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1 Introduction

This paper is about four dimensional perturbative quantum gravity, constructed by quan-
tising the Einstein-Hilbert action. As is well known, this quantum field theory is not
perturbatively renormalisable [1–4]. At each new loop order ℓ, counterterms have to be
added to the bare action to cancel ultraviolet (UV) divergences, and associated with these
counterterms are new operators and renormalised couplings that did not exist in the bare
action at lower loop order. Nevertheless perturbative quantum gravity can be consistently
treated as an effective theory in this way [5], see also [6, 7], in much the same way as the
(similarly non-renormalisable) chiral perturbation theory of low energy pions [8–13].
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Our initial motivation was to explore the possibility that the renormalisation group (RG)
in this context might provide a route to learning something useful about the non-perturbative
behaviour of quantum gravity. In particular, even in a perturbatively non-renormalisable
theory, the RG relates the leading UV divergence at each new loop order ℓ to one-loop
(ℓ = 1) divergences [13]. More physically, it allows us to compute in this way the leading
log power (lnµ)ℓ, of the standard arbitrary RG energy scale µ, at each loop order ℓ. (These
are called chiral logs in pionic perturbation theory [8–13].) If it were possible to use the
RG relations to compute these leading terms to arbitrarily high loop order, and resum
them, we would get a powerful insight into the UV behaviour of quantum gravity at the
non-perturbative level.

In perturbative quantum gravity the leading divergences actually vanish on-shell. They
are therefore field reparametrisations, and have no effect on the S-matrix. However if we
keep in mind that the UV behaviour of the full two-point correlator is characterised by its
off-shell dependence, we see that these leading divergences and associated powers of lnµ,
could nevertheless be important. For example, after resumming them, one might find that
the non-perturbative UV behaviour of the two-point correlator, and potentially thus that
of quantum gravity more generally, is very different from what one would naïvely conclude
order by order in perturbation theory.

In a non-renormalisable gauge theory, divergences that vanish on the equations of
motion (of the quantum fields), are related to modifications of the BRST algebra [5] (see
also [14–18]).1 At each loop order the corresponding counterterms modify the BRST
algebra in a way that remains consistent with the Zinn-Justin identities [19, 20]. They
do this by generating canonical reparametrisations of the antifields (sources for BRST
transformations) [21–24] and quantum fields.

On the other hand as we already mentioned, in a generic non-renormalisable theory the
RG tells us that the leading divergences can be expressed recursively in terms of divergences
in one-loop diagrams, namely one-loop counterterm diagrams, being those that contain at
least one counterterm vertex [13]. As we demonstrate in section 2.5, these recurrence relations
are actually crucial for consistency of the above canonical transformations. Unfortunately
for a non-renormalisable theory, the one-loop counterterm diagrams are themselves new
and non-trivial at each new loop order, and thus provide a practical obstruction to deriving
the leading divergence at arbitrary order.

Viewed in this light the proposal of ref. [25], would appear to potentially provide a
breakthrough. The key idea is to exploit the pole equations that follow from assuming finite
generalised β-functions for the field reparametrisations. As we will see in section 4, they
imply that the leading divergences at higher loops (ℓ > 1) should actually be computable
by recursive differentiation, in particular without computing any more Feynman diagrams.
Unfortunately, the proposal is not correct as will become clear in this paper. We spell this
out in detail in section 4.

One problem with exploring these ideas is that there are effectively no explicit higher-
loop off-shell leading divergences in the literature that one can test against. Some purely

1Actually this was established only for vanishing background field. We treat the non-vanishing case in
section 2.9.
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background field off-shell two-loop 1/ε2 divergences appear in the famous paper ref. [3], but
unfortunately they contain an error, as pointed out in ref. [25].

All of the above considerations motivated us to compute explicitly (in Feynman-De
Donder gauge and dimensional regularisation) the leading off-shell divergences for the two-
point vertex up to two loops, and in particular to draw out their intimate relation to the one-
loop counterterm diagrams [13] and to canonical transformations in the BRST algebra [5].
Since this necessitates computing, as an intermediate step, the off-shell divergences in
one-loop diagrams with three external legs, two of which are quantum, we widened our
investigation so as to provide explicit results for all off-shell one-loop divergences with up
to three fields.

In fact even for just the graviton one-loop two-point divergence, the complete results
do not appear in the literature. Famously, the pure background part appears in ref. [1].
The pure quantum part appears in ref. [26], cf. also appendix A, and ref. [27]. But to
our knowledge the divergence in the mixed quantum background vertex has not appeared
before in the literature. These three divergences can be expressed in terms of appropriately
defined linearised curvatures. (For the quantum field, this is an accident of Feynman-De
Donder gauge, cf. section 3.1.2.) However the three expressions are all different (thus not
as assumed in ref. [28]). Although they are all different, they are not independent. Their
relation is precisely such that all three are removed by a canonical transformation of the
quantum fields (and antifields).

This may come as a surprise since a priori one might expect that a separate reparametri-
sation of the background metric should also be performed (in fact this is what is assumed
and employed in ref. [25]). However in section 2.9 we show in general that this does not
happen. New divergences at each loop order which involve background and quantum
fluctuations and do not vanish on the equations of motion, are purely a function of the
total metric (that combines background and fluctuation), whilst all other divergences are
renormalised by a canonical transformation of the quantum fields and antifields.

We show explicitly that this scenario continues to hold at the three-point level, where
now thousands of vertices are divergent. We verify that the divergence in the Gauss-Bonnet
topological term [3, 29] is indeed a function only of the total metric, whilst all other
divergences are removed by a canonical transformation on the antifields and quantum fields.

Then in section 3.3 we use the one-loop counterterm diagrams to derive the leading
divergence at two loops in the pure background, pure quantum, and mixed, two-point
vertices. At this stage the dependence on the quantum field can no longer be written
in terms of linearised curvatures, reflecting the fact that BRST transformations are now
modified to the extent that they do not reduce to diffeomorphisms. Nevertheless, taking
proper account of non-linearities in the Zinn-Justin equations, we verify again that all
these divergences can be removed by a canonical transformation on the antifields and
quantum fields.

The structure of the paper is as follows. In section 2 we define the BRST transformations
for the quantum fluctuation field and ghosts in the presence of a background metric.
We develop the formalism that is needed to cope with the fact that BRST invariance
is significantly altered in the process of renormalisation. Consistency is maintained by
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preserving the Zinn-Justin equation [19, 20] a.k.a. CME (Classical Master Equation) [21–23].
We work with so-called off-shell BRST and display results in so-called minimal basis, since
it provides the most elegant and powerful realisation, but in section 2.3 we explain why
the calculations themselves are essentially the usual ones. Both the bare action and the
Legendre effective action satisfy the Zinn-Justin equation [19, 20] as we review in sections 2.1
and 2.4 respectively, but beyond one loop this leads to a tension and this tension is resolved
by the RG relations for counterterm diagrams, as we explain in sections 2.5 and 2.6.

New divergences are invariant under the total classical BRST charge s0 which incorpo-
rates not only the BRST transformations but also the action of the Koszul-Tate operator.
Taking into account the presence of the background metric, their properties are developed
in section 2.7. Since s0 is nilpotent, solutions are classified according to its cohomology.
As we recall in section 2.8, those solutions that are s0-exact are first order canonical
transformations of the CME. At two loops we need also the canonical transformations to
second order and their relation to the perturbatively expanded CME. This is derived in
section 2.8. Then in section 2.9 we derive the general solution for s0-closed divergences.
We show that cohomologically non-trivial solutions can be taken to be functions of only
the total metric, with the rest being s0-exact, in particular there are no separate purely
background metric divergences.

As already mentioned, in section 3 we compute for the first time many off-shell
counterterms that appear up to two loops, and use them to verify all these properties.
In this way also we provide a concrete example of how the BRST transformations get
appreciably modified by loop corrections. In section 4 we investigate the proposal for
generalised beta-functions for field reparametrisations. We start by assuming as in the
original proposal that it is the background metric that should be reparametrised and
then, given the results of this paper, put forward a more natural scenario where the beta
functions are built on the canonical transformations. Unfortunately neither of these ideas
lead to finite beta functions, and we explain why they cannot. Finally in section 5 we draw
our conclusions.

2 BRST in perturbative quantum gravity and its renormalisation

In this section we first set up the BRST framework that we will use, and then develop its
properties. Along the way we make a number of new observations. In particular we will see
in section 2.5 that RG invariance is actually essential to ensure that the BRST symmetry
can be renormalised successfully, whilst in section 2.9 we prove the absence of a separate
background field divergence in new divergences at each loop order.

2.1 The CME for the bare action

In a perturbative setting we work with a quantum, a.k.a. fluctuation, field hµν . This field is
defined by our choice of expansion of the (total) metric gµν around a background metric
ḡµν . In this paper we simply set

gµν = ḡµν + κ hµν , (2.1)

– 4 –
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where κ =
√
32πG is the natural expansion parameter, G being Newton’s gravitational

constant. We are interested in off-shell divergences, and their value depends on the
choice of expansion. Using the above allows us to compare with previous results in
the literature [1, 3, 26, 27].

We will work with so-called off-shell BRST [30–33]. In this way we can fully exploit
BRST invariance at every step, and keep track of how it changes under quantum corrections.
Although we only actually need the Zinn-Justin equation [19, 20] for this, it is convenient
to phrase the calculation in terms of the Batalin-Vilkovisky formalism [21–23], employing
known identities for the antibracket [21–24]:

(X, Y ) = ∂rX

∂ϕA

∂lY

∂ϕ∗
A

− ∂rX

∂ϕ∗
A

∂lY

∂ϕA
, (2.2)

where X and Y are two functionals, ϕA are the quantum fields (including ghosts cµ) and
ϕ∗

A are the antifields (opposite statistics sources for the BRST transformations QϕA of the
corresponding fields), and we are here employing compact DeWitt notation (so Einstein
summation over the capital indices indicates both summation over Lorentz indices and
integration over spacetime). As we will see, the resulting framework allows calculations that
are no more onerous than standard ones employing only on-shell BRST invariance [27, 34, 35].
Furthermore, we can then display the results more compactly by using the so-called minimal
basis [21, 27, 34, 35].

We choose the bare action S[ϕ, ϕ∗] to include these sources. It will be made up of the
classical action S0 plus a series of local counterterms Sℓ chosen to cancel the divergences
that appear at each loop order ℓ, whilst introducing the new renormalized couplings (cf.
section 2.6 [13]) which, because they run with µ, must also be introduced at that order:

S = S0 + ℏS1 + ℏ2S2 + · · · . (2.3)

By including the sources ϕ∗ we will additionally incorporate the counterterms necessary to
render finite the BRST transformations [19, 20].

At the classical level the bare action is thus given by

S0 = −
∫

x

{ 2
κ2

√
gR + (Qhµν)h∗µν + (Qcµ) c∗µ

}
. (2.4)

The first term is the Einstein-Hilbert action in Euclidean signature. In this paper we take
the cosmological constant to vanish. At the perturbative level, divergences do not force its
introduction, so working in this simplified setting is consistent. The integral is over

d = 4− 2ε (2.5)

dimensional spacetime (we will be using dimensional regularisation). Our conventions for
curvatures are Rµν = Rα

µαν , and [∇µ,∇ν ]vλ = R λ
µν σvσ.

