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UNIVERSITY OF SOUTHAMPTON 
ABSTRACT 

Faculty of Engineering and Physical Sciences 
School of Electronics and Computer Science 

Group of Smart Electronic Materials and Systems 

Doctor of Philosophy 
Nonlinear Dynamics Characterisation of Silicon Nanoelectromechanical Resonators 

by Fang Ben 

Nano-electro-mechanical system (NEMS) resonators have been widely used in 

multiple applications. However, their nonlinear behaviour has been considered as a 

nuisance until recent breakthroughs have illuminated the potential applications of 

nonlinear NEMS resonators such as neuromorphic computing and dynamic range 

enhancement for sensing applications. A comprehensive characterisation of the 

nonlinear behaviour is crucial for effective control, particularly in these emerging 

applications. This thesis reports a novel method to characterise nonlinear dynamics in 

doubly-clamped NEMS resonators by employing a novel parameter 𝛽𝑚 extracted via 

perturbation series to quantify mechanical nonlinearity. Electrostatic nonlinearity is 

derived into explicit expression to incorporate with 𝛽𝑚  to define the overall 

nonlinearity of the system. This method successfully explains the observed 

dependencies of nonlinear characteristics on DC actuation voltage and driving power 

under frequency modulation and 1-𝜔 mixing measurement schemes. Result shows the 

value of 𝛽𝑚 for NEMS with length of 2, 1.5, 1 μm is -1.5 × 10−5, -5.4× 10−5, -2.8 × 

10-5 m-2, respectively, regardless of measurement schemes, indicating the 𝛽𝑚  is an 

intrinsic property that only relates to the NEMS material and design. Moreover, this 

research presents a novel method for identifying the onset of hysteresis with 𝛽𝑚 . 

Through the analysis of NEMS beams of dimensions 2 μm and 1 μm, the hysteresis is 

expected to occur when DC at 1.61 V and 3.58 V, respectively. This result is later 

verified by experimental evidence. Furthermore, this study achieves the analysis 

systematic nonlinear response up to frequencies of 221 MHz, offering insights 

applicable to scaled NEMS resonators and emerging applications reliant on essential 

nonlinearity for device and system operations. 
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CHAPTER 1 

1. Introduction 
 

1.1. MEMS and NEMS  

Continual progress in the miniaturization of semiconductors and cost reduction are 

persistent demands in the field of integrated circuits (IC) research. Despite the 

significant achievement made, challenges such as off-state current leakage due to 

short channel effect [1] drain-induced barrier lowering (DIBL) [2], gate-induced drain 

leakage (GIDL) [3] or self-heating effect [4], are inevitable. Figure 1.1 shows the 

roadmap for semiconductor smart devices and presents main topics in micro- and 

nanoelectronics domain including ‘More Moore’ and ‘More than Moore’. In ‘More 

than Moore’ technologies, diversification in non-digital devices including 

hybridization with various platform offers diverse functionalities and also contributes 

miniaturization of electronic systems [5]. Wearable and portable devices which can 

enhance the human and environment interactions associated with intelligent sensors 

are further benefits of the ‘More than Moore’ platform. Micro-electro-mechanical 

systems (MEMS) provide a horizontal integration along with conventional IC 

platforms. This co-integration leads to the development of ultra-high-sensitivity and 

highly-integrated sensors that can detect, control, and interact with the physical world, 

paving the way towards advanced intelligent system.   
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Figure 1.1 The International Technology Roadmap for semiconductors 
recognizes a growing demand for both digital and non-digital features 
within a unified system, which is reflected in two key trends: the 
shrinking of digital functions through miniaturization, known as "More 
Moore," and the expansion of diverse functions beyond digital, known as 
"More-than-Moore." [5, 6]. 

The rapid development of MEMS since 1970s has successfully boosted many fields 

including aeronautics, automobiles, and consumer applications. From 1990s, MEMS 

has been widely used as horizontal architectures as a part of mini circuit. For instance, 

(i) micro-accelerometers have been widely integrated on a large scale into cars, 

consoles, and mobile phones [7], (ii) MEMS switches are an ideal choice because of 

its extremely low OFF-state current thanks to switching in mechanical structure, while 

it also allows higher current in ON-state than conventional transistor [8], and 

(iii)MEMS memory, reported by [9], behaves as a suspended gate (SG) MOSFET that 

utilizes the charging of the gate dielectric by direct mechanical contact of the gate to 

achieve bi-stability  and hysteresis in the current-voltage (I-V) characteristics,  

allowing controllable state operation without significant degradation for up to 105 

cycles. These achievements are considered as substantial solutions for the challenges 

in era of ‘More than Moore’ and ‘Beyond CMOS (complementary metal-oxide 
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semiconductor)’. 

  

Figure 1.2 Typical sizes from MEMS to NEMS [10]. 

 

Figure 1.3 Total number of indexed documents recorded in Scopus 
dataset from 2000 to 2020 [10]. 

The development of technology to scale down silicon devices pave the way to 

continuously shrink the size of MEMS device. Therefore, when the critical dimension 

of lithography approached to the nanoscale in early 2000s, an idea of Nano-Electro-

Mechanical system (NEMS) emerged. Figure 1.2 shows an example of the typical 

sizes and designs from MEMS to NEMS. The benefits of building electro-mechanical 
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structure in nanoscale include low power consumption, high sensitivity, and low 

current leakage. Among studies of various NEMS devices, NEMS resonators are one 

of the significant parts associated with their high-frequency operation and potential 

applications for high-sensitivity sensors due to their ultrasmall scale. Figure 1.3 shows 

the growing trend of NEMS research since 2000s. Many have reported that NEMS 

possess great potential for applications in atomic-level mass sensing [11, 12], nano-

radio detection [13], and fundamental physics investigation [14]. These applications 

demonstrate the versatility of NEMS resonators in various fields.  

While the NEMS resonators are getting great attention, one cannot ignore their 

nonlinear behaviour. The nonlinear response of MEMS/NEMS resonators was firstly 

reported by Andres et al. [15] in 1987. In recent years, there has been a growing 

interest in the nonlinear behaviour of NEMS resonators due to their small mass and 

size, which allow the nonlinear resonance regime to be easily reached [16]. While 

nonlinear behaviour is generally considered undesirable in common MEMS/NEMS 

devices operating in the linear regime, there have been cases where nonlinear 

characteristics are actively utilized to improve device performance or achieve desired 

functionality. Sansa et al. [17-21] demonstrated a concept of a nonlinear detection 

scheme to amplify the resonance response and to enhance the dynamic range for 

sensing applications. This approach allows for more sensitive detection of signals, 

which can be particularly useful in applications where signals are weak. Another 

example of utilizing nonlinear behaviour is the implementation of a neural network 

using coupled MEMS oscillator arrays. In this case, the nonlinear behaviour of 

MEMS resonators with hysteresis characteristics can play a pivotal role in 

demonstrating fading memory functionality [22]. An alternative approach for 

neuromorphic computing hardware based on nonlinear MEMS oscillators has also 

been proposed in [23] and [24]. In general, the use of nonlinear behaviour in 

MEMS/NEMS resonators has become an increasingly popular topic of research, 

particularly in the development of advanced sensing and computing systems.  
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1.2. Motivation and Scope of Thesis 

1.2.1. Reasons for the Nonlinear Analysis 

In nature, linearity is merely a conceptual framework in mathematics, representing an 

idealization. In truth, no physical system adheres precisely to the principles of 

linearization. Nevertheless, numerous natural phenomena and engineering systems 

exhibit behaviour closely resembling linearity, allowing for the development of 

mathematical models based on this assumption. Examples in mechanics include the 

constitutive laws for elastic materials like metals, structures experiencing minimal 

deformations, and linear viscous damping. For centuries, engineering has 

predominantly employed a linear methodology for design, modelling, and analysis, 

which has maintained simplicity. Due to this, nonlinear behaviour is often considered 

undesirable, therefore, its exploitation in certain contexts has the potential to improve 

device performance and enable new functionality. The continued exploration of 

nonlinear behaviour in MEMS/NEMS resonators is likely to lead to further advances 

in a variety of applications. This trend strongly suggests importance of detailed 

analysis of nonlinear dynamic behaviour of MEMS/NEMS resonators. In particular, 

towards highly-integrated MEMS/NEMS resonator arrays for neuromorphic 

computing or active system-level integration of MEMS/NEMS sensor arrays for 

Internet-of-Things (IoT) applications, it is very important to develop analytical or 

mathematical models to describe the operation of MEN/NEM resonators including 

their nonlinear behaviour with a certain level of accuracy. This research project began 

with the follow-up study based on the research by F.A Hassani and Y. Tsuchiya [25-

27]. A doubly-clamped silicon NEMS resonator was fabricated as a part of European 

FP7 NEMSIC project [25, 26] where DC and power dependence characterized in 

linear regime was later reported by Y. Tsuchiya et al in 2018 [27]. Among the past 

study on NEMS, nonlinear behaviour was observed but an in-depth understanding on 

its characteristics was missing. In the meantime, the numbers of reports related to 

nonlinear MEMS/NEMS potential applications further inspired this project to be 

motivated and work towards the nonlinear characterisation. A systematic model that 
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can be implemented to the analysis with respect to experimental data is an ideal 

method to not only reveal the origins of nonlinearity within the device but also to give 

thorough understanding and controllability of such a feature at system level. Hence, 

the analysis and modelling of nonlinearity in NEMS resonators are critical steps for 

the development of high-performance sensing and computing devices in future.  

 

1.2.2. Scope of Thesis 

This thesis has focused on the study of nonlinearity of the NEM resonators. The 

nonlinearity of NEMS stems from various origins. Mechanical nonlinearities consist 

of two sources, which are geometric nonlinearity and intrinsic material features. 

Tiwari et al., [28] summarized the details regarding how geometric nonlinearity 

affects the mechanical behaviour for MEMS/NEMS when it performs distinct effect 

with asymmetric device design. In our case, because of the symmetric design Hence, 

in this thesis, regarding the mechanical nonlinearity, theory and model focused on the 

study for intrinsic material effect. 

Another significant characteristic is how external excitation can not only tune the 

frequency resonance but also enlarge the nonlinearity. As a continuing study based on 

Y. Tsuchiya reports [27] in 2018, this thesis provides with an explicit mathematic 

explanation on how voltage is changing the overall stiffness in both linear and 

nonlinear regime with an integrate model that fitted with data from multiple 

experimental technique such as frequency modulation (FM), 1- 𝜔  mixing 

measurement, and thermomechanical noise by spectrum analyser. 

As a summary, this thesis proposes a novel method to study the nonlinear 

characterization on doubly-clamped Si-NEMS resonator. Scaling effect is covered 

where the lengths of Si-NEMS resonator are 2, 1.5, and 1 μm, the widths of Si-NEMS 

are 135, 105, and 75 nm. The nonlinear characteristic is explained from the origin of 

intrinsic mechanical nonlinearity 𝛽𝑚 and the electrostatic force nonlinearity 𝛽𝑒 where 

the frequency resonance voltage-tuning effect is also explained via a new linear 
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electrical stiffness 𝑘𝑒 . Each of the terms possess physical meaning and will be 

described further in chapter 2. 

 

1.3. Novelty Statement 

The scope of the thesis has covered the objective of the project. Novel contributions 

during the project are listed as follow: 

1) Resonance voltage tuning effect for Si-NEMS resonator. This project proposes 

explanation for how external voltage (DC, RF) alters the overall linear 

stiffness. For a very high-frequency (VHF) system operating at the nano-scale, 

the effect of the non-zero order terms in the Maclaurin series cannot be 

neglected, and its first-order term is therefore extracted for the linear stiffness 

study. This work is implemented with experimental data and has successfully 

explained the resonance voltage tuning effect with frequencies up to 220 MHz 

2) Nonlinearity voltage tuning effect for Si-NEMS resonator. This thesis gives an 

explicit theory to explain the nonlinearity voltage tuning effect for the silicon-

based NEMS resonator. The model for the voltage-dependent nonlinearity is 

proposed where the simulation of model fits well with the experimental data. 

3) Intrinsic mechanical nonlinearity. This thesis proposes a new way to define the 

intrinsic amount of nonlinearity and proves it as a constant. The novel part of 

this point is that in past research, the amount of the intrinsic mechanical 

nonlinearity with a separated discussion besides the voltage-dependent 

nonlinearity is lack of study. It is, for the first time, that a model is 

successfully fitted with both DC and RF power dependence with only one 

constant nonlinearity, which successfully defines the ‘intrinsic’ property, 

leading to a potential way to quantify and control the nonlinearity in nanoscale 

and VHF. 

4) Hysteresis behaviour study. In experiment, an optimization for recording the 

data is completed to achieve a ‘forward’ and ‘backward’ frequency sweep, 
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allowing an effective way to study the hysteresis behaviour of the Si-NEMS 

resonator frequency response. In model, the hysteresis behaviour is explained 

based on bifurcation theory for a cubic nonlinear system. Numerical approach 

is introduced to obtain multiple steady-state solutions under each of input 

frequency so that the simulation can be used to fit hysteresis response. 

5) Frequency Modulation (FM) Displacement to current conversion. To fit the 

experimental current signal data, a study regarding how to convert simulated 

displacement signal into current signal is completed. For FM method, 

traditional way is to introduce a ‘scaling factor’, which remains unknown in 

physical meaning. This thesis explained how ‘scaling factor’ is changed with 

respect to the DC and RF power and a detailed mathematic derivation is given. 

It is essential in nonlinear analysis as current signal detected by FM 

measurement was only applicable within linear regime in past research [29]. 

Once an explicit expression of conversion factor is given, it can be imported 

into the nonlinear model and give nonlinear response in current form and fulfil 

the fitting with FM measurement in nonlinear regime. 

 

1.4. Organization of the Thesis 

Chapter 2 provides with the literature review regarding the MEMS/NEMS 

nonlinearity characterization study in past few decades. Starting from the ground-

breaking observation on MEMS nonlinear behaviour completed in 1980s, this chapter 

summarizes the progress of the nonlinearity investigation based on its source, material, 

designs and measurements. After that, this chapter also covers the most up-to-date 

research on potential applications that utilizes nonlinear MEMS/NEMS as sensing 

enhancement, reservoir computing virtual node, and neuromorphic computing method 

with coupled oscillators. Chapter 3 shows the details of the nonlinear modelling 

theory for the Si-NEMS resonator. The derivation of parameters including dimensions 

(length, width, gap), voltages, RF signals, resonance characterization parameters are 

described individually. This chapter also explains the physical meaning of these 
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parameters within the model and how those parameters affect the experimental result, 

leading to an insightful understanding towards the modelling fitting. In addition, this 

chapter includes details of the displacement calculations by solving the model with 

Petrov-Galerkin Method (PGM) and Newton Raphson iteration. Calculation is 

completed by MATLAB, codes, fitting process, and parameters extraction, which are 

illustrated in this chapter. Chapter 4 is the results and discussion designated for 

frequency modulation (FM) measurements. First, this chapter described the scheme of 

the experimental setup of FM with a brief explanation of current modulation 

techniques in this scheme. Later, the displacement to current conversion factor and its 

derivation are described. The corresponding section explains the mathematical 

relationship between FM conversion factor with respect to the external DC voltage 

and RF power signal. Then, DC dependence, RF power dependence, and hysteresis 

behaviour tested under FM are shown with respect to different sample sizes. All the 

results are followed by model fitting and key parameters extracted from the fitting are 

discussed in this chapter. Chapter 5 is the results and discussion designated for 1-𝜔 

mixing measurements. This chapter begins with the description of the 1-𝜔 mixing 

setup where the signal detection mechanism is explained in detail. To have a closer 

link between the model and experiment, this part also covers the basis of the 

conversion between the current and displacement under the mixing measurement 

scheme. Then, a similar study method is applied for the mixing scheme where the DC 

dependence, RF dependence, and hysteresis behaviour are studied and followed by 

comprehensive model fitting, and then extracted parameters and overall nonlinear 

characteristics are discussed. Chapter 6 is an introduction of the investigation 

regarding the thermo-mechanical noise of the Si-NEMS resonator. Chapter 7 

summarises the work during the four-year research. Insightful comments and future 

plans regarding the project are given in the later section of this chapter.
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CHAPTER 2  

2.  Nonlinear MEMS/NEMS: Review 
 

MEMS and NEMS are scalable devices that co-integrate mechanical structure with 

electronics (e.g., piezoresistive pressure sensor). However, the nonlinearity, which 

arises due to the nonlinear response of materials, geometries, and motions at the 

micro/nano scale, can impact the performance and it emerges rapidly when critical 

dimension of structure is miniaturized into nano-scale. The nonlinear phenomena 

generally present as the deviation from the linear response of a system to an external 

stimulus. The investigation and thorough understanding of nonlinear behaviour in 

MEMS/NEMS is essential to exploit their dynamic response. In past several decades, 

studies of nonlinear phenomena in micro- and nano-systems have been a growing 

research field. From the perspective of using nonlinearity, many studies have 

proposed the use of various interesting phenomena stemming from nonlinearity such 

as bifurcation, chaos, and hysteresis which are the fundamentals for many 

applications.  However, nonlinearity can be also harmful and cause undesirable effects 

such as reducing the sensitivity, increasing the noise level, limiting the operational 

range. For this reason, understanding of the nonlinear behaviour of MEMS/NEMS is 

crucial for designing and optimizing these devices. This chapter will focus on 

reviewing the nonlinearity studies specifically in the field of MEMS/NEMS, 

including an introduction of the source of nonlinearity, typical behaviour of the 

nonlinearity, history of relevant nonlinearity studies in MEMS/NEMS, and discussion 



CHAPTER 2 Nonlinear MEMS/NEMS: Review 

11 

 

about potential nonlinear MEMS/NEMS applications. 

 

2.1. The Origin of Nonlinearity in M/NEMS 

Nonlinearities in micro- and nanoscale systems can come from a large variety of 

origins. Hence, an in-depth understanding is essential for accurate modelling, 

performance optimization, robustness analysis, and design improvement. For Si 

NEMS resonators, various sources of nonlinearities can be exhibited leading to 

impacts towards their behaviour and performance. A summary of previously reported 

common sources of nonlinearities in such resonators are [28, 30, 31]:  

1) Geometric nonlinearities: These nonlinearities arise due to large deformations 

in the resonator structure. For example, when the amplitude of oscillation is 

large, the resonator may undergo significant deformation, causing change of 

the stiffness of the resonator lead to nonlinear response. This can affect the 

resonance frequency, amplitude, and quality factor of the resonator. 

2) Material nonlinearities: Silicon doubly-clamped NEMS resonators are made of 

silicon, which has its own nonlinear material properties. Nonlinearities in 

material properties such as Young's modulus, thermal expansion coefficient, 

and damping coefficient can lead to nonlinear behaviour of the resonator. 

3) Contact-induced nonlinearities: In some cases, the resonator may come into 

contact with its supporting structure, resulting in nonlinear anchor loss that can 

affect the resonance frequency and damping of the resonator. 

4) Electrostatic nonlinearities: NEMS resonators are often actuated and sensed 

using electrostatic forces. These forces can exhibit nonlinear behaviour due to 

nonlinear capacitance-voltage relationships or due to nonlinearities in the 

position-dependent electrostatic forces. 

5) Environmental nonlinearities: The behaviour of the resonator can also be 

affected by the environment it is operating in, such as changes in temperature, 

pressure, or gas composition. Nonlinearities in the environmental response can 
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affect the resonance frequency and damping of the resonator. 

6) Nonlinearities due to fabrication imperfections: Fabrication imperfections 

such as residual stresses, surface roughness, and variations in the material 

properties can also lead to nonlinearities in the behaviour of the resonator. 

In general, nonlinearities due to contact and fabrication imperfections are a result of 

external reasons that lead to abnormal frequency response. Considerations for these 

origins will need detailed observations of nanoscale sample structures for 

identification. In terms of environmental nonlinearities, controls of temperature, 

pressures and surroundings are significant. These experiments are taken via electrical 

prober station in a vacuum chamber, where conditions are kept at room temperature in 

vacuum throughout all the test measurements. This review will be more focused on 

the origin of other nonlinearities.  

 

2.1.1. Mechanical Nonlinearities 

The geometric nonlinearity and material nonlinearity are both intrinsic and they are 

usually categorized as mechanical nonlinearity. For a flexural device, the mechanical 

nonlinearity can be no longer ignored when there is a large displacement where the 

dynamic changes in spring constants is a function of displacement [28]. The nonlinear 

coefficient can be modelled by classical Euler-Bernoulli beam theory or Duffing 

oscillator theory, but the assumption depends on the actual design of the device. 

Especially, the domination of geometric nonlinearity arises when the design of device 

is asymmetric.  

Sansa et al., [19, 20] proposed a novel asymmetric design of silicon nanowire (SiNW) 

to enhance the piezoresistive (PZR) transduction. The asymmetric beam shape at rest 

successfully enables highly sensitive linear detection of vibration of low-resistive 

silicon beams. According to their study, as shown in Figure 2.1(a), the maximum 

deflection at rest 𝑑0  contributes as the control of linear transduction threshold. In 

Figure 2.1(b), they presented a study of the mechanism of transduction where the 
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linear transduction dominates when the deformation during vibration 𝑎𝑛 is less than 

4𝑑0. Their later experimental result further proves that the initial strain caused by the 

asymmetric beam deflection at rest can lead to the onset of nonlinearities. S. Tiwari et 

al., and C. Mendez et al., have also reported their findings regarding the geometric 

nonlinearity stemming from the asymmetric design or actuation [28, 32].  

 

Figure 2.1 Asymmetric design of a piezoresistive (PZR) silicon nanowire 
(SiNW) by Sansa et al., in 2014. (a) A scheme shows the beam in 
symmetric structure and asymmetric structure with initial deflection at 𝑑0. 
The total deflection 𝑤(𝑥, 𝑡)  is given by the sum of deflection profile 
𝜙0(𝑥)  and 𝑑0 . 𝑎𝑛  is the amplitude of vibration. (b) Study of the 
transduction mechanism in different amplitude of vibration [19]. 

Euler-Bernoulli vs Duffing: Two common models to describes the mechanism of 

oscillator motions are Euler-Bernoulli equation and Duffing equation, which are used 

under different scenarios. When dealing with the geometric nonlinearity in structural 

analysis, the Euler-Bernoulli equation is more widely used. In detail, Euler-Bernoulli 

beam theory (EBT) is a partial differential equation (PDE) that tells the deformation 

of a loaded beam, which considers the axial, bending, and the shear deformations. The 

basis of EBT is derived from the assumption that the strains are small, and the 

curvature is constant, which intrinsically makes it ideal for linear analysis. In case, 

where the deformation is large and nonlinear, modification based on EBT is required 
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to analyse the geometric nonlinear. Herisanu et al., [33] built two Euler-Bernuolli 

carbon nanotube (CNT) beams embedded on nonlinear foundations. To investigate 

axial nonlinearity, they proposed a model based on EBT and used Galerkin-Bubnov 

method to govern the PDE [34]. They successfully obtained analytical solutions that 

can be applied to study the geometric nonlinearity under forced vibration through 

optimal auxiliary function method (OAFM) without considering simplifying 

hypothesis. Matheny et al., from Roukes group, which is one of the pioneers in 

MEMS/NEMS field, proposed their attempts in applying EBT into the nonlinear 

mode-coupled nanomechanical system [35]. They reported a novel model based on 

EBT in the presences of nonlinear axial stress to predict the intra- and intermodal 

nonlinearity for a doubly-clamped NEMS beam. Their achievement, to the best of my 

knowledge, was the first confirmation of the quantitative predictions of EBT for 

tension-induced geometric nonlinearities and paved the way to further nonlinearity 

studies that involves coupled-mode micro- and nano-structure. In addition to 

geometric nonlinearity, material nonlinearity is more frequently considered as it is an 

intrinsic property especially for silicon-based devices. In this case, when it comes to 

mass-spring system, Duffing equation is used with a cubic nonlinear spring [36]. Zhu 

et al. [37] conducted a study to assess how material nonlinearity affects the dynamic 

response of MEMS. They discovered that there is significant material nonlinearity in 

single crystal silicon. To determine this, they utilized ab initio simulations to extract 

the shear properties of single crystal silicon and used them to determine the nonlinear 

response. They integrated the calculated shear stress-strain response of bulk silicon 

into their model, which aligned with experimental outcomes. The researchers found 

that, for a high-𝑄  resonator, even slight nonlinearities due to material can have a 

significant impact on the performance. 

 

2.1.2. Electrostatic Nonlinearities 

Electrostatic force is another one of the major origins of nonlinearities when 

MEMS/NEMS devices are primarily driven by voltage. Modelling the MEMS/NEMS 
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as the parallel plates, the electrostatic force is given as, 

휀𝐴𝑉2 2𝑑2⁄ (2.1) 

where 휀, 𝐴, 𝑉, 𝑑 are the permittivity, area of plates, voltage, and gap between plates, 

respectively. The force is quadratically proportional to the voltage, which makes the 

system nonlinear intrinsically. On the other hand, the increase of displacement leads 

to large deformation. The change of the gap 𝑑 due to the displacement can no longer 

be ignored. The modified electrostatic force is presented as, 

𝜖𝐴𝑉2

2(𝑑 − 𝑧)2
(2.2) 

where 𝑧  is the motional displacement. This change nonlinearly affects the 

instantaneous electrostatic force and makes the forces depend on the displacement 

nonlinearly. 

 

Figure 2.2 Studies regarding electrostatic nonlinearity. (a) Zega et al., 
reported the DC bias nonlinearity for the frequency response of the Two 
Double-Ended Tuning Fork (DETF). (b) Antonio et al., reported the AC 
signal nonlinearity under a fixed DC bias [30, 38]. 

The total electrostatic force is contributed by the interaction between DC bias via the 

actuator and AC or RF signal going through the beam. Hence, the nonlinearities work 

in the same way, leading to the nonlinear behaviour in the DC or AC dependence. 
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Figure 2.2 shows the recent studies of nonlinear electrostatic force dependence on DC 

(Figure 2.2 (a)) and AC (Figure 2.2 (b)) signals, respectively [30, 38]. The asymmetric 

resonant curve is a typical sign of the existence of nonlinearity. In relevant researches 

[28, 37, 39-44], asymmetry resonance curves that shift to left and right are also named 

as nonlinear ‘softening’ and ‘hardening’. In summary, the electrostatic force induced 

nonlinearity is directly related to the external input. Studies to reveal its mechanism 

have been widely reported [28, 37, 39-44], but to make a close link between 

fundamental mechanism and experiments, a systematic method for analysis is 

required. The next subsection covers the trend of nonlinear research in the 

MEMS/NEMS field and gives study cases to introduce the history of this topic and its 

impact. 

