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Abstract—Molecular communication (MC) is an emerging
field aiming at realizing information exchange via chemical
signals between nanomachines in nanonetworks. Information
transmission that is energy-efficient and relies on relatively low-
complexity transceiver techniques is of practical importance for
MC systems. Based on the fact that constellation shaping can
improve energy efficiency, in this paper, we propose a molecular
shell mapping (MSM) scheme to implement the probabilistic
constellation shaping for MC. The MSM method is designed to
exploit the concentration sequences with the lowest sum sequence
weight, which results in an energy-efficient signal constellation.
Furthermore, we propose an algorithm for selecting and sorting
the concentration sequences to mitigate inter-symbol interference.
For information detection, we design a genie-aided maximum-
likelihood (ML) detector and a realistic ML detector to leverage
the constructive effect of intra-sequence interference, as well
as derive their bit error rates and achievable rates. Addition-
ally, for the applications using large blocklength sequences, a
low-complexity ML detection method is proposed. Numerical
simulation results confirm that the shaped signaling using the
MSM method is more energy-efficient than the conventional
equiprobable signaling, achieving shaping gains of up to 1.5 dB
at an ultra-short blocklength of 4.

Index Terms—Molecular communication, probabilistic con-
stellation shaping, inter-symbol interference, concentration shift
keying.
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MOLECULAR communication (MC) is a bio-inspired
communication paradigm that involves chemical

signals as information carriers [1]. Compared with electro-
magnetic signaling, MC signals are energy-efficient and bio-
compatible [2], [3]. These benefits endow MC with a viable
communication method for conveying information between
nanomachines and constructing the Internet of Bio-Nano
Things [4], [5]. In literature, several MC propagation mecha-
nisms have been studied, such as MC via diffusion (MCvD)
[2], [6], molecular motor-based MC [7], and bacterial-based
MC [8]. MCvD has been regarded as the most prevailing
propagation scheme among them, since the energy supplies
of nanomachines are limited while MCvD does not need
external energy supplies [2]. While energy-saving techniques
have been explored in relation to information carriers [1], [2]
and propagation methods [2], [6], to the best of our knowledge
and based on a survey of modulation techniques for MCvD
[9], no research has been done on energy-efficient techniques
from a modulation perspective for MCvD systems considering
a single communication link.

In MC, information can be modulated into various chemical
characteristics, including concentration [10], [11], type [12],
[13], timing [14], space [15]–[17], or combinations of some of
them [18]–[20]. In this paper, we focus on concentration shift
keying (CSK), which conveys information via the concentration
levels of information molecules of a single type, since it can
avoid the energy consumption for the synthesis and release of
multiple types of molecules [9]. Generally, the concentration
symbol of CSK is equiprobable to be transmitted. This method
can yield the maximum transmission rate; however, it does
not take into account the energy consumption of the various
concentration symbols [9]–[11]. If the low-energy cost sym-
bols are chosen more often than the high-energy cost symbols,
at the same average energy, the saved energy can enlarge the
minimum distance between the constellation points, and hence
improve the reliability of communications.

Probabilistic constellation shaping (PCS), which has attract-
ed significant attention in various communication scenarios,
including wireless communications [21], optical communica-
tions [22], [23], and underwater communications [24], devel-
ops modulated signaling based on a non-equiprobable input
distribution, as shown in Fig. 1. PCS adjusts the probability
of occurrence of the signal points to approach a capacity-
achieving distribution. For example, a Gaussian distribution is
required to achieve the channel capacity when communicating
over additive white Gaussian noise channels [25]. Such non-
equiprobable signaling can obtain a shaping gain, which is
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Fig. 1. Constellation of shaped signal for PCS.

defined as the ratio of the energy required by the equiprobable
signaling to the energy required by the shaped signaling that
achieves the same rate and error performance [22]. For com-
puting the capacity of MC systems, a number of mathematical
models were proposed in the literature under different specific
constraints [3], [26], [27]. In [27], the authors computed
the upper and lower bounds of the capacity over a Poisson
channel with finite-state memory. However, the optimal input
distribution achieving the capacity does not have a closed-form
expression, while it can be found by the numerical Blahut-
Arimoto algorithm [27].

For the implementation of PCS, a key module is required
to transform the uniformly distributed input bits into the
shaped signaling with an approximate target distribution in an
invertible manner, where the shaped signaling is a sequence of
concentration symbols. Consequently, we call this module the
concentration shaper for MC systems. Referring to the am-
plitude shaper studied in optical and wireless communications
[21], [22], [28]–[30], the candidate strategies for construct-
ing a concentration shaper can be classified into the direct
approach and indirect approach. As a representative of the
former, distribution matching [22], [28] directly generates the
concentration sequences having a one-dimensional nonuniform
empirical distribution to match the target distribution. Constant
composition distribution matching (CCDM) was initially pro-
posed for optical communications [28]. The CCDM outputs
the sequences having a constant composition of transmitted
symbols, such that it can achieve the empirical distribution
to approach the target distribution by adjusting the constant
composition. However, the rate loss performance of the CCDM
deteriorates as the blocklength decreases. The sphere shaping
(SpSh) [21], [29], [30], belonging to the indirect approach,
aims at designing an energy-efficient multidimensional con-
stellation to approach the target distribution indirectly. Among
the various SpSh methods, enumerative sphere shaping (ESS)
lexicographically orders all sequences whose sequence weights
are less than a maximum sequence weight constraint, and then
outputs the sequences with smaller indices. Shell mapping
(SM) [29], [30] is another SpSh method that selects the

concentration sequences with the lowest sum sequence cost as
the shaping set, and thus constructs the most energy-efficient
signal space. Moreover, the SM scheme provides desirable rate
loss performance, especially at a short blocklength, which is
critical for complexity-limited MC systems. Note that although
the properties of CCDM and SM in terms of rate loss per-
formance mentioned above are concluded in the researches
of wireless communications or optical communications, these
properties are also available in MC. This result can be ex-
plained by the fact that the rate loss is caused by the shaping
operation at the transmitter, and hence is independent of the
channel model. In addition, the design strategies of the above
concentration shapers do not take into account inter-symbol
interference (ISI).

