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Abstract: In the past decade, deep neural networks, particularly convolutional neural networks, have
revolutionised computer vision. However, all deep learning models may require a large amount
of data so as to achieve satisfying results. Unfortunately, the availability of sufficient amounts of
data for real-world problems is not always possible, and it is well recognised that a paucity of data
easily results in overfitting. This issue may be addressed through several approaches, one of which is
data augmentation. In this paper, we survey the existing data augmentation techniques in computer
vision tasks, including segmentation and classification, and suggest new strategies. In particular,
we introduce a way of implementing data augmentation by using local information in images. We
propose a parameter-free and easy to implement strategy, the random local rotation strategy, which
involves randomly selecting the location and size of circular regions in the image and rotating them
with random angles. It can be used as an alternative to the traditional rotation strategy, which
generally suffers from irregular image boundaries. It can also complement other techniques in data
augmentation. Extensive experimental results and comparisons demonstrated that the new strategy
consistently outperformed its traditional counterparts in, for example, image classification.

Keywords: data augmentation; deep learning; convolutional neural networks; image processing;
segmentation; classification

1. Introduction

Deep neural networks, like convolutional neural networks (CNNs), have been used
in computer vision with numerous research applications, such as action recognition [1,2],
object detection and localisation [3,4], face recognition [5], and image characterisation [6].
They have achieved superior performance against conventional approaches in many chal-
lenging computer vision tasks [7]. Nevertheless, their shortcomings, such as large-scale
data requirements, long training time, overfitting, and performance slumps upon data
scarcity, may hinder their generalisation and effectiveness [8,9].

The fruitful results presented by the CNN models encourage researchers to pursue
higher accuracy models. These results are generally achieved by building more complex
architectures [10]. Note that model complexity is often described by the number of trainable
parameters. The more trainable parameters a model has, the more complex it is. More
specifically, model complexity may also be defined in terms of the number of layers
(i.e., non-linearity) and the number of neurons (e.g., filters) in individual layers. On the
other hand, in supervised learning, data complexity can be determined according to the
inter-class multiplicity (i.e., different classes) in addition to the intra-class differences. In
general, the complex of the data and the model needed is proportional. If the training
data is insufficient, complex models may be susceptible to the issue of memorising the
training data. It is also well known that deep neural networks prevail partly because of the
availability of high volume data. The networks can easily memorise data points due to their
complex structure. However, the increasing complexity of the model architectures with
insufficient data could exacerbate the shortcomings of CNN models [11]. One of the most
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apparent issues when adopting complex CNN models is the overfitting problem [12], which
can be described as the performance difference between the training and validation/test
stages, where the model loses its ability to generalise. Overfitting generally occurs when
a model is either too complex for the data or the data itself is insufficient [13]. Figure 1
shows an example of the loss curve of an overfit model. Although the training accuracy
and validation accuracy improved concurrently during the early stages of training, they
diverged after a certain point, where the model started losing its generalisation ability [12].
Strategies like reducing the model complexity, applying regularisation, and/or acquiring
more extensive data volumes have been considered to mitigate the overfitting issue in deep
learning models, see Figure 2.

Loss

Epochs

Underfitting Overfitting

Fitting point

Figure 1. An illustration of the training and validation loss curves. Training and validation losses
decrease simultaneously until the fitting point. After that, the validation loss begins to rise while
the training loss is still decreasing, i.e., the so-called overfitting. Overfitting is associated with good
performance on the training data but poor generalisation to the validation/test data (cf. underfitting
is associated with poor performance on the training data and poor generalisation to the validation
data) [12].

Regularisation techniques are implemented at the model architectural level [14,15],
such as dropout [16], ridge regression (`2 regularisation) [17], and Lasso regression (`1
regularisation) [18]. The main objective of these techniques is to reduce the complexity
of a neural network model during training, which is considered the main reason behind
overfitting, especially when the model is trained on small datasets. Other techniques, like
batch normalisation and transfer learning, may speed up the training process and also
have an impact on preventing overfitting [19,20]. These techniques could be regarded as
byproducts of the constant competition in the pursuit of higher performance by innovating
new complex deep neural architectures, such as VGG-16 [21], ResNet [22], Inception-V3 [23]
and DenseNet [24]. These models, in fact, aim to achieve higher accuracy on large datasets
like Imagenet [25], which has over 14 million images [25]. However, when applying these
models to small-scale applications with small datasets, they usually suffer from poor
generalisation and overfitting, indicating the necessity of developing methods to reduce
their complexity.

Higher
accuracy

Complex
architecture

Requires
Overfitting

Addressed by

Applying
regularisation

Causes Addressed by
More data

New data

Data
augmentation

Figure 2. Diagram illustrating the overfitting problem and its well-known solutions.

Data augmentation methodology encompasses a broader range of techniques that
function at the data level, rather than at the model architectural level. It can help deep
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learning models perform better by artificially creating different and diverse samples with
balanced classes for the training dataset. When the dataset is sufficient in terms of quantity
and quality, a deep learning model performs better and more accurately. In other words,
the training data must fulfil two requirements, i.e., adequate diversity and size, both of
which can be achieved by data augmentation [26].

Data augmentation can be categorised based on the intended purpose of applying it
(i.e., increasing training dataset size and/or diversity), or it can be categorised based on
the problems. The following are examples of the latter: the random erasing technique was
proposed to address the occlusion problem [8]; rotation and flipping were supposed to par-
tially resolve the viewpoint problem [27–29]; brightness was used to address the change in
lighting [30]; and cropping and zooming were used to address the scaling and background
issues. In particular, the most popular categorisation of data augmentation divides it into
deep learning-based data augmentation and traditional data augmentation [10], which is
further divided into geometric, photometric, and noise data augmentation, see Figure 3.
For reviews on the deep learning approaches for data augmentation, see e.g., [31,32].

Several studies evaluating the efficacy of data augmentation have utilised standard
academic image datasets to assess results. For example, MNIST, CIFAR-10, CIFAR-100 and
ImageNet are four commonly used datasets [10,33–35]. Note that some of these datasets,
especially ImageNet, are considered “big data” [36] and may not require data augmenta-
tion techniques to further increase their size. To simulate data scarcity challenges, many
experiments testing data augmentation techniques limit themselves to small subsets of the
original large datasets [34]. It is worth emphasising that data augmentation techniques
may also be used to improve the data diversity, except for the data quantity.

Figure 3. Data augmentation (DA) taxonomy.

This survey mainly focused on recent articles that used data augmentation techniques
in image classification and segmentation, regardless of the data augmentation category,
models, or datasets used in the studies. To the best of our knowledge, there are few surveys
in the fields of data augmentation in image classification and segmentation. Another main
contribution of this article is that we propose a new geometric data augmentation tech-
nique, which can complement the current data augmentation strategies. It is well known
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that traditional rotation is one of the most commonly used geometric data augmentation
techniques, see Figure 4. It, however, has drawbacks; for example, the loss of a significant
amount of pixel information when rotating. It is noticeable that rotating a square-shaped
image in a circular trajectory produces black patches at the boundaries, which do not accu-
rately reflect the original data and may affect the final augmentation performance. Filling
these black patches with modified pixel values via the wrap, constant, reflection, and/or
nearest rotation techniques was a common solution to this issue (see Figure 5). In this
study, we suggest exploiting local information in images and propose conducting rotation
randomly and locally to address the limitations of the traditional rotation. We named our
method “random local rotation” (RLR). RLR rotates an image’s internal circular region by se-
lecting random location, area and angle, which is easy to implement. Rotation performed in
a local manner avoids forming black regions near image boundaries. Moreover, this method
could also improve the data diversity. Extensive experiments demonstrated its superior
performance compared to its counterpart, i.e., the traditional rotation technique.

