−1)∗y

2 for x = 2, ..., 2 ∗ l, where y = 4
is the interval between two neighbouring IRSs. In addition,
Dk,q, ∀q ∈ [1, Qk], ∀k ∈ [1,K], is randomly deployed
within a circular area in the x − z plane with the centre
of (0, CU,k) and the radius of 6 m. We set CU,k = x∗ỹ

2 for
x = 1, ..., 2 ∗k+ 1, and CU,k = − (x−1)∗ỹ

2 for x = 2, ..., 2 ∗k,
where ỹ = 5 suggests the distance between two neighbouring
clusters. We assume that the channel coefficients are composed
of the small-scale fading and the distance-dependent path
loss components. Specifically, the channels for the IRS-related
links, e.g., g0,l, gr,l,k,q , hk,q,l, and hr,l, are modelled as the
Racian fading, while those for the direct links, e.g., gd,k and
hd,k, are modelled as Rayleigh fading [13]. Moreover, the path
loss is denoted by PL = A ∗ d−εωω , where εω and dω are the



Rk=τk

Qk∑
q=1

wqlog

1+
τ0Xk,q

∣∣∣gd,k,q +
∑L
l=1 χ0,lθ0,lal,k,q

∣∣∣2 ∣∣∣hd,k,q +
∑L
l=1 χk,lθk,lbl,k,q

∣∣∣2
τk

(
Yk,q

∣∣∣gd,k,q +
∑L
l=1 χ0,lθ0,lal,k,q

∣∣∣2 + c2k,q

)
σ2wq

 , (34)

max
θk,χk,l

K∑
k=1

Qk∑
q=1

Xk,q

∣∣∣gd,k,q +
∑L
l=1 χ0,lθ0,lal,k,q

∣∣∣2 ∣∣∣hd,k,q +
∑L
l=1 χk,lθk,lbl,k,q

∣∣∣2
Yk,q

∣∣∣gd,k,q +
∑L
l=1 χ0,lθ0,lal,k,q

∣∣∣2 + c2k,q

s.t. |θk,n|=1,

L∑
l=1

χk,l=1, χk,l∈{0, 1} , ∀n∈ [1, Nl], ∀l∈ [1, L], ∀k∈ [0,K]. (36)

Fig. 3: Network deployment.

path loss exponents and the physical distance between PS and
IRS (ω = PS2IRS), or IRS and IoT devices (ω = IRS2D),
or IRS and AP (ω = IRS2AP ), or PS and IoT devices
(ω = PS2D), or IoT devices and AP (ω = D2AP ). We
consider two different configurations for the numbers of IRS
elements and IoT devices, be they Case 1 and Case 23. Unless
stated otherwise, the relevant simulation parameters for these
two cases are summarized in Table III. Also, in this work, a
comprehensive comparison between the proposed scheme and
several benchmark schemes is provided, where:

1) All IRSs’ participation: All IRSs participate in the down-
link WET and uplink WIT.

a) Proposed scheme: The MM and RMO algorithms are
used in Section III to optimally design the IRS phase
shifts and allocate the optimal bandwidth and transmis-
sion time. They are denoted by “All IRSs MM” and
“All IRSs RMO”, respectively.

b) Discrete phase shifts (DPS) [34]: In this
case, the discrete phase shift set, i.e., Sθk

={
θk,n = exp (jαk,n) , αk,n ∈

{
0, 2πL , ...,

2π(L−1)
L

}}
, ∀k ∈

[0,K], n ∈ [1, N ], is introduced to quantize the optimal
IRS phase shifts, where L = 2b0 represents the total
number of discrete phase shifts, and b0 is the number
of bits used for the quantization (typically b0 = 1).
These cases are denoted by “All IRSs DPS MM” and
“All IRSs DPS RMO”.

3Case 1 considers different numbers of IRS elements and IoT devices at
each cluster, which can be treated as a case with a random deployment of
the numbers of the IRS elements and IoT devices; Case 2 considers the same
numbers of IRS elements and IoT devices at each cluster, which facilitates the
system configuration to simulate the sum throughput versus these parameters.

c) Random phase shifts (RPS): The phase shifts are ran-
domly chosen from [0, 2π], which is denoted by “All
IRSs RPS”.

d) Equal bandwidth and time allocations (EBTA): All
bandwidth and transmission time slots are equally
allocated to wq = B

Qk
, ∀q ∈ [1, Qk], ∀k ∈ [1,K] and

τk = T
1+K , ∀k ∈ [0,K]. The corresponding scheme is

denoted by “All IRSs EBTA”.
e) Linear energy harvesting (LEH) [13]: The linear en-

ergy harvesting (LEH) model is assumed for all IoT
devices during the downlink WET, denoted by “All
IRSs LEH”.