In this paper, to inherit the merit of SM while mitigating
ISI, we propose molecular shell mapping (MSM) to implement
the PCS for CSK (PCS-CSK). In our MSM, for the sequences
with the same weight, those with high-energy cost symbols
appearing in the first few positions are sorted first. By doing
so, the MSM method is capable of reducing the ISI imposed
by the previously emitted concentration sequences, which is
referred to as inter-sequence interference. Furthermore, we
design three maximum-likelihood (ML) detectors to make use
of the constructive effect of intra-sequence interference, which
represents the interference between the symbols within the
same sequence. In addition, we derive the bit error rate (BER)
and achievable rate (AR) of the proposed MSM method in
MCvD systems. BER and AR performance analysis and the
corresponding numerical simulations demonstrate that the pro-
posed MSM scheme outperforms the equiprobable signaling
schemes for MCvD systems. The main contributions of this
paper can be summarized as follows:

• We introduce and compare several design methods of
concentration shaping from the aspects of rate loss and
blocklengths. In addition, we show that SM is more
suitable than other concentration shapers for complexity-
limited MC systems. Moreover, we find an appropriate
cost function of SM for MC and prove that the SM with
this cost function is an informational divergence optimal
concentration shaper.

• We propose MSM to implement PCS-CSK to combat ISI
in MCvD systems. A genie-aided ML (GML) detector
assuming the ideal knowledge of ISI is firstly designed
to show the potential of MSM. Then, we design a
realistic ML (RML) detector based on the statistics of ISI.
Furthermore, we propose a low-complexity ML detection
method for operating with large blocklength sequences.

• While the equiprobable multi-level CSK signaling shows
worse BER performance than the on-off keying (OOK)
in both the uncoded [10] and coded systems [31], our
simulation results reveal that the proposed multi-level
PCS-CSK exhibits better BER performance than the
OOK. Moreover, the MSM assisted signaling can achieve
a shaping gain of up to 1.5 dB when compared with the
equiprobable signaling.

The rest of this paper is organized as follows. Section II
sketches the channel model and optimizes the distribution of
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shaped signaling for the MCvD system. Section III analyzes
the rate loss of various concentration shapers and proposes the
MSM to implement PCS. In Section IV, we design the ML
detectors and derive their ARs and BERs. Numerical results
are shown in Section V. Finally, conclusions are drawn in
Section VI.

Notations: In this paper, we use E [·] to represent expec-
tation. I(·; ·) and H(· |· ) denote the mutual information and
the conditional entropy, respectively. D(· ‖· ) is the Kullback-
Leibler divergence between two distributions. O(·) represents
the required computational complexity. |·| is the cardinality of
a set. The N -symbol sequence [x1, . . . , xn, . . . , xN ] and the
corresponding sequence weight

∑N
n=1 xn are shown by x(N)

and W (N), respectively. xu denotes the N -symbol sequence
transmitted in the u-th sequence interval. % and b·c represent
the modulo operation and the floor operation, respectively. n!
is the factorial of n, and Q(·) denotes the Q-function.

II. SYSTEM MODEL

A. Channel Model
The considered MCvD system consists of a point-like

transmitter, a channel, and a passive spherical receiver in a
3-D unbounded environment. Since the PCS-CSK is built on
the CSK modulation, let us introduce the principle of the
CSK modulation first. The CSK conveys information by the
number of information molecules of a single type, denoted by
NtxX , where X is assumed to be a discrete random variable
subject to the uniform distribution defined on a symbol set
X = {0, 1, . . . ,M − 1} consisting of M equidistant signal
points. The value of Ntx is chosen to satisfy the average energy
constraint of E [NtxX] = E. The average energy E is defined
as the average number of emitted molecules per channel use
for MC systems.

For the PCS-CSK, at the beginning of a sequence interval,
K input bits are mapped to a sequence compromising N con-
centration symbols with an equal emission interval Te based on
the MSM codebook, which will be shown in detail in Section
III. The MSM algorithm chooses 2K sequences of N concen-
tration symbols with the lowest average weight to form a set
CMSM = {s1, . . . , sj , . . . , s2K}. We assume that a number of
sequences denoted by x(N)

0 , x
(N)
1 . . . , x

(N)
u , . . . are successive-

ly transmitted, where x(N)
u = [xu[1], . . . , xu[n], . . . , xu[N ]] ∈

CMSM denotes the N -symbol sequence transmitted in the u-th
sequence interval and xu[n] ∈ X = {0, 1, . . . ,M − 1}. To
simplify notations, let the vector xu denote the N -symbol
sequence x

(N)
u . Next, the transmitter releases ∆Ntxxu[n]

molecules at the beginning of the w-th emission interval to
convey the concentration symbols xu[n], where w = uN +n.
The parameter ∆ is a constellation scaling factor to make the
energy consumption satisfy the average energy constraint.

Following Fick’s second law of diffusion and uniform
concentration assumption [32], the probability of observing an
information molecule, which is emitted by the transmitter at
time t0 = 0, inside the receiver at time t > 0 can be calculated
by [2]

p(t) =
Vr

(4πDt)
3
2

exp

(
− d2

4Dt

)
, (1)

where d is the distance between the transmitter and the center
of receiver, Vr = 4

3πr
3 is the volume of the receiver with

radius r, and D is the diffusion coefficient of information
molecules. The receiver is assumed to sample after a time
interval of tmax = d2/6D from the emission instant to maxi-
mize the probability of observing the information molecules,
as implied in (1). For the sequential transmissions with an
emission interval Te, the MCvD channel can be characterized
by the channel coefficients h[`] = p(`Te + tmax) for ` =
0, 1, . . . , Le, where Le denotes the length of channel memory,
which results in ISI, if Le > 0. The channel coefficient
h[`] indicates the probability of observing an information
molecule that is emitted at time t0 = 0 and received at time
t = `Te + tmax.

At the receiver, the observations corresponding
to the N -sequence xu are denoted by yu =
[yu[1], . . . , yu[n], . . . , yu[N ]], where yu[n] represents the
number of molecules observed at the w-th emission interval.
Let xL represent the previously transmitted L number of
N -sequences xu−L,xu−L+1, . . . ,xu−1 for brevity, where
L = bLe/Nc is the channel memory in terms of the
blocklength N . When taking into account the memory of
MCvD channel and diffusion noise [33], for a given xL,
yu[n] approximately follows a Poisson distribution, i.e.,
yu[n] ∼ P

(
Λn(u)

)
[11], with

Λn(u) = ∆Ntxxu[n]h[0] + ΛIintra|xu
+ ΛIinter|xL + λenv,

(2)

where the first term is the expected number of molecules
resulting from the current transmission of xu[n]; ΛIintra|xu

represents the intra-sequence interference imposed by the
previously transmitted symbols within the u-th sequence on
the current observations for a given xu; ΛIinter|xL represents
the inter-sequence interference due to the L number of N -
sequences xL transmitted before xu; λenv is the Poisson pa-
rameter for the distribution of the environment noise resulting
from the other MC systems.

