
Future Generation Computer Systems 109 (2020) 1–16

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

CCoDaMiC: A framework for Coherent Coordination of DataMigration
and Computation platforms
Chinmaya Kumar Dehury, Satish Narayana Srirama ∗, Tek Raj Chhetri
Mobile & Cloud Lab, Institute of Computer Science, University of Tartu, Tartu 50090, Estonia

a r t i c l e i n f o

Article history:
Received 20 November 2019
Received in revised form 9 February 2020
Accepted 10 March 2020
Available online 18 March 2020

Keywords:
Data pipeline
Data flow management
Serverless computing
Data migration
TOSCA

a b s t r a c t

The amount of data generated by millions of connected IoT sensors and devices is growing expo-
nentially. The need to extract relevant information from this data in modern and future generation
computing system, necessitates efficient data handling and processing platforms that can migrate
such big data from one location to other locations seamlessly and securely, and can provide a
way to preprocess and analyze that data before migrating to the final destination. Various data
pipeline architectures have been proposed allowing the data administrator/user to handle the data
migration operation efficiently. However, the modern data pipeline architectures do not offer built-in
functionalities for ensuring data veracity, which includes data accuracy, trustworthiness and security.
Furthermore, allowing the intermediate data to be processed, especially in the serverless computing
environment, is becoming a cumbersome task. In order to fill this research gap, this paper introduces
an efficient and novel data pipeline architecture, named as CCoDaMiC (Coherent Coordination of Data
Migration and Computation), which brings both the data migration operation and its computation
together into one place. This also ensures that the data delivered to the next destination/pipeline block
is accurate and secure. The proposed framework is implemented in private OpenStack environment
and Apache Nifi.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cloud maturity and its unprecedented growth in the number
of connected devices in the latest years is changing the computing
paradigm and this may further increase in future generation
digital system. According to Ericsson, by 2023, there will be 8.9
billion mobile subscriptions, 8.3 billion mobile broadband sub-
scriptions, 6.1 billion unique mobile subscribers, and also 1 billion
5G devices for enhanced mobile broadband [1]. It is forecasted to
have 39% compound annual growth rate in total monthly mobile
data traffic worldwide by 2023 from 15 Exabyte (EB) in 2017 to
107 EB [1].

The impact of the data abundance considering its application
areas, especially monitoring and control [2], extends well be-
yond just business [3]. It is, therefore, necessary to handle these
data considering all the changing dynamics to get benefits from
it. Handling the data refers to transforming the data from one
structure to another, processing the data to retrieve the useful
information, and eventually loading the processed or the raw data
to the desired location. Based on the situation, these operations

∗ Corresponding author.
E-mail addresses: chinmaya.dehury@ut.ee (C.K. Dehury),

satish.srirama@ut.ee (S.N. Srirama), tek.raj.chhetri@ut.ee (T.R. Chhetri).

may follow different sequences. Different big data platforms are
available to implement the above operations.

However, the current big data platforms are not enough ma-
tured to efficiently handle the data generated by different smart
environments [2,4]. To handle such huge IoT sensor data, cloud
computing is mainly used to provide computing and storage
supports. Such resource-intensive big data are migrated to cloud
computing for processing. For example, Yassine et al. [5] proposed
data analytics considering the smart home with cloud computing
environment. Similarly, Plageras et al. [6] presented a technology
for collection and processing of IoT sensor big data deployed
in smart building. The responsibility of the cloud provider is
to provide enough storage, computing, and network bandwidth
resource. The cloud environments are generally in a far distance
that introduces network latency — such issues are directing re-
search and commercial communities towards the introduction of
fog and edge computing [7,8]. Hence the data are first moved
to fog/edge computing for pre-processing the data followed by
moving the data for final processing in cloud computing [9].

The current Data Pipeline (DP) architectures are providing a
way to handle the flow of the data from one provider to another
provider, e.g., from fog to cloud or from edge devices to nearby
fog environments. The DP architectures also provide function-
alities to carry out the fundamental pre-processing operations.
The fundamental pre-processing operations could be replacing

https://doi.org/10.1016/j.future.2020.03.029
0167-739X/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2020.03.029
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.03.029&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:chinmaya.dehury@ut.ee
mailto:satish.srirama@ut.ee
mailto:tek.raj.chhetri@ut.ee
https://doi.org/10.1016/j.future.2020.03.029
http://creativecommons.org/licenses/by/4.0/


2 C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16

and updating the messages, converting the sensor data from
its raw format to human-readable format etc. The implemented
technologies such as Apache Nifi allow the developer to add
multiple DP modules to the existing set up to handle the data
from multiple data sources such as FTP servers, thousands of
sensors, application logs, etc. Some of the primary demands of
modern applications are the ability to perform the data analytics
tasks with high robustness and to scale up or down based on the
demand dynamically.

In addition to the scalability, the modern smart environments
(such as smart city and smart home) demand a platform not
only to handle the data flow/migration but also demand the
processing feature while migrating the data, which is one of the
major motivations to carry out this research. In extension to this,
modern smart environments also demand a way to handle the
data that include migration and processing, in a secure manner.

One of the major competitors to data pipeline approach is ETL,
acronym of Extract, Transform, and Load. ETL mainly focuses on
batch data processing, it carries out all the three basic opera-
tions for a batch of data before moving to next batch of data.
The major challenges in ETL is its ability to perform the given
tasks in real-time manner [10]. In contrast to ETL, ELT (extract–
load–transform) is used to handle some of the disadvantages of
ETL [11]. Unlike ETL, in ELT the data are transformed within
the data warehouse, resulting in a reduction in network usage.
However, in both ETL and ELT systems, it is hard to handle the
real-time events and require a huge computation power. On the
other hand, data pipeline addresses the issue associated with
ETL and ELT approaches. The major purpose of data pipeline is
to carry out the transformation step upon obtaining the data
from its source before delivering to the destination [12]. This
enables on-the-fly transformation of the data, which encourages
the developers to process a huge amount of data in a real-time
manner.

Traditionally, processing the data in the cloud mainly done
by sending the data and the software package to the virtual
machine/instance. This approach of processing the data mainly
comes with an inbuilt pitfall of computation latency at the in-
ception of instance. This problem sometimes refers to the cold
start problem. Serverless is introduced to mitigate the cold start
issue in a cloud environment. Serverless mainly takes advantage
of kernel-level virtualization. Docker is one of the de-facto tools
facilitating a platform to manage the life-cycle of light-weight
virtual machines, also known as a container. Here, users are able
to host and execute functions and will be billed for the actual
resource the data-processing code is using.

Furthermore, continuing the demand for modern smart envi-
ronments, handling the data veracity is another crucial feature
that modern DP architecture should offer [13,14]. Ensuring data
veracity infers the precise, accurate, and trusted data migration
and processing [15,16] . Combining the above scenarios, it is ob-
served that the modern smart environments generating a massive
amount of streaming and batch data demand a DP architecture
that provides a platform to handle the flow and processing of data
in a coherent manner ensuring the veracity of the data, which is
the main focus of the paper.

The rest of the paper is organized as follows: Section 2
presents the technical background, motivation behind the pro-
posed framework and summarizes our contributions. The related
works about the data pipeline are described in Section 3. Sec-
tion 4 gives the detailed description of proposed data pipeline
framework. Section 5 shows the implementation of proposed
framework, followed by the concluding remarks and scope for
future works in Section 7.

2. Background, motivation, & contribution

DP primarily focuses on the smooth handling of data while it
is being transformed, cleaned, grouped, transferred, mapped to a
different context, processed, and stored. Several technologies and
businesses are adopting the DP approach for efficient handling of
a huge amount of streaming and batch data. The commercially
available DP technologies provide various basic functionalities,
such as pipeline to collect data from various data sources, pipeline
to broadcast or multicast the data to the connected pipeline mod-
ules, to send the data to remote location over different protocols,
to remove the unnecessary information associated with the data,
to combine the data based on its characteristics, etc. The essen-
tial parts of the DP technologies can be end-points (source and
destination), load, automation (time and event-driven) correction,
standardization, etc.

The commercially available technologies/products that use DP
are Apache Nifi, AWS data pipeline, Kafka, Luigi etc. Apache
Nifi [17] allows the developer to automate the flow of data
between multiple software systems. Using Luigi [18], on the
other hand, the complex pipeline of batch jobs can be built with
the ability to resolve dependency conflict, management busi-
ness workflows, visualization of workflows etc. To handle the
movement of the data within the AWS instances and service,
a dedicated data pipeline service is offered by AWS to its con-
sumer [19]. This offers two basic components: (a) task runner to
execute a specific task such as copying a data object from one
virtual machine to another and (b) pipeline scheduler to automate
a pipeline based on a specific time or event.