For convenience, we choose to define the antifields to have indices in the position shown
and to transform as tensor densities of weight −1 so that no metric is required above

– 5 –
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for these terms. Also for convenience, a minus sign is included so that none appears in
the identity:

QϕA = (S0, ϕA) . (2.6)

Note that this defines our charges to act from the left. Classically, the BRST charge Q can
be defined in terms of the Lie derivative along κcµ:

Qhµν = 1
κ

Qgµν = Lcgµν = 2∂(µcαgν)α + cα∂αgµν , (2.7)

Qcµ = κ

2Lcc
µ = κcν∂νcµ . (2.8)

Its nilpotence (Q2 = 0), and diffeomorphism invariance of the Einstein-Hilbert action, implies

0 = QS0 = QϕA ∂lS0
∂ϕA

= −∂rS0
∂ϕ∗

A

∂lS0
∂ϕA

= 1
2(S0, S0) , (2.9)

and thus that the classical bare action S = S0 satisfies the so-called CME (Classical
Master Equation) [21–23], a.k.a. Zinn-Justin equation [19, 20]. Once we consider quantum
corrections, it is not the BRST transformations (2.7), (2.8) that we can preserve but only
the CME, i.e. we will ensure that to any loop order ℓ the bare action satisfies:

(S, S) = 0 . (2.10)

2.2 Canonical transformation to gauge fixed basis

To get the gauge fixed version, we need to work in the so-called extended basis, which
introduces a new field and antifield over and above what we already have (the so-called
minimal basis) [21–23]:

S(ext) = S +
∫

x

{ 1
2α

√
ḡḡµνbµbν + ibµc̄∗µ

}
, (2.11)

where α is the gauge parameter, bµ is a bosonic auxiliary field, and c̄∗µ sources the BRST
transformation for the antighost. From (2.6) we have Qc̄µ = −ibµ and Qbµ = 0. Trivially,
the CME and Q2 = 0 continue to hold. The next step is to introduce a suitable gauge
fixing fermion Ψ[ϕ]. In the Batalin-Vilkovisky treatment this is used to eliminate the
antifields [21–24]. We keep them however, because of their crucial rôle in renormalisation,
and in particular in the Zinn-Justin identities, and instead get the same effect by performing
an exact canonical transformation [24]

ϕ̌A = ∂l

∂ϕ̌∗
A

K[ϕ, ϕ̌∗] ,

ϕ∗
A = ∂r

∂ϕA
K[ϕ, ϕ̌∗] , (2.12)

from the above gauge invariant (g.i.) basis {ϕ, ϕ∗}, to a gauge fixed (g.f.) basis {ϕ̌, ϕ̌∗},
setting [27, 34, 35]

K = ϕ̌∗
AϕA −Ψ[ϕ] . (2.13)

– 6 –



J
H
E
P
1
1
(
2
0
2
3
)
1
4
9

The advantage of employing a canonical transformation is that by definition it leaves the
antibracket invariant and thus in the new basis the CME continues to hold. We choose

Ψ =
∫

x

√
ḡFµc̄µ , (2.14)

and choose DeDonder gauge by setting Fµ to

Fµ = ∇̄νhν
µ − ∇̄µφ , (2.15)

φ = 1
2hµ

µ = 1
2 ḡµνhµν . (2.16)

This breaks the diffeomorphism invariance as realised through the total metric gµν (as
required) but leaves it realised as “background diffeomorphism” invariance, using the
background metric ḡµν . From here on we raise and lower indices using the background metric,
unless explicitly mentioned otherwise, and employ the background covariant derivative ∇̄µ

(using the background metric Levi-Civita connection). As is well known, we can put a
connection in for free in Lie derivatives, so to make background diffeomorphism invariance
manifest in (2.7), (2.8) we can write the classical BRST transformations (in minimal basis)
instead as

Qhµν = 2∇̄(µcαgν)α + cα∇̄αgµν = 2∇̄(µcν) + 2κ∇̄(µcαhν)α + κcα∇̄αhµν ,

Qcµ = κcν∇̄νcµ . (2.17)

Applying the canonical transformation we see that only the following antifields change:

h∗µν
∣∣
g.f.

= h∗µν
∣∣
g.i.

−
√

ḡ

(
∇̄(µc̄ν) − 1

2∇̄αc̄αḡµν
)

, (2.18)

c̄∗µ
∣∣
g.f.

= c̄∗µ
∣∣
g.i.

+
√

ḡF µ , (2.19)

thus mapping the extended action (2.11) at the classical level to

S
(ext)
0

∣∣
g.f.

=S0+
∫

x

{ 1
2α

√
ḡḡµνbµbν−i

√
ḡFµbµ+ibµc̄∗

µ

}
+
∫

x

√
ḡ

(
∇̄(µc̄ν)− 1

2∇̄αc̄αḡµν

)
Qhµν .

(2.20)
The first term is (2.4), the classical action in minimal basis, and the last term is the usual
ghost action (in DeDonder gauge). The middle term is purely quadratic in bµ. We could
thus integrate it out. Dropping the c̄∗µ, the integrand is:

√
ḡ

2α
(bµ − iFµ)2 + α

2
√

ḡF µFµ . (2.21)

The bµ integral over the first term vanishes in dimensional regularization, whilst the second
term is the standard gauge fixing term. In fact this is now the textbook on-shell BRST
treatment. The action S0 is still BRST invariant if we now set Qc̄µ = αF µ. But this is not
quite as powerful because Q2c̄µ = αQF µ, only vanishes on shell (QFµ = 0 is the c̄ equation
of motion). For this reason we keep bµ and stick with this off-shell BRST treatment.

– 7 –
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Figure 1. Examples that illustrate that one-particle irreducible Feynman diagrams involving b

interactions with an unspecified number of external background metric h̄ legs (fan of wavy lines),
arise by starting with an internal h (solid line) propagating into b (dashed line) and eventually back
to h. These implement in diagrammatic language the effect (2.21) of integrating out the b field.

Since we will be working with a perturbative expansion over quantum fields and
antifields, we may as well treat the background metric perturbatively also. Following (2.1),
we write:

ḡµν = δµν + κh̄µν , =⇒ gµν = δµν + κ hµν + κh̄µν . (2.22)

At this stage we can invert the terms bilinear in the quantum fields to get the propagators.
For general α gauge see e.g. ref. [34]. We will use Feynman gauge, α = 2, which gives
the simplest propagators. Once again, the coefficients of off-shell divergences depend on
these choices. By using Feynman DeDonder gauge we make the same choices as in older
works [1, 3, 26, 27] and can thus compare our results. Writing

ϕA(x) =
∫

ddp

(2π)d
e−ip·x ϕA(p) , (2.23)

we have:

⟨hµν(p)hαβ(−p)⟩ =
δµ(αδβ)ν

p2 − 1
d − 2

δµνδαβ

p2 , (2.24)

⟨bµ(p)hαβ(−p)⟩ = −⟨hαβ(p) bµ(−p)⟩ = 2 δµ(αpβ)/p2 , (2.25)

⟨bµ(p) bν(−p)⟩ = 0 , (2.26)

⟨cµ(p) c̄ν(−p)⟩ = −⟨c̄µ(p) cν(−p)⟩ = δµν/p2 . (2.27)

2.3 Minimal basis and comparisons to on-shell BRST

We will be computing quantum corrections to the one-particle irreducible, a.k.a. Legendre,
effective action Γ. Since we have an auxiliary field bµ and the extra propagator ⟨bµhαβ⟩, at
first sight this formalism complicates the computation and cannot be directly compared to
earlier results using on-shell BRST [1, 3, 26]. However this is not the case.

First note that the h propagator (2.24) is the same as in the usual treatment. (This
is actually guaranteed in any gauge, but we omit the proof.) Setting h̄µν = 0 for the
moment, we note that the interaction terms (i.e. with three or more fields) in (2.20) do not
contain bµ or c̄∗µ. Feynman diagram contributions to Γ therefore have the same property
and coincide with those computed in the usual (on-shell BRST) treatment. Switching
back on the background metric, we do now have interactions involving the background
metric and either b2, or b and h. However it is not possible then to draw one-particle
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irreducible diagrams with external b-field legs. The interactions only contribute in diagrams
by having h propagate to b and back again, see figure 1, and the net effect of including
all these corrections is to incorporate in diagrammatic language the result of integrating
out b. Thus these Feynman diagrams simply reproduce the corrections we get from the
second term in (2.21), i.e. the standard gauge fixing term. So we see that we can continue
to ignore bµ and c̄∗µ provided we include the interactions from the standard gauge fixing
term. Furthermore, we get in this way the same results as the standard treatment.

Next note that the corrections only depend on c̄µ through the combination on the
right-hand side of (2.18). This means that we can shift back to g.i. basis after computing
loop contributions to Γ, the only dependence on b and c̄∗ then being as in the extended
action (2.11). Furthermore we can then display results in minimal basis by removing the b

and c̄∗ terms.
This all means that we can construct Γ order by order in the minimal basis, never

needing b or c̄∗. To do so we shift h∗µν
∣∣
g.i.

to h∗µν
∣∣
g.f.

in interactions and use the ⟨hαβhµν⟩
and ⟨cµc̄ν⟩ propagators and include the interaction vertices from the standard gauge fixing
term (2.21) as appropriate, and afterwards shift back to g.i. basis [27, 35]. Of course this
does not mean that off-shell quantum corrections are independent of our choice of gauge.
However the results are sometimes much simpler when cast back in (minimal) g.i. basis in
this way, which is why we use it in this paper.

2.4 The CME for the Legendre effective action

Since the BRST transformations (2.17), or (2.7), (2.8), involve products of fields at the
same spacetime point, they are not preserved under renormalisation. Order by order in the
loop expansion not only must the action be modified, but also the BRST transformations
themselves, and since the theory is non-renormalisable, the changes involve in fact an
infinite series in powers of the fields and antifields. The Zinn-Justin equation [19–22] can
keep track of all this. We start with the fact that the partition function

Z ≡ Z[J, ϕ∗] =
∫
Dϕ e−S[ϕ,ϕ∗]+ϕAJA , (2.28)

satisfies the identity
∂rZ
∂ϕ∗

A

JA = 0 . (2.29)

To prove this at the classical level it is sufficient to use the fact that QS0 = 0, assuming
invariance of the measure:

0 =
∫
Dϕ Q

(
e−S0+ϕAJA

)
=
∫
Dϕ e−S0+ϕAJA

(
QϕA

)
JA = −∂rZ

∂ϕ∗
A

JA . (2.30)

But at the quantum level we need to derive it via preservation of the CME, (2.10):

0=
∫

Dϕ
∂l

∂ϕA

∂r

∂ϕ∗
A

e−S[ϕ,ϕ∗]+ϕAJA =−
∫

Dϕ

{
JA

∂rS

∂ϕ∗
A

+1
2(S,S)+ ∂l

∂ϕA

∂r

∂ϕ∗
A

S

}
e−S[ϕ,ϕ∗]+ϕAJA .

(2.31)
Here the first equality follows because it is an integral of a total derivative. After rearranging
the result using the statistics of the (anti)fields, we get the three terms inside the braces.
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The first term gives the required identity, the second term vanishes by the CME, whilst the
third term is the Batalin-Vilkovisky measure term [21–23]. In general we need to take this
into account (giving the Quantum Master Equation) [21–23, 27, 34, 35] however, since S

is local, this term always contains δ(x)|x=0 or its space-time derivatives. These vanish in
dimensional regularisation. Therefore in this paper we can discard the measure term.

Introducing the generator W [J, ϕ∗] of connected diagrams, through Z = eW , we define
the Legendre effective action in the usual way:

Γ[Φ,Φ∗] = −W +ΦAJA , ΦA = ∂rW

∂JA
, JA = ∂lΓ

∂ΦA
, (2.32)

where ΦA is the so-called classical field, and we have renamed ϕ∗
A ≡ Φ∗

A just because it
looks better. Then by standard manipulations (2.29) turns into the Zinn-Justin equation:

(Γ,Γ) = 0 , (2.33)

i.e. again the CME (2.10), now applied to Γ[Φ,Φ∗], the antibracket taking the same form
as (2.2) but with {ϕ, ϕ∗} replaced with {Φ,Φ∗}.

The Legendre effective action

Γ = Γ0 + ℏΓ1 + ℏ2Γ2 + · · · , (2.34)

is built up recursively, where Γℓ is the ℓ-loop contribution, starting with Γ0 = S0, the
classical bare action. The logic now is to introduce at each new loop order ℓ, a local
counterterm action Sℓ to the bare action in order to cancel the divergences Γℓ|∞ that arise
in Γℓ, leaving behind an arbitrary finite part which is parametrised by the new renormalized
couplings that appear at this order. Provided we introduce Sℓ in such a way as to preserve
(S, S) = 0 we also have that (Γ,Γ) = 0 is satisfied. However, although both the bare action
S and the Legendre effective action Γ satisfy the CME, the CME plays a different rôle in
each case so that it is in fact not trivial that the two are consistent beyond one loop. As we
will see what makes them nevertheless consistent is the RG.

