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Abstract

We investigate off-shell perturbative renormalisation of pure quantum gravity for both back-

ground metric and quantum fluctuations. We show that at each new loop order, the divergences

that do not vanish on-shell are constructed from only the total metric, whilst those that vanish

on-shell are renormalised by canonical transformations involving the quantum fields. Purely

background metric divergences do not separately appear, and the background metric does not

get renormalised. We highlight that renormalisation group identities play a crucial rôle ensuring

consistency in the renormalisation of BRST transformations beyond one loop order. We ver-

ify these assertions by computing leading off-shell divergences to two loops, exploiting off-shell

BRST invariance and the renormalisation group equations. Although some divergences can be

absorbed by field redefinitions, we explain why this does not lead to finite beta-functions for the

corresponding field.
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1 Introduction

This paper is about four dimensional perturbative quantum gravity, constructed by quantising

the Einstein-Hilbert action. As is well known, this quantum field theory is not perturbatively

renormalisable [1–4]. At each new loop order ℓ, counterterms have to be added to the bare action

to cancel ultraviolet (UV) divergences, and associated with these counterterms are new operators

and renormalised couplings that did not exist in the bare action at lower loop order. Nevertheless

perturbative quantum gravity can be consistently treated as an effective theory in this way [5], see

also [6, 7], in much the same way as the (similarly non-renormalisable) chiral perturbation theory

of low energy pions [8–13].

Our initial motivation was to explore the possibility that the renormalisation group (RG) in this

context might provide a route to learning something useful about the non-perturbative behaviour

of quantum gravity. In particular, even in a perturbatively non-renormalisable theory, the RG

relates the leading UV divergence at each new loop order ℓ to one-loop (ℓ = 1) divergences [13].

More physically, it allows us to compute in this way the leading log power (lnµ)ℓ, of the standard

arbitrary RG energy scale µ, at each loop order ℓ. (These are called chiral logs in pionic perturbation

theory [8–13].) If it were possible to use the RG relations to compute these leading terms to

arbitrarily high loop order, and resum them, we would get a powerful insight into the UV behaviour

of quantum gravity at the non-perturbative level.

In perturbative quantum gravity the leading divergences actually vanish on-shell. They are

therefore field reparametrisations, and have no effect on the S-matrix. However if we keep in mind

that the UV behaviour of the full two-point correlator is characterised by its off-shell dependence,

we see that these leading divergences and associated powers of lnµ, could nevertheless be important.

For example, after resumming them, one might find that the non-perturbative UV behaviour of the

two-point correlator, and potentially thus that of quantum gravity more generally, is very different

from what one would näıvely conclude order by order in perturbation theory.

In a non-renormalisable gauge theory, divergences that vanish on the equations of motion (of

the quantum fields), are related to modifications of the BRST algebra [5] (see also [14–18]).1 At

each loop order the corresponding counterterms modify the BRST algebra in a way that remains

consistent with the Zinn-Justin identities [19,20]. They do this by generating canonical reparametri-

sations of the antifields (sources for BRST transformations) [21–24] and quantum fields.

On the other hand as we already mentioned, in a generic non-renormalisable theory the RG

1Actually this was established only for vanishing background field. We treat the non-vanishing case in sec. 2.9.
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tells us that the leading divergences can be expressed recursively in terms of divergences in one-loop

diagrams, namely one-loop counterterm diagrams, being those that contain at least one counterterm

vertex [13]. As we demonstrate in sec. 2.5, these recurrence relations are actually crucial for

consistency of the above canonical transformations. Unfortunately for a non-renormalisable theory,

the one-loop counterterm diagrams are themselves new and non-trivial at each new loop order, and

thus provide a practical obstruction to deriving the leading divergence at arbitrary order.

Viewed in this light the proposal of ref. [25], would appear to potentially provide a breakthrough.

The key idea is to exploit the pole equations that follow from assuming finite generalised β-functions

for the field reparametrisations. As we will see in sec. 4, they imply that the leading divergences

at higher loops (ℓ > 1) should actually be computable by recursive differentiation, in particular

without computing any more Feynman diagrams. Unfortunately, the proposal is not correct as will

become clear in this paper. We spell this out in detail in sec. 4.

One problem with exploring these ideas is that there are effectively no explicit higher-loop

off-shell leading divergences in the literature that one can test against. Some purely background

field off-shell two-loop 1/ε2 divergences appear in the famous paper ref. [3], but unfortunately they

contain an error, as pointed out in ref. [25].

All of the above considerations motivated us to compute explicitly (in Feynman – De Donder

gauge and dimensional regularisation) the leading off-shell divergences for the two-point vertex up

to two loops, and in particular to draw out their intimate relation to the one-loop counterterm

diagrams [13] and to canonical transformations in the BRST algebra [5]. Since this necessitates

computing, as an intermediate step, the off-shell divergences in one-loop diagrams with three exter-

nal legs, two of which are quantum, we widened our investigation so as to provide explicit results

for all off-shell one-loop divergences with up to three fields.

In fact even for just the graviton one-loop two-point divergence, the complete results do not

appear in the literature. Famously, the pure background part appears in ref. [1]. The pure quantum

part appears in ref. [26], cf. also app. A, and ref. [27]. But to our knowledge the divergence in

the mixed quantum background vertex has not appeared before in the literature. These three

divergences can be expressed in terms of appropriately defined linearised curvatures. (For the

quantum field, this is an accident of Feynman – De Donder gauge, cf. sec. 3.1.2.) However the

three expressions are all different (thus not as assumed in ref. [28]). Although they are all different,

they are not independent. Their relation is precisely such that all three are removed by a canonical

transformation of the quantum fields (and antifields).

This may come as a surprise since a priori one might expect that a separate reparametrisation
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of the background metric should also be performed (in fact this is what is assumed and employed

in ref. [25]). However in sec. 2.9 we show in general that this does not happen. New divergences

at each loop order which involve background and quantum fluctuations and do not vanish on the

equations of motion, are purely a function of the total metric (that combines background and

fluctuation), whilst all other divergences are renormalised by a canonical transformation of the

quantum fields and antifields.

We show explicitly that this scenario continues to hold at the three-point level, where now

thousands of vertices are divergent. We verify that the divergence in the Gauss-Bonnet topological

term [3, 29] is indeed a function only of the total metric, whilst all other divergences are removed

by a canonical transformation on the antifields and quantum fields.

Then in sec. 3.3 we use the one-loop counterterm diagrams to derive the leading divergence

at two loops in the pure background, pure quantum, and mixed, two-point vertices. At this stage

the dependence on the quantum field can no longer be written in terms of linearised curvatures,

reflecting the fact that BRST transformations are now modified to the extent that they do not

reduce to diffeomorphisms. Nevertheless, taking proper account of non-linearities in the Zinn-Justin

equations, we verify again that all these divergences can be removed by a canonical transformation

on the antifields and quantum fields.

The structure of the paper is as follows. In sec. 2 we define the BRST transformations for

the quantum fluctuation field and ghosts in the presence of a background metric. We develop the

formalism that is needed to cope with the fact that BRST invariance is significantly altered in

the process of renormalisation. Consistency is maintained by preserving the Zinn-Justin equation

[19,20] a.k.a. CME (Classical Master Equation) [21–23]. We work with so-called off-shell BRST and

display results in so-called minimal basis, since it provides the most elegant and powerful realisation,

but in sec. 2.3 we explain why the calculations themselves are essentially the usual ones. Both the

bare action and the Legendre effective action satisfy the Zinn-Justin equation [19,20] as we review

in secs. 2.1 and 2.4 respectively, but beyond one loop this leads to a tension and this tension is

resolved by the RG relations for counterterm diagrams, as we explain in secs. 2.5 and 2.6.

New divergences are invariant under the total classical BRST charge s0 which incorporates

not only the BRST transformations but also the action of the Koszul-Tate operator. Taking into

account the presence of the background metric, their properties are developed in sec. 2.7. Since

s0 is nilpotent, solutions are classified according to its cohomology. As we recall in sec. 2.8, those

solutions that are s0-exact are first order canonical transformations of the CME. At two loops we

need also the canonical transformations to second order and their relation to the perturbatively
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expanded CME. This is derived in sec. 2.8. Then in sec. 2.9 we derive the general solution for s0-

closed divergences. We show that cohomologically non-trivial solutions can be taken to be functions

of only the total metric, with the rest being s0-exact, in particular there are no separate purely

background metric divergences.

As already mentioned, in sec. 3 we compute for the first time many off-shell counterterms that

appear up to two loops, and use them to verify all these properties. In this way also we provide a

concrete example of how the BRST transformations get appreciably modified by loop corrections.

In sec. 4 we investigate the proposal for generalised beta-functions for field reparametrisations.

We start by assuming as in the original proposal that it is the background metric that should

be reparametrised and then, given the results of this paper, put forward a more natural scenario

where the beta functions are built on the canonical transformations. Unfortunately neither of these

ideas lead to finite beta functions, and we explain why they cannot. Finally in sec. 5 we draw our

conclusions.

2 BRST in perturbative quantum gravity and its renormalisation

In this section we first set up the BRST framework that we will use, and then develop its properties.

Along the way we make a number of new observations. In particular we will see in sec. 2.5 that RG

invariance is actually essential to ensure that the BRST symmetry can be renormalised successfully,

whilst in sec. 2.9 we prove the absence of a separate background field divergence in new divergences

at each loop order.

2.1 The CME for the bare action

In a perturbative setting we work with a quantum, a.k.a. fluctuation, field hµν . This field is defined

by our choice of expansion of the (total) metric gµν around a background metric ḡµν . In this paper

we simply set

gµν = ḡµν + κhµν . (2.1)

where κ =
√
32πG is the natural expansion parameter, G being Newton’s gravitational constant.

We are interested in off-shell divergences, and their value depends on the choice of expansion. Using

the above allows us to compare with previous results in the literature [1, 3, 26,27].

We will work with so-called off-shell BRST [30–33]. In this way we can fully exploit BRST

invariance at every step, and keep track of how it changes under quantum corrections. Although
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we only actually need the Zinn-Justin equation [19, 20] for this, it is convenient to phrase the

calculation in terms of the Batalin-Vilkovisky formalism [21–23], employing known identities for

the antibracket [21–24]:

(X,Y ) =
∂rX

∂ϕA

∂lY

∂ϕ∗
A

− ∂rX

∂ϕ∗
A

∂lY

∂ϕA
, (2.2)

where X and Y are two functionals, ϕA are the quantum fields (including ghosts cµ) and ϕ∗
A are

the antifields (opposite statistics sources for the BRST transformations QϕA of the corresponding

fields), and we are here employing compact DeWitt notation (so Einstein summation over the

capital indices indicates both summation over Lorentz indices and integration over spacetime). As

we will see, the resulting framework allows calculations that are no more onerous than standard

ones employing only on-shell BRST invariance [27, 34, 35]. Furthermore, we can then display the

results more compactly by using the so-called minimal basis [21,27,34,35].

We choose the bare action S[ϕ, ϕ∗] to include these sources. It will be made up of the classical

action S0 plus a series of local counterterms Sℓ chosen to cancel the divergences that appear at each

loop order ℓ, whilst introducing the new renormalized couplings (cf. sec. 2.6 [13]) which, because

they run with µ, must also be introduced at that order:

S = S0 + ℏS1 + ℏ2S2 + · · · . (2.3)

By including the sources ϕ∗ we will additionally incorporate the counterterms necessary to render

finite the BRST transformations [19,20].

At the classical level the bare action is thus given by

S0 = −
∫
x

{
2

κ2
√
gR+ (Qhµν)h

∗µν + (Qcµ) c∗µ

}
. (2.4)

The first term is the Einstein-Hilbert action in Euclidean signature. In this paper we take the

cosmological constant to vanish. At the perturbative level, divergences do not force its introduction,

so working in this simplified setting is consistent. The integral is over

d = 4− 2ε (2.5)

dimensional spacetime (we will be using dimensional regularisation). Our conventions for curvatures

are Rµν = Rα
µαν , and [∇µ,∇ν ]v

λ = R λ
µν σv

σ.

For convenience, we choose to define the antifields to have indices in the position shown and

to transform as tensor densities of weight −1 so that no metric is required above for these terms.