2.1. Motivations

Data pipeline allows a developer to effectively manage the
flow of data (or information) from one system to another. Numer-
ous DP frameworks are developed and become available commer-
cially, such as Apache Nifi [17], as discussed before. Apache Nifi,
being one of the most popular DP frameworks, allows the data
administrator to define flexible data flow schemas and follow the
movement of each data packet, but lacks to ensure the availability
of accurate data and trustworthiness. Accuracy in this context
refers to the similarity of the content at destination and source.
In order to handle the delivery of accurate data, the developer
needs to give additional effort by attaching a supplementary task
to each DP component. This may become a cumbersome and
complicated task when the number of DP components increases
to hundreds or even larger.

Further, it is essential to verify the authenticity of the data.
The existing DP frameworks do not support such functionality.
As a result, a third party intruder may corrupt the data during its
transmission, making developer clueless of data corruption dur-
ing transmission. A novel DP framework is introduced to mitigate
the aforementioned scenarios of accurate data availability and
data authenticity.

In addition to the aforementioned features, the vast amount of
real-time data need to be processed in the intermediary locations.
For instance, uploading the smart home data to the cloud storage
may involve transforming the raw data to the structural and
readable form, handling data inconsistency, and missing value
prediction. To carry out such preprocessing tasks, the data de-
veloper needs to attach the computing environment to each DP
component. The developer needs to define when, where, and
how the data need to be preprocessed. Further, the developer
must ensure that authentic and accurate data are available in
the computing environment, making the coupling of flow and
processing of data more complex and challenging to achieve.

A huge amount of resources (more than the actual demand)
are allocated to process a user’s task, which is further minimized



C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16 3

with the introduction of serverless technology. However, combin-
ing the serverless platform with the DP framework introduces
new research challenges and directions in terms of different
aspects, such as delivery of authentic and accurate data, and com-
bining serverless computing environment to specific intermediate
DP modules.

2.2. Contributions

Based on the above motivation behind this work, our main
contributions to this paper can be summarized as follows:

• In the process of designing the proposed data pipeline archi-
tecture, we have integrated both computation (with server-
less platform) operation and data migration operation.
• In order to make the migration process smooth with the

processing capability on the way, we have designed and
implemented a dedicated component that ensures the avail-
ability of data at every adjacent end-point.
• Extending the previous contribution, we also have designed

and implemented a dedicated component to ensure the data
veracity that infers the preciseness, accuracy, and trustwor-
thiness of the data at every end-points.
• We have designed the TOSCA (Topology and Orchestration

Specification for Cloud Applications) model for the DP in
extension to the existing models.
• A dedicated component is designed to analyze the actual

resource requirement for each user’s function based on the
size of the data and the function itself.
• We have introduced dedicated components that select the

serverless platform on-the-fly based on the actual require-
ment of the user’s function’s resource requirements.

3. Related works

A number of architectures have been proposed for serverless
computing and data pipelines, considering different use cases
such as in smart industry [20], edge computing [21], open city
[22], etc. In this section, a brief survey on recent data pipeline
architectures and serverless platforms is presented.

O’Donovan et al. [20] present a data pipeline architecture for
industrial big data. The advantage of the proposed architecture
is its ability to smoothen the ingestion of data from industrial
sources such as sensors, controllers, etc. However, the archi-
tecture lacks the ability to support serverless environment. As
a result, the resource requirements of data analytics are not
optimized.

To overcome the Elasticity and Resource contention issues,
Josep Sampé et al. [23] proposed a middleware that works in
between user’s storage API and the actual storage node in the
cloud. However, it is not clear how the proposed architecture
ensures data availability.

Saha et al. [24] proposed a resource management system for
serverless cloud computing. The goal was to improve the re-
sponse time and the latency for the allocation of desired resources
to the functions that are invoked through HTTP requests.

Sewak et al. [25] describe serverless and function as a service
(FaaS) and their applications, advantages, limitations, etc. Further,
the article provides an underlying architecture for the serverless
platform. It can be observed that the basic architecture does
not provide any means of monitoring the status of actions (aka
functions).

In [21], a framework for reorganizing the data pipeline (DP)
function is proposed. DP functions refer to the acquisition, pro-
cessing, and analytics that focuses on IoT, Edge, fog, and Cloud
environment. The framework supports handling the real-time

data generated by IoT devices. However, it is not clear how
the framework ensures the fulfillment of resources from a fog-
cloud computing environment. Further, the framework does not
support monitoring the status of a data flow.

Gupta et al. [26] used IoT devices in monitoring and control-
ling electrical devices, primarily focusing on the improvement of
performance and their quick fault detection. The IoT devices are
also used in home automation by authors in [27]. Vishwakarma
et al. [27] focus on minimizing energy consumption while au-
tomatizing home activities through different IoT devices. The IoT
devices are also used in smart communities [28]. Automation
action can further be applied in the agriculture system using IoT
devices as proposed by Puranik et al. [29].

An architecture in [22] is proposed to collect, integrate, and
enrich the city-wide data collected using thousands of IoT de-
vices. The pre-processed enriched data are republished world-
wide as linked data. The architecture also takes care of the miss-
ing values and applies a statistical method to fill up those missing
values. However, the proposed data pipeline may not be enough
to support real-time data. Further, the architecture does not con-
sider the supported computing environment. As a result, this may
not be able to handle a large volume of data.

Tang et al. [30] introduced a hierarchical distributed four-
layer Fog-based computing paradigm for big data analysis in
smart cities with a working prototype to integrate intelligence
in fog computing architecture using a case study, smart pipeline
monitoring system based on fiber optic and sequential learning
algorithms (Hidden Markov Model). The work of the authors
focuses on the protection of safety-critical infrastructures from
environmental hazards for city-wide infrastructures. In the pa-
per, however, authors miss addressing the challenges of data
availability and validity.

Zhang et al. [31] present the work for dealing with big data
on the internet of vehicles using cooperative fog computing, to
avoid the latency of cloud. To support the efficient data handling
of Internet of Vehicles (IoV), authors presented techniques like
multi-source data acquisition, cooperative data acquisition, multi-
path routing using fog computing for data availability. The author
claims that it would reduce the amount of traffic and makes data
handling efficient. In the paper, the authors presented an example
of file downloading, specifying how it can improve data transmis-
sion. But the question of data validity and authorization remains
unanswered, what if the data i.e. file downloaded contains invalid
or corrupted data.

Cheng et al. [32] proposed a scalable data-centric program-
ming model called fog function and a context-driven orches-
tration runtime system to enable serverless fog computing to
overcome the limitation of fog computing to support dynamic
service composition and inefficiency of Functions as-a-Service
(Faas) for data-intensive IoT services. The authors also introduced
orchestration mechanisms to leverages three types of contexts:
data context, system context, and usage context. The authors
presented the use case scenario of the proposed fog function with
smart parking, which otherwise is difficult to achieve using a
service topology programming model. The proposed fog function
saves internal data traffic by 95% compared to cloud function
and latency by 30% compared to edge function. The focus of it
is mostly on bandwidth saving, scalability, and resource manage-
ment. But unlike the proposed architecture in this paper, it does
not possess all the flexibility as our model, which is capable of
working with serverless as well as ensure data availability and
validity, and is capable of handling large volumes of data.

Branowski et al. [33] presented a three-layer framework,
Cookery framework that allows building a data analytics pipeline
without knowledge of programming. The proposed framework
has its Domain Specific Language (DSL) and supports Function-
as-a-Service. Though it supports multiple sources, clearly, it lacks



4 C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16

the robustness that our proposed architecture provides and was
developed for scientists without a complete understanding of
programming.

Mujezinović et al. [34] proposed a fully serverless and in-
finitely scalable architecture that is based on producer–consumer
patterns leveraging AWS Fargate technology. The proposed archi-
tecture for workflow scheduling makes use of docker containers
as the worker node to avoid the constraints in the context of
their execution environment, time or space, and also supports the
high-frequency data, offering multi-cloud capabilities, end-to-end
testing, debugging and error handling. The proposed architecture
may not support the real-time requirement and also does not
specify how data validity and authorization is maintained.

4. Coherent coordination of data migration and computation

In this section, a novel data pipeline framework CCoDaMiC
(Coherent Coordination of Data Migration and Computation) is
designed that provides the environment to handle the flow and
processing of data generated by various environments such as
smart city, smart vehicle, smart manufacturing industries, various
types of Internet of Thing (IoT) sensors, etc. The main intention
behind the design of the CCoDaMiC framework is to provide a
coherent environment that would simplify the integration of both
the data migration and data computation process, as shown in
Fig. 1. Furthermore, the proposed framework is intended to be
integrated into the model-driven DevOps framework, in regard to
the management of flow of data within the service, in serverless
computing [35].

In Fig. 1, the data generated needs two primary operations:
storage and computation. Both the operations need assistance
from each other, for which different platforms and concepts are
introduced. For instance, for the storage of a massive amount of
data, ETL (Extract, Transform, Load) concept is used, focusing pri-
marily on three processes: Extraction, Transformation, and Load
process. On the other hand, for computation, different computing
paradigms such as cloud computing, fog computing, etc. evolved.
Being one of the most popular computing paradigms, cloud com-
puting successfully adopted the concept of utility computing.
However, as more and more IoT sensors and devices are installed
and connected to the internet for gathering the environmental,
healthcare, industrial, and daily-life related data, a need for mod-
ern technology arises in the commercial and research community.
As a result, the data pipeline concept is introduced that focuses
on mainly handling the flow of data from one end-point to other
end-points. Similarly, the cloud computing concept is extended,
and the demands of computing are narrowed down to introduce
serverless computing. To the best of our knowledge, both the
data pipeline and serverless technologies are developed parallelly
without any aim of converging at a certain point, where the
developers can avail both the advantages.