2.5 How the RG is needed for consistent solutions to both versions of
the CME

Expanding the CME (2.33) for Γ, we see that the one-loop contribution satisfies (Γ0,Γ1) = 0.
It is useful to define the total classical BRST charge s0 acting on any functional X as

s0X = (S0, X) , (2.35)

which thus acts also on antifields (see section 2.7), then the one-loop BRST identity is
simply s0Γ1 = 0. Since dimensional regularisation is a gauge invariant regulator, the infinite
part, which at one loop is proportional to a single pole, ∝ 1/ε, also satisfies this identity, i.e.

s0 Γ1/1[Φ,Φ∗] = 0 . (2.36)

(We label terms proportional to divergences 1/εk, by appending /k to the subscript.)
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It is simplest for our purposes to now consider the identity satisfied by the two-loop
contribution, Γ2, before any renormalisation. From the CME (2.33) we see that it satisfies

s0Γ2 = −1
2(Γ1,Γ1) . (2.37)

In particular this implies for the double-pole divergence:

s0 Γ2/2 = −1
2
(
Γ1/1,Γ1/1

)
. (2.38)

Given that the right hand side does not vanish, this is a non-trivial relation between the
1/ε2 divergences at two loops and the 1/ε divergences at one loop.

Now we consider the process of renormalisation. At one loop, if we add a counterterm
action S1, then in order to preserve the CME (2.10) for S, we find in the same way that S1
must be chosen so that it is also annihilated by the total classical BRST charge:

s0S1 = 0 . (2.39)

Since the one-loop divergence is local we can then render the one-loop result finite by setting

S1 = −Γ1/1[ϕ, ϕ∗] + Sc1 [ϕ, ϕ∗] , (2.40)

where the finite remainder Sc1 contains the new renormalised couplings cj
1(µ) that appear

at one loop, cf. section 2.6, in particular they are needed for the curvature-squared terms
but also for antifield vertices, see sections 3.1, 3.2. Clearly we must also have s0Sc1 = 0.

Expanding the CME (2.10) to O(ℏ2), we find of course an algebraically identical formula
to (2.37), (2.38):

s0S2 = −1
2(S1, S1) . (2.41)

This must be satisfied by the counterterm action S2. It relates the 1/ε2 divergence in this
two-loop counterterm to the 1/ε divergence in the one-loop counterterms. Then by (2.40),
we see that the 1/ε2 divergence on the right hand side is precisely the same as in the Γ
identity (2.38). But this is in apparent contradiction with the fact that S2 must cancel the
divergence in Γ2. In particular the latter implies that s0(S2 + Γ2) must be finite.

The resolution is that, once we add the one-loop counterterm from S1 to the bare action,
at O(ℏ2) we also have one-loop counterterm diagrams from one-loop diagrams Γ1[S1] with
one S1 vertex inserted (as illustrated in figure 4 of section 3.3). The two-loop divergence
in (2.38) comes from diagrams containing only tree level vertices. It must be that the 1/ε2

contribution from the one-loop counterterm diagrams, is in fact precisely right to flip the
sign so that in full the double-pole part satisfies

s0 (Γ2/2 + Γ1/2[S1]) = +1
2
(
Γ1/1,Γ1/1

)
. (2.42)

As we will see in the next subsection, RG invariance tells us that we have the relation

Γ1/2[S1] = −2Γ2/2 , (2.43)
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and thus for the full double-pole contribution, Γ2/2 + Γ1/2[S1] = −Γ2/2, we indeed have the
required change of sign (even before the application of s0). We see therefore that the RG
relations are responsible for restoring consistency between the two versions of the CME.

Although the relations above constrain the form of the double-pole divergences, we
still have to compute some Feynman integrals to determine them. Nevertheless we can
simplify the process by exchanging the genuinely two-loop diagrams for one-loop counterterm
diagrams. The corresponding double-pole counterterm action will automatically satisfy
the constraint (2.41). This latter constraint does not uniquely determine S2 since it is
invariant under adding a piece, S′

2, provided it is annihilated by the total classical BRST
charge: s0S′

2 = 0. Since this constraint is linear homogeneous, S′
2 has finite remainders

parametrised by new two-loop couplings cj
2(µ).

We finish this section with some comments about the two-loop single-pole divergences.
Firstly note that, before adding the one-loop counterterm diagrams, the two-loop single-pole
divergences are actually non-local. Indeed, this must be the case since the right hand
side of (2.37) has such non-local divergences in the antibracket contribution (finite,Γ1/1),
where we have written Γ1 = Γ1/1 + finite, and recognised that the finite part is non-local.
On adding the counterterm diagrams, the same RG invariance identity that resolves the
above putative puzzle, is also responsible for eliminating the non-local divergences (see the
argument of Chase [28], which we review in the next subsection). In a similar vein, the
two-loop counterterm action S2 has single-pole divergences that depend on the one-loop
couplings cj

1, as it must in order to renormalise the Γ1/1[S1] contribution. The fact that
S2 must have dependence on cj

1 can also be seen through (2.40) and the two-loop CME
relation, (2.41). These two constraints must again be related through similar RG identities.

Finally note that there are two-loop single-pole divergences that are not fixed by the
RG or by the CME. These will include the famous Goroff and Sagnotti term (4.11), but
also further terms that vanish on the equations of motion. Renormalising them requires new
counterterms whose finite remainder introduces further two-loop renormalised couplings
cj

2(µ). As before, from (2.41) we see that this new part S′
2 must be chosen so that it is

annihilated by the total classical BRST charge: s0S′
2 = 0. Thus despite the fact that BRST

invariance is significantly altered by the quantum corrections, a central rôle is played, order
by order in the loop expansion, by the total classical BRST charge s0. We will develop the
properties of s0 in section 2.7.

2.6 Relating counterterms via the RG

Adapting ref. [13] to quantum gravity, we prove the RG relation (2.43), which was used in
the previous subsection to demonstrate consistency at two loops of the two rôles for the
CME. This key equation relates the double-pole Γ1/2[S1] from the one-loop counterterm
diagrams, to the double-pole Γ2/2 generated by two-loop diagrams using only tree-level
vertices. In this subsection, we also review the alternative proof in ref. [28] for this relation.
Rearranging (2.43) we see that it implies that the 1/ε2 part of the two-loop counterterm is
−1/2 times the 1/ε2 pole in the one-loop counterterm diagrams:

S2/2 = −
(
Γ2/2 + Γ1/2[S1]

)
= −1

2Γ1/2[S1] . (2.44)
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It is this form that falls out most naturally from the RG analysis, and it is also this form that
we use in section 3.3 to compute the 1/ε2 divergence in the two-loop graviton self-energy.

To adapt [13], it proves convenient to absorb Newton’s constant into the operators so
that the O(ℏ0) (i.e. classical) bare action has pure fluctuation field vertices (n ≥ 2):

O0 i ∼ κn−2hnp2 . (2.45)

The numerical subscript on O refers to ℏ order [13], and here we are just counting the
number of instances of the fluctuation field hµν , κ and momentum p, where the latter stands
for any momentum (or spacetime derivative) in the vertex, in order to track their dimensions
and motivate the formulae below. Working with pure hµν vertices will be sufficient to
derive (2.44) in this case. Then we will justify why it is clear that (2.44) continues to hold
when the background, ghosts and antifields are included.

In d = 4− 2ε dimensions, the mass dimensions are [h] = −[κ] = 1− ε. A priori both κ

and the fluctuation field should be taken to be bare, in the expectation that they will have
a divergent expansion in renormalised quantities, but the divergences that are generated
involve ever greater powers of momentum, so the vertices in (2.45) are never reproduced
and thus neither κ nor h require renormalisation. The classical bare action is therefore
being written as

S0 = Γ0 =
∫

x
ci

0 O0 i . (2.46)

The ci
0 are the classical couplings with κ factored out. They are fixed up to choice of

expansion of the metric, choice of gauge fixing, and the value of the cosmological constant
if there is one. As mentioned below (2.4), in this paper we set the cosmological constant
to zero.

The divergent one-loop quantum corrections then take the form (H is the vacuum
expectation value of h):

Γ1/1 ∼ 1
ε

κnHnp4−2ε , (2.47)

i.e. in terms of counting overall powers there is an extra factor of κ2p2−2ε. To renormalise
we thus have to add to the bare action the local action (2.40):

S1 = µ−2ε
∫

x

{
ci

1 O1 i +
1
ε

ai
1/1 O1 i

}
, (2.48)

where the second set are the counterterms −Γ1/1, and the first set is the expansion of Sc1

and contains the new O(ℏ1) renormalised couplings. The new operators take the form

O1 i ∼ κnhnp4 , (2.49)

i.e. with an extra κ2p2 compared to O(ℏ0) vertices. At this stage the arbitrary RG scale
µ is needed so that µ−2ε in (2.48) can restore dimensions. Since the bare action (2.3) is
independent of µ, the renormalised couplings ci

1 run with µ. By differentiating (2.48) we
see that they satisfy:

βi
1 = ċi

1 − 2ε ci
1 = 2 ai

1/1 , (2.50)
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where ċ := µ∂µc. The one-loop counterterm diagrams formed by using one ai
1/1 vertex

(corresponding to one copy of S1 being inserted) give in particular double pole divergences

Γ1/2[S1] ∼
1
ε2 a1/1 µ−2εκn+2Hnp6−2ε , (2.51)

that must satisfy relation (2.43): Γ1/2[S1] = −2Γ2/2. As noted by Chase [28], the easiest
way to see why this is so, is to recognise that the latter take the form

Γ2/2 ∼ κn+2Hnp6−4ε
[ 1

ε2 + O

(1
ε

)]
, (2.52)

but divergences must be local and thus the (ln p)/ε terms must cancel between (2.51)
and (2.52).

We get the same conclusion another way by following Buchler and Colangelo [13] whilst
also deriving some more useful identities. At O(ℏ2) the divergences generate the operators

O2 i ∼ κn+2hnp6 , (2.53)

so we have to add to the bare action

S2 = µ−4ε
∫

x

{
ci

2 O2 i +
1
ε2 ai

2/2 O2 i +
1
ε

(
ai

2/1 + ai
1/1 jcj

1

)
O2 i

}
, (2.54)

where we now have counterterms with both single and double ε-poles, and ci
2 are the new

O(ℏ2) renormalised couplings. The ai
2/2 counterterms cancel the full set of 1/ε2 divergences

at O(ℏ2), i.e. from the sum of two-loop diagrams and the one-loop counterterm diagrams.
The single poles ai

2/1/ε arise from two-loop diagrams using only vertices (2.45), whilst the
ai

1/1 jcj
1/ε are generated by one-loop diagrams containing one c1 vertex. Now µ-independence

of the bare action implies

βi
2 = ċi

2 − 4εci
2 = 4

ε
ai

2/2 + 4
(
ai

2/1 + ai
1/1 jcj

1

)
− 1

ε
ai

1/1 j ċj
1 ,

= 4
ε

ai
2/2 −

2
ε

ai
1/1 jaj

1/1 + 4ai
2/1 + 2ai

1/1 jcj
1 , (2.55)

where in the second line we substituted the one-loop β function (2.50). Since this equation
is expressed in terms of renormalised quantities, it must be finite, and therefore the single
poles must cancel. Thus we see that

ai
2/2 = 1

2ai
1/1 jaj

1/1 . (2.56)

This is the same conclusion as before, but we are now proving it in the form given in (2.44).
The left hand side is the coefficient of the O2 i in S2/2 while on the right hand side we have
replaced the cj

1 coupling in (2.54) by the counterterm coefficient aj
1/1. The right hand side

is thus the coefficient of O2 i in −1
2Γ1/2[S1].

Finally let us show that (2.44) will continue to hold when the background, ghosts
and antifields are included. Firstly, vertices can now include ghost antighost pairs, but
at this schematic level it is not necessary to track these separately from h: what really
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matters in this analysis are the powers of pε and µε, and they are unchanged if c and c̄ are
included. Secondly, it is clear that any instance of h (or H) can trivially be exchanged for
the background h̄ in the above schematic formulae, though of course operators O1 j with
less than two quantum fields in gauge fixed basis, cannot contribute to the relation (2.44)
(their coefficients ai

1/1 j vanish). Finally from the minimal classical action (2.4), we see
that whenever an antifield is involved in an action vertex there is one less power of p

(compensated dimensionally by the fact that they have [ϕ∗] = 2 − ε, cf. table 1). This
observation is useful for finding the general form of the corrections, but again for this
analysis what actually matters is the tracking of non-integer powers.

