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Abstract  26 

Standard neuroeconomics theories state that the value of different classes of stimuli, for 27 

instance the hedonic value of food versus music, is transformed to a common reference scale 28 

that is independent of their sensory properties. However, adaptive behaviour in a multimodal 29 

and dynamic environment requires that our brain also encodes information about the sensory 30 

features of reward predicting stimuli. Whether and how a common code for value could 31 

integrate information about the sensory features of rewarding stimuli remains inadequately 32 

understood. By employing stimuli from auditory and visual modalities as reward predicting 33 

cues in a value-based decision-making task, we were able to vary the reward value and sensory 34 

modality independently and dissociate neural codes of auditory and visual rewards in frontal 35 

areas using fMRI. Univariate fMRI analysis revealed modality-specific and modality-general 36 

value representations in orbitofrontal cortex (OFC) and ventromedial prefrontal cortex 37 

(vmPFC), respectively. Crucially, modality-specific representations were highly selective as 38 

they were only activated when participants believed that the corresponding sensory modality 39 

was associated with reward and were absent when the task involved instruction-based rather 40 

than value-based choices. Moreover, we show that modality-specific value representations are 41 

supported by the presence of the effective connectivity between each primary sensory area and 42 

the corresponding OFC activation and further between modality-specific value representations 43 

in OFC and vmPFC, only when the sensory modality to be chosen is associated with reward 44 

and absent otherwise. Our results indicate the presence of both modality-specific and modality-45 

general representations of reward value and reveal mechanisms through which the interaction 46 

between the sensory cortices and the two types of representation guides value-based decisions. 47 

 48 
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Introduction 56 

When we are presented with options for making a choice, our current goals guide our 57 

decisions. Theoretical frameworks of value-based decision-making (VBDM) suggest that 58 

depending on the current goal requirements, our brain associates a subjective value to each 59 

available reward option (i.e., a valuation process), then compares these values, and makes a 60 

final choice (Balleine and Dickinson, 1998; Valentin et al., 2007; Rangel et al., 2008; Mannella 61 

et al., 2016; Eryilmaz et al., 2017; O’Doherty et al., 2017). In a multimodal dynamic 62 

environment, reward options can have fundamentally distinct sensory features, as for instance 63 

the sound of a coffee machine, the smell of fresh bread, and the sight of a bottle of our favorite 64 

smoothie in the fridge could all evoke the pleasant expectation of a nice breakfast and may 65 

therefore have the same value for us as we wake up in the morning. In addition, in real life 66 

situations value associations of stimuli can change frequently, for instance after satiation we 67 

may not enjoy the smell of bread as much as we may still be pleased by the smell of coffee.  68 

In order to solve the choice problem in an environment as exemplified above, the 69 

valuation process in the brain should follow two principles. Firstly, it is important to be able to 70 

compare and choose between distinct stimulus options, hence stimulus-value representations 71 

independent of sensory-specific features of rewards should exist in the brain (Hampton et al., 72 

2006; Chib et al., 2009; Hare et al., 2010; Levy and Glimcher, 2011; Noonan et al., 2011; Lin 73 

et al., 2012). Secondly, it is essential that the encoding of the most recent stimulus-value 74 

associations also includes sensory-specific information separately for each available option 75 

(Howard and Kahnt, 2021). This is important as in real world reward information can come 76 

through any sensory modality and our goals or states may change in time, requiring generation 77 

of specific predictive signals about imminent goals (e.g. whether to approach the coffee 78 

machine, the oven or the fridge in the example above) for guidance of the adaptive behavior 79 

(Klein-Flügge et al., 2013; Rudebeck and Murray, 2014; Stalnaker et al., 2014; Wilson et al., 80 

2014; Nogueira et al., 2017). Past research has predominantly focused on the first process, 81 

where valuation in the brain adheres to a common currency coding scheme that encodes the 82 

abstract amount of the associated value independent of the identity and sensory properties of 83 

stimuli (Montague and Berns, 2002; Padoa-Schioppa and Assad, 2006, 2008; Levy and 84 