Also for convenience, a minus sign is included so that none appears in the identity:

QϕA = (S0, ϕ
A) . (2.6)
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Note that this defines our charges to act from the left. Classically, the BRST charge Q can be

defined in terms of the Lie derivative along κcµ:

Qhµν =
1

κ
Qgµν = Lcgµν = 2∂(µc

αgν)α + cα∂αgµν , (2.7)

Qcµ =
κ

2
Lcc

µ = κcν∂νc
µ . (2.8)

Its nilpotence (Q2 = 0), and diffeomorphism invariance of the Einstein-Hilbert action, implies

0 = QS0 = QϕA∂lS0

∂ϕA
= −∂rS0

∂ϕ∗
A

∂lS0

∂ϕA
=

1

2
(S0, S0) , (2.9)

and thus that the classical bare action S = S0 satisfies the so-called CME (Classical Master Equa-

tion) [21–23], a.k.a. Zinn-Justin equation [19,20]. Once we consider quantum corrections, it is not

the BRST transformations (2.7,2.8) that we can preserve but only the CME, i.e. we will ensure

that to any loop order ℓ the bare action satisfies:

(S, S) = 0 . (2.10)

2.2 Canonical transformation to gauge fixed basis

To get the gauge fixed version, we need to work in the so-called extended basis, which introduces a

new field and antifield over and above what we already have (the so-called minimal basis) [21–23]:

S(ext) = S +

∫
x

{
1

2α

√
ḡḡµνb

µbν + ibµc̄∗µ

}
, (2.11)

where α is the gauge parameter, bµ is a bosonic auxiliary field, and c̄∗µ sources the BRST transfor-

mation for the antighost. From (2.6) we have Qc̄µ = −ibµ and Qbµ = 0. Trivially, the CME and

Q2 = 0 continue to hold. The next step is to introduce a suitable gauge fixing fermion Ψ[ϕ]. In the

Batalin-Vilkovisky treatment this is used to eliminate the antifields [21–24]. We keep them however,

because of their crucial rôle in renormalisation, and in particular in the Zinn-Justin identities, and

instead get the same effect by performing an exact canonical transformation [24]

ϕ̌A =
∂l

∂ϕ̌∗
A

K[ϕ, ϕ̌∗] ,

ϕ∗
A =

∂r
∂ϕA

K[ϕ, ϕ̌∗] , (2.12)

from the above gauge invariant (g.i.) basis {ϕ, ϕ∗}, to a gauge fixed (g.f.) basis {ϕ̌, ϕ̌∗}, setting

[27,34,35]

K = ϕ̌∗
Aϕ

A −Ψ[ϕ] . (2.13)
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The advantage of employing a canonical transformation is that by definition it leaves the antibracket

invariant and thus in the new basis the CME continues to hold. We choose

Ψ =

∫
x

√
ḡFµc̄

µ , (2.14)

and choose DeDonder gauge by setting Fµ to

Fµ = ∇̄νh
ν
µ − ∇̄µφ , (2.15)

φ =
1

2
hµµ =

1

2
ḡµνhµν . (2.16)

This breaks the diffeomorphism invariance as realised through the total metric gµν (as required)

but leaves it realised as “background diffeomorphism” invariance, using the background metric ḡµν .

From here on we raise and lower indices using the background metric, unless explicitly mentioned

otherwise, and employ the background covariant derivative ∇̄µ (using the background metric Levi-

Civita connection). As is well known, we can put a connection in for free in Lie derivatives, so to

make background diffeomorphism invariance manifest in (2.7,2.8) we can write the classical BRST

transformations (in minimal basis) instead as

Qhµν = 2∇̄(µc
αgν)α + cα∇̄αgµν = 2∇̄(µcν) + 2κ∇̄(µc

αhν)α + κcα∇̄αhµν ,

Qcµ = κcν∇̄νc
µ . (2.17)

Applying the canonical transformation we see that only the following antifields change:

h∗µν
∣∣
g.f.

= h∗µν
∣∣
g.i.

−
√
ḡ

(
∇̄(µc̄ν) − 1

2
∇̄αc̄

αḡµν
)

, (2.18)

c̄∗µ
∣∣
g.f.

= c̄∗µ
∣∣
g.i.

+
√
ḡFµ , (2.19)

thus mapping the extended action (2.11) at the classical level to

S
(ext)
0

∣∣
g.f.

= S0 +

∫
x

{
1

2α

√
ḡḡµνb

µbν − i
√
ḡFµb

µ + ibµc̄∗µ

}
+

∫
x

√
ḡ

(
∇̄(µc̄ν) − 1

2
∇̄αc̄

αḡµν
)
Qhµν .

(2.20)

The first term is (2.4), the classical action in minimal basis, and the last term is the usual ghost

action (in DeDonder gauge). The middle term is purely quadratic in bµ. We could thus integrate

it out. Dropping the c̄∗µ, the integrand is:

√
ḡ

2α
(bµ − iFµ)

2 +
α

2

√
ḡFµFµ . (2.21)

The bµ integral over the first term vanishes in dimensional regularization, whilst the second term

is the standard gauge fixing term. In fact this is now the textbook on-shell BRST treatment. The
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action S0 is still BRST invariant if we now set Qc̄µ = αFµ. But this is not quite as powerful

because Q2c̄µ = αQFµ, only vanishes on shell (QFµ = 0 is the c̄ equation of motion). For this

reason we keep bµ and stick with this off-shell BRST treatment.

Since we will be working with a perturbative expansion over quantum fields and antifields, we

may as well treat the background metric perturbatively also. Following (2.1), we write:

ḡµν = δµν + κh̄µν , =⇒ gµν = δµν + κhµν + κh̄µν . (2.22)

At this stage we can invert the terms bilinear in the quantum fields to get the propagators. For

general α gauge see e.g. ref. [34]. We will use Feynman gauge, α = 2, which gives the simplest

propagators. Once again, the coefficients of off-shell divergences depend on these choices. By using

Feynman DeDonder gauge we make the same choices as in older works [1, 3, 26, 27] and can thus

compare our results. Writing

ϕA(x) =

∫
ddp

(2π)d
e−ip·x ϕA(p) , (2.23)

we have:

⟨hµν(p)hαβ(−p)⟩ =
δµ(αδβ)ν

p2
− 1

d− 2

δµνδαβ
p2

, (2.24)

⟨bµ(p)hαβ(−p)⟩ = −⟨hαβ(p) bµ(−p)⟩ = 2 δµ(αpβ)/p
2 , (2.25)

⟨bµ(p) bν(−p)⟩ = 0 , (2.26)

⟨cµ(p) c̄ν(−p)⟩ = −⟨c̄µ(p) cν(−p)⟩ = δµν/p
2 . (2.27)

2.3 Minimal basis and comparisons to on-shell BRST

We will be computing quantum corrections to the one-particle irreducible, a.k.a. Legendre, effective

action Γ. Since we have an auxiliary field bµ and the extra propagator ⟨bµhαβ⟩, at first sight this

formalism complicates the computation and cannot be directly compared to earlier results using

on-shell BRST [1,3, 26]. However this is not the case.

First note that the h propagator (2.24) is the same as in the usual treatment. (This is actually

guaranteed in any gauge, but we omit the proof.) Setting h̄µν = 0 for the moment, we note that

the interaction terms (i.e. with three or more fields) in (2.20) do not contain bµ or c̄∗µ. Feynman

diagram contributions to Γ therefore have the same property and coincide with those computed in

the usual (on-shell BRST) treatment. Switching back on the background metric, we do now have

interactions involving the background metric and either b2, or b and h. However it is not possible

then to draw one-particle irreducible diagrams with external b-field legs. The interactions only
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Figure 2.1: Examples that illustrate that one-particle irreducible Feynman diagrams involving b

interactions with an unspecified number of external background metric h̄ legs (fan of wavy lines),

arise by starting with an internal h (solid line) propagating into b (dashed line) and eventually back

to h. These implement in diagrammatic language the effect (2.21) of integrating out the b field.

contribute in diagrams by having h propagate to b and back again, see fig. 2.1, and the net effect of

including all these corrections is to incorporate in diagrammatic language the result of integrating

out b. Thus these Feynman diagrams simply reproduce the corrections we get from the second term

in (2.21), i.e. the standard gauge fixing term. So we see that we can continue to ignore bµ and c̄∗µ

provided we include the interactions from the standard gauge fixing term. Furthermore, we get in

this way the same results as the standard treatment.

Next note that the corrections only depend on c̄µ through the combination on the right-hand

side of (2.18). This means that we can shift back to g.i. basis after computing loop contributions

to Γ, the only dependence on b and c̄∗ then being as in the extended action (2.11). Furthermore

we can then display results in minimal basis by removing the b and c̄∗ terms.

This all means that we can construct Γ order by order in the minimal basis, never needing b or

c̄∗. To do so we shift h∗µν
∣∣
g.i.

to h∗µν
∣∣
g.f.

in interactions and use the ⟨hαβhµν⟩ and ⟨cµc̄ν⟩ propagators

and include the interaction vertices from the standard gauge fixing term (2.21) as appropriate, and

afterwards shift back to g.i. basis [27, 35]. Of course this does not mean that off-shell quantum

corrections are independent of our choice of gauge. However the results are sometimes much simpler

when cast back in (minimal) g.i. basis in this way, which is why we use it in this paper.

2.4 The CME for the Legendre effective action

Since the BRST transformations (2.17), or (2.7,2.8), involve products of fields at the same spacetime

point, they are not preserved under renormalisation. Order by order in the loop expansion not only

must the action be modified, but also the BRST transformations themselves, and since the theory

is non-renormalisable, the changes involve in fact an infinite series in powers of the fields and

antifields. The Zinn-Justin equation [19–22] can keep track of all this. We start with the fact that
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the partition function

Z ≡ Z[J, ϕ∗] =

∫
Dϕ e−S[ϕ,ϕ∗]+ϕAJA , (2.28)

satisfies the identity
∂rZ
∂ϕ∗

A

JA = 0 . (2.29)

To prove this at the classical level it is sufficient to use the fact that QS0 = 0, assuming invariance

of the measure:

0 =

∫
DϕQ

(
e−S0+ϕAJA

)
=

∫
Dϕ e−S0+ϕAJA

(
QϕA

)
JA = −∂rZ

∂ϕ∗
A

JA . (2.30)

But at the quantum level we need to derive it via preservation of the CME, (2.10):

0 =

∫
Dϕ

∂l
∂ϕA

∂r
∂ϕ∗

A

e−S[ϕ,ϕ∗]+ϕAJA = −
∫
Dϕ

{
JA

∂rS

∂ϕ∗
A

+
1

2
(S, S) +

∂l
∂ϕA

∂r
∂ϕ∗

A

S

}
e−S[ϕ,ϕ∗]+ϕAJA .

(2.31)

Here the first equality follows because it is an integral of a total derivative. After rearranging the

result using the statistics of the (anti)fields, we get the three terms inside the braces. The first

term gives the required identity, the second term vanishes by the CME, whilst the third term is the

Batalin-Vilkovisky measure term [21–23]. In general we need to take this into account (giving the

Quantum Master Equation) [21–23, 27, 34, 35] however, since S is local, this term always contains

δ(x)|x=0 or its space-time derivatives. These vanish in dimensional regularisation. Therefore in this

paper we can discard the measure term.

Introducing the generator W [J, ϕ∗] of connected diagrams, through Z = eW , we define the

Legendre effective action in the usual way:

Γ[Φ,Φ∗] = −W +ΦAJA , ΦA =
∂rW

∂JA
, JA =

∂lΓ

∂ΦA
, (2.32)

where ΦA is the so-called classical field, and we have renamed ϕ∗
A ≡ Φ∗

A just because it looks better.

Then by standard manipulations (2.29) turns into the Zinn-Justin equation:

(Γ,Γ) = 0 , (2.33)

i.e. again the CME (2.10), now applied to Γ[Φ,Φ∗], the antibracket taking the same form as (2.2)

but with {ϕ, ϕ∗} replaced with {Φ,Φ∗}.

The Legendre effective action

Γ = Γ0 + ℏΓ1 + ℏ2Γ2 + · · · , (2.34)
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is built up recursively, where Γℓ is the ℓ-loop contribution, starting with Γ0 = S0, the classical bare

action. The logic now is to introduce at each new loop order ℓ, a local counterterm action Sℓ to the

bare action in order to cancel the divergences Γℓ|∞ that arise in Γℓ, leaving behind an arbitrary

finite part which is parametrised by the new renormalized couplings that appear at this order.