The remainder of this article is organised as follows. Sections 2 and 3 recall the most
common traditional data augmentation methods and the most common deep learning-
based data augmentation methods, respectively. Section 4 reviews some recent research
in image classification and segmentation utilising data augmentation for performance
enhancement. Sections 5 and 6 present our proposed data augmentation method and the
experimental results validating its promising performance. We conclude our study in
Section 7.

Given image Rotated image

Figure 4. Traditional rotation. Left and right: the given image (from the CIFAR-10 dataset) and the
rotated image with a randomly rotated angle. Black areas appear in the corners of the rotated image
and the corners in the given image are cut off in the rotated image.

Figure 5. Data augmentation by different types of rotation techniques. The left three figures in the
first row show the “constant” technique, i.e., the traditional rotation (TR), resulting in black areas
around the boundary. The RNR technique is used in the right three figures of the first row. The first
three figures of the second row give the results of filling up the black areas by using RRR, and the
right three figures use RWR. For each technique, three random angles were selected for rotation.

2. Traditional Data Augmentation Techniques

This section briefly recalls the most commonly used traditional data augmentation
approaches.
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2.1. Geometric Transformations

Basic geometric operations. like flipping, cropping and random rotation, are still
sought-after techniques to augment data. They generally increase the data size to improve
data diversity, and are fairly easy to apply, see below for more detailed description.

Flipping. The term flipping refers to the process of flipping images horizontally or
vertically or both, see Figure 6. The most commonly used flipping is horizonal flipping,
since it is more realistic. For example, a cat versus dog dataset may include all the dog
images heading to the left from the spectator view. Not surprisingly, the trained model
may suffer from misclassifying dogs heading to the right. The best way to alleviate this
problem is to collect more training images that include as many different views as possible.
When collecting more images is difficult, flipping may directly solve this type of problem.

Flipping is one of the most intuitive strategies to increase data size or diversity. How-
ever, it may be inappropriate when the data has unique properties. For example, con-
sidering the concept of label safety, discussed in [10], asymmetric or direction sensitive
data, such as letters or digit numbers, cannot use the flipping strategy since it results in
inaccurate labels, or even opposite labels.

Given image Horizontal Vertical Both

Figure 6. Data augmentation by flipping. Images from left to right represent the given image,
horizontally flipped image, vertically flipped image and the image flipped horizontally and vertically,
respectively.

Cropping. Cropping is a basic augmentation technique that randomly crops a part of
the given image and then resizes the cropped part back to a certain size. As training data
may include samples of different sizes, cropping images to a certain size is a widely used
step before training [10,37].

It is worth mentioning that cropping may generate samples with incorrect labels. For
example, images containing more than one object, which are labelled according to the
object with dominant size, may experience a problem when using the cropping technique.
In such a case, it is possible to crop an area of the given image that has more details of
the accompanying object, rather than the dominant object, see Figure 7. The conventional
strategy for training modern state-of-the-art architectures is to crop patches as small as 8%
of the given image and label them the same as the given image [38]. This frequently results
in incorrect labelling in the augmented data, as in the example shown in Figure 7.

Given image Cropped patch

Figure 7. Data augmentation by cropping. Left and right: the given image (from ImageNet) labelled
as “Dog” and the cropped patch. It is clear that the “Dog” is no longer visible in the cropped patch.

Rotation. Rotation is a simple geometric data augmentation technique. The images are
rotated by a specified angle, and the newly created images are used alongside the originals
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as training samples. The disadvantage of rotation is that it may result in information loss at
the image boundary, see Figure 4 and the first row in Figure 5. There are several possible
solutions, e.g., random nearest neighbor rotation (RNR), random reflect rotation (RRR)
and random wrap rotation (RWR), to fix the boundary problem of the rotated images. In
particular, the RNR technique repeats the nearest pixel values to fill in the black areas,
while the RRR technique employs a mirror-based approach and the RWR technique uses
the periodic boundary strategy to fill in the gaps; see Figure 5 for an example.

These geometric data augmentation techniques have been shown to be highly effective
in improving diversity and increasing data quantity. For example, Mash et al. [39] used
a fine-grained dataset of ten classes to test a variety of geometric augmentation methods
for the task of aircraft classification. Cropping, rotating, rescaling, polygon occlusion, and
a combination of these techniques were all tested. The cropping technique combined with
occlusion achieved the highest improvement, i.e., increasing the task performance by 9%
against the benchmark result. Their study, however, did not examine photometric data
augmentation strategies (see below).

2.2. Photometric Transformations

A different type of traditional transformation is to change pixels’ values rather than
their positions. This approach includes different techniques, such as changing brightness,
contrast, and/or colours.

Typically, a digital image is encoded as a tensor of three dimensions, i.e., height ×
width × colour channels. The difference between different colour representation schemes
lies in the channel part of the tensor. For example, the RGB colour representation scheme
uses a combination of three colour channels (i.e., red, green and blue) to represent individual
pixels. Manipulating these individual colour channels is a very basic technique in colour
augmentation [10]. For example, an image can be swiftly transformed into its representation
in one colour channel if the others are set to black.

In addition to the RGB colour space, there are many other colour spaces. For example,
the HSL colour representation scheme combines hue, saturation and lightness to represent
individual pixels [40]. A hue is a single pigment that has no tint or shade. Saturation refers
to colour intensity and lightness refers to how light a colour is. HSL is user-friendly since
it is convenient to see how a particular colour appears using different values for these
three attributes. Please refer to e.g., [40,41] for different colour spaces. Transferring from
one colour space to another can be a useful technique for data augmentation.

Colour jittering is a photometric data augmentation technique that employs either ran-
dom colour manipulation [42] or predetermined colour adjustments [43], such as randomly
changing the brightness, contrast or colour properties of an image, see Figure 8.

(a) Given image (b) Saturation (c) Brightness (d) Contrast
Figure 8. Data augmentation by colour jittering. (a–d) represent the given image, and the augmented
images by manipulating the colour saturation, brightness and contrast, respectively.

Traditional photometric techniques in augmenting data may have limitations, e.g.,
high memory and computation requirements. In addition, they may result in crucial
image information loss, particularly when the feature is a colorimetric feature capable of
differentiating different dataset categories [44].

2.3. Kernel/Filter

Kernel plays an important role in deep learning. It can extract certain features from
given images as a filter by sliding a window across the images. CNN models can learn
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features from images by automatically updating their kernel values according to the back-
propagation process. Similarly, kernels with distinct values can also be used to conduct
data augmentation and generate specific images containing specific features [10].

In computer vision, filters can be used for edge detection (e.g., using the Sobel [45] or
Canny [46] filters), sharpening (e.g., using high-contrast vertical or horizontal edge filters),
and blurring (e.g., using the Gaussian filter). In particular, edge enhancement that improves
object edges within images can be used for data augmentation. It is hypothesised that using
training images with augmented edges could improve CNN performance, since the learned
kernels in CNN could detect objects’ shapes more easily [47]. Analogously, blurring images
can also be utilised for data augmentation and could make models more resistant to blur or
noise. Figure 9 shows an example of using different kernels/filers to augment images.