This paper mainly focuses on converging the data pipeline and
serverless computing, as shown in Fig. 1. The data migration/flow
process ensures the developer and user that the data is available
at the source or intermediary location. The proposed framework
can further check the data accuracy by implementing different
existing tools/algorithms such as Message Digest 5 (MD5) pro-
gram. The framework is further made efficient and secure by
incorporating the security features that verify the source of the
data. CCoDaMiC mainly interacts with two entities: the external
source of the data and the user, who defines what to do with
the data, as shown in Fig. 2. The source of the data can be from
any smart entities such as smart vehicles, smart city IoT sensors,
smart industry, etc.

Fig. 1. The concerned areas that need to be focused.

4.1. Data source

The proposed CCoDaMiC framework is designed only to handle
the data more securely and efficiently. It is assumed that the data
are generated by the surrounding smart environments where
thousands of dedicated sensors are deployed. The sensors can be
fitted into a smart vehicle to determine the carbon emission by
the vehicle, to alert lane-departure, notify if the seat-belt is not
on, etc. Sensors in smart industries can be deployed to control
the lighting system, establish robot communications, production
automation, inside air-quality monitoring, etc. Such thousands of
sensors generate a massive amount of data either on a regular
time interval or based on specific events. A CCTV in the smart city
generates large size data, whereas a humidity sensor generates
the data of a few bytes in size. The data generated by the CCTV
needs to be analyzed in a real-time manner, on the contrary, the
data from humidity sensors can be pre-processed and analyzed in
a batch manner. The proposed framework recognizes such types
of data.

4.2. CCoDaMiC users

The users are mainly responsible for defining the flow and the
processing of the data. All the components within the framework
depend on the instruction given by the users through a tem-
plate. The user’s templates are aligned with the TOSCA standard.
The TOSCA template contains the information regarding each
pipeline, the communication among the pipelines, function meta-
data to process the intermediate data, information to validate and
authorized the data, etc. The framework is enabled to validate and
notify the users regarding the correction of the template. This will
allow the to prohibit any pipeline interruption that may cause
due to the bug within the template.

TOSCA: Topology and Orchestration Specification for Cloud
Applications (TOSCA) [36] is a OASIS specification standard used
to describe the management of complex applications. The en-
tire application consists of multiple services or nodes. The com-
munication topology of those services within the application is
described in a template. The template is nothing but a YAML
file. This also allows the developer to provide the management
plan for each service, which refers to the general life cycle of
the service, provisioning and migration plan of services, etc. The
TOSCA template file does not contain the detailed information
on the application rather only the meta information as described
above.



C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16 5

Fig. 2. Proposed CCoDaMiC architecture.

Fig. 2 shows the components of the proposed framework
and interactions among them. The major components are the
Data Migration Engine, Serverless Engine, Data Repository, etc.
Data/result validator, data authorizer, template analyzer, resource
analyzer, etc. act as the supporting components that are involved
in transferring and processing the data. Data migration is re-
sponsible for migrating the data atoms or data packets from one
location to others based on the TOSCA template given by the
external user. The serverless engine is responsible for providing
the computing environment to those data atom. The data reposi-
tory provides the environment to store the data for both the data
migration engine and serverless engine. The detailed description
of those components is provided in the following sub-sections.

4.3. Data repository

This section describes the repository of the data upon which
other components of the CCoDaMiC framework depend. As the
name of this component suggests, the data repository component
is responsible for keeping track of all the data atoms. The data
atoms can either be batch type or stream type. This component
interacts with external data sources, as described in Section 4.1,
and acts as a bridge between other elements of CCoDaMiC and
external data sources. The data may arrive from the sensors
deployed in smart environments, such as smart industry sensors,
smart vehicle sensors, air quality monitoring sensors, fire detec-
tion sensors, etc. Based on the type of sensors, the data can be
batch or stream. Further, based on the nature of the data, two
dedicated sub-components are designed: (a) Streaming Data Can,
and (b) Batch Data Can. Data Cans are responsible for holding all
incoming raw data atoms.

4.4. Data migration engine

Data Migration Engine, as shown in Fig. 3, is responsible for
transferring the data from one location to another location. The
data can be of batch or streaming type. The detail information
regarding each flow of data is provided by the TOSCA template
analyzer, which is described in Section 4.6. The detail information
includes the source of data, the destination of the data amount
of data to migrate, the time to migrate, etc. In order to carry
out such tasks, this components consist of three sub-components:
Scheduler, Data Transmitter, and Data Receiver, as shown in Fig. 3.

Fig. 3. Details of data migration engine and the interactions among
sub-components.

Scheduler: This module mainly answers the question ‘‘when
to migrate?’’. The information regarding the time to migrate
is extracted from the user given TOSCA template, i.e., TOSCA
template analyzer. Based on the type of data, the scheduler may
initiate the migration process either on the arrival of data, or the
scheduler may need to wait for a specific time interval to initiate
the migration process. The initiation of the migration process
includes sending the data from the source location and receiving
the data at the final or intermediate destination from the remote
source. This indicates that the data pipeline framework needs to
be deployed on all the locations through which the data may flow.
For example, if the data from a smart home needs to be migrated
to a remote cloud environment, it needs to be migrated through
edge device, gateway, fog environment(s), cloud router, and the
specific server(s) as the final destination. In such a scenario, the
proposed CCoDaMiC data pipeline framework may need to be
installed/deployed on each location.

Data Transmitter: This module is responsible for extracting the
required data from the data repository and migrating the data
from the source location to the specified next destination. The
data transmitter always works in conjunction with the scheduler.
Copy of the data is always migrated from the source. This is to
ensure that the correct data is delivered to the adjacent location.



6 C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16

Fig. 4. An example of data migration between two instances at different locations.

On failure of any migration, this module sends another copy of
the original. If the migration process is carried out successfully,
the original data is deleted. In order to determine the status of
the migration, the data transmitter interacts with the Data/result
validator, which is described in Section 4.7.

Data Receiver: In conjunction with the data transmitter and
the scheduler, the data receiver component is responsible for
receiving the data sent by the data transmitter. Upon receiving,
the data atoms need to be checked if the data is correct. This is
done by the data/result validator, as described in Section 4.7. On
failure of receiving accurate data, the data receiver discards the
received data and listens to the data transmitter again to receive
the accurate data. This process continues until the accurate data
is received.

An example of data migration is shown in Fig. 4. Assuming
that a set of data atoms need to be migrated from Location 1 to
Location 2, let the CCoDaMiC data pipeline framework is installed
atop two responsible servers at both the locations. On initiating
each data migration process, the data transmitter component at
the Location 1 (i.e., source location) is enabled, and that of the data
receiver component is disabled. Similarly, the data transmitter
is disabled, and the data receiver is enabled at the Location 2
(i.e., destination location). On migrating all the specified amount
of data atoms, the data validator at both the location will notify
the resulting status to the corresponding enabled components.
The migration process will be repeated until the accurate data
is delivered to the server at the Location 2 and checked by the
data/result validator component.

4.5. Serverless engine

To provide an integrated environment for the purpose of both
the migration and processing of data, CCoDaMiC framework is
equipped with another major component, known as Serverless
Engine with the objective to provide a seamless capability to pro-
cess the data atoms. The data preprocessing artifacts are provided
by the users in the TOSCA template, which is in YAML format.
Serverless engine communicates with user-provided TOSCA tem-
plate (see Section 4.6), data/result validator (see Section 4.7), the
Function repository (see Section 4.8), and Data repository (see
Section 4.3). Major functionalities of the serverless engine include
deployment and execution of the function, requesting and leasing
the required amount of resource, etc. Serverless engine consists
of Resource Demand Analyzer, Function Deployer, Function Executor,
Resource Issuer, Credential Manager, and the serverless platform
providers, as shown in Fig. 5.

Fig. 5. Details of serverless engine and the subcomponents.

Deployment & execution of functions: As more and more tangi-
ble entities are connected to the internet, the data generated from
those deployed sensors are increasing significantly. To handle
such data with respect to its flow and processing, the modern
data pipeline framework should be able to provide a seamless
computing platform to pre-process the data as and when re-
quired. For processing, the users provide the function defining
what and how to process. The function should be invoked from
any location. Function Deployer (FD) is mainly responsible for
the deployment of the function that is mentioned in the TOSCA
template. In addition to the function itself, FD also requires the
information on actual resource demand of the function. The actual
resource demand may vary based on the input data that need to
be processed. Further, using the actual resource demand, function
code, and the actual data as input, FD deploys the function on
the platform decided by the resource issuer. Upon deployment of
the function, Function Executer (FE) is responsible for invoking the
remotely/locally deployed function. The outputs of the function
execution are received by the FE component, which is further
forwarded to the data/result validator and eventually to the data
migration engine.