Glimcher, 2012; Berridge and Kringelbach, 2015). More recently, evidence for the second 85 

process, i.e. the identity-specific representation of reward value has been provided by studies 86 

across a range of techniques and species (for a review see Howard and Kahnt, 2021). For 87 

instance, it has been shown that specific representations exist for different flavours (McNamee 88 
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et al., 2013; Cai and Padoa-Schioppa, 2014; Suzuki et al., 2017; Howard and Kahnt, 2018) or 89 

odours (Howard et al., 2015) of juice or food items that have the same appetitive value for 90 

participants. However, the extent to which valuation follows a common currency or identity-91 

specific coding principle and the functional significance of each coding scheme have remained 92 

unknown.  93 

Orbitofrontal frontal cortex (OFC) and ventromedial prefrontal cortex (vmPFC) are key 94 

brain areas involved in the computation of subjective value and guidance of the value-based 95 

choices (Rolls, 2000; Montague and Berns, 2002; Rangel et al., 2008; Padoa-Schioppa, 2011; 96 

Wallis, 2012; O’Doherty, 2014; Stalnaker et al., 2015; Setogawa et al., 2019). Previous studies 97 

on human and non-human primates (Gallagher et al., 1999; Baxter et al., 2000) have shown 98 

that neurons in OFC are responsible for assigning (Noonan et al., 2010, 2011) and updating the 99 

value of individual stimulus options (Rudebeck and Murray, 2011; Rudebeck et al., 2017), for 100 

instance during the devaluation of previously rewarding events (Pickens et al., 2003), and that 101 

stimulus value signals encoded in OFC are independent of the actual final choice (Wallis and 102 

Miller, 2003; Padoa-Schioppa and Assad, 2006, 2008; Kennerley et al., 2009). On the other 103 

hand, vmPFC is important in the final value-based choices (Noonan et al., 2010, 2011; 104 

Rudebeck and Murray, 2011) and its lesions impair the reward-driven decisions (Izquierdo et 105 

al., 2004; Noonan et al., 2011; Hiser and Koenigs, 2018). Importantly, different lines of 106 

evidence have pointed to the potential role of OFC, in particular the lateral OFC, in identity-107 

specific valuation (Klein-Flügge et al., 2013; McNamee et al., 2013; Stalnaker et al., 2014; 108 

Howard et al., 2015; Howard and Kahnt, 2017), whereas vmPFC has been shown to underlie 109 

common currency coding of reward value in which different reward domains and categories, 110 

ranging from goods to monetary and social rewards, have overlapping representations (Hare et 111 

al., 2008, 2010, 2011; Chib et al., 2009; Lebreton et al., 2009; Rolls et al., 2010; Smith et al., 112 

2010; Levy and Glimcher, 2011; Lin et al., 2012; McNamee et al., 2013). These findings raise 113 

the possibility that identity-specific and identity-general value representations might both co-114 

exist in lateral OFC and vmPFC, respectively. In fact, both encoding of reward value 115 

(McNamee et al., 2013) and emotional valence (Čeko et al., 2022) have been shown to rely on 116 

co-existing identity-general and identity-specific representations. Whether or not the same 117 

principle extends to representation of value of stimuli from different sensory modalities and 118 

most importantly the mechanisms that generate each type of representation have remained 119 

underexplored.   120 

Lateral and posterior regions of orbitofrontal cortex receive highly specific and non-121 

overlapping sensory afferent inputs from auditory and visual sensory areas (Barbas, 1988, 122 
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1993; Carmichael and Price, 1996; for white matter connections - Burks et al., 2018; Martínez-123 

Molina et al., 2019). More medial prefrontal areas including vmPFC on the other hand receive 124 

few direct sensory inputs and are more heavily connected with the limbic and visceromotor 125 

areas (Carmichael and Price, 1996). Such an organization makes these areas ideal hubs for 126 

coding reward value in a modality-specific or modality-general manner, respectively. 127 

Moreover, past research has shown that reward value modulates early sensory processing 128 

(Rutkowski and Weinberger, 2005; Shuler and Bear, 2006; Pleger et al., 2008; Serences, 2008; 129 