2) IRS selection scheme: At most one IRS participates in
the downlink WET or uplink WIT in each cluster. The
IRS phase shifts, the bandwidth and transmission time
allocations are optimized as in Section III, while the
scheduling vector is optimized as that in Section IV. The
schemes are denoted by “IRS Selection MM” and “IRS
Selection RMO”, respectively.

3) IRS selection with RPS: At most one IRS participates in
the downlink WET or uplink WIT in each cluster. The
IRS phase shifts are random values in [0, 2π]. The scheme
is denoted by “IRS Selection RPS”.

4) No IRS: No IRS participates in the downlink WET
and uplink WIT. The bandwidth and transmission time
allocations are optimized as the approaches in Section
III. The corresponding case is denoted by “WO IRS”.

5) Imperfect CSI: We consider that the cascaded CSIs, i.e.,
ak,q and bk,q , ∀k ∈ [1,K], ∀q ∈ [1, Qk], are not
perfectly available and expressed as ak,q = ãk,q +ea,k,q ,
and bk,q = b̃k,q + eb,k,q , where ãk,q and b̃k,q are the
estimated cascaded channels; ea,k,q and eb,k,q are the
corresponding estimation errors with Gaussian entries,
i.e., with independent and identically distributed (i.i.d.)
zero mean and variances δe,a and δe,a, respectively. For
simplicity and without loss of generality, we set the
cascade CSI error factors as δe,a = δe,b = δe.

A. Impact of Transmit Power of PS
In this subsection, we examine the impact of the transmit

power P0 of the PS on the sum throughput, energy time
scheduling, and average harvested energy of all IoT devices for
both cases. The results are shown in Figs. 4 - 9. We first discuss
the simulation results under the configuration of Case 1. In
Fig. 4, the sum throughput shows a monotonically increasing



TABLE III: Notations of Simulation Parameters
Parameters & Values Parameters & Values Parameters & Values Parameters & Values
P0 = 30 dBm or 1 W K = 4 L = 5 T = 1 second

B = 1 σ2 = −170 dBm/Hz Case 1: Nl = [10, 20, 25, 15, 30]
Qk = [4, 5, 5, 6]

Case 2: Nl = [30, 30, 30, 30, 30]
Qk = [10, 10, 10, 10]

εPS2RIS =εRIS2AP =2 εRIS2D=2.5 εPS2D=εD2AP =3.5 A = 10−2
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Fig. 4: Sum throughput versus transmit
power at PS.
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Fig. 5: Energy time scheduling versus
transmit power at PS.
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Fig. 6: Average harvested energy versus
transmit power at PS.

trend with respect to P0 for all schemes. Specifically, the
proposed schemes with the MM and RMO algorithms provide
very similar results, which verifies the effectiveness of the
proposed algorithms. Also, the proposed schemes with MM
and RMO algorithms outperform their DPS counterparts, due
to the fact that the quantized phase shifts can incur the imper-
fect alignment for the optimal phase shifts of downlink WET
and uplink WIT, and therefore, degrading the sum throughput
performance. In addition, the proposed schemes demonstrate
a significantly better performance than the schemes with RPS
and with EBTA, which confirms the optimal IRS phase shift
design as well as the optimal time scheduling and bandwidth
allocation of our proposed schemes. Moreover, the proposed
schemes significantly outperform the IRS selection schemes,
which can be explained by the fact that in the proposed
schemes, all IRSs participate the energy harvesting and data
transmission. By constrast, in the IRS selection schemes, only
one IRS is used to improve energy/information reflection
in each time period. However, both the proposed and the
IRS selection schemes outperform the schemes without IRSs,
which highlights the benefits induced by the IRS. Furthermore,
the LEH scheme provides an upper bound performance for the
proposed schemes in terms of the sum throughput, which is
originated from that the energy conversion efficiency η of the
LEH model leads to an ideal case that outperforms the NLEH
model in the proposed schemes.