Resource demand analyzer: As discussed in the above subsec-
tions, the resource demand for any function is highly dependent
on the size of the input data. The resource demand analyzer is
mainly a responsible component to carry out this task. Every



C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16 7

function deployment must go through the resource demand an-
alyzer, where the actual amount of resource would be estimated
based on the size of data to be processed. In some commercial
serverless environments, registering a function requires the in-
formation on maximum resource requirement. In such a scenario,
it is not possible to know the size of the unavailable input data.
Hence a dynamic system is necessary, where the user’s func-
tion registration should be done at the serverless environment
provider after analyzing the data size and the basic resource
demand of the function. The resource demand analyzer can fulfill
the task of analyzing actual resource demand in such a dynamic
system.

Resource issuer: This component plays a significant role as
a bridge between Serverless providers and other components
within the Serverless engine component. The resource issuer
is responsible for providing the resources to the components
responsible for the deployment and invocation process of user-
defined functions. CCoDaMiC allows the users only to provide the
function information such as its identifier and the information
on the data that need to be processed. CCoDaMiC eliminates
human intervention in the process of finding a suitable Serverless
provider that can fulfill the demand of the function in terms of
resources and the time. In addition to the functional require-
ments, the non-functional requirements, such as time constraints,
cost constraints, location constraints, etc. are mentioned in the
users’ TOSCA template. Based on these requirements, the resource
issuer chooses a suitable serverless provider and allows the FD
and FE to deploy and invoke the execution process of the function.

Serverless platform provider: This is a core part of the server-
less engine, which provides the computing resources to process
the data. CCoDaMiC allows the users to attach any number of
providers’ information. The resource requests mainly sent by the
resource issuer. Based on the functional and non-functional re-
quirements, each provider needs to provide resource information.

Credential manager: Resource Issuer sends the resource re-
quirement on behalf of the users to the resource provider. How-
ever, to deploy and invoke the functions, the credential manager
provides all the related information that authenticates a user.
The credential manager must implement a database of resource
providers and the users’ information.

4.6. TOSCA template

The proposed CCoDaMiC framework supports the modern
standard, namely TOSCA, for deployment and management of
the cloud application that is consisting of a large number of
small microservices. TOSCA specification allows the users to pro-
vide the service-related functional and non-functional artifacts
in the YAML format file. CCoDaMiC is consisting of three sub-
components: TOSCA DP template validator, TOSCA DP template
repository, and TOSCA template analyzer. The detailed descriptions
of these three modules are given below:

TOSCA DP template validator: In order to avoid any interruption
that may occur due to any undefined terminology in the data
pipeline template itself, a validation step is incorporated into
CCoDaMiC framework as TOSCA DP template validator module.
There is a two-way interactive communication between the user
and the validator module. The validating module notifies the
users if the TOSCA template contains any undefined terminol-
ogy or word. This also ensures that the function identifier (if
any in the data pipeline template) is valid. In addition to the
functions metadata, data pipeline may also provide the following
information:

• Time to migrate data atom(s): This information notifies the
scheduler the time to migrate the collected from one point
to other end-point

• Amount of data to migrate: This adds a constraint for the
scheduler while initiating any migration or computation
process. For instance, the user may trigger the scheduler to
migrate the temperature sensor data if the size is greater
than or equal to 1 GB in the buffer.
• Source sensor type: Based on the type of sensor that gen-

erated the data, the scheduler may migrate the data to a
specific location. For instance, the data from CCTV may need
to migrate to a location that is equipped with computation
resources.
• Data source environment: source environment refers to the

location or environment from where the data is generated.
for example, data from smart home, data from specific smart
industry, etc.
• Non-functional requirements: Non-functional requirements

such as cost constraint, location constraint, Service Level
Agreement (SLA), etc. mainly used by the resource issuer
component while choosing a suitable computing resource
provider.
• Source end-point: This indicates the location from which the

data should be migrated.
• Target end-point: This refers to the other end-point to which

the data should be migrated.
• Process: This indicates if the data needs to be processed

before moving to the next end-point.
• Source identifier: This information is used by the data au-

thorizer to ensure that the data is coming from an authentic
and genuine source.
• Function identifier: This points to the function which needs

to be deployed and invoked in order to process the data.

TOSCA DP template repository: This component helps the user
to keep the TOSCA DP template in a repository, which can be
retrieved and used in the future. This also helps the users to reuse
the templates. The repository can be set up in local or in a remote
location. Instead of the user, the validator mainly pushes the valid
error-free DP templates with a unique identifier.

TOSCA template analyzer: TOSCA DP template is mainly in a
human-readable YAML format. The functional and non-functional
requirements, as mentioned above, must be decomposed and
forwarded to data migration and serverless engine. The TOSCA
template analyzer acts as an instruction interpreter for two main
migration and serverless engines. The information related to data
migration, such as when to migrate, the amount of data to mi-
grate, where to migrate, etc. are provided to the data migration
engine. Further, the information, such as source identifier, are
forwarded to the data authorizer to ensure that the data is au-
thenticated and not corrupted. The template analyzer interacts
with the data/result validator to verify if the processed data is
aligned with a specific standard. For instance, in a data pipeline
to handle large images, one DP block could be to resize the
image to a specific resolution. The user can provide the resolution
information of the resized image within the DP template, which
can further be used by the data/result validator to validate the
processed image provided by the serverless engine.

The TOSCA template analyzer assists the serverless engine
while choosing a suitable serverless environment provider. Arti-
facts such as cost constraints, location constraints, etc. are pro-
vided to the resource issuer. The users’ credential information
is extracted from the template and forwarded to the credential
manager by the TOSCA template analyzer, which can be used
while accessing the resource from a chosen resource provider.

4.7. Data validation and authorization

One of the major advantages of the proposed CCoDaMiC data
pipeline framework is its ability to ensure the correctness and



8 C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16

authenticity of the data without any human intervention. In order
to achieve such functionalities, two dedicated components are
designed: Data Authorizer and Data/Result Validator. The details
of these two components are presented in the following sub-
sections. Data authorizer: This component is mainly designed to
ensure the other components of the framework that the incoming
data is from the authorized source. This component must im-
plement two tasks: authentication of the source of data atom(s)
and other is the validation of the data integrity. To make the
data migration more secure, an authenticated and secure channel
needs to be established between two data pipeline blocks in
two systems/locations. However, for data integrity, a checksum
mechanism needs to be implemented, as described in the next
subsection. The basic steps for data authorization is presented in
Algorithm 1.

Algorithm 1: Algorithm for data authorizer
Data: ipStream← input data stream
Result: Authorized output data stream

1 data← convertToJSON(ipStream);
2 src← data["source"];
3 srcList← getSourceRegistry();
4 if src in srcList then
5 data["Authorization"] = "AUTHORIZED";
6 else
7 data["Authorization"] = "UNAUTHORIZED";
8 end
9 retData← dumpJSON(data);

10 return retData;

Data/Result Validator: This component is mainly responsible
for verifying the incoming data from other sources. A checksum
method needs to be implemented to detect if the received data
is equal to that of the sent data. This can be implemented for
each data atom or a set of data atoms. Ming et al. [37] presented
a MD5 based error detection method. In [38], a comparative
study on different data error detection and correction methods
is presented. Based on the comparative study, it is possible to
correct the multiple-bit error on the received data. However,
the proposed framework only detects the error and notifies the
sender to initiate the data migration process. The basic steps for
validating data is presented in Algorithm 2.

Algorithm 2: Data validator algorithm
Data: ipStream← input data stream
Result: validated output data stream

1 data← convertToJSON(ipStream);
2 hash← md5(data["data"]);
3 if hash = data["hash"] then
4 data["validity"] = "VALID_DATA";
5 else
6 data["validity"] = "INVALID_DATA";
7 end
8 retData← dumpJSON(data);
9 return retData;

In addition to that, the output of the processed data is also
verified by this component. For this, the user needs to provide the
artifact or the metadata to verify the result from any intermedi-
ate processing. For instance, an intermediate data pipeline block
could be to preprocess a dataset by filling up the missing values
through some statistical approach. The output/result of this DP
block could be verified by checking if any value is missing in

the dataset. The user’s TOSCA DP template contains the method
to verify such output, which is further used by the data/result
validator. This is the main reason behind a two-way communica-
tion between the serverless engine and the data/result validator
components.

4.8. User function

A huge amount of data is generated from a large number of
sensors deployed in different smart environments. The existing
DP architecture mainly focuses on the migration of data from
one end-point to another. CCoDaMiC framework allows the users
to bind the computing environment with the data migration
environment tightly. This infers that the user needs to provide the
function artifacts, which may include the location of the function
or the function code itself, function identifier, function size, etc.
In order to handle the user-submitted function, CCoDaMiC offers
two components: Function Hub and Function Metadata.