B. Customizing the Distribution of Shaped Signaling

The key step in constructing a PCS-CSK system is to
choose a target source distribution PX on X such that this
distribution can maximize the mutual information I(X;Y )
under the average energy constraint. However, this optimal
input distribution does not have a closed-form expression.
Therefore, in this subsection, we choose the maximum entropy
distribution as a sub-optimal input distribution leading to a
closed-form expression.

Compared with the equiprobable signaling, the non-
equiprobable signaling can enlarge the minimum distance be-
tween constellation points; it will, however, reduce the entropy
of the transmitter output, and hence the transmission rate.
To minimize the transmission rate loss of non-equiprobable
signaling, we choose the maximum entropy distribution as the
target source distribution. The energy consumption in MCvD
systems is proportional to the number of emitted molecules
[34], which is determined by the concentration symbols for a
given Ntx. Consequently, the maximum entropy distribution
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of X with a given average energy is [35, Sec. 12.2]

PXλ(x) =
eλx∑

x′∈X e
λx′ . (3)

Here, λ is non-positive, since the low energy cost symbols
are chosen more often than the high energy cost symbols. To
make the shaped symbols comply with the average energy
constraint, we scale X by a constellation scaling factor ∆,
which results in

E [∆X] =
E

Ntx
=
M − 1

2
. (4)

Note that (4) is compatible with the average energy
E [NtxX] = E of the uniformly-distributed concentration
symbols, since E [NtxX] = E is a special case of (4) when
∆ = 1. Given a constellation scaling factor ∆, the input
distribution can be chosen as

PX∆
(x) = PXλ(x), with λ : E [∆Xλ] = (M − 1)/2. (5)

The value of λ, for which the condition of (5) is fulfilled, can
be efficiently calculated by the bisection method, since E [Xλ]
is a strictly monotonically increasing function of λ. Based on
(5) we can know that for any ∆, the distribution PX∆

(x)
meets the average energy constraint. Now the objective is
to find the optimum ∆, denoted by ∆∗, that maximizes the
mutual information over all the possible input distributions
PX∆(x), i.e.,

∆∗ = arg max
∆
{I(X∆;Y )} . (6)

Note that the mutual information I(X∆;Y ) is a unimodal
function of ∆. Therefore, the value of ∆∗ can be calculated
by the golden section method.

III. PROBABILISTIC CONSTELLATION SHAPING

A. Principles of Concentration Shaper

In this subsection, we first show the principles of three
concentration shapers with the input bits and output sequences
having fixed lengths. They map K uniformly distributed input
bits to the blocklength N sequences of concentration symbols
X̃N ∈ XN with the output distribution PX̃N . Then, we
prove that the SM with an appropriate cost function is the
optimal concentration shaper that minimizes its informational
divergence to the target distribution.

1) Constant Composition Distribution Matching: In this
category, we introduce the CCDM, which is widely used in
optical communications, as a representative of the distribution
matching methods [28]. The CCDM algorithm requires as
inputs the symbol set X , blocklength N , and target distribution
PX . The idea of CCDM is to design the set of N -symbol
sequences with a fixed empirical distribution PX̄ to emulate
the desired distribution PX . To this end, a constant composi-
tion constraint is imposed on the output sequences X̃N , such
that all sequences have the same concentration composition,
denoted by nx ≈ NPX (x) , x ∈ X , which is the number
of times that the symbol x appears in any one sequence.

Consequently, the target distribution can be quantized as an
empirical distribution as

PX̄ (x) =
nx
N
. (7)

The length K of input bits is calculated as K =⌊
log2

N !∏
x∈X nx!

⌋
. Furthermore, the transmission rate of CCDM

with N -symbol sequences is

Rt,CCDM =
K

N
=

1

N

⌊
log2

N !∏
x∈X nx!

⌋
, (8)

in bits per channel use (bpcu). The empirical distribution
can converge to the target distribution asymptotically as the
blocklength N increases, which will be explained in Fig. 2.
However, when N is large, it is infeasible to store the
codebook of CCDM. To implement the CCDM effectively,
arithmetic coding can be used to perform the mapping from
data bits to concentration sequences online [28].

2) Enumerative Sphere Shaping: Unlike the CCDM that
emulates the target distribution by a one-dimensional dis-
tribution, SpSh algorithms aim at constructing an energy-
efficient N -dimensional signal space by designing the set of
output sequence comprising N concentration symbols [21],
[29], [30]. The N -symbol sequence is denoted as x(N) =
[x1, . . . , xn, . . . , xN ]. The SpSh-based scheme starts with a
transmission rate given by

Rt,SpSh =
K

N
. (9)

Then, according to a certain sorting principle, the SpSh scheme
chooses 2K number of N -symbol sequences X̃(N) ∈ X (N),
which construct a codebook C. The letter distribution PX̄ of
the codebook C, i.e., the probability of drawing a symbol x
from the whole codebook, is given by

PX̄ (x) =
1

N2K

∑
x′(N)∈C

nx(x′
(N)

), (10)

where nx(x′
(N)

) = |{i : x′i = x}| is the number of times that
the symbol x occurs in x′(N).

The idea of ESS is to use the N -symbol sequences with
the maximum-weight constraint WESS [21]. The weight of
an N -symbol sequence is calculated by W (N) =

∑N
n=1 xn.

The parameter WESS should also be the minimum weight
such that the set of N -symbol sequences, defined as CESS ={
x(N)

∣∣W (N) ≤WESS

}
, satisfies

|CESS| ≥ 2K . (11)

Next, ESS lexicographically orders all |CESS| sequences, and
then outputs the first 2K sequences X̃(N) ∈ CESS with smaller
indices. The index of a sequence is defined as the number
of sequences that are lexicographically smaller. To implement
ESS, we can construct an enumerative concentration trellis
[21], based on which the mapping of indices to sequences can
be realized in an N -step recursive manner.

Remark 1: As ESS orders sequences lexicographically, it is
in general unable to yield a set of 2K sequences having the
minimum average energy.
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3) Shell Mapping: In this subsection, we introduce the SM
algorithm to construct the most energy-efficient signal space.
The SM assigns a cost function C(x) to each symbol x in X
[29], [30]. The idea of SM is to sort the N -symbol sequences
based on the sequence cost of

∑N
n=1 C(xn). Then, SM aims at

finding the codebook CSM consisting of the 2K concentration
sequences X̃(N) with the lowest sum sequence cost, which
can be described as

CSM = min
C⊆X (N),|C|=2K

 ∑
x(N)∈C

N∑
n=1

C(xn)

 . (12)

The SM algorithm can be implemented via the divide-and-
conquer principle [29] or using the sequential encoding [30].