Provided we introduce Sℓ in such a way as to preserve (S, S) = 0 we also have that (Γ,Γ) = 0 is

satisfied. However, although both the bare action S and the Legendre effective action Γ satisfy the

CME, the CME plays a different rôle in each case so that it is in fact not trivial that the two are

consistent beyond one loop. As we will see what makes them nevertheless consistent is the RG.

2.5 How the RG is needed for consistent solutions to both versions of the CME

Expanding the CME (2.33) for Γ, we see that the one-loop contribution satisfies (Γ0,Γ1) = 0. It is

useful to define the total classical BRST charge s0 acting on any functional X as

s0X = (S0, X) , (2.35)

which thus acts also on antifields (see sec. 2.7), then the one-loop BRST identity is simply s0Γ1 = 0.

Since dimensional regularisation is a gauge invariant regulator, the infinite part, which at one loop

is proportional to a single pole, ∝ 1/ε, also satisfies this identity, i.e.

s0 Γ1/1[Φ,Φ
∗] = 0 . (2.36)

(We label terms proportional to divergences 1/εk, by appending /k to the subscript.)

It is simplest for our purposes to now consider the identity satisfied by the two-loop contribution,

Γ2, before any renormalisation. From the CME (2.33) we see that it satisfies

s0Γ2 = −1

2
(Γ1,Γ1) . (2.37)

In particular this implies for the double-pole divergence:

s0 Γ2/2 = −1

2

(
Γ1/1,Γ1/1

)
. (2.38)

Given that the right hand side does not vanish, this is a non-trivial relation between the 1/ε2

divergences at two loops and the 1/ε divergences at one loop.

Now we consider the process of renormalisation. At one loop, if we add a counterterm action

S1, then in order to preserve the CME (2.10) for S, we find in the same way that S1 must be chosen

so that it is also annihilated by the total classical BRST charge:

s0S1 = 0 . (2.39)
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Since the one-loop divergence is local we can then render the one-loop result finite by setting

S1 = −Γ1/1[ϕ, ϕ
∗] + Sc1 [ϕ, ϕ

∗] , (2.40)

where the finite remainder Sc1 contains the new renormalised couplings cj1(µ) that appear at one

loop, cf. sec. 2.6, in particular they are needed for the curvature-squared terms but also for antifield

vertices, see secs. 3.1, 3.2. Clearly we must also have s0Sc1 = 0.

Expanding the CME (2.10) to O(ℏ2), we find of course an algebraically identical formula to

(2.37), (2.38):

s0S2 = −1

2
(S1, S1) . (2.41)

This must be satisfied by the counterterm action S2. It relates the 1/ε
2 divergence in this two-loop

counterterm to the 1/ε divergence in the one-loop counterterms. Then by (2.40), we see that the

1/ε2 divergence on the right hand side is precisely the same as in the Γ identity (2.38). But this is

in apparent contradiction with the fact that S2 must cancel the divergence in Γ2. In particular the

latter implies that s0(S2 + Γ2) must be finite.

The resolution is that, once we add the one-loop counterterm from S1 to the bare action, at

O(ℏ2) we also have one-loop counterterm diagrams from one-loop diagrams Γ1[S1] with one S1

vertex inserted (as illustrated in fig. 3.3 of sec. 3.3). The two-loop divergence in (2.38) comes from

diagrams containing only tree level vertices. It must be that the 1/ε2 contribution from the one-

loop counterterm diagrams, is in fact precisely right to flip the sign so that in full the double-pole

part satisfies

s0 (Γ2/2 + Γ1/2[S1]) = +
1

2

(
Γ1/1,Γ1/1

)
. (2.42)

As we will see in the next subsection, RG invariance tells us that we have the relation

Γ1/2[S1] = −2Γ2/2 , (2.43)

and thus for the full double-pole contribution, Γ2/2+Γ1/2[S1] = −Γ2/2, we indeed have the required

change of sign (even before the application of s0). We see therefore that the RG relations are

responsible for restoring consistency between the two versions of the CME.

Although the relations above constrain the form of the double-pole divergences, we still have to

compute some Feynman integrals to determine them. Nevertheless we can simplify the process by

exchanging the genuinely two-loop diagrams for one-loop counterterm diagrams. The correspond-

ing double-pole counterterm action will automatically satisfy the constraint (2.41). This latter

constraint does not uniquely determine S2 since it is invariant under adding a piece, S′
2, provided

13



it is annihilated by the total classical BRST charge: s0S
′
2 = 0. Since this constraint is linear

homogeneous, S′
2 has finite remainders parametrised by new two-loop couplings cj2(µ).

We finish this section with some comments about the two-loop single-pole divergences. Firstly

note that, before adding the one-loop counterterm diagrams, the two-loop single-pole divergences

are actually non-local. Indeed, this must be the case since the right hand side of (2.37) has such

non-local divergences in the antibracket contribution (finite,Γ1/1), where we have written Γ1 =

Γ1/1+finite, and recognised that the finite part is non-local. On adding the counterterm diagrams,

the same RG invariance identity that resolves the above putative puzzle, is also responsible for

eliminating the non-local divergences (see the argument of Chase [28], which we review in the next

subsection). In a similar vein, the two-loop counterterm action S2 has single-pole divergences that

depend on the one-loop couplings cj1, as it must in order to renormalise the Γ1/1[S1] contribution.

The fact that S2 must have dependence on cj1 can also be seen through (2.40) and the two-loop

CME relation, (2.41). These two constraints must again be related through similar RG identities.

Finally note that there are two-loop single-pole divergences that are not fixed by the RG or by

the CME. These will include the famous Goroff and Sagnotti term (4.11), but also further terms

that vanish on the equations of motion. Renormalising them requires new counterterms whose finite

remainder introduces further two-loop renormalised couplings cj2(µ). As before, from (2.41) we see

that this new part S′
2 must be chosen so that it is annihilated by the total classical BRST charge:

s0S
′
2 = 0. Thus despite the fact that BRST invariance is significantly altered by the quantum

corrections, a central rôle is played, order by order in the loop expansion, by the total classical

BRST charge s0. We will develop the properties of s0 in sec. 2.7.

2.6 Relating counterterms via the RG

Adapting ref. [13] to quantum gravity, we prove the RG relation (2.43), which was used in the

previous subsection to demonstrate consistency at two loops of the two rôles for the CME. This key

equation relates the double-pole Γ1/2[S1] from the one-loop counterterm diagrams, to the double-

pole Γ2/2 generated by two-loop diagrams using only tree-level vertices. In this subsection, we

also review the alternative proof in ref. [28] for this relation. Rearranging (2.43) we see that it

implies that the 1/ε2 part of the two-loop counterterm is −1/2 times the 1/ε2 pole in the one-loop

counterterm diagrams:

S2/2 = −
(
Γ2/2 + Γ1/2[S1]

)
= −1

2
Γ1/2[S1] . (2.44)
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It is this form that falls out most naturally from the RG analysis, and it is also this form that we

use in sec. 3.3 to compute the 1/ε2 divergence in the two-loop graviton self-energy.

To adapt [13], it proves convenient to absorb Newton’s constant into the operators so that the

O(ℏ0) (i.e. classical) bare action has pure fluctuation field vertices (n ≥ 2):

O0 i ∼ κn−2hnp2 . (2.45)

The numerical subscript on O refers to ℏ order [13], and here we are just counting the number

of instances of the fluctuation field hµν , κ and momentum p, where the latter stands for any

momentum (or spacetime derivative) in the vertex, in order to track their dimensions and motivate

the formulae below. Working with pure hµν vertices will be sufficient to derive (2.44) in this case.

Then we will justify why it is clear that (2.44) continues to hold when the background, ghosts and

antifields are included.

In d = 4 − 2ε dimensions, the mass dimensions are [h] = −[κ] = 1 − ε. A priori both κ and

the fluctuation field should be taken to be bare, in the expectation that they will have a divergent

expansion in renormalised quantities, but the divergences that are generated involve ever greater

powers of momentum, so the vertices in (2.45) are never reproduced and thus neither κ nor h

require renormalisation. The classical bare action is therefore being written as

S0 = Γ0 =

∫
x
ci0O0 i . (2.46)

The ci0 are the classical couplings with κ factored out. They are fixed up to choice of expansion of

the metric, choice of gauge fixing, and the value of the cosmological constant if there is one. As

mentioned below (2.4), in this paper we set the cosmological constant to zero.

The divergent one-loop quantum corrections then take the form (H is the vacuum expectation

value of h):

Γ1/1 ∼
1

ε
κnHnp4−2ε , (2.47)

i.e. in terms of counting overall powers there is an extra factor of κ2p2−2ε. To renormalise we thus

have to add to the bare action the local action (2.40):

S1 = µ−2ε

∫
x

{
ci1O1 i +

1

ε
ai1/1O1 i

}
, (2.48)

where the second set are the counterterms −Γ1/1, and the first set is the expansion of Sc1 and

contains the new O(ℏ1) renormalised couplings. The new operators take the form

O1 i ∼ κnhnp4 , (2.49)
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i.e. with an extra κ2p2 compared to O(ℏ0) vertices. At this stage the arbitrary RG scale µ is needed

so that µ−2ε in (2.48) can restore dimensions. Since the bare action (2.3) is independent of µ, the

renormalised couplings ci1 run with µ. By differentiating (2.48) we see that they satisfy:

βi
1 = ċi1 − 2ε ci1 = 2 ai1/1 , (2.50)

where ċ := µ∂µc. The one-loop counterterm diagrams formed by using one ai1/1 vertex (correspond-

ing to one copy of S1 being inserted) give in particular double pole divergences

Γ1/2[S1] ∼
1

ε2
a1/1 µ

−2εκn+2Hnp6−2ε , (2.51)

that must satisfy relation (2.43): Γ1/2[S1] = −2Γ2/2. As noted by Chase [28], the easiest way to

see why this is so, is to recognise that the latter take the form

Γ2/2 ∼ κn+2Hnp6−4ε

[
1

ε2
+O

(
1

ε

)]
, (2.52)

but divergences must be local and thus the (ln p)/ε terms must cancel between (2.51) and (2.52).

We get the same conclusion another way by following Buchler and Colangelo [13] whilst also

deriving some more useful identities. At O(ℏ2) the divergences generate the operators

O2 i ∼ κn+2hnp6 , (2.53)

so we have to add to the bare action

S2 = µ−4ε

∫
x

{
ci2O2 i +

1

ε2
ai2/2O2 i +

1

ε

(
ai2/1 + ai1/1 jc

j
1

)
O2 i

}
, (2.54)

where we now have counterterms with both single and double ε-poles, and ci2 are the new O(ℏ2)

renormalised couplings. The ai2/2 counterterms cancel the full set of 1/ε2 divergences at O(ℏ2),

i.e. from the sum of two-loop diagrams and the one-loop counterterm diagrams. The single poles

ai2/1/ε arise from two-loop diagrams using only vertices (2.45), whilst the ai1/1 jc
j
1/ε are generated

by one-loop diagrams containing one c1 vertex. Now µ-independence of the bare action implies

βi
2 = ċi2 − 4εci2 =

4

ε
ai2/2 + 4

(
ai2/1 + ai1/1 jc

j
1

)
− 1

ε
ai1/1 j ċ

j
1 ,

=
4

ε
ai2/2 −

2

ε
ai1/1 ja

j
1/1 + 4ai2/1 + 2ai1/1 jc

j
1 , (2.55)

where in the second line we substituted the one-loop β function (2.50). Since this equation is

expressed in terms of renormalised quantities, it must be finite, and therefore the single poles must

cancel. Thus we see that

ai2/2 =
1

2
ai1/1 ja

j
1/1 . (2.56)

16



This is the same conclusion as before, but we are now proving it in the form given in (2.44). The

left hand side is the coefficient of the O2 i in S2/2 while on the right hand side we have replaced the

cj1 coupling in (2.54) by the counterterm coefficient aj1/1. The right hand side is thus the coefficient

of O2 i in −1
2Γ1/2[S1].