Goltstein et al., 2013). Together, these findings raise the possibility that to execute goal-130 

directed choices, sensory areas communicate the information related to the identity of rewarded 131 

stimuli to the higher valuation areas such as the lateral OFC and in turn receive modulatory 132 

inputs related to the changes in goals and value structures of the environments. In the current 133 

study, we test whether such a putative mechanism can underlie value-based decision making 134 

in a dynamic multimodal environment. Specifically, we aimed to find whether and how 135 

modality-related stimulus value representations (SVR) exist in the key valuation regions when 136 

trial-by-trial updating of computed values of each sensory modality is necessary. We 137 

hypothesized that the representation of each option’s value should exist in OFC in a modality-138 

specific manner and in vmPFC in a modality-general manner, and that the co-existence of these 139 

coding schemes enables an efficient implementation of value-based choices through long-range 140 

interactions with the sensory cortices.  141 

In order to test these hypotheses, we acquired fMRI data in a value-based decision-making task 142 

with a dynamic foraging paradigm adopted from a previous study (Serences, 2008), where 143 

subjects aimed towards maximizing their amount of monetary gain by choosing one of the two 144 

presented stimulus options which they believed was associated with a reward based on the trial-145 

by-trial history of reward feedbacks. The two options were rewarded in an independent and 146 

random fashion to simulate foraging behavior in a varying environment. To test the influence 147 

of sensory modality through which reward information was delivered, the task was performed 148 

under three different conditions: auditory, visual, and audio-visual, where the choice was made 149 

either intra-modally (between options from same sensory domain) or inter-modally (between 150 

options form different sensory domains). To test the hypothesis that modality-specific 151 

representations in frontal areas were due to a difference in value processing requirements and 152 

not due to the difference in sensory processing requirements of the auditory and visual domains, 153 

a control task was also employed. The control task was designed in a way that the sensory 154 

processing requirements were exactly similar to the value task but selection was based on 155 

passively following an instruction as to which stimulus to choose and not on the assessment of 156 
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options’ reward history. Univariate fMRI analyses revealed modality-specific and modality-157 

general value representations in lateral-posterior OFC and vmPFC, respectively, for both 158 

sensory domains (i.e. auditory and visual). Effective connectivity analysis of a network 159 

consisting of regions exhibiting value modulations in auditory and visual sensory cortices, 160 

lateral and posterior OFC, and vmPFC, revealed how the interplay between the sensory cortices 161 

and the two types of value representations generates modality-specific representations of value 162 

and guides value-based decisions. 163 

 164 

Materials and Methods 165 

Participants 166 

Twenty-four healthy subjects (13 male and 11 female, age 19 to 45 years; mean ± SD 167 

age = 27.92 ± 6.04 years) participated in the experiment for financial compensation of 8€/hour. 168 

The sample size was based on a previous study that used a similar paradigm (Serences, 2008, 169 

N = 15) but to account for possible dropouts we tested N=24. The experiment was done in two 170 

scanning sessions, each lasting about 2.75 hours, preceded by one online training session (0.5 171 

hours) to familiarise the participants with the task. Participants also had the opportunity to earn 172 

a monetary bonus of maximum 22€ based on their behavioural performance in the value-based 173 

decision-making task (value task) during the scanning session. All participants were right- 174 

handed and had normal or corrected-to-normal vision, and were naïve to the hypothesis of the 175 

project. Before the experiment started and after all procedures were explained, participants 176 

gave an informed written consent and participated in a practice session. The study was 177 

approved by the local ethics committee of the “Universitätsmedizin Göttingen” (UMG), under 178 

the proposal number 15/7/15.  179 

Four participants were excluded from the final analysis resulting in the data from 20 180 

subjects presented here: two participants had difficulty in differentiating the strategies of the 181 

value and the control task (specifically with the instructions associated with the feedback 182 

colours in the two tasks, see the Experimental Design); one participant was excluded due to 183 

excessive head motion while scanning (> 4 mm); and one participant due to the unusually large 184 

size of the ventricles in the structural MRI scan (judged by a co-author who had training in 185 

medicine).  186 
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 187 
Figure 1. Experimental Paradigm and Computational Framework of Choice Behaviour. (A) General 188 
schematic of an audio-visual (AudVis) trial across both behavioural tasks (i.e., value and control tasks). After a 189 
jittered inter-trial interval of fixation (Fix), stimuli (Sti) options were presented. Participants made a choice during 190 
a response window of fixed interval (i.e., 2.25 s from the onset of stimuli), after which the fixation changed to 191 
either yellow or blue colour to indicate the feedback (Fbk). (B) Stimuli options as presented during an auditory or 192 
a visual trial. In the value-based decision-making task, the yellow feedback indicated a reward and blue feedback 193 
no reward, whereas in the control task, the yellow and blue feedback instructed participants either to switch or to 194 
keep the past trial’s choice, respectively. (C) Reward history of option 1 and 2; i.e. 𝑟 𝑡  and 𝑟 𝑡 ; enter as 195 
inputs to two identical exponentially decaying filters that weigh rewards based on their time in the past and 196 
compute the subjective value of each option (i.e. v1 and v2). The difference of the output of filters gives the 197 
differential value between the options (i.e., dv). The differential value according to a sigmoidal decision criterion 198 
results into the probability of choice (option 1 or 2, here option 1 is chosen as an example, see equation 5 in the 199 
text).  200 
 201 