 

2.2. Past Studies in Nonlinear MEMS/NEMS 

Thorough understanding of the origin of nonlinearity requires applicable theoretical or 

numerical methods, devices, and experimental tools. This section will review the past 

studies regarding the nonlinear behaviour in MEMS/NEMS field. In early stage, one 

of the representative nonlinearity studies was reported in 1987 by M. V. Andres et al. 

[15]  

 

Figure 2.3 Study by Andres et al., in 1987 about nonlinear vibration 
observation. (a) Diagram of the resonator and its holder. (b) Resonance 
curve with strong nonlinear behaviour with frequency at 97.3 kHz [15]. 
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They proposed their observation of a nonlinear response and hysteresis of 

micromachined silicon resonators [15]. Clear nonlinear behaviour occurs when large 

amplitudes of vibration are excited. Figure 2.3(a) schematically presents the geometry 

of a micromachined silicon resonator. With the coupled pair of suspended rectangular 

plates due to its higher 𝑄-factor, this design enabled more precise measurement of its 

properties. In analysis, by the given width of the curves, the 𝑄 -factor of each 

resonance can be determined. When the voltage applied to the piezoelectric transducer 

is increased, causing the amplitude of vibration to rise, the response curve becomes 

somewhat unbalanced, indicating the onset of nonlinearity. For instance, Figure 2.3(b) 

shows the strong nonlinearity [15] given around at the resonance frequency of 97 kHz. 

According to the theory Dinca et al., [45] proposed in 1973, the reason behind the 

hysteresis behaviour can be attributed to the slightly anharmonic response of the 

vibrators. When the restoring force of the system deviates from being purely linear, 

and instead shows a minor nonlinear dependence on the displacement such as a small 

cubic contribution, then the resonance frequency will exhibit a minor quadratic 

dependence on the amplitude of vibration. The analysis for Figure 2.3(b) gives the 

quality factor 𝑄 at 21000 where the amount of total nonlinearity is 1.94 × 10−3 μm−2, 

which is the first quantitative estimation of the nonlinearity from MEMS devices. The 

quantification of nonlinearity in MEMS devices assumes paramount importance due 

to its pivotal role in facilitating a comprehension of their intricate dynamic responses 

that only relate to its dimensional properties. This critical assessment informs the 

refinement of design parameters and optimisation strategies. The acquired insights 

find applicability in refining predictive models for enhanced accuracy and optimising 

control methodologies. These advancements hold the potential to propel the utilisation 

of MEMS-based technologies across domains encompassing precision sensing, 

actuation, and signal processing. To explain the onset of hysteresis, they have 

proposed a novel theory that if the amplitude is boosted enough, the response curve 

will exhibit even stronger nonlinearity. And when the shift exceeds the certain limits 

by the bandwidth, the system will show hysteresis. The following equation explains 

the relationship between the bandwidth ℎ, resonance frequency 𝜔0𝑟, minimum value 

of peak amplitude required to develop hysteresis 𝜉0𝑝, and nonlinearity amount 𝛽 [15]; 
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𝜉0𝑝
2 >

8ℎ

3𝜔0𝑟|𝛽|
 (2.3) 

Equation (2.3) is the very first model that explicitly explained the threshold or onset 

point of the hysteresis behaviour. To apply the equation, the parameters ℎ and 𝛽 can 

be determined first via model fitting. The damping coefficient can be calculated from 

measurements or by giving a 𝑄 value, 𝑄 = 𝜔0𝑟/2ℎ when a small amplitude of the 

force is applied. ℎ is established by observing the system's response under conditions 

of small amplitude excitation, prior to the point at which the resonance exhibits a 

subtle degree of asymmetry. In other words, the parameter Q is characteri2ed within 

the linear region, aiming to prevent ambiguous determination of the bandwidth in the 

presence of a significantly nonlinear resonance [15].  

As Equation (2.3) shows, the onset of strong nonlinearity is directly relevant to the 

resonance frequency 𝜔0𝑟 which is further linked with the design and dimensions of 

the device itself. Based on Hooke’s Law, the system frequency is expressed as 𝜔 =

√𝑘/𝑚𝑏 where 𝑘 is stiffness and 𝑚𝑏 is effective mass [46]. When the dimensions are 

reduced down into nanoscale, due to the increase of stiffness and reduction of the 

effective mass, the resonance frequency is largely increased in both ways in general.  

 

Figure 2.4 Study by Erbe et al., in 2000 about nonlinear vibration 
observation based on NEMS resonator. (a) Scanning electron-beam 
micrograph of the NEMS resonator. (b) Experimental setup for sampling 
the mechanical properties of the suspended beam [47]. 
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Figure 2.5 Characterisation of the nonlinear response of the suspended 
beam by ramping the magnetic field from 0 T up to 12 T [47]. 

Figure 2.5 illustrates the radio-frequency response of the beam near resonance as the 

magnetic-field strength 𝐵 increases from 0 T to 12 T. The excitation power of the 

spectrum analyser was set to -50 dBm, and the resonator being tested had a 

mechanical quality factor 𝑄 of 2330 in the linear regime. The magnetic-field strength 

dependence indicates the close link to nonlinear resonance. Erbe et al [47] proposed 

their method to analyse the amount of nonlinearity based on the shift of resonance 

frequency as, 

𝛿𝑓(𝐵) = 𝑓𝑚𝑎𝑥(𝐵) − 𝑓0 =
3𝛼[𝛬0(𝐵)]

2

32𝜋2𝑓0
(2.4) 

where 𝛿𝑓(𝐵), 𝑓𝑚𝑎𝑥(𝐵), and 𝑓0 are the shift of the resonance frequency, the frequency 

at maximum amplitude, and initial resonance frequency, respectively as shown in 

Figure 2.5. The 𝛼 is the total amount of nonlinearity in the system, and Λ0(𝐵) is the 

zeroth order displacement of the beam, which is given by 

𝛬0(𝐵) =
𝑙𝐼0𝐵

4𝜋𝑓0𝜇𝑚𝑏
(2.5) 

where 𝑙, 𝐼0, 𝜇,𝑚𝑏 are the length of the beam, input current value, damping coefficient 

of the system, and effective mass of the beam, respectively. Erbe et al. have 
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successfully demonstrated the nonlinear response for a strongly magnetic-field driven 

NEMS resonator which was used as a mechanical mixer in the radio-frequency (RF) 

regime [47]. Besides, they have shown a good agreement with the help of numerical 

calculations on the prototype NEMS resonator, which is a breakthrough as the very 

early stage of nonlinear study for NEMS resonator in 2000. The aforementioned 

nonlinearity studies by Andres et al., in 1987 and Erbe et al., in 2000 [15, 47] are the 

foundational contributions in the field of MEMS and NEMS, respectively Starting 

from 2004, investigation into micro-scale resonators that are directly excited 

electrically without magnetic field have thrived through both analytical and 

experimental approaches. Among the different attempts focusing on systems that are 

actuated electrostatically, Table 2.1 summarised notable examples with various 

designs, materials, and measurement techniques. Sazonova et al., [48] has firstly 

reported the nonlinearity study on carbon nanotube (CNT) NEMS resonators in 

Nature in 2004. They achieved nonlinear bifurcation observation by mixing 

measurement techniques via lock-in amplifier with resonance frequency at 5.3 MHz 

with applying the gate voltage of only 2.2 V and the mixing signal amplitude of 40 

mV. The ultralow actuation used to present nonlinearity proves the advantages in the 

use of nanoscale devices regarding nonlinearity studies. Furthermore, the nanotube 

was used not only for the resonator to amplify the signal, but also as a mixer to couple 

the reference signal so that the lock-in amplifier can capture the resonance and then 

can present the result. This novel method helps then avoid unnecessary complications 

due to capacitive currents between the gate and the drain electrodes. Their study in 

signal modulation throughout the mixing techniques offers an ideal and direct way for 

later research in nonlinear signal detection [48].  

Kaajakari et al. [40] in 2004 studied the nonlinear response of bulk acoustic wave 

(BAW) resonators made of silicon. The study showed that compared to their flexural 

counterparts, these systems had significantly higher energy storage capabilities. The 

other example was the work of Jeong and Ha [49] in 2005, which created a predictive 

model for the linear displacement limits of comb-driven resonant actuators. Three 

years later, the study by Palaniapan et al., in 2008 [50] introduced silicon-on-insulator 

(SOI) technology to a doubly-clamped MEMS resonator with the potential to co-
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integrate with CMOS, while in 2013, the study by Agrawal et al. [51] designed a 

double-ended tuning fork silicon micro-resonator and reported nonlinear voltage 

dependence. In the meantime, a mathematical model based on the specific design they 

proposed is successfully validated via the open-loop electrical measurement, which is 

one of the early but comprehensive attempts of a systematic nonlinear model fitting 

with respect to the voltage dependence [51]. 
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Table 2.1 Summary of nonlinearity studies in the field of MEMS/NEMS 

Device Design Measurement  Result 

Doubly-
Clamped CNT 
(V. Sazonova et 

al.,Nature, 
2004) [48] 

L = 1.5 μm 

Electrical signal 
Mixing 

Measurement 

 

Nonlinearity at 
𝑉𝐷𝐶 = 2.2 V 
𝑓0 = 5.1 MHz 
𝑄 = 80 

 
 

Single-Crystal 
Bulk Acoustic 

Wave Resonator 
(V. Kaajakari et 

al., J-
Microelectrome
ch Syst, 2004) 

[40]  L = 20.5 μm 

Electrical signal 
with network 

analyser, 
resonance signal 
was buffered by 

JFET preamplifier 

 

Nonlinearity at 
𝑉𝐷𝐶 = 100 V 
𝑓0 = 11.7 MHz 
𝑄 > 100,000 
 

Resonant 
Comb-Drive 

Micro-Actuator 
(H. M. Jeong, et 

al., Sens. 
Actuator A. 
2005) [49] 

 Resonant Arm = 10 μm 

Electrical signal 
mixing 

measurement with 
comb-drive 
actuator for 

dynamic analysis 
 

Nonlinearity at 
𝑉𝐷𝐶 = 1.35 V 
𝑓0 = 7895 Hz 
𝑄 = 3,610 

 

Doubly-
Clamped 

Silicon Beam 
(N. Kacem et 
al., Nanotech, 

2008) [52]  
L = 2.6 μm 

Electrical signal 
lock-in mixing 
measurement 

 

Nonlinearity at 
𝑉𝐷𝐶 = 5 V 
𝑓0 = 56 kHz 
𝑄 = 35,000 

 

SOI Doubly-
Clamped beam 
(M. Palaniapan 

et al., Sens. 
Actuator A. 
2008) [50] 

 L =
140 μm 

Wire-bonded 
resonator on PCB 

with network 
analyser 

measurement  

 

Nonlinearity at 
𝑉𝐷𝐶 = 50 V 
𝑓0 = 640 kHz 
𝑄 = 12,000 

 

Double-Ended 
Tuning Fork Si-
Micro-resonator 
(D. K. Agrawal, 

et al., IEEE 
Trans. Ultrason, 

2013) [51] 
 L = 350 μm 

Electrical signal 
open-loop 

measurement  

 

Nonlinearity at 
𝑉𝐷𝐶 = 25 V 
𝑓0 = 225 kHz 
𝑄 = 27,480 

 

MoS2 Nano-
mechanical 

Resonator (C. 
Samanta, et al., 

Appl. Phys. 
Lett. 2015) [53] 

 Density = 3.3 fg/μm2 

Frequency 
Modulation & 

Mixing 
measurement  

 

Nonlinearity at 
𝑉𝐷𝐶 = 12 V 
𝑓0 = 41.5 MHz 
𝑄 = 680 
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With the reduced length, Kacem et al., [52, 54] reported their study and analysis on a 

doubly-clamped silicon beam. While the design is simple, the bridge-like design 

proves to be a convenient way to find physical conditions without complication in 

design and modelling. To anticipate the behaviours of resonators, they proposed an 

analytical model that considers all sources of nonlinearities. This analytical model, 

which is based on a reduced-order model derived from the Galerkin [34] and solved 

through the averaging method, offers the benefit of being straightforward and 

effortless for MEMS designers to apply. Furthermore, their model makes it possible to 

enhance the dynamic range of MEMS resonators by counterbalancing both the 

hardening and softening behaviours.   

Novel material can be an alternative change that leads to clearer nonlinear response. 

Samanta et al reported a NEMS resonator made by two-dimensional (2D) material, 

Molybdenum disulfide (MoS2). Thanks to the ultrathin thickness, with small actuation, 

the vibration displacement is enhanced. The mass density of the fabricated MoS2 

resonator [53] proposed is 3.3 fg/μm2.  

 

Figure 2.6 Nonlinear behaviour with respect to voltage dependence 
reported by Samanta et al., in 2015. (a) AC signal dependence (b) DC bias 
dependence [53]. 

The fundamental resonance mode frequency and quality factor measured by 1𝜔 

mixing technique, and frequency modulation (FM) are 41.8 MHz and 680, and 41.8 

MHz and 533, respectively.  Figure 2.6 shows more details about the voltage 
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dependence. Clear resonance ‘jump’ can be seen with even 0.1 V AC signal and 0.8 V 

DC Bias. This is attributed to the ultrasmall mass of the device where much less 

electrostatic force is required, compared to aforementioned devices, to drive the beam 

and to present substantial displacement required for the dynamics in nonlinear regime. 

Later in 2018, Samanta et al [39] reported their continuous study on the MoS2 NEMS 

resonator by giving a much comprehensive analysis regarding the nonlinearity tuning 

effect.   

 

Figure 2.7 Continuous research on 2D MoS2 NEMS resonator by 
Samanta et al reported in 2018 (a) A scanning electron micrograph image 
of the MoS2 resonator. (b) A scheme of the measurement setup [39]. 

The suspended device used for the measurements is depicted in Figure 2.7(a) with a 

field effect mobility of approximately 15 cm2/Vs. Figure 2.7(b) shows a simplified 

measurement setup and a schematic of the resonator. The measurements were 

conducted at room temperature and in a vacuum with a pressure below 10-7 Torr. 

During their observation, the mechanism of the domination of mechanical 

nonlinearity and capacitive-induced electrical nonlinearity have been determined for 

the first time in nano-scale. Figure 2.8 presents examples of the nonlinearity 

dependence with respect to the different DC bias conditions. Their study has proved 

the displacement level is the key to the nonlinear dynamics in the system [39].  
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Figure 2.8 Nonlinearity tuning effect (a) to (c) Nonlinearity dependence 
with respect to DC bias change. (b) to (e) Nonlinearity dependence with 
respect to AC signal amplitude under difference fixed DC bias [39]. 

Figure 2.8 (a) to (c) presents the successful observation of the nonlinearity tuned from 

hardening under DC actuation at 10 V (Figure 2.8(a)) to linear under DC actuation at 

13.4 V (Figure 2.8(b)) and to softening under DC actuation at 15 V (Figure 2.8(c)). 

Their result shows that the electrostatic nonlinearity of MoS2 can be controlled by 

different DC actuation. In nonlinear theory, the flexural mode actuated resonator 

typically exhibits a softening effect in electrostatic nonlinearity. This effect is 

manifested as a shift towards higher frequencies in resonance as the DC bias increases. 

In Chapter 3 of this thesis, a detailed explication will be undertaken through the 

utilisation of high-order expansions tailored to the electrostatic force. Contrarily, the 

results presented in [39] demonstrate that at relatively lower DC biases (DC < 10), the 



CHAPTER 2 Nonlinear MEMS/NEMS: Review 

26 

 

nonlinearity assumes a hardening effect. This observation can be attributed to the 

intrinsic mechanical nonlinearity of MoS2, which inherently presents a hardening 

effect, diverging from the electrostatic nonlinearity. Generally, the degree of overall 

nonlinearity is positively correlated with the total driven force. Therefore, at lower 

driven force levels, mechanical nonlinearity governs the overall nonlinearity. As the 

DC bias progressively increases, electrostatic nonlinearity gradually counters 

mechanical nonlinearity (DC = 13.4 V) until it emerges as the predominant 

determinant of overall nonlinearity (DC = 15 V) [39]. 

 

 

2.3. Thermomechanical Noise 

Mechanical motions of resonator are generally detecting the changes in electrical or 

optical properties, such as capacitance or reflection responsivity. However, in 

nanoscale, due to the ultra-sensitivity, thermal fluctuations become the significant 

factor which can no longer be ignored. As a natural feature, thermo-mechanical Noise 

(TMN) is a non-force response that can induce mechanical motion even without 

external excitations and therefore cause undesired oscillations and limit the sensitivity, 

resolution of device, and measurement errors. A NEMS resonator is known to be even 

more sensitive to the change due to fluctuations. Since 2000s, due to the scaling down 

of machining devices in micro- and nano-scale, the sensitivity was boosted and 

therefore TMN became one of the essential parts to be studied. Due to the ultrasmall 

signal, experimental method and modelling analysis are two most significant part to 

study TMN. In 2003, Todd et al., proposed their study on TMN in a MEMS 

microstructure [55].   
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Figure 2.9 The optical setup to measure reflected power by (a) Todd et al 
in 2003 [55], (b) Lee et al., in 2013 [56]. 

Shown in Figure 2.9 (a), an absolute measurement of TMN is reported to be 

cooperated with a simple but high-resolution optical technique by using an optical 

microcavity interferometry tool, which enables displacement resolution on the order 

of hundreds of femto-meters per root Hz at frequencies of tens of kHz. The motion of 

MEMS bridge can result in the change of reflection power Δ𝑅 and because of the 

ultrahigh resolution, the motion due to TMN in femto-meters can be detected [55]. 

Δ𝐻 =
𝑗 + 1

2
Δ𝜆𝑗 = −

𝑗 + 1

2
Δ𝑅 (

𝑑𝑅(𝜆𝑗)

𝑑𝜆𝑗
 )

−1

(2.6) 

Equation (2.6) is reprinted from the research by Todd et al., that explains the 

conversion between displacement Δ𝐻, change of wavelength Δ𝜆𝑗, cavity mode index 𝑗, 

and most importantly the change of reflected power Δ𝑅. With this conversion path, 

the displacement can be directly obtained from the experiment even within femto-

meters by TMN. In previous section, MoS2 has been reported as an ideal material for 

innovating NEMS resonator and transducers due to its ultrathin properties. However, 



CHAPTER 2 Nonlinear MEMS/NEMS: Review 

28 

 

because of the difficulties not only in fabrication of the movable devices throughout 

the time, but also in the vanishingly miniscule motions detection, MoS2 NEMS 

resonators with resonance in very-high-frequency (VHF) bands was not yet reported 

until work by Lee et al. in 2013 [56]. They were inspired by Todd et al., [55] and 

further improved the measurement techniques, shown in Figure 2.9(b) and proposed a 

comprehensive model, shown in Equation (2.7) to analyse TMN for a motional-

coupled MoS2 NEMS resonator, The conversion between resonance and spectrum 

density is shown as below [56]: 

𝑆𝑣,𝑡ℎ
1/2 (𝜔) = √ℛ2 [

4𝑘𝐵𝑇

𝑄𝑀𝑒𝑓𝑓
∙

1

(𝜔2 − 𝜔0
2)2 + (

𝜔𝜔0
𝑄 )

] + 𝑆𝑣,𝑠𝑦𝑠 (2.7) 

where 𝑆𝑣,𝑡ℎ
1/2 (𝜔) is the spectrum density given by TMN motion, 𝑘𝐵, 𝑇, 𝑄, 𝜔0, 𝑀𝑒𝑓𝑓 are 

Boltzmann’s constant, temperature in Kelvin, angular resonance frequency, quality 

factor, and the effective mass of the device, 𝑆𝑣,𝑠𝑦𝑠 is the baseline of spectrum density, 

which can be seen as the ‘noise floor’. By the given spectrum density experimental 

data, the Equation (2.7) can be used to extract the responsivity ℛ , which is a 

conversion factor that equals to √𝑆𝑣/𝑆𝑥  where 𝑆𝑥  is the displacement spectrum 

density. By using the model, they achieved displacement sensitivity of 30.2 fm/Hz1/2 

and with the fundamental mode resonance-quality factor product 𝑓0 × 𝑄  up to 

2 × 1010 Hz [56].  

The study in TMN not only shows the basis of the motion by a non-forced resonator, 

but also offers a possible and effective method to capture and analyse ultrasmall level 

of motions. In terms of nonlinear response analysis, the effective displacement 

detection technique with a resolution of pico-meter or even femto-meter scale is 

interesting because emergence of nonlinearity can be investigated for scaled NEMS 

resonators. Hence, an understanding of TMN characteristics in nonlinear NEMS 

devices is crucial for advancing the development and applications of nonlinear NEMS 

devices which have the potential for a wide range of applications including sensing, 
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signal processing, and communication.  

 

2.4. Nonlinear MEMS/NEMS Applications 

The origins of nonlinearity and past research on it have been introduced in previous 

sections. However, the potential use of nonlinearity is another factor that motivates 

researchers to maintain their enthusiasm on overcoming challenges in this field. 

Understanding the potential applications of nonlinear MEMS/NEMS is crucial 

because nonlinearity allows for enhanced functionality and performance in these 

devices. Not only can nonlinearity introduce new and unique behaviours that cannot 

be achieved with linear systems, such as chaos, hysteresis, and multi-stability but also 

it can provide unique and beneficial behaviours that are not achievable with linear 

systems, enabling improved sensing, energy harvesting, and signal processing 

capabilities. This section will present applications that utilise nonlinear 

MEMS/NEMS. 

 

 

2.4.1. Sensing Enhancement 

The improvement of output amplitude level is an ideal way to enhance the signal-to-

noise ratio (SNR). Because nonlinearities can arise from large vibrational amplitudes, 

in the meantime, the asymmetric appearance of the amplitude-to-frequency (A-f) also 

reduces the stability of the oscillator. Hence, MEMS/NEMS have been limited within 

the linear region in many applications.  
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2.4.1.1. Sensor With Nonlinear MEMS/NEMS 

Since 2010, novel sensing methodologies coupled the utilisation of the nonlinear have 

been introduced into applications to enhance the sensitivity. Younis et al. [57] 

explored innovative strategies for mass detection employing electrostatically actuated 

structures founded on nonlinear dynamics. Their investigation centered on the 

vibrations of microstructures near primary and secondary resonance frequencies, 

proposing the concept of a switch activated through the pull-in phenomenon upon the 

addition of mass. Similarly, Zhang et al. [58] formulated and empirically validated an 

innovative mass sensing principle based on parametric excitation. Their approach 

involved the detection of added mass through the measurement of frequency shifts at 

the boundary of the first-order parametric resonance. 

With more exploration in nonlinearity on-going, the benefits of using nonlinearity are 

revealed. In 2011, Lee et al., [59] demonstrated stable operation of the MEMS 

oscillator beyond the critical vibration amplitude. A single-crystal-silicon double-

ended tuning fork (DETF) resonator was embedded in a variable-phase closed-loop 

system so that the strong nonlinear regime can be recorded by tracking the bifurcated 

A-f characteristics of the resonator. In the experiment, they successfully proved that 

power-handling performance of the MEMS oscillator can be improved by operating 

them in nonlinear regime [59]. Their success inspired more researchers to exploit 

more possibilities for MEMS/NEMS to be used stably in nonlinear regime. Years later, 

it has been reported in Ref. [59-63] that nonlinear miniature resonators possess the 

potential benefits for SNR and frequency stability. Meanwhile, Ref.[60, 64] proved 

that noise reduce can be achieved by operating near or at bifurcation point. 

Bouchaala et al. [65] proposed a nonlinear-based MEMS sensor and switch for gas 

detection. Their study highlights the importance of using the nonlinear response of an 

electrostatically actuated resonator for gas sensing. By employing a clamped-clamped 

microbeam coated with the sensitive thin-film layer, real-time frequency shifts and 

added mass detection are achieved, triggering switches upon reaching specific 

thresholds. Their research presents two switch concepts based on resonator behavior 
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shifts, offering potential for immediate responses to hazardous gas detection, though 

sub-micron and nano-scale resonator scaling may intensify noise concerns. 

 

2.4.1.2. Real-time Sensing Dynamic Range Enhancement  

Sansa et al., [18] reported their achievement in the real-time sensing enhancement by 

operating the NEMS resonator in nonlinear regime. Shown in Figure 2.10(a), a 

doubly-clamped silicon NEMS resonator ( 𝐿 = 10 μm , 𝑊 = 300 nm ) with 

electrostatic actuation and piezoresistive (PZR) detection was used experimentally.  

 

Figure 2.10 (a) A doubly-clamped crystalline silicon NEMS resonator 
fabricated by (b) Real-time nonlinear measurement near bifurcation point. 
[18]. 

During the real-time frequency response measurement, the resonator was operated at a 

bifurcation point with clear bi-stability presented in A-f response. As shown in Figure 

2.10 (b), with a small mass-induced shift of the resonance frequency, a significant 

frequency change is detected in real-time. Based on this setup, they demonstrated the 

great sensitivity enhancement of frequency shifts of 200 Hz corresponding to the 

deposited mass of 15 ag [18]. 
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2.4.1.3. Energy Harvesting 

Energy conversion is the most significant part in the field of energy harvesting for 

next generation green electronics. Among the applications, most are using vibrational 

energy which is then converted into electrical form of power through a piezoelectrical 

material, electromagnetic or electrostatic transducer. Many of energy harvester are 

based on mechanically resonant devices which are operated within the linear regime 

and collect a narrow band of vibrations. However, as many ambient vibrations stem 

from a wide range of forms including seismic noise, vehicle motion, TMN, or all 

other types of noisy equipment. Therefore, proposing a method that can enhance the 

sensing range can largely improve the efficiency of the energy harvesting devices. 

