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ABSTRACT 38 

Background: Metastasis of cutaneous squamous cell carcinoma (cSCC) is uncommon. Current 39 

staging methods are reported to have sub-optimal performances in metastasis prediction.  40 

Accurate identification of patients with tumours at high risk of metastasis would have a 41 

significant impact on management.  42 

Objective: To develop a robust and validated gene expression profile (GEP) signature for 43 

predicting primary cSCC metastatic risk using an unbiased whole transcriptome discovery-44 

driven approach. 45 

Methods: Archival formalin-fixed paraffin-embedded primary cSCC with perilesional normal 46 

tissue from 237 immunocompetent patients (151 non-metastasising and 86 metastasising) 47 

were collected retrospectively from four centres. TempO-seq was used to probe the whole 48 

transcriptome and machine learning algorithms were applied to derive predictive signatures, 49 

with a 3:1 split for training and testing datasets.  50 

Results: A 20-gene prognostic model was developed and validated, with an accuracy of 86.0%, 51 

sensitivity of 85.7%, specificity of 86.1%, and positive predictive value of 78.3% in the testing 52 

set, providing more stable, accurate prediction than pathological staging systems. A linear 53 

predictor was also developed, significantly correlating with metastatic risk. 54 

Limitations: This was a retrospective 4-centre study and larger prospective multicentre 55 

studies are now required. 56 

Conclusion: The 20-gene signature prediction is accurate, with the potential to be 57 

incorporated into clinical workflows for cSCC. 58 

Key words: 59 

Cutaneous squamous cell carcinoma; Metastasis; Prognosis; Transcriptomics; Machine 60 

learning; Risk stratification 61 

 62 

CAPSULE SUMMARY 63 

• A 20-gene expression profile signature derived from clinical archival tissue using an 64 

unbiased whole-transcriptome approach showed superior performance for predicting 65 

metastatic risks for primary cutaneous squamous cell carcinoma (cSCC). 66 

• This prognostic signature could significantly improve risk stratification, identifying 67 

patients with high-risk cSCC who may benefit from adjuvant treatment and reducing 68 

overtreatment for patients with low-risk cSCC. 69 
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 70 

 71 

BACKGROUND  72 

 73 

Cutaneous squamous cell carcinoma (cSCC) is the commonest form of skin cancer with 74 

metastatic potential and incidence and mortality are rising (1-4). Although the frequency of 75 

metastasis arising from cSCC is relatively low at 2-5%, the sheer number of cases represents 76 

a significant disease burden. Current management could be improved by more accurately 77 

identifying tumours most likely to metastasise, targeting adjuvant therapy and intense clinical 78 

supervision programmes to those at highest risk, whilst reducing unnecessary interventions 79 

for people with low-risk tumours.  80 

 81 

Multiple histopathological staging classifications for cSCC are available although reported to 82 

be suboptimal in predicting poor outcomes (5,6). Recent studies suggest that genomic and 83 

transcriptomic signatures may improve risk prediction for primary cSCC progression (7-10). 84 

Using whole exome sequencing data, we previously identified 16 high-risk and 6 low-risk 85 

specific significantly mutated genes (9). More recently, a 40-gene expression profiling (GEP) 86 

signature based on candidate genes identified by a combination of literature review and 87 

discovery efforts, was developed to predict metastatic risk (Castle Biosciences, Inc 88 

Friendswood, Texas) (11,12). A positive predictive value (PPV) of 60% was achieved for the 89 

highest-risk tumours, with overall sensitivity, specificity and PPV for differentiating Class 2 90 

(high-) and Class 1 (low-risk) cSCC of 65.4%, 68.8%, and 28.8%, respectively (11). A completely 91 

unbiased discovery-driven approach using information from the whole genome and 92 

transcriptome to identify prognostic gene signatures is currently lacking. Such an approach 93 

may also uncover key molecular mechanisms underpinning disease progression and 94 

metastatic risk.  95 

 96 

To develop a validated prognostic signature in an unbiased manner, we assembled a 97 

multicentre cohort of primary cSCC archival tissue from 237 patients with known clinical 98 

outcomes (no metastasis over 3 years, n=151; metastasis, n=86). Whole transcriptomic data 99 

were generated from tumour and perilesional normal skin. A range of machine learning (ML) 100 

techniques was applied and a 20-gene GEP model was developed which displayed a high level 101 