Finally let us show that (2.44) will continue to hold when the background, ghosts and antifields

are included. Firstly, vertices can now include ghost antighost pairs, but at this schematic level

it is not necessary to track these separately from h: what really matters in this analysis are the

powers of pε and µε, and they are unchanged if c and c̄ are included. Secondly, it is clear that

any instance of h (or H) can trivially be exchanged for the background h̄ in the above schematic

formulae, though of course operators O1 j with less than two quantum fields in gauge fixed basis,

cannot contribute to the relation (2.44) (their coefficients ai1/1 j vanish). Finally from the minimal

classical action (2.4), we see that whenever an antifield is involved in an action vertex there is one

less power of p (compensated dimensionally by the fact that they have [ϕ∗] = 2 − ε, cf. table 1).

This observation is useful for finding the general form of the corrections, but again for this analysis

what actually matters is the tracking of non-integer powers.

2.7 Properties of the total classical BRST charge

We now develop the properties of the total classical BRST charge s0. Using the identity [21–24]:

(X, (Y,Z)) = ((X,Y ), Z) + (−1)(X+1)(Y+1)(Y, (X,Z)) , (2.57)

where (−1)X = ±1 if X bosonic (fermionic), we have

s20X[ϕ, ϕ∗] = (S0, (S0, X)) = 1
2((S0, S0), X) = 0 , (2.58)

where the last equality follows by the CME. Therefore s0 is nilpotent just like the BRST charge

Q. From (2.6), we see that on ϕA it reduces to the BRST charge Q. However from (2.35), s0 also

acts on antifields:

s0ϕ
∗
A =

(
S0, ϕ

∗
A

)
=

∂rS0

∂ϕA
. (2.59)

This is called the Koszul-Tate differential [27, 34,36–39]. In minimal basis we get explicitly:

s0h
∗µν = −2

√
gGµν/κ+ 2κh∗α(µ∇̄αc

ν) + κ∇̄α

(
cαh∗µν

)
, (2.60)

s0c
∗
µ = κ∇̄µc

νc∗ν + κ∇̄ν

(
cνc∗µ

)
− 2∇̄νh

∗ν
µ − 2κ∇̄α

(
hµνh

∗αν)+ κ∇̄µhαβh
∗αβ . (2.61)
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Here Gµν = −Rµν + 1
2gµνR is the Einstein tensor. (Note that it inherits an overall minus sign

from the Euclidean action compared to the usual definition.) Its indices are raised in (2.60) using

Gµν = gµαgνβGαβ. As we noted earlier we are raising and lowering indices with the background

metric unless explicitly stated otherwise. This case is the one exception.

ϵ gh # ag # pure gh # dimension

hµν 0 0 0 0 (d− 2)/2

cµ 1 1 0 1 (d− 2)/2

c̄µ 1 -1 1 0 (d− 2)/2

bµ 0 0 1 1 d/2

h∗µν 1 -1 1 0 d/2

c∗µ 0 -2 2 0 d/2

c̄∗µ 0 0 0 0 d/2

Q 1 1 0 1 1

Q− 1 1 -1 0 1

Table 1: The various Abelian charges (a.k.a. gradings) carried by the fields and operators. ϵ is the

Grassmann grading, being 1(0) if the object is fermionic (bosonic). gh # is the ghost number, ag

# the antighost/antifield number, pure gh # = gh # + ag #, and dimension is the engineering

dimension. The first two rows are the minimal set of fields, the next two make it up to the non-

minimal set, then the ensuing two rows are the minimal set of antifields, and c̄∗µ is needed for the

non-minimal set. Finally, the charges are determined in order to ensure that Q and Q− can also

be assigned definite charges.

It is useful to assign antighost/antifield number to each field and operator [34,39,40], see table

1. The reason this is useful is precisely because it is not preserved by interactions, which then

split into pieces according to their antighost level. For example one sees from (2.4), that the three

parts of the minimal classical action split into levels 0, 1, and 2, respectively. The Koszul-Tate

differential also splits, in this case into two pieces, one that preserves antighost number and one

that lowers it by one. We call these pieces respectively, Q and Q−, and thus write:

s0ϕ
∗
A =

(
Q+Q−)ϕ∗

A . (2.62)
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From (2.60) and (2.61) we see that

Qh∗µν = 2κh∗α(µ∇̄αc
ν) + κ∇̄α

(
cαh∗µν

)
, (2.63)

Q−h∗µν = −2
√
gGµν/κ , (2.64)

Qc∗µ = κ∇̄µc
νc∗ν + κ∇̄ν

(
cνc∗µ

)
, (2.65)

Q−c∗µ = −2∇̄νh
∗ν

µ − 2κ∇̄α

(
hµνh

∗αν)+ κ∇̄µhαβh
∗αβ . (2.66)

Since Q here acts on antifields there is no reason to confuse it with the previously defined BRST

charge (2.6), (2.17). Its extension to antifields is natural since Qh∗µν and Qc∗µ are in fact the

correct Lie derivative expressions for these tensor densities. The advantage of the antighost grading

becomes clear when we consider the nilpotency of s0:

0 = s20 = Q2 + {Q,Q−}+ (Q−)2 . (2.67)

These terms must vanish separately since they lower the antighost number by 0, 1 and 2 respectively.

Therefore we know that our definitions of Q and Q− are such that they are nilpotent and they

anticommute.

2.8 Canonical transformations up to second order

We saw in sec. 2.5 that a central rôle is played by counterterms that are s0-closed, for example

at one loop we have exactly this relation (2.39): s0S1 = 0. We saw in the previous subsection

that s0 is nilpotent, so one solution to this is that S1 is exact: S1 = s0K1, where K1 is a local

functional of ghost number −1. In the next subsection we derive the general solution for such s0-

closed counterterms, but for that we will need the relation between s0-exact solutions and canonical

transformations. Taking the general canonical transformation (2.12), and setting

K = ϕ̌∗
Aϕ

A +K1[ϕ, ϕ̌
∗] , (2.68)

and then treating K1 to first order, one gets the following field and source reparametrisations

δϕA =
∂lK1

∂ϕ∗
A

, δϕ∗
A = −∂lK1

∂ϕA
. (2.69)

That these correspond to s0-exact solutions, can then be seen by writing out the change in the

classical action:

δS0 =
∂rS0

∂ϕA
δϕA +

∂rS0

∂ϕ∗
A

δϕ∗
A =

∂rS0

∂ϕA

∂lK1

∂ϕ∗
A

− ∂rS0

∂ϕ∗
A

∂lK1

∂ϕA
= s0K1 . (2.70)

19



This interpretation extends to higher orders [5], see also [14–18]. For sec. 4 we will want their

explicit form to second order. Given that S1 = s0K1, one solution to the CME to second order

(2.41), i.e. s0S2 = −1
2(S1, S1), is:

S2 =
1

2
(S1,K1) + s0K2 (2.71)

where K2 is a second-order local functional of ghost number -1. This follows from the antibracket

identity (2.57) because

s0(S1,K1) = (s0S1,K1)− (S1, s0K1) = −(S1, S1) . (2.72)

In fact the relation (2.71) is just the result of taking the K1 canonical transformation to second

order and adding the new part K2 which appears linearly at this order. To see this we set

K = ϕ̌∗
Aϕ

A +K1[ϕ, ϕ̌
∗] +K2[ϕ, ϕ̌

∗] , (2.73)

and solve the exact canonical transformation (2.12) perturbatively for δϕ(∗) = ϕ̌(∗) − ϕ(∗), starting

with the first order expression (2.69). We get

δϕA =
∂lK1

∂ϕ∗
A

+
1

2

∂l
∂ϕ∗

A

∂rK1

∂ϕB

∂lK1

∂ϕ∗
B

− 1

2

∂l
∂ϕ∗

A

∂rK1

∂ϕ∗
B

∂lK1

∂ϕB
+

∂lK2

∂ϕ∗
A

,

δϕ∗
A = −∂lK1

∂ϕA
+

1

2

∂l
∂ϕA

∂rK1

∂ϕ∗
B

∂lK1

∂ϕB
− 1

2

∂l
∂ϕA

∂rK1

∂ϕB

∂lK1

∂ϕ∗
B

− ∂lK2

∂ϕA
. (2.74)

Taylor expanding the classical action to second order gives

δS0 =
∂rS0

∂ϕA
δϕA +

1

2

∂r
∂ϕB

(
∂rS0

∂ϕA
δϕA

)
δϕB +

1

2

∂r
∂ϕ∗

B

(
∂rS0

∂ϕA
δϕA

)
δϕ∗

B

+
∂rS0

∂ϕ∗
A

δϕ∗
A +

1

2

∂r
∂ϕB

(
∂rS0

∂ϕ∗
A

δϕ∗
A

)
δϕB +

1

2

∂r
∂ϕ∗

B

(
∂rS0

∂ϕ∗
A

δϕ∗
A

)
δϕ∗

B

− 1

2

∂rS0

∂ϕA

(
∂r
∂ϕB

δϕA

)
δϕB − 1

2

∂rS0

∂ϕA

(
∂r
∂ϕ∗

B

δϕA

)
δϕ∗

B

− 1

2

∂rS0

∂ϕ∗
A

(
∂r
∂ϕB

δϕ∗
A

)
δϕB − 1

2

∂rS0

∂ϕ∗
A

(
∂r
∂ϕ∗

B

δϕ∗
A

)
δϕ∗

B . (2.75)

Substituting (2.74), its non-linear terms cancel the final two lines, whilst the first two lines organise

into antibrackets, and thus we find that

δS0 = (S0,K1 +K2) +
1

2
((S0,K1),K1) = s0K1 +

1

2
(S1,K1) + s0K2 , (2.76)

showing that the non-linear term in (2.71), is indeed the result (2.74) of carrying the canonical

transformation to second order.
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2.9 General form of s0-closed divergences

On the other hand, at each new loop order the s0-closed counterterms are associated to the ‘new’

part Γ∞ of the divergences. Their form can be classified by the cohomology of s0 in the space of

local functionals. As we have seen, one possibility is that it is a local s0-exact solution: Γ∞ =

s0K∞[Φ,Φ∗], where K∞ is a functional with ghost number −1. However another possibility is that

the divergence is a local functional Γ∞[gµν ] of only the total metric,2 gµν = ḡµν + κHµν , and is

diffeomorphism invariant. Ref. [41], see also [5], proves from the cohomological properties of s0

that if the background metric is flat, viz. ḡµν = δµν , then in fact the general local s0-closed solution

is a linear combination of these two possibilities:

s0Γ∞[Φ,Φ∗] = 0 =⇒ Γ∞[Φ,Φ∗] = Γ∞[gµν ] + s0K∞[Φ,Φ∗] . (2.77)

However in a non-flat background, as a statement on s0-cohomology, this result is no longer true,

since clearly one can now add to this a local functional Γ∞[ḡµν ] of only the background field (such a

functional being trivially annihilated by s0). Nevertheless it is true as a statement about s0-closed

divergences, as we show below.

Before doing so, we note that it is useful in this paper to grade the solution (2.77) by antighost

number. The first part, Γ[g], has of course zero antighost number, but since K has ghost number

−1, we see from table 1 that it splits up as K = K1 + K2 + · · · , where the superscript denotes

antighost number. Thanks to the perturbative non-renormalisability of quantum gravity, already

at one loop one finds that all these infinitely many Kn functionals are non-vanishing. In minimal

basis, K1 is characterised by having one copy of H∗, K2 by containing one copy of C∗ or two copies

of H∗ whilst also being linear in the ghost Cµ, and so on, with the higher level Kn containing ever

greater numbers of antifields and compensating powers of ghosts.

Now we show that (2.77) is indeed the general form of an s0-closed divergence, even in a non-

trivial background. Although this is effectively a small extension of the proof in flat background,

it has not, to our knowledge, been noticed before. Following [42], first we observe that, up to a

choice of gauge, the Legendre effective action can equivalently be computed by shifting

hµν 7→ hµν − h̄µν (2.78)

which, by (2.22), amounts to expanding around flat space. Indeed this shift makes no difference to

the minimal classical action (2.4), since it depends only on the total metric gµν . Differences arise

2 We write the vacuum expectation value of the quantum fields in capitals, thus in minimal basis ΦA = Hµν , C
ξ.
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only because separate hµν and ḡµν dependence enters via the canonical transformation induced by

the gauge fixing fermion (2.14), which from (2.12,2.13) takes the form

QϕA ∂Ψ

∂ϕA
= QΨ[ϕ] , (2.79)

and enters via the quadratic bµ term from the extension (2.11), which can however also be written

in Q-exact form
1

2α

√
ḡḡµνb

µbν =
i

2α
Q
(√

ḡḡµν c̄
µbν

)
= QΨb[ϕ] . (2.80)

Thus the entire ḡ (equivalently h̄) dependence can be seen as being just part of the parametrisation

of our choice of gauge, i.e. of Ψtot[ϕ] = Ψ[ϕ] + Ψb[ϕ].