2.7 Properties of the total classical BRST charge

We now develop the properties of the total classical BRST charge s0. Using the iden-
tity [21–24]:

(X, (Y, Z)) = ((X, Y ), Z) + (−1)(X+1)(Y +1)(Y, (X, Z)) , (2.57)

where (−1)X = ±1 if X bosonic (fermionic), we have

s2
0X[ϕ, ϕ∗] = (S0, (S0, X)) = 1

2((S0, S0), X) = 0 , (2.58)

where the last equality follows by the CME. Therefore s0 is nilpotent just like the BRST
charge Q. From (2.6), we see that on ϕA it reduces to the BRST charge Q. However
from (2.35), s0 also acts on antifields:

s0ϕ∗
A =

(
S0, ϕ∗

A

)
= ∂rS0

∂ϕA
. (2.59)

This is called the Koszul-Tate differential [27, 34, 36–39]. In minimal basis we get explicitly:

s0h∗µν = −2√gGµν/κ + 2κh∗α(µ∇̄αcν) + κ∇̄α
(
cαh∗µν) , (2.60)

s0c∗µ = κ∇̄µcνc∗ν + κ∇̄ν
(
cνc∗µ

)
− 2∇̄νh∗ν

µ − 2κ∇̄α
(
hµνh∗αν)+ κ∇̄µhαβh∗αβ . (2.61)

Here Gµν = −Rµν+ 1
2gµνR is the Einstein tensor. (Note that it inherits an overall minus sign

from the Euclidean action compared to the usual definition.) Its indices are raised in (2.60)
using Gµν = gµαgνβGαβ . As we noted earlier we are raising and lowering indices with the
background metric unless explicitly stated otherwise. This case is the one exception.

It is useful to assign antighost/antifield number to each field and operator [34, 39, 40],
see table 1. The reason this is useful is precisely because it is not preserved by interactions,
which then split into pieces according to their antighost level. For example one sees
from (2.4), that the three parts of the minimal classical action split into levels 0, 1, and 2,
respectively. The Koszul-Tate differential also splits, in this case into two pieces, one that
preserves antighost number and one that lowers it by one. We call these pieces respectively,
Q and Q−, and thus write:

s0ϕ∗
A =

(
Q + Q−)ϕ∗

A . (2.62)
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ϵ gh # ag # pure gh # dimension
hµν 0 0 0 0 (d − 2)/2
cµ 1 1 0 1 (d − 2)/2
c̄µ 1 -1 1 0 (d − 2)/2
bµ 0 0 1 1 d/2

h∗
µν 1 -1 1 0 d/2

c∗µ 0 -2 2 0 d/2
c̄∗µ 0 0 0 0 d/2
Q 1 1 0 1 1

Q− 1 1 -1 0 1

Table 1. The various Abelian charges (a.k.a. gradings) carried by the fields and operators. ϵ is the
Grassmann grading, being 1(0) if the object is fermionic (bosonic). gh # is the ghost number, ag
# the antighost/antifield number, pure gh # = gh # + ag #, and dimension is the engineering
dimension. The first two rows are the minimal set of fields, the next two make it up to the non-
minimal set, then the ensuing two rows are the minimal set of antifields, and c̄∗

µ is needed for the
non-minimal set. Finally, the charges are determined in order to ensure that Q and Q− can also be
assigned definite charges.

From (2.60) and (2.61) we see that

Qh∗µν = 2κh∗α(µ∇̄αcν) + κ∇̄α
(
cαh∗µν) , (2.63)

Q−h∗µν = −2√gGµν/κ , (2.64)
Qc∗µ = κ∇̄µcνc∗ν + κ∇̄ν

(
cνc∗µ

)
, (2.65)

Q−c∗µ = −2∇̄νh∗ν
µ − 2κ∇̄α

(
hµνh∗αν)+ κ∇̄µhαβh∗αβ . (2.66)

Since Q here acts on antifields there is no reason to confuse it with the previously defined
BRST charge (2.6), (2.17). Its extension to antifields is natural since Qh∗µν and Qc∗µ are in
fact the correct Lie derivative expressions for these tensor densities. The advantage of the
antighost grading becomes clear when we consider the nilpotency of s0:

0 = s2
0 = Q2 + {Q, Q−}+ (Q−)2 . (2.67)

These terms must vanish separately since they lower the antighost number by 0, 1 and 2
respectively. Therefore we know that our definitions of Q and Q− are such that they are
nilpotent and they anticommute.

2.8 Canonical transformations up to second order

We saw in section 2.5 that a central rôle is played by counterterms that are s0-closed, for
example at one loop we have exactly this relation (2.39): s0S1 = 0. We saw in the previous
subsection that s0 is nilpotent, so one solution to this is that S1 is exact: S1 = s0K1,
where K1 is a local functional of ghost number −1. In the next subsection we derive the
general solution for such s0-closed counterterms, but for that we will need the relation
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between s0-exact solutions and canonical transformations. Taking the general canonical
transformation (2.12), and setting

K = ϕ̌∗
AϕA + K1[ϕ, ϕ̌∗] , (2.68)

and then treating K1 to first order, one gets the following field and source reparametrisations

δϕA = ∂lK1
∂ϕ∗

A

, δϕ∗
A = −∂lK1

∂ϕA
. (2.69)

That these correspond to s0-exact solutions, can then be seen by writing out the change in
the classical action:

δS0 = ∂rS0
∂ϕA

δϕA + ∂rS0
∂ϕ∗

A

δϕ∗
A = ∂rS0

∂ϕA

∂lK1
∂ϕ∗

A

− ∂rS0
∂ϕ∗

A

∂lK1
∂ϕA

= s0K1 . (2.70)

This interpretation extends to higher orders [5], see also [14–18]. For section 4 we will
want their explicit form to second order. Given that S1 = s0K1, one solution to the CME
to second order (2.41), i.e. s0S2 = −1

2(S1, S1), is:

S2 = 1
2(S1, K1) + s0K2 (2.71)

where K2 is a second-order local functional of ghost number -1. This follows from the
antibracket identity (2.57) because

s0(S1, K1) = (s0S1, K1)− (S1, s0K1) = −(S1, S1) . (2.72)

In fact the relation (2.71) is just the result of taking the K1 canonical transformation to
second order and adding the new part K2 which appears linearly at this order. To see this
we set

K = ϕ̌∗
AϕA + K1[ϕ, ϕ̌∗] + K2[ϕ, ϕ̌∗] , (2.73)

and solve the exact canonical transformation (2.12) perturbatively for δϕ(∗) = ϕ̌(∗) − ϕ(∗),
starting with the first order expression (2.69). We get

δϕA = ∂lK1
∂ϕ∗

A

+ 1
2

∂l

∂ϕ∗
A

∂rK1
∂ϕB

∂lK1
∂ϕ∗

B

− 1
2

∂l

∂ϕ∗
A

∂rK1
∂ϕ∗

B

∂lK1
∂ϕB

+ ∂lK2
∂ϕ∗

A

,

δϕ∗
A = −∂lK1

∂ϕA
+ 1

2
∂l

∂ϕA

∂rK1
∂ϕ∗

B

∂lK1
∂ϕB

− 1
2

∂l

∂ϕA

∂rK1
∂ϕB

∂lK1
∂ϕ∗

B

− ∂lK2
∂ϕA

. (2.74)

Taylor expanding the classical action to second order gives

δS0 = ∂rS0
∂ϕA

δϕA + 1
2

∂r

∂ϕB

(
∂rS0
∂ϕA

δϕA
)

δϕB + 1
2

∂r

∂ϕ∗
B

(
∂rS0
∂ϕA

δϕA
)

δϕ∗
B

+∂rS0
∂ϕ∗

A

δϕ∗
A + 1

2
∂r

∂ϕB

(
∂rS0
∂ϕ∗

A

δϕ∗
A

)
δϕB + 1

2
∂r

∂ϕ∗
B

(
∂rS0
∂ϕ∗

A

δϕ∗
A

)
δϕ∗

B

− 1
2

∂rS0
∂ϕA

(
∂r

∂ϕB
δϕA

)
δϕB − 1

2
∂rS0
∂ϕA

(
∂r

∂ϕ∗
B

δϕA

)
δϕ∗

B

− 1
2

∂rS0
∂ϕ∗

A

(
∂r

∂ϕB
δϕ∗

A

)
δϕB − 1

2
∂rS0
∂ϕ∗

A

(
∂r

∂ϕ∗
B

δϕ∗
A

)
δϕ∗

B . (2.75)
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Substituting (2.74), its non-linear terms cancel the final two lines, whilst the first two lines
organise into antibrackets, and thus we find that

δS0 = (S0, K1 + K2) +
1
2((S0, K1), K1) = s0K1 +

1
2(S1, K1) + s0K2 , (2.76)

showing that the non-linear term in (2.71), is indeed the result (2.74) of carrying the
canonical transformation to second order.

2.9 General form of s0-closed divergences

On the other hand, at each new loop order the s0-closed counterterms are associated to
the ‘new’ part Γ∞ of the divergences. Their form can be classified by the cohomology of
s0 in the space of local functionals. As we have seen, one possibility is that it is a local
s0-exact solution: Γ∞ = s0K∞[Φ,Φ∗], where K∞ is a functional with ghost number −1.
However another possibility is that the divergence is a local functional Γ∞[gµν ] of only the
total metric,2 gµν = ḡµν + κHµν , and is diffeomorphism invariant. Ref. [41], see also [5],
proves from the cohomological properties of s0 that if the background metric is flat, viz.
ḡµν = δµν , then in fact the general local s0-closed solution is a linear combination of these
two possibilities:

s0Γ∞[Φ,Φ∗] = 0 =⇒ Γ∞[Φ,Φ∗] = Γ∞[gµν ] + s0K∞[Φ,Φ∗] . (2.77)

However in a non-flat background, as a statement on s0-cohomology, this result is no longer
true, since clearly one can now add to this a local functional Γ∞[ḡµν ] of only the background
field (such a functional being trivially annihilated by s0). Nevertheless it is true as a
statement about s0-closed divergences, as we show below.

Before doing so, we note that it is useful in this paper to grade the solution (2.77) by
antighost number. The first part, Γ[g], has of course zero antighost number, but since K

has ghost number −1, we see from table 1 that it splits up as K = K1 +K2 + · · · , where the
superscript denotes antighost number. Thanks to the perturbative non-renormalisability of
quantum gravity, already at one loop one finds that all these infinitely many Kn functionals
are non-vanishing. In minimal basis, K1 is characterised by having one copy of H∗, K2

by containing one copy of C∗ or two copies of H∗ whilst also being linear in the ghost
Cµ, and so on, with the higher level Kn containing ever greater numbers of antifields and
compensating powers of ghosts.

Now we show that (2.77) is indeed the general form of an s0-closed divergence, even
in a non-trivial background. Although this is effectively a small extension of the proof in
flat background, it has not, to our knowledge, been noticed before. Following [42], first we
observe that, up to a choice of gauge, the Legendre effective action can equivalently be
computed by shifting

hµν 7→ hµν − h̄µν (2.78)

which, by (2.22), amounts to expanding around flat space. Indeed this shift makes no
difference to the minimal classical action (2.4), since it depends only on the total metric gµν .

2We write the vacuum expectation value of the quantum fields in capitals, thus in minimal basis
ΦA = Hµν , Cξ.
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Differences arise only because separate hµν and ḡµν dependence enters via the canonical
transformation induced by the gauge fixing fermion (2.14), which from (2.12), (2.13) takes
the form

QϕA ∂Ψ
∂ϕA

= QΨ[ϕ] , (2.79)

and enters via the quadratic bµ term from the extension (2.11), which can however also be
written in Q-exact form

1
2α

√
ḡḡµνbµbν = i

2α
Q
(√

ḡḡµν c̄µbν
)
= QΨb[ϕ] . (2.80)

Thus the entire ḡ (equivalently h̄) dependence can be seen as being just part of the
parametrisation of our choice of gauge, i.e. of Ψtot[ϕ] = Ψ[ϕ] + Ψb[ϕ].