Fig. 5 and Fig. 6 show the energy time scheduling τ0 and the
average harvested energy versus P0, respectively. Specifically,
for all schemes, the optimal energy time scheduling decreases
with the increase of P0. The gap between the proposed
schemes and the other benchmark schemes becomes smaller
as P0 increases. While the average harvested energy increases
with respect to P0, the gap between the proposed schemes and
the other benchmark schemes becomes larger as P0 increases.
Fig. 5 shows that the proposed schemes consume less time for
downlink WET than the schemes with DPS, the scheme with
RPS, the IRS selection schemes, the IRS selection scheme
with RPS and that without IRSs, respectively. Therefore, the

proposed schemes can provide an energy saving at the PS,
which is beneficial, as more time duration can be assigned to
the IoT devices for uplink WIT so as to enhance the throughput
performance. In addition, the LEH scheme provides a lower
bound for the proposed schemes in terms of the energy time
scheduling, since the energy conversion efficiency η of the
LEH model induces an ideal case, yielding less time for the
downlink WET than the NLEH model.

Fig. 6 illustrates that the average harvested energy of all
IoT devices monotonically increases in terms of P0, which
reveals that the decline of τ0 may not at a cost of the
harvested energy for the IoT devices for all schemes. Again,
the proposed schemes outperform that with DPS, that with
RPS, and that without IRSs. This can be explained as the
energy reflection at the IoT devices effectively improved via
the employment of IRS and the optimal design of the phase
shifts. Moreover, the IRS selection schemes harvest much less
energy than the proposed schemes, and collect more energy
than the scheme without IRSs, respectively. In addition, the
LEH scheme offers an upper bound for the proposed schemes
in terms of the average harvested energy, again due to the
the idealized energy conversion efficiency η. The simulation
results under the configurations of Case 2 are shown in Figs.
7 - 9. The observations and corresponding arguments for these
numerical results are the same as that of Case 1, which are
omitted here.

B. Impact of IRS Deployment

In this subsection, we examine the impact of IRS deploy-
ment on the sum throughput, energy time scheduling, and
average harvested energy of all IoT devices for both considered
cases. These results are demonstrated in Figs. 10 - 15. First,
let us explain the numerical results under the configuration
of Case 1. In detail, Fig. 10 shows the sum throughput
versus the x-coordinate XIRS of IRS, exhibiting that the sum
throughput of all IRS-related schemes first increases and then
decline with respect to XIRS . Therefore, there are optimum
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Fig. 7: Sum throughput versus transmit
power at PS.
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Fig. 9: Average harvested energy versus
transmit power at PS.

IRSs’ locations to achieve the maximum sum throughput
performance. The results show that the proposed schemes
(i.e., MM and RMO) outperforms their DPS counterparts, the
scheme with RPS, the scheme with EBTA, the IRS selection
schemes (i.e., MM and RMO), the IRS selection scheme with
RPS, as well as the scheme without IRSs (remaining constant
with respect to XIRS). The reasons of the observations can be
explained by the facts: 1) The employment of IRS is beneficial
to performance improvement; 2) the quantized phase shifts
induce the mismatch to the real ones leading to a performance
loss; 3) the proposed schemes benefit from the optimal IRS
phase shift design as well as the optimal time scheduling and
bandwidth allocation; 4) the IRS selection schemes only use
one of the IRSs for energy/information reflection in each time
period, instead of using all IRSs in the proposed schemes.
As shown in Fig. 10, the LEH scheme provides an upper
bound for the proposed schemes by appealing an ideal energy
conversion efficiency η.

Fig. 11 illustrates the energy time scheduling τ0 versus
XIRS , where all the IRS related schemes first exhibit a
decreasing trend and then increase with XIRS . Explicitly, the
proposed schemes require less time for the downlink WET
than the schemes with DPS, the scheme with RPS, the IRS
selection schemes, the IRS selection scheme with RPS and
the scheme without IRSs. Hence, it can save more energy of
the PS and provide more time for the IoT devices to carry
out the uplink WIT, which hence enhances the throughput
performance. Again, the LEH scheme provides a lower bound
for the proposed schemes, since that an ideal η applied.