The function hub is a repository of the user’s functions. Each
function should be uniquely identified and should be associated
with the user’s credentials. The physical existence of the function
hub can be at a local system or any public code repository
platform. The user’s TOSCA DP template must contain either the
identifier of the function or the function code itself. In the case
of the function code within the template, the function needs to
be registered and stored in the function hub. This would allow
the user to refer to that function in the new DP template. If the
template contains the function identifier information (instead of
the function code), the responsibility of the function hub would
be to assist the template validator on confirming the existence
of the intended function. On communication with the serverless
engine, particularly with the resource demand analyzer, the func-
tion metadata needs to be passed. The metadata may contain
information such as the size of the function, resource demand
of the function, the intended data that would be input to the
function, etc.

5. Implementation

This section describes the detailed implementation of the pro-
posed CCoDaMiC framework, that provides the environment to
handle the flow and processing of huge amount of data generated
by the dedicated sensing devices in smart environments such as
smart city, smart vehicle, smart manufacturing industries, etc.
The experimental setup is first described in Section 5.1, including
the details of all the tools that are used, the type of data used,
etc. Further, in Section 5.2, the detailed implementation is dis-
cussed that includes the implementation of each component of
CCoDaMiC.

5.1. Experimental setup

The proposed CCoDaMiC framework in the current version
uses different tools and technologies for implementation. This
section is dedicated to the experimental setup. CCoDaMiC frame-
work provides a platform to maintain the flow of data in an
efficient manner. There are several ways, CCoDaMiC framework
can be implemented, either from the very scratch or using the
existing basic tools. In the current implementation, the proposed
CCoDaMiC framework makes use of the available Apache Nifi [17]
software package as a base. Apache Nifi is easy to use, browser-
based and reliable platform to process and distribute data [17].
Apache Nifi provides basic functionalities such as sending data
from one server/location to other, generating dummy data, con-
verting basic file types, splitting basic data types, routing data,
invoking HTTP/FTP protocols, etc. In this implementation, Apache



C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16 9

Nifi version 1.9.2 is installed atop instances in our OpenStack
environment (detail specification is given below).

In order to store the data at a particular location, PostgreSQL
version 12.0 [39] is installed atop instances in our OpenStack
environment (detail specification is given below). This database is
considered as a small-scaled data repository. For the implemen-
tation of such a database, container-based virtualization tech-
nology is used, such as Docker. The Docker Community Edition
18.0.9 is installed inside Ubuntu 19.04 Operating System (OS).
The PostgreSQL Driver Version 42.2.8 was used for interacting
with the PostgreSQL database. The PostgreSQL being opensource
relational database is the reason for selecting it instead of other
databases. Moreover, its scalability and adoption by cloud ser-
vices like Heroku are also one of the reasons for choosing Post-
greSQL. Similarly, a NoSQL based storage server, Couchbase Server
Enterprise Edition 6.0.2, with two data nodes is used. To speed
up our implementation task and take advantage of the Nifi Com-
ponent, we choose Couchbase as our cloud-based storage, but
we could use any other similar database. Python version 3.7
language is used along with Python Flask 1.1.1 and Flask-RESTful
0.3.7. To perform any other tasks like validation, authorization,
data processing, etc., we require the help of some programming
language. Python is popular among the community and its ability
to perform our task with less programming compared to Java;
we picked it as a choice of language for implementation. TOSCA
specification v1.3 [36] is used by the user to describe the entire
data pipeline. In other words, users provide the detail information
about the data pipeline that includes (a) the information about
every end-points data need to travel through, (b) information
about the function to process the data, (c) the information on
the constraints that can be used to validate the result from each
function, and (d) the additional artifacts such as data input, when
to invoke the function, etc. The TOSCA model is mentioned in a
YAML file. The components are installed in different Openstack
instances. Ubuntu 19.04 OS is installed atop each instance. Each
instance is created with a minimum of 4 number of vCPUs, 4
GB of memory, and a minimum of 20 GB of the disk storage
system. Considering the above experimental setup, the detailed
implementation of each component is discussed in the following
subsection.

5.2. Experiment discussion

CCoDaMiC framework allows the users to migrate the data
from one location to another by tightening coupling the comput-
ing environments. This also facilitates secure data migration and
ensure the data and output are valid and from the authorized
sources. In order to achieve those goals, the implementation
is divided into multiple phases, such as the implementation of
data source and its repository, implementation of secure data
migration with validation and authorization, implementation of
computation (serverless) engine, etc.

5.2.1. Data repository implementation

In the implementation, the first step is to receive the data
from the external sources. The data can either be batch or stream
data. Instead of real sensing devices, we are generating similar
data using Nifi by invoking the external python script. Nifi allows
the users to generate the random data using the GenerateFlowFile
processor. The data are generated at a specific time interval. By
customizing the time interval, we are able to simulate the batch
data and streaming data generation. The data are first generated
and stored in files, where the size of the data files is kept constant
at 5 Bytes. Further, to distinguish the batch data and streaming

Algorithm 3: Random Data Generator
Result: Random data with hash value, timestamp, and

source
1 authorized_source← {Set of sensing devices} ;
2 src← getRandSrc(authorized_source);
3 randStr← generateRandomString(size=1MB) ;
4 strHash← generateMD5hash(randStr);
5 crrTime← GetCurrentTimeStamp();
6 generated_data = {
7 "source": src,
8 "data_gen_time": currTime,
9 "hash": strHash,

10 "data": randStr,
11 };
12 return generated_data;

data, a batch of 1 data file will be considered as streaming data,
whereas the batch of more than 1 data file is considered as batch
data. Each data file may contain random text or may follow a
specific pattern. However, in the implementation of CCoDaMiC
framework, the content of each data file is kept constant and is
used to initiate the task of data generation by sending a request
to another Nifi component InvokeHTTP. This Nifi component In-
vokeHTTP, invoke external python script that generate random
data. Considering the real implementation scenario where data
sometimes might come from invalid source, we in our script also
generate the invalid data source. Moreover, data in real imple-
mentation comes from sensor and communication from sensor
is usually done via REST approach. To depict this situation the
python script for data generation is implemented as a REST API
using python FLASK and FLASKRestful. The deployment of it is
done using a Docker container. Algorithm 3 provides the basic
steps used in the random data generator.

Further, each data file is preprocessed to convert the input
JSON data to Nifi attribute. To achieve this, EvaluateJsonPath Nifi
processor is used, as shown in Fig. 6. In order to implement
the data repository, as discussed in Fig. 2, we have implemented
PostgreSQL database. Instead of deploying this database directly
inside the Openstack instance, we are using the container-based
virtualization technology, i.e., Docker, inside the instance. This
allows easy setup and portability of the PostgreSQL database. This
database serves as the data repository to the CCoDaMiC frame-
work. The preprocessed data originally generated by invoking
python REST API using InvokeHTTP processor are further pushed
to this data repository using Nifi PutSQL processor. Nifi PutSQL
processor interacts with the remote containerized data repository
by taking the help of the PostgreSQL driver as specified in the
experimental setup. Below is the code snippet used in Nifi PutSQL
processor to push the data to the remote data repository.

INSERT INTO repository
(source, data, hashkey )
VALUES (

’${source}’,
’${data}’,
’${hashkey}’

);

A screenshot of the database is presented in Fig. 7. The
database contains information in mainly three different data
fields: source, data, and a hash key of data.



10 C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16

Fig. 6. Abstract architecture of implementation for data repository.

Fig. 7. A screenshot of data in CCoDaMiC framework data repository.

5.2.2. Implementing data migration engine with validation and au-
thorization

Upon storing the data in the data repository, there are always
two possible operations: (1) the data is migrated to another
location or server, (2) the data is forwarded to the server engine,
followed by a data migration engine. For data migration, based
on the requirement, different NiFi processor can be used, such
as ExecuteSQL, RemoteProcessGroup, etc. In the implementation
of the CCoDaMiC framework, ExecuteSQL Nifi processor is used
in different instances to migrate the data from a remote data
repository. The implementation of this is shown in Fig. 8. In this
case, ExecuteSQL Nifi processor uses DBCPConnectionPool. This
provides information regarding communicating with the remote
data repository. The basic information that is used for remote
data repository connection includes URL to the database, database
driver, the login credentials, etc. RemoteProcessGroup Nifi pro-
cessor is another basic component available in Nifi to send the
data from one server to other servers. The minimum amount
of information the user needs to provide to RemoteProcessGroup
Nifi processor is the hostname of the destination server and the
protocol to be used to migrate the data.