Now in the shifted basis (2.78) we are expanding around flat space. If we also use an
h̄-independent gauge, then we can be sure that (2.77) holds. We cannot use this result
directly to rule out a separate Γ∞[ḡµν ] piece, because we have changed the gauge. However
we can proceed by comparing physical quantities since they are independent of the choice
of gauge. We do this by setting Φ∗

A = 0 and setting Hµν on shell.3 Note that since we
are dealing with new divergences appearing at some given loop order, it is the classical
equations of motion for gµν that one needs. Then Γ∞[gµν ] is independent of the background,
whilst s0K∞ vanishes. The latter follows because

s0K∞ = ∂rS0
∂ΦA

∂lK∞
∂Φ∗

A

− ∂rS0
∂Φ∗

A

∂lK∞
∂ΦA

. (2.81)

Given that Φ∗
A = 0, on the right hand side the first term vanishes (in minimal basis) by the

equations of motion of Hµν , and the second term because K∞ has non-vanishing antighost
number. Now comparing the results in flat background and non-flat background, we see
that they must have the same total metric part Γ∞[gµν ], whilst for a non-flat background
the purely background part must vanish: Γ∞[ḡµν ] = 0.

We finish with some important remarks. Firstly, to avoid over-counting, the counterterm
Sℓ[g] for the pure metric part of the s0-closed solution (2.77) should be restricted to terms
that do not vanish on the classical equations of motion (or more generally to a specific
choice, as in (3.15), the Gauss-Bonnet term). To see this we note that if Sℓ[g] does vanish
on the classical equations of motion, it can be written as

Sℓ[gµν ] = −2
κ

∫
x

√
g GµνTµν [gµν ] = Q−

∫
x

h∗µνTµν = s0

∫
x

h∗µνTµν (2.82)

for some tensor Tµν [gµν ]. In the last step we used the fact that both h∗µν and Tµν transform
properly as tensor densities under Q. Thus any part of Sℓ[g] that vanishes on the classical
equations of motion can be written instead as part of the s0-exact piece, s0Kℓ, i.e. to a
canonical transformation taken to first order.

Secondly, notice that it is important for the above arguments that we are setting Hµν

on shell, but not the background metric ḡµν . This is what allows us to deduce that there
3Note that from the Legendre transform (2.32), this last step forces the Schwinger current Jµν to vanish,

thus removing at the classical level the distinction between background and fluctuation except in the gauge
fixing terms.
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cannot be any purely background part. On the other hand in the background field method
one sets all the classical fields to zero and keeps only the background metric. Although
this technique is not the primary focus of the paper (apart from in section 4) the proof
here tells us something important about it. Since on shell, the background field effective
action gives the same results [42], we know that divergences that do not vanish on the
background equations of motion descend from functionals of the total metric gµν , whilst
those divergences that vanish on the background equations of motion belong to canonical
transformations and are thus removed by reparametrising hµν not the background field.

3 Explicit expressions for counterterms

We now verify these results in explicit loop computations, up to two loops, in particular
we draw out the intimate relationship between the leading off-shell divergences for the
two-point vertex up to two loops and the one-loop counterterm diagrams [13] and in turn
to canonical transformations in the BRST algebra [5]. Since this necessitates computing,
as an intermediate step, the off-shell divergences in one-loop diagrams with three external
legs, two of which are fluctuation fields, we widened our investigation so as to compute
explicitly all off-shell one-loop divergences with up to three (anti)fields. Below we express
these divergences in terms of the minimal-basis counterterms in Sℓ (ℓ = 1, 2) that one
needs to add to the bare action. In minimal subtraction, which we follow, the counterterms
are just minus the divergences. However, since the bare action is a µ-independent local
functional, the RG and CME relationships are most naturally expressed in terms of the
counterterms, as we have seen in sections 2.5 and 2.6.

In fact it was in the process of computing these that we noticed that purely background
metric pieces were not generated, which motivated the general proof in section 2.9. It was
also whilst analysing these that we noticed that the RG relations for counterterms are
actually crucial for consistency of the BRST algebra as realised on the Legendre effective
action versus as realised on the counterterms. This is explained in section 2.5. Finally
these results allowed explicit verification that the generalised β function proposal of ref. [25]
cannot be correct, which led to us formulating the detailed analysis provided in section 4.
We similarly hope that these examples will prove useful in future studies of perturbative
quantum gravity.

Just like for K in section 2.9, it is useful to split the Legendre effective action and bare
action according to antighost number. All antighost levels Sn depend on the graviton fields
hµν and h̄µν , but their dependence on (anti)ghosts is restricted by the quantum numbers,
cf. table 1. Thus S0 depends only on the graviton fields, whilst Γ0[Hµν , H̄µν ] is the physical
part that ultimately provides the S-matrix, S1 is linear in h∗µν and cµ (in gauge fixed
basis (2.18), S1 renormalises the ghost action), S2 is made of vertices containing two cµ

and either one c∗µ or two h∗αβ , and so on.

3.1 One-loop two-point counterterms

3.1.1 Level zero, i.e. graviton, counterterms

Recall from section 2.1 that we are using Feynman DeDonder gauge. As explained in the
next subsection, in this case it turns out that the result for the one-loop two-point graviton
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hµν(p) hαβ(−p)
+

h̄µν(p) h̄αβ(−p)
+

h̄µν(p) hαβ(−p)

Figure 2. Two-point graviton diagrams at one loop. The wavy line represents the background field
and the external plain line represents the quantum graviton field. The internal lines represent both
a graviton loop and a ghost loop.

counterterm can be expressed entirely in terms of curvatures linearised around the flat
metric. In particular let us introduce for the quantum fluctuation the linearised ‘quantum
curvature’

Rµανβ = κR
(1)
µανβ + O(κ2) , (3.1)

where we are expanding gµν = δµν + κhµν , and thus

R
(1)
µανβ =−2∂[µ|∂[νhβ] |α] , R(1)

µν =−∂2
µνφ+∂(µ∂αhν)α− 1

2 □hµν , R(1) = ∂2
αβhαβ−2□φ

(3.2)
(defining 1

2(tµν ± tνµ) for symmetrisation t(µν), respectively antisymmetrisation t[µν]). Here
we are using φ = 1

2δµνhµν ,4 and indices are raised and lowered with the flat metric
δµν . Following the definition below (2.61), the linearised Einstein tensor is then G

(1)
µν =

−R
(1)
µν + 1

2δµνR(1). Similarly we introduce the corresponding linearised background curvatures
R̄

(1)
µανβ etc. and linearised background Einstein tensor Ḡ

(1)
µν , by replacing hµν with h̄µν .

Computing the diagrams in figure 2 we find

S0
1/1 = κ2µ−2ε

(4π)2ε

∫
x

{61
60(R

(1)
µν )2 − 19

120(R
(1))2 + 7

20(R̄
(1)
µν )2 + 1

120(R̄
(1))2

+ 41
30R(1)

µν R̄(1)µν − 3
20R(1)R̄(1)

}
.

(3.3)

The first diagram gives the first two terms, i.e. the pure quantum terms. The result agrees
with ref. [27]. It was calculated in a general two parameter gauge in ref. [26]. After correcting
some typos and specialising to Feynman DeDonder gauge, it also agrees. The next two
terms, the purely background terms, agree with the famous result in [1] and (up to a factor
of 1/2) with [2]. For more details on these comparisons, see appendix A. To our knowledge
the last two terms, i.e. the mixed terms, have not appeared in the literature before.

By (2.39), the terms (3.3) must be part of an s0-closed counterterm action S1/1.
Furthermore according to the proof given in section 2.9, since the quantum curvature pieces
vanish on the equations of motion and since there cannot be a separate purely background
part, we must be able to express the entire result as s0-exact, and thus in fact the terms
must collect into

S0
1/1 = Q−K1

1/1 . (3.4)

4This definition is the previous one (2.16) after linearisation.
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Given that (3.3) is made solely of linearised curvatures, at the two-point level the only
possible terms in K1

1/1 that can contribute, are:

K1
1/1 ∋ κ2µ−2ε

(4π)2ε

∫
x

{
βh∗µνR(1)

µν + γφ∗R(1) + β̄h∗µνR̄(1)
µν + γ̄φ∗R̄(1)

}
, (3.5)

where β, γ, β̄ and γ̄ are parameters to be determined, and we have introduced

φ∗ = 1
2 ḡµνh∗µν (3.6)

by analogy with (2.16) (although here ḡµν can be replaced by δµν). It is apparent that
we have six numbers in (3.3) to reproduce with only four parameters, and therefore this
relation is a non-trivial check on the formalism. From (2.64), the action of Q− reduces in
this case to

Q−h∗µν = −2
(
G(1)µν + Ḡ(1)µν

)
, (3.7)

and thus from (3.4) and (3.5),

S0
1/1 =

κ2µ−2ε

(4π)2ε

∫
x

{
2β(R(1)

µν )2−[β+γ](R(1))2+2β̄(R̄(1)
µν )2−[β̄+γ̄](R̄(1))2+2[β+β̄]R(1)

µν R̄(1)µν

−[β+β̄+γ+γ̄]R(1)R̄(1)
}

.

(3.8)
We see that the mixed Ricci-squared terms must have a coefficient which is simply the
sum of the coefficients of the pure quantum and pure background Ricci-squared terms, and
likewise for the scalar-curvature-squared terms. The reader can verify from (3.3) that these
two constraints are indeed satisfied. Therefore there are four independent constraints and
we can find a consistent (and unique) solution. It is:

β = 61
120 , γ = − 7

20 , β̄ = 7
40 , γ̄ = −11

60 . (3.9)

3.1.2 Level one (a.k.a. ghost) counterterms

The level one two-point counterterm is computed by using the classical three-point vertices
involving h∗µν , and transferring to gauge fixed basis using (2.18). We display the result in
minimal basis where it takes its simplest form, since it then contains only the divergent
corrections to Qhµν (at the linearised level, compare (3.10) to (2.4) and (2.17)), but in
gauge fixed basis the generated c̄α terms are the counterterms necessary to renormalise the
ghost action, (2.20). We find that

S1
1/1 = κ2µ−2ε

(4π)2ε

∫
x

{1
2h∗µν∂3

µναcα − 3
4h∗µν□∂µcν

}
, (3.10)

in agreement with ref. [27], cf. appendix A. Again these must belong to s0K1/1 for a suitable
choice of K1/1, which means that we must add to what we have in (3.5). A solution is
to add

K1
1/1 ∋ −1

2
κ2µ−2ε

(4π)2ε

∫
x

h∗µν∂2
µνφ , K2

1/1 ∋ −3
8

κ2µ−2ε

(4π)2ε

∫
x

c∗µ□cµ . (3.11)
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At the two-point level, it is straightforward to see that the level-two part gives the second
term in (3.10) via Q−K2

1/1, whilst the level-one part gives the first term via QK1
1/1, (3.5)

making no contribution because it is annihilated by Q. On the other hand, (3.5) is still
correct for reproducing S0

1/1 because the level-one part above is annihilated by Q−, as
follows by the Bianchi identity for the Einstein tensor or by recognising that the above
level-one part is proportional to Q−(∂αc∗αφ). Indeed at this stage one has to face the issue
that the solution for K is unique only in the cohomology. One can always add an s0-exact
piece to K, in particular one can add s0(∂αc∗αφ). The above solution is one choice, in fact
the same as that made in ref. [27].

Now let us comment on the results of the previous subsection. The fact that they can
be written covariantly, in terms of curvatures of the background metric, is of course no
accident: this is guaranteed by background diffeomorphism invariance. The fact that one
can also do so in terms of gµν = δµν + κhµν , is however an accident of Feynman DeDonder
gauge. At the level of the action it is a consequence of the fact that Q−S1

1/1 = 0 in this
gauge, and thus the graviton counterterm action must be annihilated by Q:

0 = s0S1/1 = QS0
1/1 + Q−S1

1/1 = QS0
1/1 . (3.12)

Up to cohomology and normalisation, there is a unique term φ∗□φ ∈ K1/1 that could arise
in the one-loop calculation which would break this ‘quantum diffeomorphism’ invariance.
Equivalently in S0

1 we would find a term proportional to

Q−
∫

x
φ∗□φ = −

∫
x
(R(1) + R̄(1))□φ . (3.13)

Indeed from [26], cf. appendix A, we know this term is present in a more general gauge.
Furthermore we will see in section 3.3 that at two loops an analogous term is generated
even in Feynman DeDonder gauge, while at one loop but beyond the two-point level many
terms ensure that QS0

1/1 ̸= 0.
This completes the calculation at the two-point level because it is not possible to

generate two-point higher level counterterms Sn>1
ℓ (since n is also the pure ghost number).