Now in the shifted basis (2.78) we are expanding around flat space. If we also use an h̄-

independent gauge, then we can be sure that (2.77) holds. We cannot use this result directly to

rule out a separate Γ∞[ḡµν ] piece, because we have changed the gauge. However we can proceed

by comparing physical quantities since they are independent of the choice of gauge. We do this

by setting Φ∗
A = 0 and setting Hµν on shell. Note that since we are dealing with new divergences

appearing at some given loop order, it is the classical equations of motion for gµν that one needs.

Then Γ∞[gµν ] is independent of the background, whilst s0K∞ vanishes. The latter follows because

s0K∞ =
∂rS0

∂ΦA

∂lK∞
∂Φ∗

A

− ∂rS0

∂Φ∗
A

∂lK∞
∂ΦA

. (2.81)

Given that Φ∗
A = 0, on the right hand side the first term vanishes (in minimal basis) by the

equations of motion of Hµν , and the second term because K∞ has non-vanishing antighost number.

Now comparing the results in flat background and non-flat background, we see that they must have

the same total metric part Γ∞[gµν ], whilst for a non-flat background the purely background part

must vanish: Γ∞[ḡµν ] = 0.

We finish with some important remarks. Firstly, to avoid over-counting, the counterterm Sℓ[g]

for the pure metric part of the s0-closed solution (2.77) should be restricted to terms that do not

vanish on the classical equations of motion (or more generally to a specific choice, as in (3.15), the

Gauss-Bonnet term). To see this we note that if Sℓ[g] does vanish on the classical equations of

motion, it can be written as

Sℓ[gµν ] = −2

κ

∫
x

√
g GµνTµν [gµν ] = Q−

∫
x
h∗µνTµν = s0

∫
x
h∗µνTµν (2.82)

for some tensor Tµν [gµν ]. In the last step we used the fact that both h∗µν and Tµν transform properly

as tensor densities underQ. Thus any part of Sℓ[g] that vanishes on the classical equations of motion
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can be written instead as part of the s0-exact piece, s0Kℓ, i.e. to a canonical transformation taken

to first order.

Secondly, notice that it is important for the above arguments that we are setting Hµν on shell,

but not the background metric ḡµν . This is what allows us to deduce that there cannot be any

purely background part. On the other hand in the background field method one sets all the classical

fields to zero and keeps only the background metric. Although this technique is not the primary

focus of the paper (apart from in sec. 4) the proof here tells us something important about it. Since

on shell, the background field effective action gives the same results [42], we know that divergences

that do not vanish on the background equations of motion descend from functionals of the total

metric gµν , whilst those divergences that vanish on the background equations of motion belong to

canonical transformations and are thus removed by reparametrising hµν not the background field.

3 Explicit expressions for counterterms

We now verify these results in explicit loop computations, up to two loops, in particular we draw

out the intimate relationship between the leading off-shell divergences for the two-point vertex up

to two loops and the one-loop counterterm diagrams [13] and in turn to canonical transformations

in the BRST algebra [5]. Since this necessitates computing, as an intermediate step, the off-shell

divergences in one-loop diagrams with three external legs, two of which are fluctuation fields, we

widened our investigation so as to compute explicitly all off-shell one-loop divergences with up to

three (anti)fields. Below we express these divergences in terms of the minimal-basis counterterms

in Sℓ (ℓ = 1, 2) that one needs to add to the bare action. In minimal subtraction, which we

follow, the counterterms are just minus the divergences. However, since the bare action is a µ-

independent local functional, the RG and CME relationships are most naturally expressed in terms

of the counterterms, as we have seen in secs. 2.5 and 2.6.

In fact it was in the process of computing these that we noticed that purely background metric

pieces were not generated, which motivated the general proof in sec. 2.9. It was also whilst

analysing these that we noticed that the RG relations for counterterms are actually crucial for

consistency of the BRST algebra as realised on the Legendre effective action versus as realised on

the counterterms. This is explained in sec. 2.5. Finally these results allowed explicit verification

that the generalised β function proposal of ref. [25] cannot be correct, which led to us formulating

the detailed analysis provided in sec. 4. We similarly hope that these examples will prove useful

in future studies of perturbative quantum gravity.
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Just like for K in sec. 2.9, it is useful to split the Legendre effective action and bare action

according to antighost number. All antighost levels Sn depend on the graviton fields hµν and h̄µν ,

but their dependence on (anti)ghosts is restricted by the quantum numbers, cf. table 1. Thus

S0 depends only on the graviton fields, whilst Γ0[Hµν , H̄µν ] is the physical part that ultimately

provides the S-matrix, S1 is linear in h∗µν and cµ (in gauge fixed basis (2.18), S1 renormalises the

ghost action), S2 is made of vertices containing two cµ and either one c∗µ or two h∗αβ, and so on.

3.1 One-loop two-point counterterms

3.1.1 Level zero, i.e. graviton, counterterms

Recall from sec. 2.1 that we are using Feynman DeDonder gauge. As explained in the next

subsection, in this case it turns out that the result for the one-loop two-point graviton counterterm

can be expressed entirely in terms of curvatures linearised around the flat metric. In particular let

us introduce for the quantum fluctuation the linearised ‘quantum curvature’

Rµανβ = κR
(1)
µανβ +O(κ2) , (3.1)

where we are expanding gµν = δµν + κhµν , and thus

R
(1)
µανβ = −2∂[µ| ∂[νhβ] |α] , R(1)

µν = −∂2
µνφ+ ∂(µ∂

αhν)α − 1
2 □hµν , R(1) = ∂2

αβhαβ − 2□φ (3.2)

(defining 1
2(tµν ± tνµ) for symmetrisation t(µν), respectively antisymmetrisation t[µν]). Here we

are using φ = 1
2δ

µνhµν
3 and indices are raised and lowered with the flat metric δµν . Following the

definition below (2.61), the linearised Einstein tensor is then G
(1)
µν = −R

(1)
µν +

1
2δµνR

(1). Similarly we

introduce the corresponding linearised background curvatures R̄
(1)
µανβ etc. and linearised background

Einstein tensor Ḡ
(1)
µν , by replacing hµν with h̄µν .

Computing the diagrams in fig. 3.1 we find

S0
1/1 =

κ2µ−2ε

(4π)2ε

∫
x

{61

60
(R(1)

µν )
2 − 19

120
(R(1))2 +

7

20
(R̄(1)

µν )
2 +

1

120
(R̄(1))2

+
41

30
R(1)

µν R̄
(1)µν − 3

20
R(1)R̄(1)

}
. (3.3)

The first diagram gives the first two terms, i.e. the pure quantum terms. The result agrees with

ref. [27]. It was calculated in a general two parameter gauge in ref. [26]. After correcting some

typos and specialising to Feynman DeDonder gauge, it also agrees. The next two terms, the purely

3This definition is the previous one (2.16) after linearisation.
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hµν(p) hαβ(−p)
+

h̄µν(p) h̄αβ(−p)
+

h̄µν(p) hαβ(−p)

Figure 3.1: Two-point graviton diagrams at one loop. The wavy line represents the background

field and the external plain line represents the quantum graviton field. The internal lines represent

both a graviton loop and a ghost loop.

background terms, agree with the famous result in [1] and (up to a factor of 1/2) with [2]. For

more details on these comparisons, see app. A. To our knowledge the last two terms, i.e. the mixed

terms, have not appeared in the literature before.

By (2.39), the terms (3.3) must be part of an s0-closed counterterm action S1/1. Furthermore

according to the proof given in sec. 2.9, since the quantum curvature pieces vanish on the equations

of motion and since there cannot be a separate purely background part, we must be able to express

the entire result as s0-exact, and thus in fact the terms must collect into

S0
1/1 = Q−K1

1/1 . (3.4)

Given that (3.3) is made solely of linearised curvatures, at the two-point level the only possible

terms in K1
1/1 that can contribute, are:

K1
1/1 ∋ κ2µ−2ε

(4π)2ε

∫
x

{
βh∗µνR(1)

µν + γφ∗R(1) + β̄h∗µνR̄(1)
µν + γ̄φ∗R̄(1)

}
, (3.5)

where β, γ, β̄ and γ̄ are parameters to be determined, and we have introduced

φ∗ = 1
2 ḡµνh

∗µν (3.6)

by analogy with (2.16) (although here ḡµν can be replaced by δµν). It is apparent that we have six

numbers in (3.3) to reproduce with only four parameters, and therefore this relation is a non-trivial

check on the formalism. From (2.64), the action of Q− reduces in this case to

Q−h∗µν = −2
(
G(1)µν + Ḡ(1)µν

)
, (3.7)

and thus from (3.4) and (3.5),

S0
1/1 =

κ2µ−2ε

(4π)2ε

∫
x

{
2β(R(1)

µν )
2 − [β + γ](R(1))2 + 2β̄(R̄(1)

µν )
2 − [β̄ + γ̄](R̄(1))2 + 2[β + β̄]R(1)

µν R̄
(1)µν

− [β + β̄ + γ + γ̄]R(1)R̄(1)
}
. (3.8)
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We see that the mixed Ricci-squared terms must have a coefficient which is simply the sum of the

coefficients of the pure quantum and pure background Ricci-squared terms, and likewise for the

scalar-curvature-squared terms. The reader can verify from (3.3) that these two constraints are

indeed satisfied. Therefore there are four independent constraints and we can find a consistent (and

unique) solution. It is:

β =
61

120
, γ = − 7

20
, β̄ =

7

40
, γ̄ = −11

60
. (3.9)

3.1.2 Level one (a.k.a. ghost) counterterms

The level one two-point counterterm is computed by using the classical three-point vertices involving

h∗µν , and transferring to gauge fixed basis using (2.18). We display the result in minimal basis

where it takes its simplest form, since it then contains only the divergent corrections to Qhµν (at

the linearised level, compare (3.10) to (2.4) and (2.17)), but in gauge fixed basis the generated c̄α

terms are the counterterms necessary to renormalise the ghost action, (2.20). We find that

S1
1/1 =

κ2µ−2ε

(4π)2ε

∫
x

{
1

2
h∗µν∂3

µναc
α − 3

4
h∗µν□∂µcν

}
, (3.10)

in agreement with ref. [27], cf. app. A. Again these must belong to s0K1/1 for a suitable choice of

K1/1, which means that we must add to what we have in (3.5). A solution is to add

K1
1/1 ∋ −1

2

κ2µ−2ε

(4π)2ε

∫
x
h∗µν∂2

µνφ , K2
1/1 ∋ −3

8

κ2µ−2ε

(4π)2ε

∫
x
c∗µ□cµ . (3.11)

At the two-point level, it is straightforward to see that the level-two part gives the second term

in (3.10) via Q−K2
1/1, whilst the level-one part gives the first term via QK1

1/1, (3.5) making no

contribution because it is annihilated by Q. On the other hand, (3.5) is still correct for reproducing

S0
1/1 because the level-one part above is annihilated by Q−, as follows by the Bianchi identity for the

Einstein tensor or by recognising that the above level-one part is proportional toQ−(∂αc∗αφ). Indeed

at this stage one has to face the issue that the solution for K is unique only in the cohomology. One

can always add an s0-exact piece to K, in particular one can add s0(∂
αc∗αφ). The above solution

is one choice, in fact the same as that made in ref. [27].

Now let us comment on the results of the previous subsection. The fact that they can be

written covariantly, in terms of curvatures of the background metric, is of course no accident: this

is guaranteed by background diffeomorphism invariance. The fact that one can also do so in terms

of gµν = δµν +κhµν , is however an accident of Feynman DeDonder gauge. At the level of the action
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it is a consequence of the fact that Q−S1
1/1 = 0 in this gauge, and thus the graviton counterterm

action must be annihilated by Q:

0 = s0S1/1 = QS0
1/1 +Q−S1

1/1 = QS0
1/1 . (3.12)

Up to cohomology and normalisation, there is a unique term φ∗□φ ∈ K1/1 that could arise in the

one-loop calculation which would break this ‘quantum diffeomorphism’ invariance. Equivalently in

S0
1 we would find a term proportional to

Q−
∫
x
φ∗□φ = −

∫
x
(R(1) + R̄(1))□φ . (3.13)

Indeed from [26], cf. app. A, we know this term is present in a more general gauge. Furthermore

we will see in sec. 3.3 that at two loops an analogous term is generated even in Feynman DeDonder

gauge, while at one loop but beyond the two-point level many terms ensure that QS0
1/1 ̸= 0.