To derive an appropriate cost function of the SM, the
informational divergence to the target distribution of (3) is
minimized. Here the informational divergence, also known as
Kullback-Leibler divergence, between two distributions PX̄
and PX on X is defined as [35]

D (PX̄‖PX) =
∑
x∈X

PX̄(x)log2

PX̄(x)

PX (x)
, (13)

which reflects the rate loss caused by the shaping operation
when using the distribution PX̄ to approximate the distribu-
tion PX .

Proposition 1: For MCvD systems, the SM with the cost
function of

C(x) = x (14)

is the optimal concentration shaper that minimizes the infor-
mational divergence to the target distribution.

Proof: To minimize the rate loss caused by the shaping
operation, (13) suggests to minimize the informational diver-
gence between the output distribution of the concentration
shaper PX̃(N) and the target distribution PX . Therefore, the
divergence-optimal concentration shaper outputs the codebook
as

Ĉ = arg min
C⊆X (N),|C|=2K

{
D
(
PX̃(N)‖PNX

)}
(a)
= arg min
C⊆X (N),|C|=2K

−∑
x(N)∈C

log2P
N
X

(
x(N)

)
(b)
= arg min
C⊆X (N),|C|=2K

−∑
x(N)∈C

N∑
n=1

(
λxn − log2

∑
x′∈X

eλx
′

)
(c)
= arg min
C⊆X (N),|C|=2K

 ∑
x(N)∈C

N∑
n=1

xn

 , (15)

where (15a) is valid since every sequence x(N) in the code-
book C is chosen with equal probability, i.e., PX̃(N)(x(N)) =
2−K . For a sequence of independent and identically distributed
random variables, we have

PNX

(
x(N)

)
=

N∏
n=1

PX(xn). (16)

100 101 102 103

N

10-2

10-1

100

N
or

m
al

iz
ed

 In
fo

rm
at

io
na

l D
iv

er
ge

nc
e 

(b
pc

u)

SM
ESS
CCDM
SpSh. Approx.

×3.5

×1.85

Fig. 2. Rate loss comparison of SM, ESS, and CCDM based on the
normalized informational divergence versus different blocklengths N . The
target transmission rate is Rt = 1 bpcu with QCSK.

After substituting (3) and (16) into the right-hand side of
(15a), we obtain (15b). The equality (15c) comes from two
facts: a) λ is negative, as PX is non-uniformly distributed; b)
any translation and positive scaling applied on the objective
function will not change the optimization and hence the
resultant codebook. After substituting the cost function (14)
into the objective function of SM (12), we obtain the same
result of (15). Therefore, the SM with the cost function of
(14) minimizes the rate loss.

B. Performance of Concentration Shaper

In this subsection, we compare the rate loss performance of
different concentration shapers. For the convenience of com-
parison, we choose the normalized informational divergence
between the output distribution of the concentration shaper
PX̃(N) and the target distribution PX to measure the rate loss,
which can be calculated by [28]

D
(
PX̃(N)‖PNX

)
N

=
∑
x∈X
−PX̄ (x)log2PX (x)−Rt, (17)

where PX̄ and Rt are respectively the empirical distribution
(or the letter distribution) and the transmission rate of the
corresponding concentration shaper, as shown in (7)-(10).

Figure 2 compares the different concentration shapers in-
volving the CCDM, ESS, and SM for the MCvD systems
in terms of the normalized informational divergence versus
the blocklength N . We consider the quadruple CSK (QCSK)
with the alphabet X = {0, 1, 2, 3} and the target transmission
rate of Rt = 1 bpcu. To satisfy the transmission rate Rt,
the CCDM and ESS calculate the nx and WESS respectively
for each blocklength N , such that the N -dimensional signal
space contains at least 2NRt signal points. The SM uses the
cost function of (14). When the blocklength N is large, it is
cumbersome to calculate the letter distribution of the SpSh
schemes in (10). To this end, we use the partial histograms
[36] that can effectively approximate the letter distribution. We
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TABLE I
MSM SET CMSM FOR N = 4, K = 4, AND M = 4

I x(N) W (N) I(N) I x(N) W (N) I(N)

0 (0, 0, 0, 0) 0 0 8 (1, 0, 1, 0) 2 3

1 (1, 0, 0, 0) 1 0 9 (0, 1, 1, 0) 2 4

2 (0, 1, 0, 0) 1 1 10 (1, 0, 0, 1) 2 5

3 (0, 0, 1, 0) 1 2 11 (0, 1, 0, 1) 2 6

4 (0, 0, 0, 1) 1 3 12 (0, 0, 2, 0) 2 7

5 (2, 0, 0, 0) 2 0 13 (0, 0, 1, 1) 2 8

6 (1, 1, 0, 0) 2 1 14 (0, 0, 0, 2) 2 9

7 (0, 2, 0, 0) 2 2 15 (3, 0, 0, 0) 3 0

can observe from Fig. 2 that, at N = 4, the SM can reduce
by a factor of about 1.85 in the normalized informational
divergence as compared to the ESS. Moreover, at a target
divergence of 0.1 bpcu, the SM scheme can be operated with
a blocklength that is about 3.5 times smaller than that required
by the CCDM scheme. It is worth noting that the complexity
of MC systems is critically restricted whilst the blocklength is
largely related to the complexity. Hence, the superiority of SM
over CCDM and ESS in terms of informational divergence is
important for MC applications.

C. Implementation of SM for MC

In this subsection, we design an MSM algorithm to imple-
ment the PCS-CSK for information transmission over MCvD
channels, where signals are corrupted by ISI and the signal-
dependent noise.

The objective of SM (12) with the cost function (14)
implicitly indicates that all possible N -symbol sequences x(N)

need to be sorted according to the sequence weight W (N).
For the sequences with the same weight W (N), we first sort
the sequences, whose high energy cost symbols occur first
in the sequences, to reduce the interference on the following
sequences. This is the core idea of our MSM scheme. Owing
to this arrangement, MSM can mitigate the inter-sequence
interference. This is expected since a high-energy cost symbol
interferes more severely with the subsequent sequences than
a low-energy cost symbol at the same position. The MSM
scheme can be implemented with the aid of a look-up table.

Example 1 (Look-up table for MSM): For ease of under-
standing, Table I presents an example of MSM for N = 4,
K = 4, and M = 4, where an index I of information bits
is one-to-one mapped to a symbol sequence x(N). With the
MSM scheme, all the 2K sequences x(N) are sorted based on
their weights W (N), as shown in the third column of Table I.
For the sequences having the same weight, we assign a smaller
index I(N) to the sequence whose high energy cost symbols
occur in the earlier positions, where I(N) represents the index
of N -symbol sequence with the weight W (N). For example,
for the sequences with the weight W (N) = 2, (2, 0, 0, 0) is
assigned the smallest index I(N) = 0, since all the sequence
weight is given by symbol 2 in the first position. By contrast,
the highest index is allocated to (0, 0, 0, 2), due to the high-
energy cost symbol being the last element. In this way, the 2K

sequences x(N) are ordered and assigned the corresponding
indices of I .