Experimental design 202 

The experiment consisted of a value-based (value task) and an instruction-based 203 

(control task) decision-making task, completed in two sessions (Figure 1). Each session 204 

consisted of 12 blocks (of 72 trials each): 9 blocks of the value task followed by 3 blocks of 205 

the control task. Each of the tasks involved a binary choice between stimuli presented in three 206 

sensory domains: both auditory (AudAud), both visual (VisVis), and audio-visual (AudVis), 207 

which were presented in separate blocks. All three types of sensory domain blocks appeared 208 

an equal number of times across each task in a pseudo-random order.  209 

Stimuli: Two pure auditory tones (low pitch (LP) tone- sawtooth, 294 Hz; high pitch 210 

(HP) tone- sinusoidal, 1000 Hz, played through MR-compatible earphones -Sensimetric S15, 211 

Sensimetrics Corporation, Gloucester, MA- with an eartip -Comply™ Foam Canal Tips-) and 212 

two contrast reversing visual checkerboards (green and black; red and black, as in (Serences, 213 

2008)) within circular apertures (4 ̊  radius) were used as the choice options. In an auditory 214 
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(AudAud) or a visual (VisVis) trial, either two tones or two checkerboards were presented as 215 

options, respectively. In an audio-visual (AudVis) trial, one tone and one checkerboard were 216 

presented as options. Choice options were presented simultaneously on the left or right side of 217 

the centre (for auditory tones to each ear). All combinations of a tone and a coloured 218 

checkerboard: LP-Red, LP-Green, HP-Red, HP-Green, were presented an equal number of 219 

times across the 72 trials of AudAud, VisVis and AudVis blocks in a pseudorandom order. 220 

Trial Structure: Both value and control tasks were the same in terms of presentation 221 

of stimuli options, response requirements, and feedback on the decision. The only difference 222 

was over the indications associated with the feedback colours (Figure 1A-B). Participants were 223 

asked to fixate continuously throughout each run (here, a run = 3 blocks) on a small square 224 

(0.4 ̊ visual degree) at the centre of the screen. A trial began with a mean fixation period of 1.8 225 

s, yielding a mean trial duration of 4.3 s. Following the fixation period, the two stimuli options 226 

were presented simultaneously for 1 s, one on each side of fixation (left and right; auditory 227 

stimuli were played one on each side of the earphones; visual stimuli were centred 10 ̊ to each 228 

side and 5 ̊ above the centre of the screen). The spatial position of each option was also pseudo-229 

randomised across the trials of a block in such a way that each option appeared an equal number 230 

of times on both sides of the fixation point. Following the onset of the stimuli options, 231 

participants pressed either the left or the right button on a MR-compatible two-buttoned 232 

response box (Current designs Inc., Philadelphia, PA), using the index or the middle finger of 233 

their right hand, to indicate their choice. The participants were required to respond within 2.25 234 

s following the onset of the options. Following the response window, a feedback window of 235 

0.25 s appeared in which the central fixation point turned either yellow or blue in colour. In the 236 

value task, the yellow fixation indicated that the choice was rewarded and the blue fixation 237 

indicated that the choice was not rewarded. Since the control task was designed to be similar 238 

to the value task in terms of sensory processing requirements without a need to track and update 239 

their estimation of options’ value, the feedback instructed the participant to make a prespecified 240 

choice. Thus, in the control task, the yellow fixation indicated to switch from the past trial 241 

choice and the blue fixation indicated to keep the past trial choice. The choice on the first trial 242 

of any control block was a random choice. 243 

Dynamic reward structure: To create a dynamic multimodal environment for 244 

participants, the rewards were assigned to the options from different sensory modalities 245 

independently and stochastically at random intervals using a Poisson process (Corrado et al., 246 