The advantage of the CCoDaMiC framework can be realized
with its ability to validate and authorize the source of the data.
In the case of validation, the MD5 checksum of the incoming data
is generated and compared with its original checksum, as shown
in Fig. 8 and Algorithm 2. This task of checking MD5 checksum
for validation is performed by the external python script. Before
performing this task, the intermediate data transformation is
carried out, converting the object form of data retrieved from the
data repository to the JSON format. The reason for this is because
handling JSON data is much easier than the object in our case.
The data is then passed to the serverless engine. Serverless Engine
receives all data, even if it fails the validation and authorization.
We could have easily discarded those data, but we wanted to keep
track of the invalid data as well. The invalid data are marked as
invalid to identify it later. This becomes important in the case of
the real environment where failure is evident. It is also critical
from the security point of view, where it provides information
about the data sources and data, both valid and invalid. This
available information could be used to gain more insights by an-
alyzing the data and helps to take the necessary effective security
measures. On each migration, the validator component will be
invoked. A dedicated python script is implemented that is mainly



C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16 11

Fig. 8. Abstract architecture of implementation for retrieving the data from data repository.

responsible for validating the JSON data. Below in Algorithm 2 is
the basic steps followed in validating the received.

The job of validator in Algorithm 2, is to compare the received
hash value with that of the received data. The comparison result
is further attached to the data for future reference.

For authorization of the data, additional information such as
source device is included in the data. It is assumed that the data
migration engine at each location has the synchronized registry
of source devices. As on the current implementation of the CCo-
DaMiC framework, the data are authorized only by verifying the
presence of the same source in the source registry. Algorithm 1,
presents the basic steps followed in this implementation for data
authorization purpose.

Based on the authenticity, the data either will be further
forwarded to the next destination or will be handed over to the
data migration engine. Based on the users’ template, OpenFaaS
function, or the serverless engine will be invoked.

5.2.3. Implementing serverless engine
The major component of the proposed CCoDaMiC framework

is its ability to integrate the computing platform, especially the
serverless environment, to the data migration engine, as shown in
Fig. 9. On arrival of the data, based on the users’ requirements and
the resource demand, the predefined function will be invoked.
The serverless engine consists of the capability to interact with
external services like Google Cloud Services, Amazon Web Ser-
vices, Microsoft Azure, and even local services. The interaction to
external services is made for different purposes, and one such
is storage. In our implementation, we have demonstrated this
interaction capability by storing data in the Couchbase Server that
is set up and run in a separate container using docker. In this im-
plementation to demonstrate the ability of the serverless engine,
we developed a function using python flask and FLASKRestful that
accepts the data in the JSON format and modify the content of
existing data and send the result back.

In the implementation, invokeHTTP Nifi processor is used to
invoke a remote function, as shown in Fig. 9. This is a generic
component, which can be used to invoke any remote function

from any provider. The basic information required is the URL,
method to invoke the function, etc. However, Nifi provides a ded-
icated processor to invoke the function of a specific FaaS provider.
For example, in our implementation, putLambda Nifi processor
is used to invoking the Amazon Lambda function. This required
basic information, such as the lambda function name, the region
of the function, and the credential information. Unlike, generic
invokeHTTP, putLambda processor does not require any specific
URL to invoke the lambda function. The standard HTTP commu-
nication with POST request is used to invoke the function. The
received data is then stored in the two-node Couchbase Server
that is setup using the docker and in our implementation acts as
a remote cloud service. The latest TOSCA standard v1.3 [36] does
not provide any specification for service lifecycle management
with the serverless platform. However, in our implementation,
we use basic information only to indicate if the data need remote
function invocation.

One of the major challenges/drawbacks in serverless imple-
mentation is its cold start. This issue arises if the function is
invoked for the first time or was idle for a longer period of time.
Further, another major challenge in implementing serverless plat-
form is ensuring that the function is available with the selected
cloud provider. In case of unavailability of the function, it has to
go through the deployment process, which contributes towards
the cold start of the function execution. In the implementation, it
is also hard to maintain the uniformity of function input and its
performance due to diverse underlined platforms with the cloud
providers.

5.2.4. Design of TOSCA model
The latest TOSCA specification v1.3 [36] provides a broader

environment to model and design the entire lifecycle of a ser-
vice in human-readable format. However this does not offer the
users to design the model of data pipeline. In this paper, the
model that is in YAML file, is referred to as Data Pipeline Service
(DPS) template. Dedicated TOSCA models are designed to im-
plement the data pipeline. Currently, the model mainly consists
of two node types: (a) node type for configuring the Apache



12 C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16

Fig. 9. Abstract architecture of implementation for serverless platform.

Fig. 10. TOSCA model for Nifi.

Nifi ccodamic.nodes.apache.Nifi.Nifi, (b) node type for implement-
ing the lifecycle of the Nifi data pipeline, i.e. ccodamic.nodes.
apache.Nifi.NifiPipeline.

TOSCA model for Nifi: Nifi node type i.e. ccodamic.nodes.
apache.Nifi.Nifi is derived from the SoftwareComponent node type
of the TOSCA, as shown in Fig. 10. This node type has two
properties: component version and the port number which can

be used to access from the remote host. Component version
refers to the version of the Apache Nifi. The capability of this
node type is hosting the data pipeline blocks that are of type
ccodamic.nodes.apache.Nifi.NifiPipeline, which is described in later
subsection. This follows the standard lifecycle offered by the
current TOSCA standard. While creating the Nifi node, the only
input user need to provide is the version of the Apache Nifi. In the



C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16 13

implementation of the proposed framework, Apache Nifi v1.9.2 is
used.

TOSCA model for Nifi pipeline: The TOSCA model for Nifi
pipeline is presented in Fig. 11: the first part is in Fig. 11a
and the second part is in Fig. 11b. Each data pipeline must
be of type ccodamic.nodes.apache.Nifi.NifiPipeline. In the current
version of the implementation, as shown in Fig. 11a, each node of
ccodamic.nodes.apache.Nifi.NifiPipeline type has id as the attribute.
This mainly used to uniquely identify the data pipeline block.
This value of the id is retrieved once the data pipeline block
is created and deployed. Each data pipeline requires (a) the
host information where the data pipeline needs to be created,
and (b) the connection information, which infers that the data
pipeline may need to connect to another data pipeline of the
same node type. For this, we have use ConnectsTo relationship
type. To establish the connection between two data pipeline, the
node type must also provide the capability to connect to another
data pipeline. The connect capability is derived from the TOSCA
EndPoint capability type.

Each data pipeline node follows the lifecycle provided the
TOSCA standard, i.e. tosca.interfaces.node. lifecycle.Standard, as
shown in Fig. 11b. template_file and template_name are provided
while creating a data pipeline. template_file refers to the xml
representation of the data pipeline containing the detailed in-
formation on the data pipeline. template_name is the name of
the template mentioned in the template file (in .xml format). To
create a data pipeline, on a specific host/server, the template file
is uploaded to the host. This file also contains the function name,
which can be used to deploy and invoke remote function provided
by the SaaS provider. Further, Nifi uses the template name to
create and deploy the data pipeline block. Upon creation of a
data pipeline, Nifi assigns an unique ID, which is further used to
update the id attribute. The id attribute is used in further lifecycle
stages, such as start, configure, delete, and stop. The complete
source code can be found online in [40].

6. Performance evaluation

Upon successful implementation, we have evaluated the per-
formance of the proposed CCoDaMiC framework. In doing so, we
have mainly checked the execution overhead of the data valida-
tion and data authorizer components. The data migration time is
observed with and without those two features/components.

Fig. 12a represents the average data migration time with data
validation and authorizer component. The value in X-axis rep-
resents the number of data atoms and ranges from 1 through
10. The size of each data atom is kept constant at 1 MB. The
values in Y -axis represent the average migration time of the data
atom while migrating from the source to the final destination. It
is observed that, the data validation and authorizer components
introduce additional overhead to the data migration operation.
However, it ensures the data veracity to the users, which infers
the data accuracy and the trustworthiness. In Fig. 12a, it is ob-
served that an average of 1.33 s is required to send 10 number of
data atoms of total size 10 MB, when both the components are
used in CCoDaMiC framework.

The additional overhead on time required to migrate the data
can be realized by comparing with the time without those com-
ponents. Figs. 12b and 12c represent the observed data migration
time without data validation and authorizer components, respec-
tively. It is observed that the average migration time decreases to
0.35 s and 1.21 s when a single data atom and 10 data atoms are
migrated without the data validation component, respectively.
Similarly, only a 3.7% decrease in migration time is observed
while migrating 10 data atoms from source to destination with-
out the data authorizer component, which is significantly less, as

shown in Fig. 12c. In Figs. 12b and 12c, authorizer and validator
components are used, respectively.

The similar effects of data validation and data authorizer com-
ponents have been observed on the data migration engine while
migrating multiple batches of data atoms in Fig. 13a. The number
of batches in X-axis ranges from 10 to 100. The average size of a
batch of data atom is kept constant at 10 MB. Y -axis represents
the average migration time of the data from the source location
to the final destination location. The unit for migration time
calculation is second. It is observed that migrating 100 batches
of data from source to destination with the data/result validator
and the data authorizer components take an average of 5.33 s, as
shown in Fig. 13a.