Using filters for data augmentation is a relatively unexplored field, even though
the idea is straightforward. Its application in areas, such as action recognition, could be
advantageous. For instance, edge detection filters may aid in recognising the human shape,
thereby enabling the inference of its action. Motion blur may be used to augment data so
as to improve models’ resistance to blurring in action recognition [48,49].

(a) Given image (b) Canny filter (c) Sobel filter (d) Gaussian filter
Figure 9. Data augmentation by using kernels/filters.

2.4. Noise Transformations

Noise is commonly defined as a random variation in brightness or colour informa-
tion [50]. It is frequently caused by technical limitations of the image capture sensor or
poor environmental conditions. Unfortunately, these issues are often unavoidable in actual
situations, making image noise a prevalent problem to address.

Noise in data may appear to be a problem for neural networks in particular. Real-
world data is rarely perfect [51]. When neural networks are evaluated on real-world data,
noise can impair their accuracy and cause them to perform poorly in generalisation. At the
very least, the data used to test deep learning models may not be as clean as the data used
to train them. This may account for why deep neural network models frequently perform
poorly in tests. Their robustness could be improved by augmenting data with different
types of noise. Gaussian, salt and pepper, and speckle noise are three well-known forms of
noise that can be used to augment image data [52], e.g., see Figure 10.

Gaussian noise is statistical noise with a probability density function equal to the nor-
mal distribution. The distribution of Gaussian noise is uniform throughout the signal [53].
Since it is additive noise, the pixels in a noisy image are made up of the sum of their
original pixel values plus random Gaussian noise values. It is also independent at each
pixel, and independent of the signal magnitude. Salt-and-pepper noise is also known as
“spike noise” or “impulsive noise”. It causes white and black pixels to appear at random
points in the image. This type of noise is mainly created by data transfer errors [54]. Speckle
noise is multiplicative. It is generated by multiplying random values with different image
pixels [53]. These different types of noise described above are generally dispersed over the
image level. When they are used to augment data, deep learning models could be resistant
to data that contains certain types of noise.
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(a) Given image (b) Salt and Pepper (c) Speckle
Figure 10. Data augmentation by using noise transformation.

2.5. Random Erasing

Random erasing [8] is a data augmentation technique which does not attempt to
change individual image pixel values in general. Instead, it replaces the values of the pixels
within a random size rectangle in an image by a random value, see Figure 11 for example.
We could regard random erasing as a kind of noise technique focusing on local areas rather
than individual pixels. It intends to make the model resistant to occlusion of objects in
images (e.g., the datasets CIFAR-10, CIFAR-100, and ImageNet) and, thus, to reduce the
possibility of overfitting. It enhances the data diversity holistically without increasing the
data size, which is different from the other aforementioned data augmentation methods.

Since the random erasing technique selects a rectangular area (i.e., occlusion region)
randomly, it may entirely erase the object information to be classified in the image. There-
fore, it may not be recommended in categorising sensitive data which cannot withstand
the deletion of a randomly generated local area in images, such as the cases of categorising
licence plate numbers and letters.

Figure 11. Data augmentation by the random erasing technique. The first and second rows represent
the given images (from CIFAR-10) and the images after random erasing, respectively.

3. Deep Learning-Based Data Augmentation Techniques

This section briefly recalls the most commonly used deep learning-based data aug-
mentation approaches.

3.1. Texture Transfer

Texture transfer [55] aims to generate textures from source images while maintaining
control over the semantic content of the source images, e.g., see Figure 12. It allows the
generation of new images with given textures, while preserving the original images’ visual
characteristics, such as contours, shading, lines, strokes and areas. The study in [56]
demonstrated that CNNs are biased towards objects’ texture rather than shape, indicating
that employing texture transfer may make a model more texture resistant.
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Base image Reference style image Resultant image

Figure 12. Data augmentation by texture transfer. Content of the base image (left) is mixed with the
style of the reference style image (middle) to obtain the resultant image (right).

The majority of traditional texture transfer methods resample textures into each partic-
ular content image [57]. For example, image quilting [55] creates a new image by stitching
together small patches of other images. The work in [58] developed an image analogue
technique, using pixel resampling to transfer textures from one image to another [59]. The
newly generated images could be added into the training dataset to enlarge the data size
and enhance its diversity.

3.2. Adversarial Training

Adversarial examples, also known as machine illusion, have attracted considerable
attention in the deep learning community. Adversarial examples can also be seen as
members of the noise injection data augmentation family. By injecting a systematic noise
into a given image, the CNN model outputs a completely different prediction, even though
the human eye cannot detect the difference, see Figure 13. For example, the work in [60]
created adversarial examples by changing a single pixel per image. Adversarial training
is where these examples are added to the training set to make the model robust against
attacks. As adversarial examples can detect weak points in a trained model, this way of
augmenting data can be seen as an effective data augmentation approach.

Panda with 57.7% Added noise Gibbon with 99.3%

Figure 13. An adversarial example taken from [61]. Even though the given image and the image
after adversarial noise added look exactly the same to the human eye, the noise fools the model
successfully, i.e., the model labels the two images as different classes.

3.3. Generative Adversarial Networks for Data Augmentation

Inspired by adversarial examples, the generative adversarial network (GAN), pro-
posed in [62], has been widely used for data augmentation. Synthetic images created by
GANs, which even humans find difficult to distinguish from the real images, help models
significantly increase their robustness. GAN consists of two networks, i.e., a generator,
which creates new images, and a discriminator, which tries to detect if the generated images
are real or fake. For the variants of GANs, please refer to e.g., DCGAN [63], progressively
growing GANs [64] and CycleGANs [65].

4. Data Augmentation in Image Classification and Segmentation

Data augmentations performed using traditional transformation techniques is still the
most popular among academics, due to their simplicity [10,66]. Often, traditional and deep
learning-based augmentation approaches are used either separately or in tandem. Image
classification and image segmentation are two common, yet important, research areas in
computer vision, which typically use data augmentation approaches. In this section, we
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discuss recent research, mostly within the past five years, in these two areas that leverage
data augmentation for performance enhancement.

4.1. Data Augmentation on Image Classification

Lots of works have used data augmentation in image classification tasks, and their
results vary, depending on aspects such as, models, data and applications. See Table 1 for
a brief survey in this respect.

Table 1. Survey of data augmentation techniques in recent image classification works.

Papers Dataset Aug. Techniques Model Task Findings

Shijie et al.,
2017 [34]

CIFAR10; ImageNet
(10 categories)

GAN/WGAN, flipping,
cropping, shifting, PCA
jittering, colour jittering,
noise, rotation.

AlexNet Image
classification

Four methods (i.e., cropping, flipping,
WGAN and rotation) perform generally
better than other augmentation methods, and
some appropriate combination methods are
slightly more effective than the individuals.

Perez et al.,
2017 [67]

A small subset of
ImageNet; MNIST.

Neural augmentation,
CycleGAN, GANs,
cropping, rotating,
and flipping.

SmallNet Image
classification

GANs do not perform better than
traditional techniques.

Hussain et al.,
2017 [68]

Digital Database for
Screening
Mammography
(DDSM).

Flipping, cropping, noise,
Gaussian filters, principal
component analysis (PCA).

VGG-16 Medical images
classification

The flipping and Gaussian filter techniques
are better than noise transformation.