Ando et al., [66] proposed a prototype of MEMS for energy harvesting based on the 

bistable structure. The new attempt of utilizing nonlinearity to enhance the sensing 

range allows the energy to be collected from a wide spectrum of frequencies than 

traditional linear system. They initially demonstrated the principle on a macro 

cantilever prototypes in millimetre scale [66] and later downscaled their design into 

microscale. A bistable back etched SOI MEMS (BESOI-MEMS) was fabricated, 

shown as Figure 2.11, with a permanent magnet next to BESOI-MEMS, the vibration 

of the beam can change the distance between two magnets. When the fixed magnet is 

close enough to the tip of the beam, the behaviour of the beam is nonlinear where the 

new equilibrium positions appear, so a bistable potential energy function imposes the 

dynamic. 
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Figure 2.11 BESOI-MEMS cantilever. (a) Far from permanent magnet, 
operating in linear regime. (b) Close to permanent magnet, operating in 
nonlinear case. (c) and (d) SEM image [66] 

 

Figure 2.12 Experimental results by Ando et al., (a) Displacement of the 
cantilever tip (b) Displacement spectrum [66].  
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Figure 2.12 presents the interesting result in the perspective of energy harvesting 

applications. Figure 2.12 (a) shows the evolution of the displacement where Figure 

2.12(b) shows the frequency response of the displacement. Both results show the 

improvement of the nonlinear system with respect to the displacement and spectrum 

that appear wider compared to the linear case. The experimental results confirmed that 

the MEMS device successfully demonstrated the nonlinear bistable behaviour 

principle. Additionally, it was shown (as predicted by the simulations) that the device 

significantly improved the conversion of kinetic energy from external vibrations 

across a wide frequency range, compared to a linear resonant device [66]. 

 

2.4.2. Nonlinear Coupled MEMS/NEMS in Neuron 

Network 

Nonlinear MEMS and NEMS devices have been proved to possess significant 

importance in neuron network applications in recent years due to their ability to 

mimic the behaviour of neurons and synapses in biological systems. They can create 

spiking neural networks that simulate the behaviour of biological systems more 

accurately. Also, these devices have small sizes, low power consumption, and can be 

integrated into complex systems, making them ideal for constructing high-density 

neural networks. They can operate at high frequencies, enabling real-time processing 

of neural signals in applications such as brain-machine interfaces. Additionally, 

nonlinear MEMS/NEMS devices can be used for signal processing and filtering, 

removing noise and artifacts from neural signals, improving the accuracy of neural 

signal processing and reducing the risk of errors.   
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Figure 2.13 Dynamics of a coupled DFT neuron (a) Detection neuron by 
producing high amplitude jump. (b) Memory neuron by retaining high 
amplitude position after the excitation lost. (c) A scheme of the dynamics 
of two DFT neuron. (d) Experimental data of the memory neuron when 
detection neuron is instable [24].  

In 2018, Alsaleem et al., [24] proposed their novel concept for the MEMS neural 

computing unit, which is a qualitative neuron approach to model cognition and human 

behaviour, based on the neuron rate model theory which is the basis of the dynamic 

field theory (DFT).  

The concept of using nonlinear dynamics of MEMS resonators, bi-stability more 

specifically, is the key to simulate the detection and memory of a single rate model 



CHAPTER 2 Nonlinear MEMS/NEMS: Review 

36 

 

neuron. Figure 2.13 presents the work by Alsaleem et al regarding dynamics of DFT 

neuron. Two DFT neurons (detection neuron and memory neuron) are coupled with 

each other as Figure 2.13 (c) shows. Figure 2.13 (a) is the bi-stability behaviour of 

detection neuron with external voltage-controlled nonlinearity. Figure 2.13 (b) is the 

memory neuron, when the detection neuron becomes instable, the memory neuron 

received the signal from the coupled detection neuron, retaining high amplitude 

position. Figure 2.13 (d) is the experimental real-time result that confirms the 

detection instability and what appears to be a memory behaviour using the nonlinear 

MEMS devices.   

Their research successfully demonstrates that a MEMS device with electrical 

resonance activation or initial curvature behaves similarly to a DFT neuron in terms 

of dynamics. This makes it a promising option as an analogue-based building block 

for a new type of computing unit based on the human neuron. Therefore, this new 

MEMS neuron-computing unit has the potential to create analogue brains consisting 

of devices that respond to stimuli in a manner similar to human neurons.  In 2019, 

researcher Rafaie et al from Alsaleem’s group [23] proposed their further attempt by 

building a recurrent neural network with 14 nonlinear MEMS neurons, schematically 

shown in Figure 2.14.  

 

Figure 2.14 A recurrent neural network by 14 nonlinear MEMS neurons 
[23]. 

Each of the MEMS retains the memory of past inputs via bi-stability and hysteresis 
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and receives weighted feedback from other coupled devices in the network. MEMS is 

actuated via electrostatic force 𝑉𝑀𝐸𝑀𝑆,𝑖, makes it an ideal way to control and monitor 

the signal.  A model of a general neural network with the voltage across each of 

MEMS device is given by Rafaie et al., [23] as follows,; 

𝑉𝑀𝐸𝑀𝑆,𝑖 = 𝑉𝑏,𝑖 +∑[𝑤𝑠𝑒𝑛𝑠𝑜𝑟,𝑗𝑉𝑠𝑒𝑛𝑠𝑜𝑟,𝑗(𝐷𝑗)𝛿𝑖𝑗] +

𝑀

𝑗=1

∑[𝑤𝑖𝑗𝑉𝑜𝑢𝑡,𝑗(𝑧𝑗)]

𝑛

𝑗>1

(2.8) 

where 𝑀 is the number of input MEMS neurons, 𝑛 is the number of the total number 

of MEMS neurons in the network, 𝑉𝑏,𝑖 , 𝛿𝑖𝑗 , 𝑤𝑠𝑒𝑛𝑠𝑜𝑟,𝑗 , 𝑉𝑠𝑒𝑛𝑠𝑜𝑟,  𝐷𝑗  are the DC bias, 

Kronecker delta function (in the dynamic field theory),  weight applied to the input 

voltage from j-th sensor, the sensor output voltage, and the distance to the object, 

respectively [23].  This model describes how signal passes within each j-th sensor and 

gives the principle of how weight 𝑤𝑠𝑒𝑛𝑠𝑜𝑟  is affected by the voltage on MEMS 

neurons, leading to the success on training the MEMS neural network with preset 

electrical signals. More details is in [23]. Coulombe et al., [22] from Sylvestre group 

reported their novel trails on the success of reservoir computing (RC) based on 

coupled nonlinear MEMS as virtual neurons. As a preliminary study from their team, 

the result demonstrated that the network of nonlinear MEMS oscillators with linear 

coupling are able to carry out intricate computations. Numerical simulation was used 

to present by testing a single network on two very different benchmarks tasks 

(computing parity functions and spoken words classifying). One year later, Sylvestre 

group reported the continuous study on coupled nonlinear MEMS in RC applications. 

They used delay-coupled MEMS to perform the time series classification tasks with 

error rates below 0.1% and accuracy of (78 ±  2)% for spoken word recognition 

benchmark [67]. 
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2.5. Summary 

Nonlinearities in MEMS/NEMS have been explored for decades. In this chapter, the 

various origins of nonlinearities in MEMS/NEMS have been studied. The constant 

investigation in nonlinear MEMS/NEMS inspired researchers to propose vast types of 

designs such as doubly-clamped beam, comb-driven micro-plate, and DETF beam, 

which has presented their strengths to study geometric nonlinearities. In the 

nonlinearity characterisation, the customary approaches typically entail modelling and 

characterising it by considering distinct origins of nonlinearity. Various groups of 

researchers have employed diverse modelling methodologies to characterise nonlinear 

behaviours. For instance, Andres et al., [15] adopted an analytical approach in the 

early 1980s to model the nonlinear components separately. In contrast, Erbe et al., [47] 

focused their analysis on modelling the frequency shift induced by nonlinearity. 

Samanta et al., [39] meanwhile, combined observations of MoS2 with the Duffing 

equation to connect nonlinear frequency response with voltage dependence. They 

conducted numerical analysis using the 4th-order Runge-Kutta method. This series of 

studies not only unveiled the omnipresence of nonlinearity in distinct microsystems 

and materials but also underscored the application of third-order response coefficients 

to quantify nonlinear traits. These insights have served as inspiration for the nonlinear 

modelling theory in this thesis. Historically, the characterisation of nonlinearities 

typically involved separate modelling of nonlinear regions, analytical approaches, or 

common numerical analysis methods. While these methodologies proved effective in 

their individual projects, disparities between their models and actual systems endured. 

Analytical analysis often led to significant fitting errors, particularly evident in the 

fitting of VHF band data, as demonstrated by Zega et al., [30, 38] due to the natural 

phenomenon that third-order system has no analytic solution. Previous numerical 

approaches either focused on independently modelling nonlinear regions or directly 

employed general numerical analysis packages for computer-based computations. 

These approaches lacked a direct connection to MEMS/NEMS oscillators. Moreover, 

they did not incorporate the voltage dependence of the system's nonlinear frequency 

response into the model, constraining their discussions to experimental outcomes and 
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phenomenological levels. Building on this context, this thesis introduces an 

innovative modelling methodology that disentangles the intrinsic and electrostatic 

nonlinearities of the system, ultimately amalgamating them into a comprehensive 

model.
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CHAPTER 3 

3. Si-NEMS Resonator Structure and 

Modelling  

 

The performance of semiconductor devices constantly benefits from the progress of 

scaling down, such as higher integration density and lower power consumption. 

However, because of the increasingly complex in the design and structure, challenges 

in characterization have been the key for further development and optimization. For 

the characterization of classic static semiconductor devices such as field-effect-

transistors (FETs), one of the prior studies is completed by using modelling 

techniques, for instance, the Berkeley Short-Channel IGFET Model (BSIM)  [68], 

which has provided a convenient way to gain the understanding of the characteristics. 

For the motional nano-scale device like NEMS, modelling becomes even more 

important, because direct observation of the vibrational characteristics in its high-

frequency or very-high-frequency (VHF) range is indeed difficult. Interdisciplinary 

physics including electro-mechanical coupling makes it more difficult understand full 

device operation accurately.  

Powerful tools such as COMSOL [69] and ANSYS [70] are widely used to perform 

detailed and accurate finite-element-analysis (FEA) simulations of NEMS resonators 

and other NEMS-based physical systems. They offer graphical user interface (GUI) 

that allows users to build and solve multi-physics problems in a convenient and direct 
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way. However, due to the nature of nonlinearity, not only the convergence of FEA 

could be computationally expensive and time-consuming, but also a way to describe 

the underlying physical phenomena that give the rise of its behaviour is essential but 

cannot be covered fully. Nonlinear behaviour in NEMS can arise from a variety of 

physical phenomena, such as nonlinear material properties, mechanical instabilities, 

and coupling between mechanical and electrical properties. These phenomena can be 

difficult to understand and predict without a mathematical model that captures their 

essential features. 

This chapter will focus on the methodology about the nonlinear behaviour of doubly-

clamped Si-NEMS resonators. First, in relation to the structure explanation, device 

fabrication process will be introduced briefly. Later, the process of building a 

mathematic nonlinear model associated with actual Si-NEMS resonators will be 

explicitly presented within the third section of this chapter, including solving the 

steady-state solutions for the equation with the cubic nonlinear term. Lastly, the 

experimental techniques including frequency-modulation (FM) and 1- 𝜔  mixing 

measurement will be described in detail. 

 

3.1. Device Fabrication  

Doubly-clamped silicon NEMS resonators (Si-NEMS) are used for the nonlinearity 

study in this project. Samples were designed by F. A. Hassani et al., [25] and 

fabricated by my collaborators in Commissariat à l’Energie Atomique et aux Energies 

Alternatives Laboratoire d'électronique des technologies de l'information (CEA-LETI) 

under the former EU FP7 NEMSIC project. Because a thorough understanding of the 

structural feature of the Si-NEMS is required prior to the modelling, first, we start 

with the introduction of fabrication process, which is based on CEA-LETI technology, 

given in Figure 3.1.  
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Figure 3.1 Scheme for fabrication process of Si-NEMS: (a) SOI substrate 
preparation. (b) Doubly-Clamped beam structure definition (c) Thermal 
oxidation (d) Sacrificial layer deposition (e) Contact area open(f) 
Oxidation (g) Contact holes open within oxidation layer (h) Metallization 
(i) Polysilicon etching [25]. 
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The NEMS resonators were fabricated based on silicon-on-insulator (SOI) platform. 

The thickness of SOI layer and the box layer are 45 nm and 150 nm, respectively. The 

SOI wafters were heavily n-type doped with the concentration at 4× 1019 at.cm-3. The 

beams were pattern defined and released with vapor HF as shown in Figure 3.1(b). 

For passivation and minimizing the surface states, a 14-nm-thick silicon dioxide (SiO2) 

layer was then developed via thermal oxidation (Figure 3.1(c)) around the surface of 

the device and the suspended beam. Then, the poly silicon was deposited on the 

surface to fill the etched area around the beam and followed by chemical-mechanical 

polishing/planarization (CMP) in order to protect the beam from further processing 

steps.  

The holes for contact in Figure 3.1(e) were patterned by etching the poly silicon 

sacrificial layer with the etch stop at thermal oxide layer. Later, an oxidation layer was 

deposited on the surface (Figure 3.1(f)) to fill the contact holes. The holes for contact 

pads were defined in Figure 3.1(g) and aluminium was deposited to pattern the 

contact pads in Figure 3.1(h). Figure 3.1(i) is the final step where xenon difluoride 

(XeF2) was used to open a window in oxide and polysilicon above the beam to form 

the suspension of the beam. With the actuation applied via bottom gate, the beam 

oscillates periodically along with the RF signal applying through the beam. In this 

thesis, the fundamental mode is focused, in other words, beam oscillates vertically in 

out-of-plane mode. COMSOL simulation for NEMS resonators have been 

comprehensively completed by Hassani et al., [25] and their result displayed the 

fundamental mode frequencies of beams with various dimensions. This outcome is 

employed within this paper to ascertain the experimental resonance modes. This holds 

significance due to distinct resonance modes implying differing beam oscillation 

patterns. Given that the paper's modeling method predominantly targets the 

fundamental mode, this approach ensures the accurate determination of the resonance 

mode aligned with the study.  

Figure 3.2 shows the detail of design and the SEM view of sample to prove the 

success of the suspended beam formation. Table 3.1 summarises the dimension details 

of samples, which will be further studied and modelled in later sections. 
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Table 3.1 Sample dimension summary (Unit: nm) 
Sample  𝐼𝐵  𝑤𝐵  𝐼𝑐 𝑔0 

S1 2000 105 1840 

80 
 

S2 2000 135 1840 

S3 1500 105 1340 

S4 1500 135 1340 

S5 1000 105 840 

S6 1000 45 840 

 

 

 

Figure 3.2 Structure of Si-NEMS (a) Design and parameter definition. 𝐼𝐵, 
𝐼𝐶, 𝑔𝑆, 𝑔0,𝑤𝐵 are the beam length, side-gate length, gap from side-gate to 
source/drain, gap between gate and beam, and the beam width, 
respectively [25].  (b) SEM observation 
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The doubly-clamped Si-NEMS resonator is conductive due to the heavily doped 

feature. As the design is based on the similar structure of a common transistor, the 

input and output of the NEMS resonators are therefore correspondingly named as 

Source and Drain. The two lateral located electrodes are side electrodes, and the 

substrate serves as the back electrode. The following section will introduce the model 

for the characterisation of NEMS resonators. Noted that, for the convenience of 

expression, the dimensional parameters length, width, thickness, and gap between 

beam and electrodes is marked as 𝐿, 𝑊, 𝑡, and 𝑔0 which correspond to 𝐼𝐵, 𝑤𝐵 , and 

SOI layer thickness, respectively. 

 

3.2. Model 

3.2.1. Duffing Equation 

Section 2.1.1 introduces the difference between EBT and Duffing model. Because of 

the symmetric sample design, the geometric nonlinearity is negligible. On the other 

hand, nonlinearities induced by imperfections are typically unrelated to frequency and 

the strength of the input signal. Consequently, they manifest as disorderly, random 

phenomena, causing instability in experiment. However, in this work, after extensive 

prolonged testing, such phenomena were not observed. Additionally, within the low-

intensity signal input range, the resonance exhibited stable symmetric peaks. 

Furthermore, I conducted scanning electron microscopy (SEM) observations on 

selected samples and did not identify significant structural imperfections. Thus, within 

this work, I assume that the NEMS beams fabricated by Hassani et al. at CEA-LETI 

are devoid of imperfection-induced nonlinearity. Therefore, nonlinearities due to 

fabrication and contact are also ignored. Hence, Duffing equation is more applicable 

as mechanical and electrical nonlinearities are focused on this research [71]. The first 

use of Duffing equation associated to nonlinear analysis can be traced back to 1928 

where Lachmann et al., used Duffing equation to solve a forced vibrational of 

pendulum problems [72]. Later Friedrichs et al., proposed the first trail to introduce a 



CHAPTER 3. Si-NEMS Resonator Structure and Modelling 

46 

 

cubic nonlinear term to specify the order of nonlinear restoring force in the series of 

lectures in Brown University [73]. This nomenclature has become a widely accepted 

way to describe the nonlinear behaviour for a Duffing oscillator to very recent decade 

[74].     

 

Figure 3.3 Scheme of a driven SDOF mechanical nonlinear oscillator 

In general, Duffing equation describes the states of an oscillator in its equilibrium 

position based on Newton’s law. For an n-th degrees of freedom system, it takes the 

form as follows: 

[𝑀]𝑧‘’ + [𝐶]𝑧 ‘ + [𝐾]𝑧 = 𝑓𝑁(𝑧, 𝑡) (3.1) 

where 𝑧‘’, 𝑧‘ and 𝑧 are displacement, velocity, and acceleration of the oscillator. [𝑀], 

[𝐶], and [𝐾] are 𝑁 × 𝑁 matrix of mass, damping, and linear stiffness respectively. 

𝑓(𝑧, 𝑡)  is a component that depends on the time domain displacements of the 

oscillator comprising all the external forces applied on the oscillator and elastic force. 

Equation (3.1) is known as the second-order Duffing equation.  

In this thesis, only single degree of freedom (SDOF) is considered as it is sufficient to 
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understand the utility and applications for a single nonlinear doubly-clamped beam. 

For the coupled oscillator network, two or multiple degrees of freedom should be 

taken into consideration based on the model proposed in this thesis. 

 

3.2.2. Mechanical Nonlinear Coefficient 

To model the origin of nonlinearity, I start from the very basis of the motion. SDOF 

universal equation of motion based on Newton’s Law is considered: 

𝑚𝑏
𝛿2𝑧(𝑡)

𝛿𝑡2
+ 𝐶

𝛿𝑧(𝑡)

𝛿𝑡
+ 𝐾𝑧(𝑡) = 𝑓(𝑧, 𝑡) (3.2) 

where 𝑚𝑏 , 𝐾, 𝐶 , and 𝑓(𝑧, 𝑡)  are beam mass, spring, damping, and driven force. 

Correspondingly, each term in the equation represents different portion contributing in 

the system, where 𝑚𝑏 𝛿2𝑧(𝑡) 𝛿𝑡2⁄  stands for the inertia, 𝐶 𝛿𝑧(𝑡) 𝛿𝑡⁄  is damping, 

𝐾𝑧(𝑡)  is the restoring force. From a basic theory of the origin of nonlinearity 

described in Chapter 2, the mechanical nonlinearity stems from the intrinsic 

mechanical properties of the spring. Hence, the spring constants 𝐾 can be considered 

as an integrated factor that possesses multiple orders of spring constants [23, 26, 28, 

44]. We process the restoring force 𝐾𝑧(𝑡) with perturbation series expansion, written 

as, 

𝐾𝑧(𝑡) = 𝑘0[𝑧(𝑡) + 𝑘1𝑧(𝑡)
2 + 𝑘2𝑧(𝑡)

3 +⋯+ 𝑘𝑛−1𝑧(𝑡)
𝑛 +⋯ ] (3.3) 

where 𝑘0 is the linear stiffness coefficient and 𝑘𝑛 is defined as a stiffness coefficient 

of a 𝑧(𝑡)𝑛+1 term. In a flexural model, for other geometries such as bulk acoustic 

wave resonator the even-order restoring force (n = 2, 4, 6 … ) like 𝑘1 is nonzero due 

to geometric nonlinearity [40]. However, as for the symmetric design of the structure 

in my case, the geometric nonlinearities can be ignored as the even-order nonlinear 
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restoring force are balanaced against each other and only odd-order restoring force 

exists. One the other hand, the displacement 𝑧(𝑡) remains less comparable to the 

initial gap 𝑔0 , so the higher order terms of n > 4 are negligible. The 𝑧(𝑡)3  term 

remained represents nonlinearity deduced from the mechanical stiffness term and the 

cofficient 𝑘2 is equivalent to the mechanical nonlinear stiffness 𝛽𝑚; 

𝐾𝑧(𝑡) = 𝑘0𝑧(𝑡) + 𝑘0𝛽𝑚𝑧(𝑡)
3 (3.4) 

Figure 3.3 presents the scheme of an elementary SDOF mechanical oscillator driven 

by the force 𝑓(𝑧, 𝑡).  

𝑚𝑏
𝛿2𝑧(𝑡)

𝛿𝑡2
+ 𝐶

𝛿𝑧(𝑡)

𝛿𝑡
+ 𝑘0𝑧(𝑡) + 𝑘0𝛽𝑚𝑧(𝑡)

3 = 𝑓(𝑧, 𝑡) (3.5) 

where 𝑘0𝛽𝑚  is the nonlinear spring 𝛽  in Figure (3.3). Although Equation (3.5) is 

structurally identical to a commonly-known Duffing equation, it is important to 

discuss the origin of nonlinearity because this emphasizes the discussion of nonlinear 

origins to improve accuracy of modelling. The process of expanding and handling 

perturbations on the restoring force in this thesis reflects the discussion and 

contemplation of mechanical nonlinearity and geometric nonlinearity. Furthermore, 

the way of how to treat different 𝑘𝑛 coefficients in the Equation (3.3) is entirely based 

on the actual device we have. As a result, this part of the process also makes my 

modelling more closely aligned with the actual Si-NEMS resonator device. 

In Equation (3.5), 𝐶 can be substitute as the function of resonance frequency 𝜔0 and 

quality factor 𝑄. They are given by the following derivation process.  

𝐶 = 𝜉𝐶𝑐 (3.6) 

where 𝜉  and 𝐶𝑐  are damping ratio and critical damping coefficient. They have the 

relationship with stiffness and quality factor as below, 
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𝐶𝑐 = 2√𝑘0𝑚𝑏 (3.7) 

𝜉 =
1

2𝑄
(3.8) 

As 𝑘0  stands for the fundamental mechanical stiffness, it can be substitute by the 

simple mass-spring equation as, 

𝑘0 = 𝜔0
2𝑚𝑏 (3.9) 

Substitute 𝜉 and 𝐶𝑐 in Equation (3.6) with Equations from (3.7) to (3.9), we have, 

𝐶 =
𝜔0𝑚𝑏
𝑄

(3.10) 

By substituting 𝑘0 and 𝐶 by Equation (3.9) and (3.10), the mass normalised Equation 

(3.5) is therefore written as, 

𝛿2𝑧(𝑡)

𝛿𝑡2
+
𝜔0
𝑄

𝛿𝑧(𝑡)

𝛿𝑡
+ ω0

2𝑧(𝑡) + ω0
2𝛽𝑚𝑧(𝑡)

3 =
𝑓(𝑧, 𝑡)

𝑚𝑏
(3.11) 

 

3.2.3. Electrical Nonlinear Coefficient 

As aforementioned in Chapter 2, for an electrical-driven resonator, electrostatic force 

is another important source of nonlinearity. At the start of this project, Tsuchiya et al. 

[27] have reported the experimental observation regarding the voltage dependence 

with Si-NEMS resonator, shown as Figure 3.4 
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Figure 3.4 Voltage dependence observation by Tsuchiya et al. (a) 
Resonance peak with respect to increase of back gate voltage 𝑉𝑔  for 
sample 𝐿 = 2 μm (b) The summary of peak resonance and quality factor 𝑄 
with respect to back gate voltage [27]. 

The result of experimental observation by Tsuchiya et al shows the increase of 𝑉𝑔 

leads to the softening effect for resonance. In the meantime, when 𝑉𝑔 exceeds 0.6 V, 

the resonance curve starts to ‘bend’ to left, causing an asymmetric shape of resonance. 

This indicates the existence of higher-order frequency response term is gradually 

dominating the resonance. In other words, this study clearly presented the evidence of 

the occurrence of electrical nonlinearity in Si-NEMS resonator. Hence, as the 

continuous research, the modelling for electrical nonlinear resonance is important.  