This completes the calculation at the two-point level because it is not possible to generate

two-point higher level counterterms Sn>1
ℓ (since n is also the pure ghost number).

3.2 One-loop three-point counterterms

This involves computing one-loop diagrams with the topologies given in fig. 3.2. Already at

this stage there are thousands of divergent vertices, and computer algebra becomes essential. We

proceed by comparing the results with the general structure (2.77), i.e. we should find that the

counterterm action takes the form:

S1/1[Φ,Φ
∗] = S0

1/1[gµν ] + s0K1/1[Φ,Φ
∗] . (3.14)

Figure 3.2: Three-point Feynman diagrams at one loop.

As explained in ref. [3], dimensional regularisation allows for the computation of the Gauss-

Bonnet topological term:

S0
1/1[gµν ] =

τµ−2ε

(4π)2ε

∫
x

√
g
(
RµνρσRµνρσ +R2 − 4RµνRµν

)
=

τµ−2ε

(8π)2ε

∫
x

√
g ϵαβγδϵµνρσR

µν
αβR

ρσ
γδ ,

(3.15)
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which is the unique possibility for S0
1/1[gµν ] up to choice of coefficient τ and terms that vanish on

shell (cf. the discussion at the end of sec. 2.9).

Up to the three-point level, K1/1 has no more than antighost number two. The two antighost

levels have the following general parametrisation:

K1
1/1 =

κµ−2ε

(4π)2ε

∫
x

(
β̄h∗µνR̄µν + γ̄φ∗R̄

)
+

κ2µ−2ε

(4π)2ε

∫
x

{
βh∗µν

(
∇̄µ∇̄αhαν − 1

2□̄hµν
)

+ (c1 − β)h∗µν∇̄µ∇̄νφ+ γφ∗
(
∇̄α∇̄βh

αβ − 2□̄φ
)
+ α3h

∗µνR̄µ
αhαν + α4h

∗µνR̄αµνβh
αβ

+ α5h
∗µνR̄µνφ+ α6φ

∗R̄αβhαβ + α7R̄φ∗φ
}
+

κ3µ−2ε

(4π)2ε

∫
x

27∑
i=1

bi
(
h∗h2∂2

)
i
, (3.16)

K2
1/1 =

κ2µ−2ε

(4π)2ε

∫
x

(
c2c

∗
µ□̄cµ + α1c

∗
µc

µR̄+ α2c
∗
µc

νR̄µ
ν

)
+

κ3µ−2ε

(4π)2ε

∫
x

1√
ḡ

(
α8φ

∗∇̄µφ
∗cµ

+ α9h
∗αβ∇̄µh

∗
αβc

µ + α10φ
∗h∗µν∇̄µcν + α11h

∗
αµh

∗α
ν∇̄µcν

)
+

κ3µ−2ε

(4π)2ε

∫
x

21∑
i=1

di
(
c∗ch∂2

)
i
.

(3.17)

Here we have used the symmetries and statistics of the (anti)fields. In particular, the result must

be background diffeomorphism invariant (which implies the factor of 1/
√
ḡ in the terms with two

antifields, because we defined them to transform as tensor densities of weight −1). Furthermore,

we know that the terms with one antifield have two space-time derivatives whilst those with two

antifields have one spacetime derivative. The power of κ and µ then follow from [K] = −1.

The parametrisation must be consistent with the results at the two-point level, hence the ap-

pearance of parameters β̄, γ̄, β and γ from (3.5). We similarly introduce parameters c1 and c2

where, from (3.11), we know that

c1 = −1

2
, and c2 = −3

8
. (3.18)

Background diffeomorphism invariance tells us that the linearised curvatures accompanying β̄ and γ̄

simply become full curvatures (by (3.1) they absorb one power of κ) but, as discussed in sec. 3.1.2,

the appearance of the linearised quantum curvatures in (3.5) is accidental, so it is more appropriate

for the β and γ pieces to appear with their separate parts covariantised, following (3.2). Even

though all these parameters are known, and that includes τ [3,29], we leave them general when we

match to the three-point one-loop results, as extra checks on the formalism.

The remaining eleven αi, twenty-seven bi, and twenty-one di, are genuinely free parameters

to be determined. The schematic representation for the di terms means that one sums over the
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vertices with coefficients di, these vertices being the twenty-one linearly independent combinations

of two spacetime derivatives and one c∗α, c
β, and hγδ. We ensure independence under integration by

parts by taking as representatives those vertices where c∗α is undifferentiated. Since the di terms are

already three-point vertices, as are the bi terms, background covariantisation is ignored there. For

the same reason, we actually do not need diffeomorphism invariant expressions for the α8, · · · , α11

terms, whilst in the other αi terms we actually only need the linearised background curvature.

The sum over bi vertices is defined in the same way as for the di vertices, except that all terms

involving ∂αh
∗αβ are discarded, and likewise any two vertices should be considered equal if they only

differ by such terms on using integration by parts. (This can be implemented straightforwardly

by deriving the vertices in momentum space.) The reason for this restriction is because at the

three-point level, vertices containing ∂αh
∗αβ are already accounted for in the di sum. As in the

discussion in sec. 3.1.2, this is a consequence of the fact that we can add an s0-exact part to K1/1

without altering S1/1, cf. (3.14). At the three-point level we can add (Q + Q−)(c∗h2∂), but Q−

generates the ∂αh
∗αβ terms while Q maps onto combinations in the di sum that contain ∂(αcβ).

Finally, for the same reason we do not want a free parameter for the combination

− κ√
ḡ
s0 (φ

∗h∗µνhµν) = R̄h∗µνhµν + 2φ∗R̄αβhαβ − 2R̄φ∗φ− 2
κ√
ḡ
φ∗h∗µν∇̄µcν . (3.19)

The last three terms on the right hand side appear in our parametrisation, but this is why the first

term is missing from it.

Although the resulting parametrisation is long, it is a dramatic reduction compared to the

thousands of vertices from the Feynman diagram calculation, and therefore in fact the parameters

are vastly overdetermined. That we nevertheless find a consistent solution for all vertices is thus a

highly non-trivial verification of the formalism.

Matching to just the (antighost level zero) pure background h̄3 vertices, we reproduce well-

known results: we confirm that the pure background curvature-squared terms at the two-point

level, cf. (3.3), are covariantised to full background curvatures, as is in fact clear here from our

K1
1/1 (3.16), and confirm that the remaining part is the Gauss-Bonnet term given in (3.15). In this

way we reaffirm the β̄ and γ̄ values from (3.9) and also find

τ =
53

90
, (3.20)

in agreement with previous calculations [3, 29].

One can determine all the coefficients in K1
1/1 by matching to antighost level zero vertices, up

to several vertices parametrised by c1. In fact just using the h2h̄ and h3 vertices is sufficient to
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determine all that can be found at this level, but we matched also to h̄2h vertices to verify the

result and further confirm consistency. The K2
1/1 parameters cannot of course be determined by

matching to antighost level zero vertices, because the lowest antighost level it generates is level

one, via Q−K2
1/1, while c1 and some vertices in the bi sum also remain undetermined because in

K1
1/1 at the three-point level they can be collected into 1

2c1Q
−(c∗ν∇̄νφ).

Now all the parameters in K2
1/1, and c1, can be (over)determined by matching to the full set of

level-one three-point Feynman diagrams with topology of fig. 3.2, i.e. such that one external leg

is a ghost cµ, one external leg is h∗αβ and the remaining leg is h or h̄. In this way we recover the

previously stated values for c1, c2, β̄, γ̄, β and γ, and determine that

α1 =− 1

8
, α2 = − 1

24
, α3 =

161

120
, α4 =

1

120
, α5 = −3

4
, α6 = − 7

15
,

α7 =
19

60
, α8 = −1

6
, α9 = − 1

12
, α10 = − 4

15
, α11 = −1

6
, (3.21)

and also the bi and di parameters as given below:

27∑
i=1

bi
(
h∗h2∂2

)
i
=

5

12
h∗µνφ∂2

µνφ− 13

160
h∗µν∂2

µνh
β
αh

α
β +

1

4
h∗µα (∂νhαν∂µφ− ∂µ∂

νhανφ)

+
61

240
h∗µα (∂µhαν∂

νφ− hαν∂
ν∂µφ) +

7

80
h∗µα

(
∂µhβν∂

νhβα − hβν∂
ν∂µh

β
α

)
− 61

240
h∗µα

(
∂νhβ

ν∂µh
β
α − ∂2

µνhβ
νhβα

)
+

13

60
φ∗∂αhβν∂

νhβα +
43

60
φ∗hβν∂

ν∂αhβα

+
77

120
φ∗∂νhβν∂

αhβα − 53

60
φ∗hαν∂

ν∂αφ− 17

10
φ∗∂νhαν∂

αφ− 3

10
φ∗φ□φ− 11

60
φ∗φ∂2

ανh
αν

+
9

40
φ∗hαβ□hβα +

14

15
φ∗∂νφ∂

νφ− 11

80
φ∗∂νh

α
β∂

νhβα − 131

240
h∗µν∂αhµν∂αφ

− 1

4
h∗µνhαµ∂

2
αβh

β
ν −

1

12
h∗µν∂αh

α
µ∂βh

β
ν −

27

80
h∗µν∂βh

α
µ∂αh

β
ν +

17

80
h∗µν∂αhµβ∂

αhβν

+
7

80
h∗µν∂2

αβhµνh
αβ − 1

2
h∗µν□hµβh

β
ν +

37

80
h∗µν∂αhµν∂

βhαβ − 1

3
h∗µνhµν□φ

+
1

3
h∗µνhµν∂

2
αβh

αβ +
11

24
h∗µν□hµνφ . (3.22)

21∑
i=1

di
(
c∗ch∂2

)
i
=

1

12
c∗µ∂2

µνc
νφ− 121

480
c∗µ∂

µcν∂νφ+
61

480
c∗µ∂

µcν∂αh
α
ν −

11

24
c∗µ∂2

µαc
νhαν

− 1

3
c∗µcν∂2

µνφ+
1

6
c∗µcν∂2

αµh
α
ν −

1

24
c∗µ∂νc

ν∂µφ− 101

480
c∗µ∂αc

ν∂µhαν −
1

8
c∗α∂

2
µνc

νhαµ

− 119

480
c∗α∂

µcν∂νh
α
µ +

1

12
c∗αc

ν∂2
µνh

αµ +
1

8
c∗α∂νc

ν∂µhαµ − 301

480
c∗α∂

νcα∂νφ+
1

4
c∗αc

α□φ

+
1

3
c∗α□cαφ− 1

12
c∗αc

α∂2
µνh

µν +
27

160
c∗α□cµhαµ − 239

480
c∗α∂νc

µ∂νhαµ − 1

4
c∗αc

µ□hαµ

+
7

160
c∗α∂

2
µνc

αhµν +
241

480
c∗α∂

νcα∂µhµν . (3.23)
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Since the above provides us with the full expression for K1/1 up to the three-point level, we

get as a bonus the full expression up to three-point level for the antighost level-two counterterm,

without having to compute it from Feynman diagrams, since it is given by S2
1/1 = QK2

1/1. This

completes the explicit calculation of all off-shell one-loop divergences with up to three (anti)fields.

3.3 Two-loop double-pole two-point graviton counterterms

Now as advertised we use the one-loop counterterm diagrams, illustrated in fig. 3.3, to compute

the two-loop 1/ε2 counterterm via the RG relation (2.44). We limit ourselves to the two-point

diagrams at antighost level zero, i.e. with either a quantum or background graviton external leg.

This is already enough for a non-trivial explicit test of the second order canonical expansion relation

(2.71).

Figure 3.3: RG relates the 1/ε2 pole in the two-loop two-point counterterm vertices to one-loop

counterterm vertices, represented by the crossed circles, via one-loop counterterm diagrams with

the above topologies.