Pawara et al.,
2017 [69]

Folio, AgrilPlant, and
the Swedish Leaf
datasets

Rotation, blur, contrast,
scaling, illumination, and
projective transformation.

AlexNet;
GoogleNet

Plant image
classification

CNN models trained from scratch benefit
significantly from data augmentation.

Inoue et al.,
2018 [70]

ILSVRC2012;
CIFAR-10

SamplePairing, flipping,
distorting, noise,
and cropping.

GoogLeNet Image
classification

Developed a new technique known as
SamplePairing.

Li et al., 2018 [71] Indian Pines and
Salinas datasets

Pixel-block pair, flipping,
rotation, and noise. PBP-CNN

Hyperspectral
imagery
classification

A threefold increase in sample size is often
sufficient to reach the upper bound.

Frid-Adar et al.,
2018 [72] Liver lesions dataset

Translation, rotation,
scaling, flipping and
shearing, and GAN-based
synthetic images.

Customised
small CNN
architecture

Medical image
classification

Combining traditional data augmentation
with GAN-based synthetic images improves
small datasets.

Pham et al.,
2018 [73]

Skin lesion dataset
(ISBI Challenge)

Geometric augmentation
and colour augmentation. InceptionV4 Skin cancer image

classification
Skin cancer and medical image classifiers
could benefit from data augmentation.

Motlagh et al.,
2018 [74]

Tissue Micro Array;
Breast Cancer
Histopathological
Images (BreaKHis)

Random resizing, rotating,
cropping, and flipping. ResNet50

Breast cancer
image
classification

Traditional data augmentation techniques are
adequate for obtaining distinct samples of
various types of cancer.

Zheng et al.,
2019 [75]

Caltech 101;
Caltech 256.

Neural style transfer,
rotation, and flipping. VGG16 Image

classification
Neural style transfer can be utilised as
a deep-learning data augmentation technique.

Ismael et al.,
2020 [76] Brain tumor dataset

Horizontal and vertical
flips, rotating, shifting,
zooming, shearing, and
brightness alteration.

ResNet
MRI image
classification
(Brain Cancer)

The effectiveness of traditional augmentation
methods varied among classes.

Gour et al.,
2020 [77] BreaKHis dataset

Stain normalisation, image
patch generation, and
affine transformation.

ResHist
model

Breast cancer
histopathological
image
classification

The model performance for classifying
histopathology images is better with data
augmentation than with
pre-trained networks.

Nanni et al.,
2021 [78]

Virus, a bark,
a portrait, and a LIGO
glitches datasets

Kernel filters, colour space
transforms, geometric
transformations, and
random erasing.

ResNet50 Image
classification

Introduced the discrete wavelet transform
and the constant-Q Gbor transform as
two new methods for data augmentation.

Anwar et al.,
2021 [79]

Customised image
based ECG signals

Flipping, cropping,
contrast and Gamma
distortion.

EfficientNet B3 ECG images
classification

In the experiment with images of ECG signal,
traditional data augmentation did not
improve the performance of neural networks.

Kandel et al.,
2021 [80] MURA dataset Horizontal flip, vertical

flip, rotation, and zooming.

VGG19;
ResNet50;
InceptionV3;
Xception;
DenseNet121

X-ray images
classification

Augmentation was found to significantly
enhance classification performance.
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In 2017, the work in [67] suggested that deep learning-based augmentation methods,
like GANs, do not perform significantly better than traditional techniques, but consume
nearly three times more computational cost. Moreover, in [67], a model called “SmallNet”
was trained using traditional augmentation techniques and style transfer with Cycle-
GAN [81]. It was observed that combining deep learning-based methods with traditional
techniques could achieve better results. Hussain et al. [68] evaluated various augmentation
strategies on a medical image dataset using VGG-16. They demonstrated that the flipping
and Gaussian filter augmentation techniques yielded superior outcomes compared to the
other ones, particularly when adding noise, which gave the lowest accuracy. Pawara
et al. [69] applied data augmentation techniques, such as rotation, blur, contrast, scaling,
illumination, projective transformation, and multiple combinations of these techniques
to enhance plant image classification performance. In this challenge, pre-trained and un-
trained AlexNet and GoogleNet models were used. It was observed that CNN models
trained from scratch benefited significantly from data augmentation, whereas pre-trained
CNN models did not. In addition, it was discovered that combinations of data augmen-
tation techniques like rotation and varied illuminations could contribute most for CNN
models trained from scratch in achieving excellent performance.

In 2018, Inoue et al. [70] developed a new technique, known as SamplePairing, in which
a new sample was synthesised from one image by overlaying another image randomly
selected from the training data, i.e., taking an average of two images. Li et al. [71] found
that traditional data augmentation techniques were not cumulative, and that a threefold
increase in sample size was often sufficient to reach the upper bound. In addition, the PBP
technique proposed by the authors significantly increased the number of samples, and
was proved to be effective for hyperspectral imagery classification. FridAdar et al. [72]
classified liver lesions using a small customised CNN architecture. In order to accommodate
small datasets and input sizes, they suggested that CNN designs should often contain
fewer convolutional layers. By combining traditional data augmentation techniques with
GAN-based synthetic images, more accurate results from a small dataset were obtained.
Pham et al. [73] discussed how to solve the challenges of skin lesion classification and
limited data in medical images by applying image data augmentation techniques, such as
geometric augmentation and colour augmentation. The effects of a different number of
augmented samples were evaluated on the performance of different classifiers, and it was
concluded that the performance of skin cancer classifiers and medical image classifiers could
be improved by utilising data augmentation. Motlagh et al. [74] classified several forms
of cancer using 6402 tissue microarrays (TMAs) as training samples and utilising transfer
learning and deep neural networks. Data augmentation techniques, such as random scaling,
rotation, cropping, and flipping, were used to obtain sufficiently different samples, and the
results showed that 99.8 percent of the four cancer types, including breast, bladder, lung
and lymphoma, were correctly classified using the ResNet50 pre-trained model.

In 2019, Zheng et al. [75] assessed the efficacy of neural style transfer using VGG16 on
the Caltech 101 and Caltech 256 datasets, and the results demonstrated a two-percent gain
in accuracy. Recent research has demonstrated that neural style transfer algorithms can
apply the artistic style of one image to another image without altering the latter’s high-level
semantic content, showing that neural style transfer can be used for data augmentation to
add more variation to the training dataset.

In 2020, Ismael et al. [76] employed data augmentation to solve the problem of insuffi-
cient training data and imbalanced classes in the MRI image classification task for brain
cancer. Various augmentation techniques, including horizontal and vertical flipping, rotat-
ing, shifting, zooming, shearing and brightness alteration, were utilised. They observed that
each augmentation technique had different effects on the performance of distinct classes.
For instance, manipulation of brightness yielded 96 percent accuracy for class one, whereas
the rotation technique yielded 98 percent accuracy for the same class. For class two, these
two techniques achieved a score of 99 percent with brightness and 98 percent with rotation.
By combining all of the previously mentioned augmentation techniques, they were able to
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attain 99 percent overall accuracy, i.e., 4 percent improvement against the results obtained
without data augmentation. Additionally, Gour et al. [77] developed ResHist, a 152-layer
CNN based on residual learning, for breast cancer histopathological image classification.
A data augmentation strategy was devised, based on stain normalisation, image patch
generation and affine transformation, to improve the model performance. Experimental
results demonstrated that with the help of data augmentation the model performance for
classifying histopathology images was better than the pre-trained networks, including
AlexNet, VGG16, VGG19, GoogleNet, Inception-v3, ResNet50 and ResNet152.