In Fig. 12, we show the average harvested energy versus
XIRS . The result shows that the harvested energy by all
the IRS related schemes first increases and then decreases
with XIRS , illustrating the optimal IRS deployment exists
in practice. The proposed schemes outperforms the schemes
with DPS, the scheme with RPS and the scheme without IRSs
(remaining constant with XIRS). Thus, the energy harvesting
capability of the IoT devices can be effectively improved by
the optimal design of the phase shifts and the aid of IRSs.
Moreover, the IRS selection schemes significantly harvest less
energy than the proposed schemes with all IRSs’ participa-
tion, and collect more energy than the scheme without IRSs,
respectively. Again, the LEH model assuming the ideal energy
conversion efficiency η induces perfect energy harvesting,
yielding the upper bound performance. The simulation results

under the configuration of Case 2 are shown in Figs. 13 -
15, which provide similar observations as Figs. 10 - 12. The
corresponding discussion and explanation are also very similar
as that in Case 1. Thus, the details are omitted.

C. Impact of Number of IRSs/Reflecting Elements of Each IRS
This subsection illustrates the impact of the number of

reflecting elements of each IRS and the number of IRSs
on the sum throughput, the energy time scheduling, and the
average harvested energy in Case 2. First, we investigate the
sum throughput, the energy time scheduling, and the average
harvested energy versus the number of reflecting elements
of each IRS (i.e., N0 = Nl, ∀l = {1, ..., L}) in Figs. 16
- 18. In details, as shown in Fig. 16, all the IRS related
schemes have a monotonically increased throughput as N0

increases. The proposed schemes outperform their own DPS
version’s scheme, and also outperform the scheme with RPS,
the scheme with EBTA, the IRS selection schemes, the IRS
selection scheme with RPS, and the scheme without IRSs
(remaining constant with N0). Therefore, the employment of
IRSs, the optimal design of the IRS phase shifts, the optimal
time scheduling and bandwidth allocation, are important for
performance improvement. As seen in Fig. 16, the LEH
scheme achieves a better throughput performance than the
proposed schemes, owing to the assumption of an ideal η.

From Fig. 17, we observe that the energy time scheduling τ0
demonstrates a monotonically decreasing behaviour with the
number of reflecting elements per IRS for all the IRS related
schemes. As expected, the proposed schemes consume less
time for downlink WET than their DPS relied schemes, and
also than the scheme with RPS, the IRS selection scheme,
the IRS selection scheme with RPS, and the scheme without
IRSs (remaining constant with N0), which is even more time
consuming than the LEH scheme.

Fig. 18 shows that the average harvested energy increases
with respect to N0 for all the IRS related schemes. Again, the
proposed schemes outperform the other benchmark schemes,
including, the schemes with DPS, the scheme with RPS, the
IRS selection schemes, and the scheme without IRSs.

The impact of the number of IRS L on the sum throughput,
the energy time scheduling, and the average harvested energy
is shown in Figs. 19 - 21, respectively. The observations are
and explanations of these numerical results are same as for
Figs. 16 - 18. Hence, the details are omitted here for brevity.
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Fig. 10: Sum throughput versus
x-coordinate of IRSs.
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Fig. 11: Energy time scheduling versus
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Fig. 12: Average harvested energy versus
x-coordinate of IRSs.
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Fig. 13: Sum throughput versus
x-coordinate of IRSs.
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Fig. 14: Energy time scheduling versus
x-coordinate of IRSs.
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Fig. 15: Average harvested energy versus
x-coordinate of IRSs.
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Fig. 16: Sum throughput versus number
of reflecting elements at each IRS.
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Fig. 17: Energy time scheduling versus
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IRS.
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Fig. 19: Sum throughput versus number
of IRSs.
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Fig. 20: Energy time scheduling versus
number of IRSs.
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D. Impact of Number of Clusters/IoT Devices of Each Cluster
Fig. 22 demonstrates the sum throughput versus the number

of clusters K for all considered schemes. As K increases, the
sum throughput exhibits an monotonically increasing trend,
and this increase gain approaches to a flat in the larger cluster
region. This is because, as K increases, more clusters may
be located farther away from the PS, and the AP, which
reduces the energy harvesting efficiency of the IoT devices
and therefore, degrades the information reception at the AP.
Fig. 23 shows that the sum throughput achieved by all the
schemes monotonically increases with respect to the number
of IoT devices per cluster. It can be seen that similar insights
as from Fig. 22 can be gained from Fig. 23.