13b and 13c show the time required to migrate the data with-
out data validator component and data authorizer component,
respectively. By deactivating the data validator component, 100
batches of data atoms take an average of 3.6 s, as shown in
Fig. 13b. Similarly, migrating the same number of batches of data
atoms from source to the final destination takes 4.96 s, which is
6.9% less from 5.33 s, without the data authorizer component,
as in Fig. 13c. However, in the absence of such components,
CCoDaMiC framework cannot ensure the data veracity to the
users’ data, which is very crucial in implementing an efficient and
secure data pipeline framework.

To fulfill the demand from the real-life applications the pro-
posed CCoDaMiC framework provides a coherent environment
that would simplify the integration of both the data migration
and data computation process. From the small-scale implemen-
tation the architecture shown in Fig. 2, the scalability feature of
CCoDaMiC can be observed as all the components are loosely
coupled and can be configured with large number of other com-
ponents.

7. Conclusions and future works

In this paper, the problem of integration of the data pipeline
and computation platform is addressed. The modern data pipeline
architectures are investigated, taking smart environments into
consideration. It is concluded that the lack of essential features
such as data validation and authorization facilities makes the
modern data pipeline architectures not mature enough for mod-
ern smart environments. Upon investigating further, it is also
observed that the existing architecture supports only the migra-
tion of data from one location to others and does not support
the tight and smooth integration of the computation platform.
Moving towards addressing such a problem, we have presented
a novel framework CCoDaMiC (Coherent Coordination of Data
Migration and Computation). Different components are carefully
designed for secure data migration and providing a platform for
the developer to process the data in the intermediate location
before arriving at the destination.

Some of the major advantages of using CCoDaMiC framework
are its ability to incorporate the serverless platform, which not
only allows the developer to process the data but also provides a
way to validate and authorize the source of the data. CCoDaMiC
also introduces TOSCA extension for modeling the data pipeline.
Different components are introduced that ensure the secure and
accurate transmission of the data. The major disadvantage of the
current version of the proposed framework is its dependency
on the performance of the external cloud provider. Performance
degradation of the cloud provider may bring huge computational
latency to the entire data pipeline. One potential solution to
this problem could be applying a fault-tolerant strategy, where
multiple serverless platforms can be engaged to perform a single
task.



14 C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16

Fig. 11. TOSCA model for Nifi data pipeline.

Fig. 12. Effect validation and authorization feature on migrating data atoms.

Fig. 13. Effect validation and authorization feature on multiple batches of data.

Further development of the TOSCA templates and the template
analyzer to facilitates a way for the developer to manage the data
flow and the serverless environment during the whole journey of
each data atom would be a part of our future works. The future
works also include the design of TOSCA template analyzer that
can efficiently and accurately decide when to perform migration
and computation operations. In future, it is also essential to

evaluate the performance of the proposed CCoDaMiC framework
in a large-scale experimental test-bed.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.



C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16 15

CRediT authorship contribution statement

Chinmaya Kumar Dehury: Conceptualization, Methodology,
Software, Validation, Formal analysis, Investigation, Data cura-
tion, Resources, Writing - original draft, Writing - review & edit-
ing, Visualization. Satish Narayana Srirama: Supervision, Fund-
ing acquisition, Conceptualization, Methodology, Validation, For-
mal analysis, Writing - review & editing. Tek Raj Chhetri: Soft-
ware, Validation, Formal analysis, Investigation, Data curation,
Writing - review & editing, Visualization.

Acknowledgment

This work is partially funded by the European Union’s Horizon
2020 research and innovation project RADON (825040).

References

[1] E. Mobility, Ericsson mobility report, 2018, https://www.ericsson.com/
assets/local/mobility-report/documents/2018/ericsson-mobility-report-
june-2018.pdf, [Online; accessed 21-October-2019].

[2] I. Lee, K. Lee, The internet of things (iot): Applications, investments, and
challenges for enterprises, Bus. Horiz. (ISSN: 0007-6813) 58 (4) (2015)
431–440.

[3] S. Lohr, The age of big data, New York Times 11 (2012) (2012).
[4] Z. Ning, J. Huang, X. Wang, Vehicular fog computing: Enabling real-time

traffic management for smart cities, IEEE Wirel. Commun. 26 (1) (2019)
87–93.

[5] A. Yassine, S. Singh, M.S. Hossain, G. Muhammad, Iot big data analytics for
smart homes with fog and cloud computing, Future Gener. Comput. Syst.
(ISSN: 0167-739X) 91 (2019) 563–573.

[6] A.P. Plageras, K.E. Psannis, C. Stergiou, H. Wang, B. Gupta, Efficient
iot-based sensor big data collection–processing and analysis in smart
buildings, Future Gener. Comput. Syst. (ISSN: 0167-739X) 82 (2018)
349–357.

[7] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J.
Kong, J.P. Jue, All one needs to know about fog computing and related edge
computing paradigms: A complete survey, J. Syst. Archit. (ISSN: 1383-7621)
98 (2019) 289–330.

[8] C.K. Dehury, S.N. Srirama, Personalized service delivery using reinforce-
ment learning in fog and cloud environment, in: The 21st International
Conference on Information Integration and Web-Based Applications & Ser-
vices (iiWAS2019), 2019, pp. 524–531, http://dx.doi.org/10.1145/3366030.
3366055.

[9] R. Buyya, S.N. Srirama, Fog and Edge Computing: Principles and Paradigms,
John Wiley & Sons, 2019.

[10] A. Sabtu, N.F.M. Azmi, N.N.A. Sjarif, S.A. Ismail, O.M. Yusop, H. Sarkan,
S. Chuprat, The challenges of extract, transform and loading (etl) system
implementation for near real-time environment, in: 2017 International
Conference on Research and Innovation in Information Systems (ICRIIS),
IEEE, 2017, pp. 1–5.

[11] V. Ranjan, A Comparative Study Between ETL (Extract, Transform, Load)
and ELT (Extract, Load and Transform) Approach for Loading Data into
Data Warehouse, Tech. rep., 2009, viewed 2010-03-05, http://www.ecst.
csuchico.edu/~juliano/csci693.

[12] J. Meacham, M. Harris, G. Brodman, L. Cuthriell, H. Korus, B. Toth, J. Hsiao,
M. Elliot, B. Schimpf, M. Garland, et al., History Preserving Data Pipeline
System and Method, Google Patents, 2016, US Patent 9, 229, 952.

[13] J. Darmont, S. Loudcher, Utilizing Big Data Paradigms for Business
Intelligence, IGI Global, 2018.

[14] S. Bhattacharjee, Practical Industrial Internet of Things Security: A
practitioner’s guide to securing connected industries, Packt, 2018.

[15] V. Kale, Big Data Computing: a Guide for Business and Technology
Managers, Chapman and Hall/CRC, 2016.

[16] S.C. Öner, O.H. Yüregir, Optimizing Big Data Management and Industrial
Systems With Intelligent Techniques, IGI Global, 2018.

[17] Apache nifi documentation, 2019, https://nifi.apache.org/, [Online; accessed
21-October-2019].

[18] Spotify/luigi, 2020, https://github.com/spotify/luigi, [Online; accessed
21-Jan-2020].

[19] What is aws data pipeline? - aws data pipeline, 2020, https:
//docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/what-is-
datapipeline.html, [Online; accessed 24-Jan-2020].

[20] P. O’Donovan, K. Leahy, K. Bruton, D.T. O’Sullivan, An industrial big data
pipeline for data-driven analytics maintenance applications in large-scale
smart manufacturing facilities, J. Big Data 2 (1) (2015) 25.

[21] H. Tianfield, Towards edge-cloud computing, in: 2018 IEEE International
Conference on Big Data (Big Data), 2018, pp. 4883–4885.

[22] S. Bischof, A. Harth, B. Kämpgen, A. Polleres, P. Schneider, Enriching
integrated statistical open city data by combining equational knowledge
and missing value imputation, J. Web Semant. (ISSN: 1570-8268) 48 (2018)
22–47.

[23] J. Sampé, M. Sánchez-Artigas, P. García-López, G. París, Data-driven
serverless functions for object storage, in: Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference, in: Middleware ’17, ACM, New
York, NY, USA, 2017, pp. 121–133.

[24] A. Saha, S. Jindal, Emars: Efficient management and allocation of resources
in serverless, in: 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), IEEE, 2018, pp. 827–830.

[25] M. Sewak, S. Singh, Winning in the era of serverless computing and func-
tion as a service, in: 2018 3rd International Conference for Convergence
in Technology (I2CT), IEEE, 2018, pp. 1–5.

[26] A.K. Gupta, R. Johari, Iot based electrical device surveillance and control
system, in: 2019 4th International Conference on Internet of Things: Smart
Innovation and Usages (IoT-SIU), 2019, pp. 1–5, http://dx.doi.org/10.1109/
IoT-SIU.2019.8777342.

[27] S.K. Vishwakarma, P. Upadhyaya, B. Kumari, A.K. Mishra, Smart energy
efficient home automation system using iot, in: 2019 4th International
Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU),
2019, pp. 1–4, http://dx.doi.org/10.1109/IoT-SIU.2019.8777607.