3.2 One-loop three-point counterterms

This involves computing one-loop diagrams with the topologies given in figure 3. Already at
this stage there are thousands of divergent vertices, and computer algebra becomes essential.
We proceed by comparing the results with the general structure (2.77), i.e. we should find
that the counterterm action takes the form:

S1/1[ϕ, ϕ∗] = S0
1/1[gµν ] + s0K1/1[ϕ, ϕ∗] . (3.14)

As explained in ref. [3], dimensional regularisation allows for the computation of the
Gauss-Bonnet topological term:

S0
1/1[gµν ] =

τµ−2ε

(4π)2ε

∫
x

√
g
(
RµνρσRµνρσ+R2−4RµνRµν

)
= τµ−2ε

(8π)2ε

∫
x

√
g ϵαβγδϵµνρσRµν

αβRρσ
γδ ,

(3.15)
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Figure 3. Three-point Feynman diagrams at one loop.

which is the unique possibility for S0
1/1[gµν ] up to choice of coefficient τ and terms that

vanish on shell (cf. the discussion at the end of section 2.9).
Up to the three-point level, K1/1 has no more than antighost number two. The two

antighost levels have the following general parametrisation:

K1
1/1 =

κµ−2ε

(4π)2ε

∫
x

(
β̄h∗µνR̄µν+γ̄φ∗R̄

)
+κ2µ−2ε

(4π)2ε

∫
x

{
βh∗µν

(
∇̄µ∇̄αhαν− 1

2□̄hµν

)
+(c1−β)h∗µν∇̄µ∇̄νφ+γφ∗

(
∇̄α∇̄βhαβ−2□̄φ

)
+α3h∗µνR̄µ

αhαν+α4h∗µνR̄αµνβhαβ

+α5h∗µνR̄µνφ+α6φ∗R̄αβhαβ+α7R̄φ∗φ
}
+κ3µ−2ε

(4π)2ε

∫
x

27∑
i=1

bi

(
h∗h2∂2

)
i
, (3.16)

K2
1/1 =

κ2µ−2ε

(4π)2ε

∫
x

(
c2c∗µ□̄cµ+α1c∗µcµR̄+α2c∗µcνR̄µ

ν

)
+κ3µ−2ε

(4π)2ε

∫
x

1√
ḡ

(
α8φ∗∇̄µφ∗cµ

+α9h∗αβ∇̄µh∗
αβcµ+α10φ∗h∗

µν∇̄µcν+α11h∗
αµh∗α

ν∇̄µcν
)
+κ3µ−2ε

(4π)2ε

∫
x

21∑
i=1

di

(
c∗ch∂2

)
i
.

(3.17)

Here we have used the symmetries and statistics of the (anti)fields. In particular, the result
must be background diffeomorphism invariant (which implies the factor of 1/

√
ḡ in the

terms with two antifields, because we defined them to transform as tensor densities of
weight −1). Furthermore, we know that the terms with one antifield have two space-time
derivatives whilst those with two antifields have one spacetime derivative. The power of κ

and µ then follow from [K] = −1.
The parametrisation must be consistent with the results at the two-point level, hence

the appearance of parameters β̄, γ̄, β and γ from (3.5). We similarly introduce parameters
c1 and c2 where, from (3.11), we know that

c1 = −1
2 , and c2 = −3

8 . (3.18)

Background diffeomorphism invariance tells us that the linearised curvatures accompanying
β̄ and γ̄ simply become full curvatures (by (3.1) they absorb one power of κ) but, as
discussed in section 3.1.2, the appearance of the linearised quantum curvatures in (3.5) is
accidental, so it is more appropriate for the β and γ pieces to appear with their separate
parts covariantised, following (3.2). Even though all these parameters are known, and that
includes τ [3, 29], we leave them general when we match to the three-point one-loop results,
as extra checks on the formalism.
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The remaining eleven αi, twenty-seven bi, and twenty-one di, are genuinely free pa-
rameters to be determined. The schematic representation for the di terms means that
one sums over the vertices with coefficients di, these vertices being the twenty-one linearly
independent combinations of two spacetime derivatives and one c∗α, cβ , and hγδ. We ensure
independence under integration by parts by taking as representatives those vertices where
c∗α is undifferentiated. Since the di terms are already three-point vertices, as are the bi

terms, background covariantisation is ignored there. For the same reason, we actually do
not need diffeomorphism invariant expressions for the α8, · · · , α11 terms, whilst in the other
αi terms we actually only need the linearised background curvature.

The sum over bi vertices is defined in the same way as for the di vertices, except
that all terms involving ∂αh∗αβ are discarded, and likewise any two vertices should be
considered equal if they only differ by such terms on using integration by parts. (This can
be implemented straightforwardly by deriving the vertices in momentum space.) The reason
for this restriction is because at the three-point level, vertices containing ∂αh∗αβ are already
accounted for in the di sum. As in the discussion in section 3.1.2, this is a consequence of
the fact that we can add an s0-exact part to K1/1 without altering S1/1, cf. (3.14). At the
three-point level we can add (Q+Q−)(c∗h2∂), but Q− generates the ∂αh∗αβ terms while Q

maps onto combinations in the di sum that contain ∂(αcβ). Finally, for the same reason we
do not want a free parameter for the combination

− κ√
ḡ

s0 (φ∗h∗µνhµν)= R̄h∗µνhµν+2φ∗R̄αβhαβ−2R̄φ∗φ−2 κ√
ḡ

φ∗h∗µν∇̄µcν . (3.19)

The last three terms on the right hand side appear in our parametrisation, but this is why
the first term is missing from it.

Although the resulting parametrisation is long, it is a dramatic reduction compared to
the thousands of vertices from the Feynman diagram calculation, and therefore in fact the
parameters are vastly overdetermined. That we nevertheless find a consistent solution for
all vertices is thus a highly non-trivial verification of the formalism.

Matching to just the (antighost level zero) pure background h̄3 vertices, we reproduce
well-known results: we confirm that the pure background curvature-squared terms at the
two-point level, cf. (3.3), are covariantised to full background curvatures, as is in fact clear
here from our K1

1/1 (3.16), and confirm that the remaining part is the Gauss-Bonnet term
given in (3.15). In this way we reaffirm the β̄ and γ̄ values from (3.9) and also find

τ = 53
90 , (3.20)

in agreement with previous calculations [3, 29].
One can determine all the coefficients in K1

1/1 by matching to antighost level zero
vertices, up to several vertices parametrised by c1. In fact just using the h2h̄ and h3 vertices
is sufficient to determine all that can be found at this level, but we matched also to h̄2h

vertices to verify the result and further confirm consistency. The K2
1/1 parameters cannot

of course be determined by matching to antighost level zero vertices, because the lowest
antighost level it generates is level one, via Q−K2

1/1, while c1 and some vertices in the bi
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sum also remain undetermined because in K1
1/1 at the three-point level they can be collected

into 1
2c1Q−(c∗ν∇̄νφ).
Now all the parameters in K2

1/1, and c1, can be (over)determined by matching to the
full set of level-one three-point Feynman diagrams with topology of figure 3, i.e. such that
one external leg is a ghost cµ, one external leg is h∗αβ and the remaining leg is h or h̄. In
this way we recover the previously stated values for c1, c2, β̄, γ̄, β and γ, and determine that

α1 = −1
8 , α2 = − 1

24 , α3 = 161
120 , α4 = 1

120 , α5 = −3
4 , α6 = − 7

15 ,

α7 = 19
60 , α8 = −1

6 , α9 = − 1
12 , α10 = − 4

15 , α11 = −1
6 , (3.21)

and also the bi and di parameters as given below:

27∑
i=1

bi

(
h∗h2∂2

)
i
=

5
12h∗µνφ∂2

µνφ − 13
160h∗µν∂2

µνhβ
αhα

β + 1
4h∗µα (∂νhαν∂µφ − ∂µ∂νhανφ)

+ 61
240h∗µα (∂µhαν∂νφ − hαν∂ν∂µφ) + 7

80h∗µα
(
∂µhβν∂νhβ

α − hβν∂ν∂µhβ
α

)
− 61

240h∗µα
(
∂νhβ

ν∂µhβ
α − ∂2

µνhβ
νhβ

α

)
+ 13

60φ∗∂αhβν∂νhβ
α + 43

60φ∗hβν∂ν∂αhβ
α

+ 77
120φ∗∂νhβν∂αhβ

α − 53
60φ∗hαν∂ν∂αφ − 17

10φ∗∂νhαν∂αφ − 3
10φ∗φ□φ − 11

60φ∗φ∂2
ανhαν

+ 9
40φ∗hα

β□hβ
α + 14

15φ∗∂νφ∂νφ − 11
80φ∗∂νhα

β∂νhβ
α − 131

240h∗µν∂αhµν∂αφ

− 1
4h∗µνhα

µ∂2
αβhβ

ν − 1
12h∗µν∂αhα

µ∂βhβ
ν − 27

80h∗µν∂βhα
µ∂αhβ

ν + 17
80h∗µν∂αhµβ∂αhβ

ν

+ 7
80h∗µν∂2

αβhµνhαβ − 1
2h∗µν□hµβhβ

ν + 37
80h∗µν∂αhµν∂βhαβ − 1

3h∗µνhµν□φ

+ 1
3h∗µνhµν∂2

αβhαβ + 11
24h∗µν□hµνφ . (3.22)

21∑
i=1

di

(
c∗ch∂2

)
i
=

1
12c∗µ∂2

µνcνφ − 121
480c∗µ∂µcν∂νφ + 61

480c∗µ∂µcν∂αhα
ν − 11

24c∗µ∂2
µαcνhα

ν

− 1
3c∗µcν∂2

µνφ + 1
6c∗µcν∂2

αµhα
ν − 1

24c∗µ∂νcν∂µφ − 101
480c∗µ∂αcν∂µhα

ν − 1
8c∗α∂2

µνcνhαµ

− 119
480c∗α∂µcν∂νhα

µ + 1
12c∗αcν∂2

µνhαµ + 1
8c∗α∂νcν∂µhα

µ − 301
480c∗α∂νcα∂νφ + 1

4c∗αcα□φ

+ 1
3c∗α□cαφ − 1

12c∗αcα∂2
µνhµν + 27

160c∗α□cµhα
µ − 239

480c∗α∂νcµ∂νhα
µ − 1

4c∗αcµ□hα
µ

+ 7
160c∗α∂2

µνcαhµν + 241
480c∗α∂νcα∂µhµν . (3.23)

Since the above provides us with the full expression for K1/1 up to the three-point level,
we get as a bonus the full expression up to three-point level for the antighost level-two
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Figure 4. RG relates the 1/ε2 pole in the two-loop two-point counterterm vertices to one-loop
counterterm vertices, represented by the crossed circles, via one-loop counterterm diagrams with the
above topologies.

counterterm, without having to compute it from Feynman diagrams, since it is given by
S2

1/1 = QK2
1/1. This completes the explicit calculation of all off-shell one-loop divergences

with up to three (anti)fields.

3.3 Two-loop double-pole two-point graviton counterterms

Now as advertised we use the one-loop counterterm diagrams, illustrated in figure 4, to
compute the two-loop 1/ε2 counterterm via the RG relation (2.44). We limit ourselves to
the two-point diagrams at antighost level zero, i.e. with either a quantum or background
graviton external leg. This is already enough for a non-trivial explicit test of the second
order canonical expansion relation (2.71).

For the first diagram in figure 4, we need the one-loop two-point counterterm vertices
with purely quantum legs. They are given by (3.10) and the first two terms in (3.3) for
ghosts and graviton respectively. (In the former case we need to shift to gauge fixed
basis using relation (2.18) at the linearised level.) For the second diagram we need the
one-loop three-point counterterm vertices with two quantum legs and either an external
hαβ or h̄αβ. These can be ported directly from intermediate results created as a side-
product of the computation reported in the previous subsection. Alternatively, they can be
generated by evaluating s0K1/1 using the explicit expressions given there. (As expected the
topological counterterm (3.15) can be disregarded since it makes no contribution to the
Feynman integrals.)