However, at a large blocklength, implementing the MSM
via a look-up table requires huge memory to buffer the
table at transceivers. Furthermore, it is cumbersome to sort
all the symbol sequences directly. Therefore, to simplify the
sorting problem, we propose a divide-and-conquer algorithm,
which is shown in Appendix A. According to this sorting
algorithm, we design the corresponding MSM decoder, which
maps a sequence of N concentration symbols to an index I
representing K information bits, and hence avoid buffering
a huge table at transceivers. The detailed decoding process is
described in Algorithm 1 of Appendix B. The inverse mapping,
i.e., MSM encoder, is given in Algorithm 2 of Appendix C.

IV. RECEIVER DESIGN AND PERFORMANCE ANALYSIS

A. Receiver Design

Since the concentration samples are mutually independent
provided that Te > r2/D [33], the conditional probability
mass function of yu is given as

f
(
yu
∣∣xu,xL ) =

N∏
n=1

1

yu [n]!
(Λn (u))

yu[n]
e−Λn(u). (18)

Let us employ a GML sequence detector, which assumes
that the ideal knowledge about ΛIinter|xL is available at the
receiver, to reveal the potential performance of PCS-CSK.
Based on (2) and (18), the GML sequence detection can be
achieved via solving the problem

x̂u = arg max
xu∈CMSM

{
f
(
yu
∣∣xu,xL )}

= arg max
xu∈CMSM

{
N∑
n=1

yu [n] ln (Λn (u |xu ))−Λn (u |xu )

}
.

(19)

After obtaining x̂u, the receiver maps it to an index of
the K information bits based on the mapping table or the
decoding algorithm of MSM, as discussed in Section III. Note
that although concentration symbols xu[n] are non-uniformly
distributed, the 2K possible N -sequences xu are selected
equiprobably. Hence, the ML detection of (19) is equivalent
to the maximum a posteriori detection.

However, the GML detection is impractical, as obtaining
the exact knowledge of xL at the receiver is impossible.
Therefore, we propose an RML detector, which uses the
expectation of inter-sequence interference, denoted by Λn, to
replace ΛIinter|xL . Specifically, for the n-th symbol within the
current N -sequence, Λn can be calculated as

Λn = E
[
ΛIinter|xL

]
= E

Le∑
`=n

h[`]. (20)

Then, the detection criterion of the RML detector can be
derived by substituting (2) and (20) into (19).

Due to the MSM codebook CMSM ⊆ X (N), the complexity
of both GML and RML is up to O(MN ), which is intolerable
even for a medium blocklength N . To this end, we propose a
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low-complexity detection method, which first detects the front
N/2 symbols of an N -sequence xu, represented as xu,f , by

x̂u,f = arg max
xu,f∈C

W
(N)
max

{ N/2∑
n=1

yu[n] ln (Λn (u |xu,f ))

− Λn (u |xu,f )
}
, (21)

where C
W

(N)
max

is the MSM codebook consisting of N/2-

sequences with a maximum sequence weight constraint W (N)
max

that is calculated as

W (N)
max = arg min

W
{z(N)(W + 1) ≥ 2K}, (22)

where z(N)(W ) is the number of N -symbol sequences with
weights less than W . Then, similarly, the other N/2 symbols
of xu, denoted by xu,l, is detected via

x̂u,l = arg max
xu,l∈C

W
(N/2)
l

{ N∑
n=N

2 +1

yu[n] ln (Λn (u |xu,l , x̂u,f))

− Λn (u |xu,l, x̂u,f )

}
, (23)

where W
(N/2)
l = W

(N)
max − W

(N/2)
f , and W

(N/2)
f represents

the weight of x̂u,f . The arguments of the low-complexity
ML detector indicate that it can reduce the computational
complexity to O(M

N
2 ). The low-complexity detection above

is compatible with both the GML and RML detectors.
Remark 2: The complexity of detection can be further re-

duced by dividing the N -sequence into more parts with smaller
blocklength and detecting them separately. Eventually, the
sequence detector degrades into a symbol-by-symbol detector.
However, with the reduction of blocklength, the detection
will achieve degraded performance. Therefore, this approach
allows to strike a trade-off between complexity and detection
performance.

B. Bit Error Rate

In this subsection, the BER upper bounds of both the GML
and RML detectors are derived. Assume that xu = sj is
transmitted. Then, according to (19), sj is incorrectly detected
as sj′ with j′ 6= j, if

N∑
n=1

yu[n] ln

(
Λn (u |sj )

Λn (u |sj′ )

)
− Λn (u |sj ) + Λn (u |sj′ ) ≤ 0.

(24)

When Λn (u) is large enough, the Poisson distribution for
yu[n] can be approximated as the Gaussian distribution, i.e.,
yu[n] ∼ N

(
Λn (u) ,Λn (u)

)
[11]. Since the observations

yu[n] are independent in terms of n, the left-hand side of
(24) can be approximated by a Gaussian distributed random
variable Y . Given xL, sj , and sj′ , the mean and variance of

Y are respectively given by

µY |xL =

N∑
n=1

Λn (u |sj ) ln

(
Λn (u |sj )

Λn (u |sj′ )

)
− Λn (u |sj )

+ Λn (u |sj′ ) ,

σ2
Y |xL =

N∑
n=1

Λn (u |sj ) ln2

(
Λn (u |sj )

Λn (u |sj′ )

)
. (25)

According to (25), the conditional pairwise error probability
that the detector erroneously detects sj as sj′ is

Pr
(
sj → sj′

∣∣xL ) = Q

(
µY |xL

σY |xL

)
, (26)

where Q (x) = (2π)
−1/2 ∫∞

x
e−t

2/2dt. The average pairwise
error probability can be obtained by taking all the possible xL

into account, which can be expressed as

Pr (sj → sj′) =
1

2KL

∑
xL∈CLMSM

Q

(
µY |xL

σY |xL

)
. (27)

According to the union-bounding technique, an upper bound
for the BER can be expressed as

Pber ≤
1

K2K

2K∑
j=1

2K∑
j′=1,j′ 6=j

Pr (sj → sj′) e (sj → sj′), (28)

where e (sj → sj′) denotes the number of erroneous bits in the
case that sj is erroneously detected as sj′ . Note that computing
(27) is an arduous task when K or L is large. To this end,
we can use the Monte Carlo approach to obtain an accurate
evaluation of Pr (sj → sj′) [11].