2005). On average, a reward was available for delivery on 33% of the trials (of a block of value 247 

task). These 24 rewards in a block (33% of 72 trials) were distributed between the two stimuli 248 
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options in different reward ratios of {1:3, 1:1, 3:1}, such that the rewards assigned to options 249 

were {8.5%:24.5%, 16.5%:16.5%, 24.5%:8.5%} in percentage of trials. For the value task in a 250 

single session (9 blocks), these three reward ratios were repeated and randomized such that 251 

each reward ratio was used exactly once with every sensory domain block (i.e. AudAud, VisVis, 252 

and AudVis). The randomization of various factors such as sensory modality, spatial position 253 

of options, and reward ratios was done to provide a dynamic environment, in which the 254 

participant would be required not only to update their stimuli-value associations with changing 255 

reward ratios but also to keep track of the rewarding stimuli very carefully on a trial-to-trial 256 

basis with changing spatial positions. Two important schemes of “baiting” and “change over 257 

delay” (COD) were adopted as in previous studies (Corrado et al., 2005; Serences, 2008). In 258 

baiting, an assigned reward to an option remained available until that option was chosen. This 259 

was done to avoid the “extreme exploitation” strategy in which a participant would always 260 

stick to the option with a higher reward rate (e.g., 24.5%>8.5%) association in a block and to 261 

motivate the exploration in which a participant should visit both reward options occasionally. 262 

Also, an earned reward feedback was delayed for one trial when the participant changed their 263 

choice from one option to the other and delivered only if the participant chose the same option 264 

again. This cost, i.e., COD, was employed to discourage “extreme exploration” strategy, where 265 

the participant would be able to consume all rewards without any learning by alternating 266 

choices rapidly between options. Trials following a change of choice (switch) between options 267 

were not included in the behavioural analysis (and were marked by a specific regressor in fMRI 268 

analysis) because subjects were informed that they will not get a reward on such trials and 269 

hence choices were not completely free. At the end of each block, participants were shown the 270 

reward earned in that block at the rate of 5 cents per yellow square shown as the reward 271 

feedback. At the end of the second session, participants received the total reward earned which 272 

was up to a maximum of 22€ (11€ per session) based on their performance along with a 273 

participation fee of 8€ per hour. 274 

Control task structure: Similar to the reward structure in the value task, switches were 275 

assigned independently and stochastically to the options in an equiprobable manner with an 276 

average switch rate of 33%. Thus, on any trial when a participant earned a switch from a chosen 277 

option, yellow feedback was displayed indicating that they should switch their choice to the 278 

other option on the next trial. On other trials, when a switch was not assigned, blue feedback 279 

was shown to indicate that the same option should be chosen on the next trial. This type of 280 

switch assignment structure was developed to encourage a similar temporal choice pattern as 281 

in the value task. On a single day, the control task was conducted in each of the three sensory 282 
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domains. There were no baiting and COD schemes employed in the control task. At the end of 283 

each block, participants were shown their performance that indicated how accurately they 284 

followed the instructions in that block. 285 

Computational framework of choice behaviour 286 

To examine whether participants’ choices in the value task were influenced by the 287 

dynamic reward structure employed in our design, we used a computational framework that 288 

has been used in the past to model choice behaviour abiding by the matching law (Herrnstein 289 

and Baum, 1970; Corrado et al., 2005; Serences, 2008). In our task, there were no prior reward 290 

associations with the options, and hence on any trial 𝑡 a participant made a choice 𝑐 𝑡  based 291 

on the previous rewards received 𝑟 𝑡  during the experiment, see Figure 1C. Intuitively, an 292 

option that delivers more rewards per unit of time should have relatively higher value 293 

associations and should be chosen more often. The value associations, in general, should 294 

strongly predict how a participant’s choices are affected by reward history, i.e., “the learning 295 

mechanism”. Thus, to estimate participants’ subjective value beliefs for each reward option on 296 

a trial-by-trial basis, we fitted the reward history and choice data of each participant to a linear-297 

nonlinear-probabilistic (LNP) model, shown in Figure 1C (also called as linear regression-298 

based model of reinforcement learning (Katahira, 2015)). Two broad phases of the LNP model 299 

are the learning and the decision-making (for implementation details refer to Corrado et al., 300 

2005; Serences, 2008). 301 

In the learning phase (see Figure 1C), two identical linear filters (n learning 302 

weights 𝛼 , 𝜏 1 𝑡𝑜 𝑛 trials in the past) weigh the reward history of each option (𝑟 𝑡 , 𝑖303 

1,2 correspond to stimulus sets 𝑆 , 𝑆 ) based on the reward received on each of them in past. 304 