of accuracy in differentiating metastasising and non-metastasising primary cSCC. A linear 102 

predictor based on the 20-gene GEP was then developed to further aid the implementation 103 

of the GEP signature for risk stratification in clinical practice. Ultimately, use of this GEP to 104 

guide management decisions may significantly improve patient management for this 105 

common cancer.  106 

 107 

 108 
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 109 

METHODS   110 

Ethical approval and sample identification 111 

This study was approved as IRAS project 266559 (Diagnostic marker panel development for 112 

progression in skin cancer, PERMEDID). Four collaborating pathology centres identified 113 

consecutive patients with primary cSCC which had metastasised, or primary cSCC which had 114 

not metastasised within 3 years (Table I). Immunosuppressed patients were excluded. 115 

Formalin fixed paraffin embedded (FFPE) sections were reviewed by an expert 116 

dermatopathologist and tumour and perilesional normal skin marked for subsequent analysis 117 

(see Supplemental Materials). 118 

 119 

Pathology review and pathological tumour staging 120 

Haematoxylin and eosin (H&E) stained sections were digitally scanned by Leica scanner and 121 

Aperio software. Images were reviewed centrally by two expert dermatopathologists and 122 

primary tumours typed, graded and histologically staged using Union for International Cancer 123 

Control (UICC)-8 and Brigham and Women's Hospital (BWH) classifications. 124 

 125 

Transcriptomics investigation 126 

Transcriptomic analysis was performed using the TempO-Seq whole-protein coding 127 

transcriptome platform with a proprietary processing pipeline (Bioclavis Ltd, Glasgow, UK) 128 

(13). Data pre-processing and normalisation were performed using limma R package (14). 129 

Batch effect was removed using the ComBat package (15). Differential expression (DE) 130 

analysis using limma was performed between clinical groups, followed by gene set over-131 

representation and gene set enrichment analysis (GSEA) using DAVID (16) and clusterProfiler 132 

(17).  133 

 134 

Gene signature analysis using machine learning 135 

To derive a set of genes that could distinguish two groups (i.e., metastasising versus non-136 

metastasising cSCC), the caret R package (18) was used for machine learning (ML) analysis. A 137 

range of ML techniques were used and compared (Supplemental Materials). We randomly 138 

split the samples into training (75%) and testing (25%) sets. Starting with an initial set of genes 139 

in the training set (i.e. all DE genes from the DE analysis comparing metastasising and non-140 

metastatic cSCC), the best performing set of genes for each ML algorithm (i.e., feature 141 

selection) was determined using the Recursive Feature Elimination procedure, with 10-fold 142 

repeated cross validation of five repeats. A final model for each ML algorithm was then 143 

trained using the final selected number of genes with 10-fold repeated cross validation of ten 144 

repeats, and used to predict the two classes in the testing set. The performances of 145 

predictions were measured using accuracy, precision, along with sensitivity and specificity, 146 

positive predive value (PPV) and negative predictive value (NPV). 147 

 148 
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A weighted linear predictor was generated for each sample based on the expression of the 149 

final set of genes in the model and their fold changes in the DE analysis (see Supplemental 150 

Materials) Linear predictors were compared between clinical groups and correlated with 151 

classes. The area under the ROC curve (AUC) was calculated using the pROC package (19). 152 

 153 

RESULTS  154 

Clinicopathologic characteristics 155 

Demographic details of patients and histologic features of primary cSCC are presented in 156 

Table I. 157 

 158 

Transcriptomic analysis between primary cSCC groups  159 

Gene expression profiles (GEP) of 19,072 genes across a total of 433 samples were sufficiently 160 

profiled for analysis. Four sample groups were compared; cSCC tumour from metastasising 161 

(n=84) and non-metastasising (n=146) cSCC, and matched perilesional normal skin from 162 

metastasising (n=71) and non-metastasising (n=132) cSCC (Supplemental Table I). Principal 163 

component analysis based on genes across all samples showed a clear separation between 164 

cSCC and perilesional normal skin samples from metastasising and non-metastasising cSCC 165 

(Supplemental Fig 1). Differential gene expression analysis revealed that 1,038 genes were 166 

upregulated and 236 genes downregulated in metastasising cSCC compared to non-167 

metastasising cSCC (absolute log2 fold change >1 and adjusted p-value <0.05).  The gene set 168 

over-representation test showed keratinisation, B-cell receptor (BCR), innate immune 169 

response, cell cycle, DNA replication and DNA repair were highly over-represented in the DE 170 

genes (hypergeometric test q<0.05, Supplemental Fig 2A). Over-representation analysis 171 

against cellular signatures showed that signatures associated with neural progenitor, 172 

endothelial and cancer stem cells were highly enriched within the DE genes (Supplemental 173 