Considering the resonator beam and back gate as a scheme of parallel capacitive 

plates, shown in Figure 3.5 as below, 
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Figure 3.5 Scheme of Si-NEMS electrical characteristics (a) A top view 
of the NEMS beam. (b) A scheme of a cross-sectional view showing 
silicon nano-beam vibration characteristics 

Given the RF signal with the amplitude 𝑉𝐴𝐶, the DC bias on the back gate as 𝑉𝐴𝐶, the 

net voltage between beam and back gate is 

|𝑉(𝑡)| = 𝑉𝐴𝐶 + 𝑉𝐴𝐶 (3.12) 

Noted that in time-domain, 𝑉𝐴𝐶  is in form of 𝑉𝐴𝐶𝑒𝑖𝜔𝑡  where 𝜔  is the angular 

frequency. The following derivation focuses on the instantaneous amplitude of 

displacement; therefore, Equation (3.6) uses the amplitude of RF to calculate the 

absolute value of 𝑉(𝑡). The surface charge density 𝜎 on the plates can be found using 

the relationship between the electric field and charge density as, 

𝜎(𝑡) = 휀0𝐸(𝑡) (3.13) 

where 휀0  is the permittivity in vacuum (휀0 ≈  8.85 × 10−12 F/m) and 𝐸(𝑡)  is the 

electric field that equals to 𝑉(𝑡)/𝑔0. Having the electrostatic force 𝐹𝑒𝑙𝑒𝑐 as, 

𝐹𝑒𝑙𝑒𝑐 =
1

2
𝜎(𝑡)𝐸(𝑡)𝑆 (3.14) 

where  𝑆  is the area which is the product of length 𝐿  and width 𝑊 . Substitute 
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𝜎(𝑡), 𝐸(𝑡) and 𝑆 in Equation (3.14) with Equation (3.12) and (3.13), I have, 

𝐹𝑒𝑙𝑒𝑐 =
휀0𝐿𝑊(𝑉𝐷𝐶 + 𝑉𝐴𝐶)

2

2𝑔0
2

(3.15) 

Nonlinearity often occurs when the displacement 𝑧 is not negligible compared to the 

gap 𝑔0. By considering 𝑧, I have, 

𝐹𝑒𝑙𝑒𝑐 =
휀0𝐿𝑊(𝑉𝐷𝐶 + 𝑉𝐴𝐶)

2

2[𝑔0 − 𝑧(𝑡)]2
(3.16) 

To extract the high order terms from electrostatic force 𝐹𝑒𝑙𝑒𝑐, I process Equation (3.16) 

with Maclaurin expansion [75] near the initial equilibrium point 𝑧 = 0, 

𝐹𝑒𝑙𝑒𝑐 =
휀0𝐿𝑊(𝑉𝐷𝐶 + 𝑉𝐴𝐶)

2

2𝑔0
2 [1 +

2

𝑔0
𝑧(𝑡) + ⋯

𝑛 + 1

𝑔0
𝑛 𝑧(𝑡)𝑛] (3.17) 

By using the same criteria as illustrated in previous section, due to the symmetry of 

design and ultrasmall scale of displacement, we extract first order term (n = 1) and 

third term (n = 3) from the Maclaurin series, giving the simplified equation as, 

𝐹𝑒𝑙𝑒𝑐 = 𝐹𝑒𝑙𝑒𝑐
0 +

휀0𝐿𝑊(𝑉𝐷𝐶 + 𝑉𝐴𝐶)
2

𝑔0
3

𝑧(𝑡) +
2휀0𝐿𝑊(𝑉𝐷𝐶 + 𝑉𝐴𝐶)

2

𝑔0
5

𝑧(𝑡)3 (3.18) 

where 𝐹𝑒𝑙𝑒𝑐0  stands for the initial electrostatic force which is identical to Equation 

(3.15). The coefficient of 𝑧(𝑡)  contributes the overall linear function of stiffness 

where the coefficient of 𝑧(𝑡)3 contributes the overall nonlinear function of stiffness. 

As they are voltage dependent, hence, they explain the mechanism of voltage-tunning 

effect with respect to resonance shift due to linear stiffness change and nonlinear 

voltage dependent effect, respectively. For the convenience, I mark them as 𝑘𝑒 and 𝛽𝑒, 
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which stands for linear and nonlinear equivalent electrical stiffness, respectively, 

being given as, 

𝑘𝑒 =
휀0𝐿𝑊(𝑉𝐷𝐶 + 𝑉𝐴𝐶)

2

𝑔03
 (3.19) 

𝛽𝑒 =
2휀0𝐿𝑊(𝑉𝐷𝐶 + 𝑉𝐴𝐶)

2

𝑔0
5

(3.20) 

Merging the above equation with Equation (3.11), I express the motional 

characteristics of Si-NEMS resonator as in one equation including the voltage-

dependent electrical stiffness and mechanical stiffness in both linear and nonlinear 

regime. 

𝑧(𝑡)′′ +
𝜔0
𝑄
𝑧(𝑡)′ + (𝜔0

2 −
𝑘𝑒
𝑚𝑏
) 𝑧(𝑡) + (𝜔0

2𝛽𝑚 −
𝛽𝑒
𝑚𝑏
) 𝑧(𝑡)3 =

𝐹𝑒𝑙𝑒𝑐
0

𝑚𝑏
(3.21) 

The increase of voltage will lead to the increase of 𝑘𝑒 and correspondingly the overall 

stiffness 𝜔02 − 𝑘𝑒/𝑚𝑏 will then decrease, causing the left shift of resonance frequency, 

which is the softening effect. Same theory applied on the nonlinearity where the 

increase of voltage leads to the decrease of cubic stiffness, showing as the result in 

Figure 3.4 that the top of resonance curve ‘bend’ to left. 

Noted that 𝑚𝑏 is the sum of effective mass of silicon and the surrounding SiO2 where 

the actual width and thickness of silicon layer should be corrected by considering the 

growth of SiO2 via thermal oxidation. 8 nm-thick Si is sacrificed during the oxidation 

process to grow 14 nm-thick SiO2. Hence, the designed width and thickness of Si will 

need to be corrected accordingly. As for effective mass calculation, it requires 

complex consideration including crystalline structure of Si and SiO2. Density function 

theory or experimental observation are commonly considered to obtain the effective 

mass. For simplicity, the effective mass is calculated by considering the theory 
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proposed in [12] and [26] as; 

𝑚𝑏 = 0.735𝜌𝑊𝐵𝐿𝑡𝐵 (3.22) 

where 𝑚𝑏 is effective mass, 𝜌 is the density of beam, 𝑊𝐵, 𝐿, 𝑡𝐵 are the beam’s width, 

length, and thickness, respectively. Equation (3.21) is the target model which is a 

time-domain form with the cubic nonlinear term that makes analytically unsolvable. 

The following section will present a novel way of utilizing a computational numerical 

method to obtain the steady-state solutions for Equation (3.21). 

 

 

3.3. Model Solution and Simulation 

In solving a differential equation like Duffing equation with a cubic nonlinear term, 

due to its inherent complexity arising from the nonlinear term, the precise analytical 

solution has been conclusively demonstrated to be unattainable through mathematical 

approaches. Consequently, throughout the extensive research process, indirect 

solution methodologies have emerged as a prevailing consensus among scholars. In 

the theory of Nonlinear Dynamics, there are several methods to obtain analytics and 

numerical solutions. Some of the most well-known methods are the harmonic balance 

method, Petrov-Galerkin (P-G) method [34], Poincaré-Lindstedt (P-L) method [76, 

77], and 4th order Runge-Kutta (4th R-K) method [78]. P-G and 4th R-K method are 

commonly used to obtain numerical solutions, where P-G is known ideal to solve 

differential equations with a symmetric system that contains odd order terms only and 

to convert the time domain form into the frequency domain form. The P-L method is 

to obtain uniformly approximating periodic solutions to the ordinary differential 

equation in a weak nonlinear system, within the perturbation theory. Harmonic 

balance is a common method to solve both linear and nonlinear problems when the 

equation consists of secular terms 𝑡𝑠𝑖𝑛(𝜔𝑡) [79, 80]. 
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3.3.1. Steady-State Solutions for Linear Oscillators 

As aforementioned, the nonlinearity is often natural and intrinsic. In many scenarios, 

oscillators are able to work within a linear or quasi-linear regime via certain designs 

and input control. To understand the behaviour of Si-NEMS resonators vibrating in 

linear regime, this subsection will introduce the approach to obtain analytic solution 

for the model illustrated in 3.2. 

set nonlinear coefficient to zero to linearize the equation, 

𝜔0
2𝛽𝑚 − 𝛽𝑒 = 0 (3.23) 

According to the Theory of Vibration by W. Thomson [81], if the system is driven by 

a sine wave, a dynamic of mechanical systems whose equation of motion have a 

general form as Equation (3.23) has its time dependent solution given by the Fourier 

Series form as, 

𝑧(𝑡) = 𝐴0(0) +∑[𝐴𝑛 𝑐𝑜𝑠(𝑛𝜔𝑡) + 𝐵𝑛 𝑠𝑖𝑛(𝑛𝜔𝑡)]

𝑛=1

(3.24) 

where 𝐴0(0)  is the initial displacement of the oscillator. 𝐴𝑛 cos(𝑛𝜔𝑡)  and 

𝐵𝑛 sin(𝑛𝜔𝑡) are two orthogonal components of the vibration displacement. In my 

scenario, the shape of the resonator at rest is pure symmetric without deformation. 

Therefore, in the following expressions, 𝐴0(0) is set to zero. For the interest of non-

zero initial position solutions, Sansa et al. has reported a potential method to enhance 

the piezoresistive transduction mechanism based on the asymmetry of the beam shape 

at rest which enables highly sensitive linear detection of the vibration of low-

resistivity silicon beams without the need for exceptionally large piezoresistive 

coefficients [19, 21]. Meanwhile, in this study, the Fourier series form is truncated to 

the fundamental harmonic expression (n = 1) leading to a pure sine wave solution to 

approximate the real periodic solution, which is sufficient to further simulation and 
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fitting. 

Hence, I have an approximated solution to the Duffing equation given by, 

𝑧(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡) + 𝐵𝑠𝑖𝑛(𝜔𝑡) = |𝑧|𝑒𝑖𝜔𝑡+𝜃 , (3.25) 

|𝑧| = √𝐴2 + 𝐵2, (3.26) 

|𝜃| = 𝑎𝑟𝑐𝑡𝑎𝑛 |
𝐵

𝐴
| (3.27) 

where |𝑧| is the amplitude of the instantaneous vibration displacement, 𝜃 is the phase 

change of the vibration. In this section, the linear response is focused. Therefore, the 

coefficient of 𝑧3 is manually set to zero and the system function is given as, 

𝑧′′ +
𝜔0
𝑄
𝑧′ + [𝜔0

2 −
휀0𝐿𝑊(𝑉𝐷𝐶 + 𝑉𝐴𝐶)

2

𝑚𝑏𝑔03
] 𝑧 =

휀0𝐿𝑊(𝑉𝐷𝐶 + 𝑉𝐴𝐶)
2

2𝑚𝑏𝑔02
 (3.28) 

Substituting 𝑧 with Equation (3.25) and I have, 

−𝐴𝜔2 𝑐𝑜𝑠(𝜔𝑡) − 𝐵𝜔2 𝑠𝑖𝑛(𝜔𝑡) −
𝜔0𝜔

𝑄
[𝐴𝑠𝑖𝑛(𝜔𝑡) − 𝐵𝑐𝑜𝑠(𝜔𝑡)] + 𝜔0

2𝐴𝑐𝑜𝑠(𝜔𝑡)

+𝜔0
2𝐵𝑠𝑖𝑛(𝜔𝑡) −

휀0𝐿𝑊𝑉𝐷𝐶
2

𝑚𝑏𝑔0
3
[𝐴𝑐𝑜𝑠(𝜔𝑡) + 𝐵𝑠𝑖𝑛(𝜔𝑡)] −

휀0𝐿𝑊𝑉𝐷𝐶𝑉𝐴𝐶𝑐𝑜𝑠(𝜔𝑡)
2

𝑚𝑏𝑔0
3

𝐴

                  −
휀0𝐿𝑊𝑉𝐷𝐶𝑉𝐴𝐶𝑐𝑜𝑠(𝜔𝑡)

𝑚𝑏𝑔03
𝐵𝑠𝑖𝑛(𝜔𝑡) −

휀0𝐿𝑊𝑉𝐷𝐶
2

𝑚𝑏𝑔02
−
휀0𝐿𝑊𝑉𝐷𝐶𝑉𝐴𝐶𝑐𝑜𝑠(𝜔𝑡)

2𝑚𝑏𝑔02
= 0  

                                                                                                                                         (3.29)

  

Simplifying the Equation (3.29), extracting the coefficients around 𝑠𝑖𝑛(𝜔𝑡)  and 

𝑐𝑜𝑠(𝜔𝑡) and balancing them, a set of equations that relates to 𝐴, 𝐵, and 𝜔 are given 

as, 
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  −
휀0𝐿𝑊𝑉𝐷𝐶(𝑉𝐷𝐶 + 𝑉𝐴𝐶)

2𝑚𝑏𝑔02
−
𝜔0𝜔

𝑄
𝐵 + (𝜔0

2 − 𝜔2)𝐴 −
휀0𝐿𝑊𝑉𝐷𝐶(𝑉𝐷𝐶 + 𝑉𝐴𝐶)

𝑚𝑏𝑔03
𝐴 = 0

                                                  (𝜔0
2 − 𝜔2)𝐵 +

𝜔0𝜔

𝑄
𝐴 −

휀0𝐿𝑊𝑉𝑑𝑐(𝑉𝑑𝑐 + 𝑉𝑎𝑐)

𝑚𝑏𝑔03
𝐵 = 0

                                                                                                                                            (3.30)

 

The dimensional parameters 𝐿,𝑊, 𝑔0 are referred from Table 3.1. Effective mass 𝑚𝑏 

is given by Equation (3.22). The values of 휀0 , 𝑉𝐷𝐶 , 𝑉𝐴𝐶  are given by the actual 

experiment condition. The solutions of 𝐴 and 𝐵 can be calculated from the equations 

above as the function of input frequency 𝜔.  

Another approach is by using the expression 𝑧𝑒𝑖𝜔𝑡+𝜃  and solve Equation (3.28) 

directly without using the harmonic balance. The advantage of this method is its 

simplicity by referring the Lorentzian function [82]. The drive mode vibration 

displacement is given as follow, 

𝑧(𝜔) =
휀0𝐿𝑊(𝑉𝐷𝐶 + 𝑉𝐴𝐶)

2

2𝑚𝑏𝑔02√(𝜔0
2 − 𝜔2)2 +

𝜔0
2𝜔2

𝑄2

+ 𝑧(0) (3.31)
 

|𝜃| = 𝑎𝑟𝑐𝑡𝑎𝑛 |
𝜔𝜔0

𝑄(𝜔0
2 − 𝜔2)

| (3.32) 

Regarding the displacement to current conversion, Gouttenoire et al. [29] reported 

their findings about the signal transduction mechanism in carbon nanotube (CNT) 

based NEMS resonator. Their result proved that in the frequency modulation (FM) 

method, for linear oscillator, the current detected by the lock-in amplifier at the 

frequency 𝜔 is linearly proportional the derivative of the real part of the displacement. 

Only considering the real domain, the derivative of Equation (3.31) is given as, 
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𝑋(𝜔) = 𝑆𝑖𝑧
휀0𝐿𝑊(𝑉𝐷𝐶 + 𝑉𝐴𝐶)

2

2𝑚𝑏𝑔0
2

2𝜔 (𝜔2 −𝜔0
2 −

𝜔0
2

𝑄
) (𝜔2 − 𝜔0

2 +
𝜔0
2

𝑄
)

[(𝜔0
2 − 𝜔2)2 +

𝜔0
2𝜔2

𝑄2
]
2 + 𝑋(0)(3.33) 

where 𝑋(𝜔) is the current frequency response, 𝑆𝑖𝑧 is the scaling factor that stands for 

the expression of ‘linearly proportional’ relationship based on the result from [29], 

and 𝑋(0) is the offset current level.  

 

Figure 3.6 Linear curve fitting for a Si-NEMS resonator’s frequency 

response by Tsuchiya et al [27]. 

Prior to this project, Tsuchiya et al [27] performed linear fitting for a 2 μm-long Si-

NEMS resonators (Sample S1 as shown in Table 3.1). The linear model they have 

used in the publication is in the similar form as Equation (3.33). The improved part is 

Equation (3.33) that expresses dimensional parameters, effective mass, DC bias and 

AC amplitude more explicitly, which are directly linked with information provided 

from actual samples and experimental data.    

 



CHAPTER 3. Si-NEMS Resonator Structure and Modelling 

59 

 

3.3.2.  Steady-State Solutions for Nonlinear Oscillator 

Numerical approaches directly address the differential equations in models, relying 

heavily on computation to determine the standard nonlinear mode. Analytical methods, 

as seen earlier, have multiple drawbacks. Firstly, they can only be feasibly applied to 

straightforward systems with a limited number of degrees of freedom (DOF). 

Furthermore, these methods are heuristic, meaning the approximations derived from 

their use are solely valid for small DOF displacement magnitudes. All such techniques 

necessitate some level of computational aid for tasks like calculating power series 

coefficients or performing integrations, as demonstrated when using the harmonic 

balance method on various models. Conversely, numerical methods are scalable and 

highly compatible with large-scale or highly nonlinear systems, offering the potential 

for precise numerical solutions to the standard nonlinear mode. However, this 

advantage comes at the cost of demanding significant computational resources with 

the currently accessible methods. 

At the beginning of section 3.3,  several typical numerical or analytical methods to 

solve nonlinear functions have been introduced. In case for NEMS resonators, I have 

opted for Petrov-Galerkin (P-G) method which not only is capable to be used for both 

ordinary differential equation (ODE) and partial differential equation (PDE) scenarios, 

but also can directly transfer the test function into different domain. In this section, 

the nonlinear NEMS resonator model (Equation (3.23)) will be processed with P-G 

method and steady-state solutions for frequency response will be obtained as a result 

of P-G method combined with computational iterations. 

Here we use the same test function for the displacement 𝑧(𝑡) as shown in Equation 

(3.25). The P-G method focuses on minimizing weighted residuals, in this case, the 

residual work. For a steady-state symmetric oscillation, the total residual work in each 

periodic oscillation cycle is balanced to be zero [83]. 

To begin with, I define the residual force 𝑅(𝑡) of the system as, 
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𝑅(𝑡) = 𝑚𝑏 [𝑧(𝑡)
′′ +

𝜔0
𝑄
𝑧(𝑡)′ + (𝜔0

2 −
𝑘𝑒
𝑚𝑏
) 𝑧(𝑡) + (𝜔0

2𝛽𝑚 −
𝛽𝑒
𝑚𝑏
) 𝑧(𝑡)3] − 𝐹𝑒𝑙𝑒𝑐

0    

                                                                                                                                        (3.34)

 

𝑅(𝑡) is the time-dependent residual force. In my case, the oscillation is only driven by 

electrostatic force 𝐹𝑒𝑙𝑒𝑐0 . The reason that harmonic balance is not used but P-G method 

is that 𝑅(𝑡) equals zero only if the oscillator reaches a certain equilibrium level of 

amplitude. So, the approximated solutions obtained via harmonic balance cannot 

precisely describe the scenario when the energy is released nonlinearly. The P-G 

method extends the consideration from a single instantaneous point to the whole cycle 

of oscillation by balancing the work of residual force leading to an acceptable 

approximation.  

The residual work is a product of the residual force and the displacement, which is 

expressed as, 

𝑅(𝑡)𝑧(𝑡) = 𝑅(𝑡)𝐴(𝜔) 𝑐𝑜𝑠(𝜔𝑡) + 𝑅(𝑡)𝐵(𝜔) 𝑠𝑖𝑛(𝜔𝑡) (3.35) 

Here, the coefficients will be derived from the orthogonalization of residual force in 

the interval (0, 2𝜋 𝜔⁄ ) leading to a set of 2 algebraic equations that determine the 

values of amplitude coefficient 𝐴(𝜔) and 𝐵(𝜔)  as a function of the parameter 𝜔: 

𝐺1(𝐴, 𝐵, 𝜔) = ∫ 𝑅(𝑡)𝐴(𝜔)𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡 = 0 

2𝜋
𝜔

0

(3.36) 

𝐺2(𝐴, 𝐵, 𝜔) = ∫ 𝑅(𝑡)𝐵(𝜔)𝑠𝑖𝑛(𝜔𝑡)𝑑𝑡 = 0 

2𝜋
𝜔

0

(3.37) 

where 𝐺1 (𝐴, 𝐵, 𝜔) and 𝐺2 (𝐴, 𝐵, 𝜔)  are two orthogonal Galerkin functions of the 

residual work per cycle, which are equal to zero. Substituting 𝑅(𝑡) in Equation (3.36) 
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and (3.37) by Equation (3.34), I have, 

 𝐺1(𝐴, 𝐵, 𝜔) = 𝐴𝑄 [𝐴
2𝛽𝑚𝜔0

2 + (𝐵2𝛽𝑚 +
4

3
)𝜔0

2 −
4𝜔2

3
]𝑚𝑏𝑔0

5 −
4𝑆𝑉𝐴𝐶𝑉𝐷𝐶𝑔0

3휀0𝑄

3

               −
8𝑄𝐴𝑆𝑉𝐷𝐶

2 𝑔0
3휀0

3
− 4𝑄𝐴휀0𝑆𝑉𝐷𝐶

2 (𝐴2 + 𝐵2) +
4𝜔0𝐵𝜔𝑚𝑏𝑔0

5

3
                                                                                                                                       (3.38)

 

𝐺2(𝐴, 𝐵, 𝜔) = 𝑄𝐵
3(𝛽𝑚𝑔0

5𝑚𝑏𝜔0
2 − 4휀0𝑆𝑉𝐷𝐶

2 ) + [(𝐴2𝛽𝑚 +
4

3
)𝜔0

2 −
4𝜔2

3
]𝑄𝐵𝑚𝑏𝑔0

5

                         − (
8𝑔0

2

3
− 4𝐴2) 𝑆𝑉𝐷𝐶

2 휀0𝑄𝐵 − 4𝜔0𝐴𝜔𝑚𝑏𝑔0
5                                        

                                                                                                                                         (3.39)

 

The resulting system is a set of two equations 𝐺1 = 0 and 𝐺2 = 0 with two dependent 

variables 𝐴 and 𝐵 with an independent variable 𝜔.  

Newton-Raphson iteration (NRI) [83] is one of the most commonly used mathematic 

method to approximate target solution. The advantage of using NRI is that it allows 

computational iteration with controlled steps where convergence and solutions can be 

tracked via iteration counts, which is simple to be realized in algorithm. I perform 

NRI via MATLAB 2020a [84], full code can be found in Appendix A.2. Here, we 

present details of NRI to solve Equation (3.38) and (3.39).  

Given the NRI equations with respect to solutions 𝐴(𝜔) and 𝐵(𝜔) as, 

[𝐴𝑁+1(𝜔)  𝐵𝑁+1(𝜔)] = [𝐴𝑁(𝜔)  𝐵𝑁(𝜔)]  −
𝑮

𝑱
 (3.40) 

where 𝑮  and 𝑱  are the Galerkin matrix (𝐺1, 𝐺2)  and the Jacobian matrix of 𝑮 , 

respectively, given as, 
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𝑱 = (

𝜕𝐺1
𝜕𝐴

(𝐴, 𝐵, 𝜔)
𝜕𝐺1
𝜕𝐵

(𝐴, 𝐵, 𝜔)

𝜕𝐺2
𝜕𝐴

(𝐴, 𝐵, 𝜔)
𝜕𝐺2
𝜕𝐵

(𝐴, 𝐵, 𝜔)

) (3.41) 

The derivatives in the Jacobian matrix are given as, 

𝜕𝐺1
𝜕𝐴

(𝐴, 𝐵, 𝜔) = [𝐴2𝛽𝑚𝜔0
2 + (𝐵2𝛽𝑚 +

4

3
)𝜔0

2 −
4𝜔2

3
]𝑚𝑏𝑔0

5 + 2 𝐴2𝛽𝑚𝑔0
5𝑚𝑏𝜔0

2

−
8𝑆𝑔0

2𝑉𝐷𝐶
2 휀0

3
− 4휀0𝑆𝑉𝐷𝐶

2 (𝐴2 + 𝐵2) − 8𝐴2𝑆𝑉𝐷𝐶
2 휀0 (3.42)

 

𝜕𝐺1
𝜕𝐵

(𝐴, 𝐵, 𝜔) = (2𝐴𝐵𝛽𝑚𝜔0
2𝑚𝑏𝑔0

5 − 8𝐴𝐵𝑆𝑉𝐷𝐶
2 휀0)𝑄 +

4𝑚𝑏𝑔0
5𝜔𝜔0
3

                       (3.43) 

𝜕𝐺2
𝜕𝐴

(𝐴, 𝐵, 𝜔) = (2𝐴𝐵𝛽𝑚𝜔0
2𝑚𝑏𝑔0

5 − 8𝐴𝐵𝑆𝑉𝐷𝐶
2 휀0)𝑄 −

4𝑚𝑏𝑔0
5𝜔𝜔0
3

                       (3.44) 

𝜕𝐺2
𝜕𝐵

(𝐴, 𝐵, 𝜔) = 3(𝛽𝑚𝑔0
5𝑚𝑏𝜔0

2 − 4휀0𝑆𝑉𝐷𝐶
2 )𝐵2 + [(𝐴2𝛽𝑚 +

4

3
)𝜔0

2 −
4𝜔2

3
]𝑚𝑏𝑔0

5                  

                       −8𝑆𝑔0
2𝑉𝐷𝐶

2 휀0                                                                                           (3.45)

 

The result of trail simulation shows that iteration counts 𝑁 = 500 is able to present 

enough precision for the steady-state solutions. A set of initial values are expected in 

NRI to converge to the steady-state approximation solutions. Here, we use (5 ×

10−12, 5 × 10−12) as the initial values of (𝐴0, 𝐵0). 

 

3.3.3. Simulation 

The section will demonstrate the simulations based on the previously derived model. 

Some parameters used during simulation are based on the actual samples as 
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aforementioned, such as dimensional parameters 𝐿,𝑊, 𝑡 , 𝑔0  and silicon material 

properties 𝜌.  

 

3.3.3.1. An Example in Linear Simulation 

To begin with, we start from the simulation with linear model. Set the nonlinear part 

𝑧3 to zero, the model is then presenting pure linear response, which is equivalent to 

Eq. (3.33). Figure 3.7 shows the amplitude and phase change of simulated frequency 

response changing with respect to the actuation DC voltage. 

From Equation (3.32), for a damped linear system, the value of 𝑄 and the frequency 

of the drive signal will affect the phase of the oscillation. Figure 3.7(b) shows the 

overall phase change at resonance is around 180°, where the phase shift of resonator 

is π/2 behind the phase of the drive signal. In Equation (3.30), the coefficient of 𝑧 

stands for the overall electro-mechanical stiffness, which is inversely proportional to 

𝑉𝐷𝐶
2 . Table 3.2 summarises the simulation result for resonance frequency and 

simulated displacement and their changes with respect to the increase of DC bias.  

Table 3.2 Simulation result of the steady-state linear oscillator 
𝑽𝑫𝑪 (V) Resonance Frequency (MHz) Displacement (nm) 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

97.95 

97.93 

97.91 

97.88 

97.84 

97.81 

13.56 

16.45 

19.19 

21.89 

24.69 

27.48 
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Figure 3.7 Steady-state linear oscillation simulation with respect to DC 
back-gate voltage dependence. (a)The simulated amplitude. (b)The 
simulated phase change 

The result of simulation in Figure 3.7 demonstrated the details of how voltage 

changes not only displacement due to electrostatic force, but also the resonance 

frequency, or in other words, the stiffness of the oscillator via 𝜔 = √𝑘𝑜𝑣𝑒𝑟𝑎𝑙𝑙/𝑚𝑏 [46]. 