The value for n was taken to be half of the trials over which the reward ratio was unchanged 305 

(here, n = 36), as has been done before (Serences, 2008). This results in updating of the value 306 

belief of the options, 𝑣 𝑡 , 𝑖 1,2. As the overall reward assignment over the two options was 307 

symmetric, their impact on choice was equal and opposite, hence the linear filter was derived 308 

by closely matching the composite reward history 𝒓 (as shown in (1)) and composite choices 𝒄 309 

(shown in (2)).  310 

𝒓 𝒓𝟏 𝒓𝟐                          (1) 311 

𝒄 𝒄𝟏 𝒄𝟐                          (2) 312 

 313 

The decision-making phase (see Figure 1C), draws the ultimate binary choice (𝑆  or 314 

𝑆 ) on trial t based on a relation that maps the differential value 𝑑𝑣 𝑡  (as shown in (3)) 315 
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computed on trial t to the participant’s probability of choosing option 𝑆  on that trial. 316 

Intuitively, this relation should strongly predict a participant’s choice behaviour, where the 317 

participant should make a choice 𝑐 𝑡  based on the comparison process shown in (4).  318 

𝑑𝑣 𝑡 𝑣 𝑡  𝑣 𝑡                  (3) 319 

𝑐 𝑡  
𝑆 , 𝑖𝑓𝑣  𝑣  
𝑆 , 𝑖𝑓𝑣  𝑣                  (4) 320 

To assess the fit of the LNP model during the learning phase, the linear filter weights 321 

for the data of each participant were approximated by fitting an exponentially decaying 322 

function, indicating that choices were most impacted by recent rewards rather than distant 323 

rewards in past (quantified by time scale parameter 𝜏 trials of the fit; see Figure 1C for the 324 

illustration of the filter and Figure 2C for the fit to the data of a single participant). To assess 325 

the decision-making phase, the probability of choosing option 𝑆  for each participant was 326 

approximated by fitting a normal cumulative distribution function (equation (5)). 327 

  𝜑 𝑥, 𝜇, 𝜎 𝑒 𝑑𝑥  (5) 328 

 where x is the differential value (𝑑𝑣 . This function contains two important decision-329 

making parameters: 𝜇 corresponding to participant’s biasness towards a particular option and 330 

𝜎 that measures the sensitivity to value differences or in other words the explore-exploit 331 

tendency. Accordingly, 𝜎 = 0 corresponds to an extreme exploitative tendency, and 𝜎 → ∞ to 332 

extreme exploration. The disadvantage of being extremely exploitative; i.e., sticking to an 333 

option that has higher reward rate associated with it, is that it would yield lesser number of 334 

rewards to the participant because there exist unvisited options, which remain baited until 335 

chosen. Moreover, extreme exploration would also be disadvantageous, as it would lead to no 336 

learning and the absence of any strategy. Thus, the optimal strategy in this task would be to 337 

choose more often the option with higher reward rate and to occasionally visit the less 338 

rewarding option to consume rewards on it. An optimal strategy is advantageous in a dynamic 339 

reward structure task where the aim is to maximize rewards, and to examine whether this is the 340 

case in our task, we inspected the abovementioned parameters (𝜏, 𝜇, 𝜎  for their fit to 341 

participants’ behavioural data (Figure 2C-E). 342 

In the value task, the positive and negative feedbacks have distinct effects on 343 

participants’ beliefs. Therefore, if the choice of a particular option was rewarded (yellow 344 

feedback) or not rewarded (blue feedback) on the previous trial, then the value beliefs for that 345 

option should be relatively higher or lower, respectively, on the current trial in comparison to 346 

the value beliefs in the past trial. As only one of the two options could be chosen and rewarded 347 
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in any trial, the differential value of two options would also be relatively high in magnitude 348 

when reward was received on the past trial, and otherwise low. On the contrary, the control 349 

task was designed in a way to be like the value task in terms of sensory processing requirements 350 

but not involve the participant in any learning or updating of the stimuli value. Intuitively, 351 

when no learning via feedbacks occurs, the two types of feedbacks (keep/switch) should have 352 

a similar effect on the subjective preference over the options. To confirm this, we tested the fit 353 

of the same LNP model to the choices in the control task and compared the absolute differential 354 

values of each trial obtained from models’ fits to both tasks (value and control tasks) against 355 