For the first diagram in fig. 3.3, we need the one-loop two-point counterterm vertices with

purely quantum legs. They are given by (3.10) and the first two terms in (3.3) for ghosts and

graviton respectively. (In the former case we need to shift to gauge fixed basis using relation (2.18)

at the linearised level.) For the second diagram we need the one-loop three-point counterterm

vertices with two quantum legs and either an external hαβ or h̄αβ. These can be ported directly

from intermediate results created as a side-product of the computation reported in the previous

subsection. Alternatively, they can be generated by evaluating s0K1/1 using the explicit expressions

given there. (As expected the topological counterterm (3.15) can be disregarded since it makes no

contribution to the Feynman integrals.)
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The result we find is that for two-point vertices:

S0
2/2 = −1

2

κ4µ4ε

(4π)4ε2

∫
x

{
11

36
R̄(1)□R̄(1) +

5

72
R̄(1)µν□R̄(1)

µν − 469

3600
R(1)□R(1) +

79

200
R(1)µν□R(1)

µν

+
781

3600
R̄(1)□R(1) +

53

150
R̄(1)µν□R(1)

µν − 31

720

(
R̄(1) +R(1)

)
□2φ

}
, (3.24)

where the overall factor of −1
2 is the conversion (2.44) from the double-pole in fig. 3.3 to the two-

loop counterterm S2/2. As we will see this result passes a highly non-trivial consistency check in that

it satisfies the second order canonical transformation relation (2.71). As far as we know the above

result has not appeared in the literature before, except for the one term: R̄µν□̄R̄µν [2]. However

this was quoted there as part of some partial results that unfortunately contain an error [25].

Nevertheless comparing the coefficients for this one term, we find that they agree up to a factor of

half, see app. A.

Recall that the one-loop level-zero two-point result (3.3) can be written entirely in terms of

linearised curvatures (3.2) and is thus invariant under (linearised) diffeomorphisms, in particular

also for the fluctuation field hµν . This latter invariance is a consequence of invariance under the

linearised BRST charge Qhµν = ∂(µcν). Recall also from sec. 3.1.2 that this property is actually

an accident of Feynman DeDonder gauge. The presence of the □2φ term above shows that at two

loops, one’s luck runs out and this property is violated. As is evident from the form of this last

term, it just corresponds to inserting another □ into the unique one-loop Q-invariance-breaking

possibility (3.13).

In the remainder of this subsection we will show that the double-pole (3.24) corresponds to a

canonical transformation taken to second order, i.e. can be expressed as in (2.71):

S2 =
1

2
(S1,K1) + s0K2 . (3.25)

Actually recall that this expression follows from the non-linear CME relation s0S2 = −1
2(S1, S1),

viz. (2.41), on assuming that S1 is given only by the exact piece s0K1, whereas the one-loop solution

(3.14) also contains the Gauss-Bonnet term (3.15). However since the latter is topological it makes

no contribution to the antibracket and thus (3.25) is indeed the correct solution.

From sec. 3.2, it is clear that (S1, S1) cannot vanish at the three-point level, and thus the non-

linear CME relation itself is highly non-trivial. However for the two-point vertices (S1, S1) in fact

does vanish. This is straightforward to see by inspection since for the two-point vertices we only

have the pure curvature antighost level zero part, S0
1/1, as given in (3.3), and the antighost level
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one part, S1
1/1, as given in (3.10). But substituting these into (S1/1, S1/1) the net effect is to replace

hµν in a ‘quantum curvature’ by either ∂3
µναc

α or □∂µcν (up to some coefficient of proportionality),

causing the result to vanish since both of these are pure gauge.

Thus the non-linear CME relation (2.41) only implies that the two-point vertex in S2 is s0-

closed. The problem is that the two-point level is to a certain extent degenerate. A related point

is that if we take the action only to have an antighost level zero piece, and take this to be any

product of linearised curvatures, that is any one of the terms in S0
1/1 of (3.3), then this action is s0-

closed at the two-point level since the linearised quantum curvatures are invariant under linearised

diffeomorphisms. Nevertheless as we will see, this test is still non-trivial because although at the

level of two-point vertices 1
2(S1,K1) in the general solution (3.25) is s0-closed, it is not s0-exact.

Specialising (3.25) to antighost level zero and divergences we have

S0
2/2 =

1

2
(S0

1/1,K
1
1/1) +Q−K1

2/2 . (3.26)

Substituting
∫
x h

∗µν∂2
µνφ for K1

1/1 into the antibracket, we see that it vanishes for the same reasons

as above. Therefore the (3.11) part of K1/1 makes no contribution. Since the remaining part of

K1/1, viz. (3.5), is made of linearised curvatures, we see that the antibracket contributes terms with

linearised curvatures only. Explicitly, we find

1

2
(S0

1/1,K
1
1/1) =

κ4µ4ε

(4π)4ε2

∫
x

{
− 1

2
β̄(β + β̄)R̄(1)

µν□R̄(1)µν − β2R(1)
µν□R(1)µν

+
1

2
(3γ2 + 2βγ + β2)R(1)□R(1) +

1

4
(3γ̄2 + 3γ̄γ + 2β̄γ̄ + β̄γ + β̄2 + βγ̄ + ββ̄)R̄(1)□R̄(1)

− 1

2
β(β + 3β̄)R(1)

µν□R̄(1)µν +
1

4
(9γγ̄ + 3γ2 + 3β̄γ + 3βγ̄ + 2βγ + 3ββ̄ + β2)R(1)□R̄(1)

}
, (3.27)

where recall that the parameters were determined as in (3.9). Now this cannot come from an

s0-exact expression because if it did, we could write it as Q−K1 for some K1. We can check if

this is so by using the same rule discussed in sec. 3.1.1, i.e. from (3.7) we know that this would

imply that the coefficient of the mixed terms above must be equal to the sum of the coefficients

of the equivalent pure quantum and pure background pieces. It is easy to see that this does not

work. Similarly one can verify that the curvature terms in (3.24) do not sum to something that is

Q−-exact.

But according to (3.26), on subtracting (3.27) from (3.24) we should be left with a Q−-exact

piece. We have already seen that this is true of the non-covariant term, the last term, in (3.24).

The remaining parts are pure curvature terms and must thus have the parametrisation (3.5) except

with an extra □ inserted (and different coefficients), up to some Q−-exact remainder, Q−R ∈ K1
2/2
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(which does not contribute to (3.26) because Q− is nilpotent). Matching to the above results, we

find that this is indeed the case and thus we derive K1
2/2 at the two-point level in the form

K1
2/2 =

κ4µ4ε

(4π)2ε2

∫
x

{ 877

28800
h∗µν□R(1)

µν +
71

1800
φ∗□R(1)

+
361

28800
h∗µν□R̄(1)

µν +
2719

14400
φ∗□R̄(1) − 31

1440
φ∗□2φ

}
+Q−R . (3.28)

Like in (3.5), the remainder term Q−R has ∂αh
∗αβ as a factor. It could also be derived by matching

to the two-loop double-pole level-one counterterm diagrams, and they can be computed using the

results we have already obtained. However the above form for K2/2 is sufficient for our purposes.

4 Generalised beta functions and why they are not finite

In this final section we comment on some ideas for generalised β-functions, where the field is taken

to play the rôle of a collection of couplings. The key idea is to exploit relations that follow from

assuming that these β-functions are finite. Unfortunately this assumption is incorrect. We explain

why natural generalisations that respect the BRST symmetry also fail to work.

Inspired by ref. [43] and its many follow-ups e.g. [44, 45], which themselves are inspired by

refs. [46–48], the main proposal of ref. [25] consists of two key steps. The first key step is to allow

for a non-linear renormalisation of the metric, replacing gµν in the Einstein-Hilbert term of the

classical action (2.4) with a bare metric g0µν which is then expanded as

g0µν(x) = gµν(x) +
∑
k=1

1

εk
gkµν(x) . (4.1)

The gkµν are assumed to be local diffeomorphism covariant combinations constructed from covariant

derivatives and curvatures using the renormalised metric gµν . With this assumption, the proposal

only applies to non-linear renormalisation of the background metric.

In ref. [25] the µ dependence in (4.1) is simplified to an overall multiplicative µ−2ε on the right

hand side, by taking the mass dimensions to be [g0µν ] = −2ε, while [gµν ] = 0 and [κ] = −1 (also in d

dimensions). However the same physics can be arrived at by including µ in the more conventional

way, as we do in this paper. Thus our metrics are taken to be dimensionless, while [κ] = −1 + ε.

Then by dimensions, the gkµν are forced to have explicit dependence on µ, cf. sec. 2.6 and sec. 3.

In fact the ℓ-loop contribution is constructed from 2ℓ covariant derivatives, rendered dimensionless

by the factor (κµ−ε)2ℓ.
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A renormalisation of form (4.1) can provide all the covariant counterterms in the bare action

that vanish on the equations of motion. For example the purely background metric counterterms

(in Feynman – De Donder gauge) are [1], cf. (3.3) and below (3.18),

S1 =
µ−2ε

(4π)2ε

∫
x

√
ḡ

(
1

120
R̄2 +

7

20
R̄2

µν

)
. (4.2)

These counterterms can be generated by defining

ḡ0µν = ḡµν +
κ2µ−2ε

(4π)2ε
ḡ1µν , where ḡ1µν =

7

40
R̄µν +

11

120
ḡµνR̄ (4.3)

(where, from here on, we make explicit the κµ−ε/(4π) dependence in ḡkµν).

Now by insisting that the bare metric is independent of µ, and differentiating both sides with

respect to µ, one obtains a kind of generalised “beta function”, βαβ = µ∂µ gαβ for the renormalised

metric (non-linear wavefunction renormalisation might be a better term). For the above example,

from (4.3), we have for the background metric to one loop,

β̄µν = 2
κ2µ−2ε

(4π)2
ḡ1µν . (4.4)

The second key step is actually implicit in ref. [25]. It is the assumption that such generalised

beta functions are finite in the limit ε → 0. We have just seen that this is trivially true at one

loop, but at higher loops this is a powerful assumption. Just as with the usual beta functions in a

renormalisable theory, the one-loop result would then be enough to determine the leading pole 1/εℓ

at each loop order ℓ without computing any more Feynman diagrams. To see this in our example,

assume we already know the leading two-loop purely background counterterm and have chosen ḡ2µν

to generate it via

ḡ0µν = ḡµν +
κ2µ−2ε

(4π)2ε
ḡ1µν +

κ4µ−4ε

(4π)4ε2
ḡ2µν , (4.5)

where the prefactor follows because ḡ2µν will be formed from four background covariant derivatives.

Then cancellation of the 1/ε single-pole in β̄µν tells us that

ḡ2αβ =
4π2µ2ε

κ2
µ∂µḡ

1
αβ[ḡ] , (4.6)

Applying the Leibniz rule and using (4.4), we see that ḡ2αβ should in fact be computable simply by

applying a first order shift of the background metric on the one-loop result:

ḡ2αβ = δḡ1αβ[ḡ] , where δḡµν =
1

2
ḡ1µν . (4.7)

Unfortunately this does not work as can be verified explicitly at the two-point level by using

the pure background terms from (3.24) (for higher order see the discussion below that equation).
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The reason is that the second key step, the assumption that these generalised beta functions are

finite, is incorrect. In the original incarnation as applied to the target metric of the two-dimensional

sigma model [46–48], it was correct, because the target metric actually represents an infinite set of

couplings. But applied to the fields themselves, as in the proposal of ref. [25], it is not correct.

The obstruction to finiteness of β̄µν shows up most clearly in the gauge fixing. The result (4.2)

is derived using De Donder gauge (2.15). Clearly the transformation (4.5) alters the gauge (2.15)

(by a divergent amount). That is a problem because the Legendre effective action is not the same

in different gauges except on shell. But ḡ2µν in (4.5) has been chosen to cancel a part that only

exists off shell.

In fact let us now recall that counterterms are required that depend on all combinations of

the fields, in particular the quantum fields, as we have seen. In the background field method it

is possible to work exclusively with diagrams that have only external background field legs (as

in e.g. [3]). However even if we do not explicitly track the value of counterterms that cancel

divergences in vertices involving quantum fields, they must be there in practice because they cancel

sub-divergences in higher loops, and higher loop divergences are local as required only if all these

sub-divergences have been cancelled [28,49,50], as we recalled in sec. 2.6.