In 2021, Kandel et al. [80] examined the impact of test time augmentation (TTA) on
X-ray images for bone fracture detection using the MURA dataset. It was observed that
TTA could dramatically improve classification performance, especially for models with
a low score, by comparing the performance of nine different augmentation techniques
with five state-of-the-art CNN models. Nanni et al. [78] investigated the performance of
over ten different kinds of data augmentation techniques, including kernel filters, colour
space transforms, geometric transformations, random erasing/cutting and image mixing,
and proposed two approaches: the discrete wavelet transform and the constant-Q Gbor
transform. Using the aforementioned data augmentation techniques, the performance of
several ResNet50 networks was evaluated on four benchmark image datasets (i.e., a virus
dataset, a bark dataset, a portrait dataset, and a LIGO glitches dataset), representing diverse
problems and different scales, indicating the efficacy of data augmentation techniques
in enhancing model performance. In addition, the work in [79] investigated the impact
of augmenting ECG images for COVID-19 and cardiac disease classification using deep
learning. They argued that traditional data augmentation did not improve the performance
of neural networks in their experiments with ECG signal images.

4.2. Data Augmentation on Image Segmentation

Image segmentation is also an important field in computer vision. It involves grouping
an image into different parts where each part may share certain features and characteristics.
It has a close relationship to image classification. For example, image segmentation, in some
sense, could be achieved by classifying individual pixels in an image into different groups.
A great deal of emphasis has been placed on data augmentation in order to achieve better
segmentation results, particularly when working with small training datasets. For practical
semantic segmentation applications, collecting and annotating sufficient training data for
deep neural networks is notoriously difficult. Therefore, data augmentation techniques
are of great importance. We, below, survey a number of studies that have involved data
augmentation in image segmentation tasks. See Table 2 for a summary of relevant literature.

In 2018, the work in [82] used an encoder–decoder structure, adapted from an hour-
glass network, prevalent in the field of human-pose estimation [83], in order to classify
and segment brain tumours in MRI scans for the BraTS 2018 challenge [84–87]. Two data
augmentation techniques were utilised: vertical flipping, which matches up to the natu-
rally symmetrical shape of the brain, and random intensity variation, used because the
intensity between MRI scans varies significantly. The network was trained with, and
without, data augmentation. It was discovered that data augmentation appeared to pro-
vide a small increase in accuracy for the Dice coefficient and a significant improvement in
Hausdorff accuracy.

Table 2. Survey of data augmentation techniques in recent image segmentation works.

Papers Dataset Aug. Techniques Model Task Findings

Benson et al.,
2018 [82] BraTS 2018 Vertical flipping and

random intensity variation.
Hourglass
Network [83]

Brain tumor
segmentation

Data augmentation methods appear to have
a different impact on the Dice coefficient and
Hausdorff accuracy.
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Table 2. Cont.

Papers Dataset Aug. Techniques Model Task Findings

Casado et al.,
2019 [88] ISBI challenge [89]. Automated image

augmentation tool.

U-Net
architecture with
four different
models

Semantic
segmentation

Introduced an approach that enables
researchers to use image augmentation
techniques automatically to the challenges of
object classification, localisation, detection,
semantic segmentation, and instance
segmentation.

Ma et al., 2019 [90] Sheep segmentation
dataset (SSG)

Colour transformation,
flipping, cropping,
projection transformation,
local copy, and JPEG
compression.

DeepLabv3+ [91] Semantic
segmentation

A combination of augmentation methods
could achieve the best performance, while
excessive augmentation could degrade the
performance.

Qiao et al.,
2020 [92]

Cattle segmentation
dataset

Random image cropping
and patching. Bonnet [93] Semantic

segmentation

The proposed method of randomly cropping
and patching images to increase the number
of training images improves segmentation
performance.

khryashchev et al.,
2020 [94]

Planet, and the
Resurs datasets

Random chromatic
distortion, rotation,
and shifting.

U-Net with the
ResNet34 as
encoder

Semantic
segmentation

The application of random chromatic
distortion in HSV colour format improves the
robustness of deep learning algorithms for
images with noise, such as small clouds and
glare from reflective surfaces.

Chen et al.,
2020 [95]

Tongue image
dataset

Cropping, rotation,
flipping, and colour
transformations.

U-Net with 15
different CNN
models as
encoders

Semantic
segmentation

Geometric transformations can achieve higher
performance than colour transformations,
and segmentation accuracy can be increased
by 5 to 20% compared to no augmentation.

Qin et al.,
2020 [96]

Kidney Tumour
dataset

An automatic deep
reinforcement learning
based augmentation
method

An end-to-end
augmentation
segmentation
architecture

Medical image
segmentation

Conventional augmentation techniques
(e.g., rotation, cropping, etc.) are random and
sometimes damaging to the image
segmentation task.

Cirillo et al.,
2021 [97] BraTS2020 Dataset

Flipping, rotation, scaling,
brightness adjustment, and
elastic deformation.

3D U-Net [98] 3D brain tumor
segmentation

Conventional data augmentation significantly
improves the validation performance of brain
tumour segmentation.

Su et al., 2021 [99] Narrabri and Bonn
datasets

Random image cropping
and patching
(RICAP) method.

Bonnet Semantic
segmentation

The RICAP technique increases the mean
accuracy and mean intersection over union
(IOU) of the CNNs with the traditional
data augmentation.

Zhang et al.,
2021 [100]

PASCAL VOC 2012;
Cityscapes;
CRAG dataset

Object-level augmentation
method.

MobileNet based
DeepLab V3+

Semantic
segmentation

ObjectAug can easily be integrated with
existing image-level augmentation techniques
to further improve the segmentation
performance. ObjectAug supports
category-aware augmentation that gives
objects in each category a variety of options.

Mallios et al.,
2021 [101] VoxTox [102] GAN-based

synthetic images. RS-FCN Rectum
segmentation

Demonstrated the viability of producing
synthetic data and subsequently
incorporating it into the training samples in
order to get satisfactory outcomes.

In 2019, Casado et al. [88] presented a versatile method which was implemented in the
open-source package CLoDSA, dedicated to classification, semantic segmentation, instance
segmentation, localisation and detection. Three different datasets were used to demon-
strate the benefits of applying data augmentation. Ma et al. [90] created the SSG dataset,
i.e., a small-scale and open-source sheep segmentation dataset containing hundreds of
images. To find the best technique for this small semantic segmentation dataset, they
evaluated seven data augmentation methods, including colour transformation, flipping,
cropping, projection transformation, local copy, a proposed technique named “JPEG com-
pression” and their combinations. Experimental results showed that the combination of
compression, cropping and local shift could achieve the best augmentation performance for
their AI-Ranch application. However, they also found that excessive augmentation could
degrade performance.