Fig 2B), suggesting that cell differentiation is a key factor distinguishing the two cSCC groups. 174 

GSEA against MSigDB canonical pathways further suggested that cell cycle related, DNA 175 

replication and repair, and immune pathways (BCR regulation, interferon and interleukin-12 176 

signalling), were all significantly upregulated in metastasising cSCC, while formation of the 177 

cornified envelope, keratinisation, and many metabolism pathways (sphingolipid, 178 

triglyceride, creatine and fatty acid metabolism) were significantly downregulated (Figure 1). 179 

 180 

Normal perilesional samples from metastasising and non-metastasising primary cSCC were 181 

also compared. GSEA indicated many immune pathways (such as BCR and T cell receptor 182 

signalling, Fc gamma receptor activation, and chemokine receptor binding) and cell cycle 183 

related pathways (synthesis, replication and repair of DNA) were significantly upregulated in 184 

perilesional skin samples from metastasising tumours (Supplementary Table II). 185 

 186 

Development of the 20-GEP prognostic signature 187 
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To identify a smaller set of genes that were predictive for primary cSCC metastasis, a range of 188 

ML classification algorithms were applied after splitting the primary cSCC samples into 189 

training and validation sets. A 20-gene model derived from K-nearest neighbours (KNN) was 190 

identified (Supplemental Table III) which provided the best performance in differentiating the 191 

two cSCC groups in the validation set (n=57: 36 non-metastasising; 21 metastasising), with an 192 

accuracy of 86.0% (95% confidence interval 74.2-93.7%), a sensitivity of 85.7% and a 193 

specificity of 86.1% (Table II). Patients predicted as high-risk of metastasis by the 20-GEP 194 

signature (n=23) had significantly worse metastasis-free survival (MFS) rates than those 195 

predicted as low-risk (n=34) (3-year MFS, 91.7% for low-risk versus 21.7% for high-risk) (Figure 196 

2). In this 20-gene GEP model, 18 genes were upregulated in non-metastasising cSCC and 2 197 

genes (MDK and STMN1) were upregulated in metastasising cSCC (Supplemental Table III, 198 

Supplemental Fig 3). Functional annotation of the 20 genes suggested the significant 199 

enrichment in the signatures from keratinisation, GnRH, oxytocin, Ras and MAPK signalling 200 

pathways (hypergeometric test, p<0.01). Using the same ML procedure based on perilesional 201 

normal skin samples, a 22-gene KNN model was also developed with an accuracy of 64.0% 202 

(95% CI: 49.2-77.1%), sensitivity of 41.2%, and specificity of 75.8% (Table II). 203 

 204 

Prognostic accuracy of the 20-GEP test compared to pathological staging classifications 205 

Using the Royal College of Pathologists dataset for histopathological reporting of primary 206 

invasive cSCC, tumours were staged by both UICC-8 TNM and BWH T-staging classifications 207 

after central consensus histopathological review. Prognostic metrics for UICC-8 (low T1/T2 vs. 208 

high T3/T4) and BWH (low T1/T2a vs high T2b/T3) staging showed performance with an 209 

accuracy of 85.4% for both systems in the validation set, compared to 86.0% for the 20-GEP 210 

signature (Table II). Performance of BWH T-staging based on original pathology reports 211 

without central consensus review (BWH v1), was marginally inferior in predicting metastasis, 212 

with an accuracy of 81.8%. This was largely due to differences between the scoring of poor 213 

differentiation after central review compared to the original report (Table I, Supplemental 214 

Table IV). 215 

The 20-GEP signature showed strong correlations with staging for risk prediction in the 216 

validation set. Of 23 metastasising cases predicted by the 20-GEP test, 21/23 (91.3%) were 217 

T2b/T3 by BWH staging versus 15/23 (65.2%) UICC-8 T3/4. Of 32 non-metastasising cSCC 218 

predicted by the 20-GEP, 26/32 were T1/T2a by BWH and 26/32 were UICC-8 T1/T2 (81.3%). 219 