Then as we saw in sec. 2.9, the ‘new’ divergences at each loop order are s0-closed. Those

that vanish on the equations of motion, are s0-exact and correspond to infinitessimal canonical

transformations (2.69) between the antifields and quantum fields. As we proved there, and also

verified in sec. 3, there is no separate purely background renormalisation. What happens instead is

that purely background counterterms also get absorbed by these canonical transformations. This

extends to the non-linear terms that appear beyond one loop order. For example we saw that

the leading (i.e. double-pole) counterterm at two loops, (3.26), also involves carrying the one-loop

canonical transformation to second order, as we saw in sec. 2.8.

Now it is clear that if the proposal of [25] is going to work, it should apply not to the background

metric, but to the antifields and quantum fields. Indeed the second-order canonical transformation

δϕ(∗) given in eqn. (2.74), is the correct non-linear transformation between bare (anti)fields

ϕ
(∗)
0 = ϕ(∗) + δϕ(∗) (4.8)

and renormalised (anti)fields ϕ(∗), such that it will generate through Taylor expansion (2.76) of the

classical action, all the required counterterms that vanish on shell, up to two loops.4

4The Jacobian for this local transformation vanishes in dimensional regularisation, recall below (2.31).
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Independence of ϕ
(∗)
0 on µ, then implies the generalised beta functions

βA[ϕ, ϕ∗] = µ∂µϕ
A and β∗

A[ϕ, ϕ
∗] = µ∂µϕ

∗
A . (4.9)

Following the previous argument, if we assume that these beta functions are finite, we can derive

K2 from K1 without computing Feynman diagrams. Once again we can check this idea explicitly

using the results for K1 from sec. 3.1. It turns out that it implies that at the two-point level K2

must vanish. But from (3.28) this is incorrect. In fact, irrespective of the details, this proposal

cannot work because the K1 terms just furnish linearised curvatures for K2, whereas K2 has the

explicitly non-covariant piece – the last term under the integral in (3.28). Again, the mistake in

this reasoning is the assumption that the generalised beta functions are finite.

To see why they cannot be finite, note that the partition function (2.28) now takes the form

Z[J, ϕ∗] =

∫
Dϕ e−S[ϕ0,ϕ∗

0]+ϕAJA , (4.10)

Here the bare antifields are responsible for generating all the counterterms that vanish on shell,

via canonical transformations (2.74), whilst S itself contains the counterterms for cohomologically

non-trivial pieces which depend only on the total metric, such as the topological term (3.15) at one

loop, and the Goroff-Sagnotti term [2]

S2 ∋ 209

5760

κ2µ−2ε

(4π)4ε

∫
x

√
g R γδ

αβ R ϵζ
γδ R αβ

ϵζ (4.11)

at two loops. All Green’s functions are then finite (in particular this is so for the Legendre

effective action, which is a functional of the classical fields ΦA and the renormalised antifields

Φ∗
A = ϕ∗

A). However for the operators that vanish on shell, we are now attributing µ dependence

to the renormalised (anti)fields ϕ(∗) rather than renormalised couplings ciℓ as before. Unfortunately

µ-independence of the bare action S[ϕ0, ϕ
∗
0] then implies that βA cannot be finite since:

µ∂µZ[J, ϕ∗] =

∫
Dϕ βA[ϕ, ϕ∗]JA e−S[ϕ0,ϕ∗

0]+ϕAJA . (4.12)

Indeed the left hand side is finite by construction, but the right hand side involves the insertion

of βA which is local and non-linear in renormalised quantum fields. The insertion of such terms

generates new divergences, and the only way they can be cancelled is if in fact βA already contains

precisely the right divergences to cancel them.

5 Discussion and Conclusions

Off-shell counterterms in quantum gravity, defined perturbatively as an effective theory about a

background metric ḡµν , are invariant under background diffeomorphisms, BRST, and the RG. In
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this paper we have drawn out some of the consequences of the way these symmetries are interwoven

with each other.

In particular we have shown in sec. 2.9 that at each new loop order the new divergences,

those that are annihilated by the total classical BRST charge s0, can be characterised as being

either diffeomorphism invariant functionals of the total metric gµν which do not vanish on the

classical equations of motion (i.e. do not vanish when Gµν = 0) or as s0-exact functionals which

are thus first order canonical transformations of the antifields and quantum fields (cf. sec. 2.8). In

particular we show that there are no separate purely background field divergences. Then it follows

that those background field terms that do not vanish on the equations of motion Ḡµν = 0, are part

of the diffeomorphism invariant functionals of the total metric, whilst those that do vanish on the

equations of motion are renormalised by reparametrising the quantum fluctuation hµν as part of

the canonical transformations. The background metric itself is never renormalised.

By adding the antifield sources for BRST transformations, we keep track of the deformations of

the BRST algebra induced by renormalisation. These appear as part of the s0-exact counterterms.

Whilst the Zinn-Justin/CME equation is preserved at each loop order ℓ for both the bare action

and the Legendre effective action, the BRST transformations are altered in a non-linear way beyond

one loop. As we demonstrated in sec. 2.5 this brings the Legendre effective action and bare action

realisations of the CME equation into tension with each other. This tension is resolved by the RG

identities for a perturbatively non-renormalisable theory, which relate lower loop ℓ′ < ℓ counterterm

diagrams to higher order poles at ℓ-loop order [13].

In this paper we only demonstrated how this works at two loops. A fully general understanding

of how the RG ensures consistency for BRST seems possible, following the general understanding

of the RG identities [13] and e.g. the proof of renormalisability put forward in ref. [5] for effective

theories with gauge invariance (the latter does not address the above tension but proceeds assuming

both realisations of the CME remain consistent with each other).

Let us emphasise that the way the RG and BRST relations work together is quite remarkable.

On the one hand the RG relates the two-loop double-pole vertices to the one-loop single pole vertices

through a linear map which however involves computing further one-loop Feynman diagrams (the

counterterm diagrams). On the other hand BRST, through the second-order CME relation (2.41),

directly relates the two-loop double-pole vertices to the square of the one-loop single-pole vertices,

i.e. without involving further loop calculations. In a sense then the BRST relations achieve what

generalised beta function proposals, cf. sec. 4, fail to do.

However the BRST relations do not determine the higher pole vertices completely but only
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up to an s0-closed piece, for example this is evident in the two-loop relation (2.41): s0S2/2 =

−1
2(S1/1, S1/1). They are thus less powerful than the RG identities. In fact in sec. 3.3, we saw in

Feynman – De Donder gauge that the non-linear term on the right hand side starts only at the

three point level. As we explained, at the two-point level the equations degenerate, although they

still allow a unique determination of the second order canonical transformations and thus also the

new s0-exact piece.

Let us note that the way the RG works to ensure consistency of BRST invariance, is not unique

to non-renormalisable gauge theories. However in renormalisable theories, the divergent vertices are

those in the original action. The RG identities for counterterm diagrams then play a less dramatic

rôle in that they just ensure that these divergences appear with the correct sign so that they can

be renormalised multiplicatively.

For quantum gravity, we verified the assertions above in sec. 3 by computing counterterms

at one-loop up to the three-point level and up to two-loops for the graviton two-point vertex.

Exploiting the BRST properties we gave a general parametrisation of the one-loop three-point

counterterms and determined the parameters by matching to the graviton and ghost one-loop

integrals. The antighost level two counterterms (which renormalise the BRST transformation of

the ghosts) then follow without further Feynman diagram computations.

These results could be readily extended, for example the ghost two-loop double-pole two-point

counterterms can be computed using the vertices presented here and this would allow the form of

the two-point K2/2 to be fully determined, cf. eqn. (3.28). An interesting but more challenging

project would be to work out the form of the one-loop counterterms to the next order in h̄µν since

this would allow one to determine the two-loop double-pole three-point background field vertices

which would then allow a complete comparison with the off-shell results reported in ref. [3]. The

parametrisation we give for K1/1 in (3.16) and (3.17) looks sufficient to compute the corresponding

one-loop counterterm diagrams, if the di and bi terms are covariantised, however this introduces a

number of new terms with undetermined coefficients, in particular we would need to determine the

h∗h2R̄(1) terms. The simplest way to do that would appear to be by matching to one-loop h∗chh̄

divergences.

In our discussion of generalised beta functions in sec. 4, we explained why they cannot be

finite and verified this using our explicit results from sec. 3. In particular for generalised beta

functions based on the canonical transformations we obtained the formula (4.12) which shows why

they cannot be finite. Nevertheless, this formula implies some interesting relations between the

divergent higher order coefficients and the divergences generated by expectation values of the lower
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coefficients. It would be interesting to verify these and explore further their consequences.

Finally let us return to our original motivation and note that the counterterms we have derived

give directly the leading log behaviour at large euclidean momentum. Indeed, the one-loop diver-

gence (2.47) and counterterm (2.48) taken together determine the ln
(
p2/µ2

)
part. One can check

explicitly that the two-loop double pole (2.52) from diagrams using only tree level vertices, together

with divergences (2.51) in one-loop counterterm diagrams and the double-pole counterterm from

(2.54), conspire to cancel all but a remaining [ln
(
p2/µ2

)
]2 term. Thus from the explicit results (3.3)

and (3.24) we see that the leading log contribution of for example the two-point hµν vertex is given

to two loops, in Feynman – De Donder gauge, as:

hµνΓ
µναβ(p)hαβ = p2

(
φ2 − 1

2
h2µν

)
+

κ2

(4π)2
ln

(
p2

µ2

)(
61

60
(R(1)

µν )
2 − 19

120
(R(1))2

)
− κ4p2

(4π)4

[
ln

(
p2

µ2

)]2(
469

7200
(R(1))2 − 79

400
(R(1)

µν )
2 +

31

1440
p2R(1)φ

)
, (5.1)

where hµν and φ = 1
2h

µ
µ here just provide the polarisations, and the linearised curvatures (3.2)

should be similarly understood and cast in momentum space, thus R
(1)
µανβ = 2p[µ| p[νhβ] |α] etc.

Of course as physical amplitudes these corrections vanish on shell, while for the moment it

remains just a dream that a way can be found to resum these leading contributions to all orders,

where one might get powerful insights into the non-perturbative UV behaviour of quantum gravity.

Nevertheless we hope that the detailed understanding we have gained of some of the consequences

of combining background diffeomorphism invariance, RG invariance, and BRST invariance, bring

that dream a step closer to reality.
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A Comparisons with the literature

Here we outline the differences in convention and notation that need to be taken into account in

order to compare with other results in the literature.

The two-point purely quantum one-loop counterterm given in (3.3), corresponding to the first

diagram in fig. 3.1, was computed in a general two parameter gauge (α̃∂µhµν+ β̃∂νh
ρ
ρ)2 in ref. [26].

(We put a tilde over his parameters so as not to confuse with the ones in this paper.) After taking

into account the Minkowski signature and that factors of 1/(2π)4 are accounted for differently, it

should coincide with the first two terms in (3.3) on specialising α̃ = 1 and β̃ = −1
2 to get Feynman

DeDonder gauge.

Initially the results did not coincide. Recomputing the two-point vertex in this general gauge

we found the following typos in ref. [26]: in the square brackets of his T3 there should be an extra

term: +45
8 β̃

4/α̃2, and in T4 the term −135(β̃2/α̃) should read −135(β̃2/α̃2). Finally his parameter

a should be defined as a = 1
2T2 − T3, rather than 1

2E4 as stated. Once these are fixed, we find

complete agreement.

The result for the purely quantum pieces in (3.3) also agrees with the result quoted in ref. [27] on

recognising that there the divergence can be recovered by setting ln(1/µR) = 1/2ε. This mapping

is also the one to use to compare the level one divergence with (3.10).

The purely background terms in (3.3) agree with ref. [1] on recognising that their ε = 8π2(d−4),

their definition of Ricci curvature is minus ours, cf. below (2.5), and that their action is defined to

be the opposite sign from the usually defined Euclidean action, cf. (2.4). Their normalisation of

the scalar curvature term is also non-standard but this is repaired by mapping gµν 7→
√
2κgµν and

has no effect on the one-loop result, since it is a curvature-squared action.

In the famous paper [3], this result is reproduced but the value quoted is half that of (3.3).

To see this one should note that it is Minkowski signature and their ε = 4 − d i.e. is twice ours.

(There is also an accidental extra factor of 1/ε in their quoted equation.) They also quote a value

for some two-loop double-pole divergences. The one point of comparison is the result (3.24) for the

R̄µν□R̄µν counterterm. Using these translations we see that their result is again half of what we

find.
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