In 2020, Qiao et al. [92] introduced a data augmentation technique where images were
randomly cropped into distinct regions and then patched together to form a new one.
Experimental results on their acquired cattle dataset showed that this data augmentation
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technique, together with an open-source semantic segmentation CNN architecture, “Bon-
net” [93], achieved 99.5 percent mean accuracy and 97.3 percent mean intersection of unions.
In [94], an U-Net neural network with the ResNet34 encoder was used for automated wild-
fire detection on high-resolution aerial photos using two small satellite RGB image datasets.
To overcome the small data size challenge, data augmentation techniques, such as rotation,
shifting and random chromatic distortion in HSV colour format, were used to increase the
robustness of the deep learning algorithm for noisy images, such as small clouds and glare
from reflective surfaces. The experimental results showed that data augmentation methods
led to better results on test datasets for all metrics used in the experiments. Qin et al. [96]
argued that the data generated by conventional augmentation techniques (e.g., rotation,
cropping, etc.) was random and sometimes detrimental to the image segmentation process.
In light of this, an automatic learning-based data augmentation technique was developed
for CT kidney tumor segmentation.

The work in [95] focused on automatic tongue segmentation using 15 different pre-
trained network models (such as VGG, ResNet, ResNext, DenseNet, EfficientNet, incep-
tionV3, SE-ResNet, inception, ResNetV2, etc.). They utilised multiple label-preserving
transformations to increase the size and diversity of the training dataset. Their findings
indicated that geometric transformations could achieve greater performance than colour
transformations, and that the segmentation accuracy could be improved by 5 to 20 percent
compared to no augmentation.

In 2021, the work in [100] proposed a data augmentation technique, named ObjectAug,
for image segmentation. The ObjectAug technique operates at the object level by first
decoupling the image into individual objects and the background using semantic labelling
and, then, each object is individually augmented using conventional augmentation tech-
niques (e.g., scaling, shifting and rotation), followed by image inpainting, which is utilised
to further restore the pixel artefacts introduced by object augmentation. The final step is
integrating the augmented objects and background into an augmented image. Extensive
experiments on both normal and medical image datasets demonstrated that the ObjectAug
technique outperformed conventional augmentation techniques and improved segmen-
tation performance. Cirillo et al. [97] examined how augmentation techniques, such as
flipping, rotation, scaling, brightness adjustment and elastic deformation, affected the
learning process when training a standard 3D U-Net [98] on the BraTS dataset [85,103,104].
In multiple cases, their findings indicated that data augmentation significantly improved
validation performance. They presumed that the reason why data augmentation had
not been thoroughly investigated for brain tumour segmentation was because the BraTS
training set was quite large and several works [105,106] suggested that data augmentation
would not be of much assistance.

Mallios et al. [101] investigated image-guided radiation therapy [102,107], which is
one of the most prevalent methods for treating numerous types of cancer. Their study
included the development of deep learning approaches for segmenting the organs-at-risk
in CT images during radiation therapy. It was observed that the scarcity of annotated data,
stemming from the difficulty and time consuming nature of manual annotation in this
area, hindered research development for medical applications. In order to compensate
for the shortage of labelled real-world data required to train very deep models, like FCN
architecture [108], cGAN [109] was used to generate synthetic images. The experimental
results illustrated the superior performance of the proposed segmentation methods for the
rectum under the help of deep learning-based data augmentation. In [99], a framework for
augmenting data for semantic segmentation, based on the random image cropping and
patching (RICAP) method, was presented. Experiments on two datasets using Bonnet archi-
tecture [93] showed that the developed framework improved segmentation performance in
terms of accuracy and mean intersection over union.
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5. Proposed Strategy for Data Augmentation

In this section, we propose a new data augmentation technique, belonging to the
traditional data augmentation category. It was inspired by techniques focusing on local
areas in images, e.g., the random erasing technique.

Let D be the training dataset. Let Cx,y,r be a circular area in an image I ∈ D, with
centre location (x, y) and radius r. Let θ ∈ [0, 2π] be an angle for rotation.

The main procedure of the proposed augmentation technique is given below. Firstly,
∀I ∈ D, we select a circular area Cx,y,r within image I, with a randomly generated centre
(x, y) and radius r. Then, the image content within the circular area Cx,y,r is rotated with
a randomly generated angle θ ∈ [0, 2π], while the image content outside the circular area
Cx,y,r is kept, and we call this newly generated image Ĩ. Finally, image Ĩ is used to augment
the original training dateset D. Here we suggest two ways. The first one is to use the
generated image Ĩ to replace the original image I ∈ D. This way does not change the size
of the dataset D, but may change the data diversity. The other way is to add image Ĩ into
the dataset D, which increases the dataset size and enhances the data diversity. We call
the above technique random local rotation (RLR), see Figure 14 for the diagram showing
the conducting of the RLR data augmentation strategy and Algorithm 1 for the summary
of RLR.

Mask 1 �

�

+

Input image

Mask 2

Input �Mask 1

Local rotation

Result

Figure 14. The proposed random local rotation data augmentation strategy. Symbol � represents
pointwise multiplication.

Algorithm 1 Random Local Rotation

1: Input: The training dataset D
2: Output: The augmented training dataset D̃
3: Create a subset say D′ ⊆ D by randomly selecting N images from D
4: Create an empty set say D∗
5: for ∀I ∈ D′ do
6: Randomly generate centre (x, y) and radius r within image I
7: Form a circular area Cx,y,r within image I with centre (x, y) and radius r
8: Randomly generate angle θ ∈ [0, 2π]
9: Form image Ĩ by rotating the area within Cx,y,r in image I with angle θ

10: Add Ĩ into D∗
11: end for
12: Way 1: D̃ ← D∗ ∪D \ D′
13: Way 2: D̃ ← D∗ ∪D
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A special case of RLR uses the largest possible circular rotation area in the image
centre, see Figure 15. In the rest of this article, we call this special case random centre
rotation (RCR). RCR could be applied as a direct replacement of the traditional rotation
technique for data augmentation.

An obvious advantage of RLR against the traditional rotation is that it avoids the black
boundary caused by traditional rotation, as shown in Figure 4. Moreover, the local area
information distortion brought by RLR could improve the data diversity, without removing
much information from the given images, like other augmentation techniques, e.g., image
cropping, random erasing, etc. Detailed validation of RLR is presented in the next section.

(a) Given image (b) Rotation mask (c) Rotated image

Figure 15. Random local rotation data augmentation technique using the largest possible circular
rotation area in the image centre.

6. Experiments

To validate the proposed RLR agumentation technique, we employed three state-of-
the-art CNN models, i.e., ResNet50 [22], MobileNet [110] and InceptionV3 [23], which were
all trained from scratch. We conducted experiments in both classification and segmentation
tasks and mainly compared with the traditional rotation technique (shortened to TR) with
randomly selected rotation angles. The quantitative results reported below with standard
deviation were obtained by repeating the experiments five times.

6.1. Classification Experiment

The CIFAR-10 dataset was selected for conducting experiments regarding the classifi-
cation task. It contained 60,000 coloured images, where every image was of size 32× 32,
A total of 50,000 images were for training and 10,000 images were for testing. CIFAR-10
consisted of ten classes, each with 6000 images. To simulate the scenario of data scarcity,
we reduced the original training data size to 2%, 4% and 6%, forming three subsets with
numbers of samples of 1000, 2000 and 3000, respectively, and used the original test set
for testing.

For each subset, three extra copies were created by the TR, RCR and RLR data aug-
mentation techniques. Each augmented copy was twice as large as its corresponding
original subset. The data balance between the classes was also taken into consideration
when constructing these subsets. Additionally, the image resolution was adjusted to fit
the default input shape of each CNN model used in the experiments, i.e., 299× 299 for
InceptionV3, and 244× 244 for MobileNet and ResNet50. According to the constructed
datasets, each model was subjected to a total of 12 tests, (i.e., number of subsets × number
of techniques).