The result we find is that for two-point vertices:

S0
2/2 =−1

2
κ4µ4ε

(4π)4ε2

∫
x

{
11
36R̄(1)□R̄(1)+ 5

72R̄(1)µν□R̄(1)
µν −

469
3600R(1)□R(1)+ 79

200R(1)µν□R(1)
µν

+ 781
3600R̄(1)□R(1)+ 53

150R̄(1)µν□R(1)
µν −

31
720

(
R̄(1)+R(1)

)
□2φ

}
,

(3.24)

where the overall factor of −1
2 is the conversion (2.44) from the double-pole in figure 4 to the

two-loop counterterm S2/2. As we will see this result passes a highly non-trivial consistency
check in that it satisfies the second order canonical transformation relation (2.71). As far
as we know the above result has not appeared in the literature before, except for the one
term: R̄µν□̄R̄µν [2]. However this was quoted there as part of some partial results that
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unfortunately contain an error [25]. Nevertheless comparing the coefficients for this one
term, we find that they agree up to a factor of half, see appendix A.

Recall that the one-loop level-zero two-point result (3.3) can be written entirely in
terms of linearised curvatures (3.2) and is thus invariant under (linearised) diffeomorphisms,
in particular also for the fluctuation field hµν . This latter invariance is a consequence of
invariance under the linearised BRST charge Qhµν = ∂(µcν). Recall also from section 3.1.2
that this property is actually an accident of Feynman DeDonder gauge. The presence of the
□2φ term above shows that at two loops, one’s luck runs out and this property is violated.
As is evident from the form of this last term, it just corresponds to inserting another □
into the unique one-loop Q-invariance-breaking possibility (3.13).

In the remainder of this subsection we will show that the double-pole (3.24) corresponds
to a canonical transformation taken to second order, i.e. can be expressed as in (2.71):

S2 = 1
2(S1, K1) + s0K2 . (3.25)

Actually recall that this expression follows from the non-linear CME relation s0S2 =
−1

2(S1, S1), viz. (2.41), on assuming that S1 is given only by the exact piece s0K1, whereas
the one-loop solution (3.14) also contains the Gauss-Bonnet term (3.15). However since the
latter is topological it makes no contribution to the antibracket and thus (3.25) is indeed
the correct solution.

From section 3.2, it is clear that (S1, S1) cannot vanish at the three-point level, and
thus the non-linear CME relation itself is highly non-trivial. However for the two-point
vertices (S1, S1) in fact does vanish. This is straightforward to see by inspection since for
the two-point vertices we only have the pure curvature antighost level zero part, S0

1/1, as
given in (3.3), and the antighost level one part, S1

1/1, as given in (3.10). But substituting
these into (S1/1, S1/1) the net effect is to replace hµν in a ‘quantum curvature’ by either
∂3

µναcα or □∂µcν (up to some coefficient of proportionality), causing the result to vanish
since both of these are pure gauge.

Thus the non-linear CME relation (2.41) only implies that the two-point vertex in S2
is s0-closed. The problem is that the two-point level is to a certain extent degenerate. A
related point is that if we take the action only to have an antighost level zero piece, and
take this to be any product of linearised curvatures, that is any one of the terms in S0

1/1
of (3.3), then this action is s0-closed at the two-point level since the linearised quantum
curvatures are invariant under linearised diffeomorphisms. Nevertheless as we will see, this
test is still non-trivial because although at the level of two-point vertices 1

2(S1, K1) in the
general solution (3.25) is s0-closed, it is not s0-exact.

Specialising (3.25) to antighost level zero and divergences we have

S0
2/2 = 1

2(S
0
1/1, K1

1/1) + Q−K1
2/2 . (3.26)

Substituting
∫

x h∗µν∂2
µνφ for K1

1/1 into the antibracket, we see that it vanishes for the
same reasons as above. Therefore the (3.11) part of K1/1 makes no contribution. Since
the remaining part of K1/1, viz. (3.5), is made of linearised curvatures, we see that the
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antibracket contributes terms with linearised curvatures only. Explicitly, we find

1
2(S

0
1/1, K1

1/1) =

κ4µ4ε

(4π)4ε2

∫
x

{
− 1

2 β̄(β + β̄)R̄(1)
µν □R̄(1)µν − β2R(1)

µν □R(1)µν + 1
2(3γ2 + 2βγ + β2)R(1)□R(1)

+ 1
4(3γ̄2 + 3γ̄γ + 2β̄γ̄ + β̄γ + β̄2 + βγ̄ + ββ̄)R̄(1)□R̄(1) − 1

2β(β + 3β̄)R(1)
µν □R̄(1)µν

+ 1
4(9γγ̄ + 3γ2 + 3β̄γ + 3βγ̄ + 2βγ + 3ββ̄ + β2)R(1)□R̄(1)

}
,

(3.27)
where recall that the parameters were determined as in (3.9). Now this cannot come from
an s0-exact expression because if it did, we could write it as Q−K1 for some K1. We can
check if this is so by using the same rule discussed in section 3.1.1, i.e. from (3.7) we know
that this would imply that the coefficient of the mixed terms above must be equal to the
sum of the coefficients of the equivalent pure quantum and pure background pieces. It
is easy to see that this does not work. Similarly one can verify that the curvature terms
in (3.24) do not sum to something that is Q−-exact.

But according to (3.26), on subtracting (3.27) from (3.24) we should be left with a
Q−-exact piece. We have already seen that this is true of the non-covariant term, the last
term, in (3.24). The remaining parts are pure curvature terms and must thus have the
parametrisation (3.5) except with an extra □ inserted (and different coefficients), up to
some Q−-exact remainder, Q−R ∈ K1

2/2 (which does not contribute to (3.26) because Q−

is nilpotent). Matching to the above results, we find that this is indeed the case and thus
we derive K1

2/2 at the two-point level in the form

K1
2/2 = κ4µ4ε

(4π)2ε2

∫
x

{ 877
28800h∗µν□R(1)

µν + 71
1800φ∗□R(1)

+ 361
28800h∗µν□R̄(1)

µν + 2719
14400φ∗□R̄(1) − 31

1440φ∗□2φ

}
+ Q−R .

(3.28)

Like in (3.5), the remainder term Q−R has ∂αh∗αβ as a factor. It could also be derived
by matching to the two-loop double-pole level-one counterterm diagrams, and they can be
computed using the results we have already obtained. However the above form for K2/2 is
sufficient for our purposes.

4 Generalised beta functions and why they are not finite

In this final section we comment on some ideas for generalised β-functions, where the field
is taken to play the rôle of a collection of couplings. The key idea is to exploit relations
that follow from assuming that these β-functions are finite. Unfortunately this assumption
is incorrect. We explain why natural generalisations that respect the BRST symmetry also
fail to work.

Inspired by ref. [43] and its many follow-ups e.g. [44, 45], which themselves are inspired
by refs. [46–48], the main proposal of ref. [25] consists of two key steps. The first key step is
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to allow for a non-linear renormalisation of the metric, replacing gµν in the Einstein-Hilbert
term of the classical action (2.4) with a bare metric g0

µν which is then expanded as

g0
µν(x) = gµν(x) +

∑
k=1

1
εk

gk
µν(x) . (4.1)

The gk
µν are assumed to be local diffeomorphism covariant combinations constructed from co-

variant derivatives and curvatures using the renormalised metric gµν . With this assumption,
the proposal only applies to non-linear renormalisation of the background metric.

In ref. [25] the µ dependence in (4.1) is simplified to an overall multiplicative µ−2ε on
the right hand side, by taking the mass dimensions to be [g0

µν ] = −2ε, while [gµν ] = 0 and
[κ] = −1 (also in d dimensions). However the same physics can be arrived at by including
µ in the more conventional way, as we do in this paper. Thus our metrics are taken to be
dimensionless, while [κ] = −1 + ε. Then by dimensions, the gk

µν are forced to have explicit
dependence on µ, cf. section 2.6 and section 3. In fact the ℓ-loop contribution is constructed
from 2ℓ covariant derivatives, rendered dimensionless by the factor (κµ−ε)2ℓ.

A renormalisation of form (4.1) can provide all the covariant counterterms in the bare
action that vanish on the equations of motion. For example the purely background metric
counterterms (in Feynman-De Donder gauge) are [1], cf. (3.3) and below (3.18),

S1 = µ−2ε

(4π)2ε

∫
x

√
ḡ

( 1
120R̄2 + 7

20R̄2
µν

)
. (4.2)

These counterterms can be generated by defining

ḡ0
µν = ḡµν + κ2µ−2ε

(4π)2ε
ḡ1

µν , where ḡ1
µν = 7

40R̄µν + 11
120 ḡµνR̄ (4.3)

(where, from here on, we make explicit the κµ−ε/(4π) dependence in ḡk
µν).

Now by insisting that the bare metric is independent of µ, and differentiating both
sides with respect to µ, one obtains a kind of generalised “beta function”, βαβ = µ∂µ gαβ

for the renormalised metric (non-linear wavefunction renormalisation might be a better
term). For the above example, from (4.3), we have for the background metric to one loop,

β̄µν = 2 κ2µ−2ε

(4π)2 ḡ1
µν . (4.4)

The second key step is actually implicit in ref. [25]. It is the assumption that such generalised
beta functions are finite in the limit ε → 0. We have just seen that this is trivially true at
one loop, but at higher loops this is a powerful assumption. Just as with the usual beta
functions in a renormalisable theory, the one-loop result would then be enough to determine
the leading pole 1/εℓ at each loop order ℓ without computing any more Feynman diagrams.
To see this in our example, assume we already know the leading two-loop purely background
counterterm and have chosen ḡ2

µν to generate it via

ḡ0
µν = ḡµν + κ2µ−2ε

(4π)2ε
ḡ1

µν + κ4µ−4ε

(4π)4ε2 ḡ2
µν , (4.5)
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where the prefactor follows because ḡ2
µν will be formed from four background covariant

derivatives. Then cancellation of the 1/ε single-pole in β̄µν tells us that

ḡ2
αβ = 4π2µ2ε

κ2 µ∂µḡ
1
αβ [ḡ] . (4.6)

Applying the Leibniz rule and using (4.4), we see that ḡ2
αβ should in fact be computable

simply by applying a first order shift of the background metric on the one-loop result:

ḡ2
αβ = δḡ1

αβ [ḡ] , where δḡµν = 1
2 ḡ1

µν . (4.7)

Unfortunately this does not work as can be verified explicitly at the two-point level by
using the pure background terms from (3.24) (for higher order see the discussion below that
equation). The reason is that the second key step, the assumption that these generalised
beta functions are finite, is incorrect. In the original incarnation as applied to the target
metric of the two-dimensional sigma model [46–48], it was correct, because the target metric
actually represents an infinite set of couplings. But applied to the fields themselves, as in
the proposal of ref. [25], it is not correct.

The obstruction to finiteness of β̄µν shows up most clearly in the gauge fixing. The
result (4.2) is derived using De Donder gauge (2.15). Clearly the transformation (4.5) alters
the gauge (2.15) (by a divergent amount). That is a problem because the Legendre effective
action is not the same in different gauges except on shell. But ḡ2

µν in (4.5) has been chosen
to cancel a part that only exists off shell.

In fact let us now recall that counterterms are required that depend on all combinations
of the fields, in particular the quantum fields, as we have seen. In the background field
method it is possible to work exclusively with diagrams that have only external background
field legs (as in e.g. [3]). However even if we do not explicitly track the value of counterterms
that cancel divergences in vertices involving quantum fields, they must be there in practice
because they cancel sub-divergences in higher loops, and higher loop divergences are local
as required only if all these sub-divergences have been cancelled [28, 49, 50], as we recalled
in section 2.6.