The symbol of 𝑘𝑜𝑣𝑒𝑟𝑎𝑙𝑙 here is to distinguish it with the natural mechanical stiffness 
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which defines its natural pulsation. Due to the mechanism of resonance, the operation 

of heavily-doped beam needs to work under DC bias which means the resonance 

frequency showing in Table 3.2 will never be its intrinsic position. One possible way 

we have mentioned to identify its natural resonance position is by using Thermo-

Mechanical Noise (TMN) measurement. Chapter 6 will go through our measurement 

and observation of TMN in detail.   

 

3.3.3.2. Nonlinear Simulation: 𝜷𝒎 

The method to obtain steady-state numerical solutions was in section 3.3.2. To present 

the effect by mechanical nonlinear coefficient 𝛽𝑚, numerical simulation result under 

Equation (3.40) will be carried out in this section. Table 3.3 summarises the resonance 

frequencies extracted from simulation. 

Table 3.3 Simulation result of the steady-state nonlinear oscillator 
𝜷𝒎(𝒎−𝟐) Resonance Frequency (MHz) 
1 × 10-4 

5 × 10-4 

1 × 10-5 

5 × 10-5 

0 

-1 × 10-5 

-5 × 10-5 

-1 × 10-4 

-5 × 10-4 

98.05 

97.97 

97.96 

97.95 

97.95 

97.95 

97.94 

97.93 

97.83 
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Figure 3.8 Steady-state linear oscillation simulation with respect to DC 
back-gate voltage dependence. (a)The simulated amplitude. (b)The 
simulated phase change 

Figure 3.8 and Table 3.3 together present the effect by the mechanical nonlinear 

stiffness coefficient 𝛽𝑚 with respect to the resonance frequency. Differ from the linear 

simulation, the impact of nonlinear coefficient on the resonance frequency response is 

primarily concentrated on the shape of the curve, or specifically, its peak, rather than 

causing a parallel shift of the entire curve.  The simulation result in Figure 3.8 is 

obtained under 𝑉𝐷𝐶 at 1 V and the power level at -3 dBm. It clearly demonstrates the 

impact by 𝛽𝑚. With the increase of value of |𝛽𝑚|, the bending of curve becomes more 

pronounced.  

Moreover, as can be seen from Figure 3.8, although the value of 𝛽𝑚 from 0 to 5 × 10-4 

m-2 keeps the same increment during the simulation, the impact on curve’s bending 

degree is different where from 1 × 10-4 to 5 × 10-4 m-2 the degree of curve bending, or 

in other words, the nonlinearity, is significantly pronounced than before. This 

tendency is the same as in negative values. This proves the increase of mechanical 
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nonlinearity 𝛽𝑚  can lead to an exponential growth in the system’s nonlinear 

characteristics and it may dominate when its intrinsic properties, such as of a novel 

material MoS2, is highly sensitive to nonlinear response. Conversely, with less 

mechanical nonlinearity, the system would be much easier to maintain its function in 

the linear regime.  

 

3.3.3.3. Nonlinear Simulation: Voltage Dependence 

One important novelty in this research is to explain the nonlinear voltage dependence. 

With the equivalent nonlinear electrical stiffness 𝛽𝑒, the change of voltage can lead to 

the impact on overall amount of nonlinearity 𝛽𝑜𝑣𝑒𝑟𝑎𝑙𝑙, defined as, 

𝛽𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝛽𝑚𝜔0
2 − 𝛽𝑒 (3.46) 

For a positive 𝛽𝑜𝑣𝑒𝑟𝑎𝑙𝑙, the overall peak bends to the right side while in the case of 

negative 𝛽𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , the peak bends to the left side. This is known as hardening 

nonlinearity and softening nonlinearity. 
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Figure 3.9 The steady-state solution of nonlinear oscillator simulation 
result. (a)Frequency response with respect to 𝑉𝐷𝐶 dependence. 
(b)Frequency response with respect to 𝑉𝐴𝐶 dependence 

Figure 3.9 systematically shows how nonlinear behaviour changes with respect to the 

dependence of 𝑉𝐷𝐶 and 𝑉𝐴𝐶. It can be observed that 𝑉𝐷𝐶 and 𝑉𝐴𝐶 are both capable to 

change the overall nonlinearity. The differences are that 𝑉𝐷𝐶  has better tunability 

regarding the position of the resonance peak, while 𝑉𝐴𝐶  affects more on the 

nonlinearity in the vicinity of a specific peak point. In terms of the 𝑉𝐷𝐶 effects, it is 

quadratically proportional to the linear and nonlinear electrical stiffness, 𝑘𝑒  and 𝛽𝑒 , 
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simultaneously. However, 𝑘𝑒 is more sensitive to the change of 𝑉𝐷𝐶 than that with 𝛽𝑒.  

Chapter 2 introduces the findings from Samanta el ta., group [39, 53] regarding the 

voltage tunability in MoS2 2D-NEMS devices. First, they demonstrated results that 

DC bias influences nonlinearity. The potential mechanism about how the nonlinear 

behavior of MoS2 2D-NEMS can be tuned from hardening to linear and softening 

under DC bias has been explained in Chapter 2 accordingly. Within the electrostatic-

dominant nonlinearity regime, DC bias typically induces softening nonlinear effect 

and can also effectuate a shift in mechanical resonance, as depicted in Figure 3.9(a). 

Additionally, regarding the impact of AC dependences, Samanta et al. showed the 

classic Duffing nonlinear oscillation characteristics. More specifically, the peak point 

of the nonlinear curve shifts upward and to the left with the increase of AC, due to 

nonlinear softening as AC amplitude increases, resulting in a decrease in frequency 

and an increase in amplitude. Conversely, for nonlinear hardening, the shift would 

occur upward and to the right. Furthermore, with increasing AC amplitude, the curve's 

bandwidth expands while the mechanical resonance remains nearly stationary. This 

leads to the situation where the enlarged nonlinear curve envelopes the original curve, 

a phenomenon depicted in figure 3.9(b). 

Displacement 𝑧 is less comparable to gap 𝑔0 in my case, as shown in Table 3.2, the 𝑔05 

in the denominator of 𝛽𝑒 is significantly small and therefore, have less effect on the 

calculation compared to the 𝑔03  in the denominator of 𝑘𝑒 . Hence, mathematically, 

when increasing 𝑉𝐷𝐶, the change of linear electrical stiffness 𝑘𝑒 will be significantly 

larger than the change in 𝛽𝑒, leading to a more distinct effect on shifting the curve. 

Meanwhile, in the simulation, the value and interval of 𝑉𝐷𝐶 are also larger than those 

of 𝑉𝐴𝐶 , making the resonance peak more sensitive to 𝑉𝐷𝐶  rather than 𝑉𝐴𝐶 . This 

conclusion is significant that it offers insightful idea regarding the difference of the 

effect by parameters, which would be very helpful in the fitting.  
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3.3.3.4. Nonlinear Simulation: Hysteresis 

For a nonlinear dynamic system, another significant characteristic needed to be 

discussed is the bifurcation, which has been aforementioned. In perturbation theory 

[79], it mentioned that a small perturbation on the system, while the motion is at an 

extreme state (e.g., state at maximum or minimum amplitude) would bring the system 

back to the same state of motion. However, a small perturbation from the regime of 

intermediate state would force the system out of that state only to converge to one of 

the two stable solutions. For any other driving frequency out of that interval, the 

steady-state solution is unique and stable, leading to a final phenomenon shown in 

Figure 3.9.  

For a system shown in Equation (3.21) with a cubic nonlinear term that follows the 

form as 𝛽𝑥3 − 𝑘𝑥 , besides two stead-state stable solutions obtained by Equation 

(3.40), up to three solutions will be presenting, depending on the value of nonlinear 

coefficient 𝛽. A mathematic explanation can be seen in Figure 3.10. Consider that 

solutions for 𝛽𝑥3 − 𝑘𝑥 = 0  are 𝑥1 , 𝑥2, 𝑥3 , as aforementioned, the maximum and 

minimum solutions 𝑥1  and 𝑥3  (or vice versa) are two stable solutions. When 𝛽 

changes, those solutions will change correspondingly. The multi-solution phenomena 

are natural in mathematics and in physical definition, it calls bifurcation and 

hysteresis from the perspective of behaviour.  
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Figure 3.10 A mathematic explanation of multi-solutions in cubic 
nonlinear system 𝛽𝑥3 − 𝑘𝑥. 

Noted that in extreme scenario, due to the domination of instability, it will eventually 

lead to chaotic behaviour, such as three-body problem in astronomy field.  The reason 

to discuss the hysteresis behaviour is its potential in the use of neuromorphic 

computing which requires the resonator to work in strong nonlinear regime in order to 

utilise its bi-stability. Hence, a thorough understanding about the onset point of the 

hysteresis and its model for characterization are significant.  

Surprisingly, the model that derived previously can effectively simulate the bistable 

hysteresis effect, as shown in Figure 3.11. Model can demonstrate both the hysteresis 

behaviour based on softening nonlinear effect shown in Figure 3.11(a) and the 

hysteresis behaviour based on hardening nonlinear effect shown in Figure 3.11(b). 

This is due in part to my use of perturbation expansion and discussion of high-order 

electrostatic force responses at the microscale, which allows me to control the 

nonlinearity through different parameters, as well as employing numerical analysis, 

which is more accurate than analytic solutions under the scenario of given conditions. 

On the other hand, the NRI possesses the ability to give multiple solutions. Therefore, 

the combination of these two factors enables me to easily obtain the hysteresis 

behaviour and to control its mechanical nonlinearity or electrical nonlinearity in the 

same way as before. 
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Figure 3.11 Simulation Result showing hysteresis phenomena. Input 
conditions are set as 𝑉𝐷𝐶=4 V, 𝑉𝐴𝐶=0.3 V (a) A softening hysteresis with 
𝛽𝑚 at −5 × 10−4. (b) A hardening hysteresis with 𝛽𝑚 at 5 × 10−4 

Hereby, a brief discussion about the prediction of the onset point of the hysteresis is 

addressed. For the nature of nonlinearity, the multiple solutions are always existing in 

a nonlinear system which is intrinsic property. However, in many cases, the multi-

resonance under the same experimental condition cannot be seen. This was once 

explained by Andres et al. that in frequency response, only if the resonance bends due 

to the nonlinearity exceed the bandwidth, hysteresis, or in other words, multiple 
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solutions can be observed. This means, to identify the onset point of hysteresis, the 

shift of the resonance due to nonlinearity shall be defined first, and then the 

bandwidth can be used to find the threshold of the bending range of resonance 

because of nonlinearity. 

For the convenience, I temporarily re-marked the stiffness as 𝑘𝑙 and 𝑘𝑛𝑙 for the linear 

and nonlinear part of stiffness, respectively. I have, 

𝑘𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑧 = 𝑘𝑙𝑧 + 𝑘𝑛𝑙𝑧
3 (3.47) 

Then, the shift of resonance due to nonlinearity can be derived by, 

(𝑘𝑜𝑣𝑒𝑟𝑎𝑙𝑙 − 𝑘𝑙)𝑧 = 𝑘𝑛𝑙𝑧
3 (3.48) 

Normalizing Equation (3.48) by the mass and displacement 𝑧, I have, 

(𝜔𝑜𝑣𝑎
2 − 𝜔𝑙

2) = 𝑘𝑛𝑙𝑧
2  =>  (𝜔𝑜𝑣𝑎 + 𝜔𝑙)(𝜔𝑜𝑣𝑎 − 𝜔𝑙) = 𝑘𝑛𝑙𝑧

2 (3.49) 

where 𝜔𝑜𝑣𝑎 and 𝜔𝑙 are the angular resonance frequency in overall form and its linear 

portion. The term ∆𝜔 = 𝜔𝑜𝑣𝑎 − 𝜔𝑙  is the shift of resonance due to the presence of 

nonlinearity. As 𝜔𝑙 ≫ ∆𝜔, Equation (3.49) can be approximated as, 

|∆𝜔| =
𝑘𝑛𝑙𝑧

2

2𝜔𝑙
(3.50) 

Considering the case that the shift of resonance ∆𝜔 surpasses the bandwidth, I have, 

|
𝑘𝑛𝑙𝑧

2

2𝜔𝑙
|  >

𝜔𝑙
𝑄

(3.51) 
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For a system that has softening nonlinear effect (𝑘𝑛𝑙 < 0 ), by substituting the 

parameters, 

𝑘𝑛𝑙 = (𝛽𝑚𝜔0
2 − 𝛽𝑒) < −

2𝜔0
2

𝑄𝑧2
(3.52) 

           𝛽𝑒 > 𝛽𝑚𝜔0
2 +

2𝜔0
2

𝑄𝑧2
(3.53) 

Using the mathematic definition (in Equation (3.20)) of 𝛽𝑒, I have, 

(𝑉𝐷𝐶 + 𝑉𝐴𝐶)
2 ≥ (𝛽𝑚𝜔0

2 +
2𝜔0

2

𝑄𝑧2
)
𝑚𝑏𝑔0

5

2휀0𝐿𝑊
(3.54) 

The right-hand side of Equation (3.54) can be used to calculate the threshold point of 

the onset of hysteresis. When the input value on the left-hand side surpasses the 

threshold point, multiple solutions given by the model will be used to fulfil the 

hysteresis fitting in the later chapter. 

 

3.4. Model Fitting 

Based on the actual device dimensions and experimental conditions, the model we 

have derived can simulate the displacement frequency response under certain given 

conditions. However, some parameters cannot be directly obtained without 

experimental data, such as resonance frequency 𝜔0, quality factor 𝑄, and 𝛽𝑚 (pre-set 

values were used in previous sections).  

A similar situation occurs extensively in the semiconductor manufacturing industry. 

Before being officially delivered to fabless companies, many tape-out test wafers and 

devices are sent directly to the prober station for electrical and noise tests. Then, 
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modelling software (such as the previously mentioned BSIM) is used to model 

various characteristics, and by continuously adjusting some characteristic parameters 

(e.g., 𝑠𝑤𝑖𝑛𝑔𝑠𝑎𝑡 , 𝑠𝑤𝑖𝑛𝑔𝑙𝑖𝑛 , DIBL, 𝐶𝑜𝑥 , 𝐼𝑑𝑙𝑖𝑛 , etc.) and fitting the test data, the 

parameters in the fitted model are extracted to present the corresponding sample. 

Therefore, since Si-NEMS resonator samples have been already fabricated, we can 

obtain parameters that cannot be directly obtained from the tests, especially 𝛽𝑚 , 

through model fitting. Although, model fitting and parameters extraction are not 

directly related to any novelty, they have been the major works which have taken 

most of time in this research project and the values extracted from the fitting are 

significant to the characterization to quantitatively understand nonlinear frequency 

response. A brief introduction regarding model fitting strategy will be given in this 

subsection.  

For better understanding, a flowchart to show the process of model fitting is presented 

in Figure 3.12. In general, the target of model fitting is to extract a set of parameters 

including resonance frequency 𝜔0, quality factor 𝑄 and 𝛽𝑚. Because 𝜔0 and 𝛽𝑚 are 

derived from the mechanical stiffness 𝐾 as described in 3.2.2,  theoretically, they are 

intrinsic parameters where they should not change under any experimental input. 

Meanwhile, room temperatures and vacuum condition are set for all the experiment, 

hence, the quality factor 𝑄  is also considered as a constant regardless of input. 

Therefore, ideally a set of  𝜔0, 𝑄, 𝛽𝑚 together with given parameters (𝐿,𝑊, 𝑡, 𝑔0, 𝑚𝑏) 

should be able to fit any experimental data with respect to the DC and AC dependence. 

In this case, once I found a success of model fitting under the above criteria, we can 

assume that the parameters, especially the mechanical nonlinear coefficient 𝛽𝑚, are 

the correct value to describe the physics for the corresponding sample. And they can 

be utilized for simulations and data analysis. 
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Figure 3.12 A flowchart to show the process of model fitting. NRI stands 
for Newton-Raphson Iteration computed by MATLAB 2020a.  
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A key to ensure the accuracy is by introducing error check, which is the deviation 

error check step before the last parameter extraction. The error check function used in 

the fitting algorithm is call the Relative Root Mean Square Error (RRMSE), which is 

capable to evaluate the difference of each simulated numerical data to the 

corresponding experimental data, presenting as the fitting error. RRMSE is defined as, 

𝑅𝑅𝑀𝑆𝐸 =

√1
𝑛
∑ (�̅�𝑒𝑥𝑝

𝑖 − �̅�𝑚𝑜𝑑𝑒𝑙
𝑖 )

2𝑛
𝑖=1

∑ �̅�𝑒𝑥𝑝
𝑖𝑛

𝑖=1

× 100% (3.55)
 

where �̅�𝑒𝑥𝑝𝑖  and �̅�𝑚𝑜𝑑𝑒𝑙𝑖  are the 𝑖-th point of experimental data and model simulation 

data, respectively. Compared with a common error parameter such as the root mean 

square error (RMSE), RRMSE is more versatile to apply for comparison between 

different discrete set of data as the value of error is further normalized by the  �̅�𝑒𝑥𝑝𝑖 , 

making it comparable to different set of data regardless of experimental techniques. 

So, the fitting result by justifying with respect to RRMSE can be used to cross-

compare with data obtained by different measurement and input conditions.  

The use of deviation error check is essential as it not only stands the criteria to the 

fitting quality, but also tells how far the simulation result is from the experimental 

data, which helps the parameter adjustment. Figure 3.13 is an example of screenshot 

from MATLAB to show how RRMSE is used to find the best fitting point with 

respect to 𝛽𝑚. 

The change of 𝛽𝑚 will result in the change in RRMSE. Hence, a set of 𝛽𝑚 can be 

employed to generate multiple simulation results, and the best fitting point can be 

easily identified once it is in the minimum point. 
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Figure 3.13 RRMSE result with respect to the 𝛽𝑚 

We employ the RRMSE criterion proposed by Milan et al., [85]. When RRMSE less 

than 10%, fitting is considered as excellent, when RRMSE is between 10% to 20%, 

fitting is good, when it in the range from 20% to 30% fitting is fair, and when 

RRMSE is larger than 30%, fitting is poor, or failed. The reason to introduce the 

criterion is that, although in linear fitting, the error could be very small with less than 

1%, however, in many cases of nonlinear fitting, due to the inaccuracy from the 

approximation of simulation and the rapid change in the resonance peak, a perfect 

fitting cannot be guaranteed. The above illustrated criterion is applied in my model to 

justify the quality of fitting. 

 

3.5. Summary  

In summary, this Chapter presents a detailed methodology for modelling and 

analysing Si-NEMS resonators. At the beginning of the chapter, a brief introduction to 
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the fabrication process of Si-NEMS resonators is provided. This part not only 

explores the materials and processes of Si-NEMS resonator, but also allows for an 

understanding of its structural characteristics. Next, starting from the Duffing model, I 

introduce the modelling and description process with respect to different origins of 

nonlinearity, with a primary focus on mechanical and electrical nonlinearity. For 

mechanical nonlinearity, its origin is discussed based on the perturbation expansion of 

mechanical stiffness, and the higher-order terms are extracted to obtain the nonlinear 

part of the system 𝛽𝑚. For electrical nonlinearity, based on the working principle of 

Si-NEMS resonators, a higher-order Maclaurin series expansion of the electrostatic 

force is performed. Then, the third-order term from its series is extracted to obtain the 

complete expression of the voltage-dependent nonlinear coefficient 𝛽𝑒 . The 

superposition of 𝛽𝑚 and 𝛽𝑒 defines the overall nonlinearity of the system. Following 

that, I employed the Petrov-Galerkin (P-G) method for numerical analysis for the 

time-domain nonlinear equations and utilized the Newton-Raphson iteration to solve 

for the steady-state solution in the frequency domain. This process primarily involved 

symbolic computation using Maple 2020 and iteration with MATLAB 2020a. Based 

on this, I applied a pre-defined model for simulation and successfully demonstrated 

the influence of 𝛽𝑚, DC, and AC on linear and nonlinear frequency responses. Lastly, 

I introduced the detailed process of model fitting and illustrated it with flowcharts for 

ease of understanding. This process occupied a significant proportion of the entire 

project, not only because Nonlinear Regression Iteration (NRI) and parameter tuning 

were time-consuming but also because reasonable model fitting could yield more 

accurate parameter extraction and feature analysis, facilitating the continuation of this 

research topic and future applications based on nonlinear Si-NEMS resonators.
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CHAPTER 4 

4. Experimental Result with FM 

Measurement  
 

In previous chapters, a comprehensive introduction to the theoretical and application 

background of nanoelectromechanical systems (NEMS) has been provided. Chapter 3 

primarily focused on modelling results characterized by displacement frequency 

responses. However, due to the limitations in detecting displacement at ultra-small 

scales and within the very-high-frequency (VHF) range, experimental approaches 

primarily involve the detection of electrical or optical signals. This chapter will 

discuss the nonlinear DC, power dependence, and hysteretic behaviour of Si-NEMS 

resonators using frequency modulation (FM) testing methods. Firstly, the scheme of 

the FM setup based on Lock-in detection will be described, followed by an 

explanation of the conversion mechanism from displacement to current, founded on 

the operational principles of Si-NEMS. Subsequently, three different sizes of Si-

NEMS devices (with lengths 𝐿  = 2, 1.5, and 1 μm ) will be employed for FM 

measurements and analysed using previously developed models to compare their 

nonlinear characteristics. 
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4.1. Introduction to FM and Lock-in Amplifier 

4.1.1. Lock-in Amplifier  

Lock-in amplifier is a widely used equipment to detect and measure ultrasmall AC 

signals even if the signal is obscured by the noise. It uses a phase-sensitive detection 

technique to separate the input signal at a specific reference frequency and phase from 

the noise signals at frequencies other than the reference frequency. Figure 4.1 

schematically shows a lock-in amplifier, including an AC signal amplifier, a voltage-

controlled oscillator (VCO) that synchronizes with an external reference signal, a 

multiplier called the phase-sensitive detector (PSD), a low-pass filter and a DC 

amplifier [86].  

 

Figure 4.1 A diagram shows the details of a lock-in amplifier [86]. 

Consider the AC signal possesses the form as 𝑉𝑎𝑐(𝑡) = 𝐺𝑎𝑐𝑉𝑖 sin(𝜔𝑡 + 𝜙), where 

𝑉𝑖 is the input signal amplitude, 𝐺𝑎𝑐 is the gain of AC signal amplifier, and the internal 

reference signal locked to the external reference signal is 𝑉𝑟𝑒𝑓(𝑡) = 𝑉𝐿sin (𝜔𝑙𝑡 + 𝜙𝐿), 

where 𝑉𝐿 is the reference signal amplitude, 𝜔𝐿 and 𝜙𝐿 are the frequency and phase of 

the signal, the PSD output is given by, 

𝑉𝑃𝑆𝐷 =
1

2
𝐺𝑎𝑐𝑉𝑖𝑉𝐿 cos[(𝜔 − 𝜔𝐿)𝑡 + (𝜙 − 𝜙𝐿)]

            −
1

2
𝐺𝑎𝑐𝑉𝑖𝑉𝐿 cos[(𝜔 + 𝜔𝐿)𝑡 + (𝜙 + 𝜙𝐿)] (4.1)

 



CHAPTER 4 Experimental Result with FM Measurement 

82 
 

At the point of 𝜔 = 𝜔𝐿, the DC output voltage that is proportional to the amplitude of 

the input signal is therefore given by,  

𝑉𝑜𝑢𝑡𝑝𝑢𝑡 =
1

2
𝐺𝑑𝑐𝐺𝑎𝑐 𝑉𝑖𝑉𝐿 𝑐𝑜𝑠(𝜙 − 𝜙𝐿) (4.2) 

where 𝐺𝑑𝑐 is the gain of the DC amplifier [25, 26, 86]. During the testing process, the 

phase of the reference signal is pre-defined. The SR830 lock-in amplifier detects the 

phase difference by comparing the original AC signal to an internal reference signal 

through mixing (PSD), low-pass filter. Thus, according to Equation (4.2), the phase of 

the original signal can be determined by extracting the phase of the output signal from 

the reference signal. Practically, it is a common practice to set the phase of the 

reference signal as the default value of 0. Therefore, the output signal is in phase with 

the input signal. Alternatively, the original phase can be obtained by adjusting the 

reference phase until the amplitude of output signal is maximised.  

 

4.1.2. FM detection and Signal Conversion 

Figure 4.2 shows the setup of FM detection to obtain out-of-plane resonance of 

NEMS beams via lock-in. The RF driving signal is generated by Rohde & Schwartz 

SMJ100A signal generator and modulated by reference frequency at 2 kHz from SRS 

SR830 lock-in amplifier. DC bias is applied via Agilent B1500 onto back gate to 

activate mechanical oscillation. Then the enhanced current at the resonance frequency 

is detected by the lock-in amplifier. 
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Figure 4.2 Diagram that schematically shows the resonance measurement 
set up by using FM detection method. Notably, this report only studied the 
back-gate voltage-dependence so side-gates are temporarily grounded. 

The output current 𝐼, is determined by three parameters, including the signal applied 

to nanobeam 𝑉𝐴𝐶,𝐹𝑀 , the actuation voltage 𝑉𝐷𝐶 , the displacement of the beam 

perpendicular to the substrate 𝑧0 + 𝛿𝑧(𝑡). The voltage applied to the nanobeam by the 

frequency modulation (FM) method can be written as, 

𝑉𝐴𝐶,𝐹𝑀(𝑡) = 𝑉𝐴𝐶 𝑐𝑜𝑠 [𝜔𝑐𝑡 +
𝜔∆
𝜔𝐿
𝑐𝑜𝑠(𝜔𝐿𝑡)] (4.3) 

where 𝜔𝑐  is the high-frequency carrier component, which acts as the excitation 

frequency of the nanowire; 𝜔𝐿 is the low readout frequency, which is the reference 

frequency as previously mentioned, and 𝜔∆ is the frequency deviation.  