For fair comparison, same hyperparameters were kept for each model. Models were
trained for 50 epochs with the Adam optimiser and categorical cross entropy loss function.
Test accuracy was selected as the monitoring metric. The Spyder platform was utilised to
train and evaluate the models.

6.1.1. Classification Results

Table 3 gives the classification accuracy of the CNN models (i.e., ResNet50, Mo-
bileNet and InceptionV3) with the TR, RCR and RLR data augmentation techniques on the
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three subsets, including the comparison with the baseline results (i.e., the ones obtained on
the subsets without using data augmentation).

The results in Table 3 show that our proposed data augmentation technique RLR
constantly achieved the best classification accuracy with all the three CNN models on all
the subsets, indicating its excellent performance. In contrast, the traditional rotation tech-
nique did not improve performance, and, in many cases, degraded the results, compared
with the baseline results. This might be because of the aforementioned limitations of the
traditional rotation technique, i.e., the black and irregular boundary it introduces. As for
the performance of the RCR technique, its results were slightly better than the TR results
and were comparable to the baseline results. This was what we expected, since RCR is
quite similar to TR. Yet, the images generated by RCR did not suffer from the black and
irregular boundaries, and, therefore, performed slightly better than TR.

For further performance evaluation, we also reported the comparison of the RLR
method with the mostly used traditional data augmentation techniques, see Table 4. The
smallest subset of CIFAR-10 (i.e., the one with 1000 samples) was employed with data
augmentation techniques, including RLR, RNR, RWR, RRR, flipping, shifting, zooming,
and brightness. The results in Table 4 show that, generally, data augmentation techniques
could indeed enhance the performance of different models. It again demonstrated the great
performance of the proposed RLR method; for example, RLR achieved the best accuracy
when the ResNet model was used. The results in Table 4 also show that the performance of
the augmentation techniques might differ for different models, which is worth investigating
further in the future.

Table 3. Classification accuracy comparison between the TR, RCR and RLR data augmentation
techniques. CNN models, i.e., MobileNet, ResNet and InceptionV3, with the data augmentation
techniques, were applied on three different CIFAR-10 subsets, with numbers of samples of 1000, 2000
and 3000, respectively. The results indicated the superior performance of the proposed RLR technique.

Model Subset Baseline RLR TR RCR

1000 41.69± 0.29 42.24 ± 0.44 40.57± 0.22 39.51± 0.52
MobileNet 2000 50.62± 0.43 51.76± 0.56 48.77± 0.51 50.6± 0.64

3000 56.95± 0.62 60.96± 0.54 55.30± 0.82 58.18± 0.66

1000 39.73± 0.64 41.47± 0.39 38.11± 0.52 38.28± 0.51
ResNet 2000 50.16± 0.49 51.06± 0.54 47.95± 0.84 48.84± 0.59

3000 53.78± 0.49 56.15± 0.76 53.38± 0.56 53.31± 0.56

1000 42.65± 0.63 45.41± 0.55 43.32± 0.47 43.15± 0.58
InceptionV3 2000 54.63± 0.45 55.71± 0.48 54.85± 0.57 53.78± 0.28

3000 61.24± 0.37 62.45± 0.86 59.72± 0.42 60.18± 0.66

Table 4. Classification accuracy comparison between RLR and other common data augmentation
techniques. CNN models, i.e., MobileNet, ResNet and InceptionV3, with the data augmentation
techniques, were applied on the smallest subset of CIFAR-10 (i.e., the one with 1000 samples).

Model Baseline RLR RNR Flip Shift Zoom Bright RWR RRR

MobileNet 41.89 42.28 41.37 42.52 45.83 45.75 47.84 45.53 45.10

ResNet 39.40 41.70 40.07 40.18 41.57 40.19 39.06 41.22 41.18

InceptionV3 42.85 45.61 44.84 45.86 43.03 45.81 46.11 46.67 45.41

6.1.2. Qualitative Comparison via Saliency Maps

To further evaluate the effectiveness of the proposed RLR technique against the tra-
ditional rotation, we employed GradCAM [111], one of the well-known methods illus-
trating the decision made by CNNs, to show the saliency maps regarding the TR and
RLR techniques.
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Figure 16 shows the saliency maps of the TR and RLR techniques on images randomly
selected from the test datasets. The truck image (first row in Figure 16) was classified as
truck with 94% (here the percentage was the probability produced by the Softmax activation
function in the CNN architectures) via MobileNet model trained with the TR augmentation
technique, and nearly 100% with the proposed RLR technique. The bird image (second
row in Figure 16) was classified as bird with 95% via ResNet50 model trained with the TR
augmentation technique, and nearly 100% with the proposed RLR technique. The saliency
maps shown in Figure 16 for the TR and RLR techniques indicated that the proposed RLR
technique was, indeed, more effective in terms of assisting the CNN architectures to make
decisions based on more reasonable areas within the test images.

Given image Heatmaps by TR Heatmaps by RLR

Figure 16. Data augmentation techniques evaluation by saliency map. Column 1: given images;
columns 2 and 3: two types of saliency maps for TR; columns 4 and 5: two types of saliency maps for
RLR. In particular, for the two types of saliency maps evaluating each data augmentation technique,
the first saliency map highlights the activated area in the given image, and the second highlights
the activated area using the content of the given image. The CNNs used for the test images in the
first and second rows are MobileNet and ResNet50, respectively. The saliency maps created for the
models, which were trained with the dataset augmented with RLR, clearly focus on the wider part of
the object while for the other cases where augmentation is achieved with TR, the models focus on
a smaller area of the object. The models trained with RLR output more reliable results, together with
the wider focus on the target object shown in the above saliency maps, demonstrating the superior
performance of RLR compared to TR.

6.2. Segmentation Experiment

Two publicly available datasets were selected for conducting experiments regarding
the segmentation task. The first dataset was the Supervisely Person [112], which contained
5711 images and 6884 high-quality annotated human instances for human semantic seg-
mentation, see e.g., Figure 17. The second dataset was the Nuclei images dataset [113],
which contained 670 microscopic images with their corresponding segmentation masks,
see e.g., Figure 18. Each augmented copy was twice as large as its corresponding original
dataset. Then, each dataset copy was divided into training (90% of the data) and validation
(10% of the data) subsets. Note that, in this experiment, we also considered the concept
of equivariance. Equivariance implies that the output changes in proportion to the input.
The concept of equivariance is important in segmentation, where the location of the object
and the location of the segmented object shift proportionally, e.g., see Figures 17 and 18. In
contrast, invariance refers to a change in the location of an object while the output remains
unchanged, which is considered in Section 6.1 for the classification task.
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TR RCR RLR RRR RWR RNR

Figure 17. Samples of the Supervisely Person dataset by applying the RLR, TR, RCR, RRR, RWR
and RNR augmentation techniques. Rows one and two are the augmented samples with their
corresponding human body segmentation, respectively.

Given image TR RCR RLR RRR RWR RNR

Figure 18. Samples of the Nuclei images dataset by applying the RLR, TR, RCR, RRR, RWR and RNR
augmentation techniques. Rows one and two are the augmented samples with their corresponding
segmentation, respectively.