the type of feedback received (blue or yellow) in the previous trial (Figure 2F). We used the 356 

absolute differential values (absDVs) as a measure of subjective preferences because the choice 357 

behaviour is symmetric with respect to the individual options. 358 

fMRI data acquisition and pre-processing 359 

MRI scanning was carried out on a 3-Tesla Siemens MAGNETOM Prisma scanner 360 

equipped with a 64-channel head-neck coil at the Universitätsmedizin Göttingen. Anatomical 361 

images were acquired using an MPRAGE T1-weighted sequence that yielded images with a 1 362 

x 1 x 1 mm resolution. Whole-brain multi-shot Echoplanar imaging (EPI) volumes were 363 

acquired in 69 interleaved transverse slices (TR = 1500 ms, TE = 30 ms, flip angle = 70̊, image 364 

matrix = 104 x 104, field of view = 210 mm, slice thickness = 2 mm, 0.2 mm gap, PE 365 

acceleration factor = 3, GRAPPA factor = 2). Data from each participant was collected in two 366 

identical sessions on two separate days. An experimental session consisted of multiple runs of 367 

fMRI data acquisition, where a run comprised starting the scan and acquiring data for three 368 

blocks of the tasks (~ 20 minutes) after which the scan was stopped and resumed again after a 369 

break (~ five minutes). On each day, four fMRI runs (first three runs: 9 blocks of the value 370 

task, last run: 3 blocks of the control task) were conducted and each fMRI run lasted 16.355 371 

min. 372 

Data pre-processing and further statistical analyses were performed using Statistical 373 

Parametric Mapping software (version SPM12: v7487; https://www.fil.ion.ucl.ac.uk/spm/) and 374 

custom time-series analysis routines written in MATLAB. EPI images of each session were 375 

slice time corrected, motion corrected, and distortion corrected by using the measured field 376 

maps. The T1 anatomical image was co-registered to the mean EPI from realign-&-unwarp 377 

step, and then segmented. The estimated deformation fields from the segmentation were used 378 

for spatial normalization of the corrected functional and anatomical images from the native to 379 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 26, 2022. ; https://doi.org/10.1101/2022.12.25.521898doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.25.521898


13 
 

the MNI (Montreal Neurological Institute) space. Finally, the normalised EPI images were 380 

spatially smoothed using a 6 x 6 x 6 mm FWHM Gaussian kernel.  381 

fMRI univariate analysis: General linear modelling (univarGLM) 382 

For each participant, we first specified a general linear model (GLM) using the pre-383 

processed functional images of two sessions that were concatenated one after another. The 384 

GLM modelled both the value and the control task using 35 event-related regressors convolved 385 

with the canonical hemodynamic response function (HRF). For the value task, we defined 386 

individually for each of the three modality conditions (auditory, visual, audio-visual) one 387 

unmodulated stick regressor representing the modality-wise trial identity and two 388 

parametrically modulated stick regressors containing the trial-by-trial updated subjective value 389 

(SV) beliefs regarding each of the options presented, referred to as the value-modulated 390 

regressors. Trial identity was entered as 1 at the onset of the stimuli for trials of a particular 391 

modality condition and 0 otherwise. The value-modulated regressors represent the trial-by-trial 392 

learning and updating of value beliefs for each option separately (Figure1C and 393 

Supplementary Figure S2), and are denoted by lpSV and hpSV in auditory domain 394 

corresponding to low pitch and high pitch tones, rSV and gSV in visual domain corresponding 395 

to red and green checkerboard stimuli, aSV and vSV in audio-visual domain corresponding to 396 

auditory and visual stimuli in any combination (see also Table 1). The trial-by-trial SVs were 397 

entered at the onset of the stimuli options.  398 

Similarly, for the control task we defined individually for each of the three modality-399 

domains one unmodulated regressor representing the modality-wise trial identity and two 400 

parametrically modulated regressors corresponding to each of the options presented. In the 401 

control task, the aim was to passively follow instructions. Thus, to create a parametrically 402 

modulated regressor corresponding to one stimulus option, a weight of either 1 or 0 was 403 

assigned at the onset of stimuli options in each trial depending on whether the instruction 404 