Accuracy of the histology staging systems dropped to 81.1% and 76.5% for BWH and UICC8, 220 

respectively, when the whole cohort (n=237) was considered (Table II). 221 

Generation of a linear predictor for metastatic prediction 222 

To further enhance the potential clinical application of the 20-GEP signature, a linear 223 

predictor for metastasis combining the expression values and fold-changes of these 20 genes 224 

in the DE analysis was generated: the higher the linear predictor value, the higher the risk of 225 

developing metastasis. The previously reported 40-GEP (11) stratifies tumours into 3 classes 226 
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 7 

of risk (low, high, highest), whereas a linear predictor allows a more detailed assessment of 227 

risk that can be used alongside pathological risk factors to influence clinical management. The 228 

linear predictor had a very high correlation with metastatic risk, with an area under the ROC 229 

curve (AUC) of 0.85 (95% CI, 0.80-0.91) and 0.88 (95% CI, 0.78-0.99) for the training and 230 

validation (testing) sets, respectively (Figure 3). In comparison, the KNN binary classification 231 

model (i.e., yes or no for metastasis prediction) had an AUC of 0.86 (0.76-0.96). As expected, 232 

the linear predictor was significantly higher in metastasising versus non-metastasising cSCC 233 

in both training and testing sets (Wilcoxon rank sum test, p<0.0001, Supplemental Fig 4).  234 

Finally, the linear predictors across both tumour and perilesional skin for both metastasising 235 

and non-metastasising cSCC were compared (Supplemental Fig 5). There was no difference in 236 

linear predictors between non-metastasising cSCC and both normal adjacent groups. 237 

However, linear predictors increased significantly for metastasising cSCC compared to other 238 

groups (p<0.0001), suggesting that our linear predictor was only associated with 239 

metastasising primary tumours. 240 

 241 

DISCUSSION  242 

This study reports a 20-GEP signature that predicts metastatic risk of primary cSCC. It was 243 

developed and validated in a UK cohort of 237 primary cSCC from immunocompetent 244 

individuals using archival FFPE tissue in which whole-transcriptome analysis with an unbiased 245 

discovery approach was performed. The 20-GEP signature achieved an accuracy of 86.0%, a 246 

negative predictive value of 91.2% and a positive predictive value of 78.3% for predicting 247 

metastasis in the validation set (n=57). A linear predictor to facilitate potential clinical use of 248 

the 20-GEP was created based on the expression and fold changes of signature genes and had 249 

an AUC of 0.88. UICC-8 TNM and BWH pathological staging systems performed unexpectedly 250 

well in risk prediction compared with previous reports. Nonetheless, the 20-GEP remained 251 

overall the most stable and accurate predictor of metastatic risk, and in contrast to histology, 252 

the GEP signature is unbiased and not dependent on human evaluation and interpretation.  253 

 254 

There appeared to be a strong association between the 20-GEP and keratinisation. Key 255 

keratinisation genes, such as LCE1C, LCE2B/C, LCE3C and CDSN, were all significantly 256 

downregulated in metastasising primary cSCC as were two genes involved in alpha-Linolenic 257 

acid and ether lipid metabolism (PLA2G4E/F), consistent with our GSEA results. Only two 258 

genes, STMN1 and MDK, were significantly upregulated in metastasising samples. STMN1 a 259 

microtubule-destabilising protein, regulates the dynamics of microtubules and cell cycle 260 

progress (20). Its high expression is associated with poor prognosis in oesophageal (ESCC), 261 

lung (LUSC) and oral SCC (21-23). In ESCC and LUSC, it was reported to promote cell 262 

proliferation, migration, chemoradiation resistance (21,22,24), and is strongly associated with 263 

lymph node metastasis in ESCC (25,26). Midkine (MDK), a heparin-binding growth factor, is 264 
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also associated with cancer progression, drug resistance and a tolerogenic and immune-265 

resistant state (27-30). A recent study showed that MDK was highly expressed by stem-like 266 

tumour cells and led to mTOR inhibition persistence and an immune-suppressive 267 

microenvironment (31). MDK represents an interesting therapeutic target for advanced cSCC. 268 

 269 

Currently, clinical pathways determining treatment plans for patients with cSCC use 270 

clinicopathological staging systems. In practice, the predictive accuracy of staging systems for 271 

primary cSCC can vary significantly across reported studies (11, 32-35). Factors possibly 272 

accounting for the variability in pathology staging include non-standardised reporting of high-273 

risk features (particularly poor differentiation and perineural invasion); problems defining the 274 

state of differentiation of an individual tumour; and variable practice in the use of Mohs’ 275 

surgery which may affect detection of high-risk features and lead to understaging (11). In our 276 

study, careful central review by two highly experienced dermatopathologists adhering to the 277 