Two autoencoders were used to conduct the semantic segmentation task. These
two autoencoders were constructed based on two models (i.e., MobileNet and VGG16),
each with a customised decoder, see Table 5 for the detailed architectures. Each autoencoder
was subjected to a total of seven tests. They were trained for 200 epochs with the Adam
optimiser and binary cross entropy loss function.

Segmentation Results

Table 6 gives the segmentation accuracy of the autoencoders (i.e., MobileNet-based,
and VGG16-based) with the TR, RCR, RLR, RNR, RWR and RRR data augmentation
techniques on the Supervisely Person dataset, including the comparison with the baseline
results (i.e., the one obtained on the original samples without using data augmentation). In
contrast to the classification results, the results in Table 6 show that all the augmentation
techniques tested did not improve the segmentation performance. This might imply that
using rotation alone to augment data might not be a good method for the segmentation
task, particularly if the shape feature was the most important one in the dataset, as in the
Supervisely Person dataset. For further investigation into the influence of different features
on the performance of the augmentation techniques, we conducted an experiment using
the Nuclei images dataset [113].

Differing from the results obtained in Table 6 on the Supervisely Person dataset, the
results in Table 7 on the Nuclei images dataset demonstrated that the rotation augmentation
methods could improve the segmentation performance. This performance gain might be
due to the fact that the augmentation techniques did not degrade the image qualities
much in the Nuclei dataset, since the shape feature was not that critical, compared to the
Supervisely Person dataset. In the Nuclei Images dataset, colours and textures are likely to
be more essential than the shape features. In particular, the segmentation results in Table 7
on the Nuclei dataset showed that RLR achieved the best performance among the rotation
augmentation methods. This might be due to the information preservation ability that RLR
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provided, whereas RRR, RWR and RNR either lost parts of the information in the image’s
periphery or repeated some parts of the image, see Figure 19.

Given image RLR RRR RWR RNR

Figure 19. The effect of different rotation methods on the rotated image. The RRR and RWR expanded
the central region (i.e., the black stripe) by repeating parts of it. RNR resulted in the loss of image
content at the image’s periphery and the creation of artificial pixel values to fill the gap. In contrast,
RLR manipulated the content of the image while preserving the information around the image’s
periphery well.

Table 5. The architectures of the decoders of the MobileNet-based and VGG16-based auto-encoders.
Conv2D and Conv2DT represent the 2D convolutional layer and the transposed 2D convolutional
layer, respectively.

MobileNet Decoder VGG16 Decoder

Layer Kernel Filters Activation Layer Kernel Filters Activation
Size Number Function Size Number Function

Conv2DT (3,3) 1024 Relu Conv2DT (3,3) 1024 Relu

Batch Normalisation Batch Normalisation

Conv2D (3,3) 1024 Relu Conv2D (3,3) 1024 Relu

Batch Normalisation Batch Normalisation

Conv2DT (3,3) 512 Relu Conv2DT (3,3) 512 Relu

Batch Normalisation Batch Normalisation

Conv2D (3,3) 512 Relu Conv2D (3,3) 512 Relu

Batch Normalisation Batch Normalisation

Conv2DT (3,3) 256 Relu Conv2DT (3,3) 256 Relu

Batch Normalisation Batch Normalisation

Conv2D (3,3) 256 Relu Conv2D (3,3) 256 Relu

Batch Normalisation Batch Normalisation

Conv2DT (3,3) 128 Relu Conv2DT (3,3) 128 Relu

Batch Normalisation Batch Normalisation

Conv2D (3,3) 128 Relu Conv2D (3,3) 128 Relu

Batch Normalisation Batch Normalisation

Conv2DT (3,3) 64 Relu Conv2DT (3,3) 64 Relu

Batch Normalisation Batch Normalisation

Conv2D (3,3) 64 Relu Conv2D (3,3) 64 Relu

Batch Normalisation Batch Normalisation

Conv2DT (3,3) 32 Relu Conv2DT (3,3) 32 Relu

Batch Normalisation Batch Normalisation

Conv2D (3,3) 32 Relu Conv2D (2,2) 32 Relu

Batch Normalisation Batch Normalisation

Conv2D (3,3) 1 Sigmoid Conv2D (3,3) 1 Sigmoid
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Table 6. Segmentation accuracy comparison between different data augmentation techniques
(i.e., TR, RCR, RLR, RNR, RWR and RRR). MobileNet-based and VGG16-based autoencoders were
applied on the Supervisely Person dataset. The results indicated that using rotation solely to augment
data might not be a good for the segmentation task in this case.

Model Baseline RLR TR RCR RNR RWR RRR

MobileNet 75.13± 0.25 72.12± 0.21 73.75± 0.15 72.72± 0.18 71.12± 0.17 71.27± 0.10 71.09± 0.12

VGG16 75.42± 0.16 72.56± 0.19 73.16± 0.22 72.66± 0.24 71.31± 0.08 71.22± 0.14 71.06± 0.15

Table 7. Segmentation accuracy comparison between different data augmentation techniques (i.e., TR,
RCR, RLR, RNR, RWR and RRR). MobileNet-based and VGG16-based autoencoders were applied on
the Nuclei images dataset. The results indicated that using rotation to augment data could enhance
the segmentation performance in this case.

Model Baseline RLR TR RCR RNR RWR RRR

MobileNet 94.25± 0.05 97.6± 0.08 95.37± 0.11 94.50± 0.28 95.28± 0.19 95.24± 0.14 95.43± 0.13

VGG16 94.24± 0.12 97.81± 0.09 95.36± 0.21 94.74± 0.17 95.08± 0.18 94.91± 0.15 95.32± 0.16

6.3. Discussion

The vast majority of researchers combine many data augmentation techniques to
obtain a final result. This makes it difficult to acquire an accurate evaluation for these
techniques individually. In this study, we chose the random rotation technique and ex-
amined it in more detail, along with its impact on two significant tasks (i.e., classification
and segmentation), in order to make a contribution to the data augmentation regime in
general. Segmentation and classification are two distinct tasks. The notion that both rely on
the same features to attain their desired outcomes may not be accurate. Our results in the
previous section showed that the rotation augmentation techniques could enhance methods’
performance for the classification task, but not the segmentation task. It was observed that
the segmentation task naturally relied on shape features [114]. Geirhos et al. [56] conducted
a quantitative experiment demonstrating that CNNs trained with ImageNet had a strong
inclination to classify texture over shape. This feature distinction might account for the
disparity between classification and segmentation results when the rotation augmentation
techniques were applied. In particular, in the segmentation experiment, the RLR method
distorted the shape of the human body the most, yielding a slightly poorer result than
that of the TR method, which did not distort the shape of the human body. The distortion
of the shape feature might explain the deterioration of the segmentation results when
applying the rotation augmentation techniques. In contrast, for the classification task, the
rotation augmentation techniques altered the object shape but not the overall texture, which
benefited the performance enhancement for the classification task.

7. Conclusions

Deep learning models, like CNNs, are susceptible to overfitting. In this work we
surveyed the data augmentation techniques, particularly recent research in image classifi-
cation and segmentation employing data augmentation techniques, which are critical for
deep learning models to overcome the overfitting issue and achieve better performance.
In addition, we proposed a geometric augmentation technique, i.e., RLR (random local
rotation), focusing on manipulating local information within images without adding non-
original pixel values. Quantitative and qualitative experimental results demonstrated that
RLR could be more effective than the traditional rotation technique in classification and
some segmentation tasks, and, therefore, complemented the existing data augmentation
techniques well.
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