Here, further analysis is undertaken by employing Taylor expansion on current 𝐼 

around boundary point 𝑉𝐴𝐶(0) = 0, 𝑧 = 𝑧0. This approach enables the derivation of 

partial derivatives of 𝐼 with respect to each parameter. This is demonstrated in the 

following equation as [29], 
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𝐼(𝑉𝐷𝐶 , 𝑧0 + 𝛿𝑧(𝑡), 𝑉𝐴𝐶) = 𝐼(𝑉𝐷𝐶 , 𝑧0, 0) +
𝜕𝐼

𝜕𝑉𝐴𝐶
(𝑉𝐷𝐶 , 𝑧0, 0)𝑉𝐴𝐶

                    +
𝜕𝐼

𝜕𝑧
(𝑉𝐷𝐶 , 𝑧0, 0)𝛿𝑧 + 𝐼2 (4.4)

 

where 𝐼2  is the high-order terms in the Taylor expansion responsible for the low 

frequency signals that can be detected by the lock-in. The first and third terms on the 

right-hand side represent the components at 𝑉𝐴𝐶 = 0. In this scenario, because no 

signal passes through the beam, these terms are negligible in subsequent analysis. 

Regarding the second term, Gouttenoire et al. stated that it only arises with high-

frequency signals and not in proximity to the reference signal frequency [29]. This 

also shapes the reason that the experiment selects a reference signal frequency 

significantly lower than the test frequency. Additionally, 𝜕𝐼/𝜕𝑉𝐴𝐶  represents the 

nanobeam transconductance, and for a fixed input state, the amplitude of 𝑉𝐴𝐶  remains 

constant. Therefore, when focusing on current variation, the second term in Equation 

(4.4) is disregarded. Hence, I proceed to further approximate the remaining 

component 𝐼2, I have, 

𝐼2 ≈
1

2

𝜕2𝐼

𝜕𝑉𝐴𝐶
2 𝑉𝐴𝐶

2 (𝑡) +
𝜕2𝐼

𝜕𝑧𝜕𝑉𝐴𝐶
𝑉𝐴𝐶𝛿𝑧(𝑡) +

1

2

𝜕2𝐼

𝜕𝑧2
𝛿𝑧2(𝑡) (4.5) 

where 𝛿𝑧2(𝑡) can be ignored due to small magnitude. Daxwanger et al., [87] proved 

that the square of the applied signal 𝑉𝐴𝐶(𝑡) in Equation (4.4) has no signal at the 

modulation frequency 𝜔𝐿 by giving a Jacobi-Anger expansion of the applied signal 

𝑉𝐴𝐶(𝑡) giving by Equation (4.3). Their findings further have been double checked by 

Gouttenoire et al., [29] who demonstrated the fact that it cannot demodulate the FM 

signal. Therefore, the only left term, 𝑉𝐴𝐶𝛿𝑧(𝑡)𝜕2𝐼 / 𝜕𝑧𝜕𝑉𝐴𝐶  is a function of 𝛿𝑧(𝑡), 

which can be deduced to express the relationship between current and displacement. 

The instantaneous displacement of the beam is, 

𝛿𝑧(𝑡) = 𝑅𝑒[𝛿𝑧(𝜔)] 𝑐𝑜𝑠[𝜔𝑡 + 𝜙(𝑡)] − 𝐼𝑚[𝛿𝑧(𝜔)][𝜔𝑡 + 𝜙(𝑡)] (4.6) 

Substitute this to equation (23), I have,  
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𝐼𝐿𝑜𝑐𝑘−𝑖𝑛
𝐹𝑀 =

1

2

𝜕2𝐼

𝜕𝑧𝜕𝑉𝑎𝑐
𝑉𝐴𝐶𝑅𝑒[𝛿𝑧(𝜔)]   (4.7) 

Where 𝑅𝑒[𝛿𝑧(𝜔)] is the real part of 𝛿𝑧(𝜔), which can be written in Taylor expansion 

when 𝜔∆ ≪ 𝜔𝑐, 

𝜔 = 𝜔𝑐 + 𝜔∆ 𝑐𝑜𝑠(𝜔𝐿𝑡) (4.8) 

𝑅𝑒[𝛿𝑧(𝜔)] = 𝑅𝑒[𝛿𝑧(𝜔𝑐)] + 
𝜕𝑅𝑒[𝛿𝑧(𝜔)]

𝜕𝜔
𝜔∆ 𝑐𝑜𝑠(𝜔𝐿𝑡)

                    +
1

2
{
𝜕𝑅𝑒[𝛿𝑧(𝜔)]

𝜕𝜔
𝜔∆ 𝑐𝑜𝑠(𝜔𝐿𝑡)}

2

+ 𝑧ℎ (4.9)

 

where 𝑧ℎ is the sum of high order terms. The lock-in amplitude detects the signal at 

frequency 𝜔𝐿. Therefore, lock-in current can be re-written by combining Equations 

(4.7) to (4.9), showing as, 

𝐼𝐿𝑜𝑐𝑘−𝑖𝑛
𝐹𝑀 =

1

2

𝜕2𝐼

𝜕𝑧𝜕𝑉𝐴𝐶
𝑉𝐴𝐶

𝜕𝑅𝑒[𝛿𝑧(𝜔)]

𝜕𝜔
𝜔∆ 𝑐𝑜𝑠(𝜔𝐿𝑡) (4.10) 

Equation (4.10) has been the basis of the lock-in FM conversion in research [29]. As 

mentioned in chapter 3, the derivative of the real-part of displacement with respect to 

the frequency is proportional to the lock-in FM current. However, this theory was 

once only considered to be valid within linear regime due to the presence of 

𝜕2𝐼 𝜕𝑧𝜕𝑉𝐴𝐶⁄ . To apply FM detection onto the nonlinear analysis, hereby, we 

performed further derivation onto equation (4.10) and expand its usage in nonlinear 

regime. To derive the details of Equation (4.10), here, we re-write the term 

𝜕2𝐼/ 𝜕𝑧𝜕𝑉𝐴𝐶 as the space derivative of conductance 𝐺, 

𝜕2𝐼

𝜕𝑧𝜕𝑉𝐴𝐶
=
𝜕

𝜕𝑧

𝜕𝐼

𝜕𝑉𝐴𝐶
=
𝜕𝐺

𝜕𝑧
(4.11) 

To begin with, we consider the expression of capacitance 𝐶  and perform the 

Maclaurin series for capacitance 𝐶 near 𝑧 = 0,  
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              𝐶 =
휀0𝐿𝑊

𝑔0 − 𝑧
=
휀0𝐿𝑊

𝑔0
(1 +

𝑧

𝑔0
+
𝑧2

𝑔0
2 +⋯) (4.12) 

Consider the displacement 𝑧 to the derivative of 𝐶 in Equation (4.11), 

𝜕𝐶

𝜕𝑧
=
휀0𝐿𝑊

𝑔0
2 (1 + 2

𝑧

𝑔0
+ 3

𝑧2

𝑔0
2…) (4.13) 

Regarding the 𝜕𝐺, I have, 

𝐽𝑒 =
𝐼

𝑊𝑡
(4.14) 

where 𝐽𝑒 is the current density (electron), 𝑊𝑡 is the cross-sectional area. 𝐽𝑒 can also be 

expressed by the electron mobility 𝜇𝑒, 

𝐽𝑒 = 𝑒𝑛𝑒𝜇𝑒𝐸 (4.15) 

where 𝑒 is single electron charge, 𝑛𝑒 is electron concentration, 𝐸 is the magnitude of 

electrical field 𝑉𝐴𝐶/𝐿 .  

𝐽𝑒 =
𝐼

𝑊𝑡
= 𝑒𝑛𝑒𝜇𝑒

𝑉𝐴𝐶
𝐿

(4.16) 

𝑛𝑒 =
𝑛𝑒(𝑡𝑜𝑡𝑎𝑙)

𝐿𝑊𝑡
 (4.17) 

𝑒𝑛𝑒 =
𝑄

𝐿𝑊𝑡
(4.18)  

where 𝑄 is total charge, 𝐿𝑊𝑡 is the volume of beam. Because the conductance 𝐺 is 

𝐼/𝑉𝐴𝐶, Equation (4.16) shows the expression that, 

𝐼 = 𝑊𝑡
𝑒𝑛𝑒𝜇𝑒𝑉𝐴𝐶

𝐿
(4.19) 
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𝐺 = 𝑒𝑛𝑒𝜇𝑒
𝑊𝑡

𝐿
(4.20) 

Substituting 𝑒𝑛𝑒 by Equation (4.18), conductance 𝐺 can be re-written as, 

𝐺 =
𝑄𝜇𝑒
𝐿2

(4.21) 

𝜕𝐺 =
𝜇𝑒
𝐿2
𝜕𝑄 =

𝜇𝑒
𝐿2
𝜕(𝐶𝑉𝐷𝐶) =

𝜇𝑒
𝐿2
(𝜕𝐶𝑉𝐷𝐶 + 𝐶𝜕𝑉𝐷𝐶) (4.22) 

In FM detection, the DC bias remains constants, 𝜕𝑉𝐷𝐶 = 0, therefore, 

𝜕𝐺

𝜕𝐶
=
𝜇𝑒
𝐿2
𝑉𝐷𝐶 (4.23) 

Hence, Equation (4.11) is written as, 

𝜕2𝐼

𝜕𝑧𝜕𝑉𝐴𝐶
=
𝜕𝐺

𝜕𝑧
=
𝜕𝐺

𝜕𝐶

𝜕𝐶

𝜕𝑧
=
휀0𝑆𝜇𝑒

𝐿2𝑔0
2 𝑉𝐷𝐶 (4.24) 

The lock-in current for FM detection 𝐼𝐿𝑜𝑐𝑘−𝑖𝑛𝐹𝑀  in Equation (4.7) can be rewritten as, 

𝐼𝐿𝑜𝑐𝑘−𝑖𝑛
𝐹𝑀 =

1

2

휀0𝑆𝜇𝑒

𝐿2𝑔0
2 𝑉𝐷𝐶𝑉𝐴𝐶

𝜕𝑅𝑒[𝛿𝑧(𝜔)]

𝜕𝜔
𝜔∆ 𝑐𝑜𝑠(𝜔𝐿𝑡) (4.25) 

with the steady-state solutions of displacement in frequency-domain calculated by the 

aforementioned model, the FM lock-in current can be derived by using Equation (4.25) 

and fitted to experimental data. 

It is worth noting that, in the early stage of this project, the conversion mechanism 

(from Equation (4.11) to (4.25)) were not clarified where a conversion factor 𝑆𝑖𝑧 to 

convert FM detected current into displacement was used for model fitting. The results 

were published on the IEEE MEMS international conferences where successful fitting 

with the use of 𝑆𝑖𝑧 has been achieved. The crucial finding regarding 𝑆𝑖𝑧 is that the 

value of 𝑆𝑖𝑧 is proportional with respect to 𝑉𝐷𝐶 and 𝑉𝐴𝐶, as shown in Figure 4.3.  
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Figure 4.3 A investigation of displacement to current conversion factor 
𝑆𝑖𝑧 regarding the 𝑉𝐴𝐶 dependence for sample S1 with 𝑉𝐷𝐶 at (a) 1 V, (b) 2V, 
(c) 3V and (d) for sample S5 with 𝑉𝐷𝐶 at 8 V 

The black dots stand for the actual value of 𝑆𝑖𝑧 used for model fitting. As shown in all 

the figures, the general trend presents clear linearity regarding its 𝑉𝐴𝐶  dependence. 

Even for a shorter sample (Figure 4.3(d)), the linear trend remains the same.  However, 

engaging in this approach for precise model fitting, in actuality, poses a certain degree 

of risk because the physical meaning regarding the 𝑆𝑖𝑧 were unclear at that moment. 

Consequently, the theoretical derivation presented in this section addresses this 

uncertainty, allowing the model to align with experimental data more closely. As a 

result, Equation (4.26) gives the explicit physical explanation regarding 𝑆𝑖𝑧, having, 

|𝑆𝑖𝑧| = |
1

2

휀0𝑆𝜇𝑒

𝐿2𝑔0
2 𝑉𝐷𝐶𝑉𝐴𝐶𝜔∆| (4.26) 
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It shows clear linear relationship between 𝑆𝑖𝑧  and 𝑉𝐴𝐶 . As a validation, the actual 

value for the relevant parameters in the equation are used to calculate the theoretic 

value of each 𝑆𝑖𝑧, as the red dots shown in Figure 4.3. It not only demonstrates a 

linear relationship between 𝑆𝑖𝑧  and 𝑉𝐴𝐶 , but also the magnitudes and orders of 𝑆𝑖𝑧 

values are nearly indistinguishable from those of used in the actual model fitting. 

Remarkably, the trends of 𝑆𝑖𝑧 derived from theoretical calculations (red), in Figures 

4.3(b) and (c), are nearly parallel to those of 𝑆𝑖𝑧 employed in the actual fitting process 

(black), proving a success of the validation of 𝑆𝑖𝑧. 

 

4.2. Experiment Result and Data Fitting 

In this section, the results present a systematic analysis of the nonlinear characteristics 

with the explicit consideration of the voltage-dependent coefficient 𝛽𝑒 in the model. 

The experimental data is successfully fitted with model including an analysis of 

hysteresis behaviour.  

As aforementioned in modelling section, the amount of nonlinearity of the system is 

determined by the value of (𝛽𝑚𝜔02 − 𝛽𝑒)𝑧3  where 𝛽𝑒  is explicitly the function of 

actuation voltage 𝑉𝐷𝐶  and driven signal 𝑉𝐴𝐶 . 𝛽𝑚  is the mechanical stiffness that is 

only related to the intrinsic characteristics of the device itself such as material, design, 

doping concentration.  

Hence, the 𝛽𝑚 is considered as an unknown constant that can be extracted from the 

experimental data fitting regardless of input voltage. Figure 4.4 shows the model (red 

line) is well aligned with the experimental data (dots) from linear region (Figure 

4.4(a)) to nonlinear region (Figure 4.4(b)) by only increasing the RF power from -9 

dBm to -4 dBm with the length, width, temperature, chamber pressure and 𝑉𝐷𝐶 at 2 

μm, 105 nm, 297 K, vacuum, and 2 V, respectively. 
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Figure 4.4 Single Curve data fitting for sample S1 (𝐿 = 2 μm). (a)A 
linear resonance response fitting with resonance frequency at 97.53 MHz 
with driven power at -9 dBm. (b) A nonlinear resonance response fitting 
with resonance frequency at 97.68MHz with driven power at -4dBm. 

Resonance frequency are 97.53 MHz for -9 dBm and 97.65 MHz for -4 dBm, which 

showed a slight increase of resonance frequency with respect to the increase of RF 

power indicating a presence of RF hardening. Next, model is implemented onto group 

fitting for DC dependence and RF power dependence separately. Figure 4.5(a) and (b) 

show the result of 𝑉𝐷𝐶 dependence with respect to different length of the beam. The 

resonance frequency is shifted to lower, and the asymmetry of the line shape becomes 

prominent with increasing 𝑉𝐷𝐶 . This trend well-fitted to the previous assumption 

about the definition of 𝑘𝑒 . Higher 𝑉𝐷𝐶 value quadratically increase the value of 𝑘𝑒 , 

which equivalently decreases the overall value of the coefficient of 𝑧(𝑡) leading to 

lower resonance frequency. In terms of nonlinearity, the values of mechanical 

nonlinear coefficient 𝛽𝑚 are extracted by model fitting, which are -1.54×10-4 m-2 and -

2.82×10-5 m-2 for sample S1 ( 𝐿 = 2 μm 𝑊 = 105 nm) and sample S5 ( 𝐿 =

1 μm 𝑊 = 105 nm) , respectively. It can be seen that shorter beam has smaller 

absolute value of 𝛽𝑚  indicating the distribution of coefficients in the perturbation 

expansion of stiffness K is dominated by its first-order stiffness. Jensen et al., has 

reported the evidence showing the nonlinearity has a direct link to the displacement 

[13]. Therefore, larger voltage was applied to the shorter beam in order to drive the 

vibration with a larger displacement.  
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Figure 4.5 Experimental results and model fitting of DC dependence of 
the resonance for (a) 2-μm-long, (b) 1-μm-long beam sample are plotted. 

The simulation result shown in section 3.3.3.3 Figure 3.9 shows DC and AC impact 

differently on the resonance response and nonlinear characteristics even though they 

both contribute simultaneously to the electrostatic force where DC impacts more on 

the change to the stiffness 𝑘𝑒 and AC has more effect on the amplitude. According to 

conclusion by Jensen et al., [55] as amplitude of current is linked to the displacement, 

AC dependence are expected to present even more clear on the change of nonlinearity.  

Figure 4.6(a) shows the power dependence for a 2-μm-long beam under 𝑉𝐷𝐶 at 2 V. 

The results show that the resonance frequency increases with increasing the input RF 

power. On the other hand, the increase of power also leads to the nonlinear 
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characteristics which represents asymmetric line shape of the resonance. We have 

fitted the set of data taken under different DC voltages and extracted the cubic 

nonlinear mechanical coefficient 𝛽𝑚 of  −1.54 × 10−4 m−2. This keeps the same as 

the one extracted in 𝑉𝐷𝐶 dependence, which  shows great consistency of the fitting. 

Same methods are used to investigate nonlinear characteristics of shorter beams.  

Figure 4.6(b) shows the power dependence of the resonance line shapes for the 

sample with L = 1.5 μm. The similar resonance behaviour has been observed but at 

higher frequencies around 126 to 127 MHz which is consistent for the shorter beam. 

The overall behaviour is quite similar to what is observed in the 2-μm-long beam. 

Figure 4.6(c) shows the results for the beam with the 𝐿 = 1 μm and the resonance 

frequency of around 221 MHz. 

 

Figure 4.6 Experimental result and model fitting of RF power dependence. 
Results for beams with length at (a) 2-μm-long sample S1 (b) 1.5-μm-long 
sample S3, and (c) 1-μm-long sample S5. 
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To find out the RF dependence characteristics for the same sample but with difference 

DC bias, further to Figure 4.6(a) (𝑉𝐷𝐶 = 2 V), a lower 𝑉𝐷𝐶 at 1 V and higher 𝑉𝐷𝐶 at 3 

V are respectively applied to sample S1, shown as Figure 4.7.  

 

Figure 4.7 RF power dependence for sample S1 with DC at (a)1 V and (b) 
3V. 

Regardless of the DC bias, all experiment results show that the resonance frequency 

increases with increasing the input RF power. On the other hand, the increase of 

power also leads to the nonlinear characteristics which represent the asymmetric line 

shape of the resonance. The extracted value of 𝛽𝑚 keeps the same as the one extracted 

in 𝑉𝑑𝑐  dependence, which shows great consistency of the fitting. The negative 𝛽𝑚 
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indicates the weak softening nonlinearity for the measured NEMS resonator. The 

extracted 𝛽𝑚 for 1-μm-long beam based on RF power dependence results is extracted 

to the value at  −2.8 × 10−5 m−2, which is also very close to the one from 𝑉𝐷𝐶 model 

fitting. Meanwhile, the value 𝛽𝑚 for the 1.5-μm-long beam is around −5.3 × 10−5 

m−2. While the clear nonlinear behaviour at this frequency was not observed in [27], 

this time very clear nonlinear behaviour similar to the one with the longer beam has 

been identified by applying higher 𝑉𝐷𝐶 and driving power than before. To the best of 

our knowledge, this is the first systematic observation of nonlinear resonance on the 

fundamental mode of the Si doubly-clamped beam at a higher frequency up to 221 

MHz.  

In Chapter 3, theory part has discussed the effect about damping and 𝑄. Considering 

the simulations in section 3.3.3.3, 𝑄 values is expected to maintain constant for same 

device and same testing conditions. After conducting fitting analyses for DC and AC 

dependencies here, it can be discerned that the same 𝑄 value can effectively fit all 

experimental data. Hassani et al. [26] provide an in-depth discussion on NEMS 

damping, attributing it to ambient, thermoelastic, and anchor loss. Finite element 

analysis reveals ambient and anchor loss as the dominant factors among the three. I 

perfomed long-time testing under identical input conditions for the same device, result 

shows that the resonance curve's bandwidth and resonance frequency remain stable. 

This stability allows us to understand that, in the context of this voltage dependence 

testing, the dissipation of the same device is consistent under uniform testing 

environments. Consequently, the 𝑄 value remains unchanged and independent of DC 

and AC. For different devices, the 𝑄  values for S1 and S5 are 580 and 330, 

respectively. Stassi et al. [88] have previously discussed the variation of 

MEMS/NEMS 𝑄  values with device dimensions, and their findings align with the 

conclusions of this section, indicating a gradual decrease in 𝑄 values as device size 

diminishes. 



CHAPTER 4 Experimental Result with FM Measurement 

95 
 

 

Figure 4.8 Hysteresis phenomenon observation and model fitting. 
(a)Hysteresis at 𝑉𝐷𝐶 = 1.6 V for sample S1 with 𝐿 = 2 μm, (b) Hysteresis 
at 𝑉𝐷𝐶 = 4 V for sample S5 with 𝐿 = 1 μm. 

One challenge remained is the hysteresis behaviour, which is also the most known 

characteristics in a nonlinear dynamic system presenting bifurcation phenomenon. 

Under the proposed theory regarding the hysteresis threshold equation is implemented 

into the model. With the 𝛽𝑚 extracted after the model fitting in previous DC and AC 

dependence, the hysteresis simulation successfully fitted with the experimental data as 

shown in Figure 4.8.  
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Figure 4.9 A summary of resonance frequency and peak amplitude 
change with respect to the 𝑉𝐷𝐶 dependence for sample (a) S1 (𝐿 = 2 μm), 
(b) S5 (𝐿 = 1 μm). 

Figure 4.9 proves the point that when increase 𝑉𝐷𝐶 from 1.5 to 1.6 V, for 2-μm-long 

beam (Figure 4.9(a)), and 3.5 to 4 V (Figure 4.9(b)) for 1-μm-long beam, both present 

the clear hysteresis behaviour when comparing the forward frequency sweep to 

backward frequency sweep. The critical 𝑉𝐷𝐶 pointed on each of figure represents the 

theoretical threshold based on the calculation by Equation (3.59). The onset of 

hysteresis via experimental observation perfectly follows the theoretical prediction. 

Noted that this is not only the first observation about the hysteresis behaviour for a Si-

NEMS resonator in very-high-frequency (VHF), but also the very first trail with 

systematic fitting to present the before and after the onset of hysteresis. Hysteresis 
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behaviour occurs when nonlinearity grows into relatively stronger region. In our 

model, the increase of 𝑉𝐷𝐶 pushes the system into more intensive nonlinear oscillation. 

 

4.3. Summary  

In this chapter, we introduce a testing method for FM lock-in and, for the first time, 

provide a detailed explanation of the displacement-to-current conversion mechanism 

for Si-NEMS based on this testing approach. Utilising the previously published 

conversion factor 𝑆𝑖𝑧 , we fit its relationship with 𝑉𝐴𝐶 . Thereby, validating the 

rationality of the derived conversion mechanism formula. Subsequently, the 

displacement obtained from the model developed in the previous chapter are 

calculated and, through conversion, transformed it into FM current. This is then 

compared and fitted with experimental results under equivalent conditions. Following 

the methodology in Section 3.4 of the previous chapter, we obtain a group fitting of 

the DC and RF power dependence for Si-NEMS. The model accurately fits the 

experimental results for various DC and RF power dependences under different DC 

conditions, different RF power dependence under various AC conditions, and 

different sample size. Moreover, a set of parameters can fit the results obtained under 

all experimental conditions. This observation is in complete accordance with the 

definition of 𝛽𝑚  provided in the previous chapter. Lastly, with the corresponding 

parameter values extracted from fitting, this chapter demonstrated the hysteresis onset 

points calculation based on these parameters. By conducting model fitting for the 

experimentally observed hysteresis phenomena up to 220 MHz, the validity of this 

theory is confirmed.  

In the recent surge of interest in neuromorphic computing schemes based on nonlinear 

MEMS, the presence of instability with hysteresis is regarded as a better model to 

describe human neuron system [24]. Specifically, MEMS operating within the 

hysteresis region exhibit bi-stability, characterised by analog dual states. These states 

can instantaneously shift in response to external stimuli while maintaining ultralow 

leakage current. This behavior is utilized to describe switch-like ON and OFF states 
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and memory capabilities. Moreover, coupling two nonlinear MEMS devices enables 

one to drive the other through state changes, leading to a model termed dynamic field 

theory coupled neurons. This model lays the foundation for future nonlinear 

MEMS/NEMS neuron networks. Consequently, delving deeper into the study of 

hysteresis holds substantial significance. 
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CHAPTER 5 

5. Experimental Result with 1-𝝎 

Mixing Measurement 
 

1-𝜔 mixing measurement is an alternative method to detect the resonance behaviour 

of NEM resonators by using the NEM resonator as a mixer of radio frequency (RF) 

signals, where the data analysis is found to be much simpler than that in the FM 

method. In this chapter, the analysis of nonlinear resonance based on the model 

proposed in this thesis is applied for the experimental datasets taken via the 1-𝜔 

mixing measurements.  The correspondence between the dimensional or material 

parameters of physical Si-NEMS resonators and the physical parameters appearing in 

the model will be discussed systematically. This chapter will also include an analysis 

of characteristic hysteresis behaviours and a conversion coefficient between the 

detected current and the displacement of the beam for 1-𝜔 mixing measurement. 

 

5.1. 1-ω Mixing Measurement Setup 

Figure 5.1 shows a schematic diagram of a 1-𝜔 mixing measurement system to detect 
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the resonance of NEM resonators. An RF signal with the frequency 𝜔 generated by 

Agilent N5181A MXG Signal Generator is split into two by the power splitter. One is 

fed to a bias tee where the RF signal is combined with DC bias generated by Agilent 

B1500 Device Analyser, and then applied to the back electrode of a NEM resonator. 

Another is connected to a mixer where a reference signal with the frequency of 𝜔𝐿 

generated by Lock-in Amplifier SRS850 is mixed and then led to the input electrode 

for the suspended nanobeam. The output electrode of the beam is connected to the 

lock-in amplifier to detect the current modulation of the beam for the frequency 𝜔𝐿.  

 

Figure 5.1 A 1-ω mixing measurement diagram. 𝑉𝐷𝐶, 𝑉𝐴𝐶, and 𝑉𝐿 are the 
actuation voltage, RF, and modulation signal amplitudes, respectively. 𝜔𝐿 
is the modulation frequency. 