Then as we saw in section 2.9, the ‘new’ divergences at each loop order are s0-closed.
Those that vanish on the equations of motion, are s0-exact and correspond to infinitessimal
canonical transformations (2.69) between the antifields and quantum fields. As we proved
there, and also verified in section 3, there is no separate purely background renormalisation.
What happens instead is that purely background counterterms also get absorbed by these
canonical transformations. This extends to the non-linear terms that appear beyond one
loop order. For example we saw that the leading (i.e. double-pole) counterterm at two
loops, (3.26), also involves carrying the one-loop canonical transformation to second order,
as we saw in section 2.8.

Now it is clear that if the proposal of [25] is going to work, it should apply not to
the background metric, but to the antifields and quantum fields. Indeed the second-order
canonical transformation δϕ(∗) given in eq. (2.74), is the correct non-linear transformation
between bare (anti)fields

ϕ
(∗)
0 = ϕ(∗) + δϕ(∗) (4.8)
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and renormalised (anti)fields ϕ(∗), such that it will generate through Taylor expansion (2.76)
of the classical action, all the required counterterms that vanish on shell, up to two loops.5

Independence of ϕ
(∗)
0 on µ, then implies the generalised beta functions

βA[ϕ, ϕ∗] = µ∂µϕA and β∗
A[ϕ, ϕ∗] = µ∂µϕ∗

A . (4.9)

Following the previous argument, if we assume that these beta functions are finite, we
can derive K2 from K1 without computing Feynman diagrams. Once again we can check
this idea explicitly using the results for K1 from section 3.1. It turns out that it implies
that at the two-point level K2 must vanish. But from (3.28) this is incorrect. In fact,
irrespective of the details, this proposal cannot work because the K1 terms just furnish
linearised curvatures for K2, whereas K2 has the explicitly non-covariant piece — the last
term under the integral in (3.28). Again, the mistake in this reasoning is the assumption
that the generalised beta functions are finite.

To see why they cannot be finite, note that the partition function (2.28) now takes
the form

Z[J, ϕ∗] =
∫
Dϕ e−S[ϕ0,ϕ∗

0]+ϕAJA . (4.10)

Here the bare antifields are responsible for generating all the counterterms that vanish
on shell, via canonical transformations (2.74), whilst S itself contains the counterterms
for cohomologically non-trivial pieces which depend only on the total metric, such as the
topological term (3.15) at one loop, and the Goroff-Sagnotti term [2]

S2 ∋ 209
5760

κ2µ−2ε

(4π)4ε

∫
x

√
g R γδ

αβ R ϵζ
γδ R αβ

ϵζ (4.11)

at two loops. All Green’s functions are then finite (in particular this is so for the Legendre
effective action, which is a functional of the classical fields ΦA and the renormalised
antifields Φ∗

A = ϕ∗
A). However for the operators that vanish on shell, we are now attributing

µ dependence to the renormalised (anti)fields ϕ(∗) rather than renormalised couplings ci
ℓ

as before. Unfortunately µ-independence of the bare action S[ϕ0, ϕ∗
0] then implies that βA

cannot be finite since:

µ∂µZ[J, ϕ∗] =
∫
Dϕ βA[ϕ, ϕ∗]JA e−S[ϕ0,ϕ∗

0]+ϕAJA . (4.12)

Indeed the left hand side is finite by construction, but the right hand side involves the
insertion of βA which is local and non-linear in renormalised quantum fields. The insertion
of such terms generates new divergences, and the only way they can be cancelled is if in
fact βA already contains precisely the right divergences to cancel them.

5 Discussion and conclusions

Off-shell counterterms in quantum gravity, defined perturbatively as an effective theory
about a background metric ḡµν , are invariant under background diffeomorphisms, BRST,

5The Jacobian for this local transformation vanishes in dimensional regularisation, recall below (2.31).
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and the RG. In this paper we have drawn out some of the consequences of the way these
symmetries are interwoven with each other.

In particular we have shown in section 2.9 that at each new loop order the new
divergences, those that are annihilated by the total classical BRST charge s0, can be
characterised as being either diffeomorphism invariant functionals of the total metric gµν

which do not vanish on the classical equations of motion (i.e. do not vanish when Gµν = 0) or
as s0-exact functionals which are thus first order canonical transformations of the antifields
and quantum fields (cf. section 2.8). In particular we show that there are no separate purely
background field divergences. Then it follows that those background field terms that do
not vanish on the equations of motion Ḡµν = 0, are part of the diffeomorphism invariant
functionals of the total metric, whilst those that do vanish on the equations of motion
are renormalised by reparametrising the quantum fluctuation hµν as part of the canonical
transformations. The background metric itself is never renormalised.

By adding the antifield sources for BRST transformations, we keep track of the
deformations of the BRST algebra induced by renormalisation. These appear as part of the
s0-exact counterterms. Whilst the Zinn-Justin/CME equation is preserved at each loop
order ℓ for both the bare action and the Legendre effective action, the BRST transformations
are altered in a non-linear way beyond one loop. As we demonstrated in section 2.5 this
brings the Legendre effective action and bare action realisations of the CME equation into
tension with each other. This tension is resolved by the RG identities for a perturbatively
non-renormalisable theory, which relate lower loop ℓ′ < ℓ counterterm diagrams to higher
order poles at ℓ-loop order [13].

In this paper we only demonstrated how this works at two loops. A fully general
understanding of how the RG ensures consistency for BRST seems possible, following the
general understanding of the RG identities [13] and e.g. the proof of renormalisability put
forward in ref. [5] for effective theories with gauge invariance (the latter does not address
the above tension but proceeds assuming both realisations of the CME remain consistent
with each other).

Let us emphasise that the way the RG and BRST relations work together is quite
remarkable. On the one hand the RG relates the two-loop double-pole vertices to the
one-loop single pole vertices through a linear map which however involves computing
further one-loop Feynman diagrams (the counterterm diagrams). On the other hand BRST,
through the second-order CME relation (2.41), directly relates the two-loop double-pole
vertices to the square of the one-loop single-pole vertices, i.e. without involving further loop
calculations. In a sense then the BRST relations achieve what generalised beta function
proposals, cf. section 4, fail to do.

However the BRST relations do not determine the higher pole vertices completely but
only up to an s0-closed piece, for example this is evident in the two-loop relation (2.41):
s0S2/2 = −1

2(S1/1, S1/1). They are thus less powerful than the RG identities. In fact in
section 3.3, we saw in Feynman-De Donder gauge that the non-linear term on the right
hand side starts only at the three point level. As we explained, at the two-point level the
equations degenerate, although they still allow a unique determination of the second order
canonical transformations and thus also the new s0-exact piece.
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Let us note that the way the RG works to ensure consistency of BRST invariance,
is not unique to non-renormalisable gauge theories. However in renormalisable theories,
the divergent vertices are those in the original action. The RG identities for counterterm
diagrams then play a less dramatic rôle in that they just ensure that these divergences
appear with the correct sign so that they can be renormalised multiplicatively.

For quantum gravity, we verified the assertions above in section 3 by computing
counterterms at one-loop up to the three-point level and up to two-loops for the graviton
two-point vertex. Exploiting the BRST properties we gave a general parametrisation of
the one-loop three-point counterterms and determined the parameters by matching to
the graviton and ghost one-loop integrals. The antighost level two counterterms (which
renormalise the BRST transformation of the ghosts) then follow without further Feynman
diagram computations.

These results could be readily extended, for example the ghost two-loop double-pole
two-point counterterms can be computed using the vertices presented here and this would
allow the form of the two-point K2/2 to be fully determined, cf. eq. (3.28). An interesting
but more challenging project would be to work out the form of the one-loop counterterms
to the next order in h̄µν since this would allow one to determine the two-loop double-pole
three-point background field vertices which would then allow a complete comparison with
the off-shell results reported in ref. [3]. The parametrisation we give for K1/1 in (3.16)
and (3.17) looks sufficient to compute the corresponding one-loop counterterm diagrams, if
the di and bi terms are covariantised, however this introduces a number of new terms with
undetermined coefficients, in particular we would need to determine the h∗h2R̄(1) terms.
The simplest way to do that would appear to be by matching to one-loop h∗chh̄ divergences.

In our discussion of generalised beta functions in section 4, we explained why they
cannot be finite and verified this using our explicit results from section 3. In particular
for generalised beta functions based on the canonical transformations we obtained the
formula (4.12) which shows why they cannot be finite. Nevertheless, this formula implies
some interesting relations between the divergent higher order coefficients and the divergences
generated by expectation values of the lower coefficients. It would be interesting to verify
these and explore further their consequences.

Finally let us return to our original motivation and note that the counterterms we have
derived give directly the leading log behaviour at large euclidean momentum. Indeed, the
one-loop divergence (2.47) and counterterm (2.48) taken together determine the ln

(
p2/µ2)

part. One can check explicitly that the two-loop double pole (2.52) from diagrams using only
tree level vertices, together with divergences (2.51) in one-loop counterterm diagrams and
the double-pole counterterm from (2.54), conspire to cancel all but a remaining [ln

(
p2/µ2)]2

term. Thus from the explicit results (3.3) and (3.24) we see that the leading log contribution
of for example the two-point hµν vertex is given to two loops, in Feynman-De Donder
gauge, as:

1
2hµνΓµναβ(p)hαβ = p2

(
φ2 − 1

2h2
µν

)
+ κ2

(4π)2 ln
(

p2

µ2

)(61
60(R

(1)
µν )2 − 19

120(R
(1))2

)

− κ4p2

(4π)4

[
ln
(

p2

µ2

)]2 ( 469
7200(R

(1))2 − 79
400(R

(1)
µν )2 − 31

1440p2R(1)φ

)
,

(5.1)
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where hµν and φ = 1
2hµ

µ here just provide the polarisations, and the linearised curva-
tures (3.2) should be similarly understood and cast in momentum space, thus R

(1)
µανβ =

2p[µ| p[νhβ] |α] etc.
Of course as physical amplitudes these corrections vanish on shell, while for the moment

it remains just a dream that a way can be found to resum these leading contributions to all
orders, where one might get powerful insights into the non-perturbative UV behaviour of
quantum gravity. Nevertheless we hope that the detailed understanding we have gained
of some of the consequences of combining background diffeomorphism invariance, RG
invariance, and BRST invariance, bring that dream a step closer to reality.
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A Comparisons with the literature

Here we outline the differences in convention and notation that need to be taken into
account in order to compare with other results in the literature.

The two-point purely quantum one-loop counterterm given in (3.3), corresponding to the
first diagram in figure 2, was computed in a general two parameter gauge (α̃∂µhµν+β̃∂νhρ

ρ)2

in ref. [26]. (We put a tilde over his parameters so as not to confuse with the ones in this
paper.) After taking into account the Minkowski signature and that factors of 1/(2π)4 are
accounted for differently, it should coincide with the first two terms in (3.3) on specialising
α̃ = 1 and β̃ = −1

2 to get Feynman DeDonder gauge.
Initially the results did not coincide. Recomputing the two-point vertex in this general

gauge we found the following typos in ref. [26]: in the square brackets of his T3 there should
be an extra term: +45

8 β̃4/α̃2, and in T4 the term −135(β̃2/α̃) should read −135(β̃2/α̃2).
Finally his parameter a should be defined as a = 1

2T2 −T3, rather than 1
2E4 as stated. Once

these are fixed, we find complete agreement.
The result for the purely quantum pieces in (3.3) also agrees with the result quoted in

ref. [27] on recognising that there the divergence can be recovered by setting ln(1/µR) = 1/2ε.
This mapping is also the one to use to compare the level one divergence with (3.10).

The purely background terms in (3.3) agree with ref. [1] on recognising that their
ε = 8π2(d − 4), their definition of Ricci curvature is minus ours, cf. below (2.5), and that
their action is defined to be the opposite sign from the usually defined Euclidean action,
cf. (2.4). Their normalisation of the scalar curvature term is also non-standard but this is
repaired by mapping gµν 7→

√
2κgµν and has no effect on the one-loop result, since it is a

curvature-squared action.
In the famous paper [3], this result is reproduced but the value quoted is half that

of (3.3). To see this one should note that it is Minkowski signature and their ε = 4−d i.e. is
twice ours. (There is also an accidental extra factor of 1/ε in their quoted equation.) They
also quote a value for some two-loop double-pole divergences. The one point of comparison
is the result (3.24) for the R̄µν□R̄µν counterterm. Using these translations we see that their
result is again half of what we find.
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