C. Achievable Rate
In this subsection, we analyze the ergodic AR of PCS-

CSK when assuming the ideal knowledge of inter-sequence
interference ΛIinter|xL or its expectation Λn at the receiver.
The ergodic AR of PCS-CSK is defined as [37]

R =
1

N
∣∣CLMSM

∣∣ ∑
xL∈CLMSM

I
(
xu;yu

∣∣xL ). (29)

According to the definition of mutual information, R can be
expressed as [35]

R = Rt −
1

N
∣∣CLMSM

∣∣ ∑
xL∈CLMSM

H
(
xu
∣∣yu,xL ). (30)

In the sequel, we turn to calculate H
(
xu
∣∣yu,xL ) in (30), i.e.,

H
(
xu
∣∣yu,xL )=−

2K∑
j=1

∫
yu

Pr (xu = sj)f
(
yu
∣∣xu = sj ,x

L
)

× log2

(
Pr (xu = sj) f

(
yu
∣∣xu = sj ,x

L
)

f (yu |xL )

)
dyu, (31)

where Pr (xu = sj) = 2−K , f
(
yu
∣∣xu = sj ,x

L
)

is given by
(18), and

f
(
yu
∣∣xL ) =

1

2K

2K∑
j′=1

N∏
n=1

1

yu [n]!
(Λn (u |sj′ ))

yu[n]

× e−Λn(u|sj′ ). (32)
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TABLE II
PARAMETERS USED FOR PERFORMANCE STUDY

Parameter Variable Value
Blocklength N {2, 4, 6, 8}
Cardinality of symbol set M {2, 4, 8}
Radius of receiver r 5 µm
Communication distance d 25 µm
Diffusion coefficient D 2.2× 10−9 m2/s
Transmission rate Rt [0.75, 2] bpcu
Data rate Rb [2, 10] bps
Emission interval Te [0.1, 0.25] s
Mean of environment noise λenv 0.0001
Length of channel memory Le [3, 28]

Upon substituting these results into (31) and carrying on some
simplification, we obtain

H
(
xu
∣∣yu,xL ) =

1

2K

2K∑
j=1

Eyu|xu=sj ,xLlog2

 2K∑
j′=1

N∏
n=1

(
Λn (u |sj )

Λn (u |sj′ )

)yu(n)

eΛn(u|sj )−Λn(u|sj′)
.
(33)

Finally, when substituting (33) into (30), the AR of PCS-CSK
is

R = Rt −
1

N
∣∣CLMSM

∣∣ 2K ∑
xL∈CLMSM

2K∑
j=1

Eyu|xu=sj ,xLlog2

 2K∑
j′=1

N∏
n=1

(
Λn (u |sj )

Λn (u |sj′ )

)yu(n)

eΛn(u|sj )−Λn(u|sj′)
,
(34)

which has the unit of bpcu.
Note that the derived AR (34) is applicable to both the GML

and RML detectors by substituting the corresponding Poisson
parameters Λn(u) into (34).

V. NUMERICAL RESULTS

In this section, we first investigate the impact of the constel-
lation scaling factor on the BER and AR performance of the
PCS-CSK systems. Next, we compare the ordering method for
the sequences having the same weight of MSM with that of
SM [38]. We then compare the proposed PCS-CSK employing
MSM with the conventional equiprobable signaling schemes.
Finally, for a relatively large blocklength, we evaluate the
BER performance of MSM when the low-complexity detection
method is employed.

To compare the AR performance fairly, the proposed PCS-
CSK uses the same average number of emitted molecules
per channel use E and emission interval Te as the uniformly
distributed signaling. For a fair comparison of BER perfor-
mance, we maintain the same average number of emitted
molecules per bit Eb and also the same data rate Rb, where
Eb = E/Rt and Rb = Rt/Te. The parameters used in
the performance study are listed in Table II. In addition, for
the BER and AR results, the RML and GML detectors are
employed, respectively, unless otherwise stated.
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Fig. 3. Comparison of achievable rate of MSM versus the constellation
scaling factor ∆, for N = 4, Te = 0.25 s, and different M and E.
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Fig. 4. Comparison of BER of MSM versus the constellation scaling factor
∆, for N = 4, M = 4, Rb = 2 bps and different Eb.

A. Impact of Constellation Scaling Factor ∆

Figure 3 illustrates the impact of the constellation scaling
factor ∆ on the AR of the PCS-CSK systems employing MSM
for N = 4, Te = 0.25 s, and different values of E and M .
It can be observed that AR is a unimodal function of ∆.
This is expected because, under the average energy constraint,
a constellation scaling ∆ close to 0 or much larger than 1
will substantially reduce the entropy of the transmitter output,
leading to the deterioration of the transmission rate Rt. As
shown by the solid lines in Fig. 3, for a larger E, the maximum
AR is obtained at a smaller ∆. In particular, when E = 15000
and M = 4, the uniformly distributed signaling (corresponding
to ∆ = 1) maximizes the AR. This is because MSM constructs
an energy-efficient signal space at the cost of decreasing the
transmission rates Rt. Therefore, when the available energy
is sufficient, e.g., E = 15000, we can employ a denser signal
constellation (M = 8) shown by the dotted curve in Fig. 3 to
improve Rt. Then, the MSM algorithm can achieve a higher
AR than the uniformly distributed signaling with 1 < ∆ < 3.

In Fig. 4, we present the simulated and analytical BERs of
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Fig. 5. BER comparison between the ordering method of SM and that of
MSM versus the average number of emitted molecules per bit Eb, for Rt = 1
bpcu, M = 4, N = 4, and different data rates Rb.

MSM in terms of ∆, considering M = 4, N = 4, Rb = 2
bits per second (bps), and different Eb. It is observed that the
theoretical BER matches well with the simulated counterpart.
Moreover, as ∆ increases, the BER performance improves in
any of the three cases of Eb. This can be attributed to the fact
that increasing ∆ can enlarge the minimum distance between
signal points, which reduces the pairwise error probability
of (27).

B. Comparison of Different Ordering Methods

Figure 5 compares the ordering method for the sequences
having the same weight of MSM with that of SM [38] in terms
of BER performance. In this BER comparison, we choose
Rt = 1 bpcu, M = 4, and N = 4. We assume that the data
rates are Rb ∈ {2, 4, 6} bps that reflect the considered channel
memory lengths Le. It is observed that the ordering method of
MSM outperforms that of SM for all data rates. This can be
explained by two facts: a) the ISI effect is not considered
in SM but in MSM; b) MSM can not only mitigate the
inter-sequence interference but also leverage the constructive
effect of the intra-sequence interference when equipping the
ML detector.