E. Impact of Number of Bits

Fig. 24 demonstrates the sum throughput performance ver-
sus the number of bits b0 for the quantization, with respect
to different configurations of clusters. It can be readily seen
from the result that the performance gap between the optimal
phase shifts and the quantized phase shifts gradually decreases
when b0 increases from 1 bit to 6 bits. This is because the
phase alignment errors resulted from the quantizations become
smaller, as b0 increases. Hence, the performance loss becomes
smaller and approaches the performance of its continuous
counterpart, as b0 increases. In addition, a larger b0 yields
a higher granularity of phase shifts to be selected for energy
and information reflections, which approaches the continuous
counterpart in terms of the sum throughput.

F. Comparison between Perfect and Imperfect CSI

Finally, we provide the comparison between the pro-
posed/benchmark scheme with perfect and imperfect CSI cases
in Fig. 25 and Fig. 26. In Fig. 25, the sum throughput
performance is demonstrated against P0 with N0 = 30, or 60.
As indicated by the result, there is a clear performance
degradation in the imperfect CSI case compared to the perfect
case. The impact of the CSI estimation error δe on the sum
throughput is examined in Fig. 26, and the result shows a
severely declining sum throughput performance with respect
to δe.

VI. CONCLUSIONS

This paper investigated a multi-IRS assisted multi-cluster
WP-IoT network, where IoT devices employ the fractional
NLEH model to harvest energy for their information transmis-
sion with the aid of multiple IRSs. The system was designed to
maximize sum throughput by jointly optimizing the IRS phase
shifts, the transmission time scheduling, and the bandwidth
allocation. By exploiting the Lagrange dual method and the
KKT conditions, the transmission time scheduling and band-
width allocation were derived in closed-forms. Furthermore,
the QT was applied to transform the sum of multiple fractional
programming to the subtractive form, in which the MM and
RMO methods were proposed to iteratively derive the closed-
form IRS phase shifts for downlink WET and uplink WIT.
Moreover, an IRS selection scheme was introduced to facilitate

the system design, where each of the IRSs can control its
“on/off” state to flexibly participate the downlink WET and
uplink WIT to allow at most one IRS to be activated within
a time slot. Numerical results verified the optimality of the
proposed schemes, and confirmed the benefits induced by the
IRS to coordinate the relations among sum throughput, energy
time scheduling, and average harvested energy.

For future work, we will consider the IRS-assisted WP
IoT networks with multi-antenna PS and AP, where the
active energy beamforming, the passive IRS beam patterns
of downlink WET and uplink WIT, the received decoding
beamforming for each device, and the transmission time
scheduling can be optimized in an alternated manner. Also,
the AP can utilize the multi-device decomposition (MUD)
technique to recover each device’s signal. Other promising
topic areas that are worth investigating include: the impact
of imperfect cascaded CSI on the network throughput, where
robust optimization can be exploited based on the modelling
of channel estimation errors, e.g., bounded or statistical quan-
tity; the IRS-aided WP-IoT network with channel coherence
block, where multi-transmission-block case may require to
frequently update the optimal IRS beam patterns by solving
the throughput maximization problem for each transmission
block; the WET at IRS with alternating current (AC) for
IRS controller computation, where the RF energy radiated by
the PS in downlink WET is divided into three portions: the
direct current (DC) harvested power dedicated for the circuit
operation of the IRS controller, the AC signal power dedicated
for supplying the AC computational logic of the IRS controller,
and the IRS passively reflects energy from PS to IoT devices;
the hybrid TDMA-NOMA scheme, where different groups
of IoT devices delivery information at their dedicated time
slots via TDMA, while all devices in each group concurrently
transmit information via NOMA; the spatial-division multiple
access (SDMA) in the IRS assisted WP IoT network when
the AP is equipped with multiple antenna, where all IoT
devices simultaneously deliver their information resulting in
interference. Moreover, one may consider to apply the IRS
to WP-mobile edge computing or WP-wireless caching to
effectively reap the benefits of computational latency and
energy consumption.

APPENDIX

A. Proof of Theorem 1

To prove Theorem 1, we first consider the Lagrange dual
function of (6), which is

L1 (wq, λ) =

Qk∑
q=1

wq log

(
1 +

Ak,q
wq

)
− λ

(
Qk∑
q=1

wq −B

)
.