Royal College of Pathologists dataset led to a much higher performance of pathology staging 278 

systems than previously published. This highlights the need for a more objective grading 279 

system such as that used worldwide in breast carcinoma (36). 280 

 281 

Additional strengths of our study include an unbiased discovery-driven approach using the 282 

whole transcriptome of FFPE clinical samples to develop a prognostic signature suitable for 283 

routine clinical use. We also excluded immunosuppressed patients as iatrogenic and disease-284 

associated immunosuppression is an important risk factor for poor outcomes in cSCC and 285 

variations in immune status and effects of immunosuppressive drugs are likely to impact on 286 

the transcriptome. Excluding confounding factors due to immunosuppression may have 287 

permitted generation of a more metastasis-specific gene signature of greater use for risk 288 

prediction. More work is needed to test our 20-gene signature in other patient populations, 289 

such as those with darker skin and in immunosuppressive populations. 290 

 291 

The retrospective nature of this study was a limitation and, although consecutive eligible 292 

primary cSCC were enrolled at each centre, the possibility of some bias relating to patient and 293 

sample selection cannot be excluded. The study size for the validation set was also a limitation 294 

and further validation will require larger, prospective studies (5).  295 

 296 

In conclusion, we have used an unbiased discovery-driven approach to generate a promising 297 

candidate 20-GEP prognostic signature for cSCC metastasis.  The GEP not only represents a 298 

novel and potentially clinically applicable prognostic tool but has also provided biological 299 

insights into the process of metastasis and potential therapeutic targets. In addition, there 300 

are biological and genomic mechanisms common to cSCC across different tissue types and 301 

this signature may provide further insights into common differentiation and stem-like 302 

pathways underpinning these SCCs. Further prospective evaluation is now underway to 303 

confirm clinical utility of this GEP in management of primary cSCC. 304 

 305 
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Abbreviations used: 306 

AJCC: American Joint Committee on Cancer 307 

UICC: Union for International Cancer Control 308 

BWH: Brigham and Women’s Hospital 309 

cSCC: cutaneous squamous cell carcinoma 310 

GEP: gene-expression profile 311 

DE: differential expression 312 

GSEA: Gene set enrichment analysis 313 

HR: hazard ratio 314 

LR: likelihood ratio 315 

NPV: negative predictive value 316 

PPV: positive predictive value 317 

KNN: K-nearest neighbourhood 318 

BCR: B-cell receptor 319 
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Figures Legend 511 

Fig 1. Normalised enrichment scores (NES) of the top dysregulated canonical pathways 512 

between metastasising and non-metastasising cSCC. Pathways with positive NES (in red) were 513 

upregulated while pathways with negative NES (in blue) were downregulated in metastasising 514 

compared to non-metastasising primary cSCC.  515 

Fig 2. Kaplan-Meier analysis of the 20-GEP prognostic test and outcomes in terms of 516 

metastasis free survival in the validation dataset. No. at risk in the follow-up was shown in 517 

the table below. 518 

Fig 3. Area under the receiver operating characteristic curve (AUC) of the performance of 519 

linear predictors correlating with the metastatic incidences. Linear predictors were produced 520 

based on the 20-GEP signature, and both training and testing data sets were included in the 521 

calculation. AUC and 95% confidence interval were shown. 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

Jo
urn

al 
Pre-

pro
of



 15 

Table I. Clinicopathologic details of patients and primary cSCC samples  537 

Feature All (n=237) No metastasis (n=151)* Metastasis (n=86)** P 
value 

Age, y, median (range) 80 (39-100) 78 (39-100) 80 (64-93) .57 

Male, n (%) 142 (60) 90 (60) 52 (60) 1 

Located on head and neck,  
n (%)*** 

155 (65) 91 (61) 64 (74) .033 

Tumour diameter, cm,  
mean  (range) # 

1.85 (0.18-9) 1.31 (0.18-4.1) 2.82 (1.6-9) <.0001 

Tumour thickness, mm, mean 
(range) ## 

3.94 (0.2-26.7) 2.96 (0.2-13) 5.65 (0.3-26.7) <.0001 

Poorly differentiated, n (%) 115 (48.3)  47 (30.9) 68 (79.1) <.0001 

Clark level > V (beyond fat),  
n (%)§ 

43 (18.6) 10 (6.7) 33 (40.2) <.0001 

PNI, n (%)¶    .0004 

Present ( 0.1mm) 20 (8.6) 8 (5.3) 12 (14.6)  