C. Equiprobable Signaling vs. Shaped Signaling

For a fair comparison of the shaped non-equiprobable
signaling and conventional equiprobable signaling, the car-
dinality M of the symbol set for the PCS-CSK employing
MSM must be increased to allow the MSM to operate at the
same transmission rate Rt as the conventional equiprobable
signaling. Furthermore, in both cases, we assume the ML
sequence detection.

We compare MSM with OOK in terms of the AR and
investigate the impact of blocklength N in Fig. 6. The pa-
rameters are chosen as: M = 4 for MSM, Te = 0.1 s, Rt = 1
bpcu, and N ∈ {2, 4, 6}. As shown in Fig. 6, both MSM
and OOK present better performance at larger blocklengths N .
This is expected since the increase of N results in the reduced
pairwise error probability normalized by N . Furthermore, it
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Fig. 6. Comparison of achievable rate between MSM and OOK versus E,
for Rt = 1 bpcu, Te = 0.1 s, and different blocklengths N .
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Fig. 7. Comparison of BER between MSM, OOK, and QCSK versus Eb,
for N = 4, Rb = 10 bps, and different detectors.

can be observed that as N increases, the AR gain of MSM
over OOK improves. However, the increment of the AR gain
decreases with the increase of N . This can be explained by
two facts: a) a larger N decreases the rate loss due to the
shaping, as shown in Fig. 2; b) when N ≥ 4, further increasing
the blocklength slightly only makes a small contribution to
compensating for the rate loss. From the results of Fig. 6, we
are implied that a blocklength of 4 is usually enough to achieve
a desired AR gain, and it is dispensable to further increase N
at the cost of system complexity.

Figure 7 shows the BER upper bound and comparison of
the BERs of MSM and OOK at the same transmission rate
Rt = 1 bpcu. To illustrate the performance improvement by
MSM, the BER of QCSK without invoking MSM is also
depicted. Note that, to maintain the same data rate Rb, the
emission interval of the conventional QCSK scheme is twice
that of MSM and OOK schemes. We assume Rb = 10 bps,
N = 4, and the RML and GML detectors. As shown in Fig. 7,
the BER upper bounds of MSM with the RML and GML
detectors become asymptotically tighter as Eb increases. It
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Fig. 9. BER comparison of the MSM assisted PCS-CSK systems with
different detectors, for M = 4, Rt = 1 bpcu, Rb = 2 bps, and N = 8.

is also observed that the MSM scheme provides significant
improvement of the BER performance, when compared to
QCSK. This is expected since MSM is capable of using the
energy more efficiently and reducing the impairment of signal-
dependent noise. Moreover, compared with OOK, MSM can
save about 2000 molecules for transmitting one bit at a BER of
10−3, when equipped with the GML detector. This results from
the sorting algorithm of MSM, which aggregates the sequence
weight into the first few positions of an N -sequence, thereby
decreasing the inter-sequence interference while increasing
the intra-sequence interference that can be leveraged by the
ML detectors.

In Fig. 8, we display the average number of emitted
molecules per channel use required to obtain a BER of
10−3, when employing the shaped signaling and the uniformly
distributed signaling at different transmission rates Rt. The
blocklength of N = 4 is chosen to show that the MSM
can obtain a desired shaping gain at an extremely short
blocklength. As shown in Fig. 8, at Rt = 1 bpcu, the PCS-
CSK employing MSM outperforms OOK by about a shaping

gain of 0.93 dB. At Rt = 2 bpcu, this gain can reach about
1.50 dB, which is close to the upper bound of the shaping gain
of 1.53 dB over additive white Gaussian noise channels [22].
In addition, we observe that the MSM can provide a finer rate
granularity than the uniformly distributed signaling.

D. Low-Complexity Detector for Large Blocklength

In Fig. 9, we compare the BER attained by the low-
complexity detection with that by the GML and RML at
a relatively large blocklength of N = 8 for the PCS-CSK
systems employing the MSM. The parameters are chosen as:
M = 4, Rt = 1 bpcu, and Rb = 2 bps. We can observe
that the low-complexity detectors can achieve similar BER
performance to the GML and RML detectors, and obtain a
BER of 10−3 by emitting 3000 extra molecules per bit than
the RML detector.

VI. CONCLUSION

In this paper, we have proposed an MSM scheme as the
concentration shaper for the PCS-CSK systems. By using the
concentration sequences with the lowest average sequence
weight, the MSM can construct the most energy-efficient
signal space. We have proved that MSM is an informational
divergence optimal concentration shaper that has better rate
loss performance than CCDM and ESS. Furthermore, it has
been shown that the superiority of MSM in rate loss grows
as the blocklength decreases, which renders MSM suitable for
applications in MC systems, where low-complexity transceiver
is critical. Additionally, to mitigate the inter-sequence inter-
ference, the proposed MSM can aggregate the number of
emitted molecules in the first few positions of a sequence,
which is beneficial to the ML-based detection. Therefore, we
have combined MSM with three ML detectors to leverage the
constructive effect of intra-sequence interferenceïijŇwhere the
trade-off between complexity and detection performance has
been considered. The numerical results have demonstrated that
MSM is capable of providing better BER and AR performance
than the uniformly distributed signaling. A shaping gain of
0.93 dB can be achieved by the MSM scheme over the
prevailing OOK scheme.

APPENDIX A
SORTING ALGORITHM OF MSM

With this sorting algorithm, an nc-dimensional sorting prob-
lem of x(nc) is split into two lower-dimensional ones expressed
as x(nf )

f and x
(nl)
l , comprising the first nf symbols and the

last nl symbols of x(nc), respectively, with nc = nf + nl.
This process continues on the obtained x

(nf )
f and x

(nl)
l in a

recursive way, until getting nc/2 number of two-dimensional
problems. Let us define the weights and indices of x

(nf )
f

and x
(nl)
l as W (nf )

f and I
(nf )
f , as well as W (nl)

l and I
(nl)
l ,

respectively. Then, given W
(nf )
f , W (nl)

l , I(nf )
f , and I

(nl)
l , the

MSM algorithm sorts the nc-symbol sequences with the same
weight W (nc) based on the following operations:
• First, a sequence whose last nl symbols x

(nl)
l have a

lower weight W (nl)
l is listed first. For example, in Table
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Algorithm 1 Decoder of MSM

Require: N , x(N) = [x1, x2, . . . , x2i−1, x2i, . . . , xN−1, xN ]
Ensure: I

1: for i = 1 to N/2 do
2: compute W 2

i and I2
i by (35)

3: end for
4: W

(nf )
f ←W 2

1 , I(nf )
f ← I2

1 , W (nl)
l ←W 2

2 , I(nl)
l ← I2

2

5: for j = 2 to N/2 do
6: nc ← 2j
7: compute W (nc) and I(nc) by (36)
8: if nc < N then
9: W

(nf )
f ←W (nc), I(nf )

f ← I(nc),
W

(nl)
l ←W 2

j+1, I(nl)
l ← I2

j+1

10: else
11: break
12: end if
13: end for
14: W (N) ←W (nc), I(N) ← I(nc)

15: compute I by (37)
16: return I

I, (1, 1, 0, 0) is listed before (1, 0, 1, 0), as (0, 0) has a
lower weight than (1, 0).