[28] P. Gupta, C.K. Dehury, P.K. Sahoo, Scheduling IoT data of smart commu-
nities in cloud, in: The 12th Workshop on Wireless, Ad Hoc and Sensor
Networks, Nantou, Taiwan, 2016.

[29] V. Puranik, Sharmila, A. Ranjan, A. Kumari, Automation in agriculture and
iot, in: 2019 4th International Conference on Internet of Things: Smart
Innovation and Usages (IoT-SIU), 2019, pp. 1–6, http://dx.doi.org/10.1109/
IoT-SIU.2019.8777619.

[30] B. Tang, Z. Chen, G. Hefferman, S. Pei, T. Wei, H. He, Q. Yang, Incorporating
intelligence in fog computing for big data analysis in smart cities, IEEE
Trans. Ind. Inf. 13 (5) (2017) 2140–2150.

[31] W. Zhang, Z. Zhang, H. Chao, Cooperative fog computing for dealing with
big data in the internet of vehicles: Architecture and hierarchical resource
management, IEEE Commun. Mag. 55 (12) (2017) 60–67.

[32] B. Cheng, J. Fuerst, G. Solmaz, T. Sanada, Fog function: Serverless fog
computing for data intensive iot services, in: 2019 IEEE International
Conference on Services Computing (SCC), IEEE, 2019, pp. 28–35.

[33] M. Branowski, A. Belloum, Cookery: A framework for creating data pro-
cessing pipeline using online services, in: 2018 IEEE 14th International
Conference on E-Science (E-Science), IEEE, 2018, pp. 368–369.

[34] A. Mujezinović, V. Ljubović, Serverless architecture for workflow schedul-
ing with unconstrained execution environment, in: 2019 42nd Inter-
national Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), IEEE, 2019, pp. 242–246.

[35] G. Casale, M. Artač, W.-J. van den Heuvel, A. van Hoorn, P. Jakovits,
F. Leymann, M. Long, V. Papanikolaou, D. Presenza, A. Russo, S.N. Sri-
rama, D.A. Tamburri, M. Wurster, L. Zhu, Radon: rational decomposition
and orchestration for serverless computing, in: SICS Software-Intensive
Cyber-Physical Systems, 2019.

[36] C.N. Matt Rutkowski, Chris Lauwers, C. Curescu, TOSCA-simple-profile-
YAML-v1.3, 2019, OASIS Committee Specification 01.https://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-Simple-
Profile-YAML-v1.3-cs01.html, [18 September 2019].

[37] H. Ming, W. Yan, Md5-based error detection, in: 2009 Pacific-Asia
Conference on Circuits, Communications and Systems, 2009, pp. 187–190.

[38] J. Singh, J. Singh, A comparative study of error detection and correction
coding techniques, in: 2012 Second International Conference on Advanced
Computing Communication Technologies, 2012, pp. 187–189.

[39] PostgreSQL: Documentation: 12: PostgreSQL 12.0 Documentation,
2019, https://www.postgresql.org/docs/12/index.html, [Online; accessed
21-October-2019].

[40] Chinmaya Kumar Dehury, Satish Narayana Srirama, Tek Raj Chhetri, A
framework for coherent coordination of data migration and compu-
tation platforms, 2019, https://github.com/chinmaya-dehury/CCoDaMiC_
framework, [Online; accessed 31-October-2019].

Chinmaya Kumar Dehury received bachelor degree
from Sambalpur University, India, in June 2009 and
MCA degree from Biju Pattnaik University of Technol-
ogy, India, in June 2013. He received the PhD Degree in
the department of Computer Science and Information
Engineering, Chang Gung University, Taiwan. Currently,
he is a postdoctoral research fellow in the Mobile &
Cloud Lab, Institute of Computer Science, University of
Tartu, Estonia. His research interests include schedul-
ing, resource management and fault tolerance problems
of Cloud and fog Computing, and the application of

https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb2
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb2
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb2
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb2
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb2
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb3
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb4
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb4
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb4
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb4
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb4
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb5
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb5
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb5
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb5
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb5
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb6
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb6
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb6
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb6
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb6
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb6
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb6
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb7
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb7
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb7
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb7
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb7
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb7
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb7
http://dx.doi.org/10.1145/3366030.3366055
http://dx.doi.org/10.1145/3366030.3366055
http://dx.doi.org/10.1145/3366030.3366055
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb9
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb9
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb9
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb10
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb10
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb10
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb10
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb10
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb10
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb10
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb10
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb10
http://www.ecst.csuchico.edu/~juliano/csci693
http://www.ecst.csuchico.edu/~juliano/csci693
http://www.ecst.csuchico.edu/~juliano/csci693
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb12
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb12
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb12
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb12
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb12
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb13
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb13
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb13
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb14
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb14
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb14
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb15
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb15
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb15
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb16
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb16
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb16
https://nifi.apache.org/
https://github.com/spotify/luigi
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/what-is-datapipeline.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/what-is-datapipeline.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/what-is-datapipeline.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/what-is-datapipeline.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/what-is-datapipeline.html
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb20
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb20
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb20
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb20
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb20
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb21
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb21
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb21
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb22
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb22
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb22
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb22
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb22
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb22
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb22
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb23
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb23
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb23
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb23
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb23
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb23
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb23
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb24
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb24
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb24
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb24
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb24
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb25
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb25
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb25
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb25
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb25
http://dx.doi.org/10.1109/IoT-SIU.2019.8777342
http://dx.doi.org/10.1109/IoT-SIU.2019.8777342
http://dx.doi.org/10.1109/IoT-SIU.2019.8777342
http://dx.doi.org/10.1109/IoT-SIU.2019.8777607
http://dx.doi.org/10.1109/IoT-SIU.2019.8777619
http://dx.doi.org/10.1109/IoT-SIU.2019.8777619
http://dx.doi.org/10.1109/IoT-SIU.2019.8777619
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb30
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb30
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb30
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb30
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb30
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb31
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb31
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb31
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb31
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb31
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb32
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb32
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb32
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb32
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb32
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb33
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb33
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb33
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb33
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb33
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb34
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb34
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb34
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb34
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb34
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb34
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb34
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb35
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb35
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb35
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb35
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb35
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb35
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb35
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb35
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb35
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-Simple-Profile-YAML-v1.3-cs01.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-Simple-Profile-YAML-v1.3-cs01.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-Simple-Profile-YAML-v1.3-cs01.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-Simple-Profile-YAML-v1.3-cs01.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-Simple-Profile-YAML-v1.3-cs01.html
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb37
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb37
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb37
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb38
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb38
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb38
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb38
http://refhub.elsevier.com/S0167-739X(19)33092-4/sb38
https://www.postgresql.org/docs/12/index.html
https://github.com/chinmaya-dehury/CCoDaMiC_framework
https://github.com/chinmaya-dehury/CCoDaMiC_framework
https://github.com/chinmaya-dehury/CCoDaMiC_framework


16 C.K. Dehury, S.N. Srirama and T.R. Chhetri / Future Generation Computer Systems 109 (2020) 1–16

artificial intelligence in cloud management. He is an reviewer to several journals
and conferences, such as IEEE TPDS, IEEE JSAC, Wiley Software: Practice and
Experience, etc.

Satish Narayana Srirama is a Research Professor and
the head of the Mobile & Cloud Lab at the Institute
of Computer Science, University of Tartu, Estonia and
a Visiting Professor at University of Hyderabad, India.
He received his Ph.D. in computer science from RWTH
Aachen University, Germany in 2008. His research fo-
cuses on cloud computing, mobile web services, mobile
cloud, Internet of Things, fog computing, migrating
scientific computing and enterprise applications to the
cloud and large scale data analytics on the cloud. He is
an IEEE senior member, was an Associate Editor of IEEE

Transactions in Cloud Computing, is an Editor of Wiley Software: Practice and

Experience, a 50 year old Journal, and a program committee member of several
international conferences and workshops. Dr. Srirama has co-authored over 140
refereed scientific publications in several international conferences and journals.
For further information of Prof. Srirama, please visit: http://kodu.ut.ee/~srirama/.

Tek Raj Chhetri received a B.Tech degree in Computer
Science & Engineering from SSN College of Engineering
& Technology affiliated to Jawaharlal Nehru Techno-
logical University Kakinada, AP, India in 2015. He is
currently a Computer Science master’s student at the
University of Tartu and expected to graduate in June
2020. His interests include distributed systems, Fog
& Edge Computing, Cloud computing, and Intelligent
Transportation Systems.

http://kodu.ut.ee/~srirama/

	CCoDaMiC: A framework for Coherent Coordination of Data Migration and Computation platforms
	Introduction
	Background, motivation, & contribution
	Motivations
	Contributions

	Related works
	Coherent coordination of data migration and computation
	Data source
	CCoDaMiC users
	Data repository
	Data migration engine
	Serverless engine
	TOSCA template
	Data validation and authorization
	User function

	Implementation
	Experimental setup
	Experiment discussion
	Data repository implementation
	Implementing data migration engine with validation and authorization
	Implementing serverless engine
	Design of TOSCA model


	Performance evaluation
	Conclusions and future works
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgment
	References