The current modulation amplitude 𝛿𝐼 for 𝜔𝐿 is expressed as [48], 

𝛿𝐼 =
1

2√2

𝛿𝐺

𝛿𝑉𝐷𝐶
(𝑉𝐴𝐶 + 𝑉𝐷𝐶

𝛿𝐶𝑔

𝐶𝑔
)𝑉𝐴𝐶𝑉𝜔𝐿 (5.1) 

with the transconductance 𝛿𝐺/𝛿𝑉𝐷𝐶  and the gate-beam capacitance modulation 

𝛿𝐶𝑔/𝐶𝑔. 𝑉𝜔𝐿 is the amplitude of the reference frequency signal. At the resonance, the 

capacitance modulation is enhanced due to the increase of the beam displacement, 

resulting in appearance of peak of the current modulation signal at the resonance with 

respect to the frequency sweep. Equation (5.1) is used to as a conversion to link 
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between the current modulation data obtained experimentally and theoretically-

deduced displacement value in the following comparative study.  

 

 

5.2. 1-𝝎 Mixing Measurement Result and Model 

Fitting  

The conversion shown as the above equation explain the strengths of using 1-𝜔 

mixing measurement that its mechanism is more straightforward and easier for 

understanding. Nevertheless, the value of transconductance 𝛿𝐺/𝛿𝑉𝐷𝐶  needs to be 

given prior to the model fitting. This results in another benefit of using 1-𝜔 mixing 

technique is that it can directly give the value of 𝛿𝐺/𝛿𝑉𝐷𝐶  from the experiment, 

simply by setting the 𝑉𝐷𝐶 to zero and the current response, accordingly, is written as a 

function of 𝛿𝐺/𝛿𝑉𝐷𝐶. 

|𝐼𝑏𝑔| =
1

2√2

𝛿𝐺

𝛿𝑉𝐷𝐶
|𝑉𝜔𝐿| 𝑉𝐴𝐶

2 (5.2) 

𝐼𝑏𝑔 of a NEM resonator with L = 1.5 μm and W = 105 nm has been measured with 

increasing applied RF power and plotted in Figure 5.2.  
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Figure 5.2 Background signal vs 𝑉𝑎𝑐 . 𝛿𝐺/𝛿𝑉𝐷𝐶  is extracted from the 
linear fitting. 

Taking 𝑉𝐴𝐶2  as a horizontal axis, clear linear relationship between 𝐼𝑏𝑔  and 𝑉𝐴𝐶2 

indicates the transconductance 𝛿𝐺/𝛿𝑉𝐷𝐶 is constant in this power range. With 𝑉𝜔𝐿 = 

50 mV, the transconductance 𝛿𝐺/𝛿𝑉𝐷𝐶 is estimated 54.5 nS/V, which will be used for 

data analysis in the following. 
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Figure 5.3 (a) DC bias dependence of the resonance line shape. (b) A 
summary of how the resonance frequency and peak current change with 
respect to the DC bias. 

Figure 5.3(a) presents how the resonance lineshape is developed with changing 𝑉𝐷𝐶 

for the modulation current on the NEM resonator with 𝐿 = 1.5 μm and 𝑊 = 105 nm. 

Marks plotted in Figure 5.3(a) are experimental data. At 𝑉𝐷𝐶  = 3 V, the resonance 

appears at around 124.1 MHz and then the resonance frequency is shifted leftwards 

with increase of 𝑉𝐷𝐶.  

Note that the current amplitude at the resonance has increased with increaseing 𝑉𝐷𝐶, 

from 830 pA to 2.47 nA when 𝑉𝐷𝐶  is increased from 3 V to 6 V. Figure 5.3(b) 
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summerizes the 𝑉𝐷𝐶  dependence of the resonance frequency and amplitude of the 

current modulation. The red solid lines in Figure 5.3(a) are model fitting curves. The 

well-fitted results suggest our approximated solutions can explain well how the 

resonance is changed with respect to the actuation voltage 𝑉𝐷𝐶.  

The downshift of the frequency with applying 𝑉𝐷𝐶  corresponds to effects of 

equivalent electrical linear stiffness 𝑘𝑒. The total amount of stiffness is characterised 

as a coefficient of 𝑧(𝑡) term in Equation (3.21) which is 𝜔02 − 𝑘𝑒. With increasing 𝑉𝐷𝐶, 

𝑘𝑒 increases according to its definition as shown in Equation (3.19) so that the total 

amount of linear stiffness is decreased, resulting in the left shift of the resonance. This 

is also called electrical softening effect. The increase of the current amplitude with 

increasing 𝑉𝐷𝐶  is also well consistent with Equation (5.1) where the 𝑉𝐷𝐶  increase 

contributes directly as well as the increase of increase of electrostatic force, leading to 

further displacement of the beam and then modulating the capacitance.  

A set of graphs in Figure 5.4 display the result of resonance characteristics of the 1.5-

m-long and 105-nm-wide NEM resonator beam (sample S3) under varied RF power 

𝑃 with a unit of dBm. For each fixed 𝑉𝐷𝐶 of 3, 4, 5, and  6 V (Figure 5.4 (a) to (d)), 

the RF power is increased from 2 dBm to 10 dBm with a step of 2 dBm, and each 

lineshape of resonance curve for the current amplitude is plotted accordingly with 

respect to the frequency. 

Again marks are based on experimental data, whereas the red lines are based on the 

numerical solution of the model. For all four groups of RF power dependence in 

Figure 5.4 under differentr 𝑉𝐷𝐶, the current amplitude increases with increasing the 

RF power. Looking into the details, in  Figure 5.4(a), the resonance frequency moves 

to slightly higher with the increase of power, which corresponds to linear hardening 

effect. This effect is still observed at 𝑉𝐷𝐶 = 4 V in Figure 5.4(b). 
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Figure 5.4 Power dependence of the resonance line shape at varying DC 
bias at (a) 3 V, (b) 4 V, (c) 5 V, and (d) 6 V. 

On the other hand at 𝑉𝐷𝐶 = 5 V in Figure 5.4(c), the resonance curve with higher RF 

power starts showing assymmetric and the top of the peak tends to bend to lower 

frequencies. This is commonly known as Duffing nonlinear softening effect, which is 

observed more explicitly in Figure 5.4(d) with further higher 𝑉𝐷𝐶 at 6 V. Strength of 

nonlinearity is directly proportional to the displacment according to Bartsch et al., [89] 

which is well consistent with our observation where nonlinear behaviour turns to be 

more prominent with increaseing  𝑉𝐷𝐶 and RF power.  

Note that, our model fitting results are well consistent with the experimental data 

throughout the varied RF power values in this study. The nonlinear equivelant 

electrical stiffness 𝛽𝑒  defined Equation (3.20) can explain how nonlinearity can be 

tuned by changing 𝑉𝐷𝐶 and 𝑉𝐴𝐶. Another key parameter representing the nonlinearity 

is the mechanical nonlinear stiffness 𝛽𝑚 , which denotes the intrinsic amount of 
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nonlinearity from the mechanical structure of the device. Without changing the 

dimensions, design and material of the device, 𝛽𝑚 is considered to remain constant 

theoretically. Upon this hypothesis, we have successfully obtained 𝛽𝑚  as a fitting 

paraneter in current fitting of the whole four groups of power dependence data with 

resprct to the fitting variables of 𝑉𝐷𝐶 and 𝑉𝐴𝐶.  For the purpose of  validation of the 

method, we use another NEM resonator sample with a slightly wider beam (𝐿 = 1.5 

μm, 𝑊 = 135 nm) and apply the identical approach to extract the fitting parameters in 

our analysis, the resonance frequency 𝜔0 , quality factor 𝑄 , and the mechanical 

nonlinear stiffness 𝛽𝑚. Table 5.1 summerizes the parameters extracted from the fitting 

results for the two samples with different widths.  

Table 5.1 A summary of extracted parameters in fitting for 1.5-μm-long 
beams with different design widths 

Sample ID S3  S4 

Width (nm) 105 135 

Resonance (MHz) 125.38 127.62 

Quality Factor  ~560 ~528 

𝛽𝑚 (m
−2) -5.58× 10−5 -7.72× 10−5 

𝛿𝐺/𝛿𝑉 (nS/V) ~54.5 ~63.3 

 

The transconductance of the sample with 𝑊  = 135 nm is also estimated from the 

baseline noise. The wider beam shows a higher resonance frequency and a slightly 

lower quality factor, corresponding to the increase of stiffness, and has a higher 

transconductance that is consistent with the increase of conductive cross-sectional 

area.  As for the mechanical nonlinearity stiffness 𝛽𝑚, a slightly large negative value 

for a wider beam could be linked with the increase of overall stiffness of the beam as 

well. Overall throughout the comparison of the fitting results between two different 

NEM resonator samples, we have confirmed very good consistency between the 

experimental results and numerical solutions. The onset mechanism of hysteresis has 

been addressed in chapter 3 where analysis method has been introduced in chapter 4 
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with FM. For the consistency of study, here, Sample S3 and S4 are selected to the 

hysteresis behaviour observation under the 1-𝜔 mixing measurment scheme.  

 

Figure 5.5 Hysteresis behaviour observed for sample S3 and S4 are 
plotted with the power level at (a) and (d)10 dBm, (b) and (e) 11 dBm, (c) 
and (f)12 dBm, respectively. 
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Figure 5.5(a) to (f) systematically shows how hysteresis behaviour is developed with 

increasing the power at the fixed 𝑉𝐷𝐶 of 8 V for sample S3 with width at 105 nm 

where Figure 5.5(d) to (f) are the hyseteric behaviour with identical experimental 

conditions for sample S4 with width at 135 nm. Blue and red open circules represent 

experiment data with forward frequency sweep and backward frequency sweep, 

respectively. By extracting the maximum and minimum solutions of the Duffing 

equation in Equation. (3.21) the experimental data with hysteresis are successfully 

fitted as the red lines in Figure 5.5(a) to (f).  

 

Figure 5.6 A summary of the resonance frequency and peak current are 
changed with respect to power in hysteresis regime for sample (a) S3 and 
(b) S4 
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To clearly demonstrate the ‘split’ due to bifurcation, Figure 5.6 summerises the 

resonance frequency change with respect to the increase of power level within 

hysteresis regime. It shows how the resonance frequencies are shifted in the hysteresis 

regime with respect to the RF power. The seperation of two resonance frequencies 

becomes larger with increasing the RF power, leading to the frequency difference Δ𝑓 

of 0.5 MHz at 𝑃 = 12 dBm.  

In traditional memory devices like static random access memory (SRAM), the signal 

margin for switching between ‘ON’ and ‘OFF’ states is a crucial metric, where a 

larger signal margin generally stands for an improved robustness during the ‘Hold’ 

state. Similarly, in future neuron network schemes employing nonlinear NEMS 

hysteresis, the frequency difference of hysteresis serves as a comparable indicator of 

system robustness. Although specific criterion has not yet been proposed for this 

metric, our research yields a Δ𝑓 of 0.5 MHz, significantly surpassing the Δ𝑓 ~100 Hz 

obtained by the Zega group, which is one of the leading research group in this field. 

This not only underscores NEMS' enhanced ability to manifest distinct hysteresis 

characteristics but also highlights the efficacy of our model in accurately describing 

this phenomenon. 

 

5.3. Summary  

For advancing of silcon-based integrated systems for various applications such as 

neuromorphic information processing or IoT devices, simple and accurate modelling 

of individual devices becomes more important. The FM based measurement brings 

certain complexity in the analysis, which is not only that it is less straightforward to 

understand, but also this complexity brings inaccuracy. Hence, this chapter 

demonstrate the attempt to explain the experimenal data for an actual silicon based 

NEM resonator with the resonance frequency in the VHF range by using 1-𝜔 mixing 

measurement where its conversion mechanism is simple and clearly presented at the 

beginning of this chapter. Also, thanks to that, the uncertain factor transconductance 

has been proved to be able to measured directly from the experiment, which further 
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benefits the precise in analysis. Later, with using similar stratagy as FM, the DC 

dependence, RF power dependence, and hysteresis are successfully observed via 1-𝜔 

mixing techniques and the experimental data are systematically well-fitted by the 

model . We believe this attempt is to be a key first step of model development for 

NEM resonator/oscillator devices including their behavour in nonlinear regime. 
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CHAPTER 6 

6. Thermo-mechanical Noise 
 

Chapter 2 introduces the basis and significance of thermo-mechanical noise (TMN) 

with respect to the performance of a ultrasmall scale device. Not only it can reveal the 

device characteristics for the non-forced states, but also it is essential to pave the way 

to explore even smaller scale of design. As the importance of miniaturised devices and 

their nonlinearity has been well addressed in the previous chapters, this chapter will 

focus on the thermo-mechanical noise measurement for the NEMS resonators used in 

this study. Note that, this part is done with my colleague, PhD student, James 

Fernando who has developed measurement procedure and mainly conducted data 

acquisition and analysis of the voltage dependence. In this chapter, I will demonstrate 

the measurement and modelling efforts which are related to my contribution to the 

study about TMN measurements.  

 

6.1. Experimental Setup 

Differ from the aforementioned TMN measurement with optical scheme, my 

contribution regarding TMN is primarily focused on electrical method test with 

spectrum analyser Advantest R3477 and a semiconductor analyser Agilent B1500A. 
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The NEMS resonator with the designed beam dimension of length 𝐿 = 2 μm with 

width 𝑊 = 135 nm (Sample S2) was used in this study under the condition of room 

temperature and vacuum. Detection scheme is shown in Figure 6.1, with the output 

connected to a spectrum analyser. DC bias voltage was applied at the back gate from 

the semiconductor device analyser Agilent B1500A 

 

Figure 6.1 Connections between NEMS device terminals and test 
apparatus in the spectral analysis process. Bottom left inset shows 
schematic diagram of the NEMS beam, showing critical dimensions. 

The detected power signal was converted into a root mean square voltage, which was 

divided by the square root of the product of resolution bandwidth (RBW) and the 

resolution-to-noise bandwidth conversion factor for a digital FFT-based spectrum 

analyzer (𝐾𝑁 = 1.056), yielding a voltage spectral density, 𝑆𝑣,𝑡ℎ
1/2 .  

 

6.2. Measurement Results and Discussion 

In Figure 6.2, a typical graph presenting spectrum density data, theoretical curve 

fitting, and conversion from the voltage spectrum density to the displacement 
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spectrum density is shown. An original contribution has been published in the 

International Conferences of Micro and Nano Engineering 2021 (Fernando et al., 

MNE2021, See the list of Publication). Note that for this plot in Fig. A.2, I use data 

taken by myself.  The resonance frequency detected with this method, 𝑓0 = 97.84 

MHz is close to its mechanical resonance measured by using frequency modulation, 

as aforementioned, at 𝑓0𝐹𝑀 = 97.75 MHz, which corresponds to thermomechanical 

noise that originated from the thermomechanical motion, 𝑆𝑣,𝑡ℎ
1 2⁄ (𝜔0)  at its 

eigenfrequency. 

 

Figure 6.2 The peak of the voltage spectrum density corresponds to the 
theoretical maximum of displacement spectrum density, allowing a 
responsivity factor to be obtained.  

After converting into 𝑆𝑣
1/2, the data in frequency domain, is then fitted by modelling 

the Equation (2.5). Figure 6.2 is an example of model fitting result with MATLAB 

simulation. The non-forced displacement is calculated via a variant of the nonlinear 

model described in chapter 3 where the electrostatic force is set to zero but the 𝛽𝑚 

value still exists to remain the participation of nonlinearity. The spectrum density to 

TMN motion model shown in Equation (2.4) is employed to obtain the calculated 

spectrum density. Then, the calculated spectrum density can be used to fit the 

experimental data, which is exactly the same fitting strategy as aforementioned in 
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Chapter 4 and 5. The aim of the model fitting is to acquire the value of responsivity ℛ, 

which is the key as a conversion to understand the √𝑆𝑣/𝑆𝑥  as a significant part of 

TMN characterization. With 𝑄 of 7520, 𝑆𝑥,𝑡ℎ
1 2⁄ (𝜔0) at resonance point is calculated at 

0.154 pm/Hz1/2, resulting a responsivity ℛ at 183 nV/pm. The integral of 𝑆𝑥,𝑡ℎ
1 2⁄ (𝜔) at 

frequency domain results in the displacement value showing the thermomechanical 

resonance displacement at 22.44 pm for this specific motion. Fernando et al. has 

further demonstrated the voltage-tunability regarding the pico-meter level TMN 

displacement, details can be found in his publication [90].  

 

6.3. Summary  

In summary, building upon the description of the mechanism and significance of 

thermo-mechanical noise (TMN) in chapter 2, this chapter investigates the TMN of 

NEMS resonator devices with the aid of a spectrum analyser. Initially, the chapter 

elucidates the methods for testing TMN, followed by a slight modification to the 

model established in Chapter 3. By setting the electrostatic force to zero, a non-forced 

model was obtained and subsequently fitted to the experimentally measured spectrum 

density. The fitting results demonstrate that the non-forced model can accurately 

describe the TMN characteristics of NEMS resonators under corresponding 

experimental conditions. Moreover, the responsivity values were obtained through 

parameter extraction. This finding is particularly beneficial for future research on 

smaller-scale devices, as miniaturization is accompanied by smaller-scale responses, 

necessitating highly sensitive testing methods, TMN serves as an ideal choice in this 

regard. Furthermore, the primary focus of this study, nonlinearity, has a significant 

portion of its origins in intrinsic properties. Although electrical nonlinearity has 

predominantly occupied the forefront in previous electrical tests, intrinsic nonlinearity 

could potentially be amplified at smaller response scales, thereby affecting device 

performance. Consequently, from this perspective, TMN research also plays an 

indispensable role in the investigation of intrinsic nonlinear properties for ultrasmall 

scale device. 
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CHAPTER 7 

7. Conclusion and Future Plan 
 

7.1. Conclusion 

In summary, because the arise of nonlinearity in micro- and nano-electromechanical 

system (MEMS/NEMS) can be attributed to the miniaturization of dimensions and the 

increase in operating frequency, to conduct a comprehensive analysis of nonlinear 

characteristics and explore potential future applications that exploit this feature, this 

thesis presents systematic observations and analysis of the nonlinear properties of 

nano-electromechanical resonators (Si-NEMSs).  This thesis began with an 

introduction about the indispensable role of MEMS as a horizontal architecture in 

very-large-scale integration (VLSI) for modern smart devices. The development 

transition from MEMS to NEMS is marked by various advantages derived from the 

scaling down, such as greater integration, higher operating frequencies, and reduced 

power consumption. However, the miniaturization process concurrently introduces 

more pronounced nonlinearity, a pressing issue that requires attention and resolution. 

Despite the initial perception of nonlinearity as undesirable due to its intrinsic 

instability, chapter 2 presented the unrelenting efforts and contributions of 

investigators regarding nonlinearity research in micro- and nano-scale systems over 

the past five decades. A detailed review of observations and analyses of the nonlinear 
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characteristics of MEMS/NEMS with varying dimensions, materials, and designs was 

provided in this chapter. Furthermore, in the latter part of chapter 2, recent 

explorations and attempts by researchers to exploit the potential applications of 

nonlinearity in MEMS/NEMS were introduced. These included employing 

nonlinearities to enhance the sensitivity of mass detection under high-amplitude 

conditions and utilizing the unique bistable hysteresis effect of nonlinearity to treat 

coupled devices as virtual nodes for non-digital neuromorphic computing. These 

attempts into applications based on nonlinearity, along with the inevitable nature of 

nonlinearity at the nano-scale, leads to the observation and in-depth investigation of 

nonlinear NEMS characteristics an urgent necessity. 

From chapter 3, the details of a silicon doubly-clamped Si-NEMS employed in this 

project were introduced. These devices were designed by Faezeh Arab Hassani and 

fabricated by Commissariat à l’Energie Atomique et aux Energies Alternatives 

Laboratoire d'électronique des technologies de l'information (CEA-LETI) using 

silicon-on-insulator (SOI) platform. Initially, an overview of the device fabrication 

process was introduced to illustrate the Si-NEMS device structure, material 

composition, and corresponding dimensions. Later in chapter 3, the Duffing equation 

was explained, and based on it, a nonlinear model for the Si-NEMS was explicitly 

described. In this process, two major origins of nonlinearities were discussed, named 

as intrinsic mechanical nonlinearity and electrical nonlinearity. A perturbation series 

was implemented to the system overall restoring force and guided by the device's 

symmetry and displacement scale, the third-order response was selected and marked 

as 𝛽𝑚 . Thereafter, the system's operation with beam and back gate was treated as 

parallel plates, and then a Maclaurin expansion regarding the periodic electrostatic 

force between the plates were performed which enabled to extract the electrical 

nonlinear stiffness as a function of DC and AC, denoted as 𝛽𝑒. Owing to the novel use 

of 𝛽𝑚 and 𝛽𝑒, the model was able to possess a detailed characterization of the intrinsic 

nonlinearity magnitude as well as the voltage-dependent nonlinearity. Subsequently, 

the Petrov-Galerkin (P-G) method was employed to approximate the conversion of 

the time-domain nonlinear model to a frequency-domain model. The Newton-

Raphson iteration (NRI) was then applied to iteratively solve the frequency-domain 
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model, yielding the steady-state solution for the corresponding frequency. 

Among the fabricated devices, six perfectly functioning Si-NEMS devices with 

different dimensions (lengths vary from 2 to 1 μm, widths vary from 135 to 45 nm) 

were selected and placed in a Lakeshore cryogenic prober station for resonance 

testing. In later chapters, because of the simplicity of platform setup, FM was 

employed to test the resonance characteristics of the Si-NEMS. Using this approach, 

the nonlinear resonance of Si-NEMSs under different dimensions were successfully 

observed. The observation regarding asymmetry resonance has been reported in the 

literature review chapter and was attributed by the growing proportion of nonlinearity 

in the system, which gradually dominates the resonance response. The asymmetric 

energy release leads to nonlinear displacement during the vibration process. 

Subsequently, after discussing and analyzing the signal conversion of the FM testing 

platform, an explicit FM displacement-to-current conversion mechanism was 

proposed where the lock-in current is proportional to the derivative of frequency 

response of displacement. Simultaneously, the nonlinear DC and RF power 

dependence was clearly observed up to 221 MHz. This phenomenon also 

demonstrated that the characterization of nonlinearity is directly related to the 

magnitude of electrostatic force or, in other words, the displacement level. Based on 

the Si-NEMS nonlinear model derived in chapter 3, by adjusting the magnitude of 𝛽𝑚, 

we successfully fitted the experimental nonlinear data with respect to the whole DC 

and RF dependence groups for the first time in the nano-scale and very-high-

frequency (VHF) range. 

Although FM offers a certain level of simplicity in experimental setup, the discussion 

of its signal conversion mechanism employs mathematical approximation methods, 

such as Taylor expansion, leading to unnecessary inaccuracies in the process of 

converting the model-simulated displacement into the current signal. To address this 

issue, I constructed a 1-𝜔 mixing measurement platform. This testing method was 

later proven to be entirely effective and reliable for testing Si-NEMS resonance. 

Moreover, as the resonator was served as an RF mixer, it directly provides an 

expression for the capacitively induced current, clearly and directly linking 

displacement and current, thereby significantly enhancing the model's fitting accuracy. 



CHAPTER 7 Conclusion and Future Plan 

118 
 

This measurement also included an analysis regarding the beam transconductance 

𝛿𝐺/𝛿𝑉𝐷𝐶. For a 1.5-μm-long beam, the transconductance for wider beam (𝑊 = 135 

nm) and narrower beam (𝑊 = 105 nm) were measured to be 63.3 and 54.5 nS/V 

where their mechanical nonlinear stiffness 𝛽𝑚 are -5.58× 10−5 and -7.72× 10−5 m-2. 

The electrical nonlinearity 𝛽𝑒, combined with the value of 𝛽𝑚, obtained through data 

fitting, the entire device's nonlinear characteristics can be quantitatively expressed, 

and its nonlinearity dependence with respect to DC and RF power level can be 

accurately described, which is significant for future nonlinear applications based on 

Si-NEMS.  

In the bistable study of Si-NEMS, we tested four devices with different dimensions by 

increasing the voltage. In the FM tests, we used devices with lengths of 2 um and 1 

um and raised their DC to 1.6 V and 4 V, respectively. We successfully observed 

hysteresis and, by extracting multiple solutions from the model, successfully fitted the 

hysteresis behaviour. Simultaneously, a comprehensive theory was established to 

predict the onset of hysteresis. It provided the threshold values for the onset of 

hysteresis for 2 um and 1 um devices as 1.58 V and 3.5 V, respectively, which 

successfully corresponded with the experimental results. Subsequently, using the 

same method, we observed the hysteresis effect for the same beam length but different 

beam widths in the 1-𝜔 mixing tests and similarly fitted them successfully using the 

model. 

As a novel definition, the mechanical nonlinearity 𝛽𝑚, even in the absence of input, it 

theoretically still exists. In Chapter 3, I have presented a detailed derivation process of 

mechanical nonlinearity, thereby illustrating its physical meaning rather than a simple 

nonlinear factor. This diverges significantly from conventional definitions of 

nonlinearity, assigning it with physical meaning and designating 𝛽𝑚 as an intrinsic 

characteristic. Therefore, characterising nonlinearity becomes an essential pursuit for 

future research. The methods for characterisation have been demonstrated in this 

thesis. I employed two distinct testing approaches (FM in Chapter 4 and 1-ω mixing 

in Chapter 5) to characterise the nonlinearity of NEMS devices with varying 

dimensions, resulting in quantified values for mechanical nonlinearity. Thus, 
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following the explicit modeling of electrostatic nonlinearity, comprehensive 

quantification of the overall nonlinearity in NEMS is attainable, thereby facilitating 

the feasibility of nonlinear control and prediction. Regarding damping, given NEMS' 

relatively large surface-to-volume ratio, nonlinear damping may exist despite not 

being observed in this study's nonlinear vibration. As early as 2012, Zaitsev et al. 

conducted an in-depth exploration of damping in the context of the Duffing equation, 

asserting that nonlinear damping is related to displacement. They proposed an 

equation for damping involving terms 𝑥2𝑥′and(𝑥′)3  [91]. Such an approach may 

offer insights for further decomposition of 𝛽𝑚 in future research. 