• Second, for two sequences with equal W (nl)
l , we sort the

sequence whose last nl symbols have a smaller index
I

(nl)
l first. For example, in (1, 0, 1, 0) and (1, 0, 0, 1),

(1, 0) and (0, 1) have the same weight, but (1, 0) has
a smaller index than (0, 1). Hence, (1, 0, 1, 0) is listed
before (1, 0, 0, 1) as shown in Table I.

• Third, if two sequences have the same W (nl)
l and I(nl)

l ,
the sequence whose first nf symbols x(nf )

f have a smaller
index I(nf )

f is listed first. As seen in Table I, in (2, 0, 0, 0)

and (1, 1, 0, 0), (0, 0) and (0, 0) have the same W (nl)
l and

I
(nl)
l , but the index of (2, 0) is smaller than that of (1, 1).

Hence, (2, 0, 0, 0) is listed before (1, 1, 0, 0).

APPENDIX B
MSM DECODER

The decoding process is outlined in Algorithm 1. First,
the MSM decoder groups the N symbols into N/2 pairs
of symbols expressed as ([x1, x2], [x3, x4], . . . , [xN−1, xN ]),
where each pair is a 2-symbol sequence. Next, the weight and
index of each 2-symbol sequence are calculated. Specifically,
for a pair of [x2i−1, x2i], i = 1, 2, . . . , N/2, its weight W 2

i

and index I2
i are given by

W
(2)
i = x2i−1 + x2i,

I
(2)
i =

{
x2i, W

(2)
i < M,

M − 1− x2i−1,W
(2)
i ≥M.

(35)

Then, the MSM decoder combines the N/2 number of 2-

Algorithm 2 Encoder of MSM
Require: N , I
Ensure: xN

1: compute W (N) and I(N) by (38)
2: W (nc) ←W (N), I(nc) ← I(N)

3: for j = N/2 to 2 do
4: nc ← 2j, nf ← (nc − 2), nl ← 2

5: compute W (nf )
f , I(nf )

f , W (nl)
l and I(nl)

l by (39)
6: W

(2)
j ←W

(nl)
l , I(2)

j ← I
(nl)
l

7: if j > 2 then
8: W (nc) ←W

(nf )
f , I(nc) ← I

(nf )
f

9: else
10: break
11: end if
12: end for
13: for i = 1 to N/2 do
14: compute [x2i−1, x2i] by (40)
15: end for
16: return x(N) = [x1, x2, . . . , x2i−1, x2i, . . . , xN−1, xN ]

symbol sequences recursively as

W (nc) = W
(nf )
f +W

(nl)
l ,

I(nc) =

W
(nl)

l −1∑
W ′=0

g(nl) (W ′)g(nf )
(
W (nc) −W ′

)
+ I

(nl)
l g(nf )

(
W

(nf )
f

)
+ I

(nf )
f , (36)

where g(n)(W ′) represents the number of n-symbol sequences
having the same weight W ′, and nl = 2. The value of
g(n)(W ′) is the coefficient of aW

′
in the generating functions

G(n)(a) = (1 + a+ · · ·+ aM−1)n. This procedure contin-
ues until an N -dimensional problem is generated, which is
characterized by W (N) and I(N). Finally, the index I of K
information bits can be calculated by

I = I(N) + z(N)(W (N)), (37)

where z(N)(W (N)) =
∑W (N)−1
i=0 g(N)(i) is the number of N -

symbol sequences with weights less than W (N).

APPENDIX C
MSM ENCODER

The MSM encoder is summarized in Algorithm 2. First,
based on I , W (N) and I(N) of the sequence x(N) are calcu-
lated by

W (N) = arg max
W ′

{z(N)(W ′) ≤ I},

I(N) = I − z(N)(W (N)). (38)

This N -dimensional problem is split into two lower-
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dimensional ones as

W
(nl)
l = arg max

W

{
W−1∑
W ′=0

g(nl) (W ′)g(nf )
(
W (nc) −W ′

)
≤ I(nc)

}
,

W
(nf )
f = W (nc) −W (nl)

l ,

I
(nl)
l =

(
I(nc) −

W
(nl)

l −1∑
W ′=0

g(nl) (W ′)g(nf )
(
W (nc) −W ′

)
− I(nf )

f

)
/g(nf )

(
W

(nf )
f

)
,

I
(nf )
f =

(
I(nc) −

W
(nl)

l −1∑
W ′=0

g(nl) (W ′)g(nf )
(
W (nc)W ′

))
%g(nf )

(
W

(nf )
f

)
, (39)

where nl = 2. This procedure is repeated until N/2 number of
two-dimensional problems are obtained. Finally, for each two-
dimensional problem, a 2-symbol sequence can be calculated
using{
W

(2)
i < M : x2i = I2

i , x2i−1 = W
(2)
i − x2i,

W
(2)
i ≥M : x2i−1 = M − 1− I(2)

i , x2i = W 2
i − x2i−1,

(40)

based on which the N -symbol sequence x(N) is composed.
Note that the proposed grouping strategy of x(nc) in the

encoder and decoder of MSM can be extended to the case
that nl is an even positive integer larger than two. Take the
MSM decoder with nl = 4 as an example. We assume that
the input of the MSM decoder is a 6-symbol sequence. First,
the MSM decoder groups these six symbols into three pairs
of symbols denoted by ([x1, x2], [x3, x4], [x5, x6]), where each
pair is a 2-symbol sequence, and calculates their weights and
indices based on (35). Then, the decoder combines the last two
pairs into a 4-symbol sequence and calculates its index and
weight based on (36). Furthermore, the first pair of 2-symbol
sequence and the obtained 4-symbol sequence are combined
into a 6-symbol sequence with nl = 4, whose weight and index
are calculated based on (36). Finally, we calculate the index
that represents the information bits based on (37). Moreover,
while the proposed algorithm cannot be directly applied to the
grouping strategy of nl = 1, the proposed grouping strategy of
nl = 2 can reduce the hardware complexity, since this strategy
requires fewer generating functions compared to nl = 1.
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