(40)
By setting its first-order derivative to zero, i.e.,

∂L1

∂wq
= 0⇒ log

(
1 +

Ak,q
wq

)
−

Ak,q

wq

1 +
Ak,q

wq

− λ = 0, (41)

and after some mathematical manipulations, we obtain the
optimal solution of wq in (9). Substituting it into problem
(6) gives (8). This completes the proof of Theorem 1.
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B. Proof of Theorem 2

To prove Theorem 2, we first write the Lagrange dual
function of (10) as

L2

(
τ0, {τk}Kk=1 , µ

)
=

K∑
k=1

τkB log

(
1 +

τ0
∑Qk

q=1 Ck,q

τkBσ2

)

− µ

(
K∑
k=0

τk − T

)
, (42)

where µ is the non-negative dual variable with the time
scheduling constraint (4b). Also, the associated dual problem
is given by

min
{τ0,{τk}Kk=1}∈S

L2

(
τ0, {τk}Kk=1 , µ

)
, (43)

where S represents the feasible set with {τk}Kk=0 ∈ [0, 1],
as shown by constraint (4b). For given {θk}Kk=0, (10) is a
convex problem with {τk}Kk=0 satisfying the feasible set S.
Hence, the optimal solution obtained from (10), denoted by
{τ̄k}Kk=0, is equivalent to that obtained from its dual problem
(43), denoted by {τ̂k}Kk=0, such that the objective values of
(10) and (43) are identical. Hence, the dual problem (43)
guarantees the Slater’s condition, and strong duality between
(10) and (43) always holds. Correspondingly, the following
KKT conditions are satisfied for the optimal solution of (10),

denoted by {τ∗k}
K
k=0, which is given as

µ∗

(
τ∗0 +

K∑
k=1

τ∗k − T

)
= 0, (44a)

∂L2

∂τk
= 0, ∀k ∈ [1,K]. (44b)

From (44a), it is easily verified that µ∗ > 0 holds to guarantee∑K
k=0 τ

∗
k = T . Next, from (44b), we have

∂L2

∂τk
=B

log

(
1+

τ0
∑Qk

q=1 Ck,q

τkBσ2

)
−

τ0
∑Qk

q=1 Ck,q

τkBσ2

1+
τ0

∑Qk
q=1 Ck,q

τkBσ2

−µ=0,

(45)
which takes the form of f(z) = log(1 + z) − z

1+z , meaning
that is a monotonically increasing function of z. Therefore,
the following K equations are satisfied,

τ0
∑Q1

q=1 C1,q

τ1Bσ2
=, ...,=

τ0
∑QK

q=1 CK,q

τKBσ2
. (46)

Let us denote as ρ−1 =
τ0

∑Qk
q=1 Ck,q

τkBσ2 , thus τk is derived as

τk =
ρτ0
∑Qk

q=1 Ck,q

Bσ2
. (47)

Then, using
∑K
k=0 τk = T , ρ can be derived as,

ρ =
(T − τ0)Bσ2

τ0
∑K
k=1

∑Qk

q=1 Ck,q
. (48)

Finally, upon substituting (48) into (47), we obtain the optimal
solution of τk as shown in (12), which is further plugged



into problem (10) to obtain its equivalent form of (11). This
completes the proof of Theorem 2.

C. Proof of Theorem 3

Let us define C =
∑K

k=1

∑Qk
q=1 Ck,q

σ2 . Then, after calculating
the first-order derivative of f0

(
{θk}Kk=0 , τ0

)
with respect to

τ0, and setting the result to zero, we obtain
∂f0

(
{θk}Kk=0 , τ0

)
∂τ0

=0

⇒
(

1+
τ0C

(T−τ0)B

)
log

(
1+

τ0C

(T−τ0)B

)
=

CT

B(T−τ0)
.

(49)
Denote z1 = 1 + τ0C

(T−τ0)B , thus, we have

z1 log (z1)−z1 =
C

B
−1

⇒ log

(
z1

exp(1)

)
exp

(
log

(
z1

exp(1)

))
=

C
B−1

exp(1)
. (50)

Consider the relation x1 exp(x1) = y1 ⇒ x1 = W(y1) and
with some mathematical manipulations, the optimal solution
of τ0 can be derived as (13), which completes the proof of
Theorem 3.
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