Therefore, conducting experimental exploration under non-forced conditions is highly 

significant for nonlinear analysis. At the same time, as the dimensions are further 

reduced in the future, the demand for ultrasmall displacement measurements in the 

picometer range will be extremely high where a measurement with ultra-sensitivity is 

mandatory. More importantly, thermo-mechanical noise (TMN) testing based on a 

spectrum analyser is crucial for nano-opto-electromechanical systems (NOEMS), 

which will be an important expansion based on Si-NEMS. Thus, TMN testing for 

existing Si-NEMS devices is of great importance. Chapter 6 gives the details that by 

using a spectrum analyser and without inputting an RF signal to the Si-NEMS, the 

thermo-mechanical noise of the beam within the resonance range was investigated. 

Furthermore, the non-forced model was applied to the fitting process, with 𝑄 of 7520, 

the displacement spectrum density at resonance point was calculated at 0.154 

pm/Hz1/2. The model fitting extracted the value for system spectrum density, resulting 

a responsivity at 183 nV/pm. The integral of the displacement spectrum density at 

frequency domain results in the displacement value showing the thermomechanical 

resonance displacement at 22.44 pm for this specific motion. 

The limitation of this work is vital. Due to the impact of COVID-19, certain 

limitations persisted throughout this research, providing essential guidance for future 

work based on this study. Even in early 2020, my colleagues have completed the mask 

design for new NEMS devices. Nevertheless, the outbreak of COVID-19, along with 

prolonged queueing for cleanroom access after campus reopening, resulted in an 

incompletion to acquire a sufficient variety of new NEMS devices with differing 
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dimensions for studying NEMS nonlinearity within the timeframe of this research. 

Additionally, within the study, though device consistency was maintained to the best 

extent possible for the same measurement, devices used in different experiments, such 

as those in Chapter 4, relying on FM-based testing, and those in Chapter 5, employing 

1-ω mixing, were not consistent. This was not a deliberate choice but was due to 

fatigue and contamination of experimental samples following extended testing periods, 

with no replacement samples available, eventually leading to a lack of cross-

comparison in this research. Furthermore, the model proposed in this study can be 

widely applied to similarly designed micro- and nano-beams. However, it has not 

been verified for other designs of MEMS/NEMS devices, specifically, any non-

doubly-clamped beam designed NEMS, such as dual-fork plate MEMS. Hence, the 

applicability of the model to devices substantially different from the NEMS used in 

this study remains uncertain. In the future, adjustments to the model based on device 

designs will be necessary, while the definition of mechanical nonlinearity can 

continue to be extended. 

 

7.2. Future Plan 

As the continuous study for the part of European FP7 NEMSIC project, upon the 

availability of Si-NEMS samples, after thesis submission, I will compile all the 

previously completed measurement data related to Si-NEMS and organize the detailed 

information about the nonlinear model I have established (including the code, see 

Appendix A.1 and A.2) as well as the usage of the 1-𝜔 mixing test platform. This 

information will be consolidated into a manual and preserved within Yoshishige 

Tsuchiya's group for the benefit of future project development. The future plan for the 

nonlinear Si-NEMS resonators will be: 

• Coupled nonlinear oscillators will be essential for further neuromorphic 

computing. The coupler could be either mechanical or electrical.  A 

preliminary numerical model for a mechanical coupled oscillator is proposed 

in Appendix section A.3 based on the similar modelling strategy as per 
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illustrated in this project while the new coupled Si-NEMS will need to be 

fabricated. Based on the availability of existing Si-NEMS samples, the 

electrical coupling could be also worth an investigation. One of the 

foundational research projects reported by Alsaleem et al., [24] about 

nonlinear MEMS neural computing utilized the electrical coupling between 

two nonlinear MEMS where one MEMS served as the detection neuron and its 

nonlinear bi-stability status can be transferred as an input to the other 

nonlinear MEMS, served as the memory neuron. The similar scheme of 

electrical coupling can be easily achieved by wire bonding or using shared 

electrode in design.  

 

• An attractive direction for the future of this project is in nano-opto-electro-

mechanical integrated oscillator arrays for Energy-Efficient Cognitive 

Computing (NOEMIA) as a continuous of Chist-Era NOEMIA project. The 

new project is led by my supervisor Dr. Yoshishige Tsuchiya and Dr. Jun-Yu 

Ou where the nonlinear dynamics will be implemented onto the NOEMIA 

coupled oscillator and optical detection will be employed to obtain the output 

signal. This design is based on the doubly-clamped Si-NEMS where a 

thorough understanding is essential prior to the operation of the coupled Si-

NEMS for NEOMIA. 

 

• Sensing enhancement on ultrasmall mass detection will also be an interesting 

direction. As the result from this project, the scaling down will be 

accompanied with even severer nonlinear effect. Meanwhile, Sansa et al., has 

proved that when oscillator is operated at the sub-threshold of hysteresis, the 

sensitivity can be enhanced. Therefore, nonlinearity not only is inevitable but 

also can be benefit to the further use of mass sensing. 

As for my personal plans, at the time of submitting this article, Micro and Nano 

Engineering journal returned my journal manuscript. I will complete the revision 

work and submit it back to the editorial office in April 2023. In addition, another 

paper in related to FM data has been completed and is awaiting submission to the 
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Nanotechnology journal. Meanwhile, I will continue to assist Dr. Yoshishige Tsuchiya 

in completing experimental teaching work on Si-NEMS in the short term. I have also 

applied for several positions, including postdoctoral research positions related to 

silicon characterisation and MEMS/NEMS devices at universities in the UK, as well 

as positions at MEMS-related companies. 
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Appendix  

A.1 Algebraic Derivation with Maple 2020 

This section presents the details regarding algebraic derivation. Due to the limit by the 

export file types of Maple 2020. The following derivation steps and codes are 

presented as a copy of PDF. 
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For better understanding, the above derivation code has been processed into symbolic 

form rather than pure code language. In the content, 𝐴1 and 𝐴2 are two orthogonal 

displacement and the purpose of this algebraic derivation is to get an expression for 

them. Later, the expression of 𝐴1 and 𝐴2 are put into MATLAB for NRI iteration. 
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A.2 Steady-State Solution Code with MATLAB 

File 1: Linear Fitting with integrated tools VPAsolver 

clear 
close all 
clc 
%% 
tic 
%Parameter value define 
m__b=3.6e-17; 
varepsilon__0=8.85e-12; 
f__0=97.65e+6; 
beta__m=0/m__b; 
V__dc=2; 
Power=-4; 
R_scaling=28.5; 
V__ac=sqrt(R_scaling*(10^(-3+(Power/10)))); 
V__ac=0.2; 
g__0=2.2e-7; 
S=2.1e-13; 
Q=700; 
fmin=97e+6; 
f_step=20e+3; 
fmax=97.6e+6; 
S_iz=8e+3; 
A_1=zeros(1,3); 
A_2=zeros(1,3); 
%% 
f_range=fmin:f_step:fmax; 
freq=fmin:f_step:(fmax-f_step); 
for i=1:length(f_range) 
    i 
    syms a_1 a_2 
    f=f_range(i); 
    assume(a_1,'real') 
    assume(a_2,'real') 

[amp_1,amp_2]=vpasolve([(-(3*a_1^3*f__0^2*g__0^3*m__b)/8 + ((((-

(3*a_2^2)/4 - 1)*f__0^2 + f^2)*m__b*g__0^3)/2 + 

varepsilon__0*S*(V__dc^2 + (3*V__ac^2)/4))*a_1 + 

varepsilon__0*S*V__dc*V__ac*g__0)*Q - a_2*f__0*g__0^3*m__b*f/2==0,-

(3*beta__m*f__0^2*a_2^3*Q*m__b*g__0^3)/8 + ((((-(3*a_1^2*beta__m)/4 - 

1)*f__0^2 + f^2)*m__b*g__0^3)/2 + varepsilon__0*S*(V__dc^2 + 

V__ac^2/4))*Q*a_2 + a_1*f__0*g__0^3*m__b*f/2==0],[a_1,a_2],[5e-12,5e-

12])  

 

 
    Amp_1=((amp_1)); 
    Amp_2=((amp_2)); 
    S1A_1(i)=max(Amp_1); 
    S2A_1(i)=min(Amp_1); 
    S3A_1(i)=median(Amp_1); 
    S1A_2(i)=max(Amp_2); 
    S2A_2(i)=min(Amp_2); 
    S3A_2(i)=median(Amp_2); 
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    RealAmp(i)=sqrt(S1A_1(i)^2+S1A_2(i)^2); 
    doubleRealAmp(i)=double(RealAmp(i)); 
    Theta_1(i)=180*atan(((S1A_2(i)/S1A_1(i)))); 
    doubleTheta_1(i)=double(Theta_1(i)); 
      RealAmp_1(i)=S1A_2(i)*SC; 
      RealAmp_2(i)=S2A_2(i)*SC; 
    Phase_1(i)=360*Theta_1(i)/(2*pi); 
     doubleRealAmp_1(i)=double(RealAmp_1(i)); 
     doubleRealAmp_2(i)=double(RealAmp_2(i)); 
    %Take derivative of calculated amplitde in each frequency 

interval and 
    %record them. 
     if i>1 
         X_1(i-1)=S_iz*((((S1A_1(i)-S1A_1(i-1))/f_step))); 
     doubleCurrent=double(X_1); 
     end 
%Transfer parameter into double to extract and plot in origin 
doubleAmp_1=double(Amplitude_Overall_1); 
doubleAmp_2=double(Amplitude_Overall_2); 
doublePha_1=double(Phase_1); 
doublePha_2=double(Phase_2); 
end 
%Plot  
figure(1) 
plot(f_range,Phase_1,'r') 
hold on 
plot(f_range,Phase_2,'g') 
grid on 
legend('Maximum Sol','Minimum Sol'); 
xlabel('frequency(Hz)');ylabel('Phase Change(Deg)'); 
figure(2) 
plot(f_range,S1A_1,'b') 
 hold on 
plot(f_range,S1A_2,'r') 
grid on 
legend('A','B'); 
xlabel('frequency(Hz)');ylabel('Displacement(a.u)'); 
figure(3) 
plot(f_range,RealAmp_1,'b') 
hold on 
plot(f_range,RealAmp_2,'r') 
hold on 
load Data.mat 
m=Data.('Frequency'); 
n=abs(Data.('Experiment_Forward')); 
o=abs(Data.('Experiment_Backward')); 
plot(m,n,'.') 
hold on 
plot(m,0,'.') 
grid on 
xlabel('frequency(Hz)');ylabel('Current(a.u)'); 

  
figure(3) 
plot(freq,X_1,'b') 
hold on 
load Data.mat 
m=Data.('Frequency'); 
n=Data.('-4bm'); 
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plot(m,n,'.') 
hold on 
plot(freq,X_2,'r') 
grid on 
legend('Maximum Sol','Minimum Sol'); 
 xlabel('frequency(Hz)');ylabel('In-phase Current(A)'); 
toc 
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File 2: Newton-Raphson Iteration part 

function [NR_Iteration] = 

NewtonRaphson1dof(tol,m,k,beta,aMax,maxIter,W) 

  
% This function calculates the output for the modal backbone curve of 

the 
% 1dof oscillator 

  
% Array with the oscillation amplitudes of the mass computed with N-R 
NR_Iteration = zeros(1,length(W)); 

  
% For each pulsation and value N-R is applied to solve the equation  
% G(amplitude,w)=0 
for i=1:length(W) 
    % n: number of iterations 
    n = 1; 
    % The initial value of the amplitude for the N-R loop is aMax 
    amplitude = aMax; 
    % Initial evaluation of the equation G(amplitude,W(i)) 
    F = NMBeq1dof(m,k,beta,W(i),amplitude); 
    % NEWTON-RAPHSON LOOP 
    while norm(F)>tol && n<=maxIter 
        F = NMBeq1dof(m,k,beta,W(i),amplitude); 
        J = NMBjac1dof(m,k,beta,W(i),amplitude); 
        amplitude = amplitude - J\F; 
        n = n+1; 
    end 

  
    % The solution computed, amplitude, is assigned to the output 

matrix: 
    % AmplitudeNMB 
    if n<=maxIter, 
        AmplitudeNMB(i) = amplitude; 
    end 
end 

  
end 
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File 3: Nonlinear Galerkin Matrix 

function G = Galerkin_dof(m,k,beta,w,amplitude) 
F = [[(-(3*beta__m*a_1^3*f__0^2*g__0^3*m__b)/8 + ((((-

(3*a_2^2*beta__m)/4 - 1)*f__0^2 + f^2)*m__b*g__0^3)/2 + 

varepsilon__0*S*(V__dc^2 + (3*V__ac^2)/4))*a_1 + 

varepsilon__0*S*V__dc*V__ac*g__0)*Q - a_2*f__0*g__0^3*m__b*f/2==0,-

(3*beta__m*f__0^2*a_2^3*Q*m__b*g__0^3)/8 + ((((-(3*a_1^2*beta__m)/4 - 

1)*f__0^2 + f^2)*m__b*g__0^3)/2 + varepsilon__0*S*(V__dc^2 + 

V__ac^2/4))*Q*a_2 + a_1*f__0*g__0^3*m__b*f/2==0] 
]; 
End 
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File 4: Nonlinear Galerkin Jacobian Matrix 

function J = Galerkin_jac1dof(m,k,beta,w,amplitude) 

  
% This function returns the derivative J of the 1dof algebraic 

equation 
% for the modal backbone curve 

  
J = [-(9*A__1^2*beta__m*f__0^2*g__0^3*m__b*L)/8 + (m__b*((-

(3*beta__m*A__2^2)/4 - 1)*f__0^2 + omega^2)*g__0^3/2 + 

varepsilon__0*S*(V__dc^2 + (3*V__ac^2)/4))*L, 
(9*A__1*beta__m*f__0^2*g__0^3*m__b*L*X__1)/4 + m__b*(-

(3*A__2*beta__m*L*X__2*f__0^2)/2 + 2*omega)*g__0^3/2, (-
3/4*m__b*beta__m*L*X__2*f__0^2*g__0^3*A__1 - 

3/4*m__b*A__2*beta__m*f__0^2*g__0^3*L*X__1)*Q - f__0*g__0^3*m__b/2; 
 -3/4*beta__m*f__0^2*g__0^3*m__b*L*X__1*Q*A__2 - 

3/4*m__b*beta__m*L*X__2*f__0^2*g__0^3*A__1*Q + 1/2*f__0*g__0^3*m__b] 
End 
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File 5: Thermomechanical Noise Fitting Model: Iteration File. 

clear 
close all 
clc 

  
%% 
tic 
%tuning parameters 
S_vsys =0.65; 
f_0=97.8435e+6; 
w_0=f_0*2*3.1415926; 
%w_0=f_0; 
Q=71.5e+3; 
R=6.7e+12; 

  
% Experimental data 
load Data_35.mat 
m=Data.('Frequency'); 
n=Data.('2V'); 

  
%fixed parameters 
k_b=1.38065e-23; 
m_eff=1.96279e-17; 
Temp=298; 

  
%frequency sweep 
fmin=97.795e+6; 
fstep=0.0001e+6; 
fmax=97.895e+6; 

  
%% 
f_range=fmin:fstep:fmax; 
for i=1:length(f_range) 
    i; 
    f=f_range(i); 
    w=f*2*3.1415926; 
    %w=f 
    S_vt=sqrt(R^2*(((4*w_0*k_b*Temp)/(Q*m_eff))/((w_0^2-

w^2)^2+(w_0*w/Q)^2))+S_vsys^2) 
    S_vtotal(i)=S_vt; 
    S_xt=S_vt/R; 
    S_xtotal(i)=S_xt*1e+12; 
end 
RMSE=sqrt(sum((n(i)-S_vtotal(i))^2)/numel(n)); 
avg_n=sum(n)/length(n); 
RRMSE=100*RMSE/avg_n 
figure(1) 
plot(f_range,n,'.') 
txt=['RRMSE error=' num2str(RRMSE),'%']; 
text(fmax-0.2*(fmax-fmin),max(n)-0.001*(max(n)-

min(n)),txt,'fontsize',16) 
txt=['R=' num2str(R/1e+12),'nV/pm']; 
text(fmax-0.2*(fmax-fmin),max(n)-0.101*(max(n)-

min(n)),txt,'fontsize',16) 
txt=['Q=' num2str(Q)]; 
text(fmax-0.2*(fmax-fmin),max(n)-0.201*(max(n)-
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min(n)),txt,'fontsize',16) 
hold on 
yyaxis left 
ylabel('S_vtotal^{1/2}(V*Hz^{-1/2})','fontsize',16) 
plot(f_range,S_vtotal,'black-','linewidth',1); 
yyaxis right 
ylabel('S_xtotal^{1/2}(pm*Hz^{-1/2})','fontsize',16) 
plot(f_range,S_xtotal,'o-','linewidth',1); 
xlim([fmin,fmax]); 
grid on 
xlabel('frequency(Hz)','fontsize',16); 
toc 
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File 6: Thermomechanical Noise Fitting Model: Fitting and Plotting 

load Data_23.mat 
m_23=Data.('Frequency'); 
n_1=Data.('0V'); 
n_2=Data.('0p1V'); 
n_3=Data.('1V'); 
load Data_29.mat 
m_29=Data.('Frequency'); 
n_4=Data.('0V'); 
n_5=Data.('0p1V'); 
n_6=Data.('1V'); 
load Data_30.mat 
m_30=Data.('Frequency'); 
n_7=Data.('0V'); 
n_8=Data.('0p1V'); 
n_9=Data.('1V'); 
load Data_35.mat 
m_35=Data.('Frequency'); 
n_10=Data.('0V'); 
n_11=Data.('0p1V'); 
n_12=Data.('1V'); 
figure subplot(431),plot(m_23,n_1);grid 

on;xlim([min(m_23),max(m_23)]);ylim([0,6]);xlabel('frequency(Hz)','fo

ntsize',12);ylabel('S_{vtotal}^{1/2}(V*Hz^{-

1/2})','fontsize',12);legend({'V_g=0V,R23'},'fontsize',16); 
subplot(432),plot(m_23,n_2);grid 

on;xlim([min(m_23),max(m_23)]);ylim([0,6]);xlabel('frequency(Hz)','fo

ntsize',12);ylabel('S_{vtotal}^{1/2}(V*Hz^{-

1/2})','fontsize',12);legend({'V_g=0.1V,R23'},'fontsize',16); 
subplot(433),plot(m_23,n_3);grid 

on;xlim([min(m_23),max(m_23)]);ylim([0,6]);xlabel('frequency(Hz)','fo

ntsize',12);ylabel('S_{vtotal}^{1/2}(V*Hz^{-

1/2})','fontsize',12);legend({'V_g=1V,R23'},'fontsize',16); 
subplot(434),plot(m_29,n_4);grid 

on;xlim([min(m_29),max(m_29)]);ylim([0,25]);xlabel('frequency(Hz)','f

ontsize',12);ylabel('S_{vtotal}^{1/2}(V*Hz^{-

1/2})','fontsize',12);legend({'V_g=0V,R29'},'fontsize',16); 
subplot(435),plot(m_29,n_5);grid 

on;xlim([min(m_29),max(m_29)]);ylim([0,25]);xlabel('frequency(Hz)','f

ontsize',12);ylabel('S_{vtotal}^{1/2}(V*Hz^{-

1/2})','fontsize',12);legend({'V_g=0.1V,R29'},'fontsize',16); 
subplot(436),plot(m_29,n_6);grid 

on;xlim([min(m_29),max(m_29)]);ylim([0,25]);xlabel('frequency(Hz)','f

ontsize',12);ylabel('S_{vtotal}^{1/2}(V*Hz^{-

1/2})','fontsize',12);legend({'V_g=1V,R29'},'fontsize',16); 
subplot(437),plot(m_30,n_7);grid 

on;xlim([min(m_30),max(m_30)]);ylim([0,20]);xlabel('frequency(Hz)','f

ontsize',12);ylabel('S_{vtotal}^{1/2}(V*Hz^{-

1/2})','fontsize',12);legend({'V_g=0V,R30'},'fontsize',16); 
subplot(438),plot(m_30,n_8);grid 

on;xlim([min(m_30),max(m_30)]);ylim([0,20]);xlabel('frequency(Hz)','f

ontsize',12);ylabel('S_{vtotal}^{1/2}(V*Hz^{-

1/2})','fontsize',12);legend({'V_g=0.1V,R30'},'fontsize',16); 
subplot(439),plot(m_30,n_9);grid 

on;xlim([min(m_30),max(m_30)]);ylim([0,20]);xlabel('frequency(Hz)','f

ontsize',12);ylabel('S_{vtotal}^{1/2}(V*Hz^{-

1/2})','fontsize',12);legend({'V_g=1V,R30'},'fontsize',16); 
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subplot(4,3,10),plot(m_35,n_10);grid 

on;xlim([min(m_35),max(m_35)]);ylim([0,4.5]);xlabel('frequency(Hz)','

fontsize',12);ylabel('S_{vtotal}^{1/2}(V*Hz^{-

1/2})','fontsize',12);legend({'V_g=0V,R35'},'fontsize',16); 
subplot(4,3,11),plot(m_35,n_11);grid 

on;xlim([min(m_35),max(m_35)]);ylim([0,4.5]);xlabel('frequency(Hz)','

fontsize',12);ylabel('S_{vtotal}^{1/2}(V*Hz^{-

1/2})','fontsize',12);legend({'V_g=0.1V,R35'},'fontsize',16); 
subplot(4,3,12),plot(m_35,n_12);grid 

on;xlim([min(m_35),max(m_35)]);ylim([0,4.5]);xlabel('frequency(Hz)','

fontsize',12);ylabel('S_{vtotal}^{1/2}(V*Hz^{-

1/2})','fontsize',12);legend({'V_g=1V,R35'},'fontsize',16);  
sgtitle('Cross-comparison between different beam 

length','fontsize',30) 
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A.3 Coupled Oscillator Displacement Modelling 

The method describes the nonlinear motion in chapter 3 was only for single degree of 

freedom. In future, for applications such as reservoir computing or neuromorphic 

computing that requires multiple nonlinear oscillators coupled with each other, model 

needs to be built based on n-th degree of freedom system. Although certain 

complexity is involved, my methodology of producing the model can still be applied 

with only a few changes.  This capability of usage expansion comes from two points. 

First is the device design. The doubly-clamped silicon beam is a simple and common 

structure that gives rise to its excellent compatibility. This structure can be easily 

modified and combined with self-mechanical/electrical coupling or CMOS technology. 

As preliminaries, I will present an example of using same strategy to model a coupled 

oscillator.   

 

Figure A.1 Scheme of a forced 2 degree of freedom oscillators. 
𝑘, 𝛽, 𝐶, 𝑧(𝑡), 𝐹  are linear and nonlinear stiffness, damping coefficient, 
displacement, and external force, respectively. 

Note that, for the simplicity, this section will skip the discussion of the coupler. But in 

practical scenarios, the use of coupler will also affect the motion of the system where 

its rigidity or stiffness can change the force applied on the coupled oscillator 

correspondingly. In that case, the force of the second oscillator as shown in Equation 
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(A.2) should be modelled separately by considering material properties of the coupler. 

Each of the oscillators are modelled accordingly as, 

𝑚1𝑧1
′′ + 𝐶1𝑧1

′ + 𝐶2(𝑧1
′ − 𝑧2

′ ) + 𝑘1𝑧1 − 𝑘2(𝑧1 − 𝑧2)

                                         +𝛽1𝑧1
3 − 𝛽2(𝑧1 − 𝑧2)

3 = 𝐹 (𝐴. 1)
 

𝑚2𝑧2
′′ + 𝐶2(𝑧1

′ − 𝑧2
′ ) + 𝑘2(𝑧1 − 𝑧2) + 𝛽2(𝑧1 − 𝑧2)

3

                                                                                  = 𝐹 (𝐴. 2)
 

Given the test function of each oscillator as, 

𝑧1(𝑡) = 𝐴1 𝑐𝑜𝑠(𝜔𝑡) + 𝐵1 𝑠𝑖𝑛(𝜔𝑡) (𝐴. 3) 

𝑧2(𝑡) = 𝐴2 𝑐𝑜𝑠(𝜔𝑡) + 𝐵2 𝑠𝑖𝑛(𝜔𝑡) (𝐴. 4) 

where two degrees of freedom of oscillation introduce four orthogonal displacements. 

Hence, we need to construct four Galerkin functions to fulfill the solution. Marking 

the residual force of each freedom of oscillator as 𝑅1(𝑡) and 𝑅2(𝑡), I have 

𝑮 =

(

  
 
∫ 𝑅1(𝑡)𝐴1 𝑐𝑜𝑠(𝜔𝑡) 𝑑𝑡 

2𝜋
𝜔

0

∫ 𝑅2(𝑡)𝐴2 𝑐𝑜𝑠(𝜔𝑡) 𝑑𝑡 

2𝜋
𝜔

0

∫ 𝑅1(𝑡)𝐵1 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝑡 

2𝜋
𝜔

0

∫ 𝑅2(𝑡)𝐵2 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝑡 

2𝜋
𝜔

0 )

  
 
= 0 (𝐴. 5) 

Next, I will take partial derivatives of each function in Equation (A.5) with respect to 

𝐴1, 𝐴2, 𝐵1, 𝐵2  concerning omega, yielding a 4 ×  4 Jacobian matrix. To avoid a 

repetitive and tedious symbolic manipulation process, I will skip the description of 

this part here. The subsequent solution process can still employ the NRI method to 

obtain the numerical solutions for 𝐴1, 𝐴2, 𝐵1, 𝐵2 .  For this model, we can also 

substitute the previously defined parameters 𝑘𝑒 , 𝛽𝑚 , and 𝛽𝑒  into the corresponding 
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parameters 𝑘  and 𝛽  in Equations (A.1) and (A.2) to characterise the voltage-

dependent linear and nonlinear effects.  

In summary, although I do not have actual coupled oscillator devices for detailed 

modelling and description, this section demonstrates the expandability of our novel 

methodology. For any n-th degrees of freedom, we can apply the same approach for 

modelling and solving, and importantly, we can embed our innovative voltage-

dependent nonlinear parameter into the corresponding model. This has significant 

implications for future research. 
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