Present (<0.1mm or 
unknown) 

11 (4.7) 3 (1.99) 8 (9.8)  

Not present 202 (86.7) 140 (92.7) 62 (75.6)  

Lymphovascular invasion∞ 15 (6.5) 1 (0.66) 14 (17.5) <.0001 

UICC T stage, n (%)§§    <.0001 

T1 134 (59.3) 115 (78.8) 19 (23.75)  

T2 25 (11.1) 11 (7.5) 14 (17.5)  

T3 67 (29.6) 20 (13.7) 47 (58.75)  

T4 - - -  

BWH T stage, n (%)¶¶    <.0001 

T1 86 (37.7)  84 (56.75) 2 (2.5)   

T2a 65 (28.5) 44 (29.7) 21 (26.25)   

T2b 71 (31.1) 20 (13.5) 51  (63.75)  

T3 6 (2.6)  - 6  (7.5)    

     

 538 
*Total number of primary cSCC which did not metastasise =152 (one patient had 2 539 
separate primary cSCCs); median follow-up was 76 months 540 
** median time from primary cSCC to metastasis was 9.9 months  541 
*** Location not recorded for 2 cSCCs (both non-metastasising) 542 
# not available for 10 cSCC (5 non-metastasising and 5 metastasising) 543 
## not available for 15 cSCC (10 non-metastasising and 5 metastasising)  544 
§ Invasion through or beyond subcutaneous fat: not available for 7 cSCC (3 non- 545 
metastasising and 4 metastasising) 546 
¶ not available for 5 cSCC (1 non-metastasising and 4 metastasising cSCC) 547 
∞ Lymphovascular invasion not available for 6 cSCC (all metastasising) 548 
§§ not available for 12 cSCC (6 non- metastasising and 6 metastasising)  549 
¶¶ not available for 10 cSCC (4 non-metastasising and 6 metastasising) 550 
 551 
 552 

 553 
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Table II. Accuracy of the prediction of metastatic risks of the 20-GEP signature and other risk 554 

assessment methods (n=57). 555 

Classifier Accuracy% Sensitivity% Specificity% PPV% NPV% +LR -LR 

20-GEP 86.0 85.7 86.1 78.3 91.2 6.17 0.17 

UICC-8 85.4 81.0 88.2 81.0 88.2 6.88 0.22 

BWH 85.4 95.2 79.4 74.1 96.4 4.63 0.06 

BWH v1 81.8 76.2 85.3 76.2 85.3 5.18 0.28 

22-GEP* 64.0 41.2 75.8 46.7 71.4 1.70 0.78 

UICC-8** 76.5 58.8 86.3 70.1 79.2 4.29 0.48 

BWH** 81.1 71.2 86.5 74.0 84.8 5.27 0.33 

UICC: Union for International Cancer Control; BWH, Brigham and Women's Hospital Staging 556 

System after the central review; BWH v1: derived from original pathology reports before 557 

central pathology review; GEP, gene expression profile; PPV: Positive Predictive Value; NPV: 558 

Negative Predictive Value; +LR: Positive Likelihood Ratio; -LR: Negative Likelihood Ratio. 559 

22-GEP* was derived from normal adjacent samples only. 560 

** Statistics were derived from the whole cohort (n=237) 561 

Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

UK cSCC cohort

Time (years)

P
ro

g
re

s
s
io

n
 F

re
e

 S
u

rv
iv

a
l

HR=13.45

95% CI (3.86 46.86)

Log rank P = 1.93e 07

Low risk

High risk

# at risk 0 2 4 6 8 10

Low-risk 34 30 29 17 6 2

High-risk 21 6 4 3 2 0

M
e
ta

s
ta

s
is

 F
re

e
 S

u
rv

iv
a
l

Jo
urn

al 
Pre-

pro
of



ROC curves of linear predictor

Specificity (%)

S
e
n
s
it
iv

it
y
 (

%
)

100 80 60 40 20 0

0
2
0

4
0

6
0

8
0

1
0
0

Jo
urn

al 
Pre-

pro
of