(keep/switch your choice) from the last trial was correctly followed or not, respectively (see 405 

also Supplementary Table S1 and Figure S2).  406 

We also included two unmodulated event-related regressors (collapsed across the value 407 

and the control task) locked to the time of response and the onset of feedback. 15 nuisance 408 

regressors were included corresponding to the following: instruction presentation at the start of 409 

each block, six motion parameters, run regressors (modelled by assigning a weight of 1 for 410 

each volume of that run and else 0: a run corresponds to each period of MRI data acquisition 411 

between the start and the end of the scan) to account for the difference in the mean signal 412 
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activity between each time the scan started (one less in number than the total number of fMRI 413 

runs, here 7) and a constant.  414 

To identify the neural correlates of modality-related stimulus value representations 415 

(SVR), we contrasted parameter estimates of value-modulated regressors against baseline 416 

separately for each sensory domain (for definition of contrasts see Table 1). Note that our 417 

primary interest in this study was to identify the neural correlates of valuation for different 418 

sensory configurations. Since in a binary choice situation valuation occurs for each of the two 419 

options separately, we used the sum of estimated responses to each option as our dependent 420 

variable. This is a different approach than using the differential value of the options as the 421 

dependent variable which capitalizes on identifying the neural correlates of comparison and 422 

choice between options (Serences, 2008) rather than the valuation of each individual option. 423 

On account of previous studies identifying the domain-general and domain-specific valuation 424 

areas in the vmPFC and OFC (McNamee et al., 2013; Howard et al., 2015; Howard and Kahnt, 425 

2017), we limited our analysis to a mask encompassing the orbital surface of frontal gyrus. 426 

This search volume (for details see Figure S1) consisted of anatomical parcellations of orbital 427 

surface of frontal gyrus as defined in automated anatomical labelling (AAL) atlas (Rolls et al., 428 

2015, 2020). Statistical maps were assessed for cluster-wise significance using a cluster-429 

defining threshold of t(19) = 3.58, P = 0.001; and using small volume corrected threshold of P 430 

< 0.005 (referred to as a small volume family-wise-error (SVFWE) correction) within the 431 

frontal search volume. Whole-brain results were inspected at FWE p<0.05, and k>10 (see 432 

Table 2).  433 

Effective connectivity analysis of fMRI data 434 

Our univariate analysis identified a number of regions, both in sensory and in frontal 435 

areas, that were modulated by individual stimulus values computed prior to a choice was made 436 

(Figure 3, Table 2 and Supplementary Figure S5). We next aimed to determine whether and 437 

how the long-range communication between these areas generates the modality-specific 438 

representations of value and guides the final choice. To this end, we investigated the modality-439 

specific effective connectivity (EC) of a network consisting of sensory and frontal regions 440 

exhibiting value modulations at the time of options’ presentation by employing deterministic 441 

bilinear dynamic causal modelling (DCM) approach (Friston et al., 2003; Stephan et al., 2009; 442 

Friston, 2011). This approach fits a set of pre-defined patterns of EC within a model space to 443 

the fMRI time series and compares them in terms of their evidence (for details of the model 444 

space see the section under Defining the model space for a 5-node network).   445 
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Modality-specific effective connectivity is the connectivity among sensory and frontal 446 

regions during the valuation of a particular modality condition, either auditory or visual. For 447 

intramodal conditions (AudAud, VisVis), the EC of the network is clearly linked to one single 448 

modality, either auditory or visual (denoted by intraAud or intraVis, respectively). However, 449 

for intermodal condition (AudVis), changes in EC during the valuation process occur for both 450 

auditory and visual modalities. To achieve the maximum separation between modalities during 451 

the intermodal condition which would then allow us not only to determine modality-specific 452 

EC in full network but also to test the same models for their fit to both intra- and inter-modal 453 

conditions, we separated trials in the intermodal condition according to whether the auditory 454 

or visual stimulus was selected (hence denoted by interAud or interVis, respectively). Using 455 

the same model space for both intra- and inter-modal conditions will provide insights on the 456 

underlying mechanisms that mediate the modality-specific valuation across different contexts, 457 

i.e., when the same or different sensory modalities are compared against each other in terms of 458 

their value. Additionally, this approach is more parsimonious than either having two separate 459 

sets of models for each condition or increasing the number or complexity of the models to 460 

account for the differences between inter- and inter-modal conditions (Vandekerckhove et al., 461 

2015). Accordingly, to determine modality-specific effective connectivity, we estimated an 462 

additional GLM. This GLM was identical to that used for univariate analysis (univarGLM), 463 

except that for both tasks (the value and the control task), intermodal condition was separated 464 

into auditory and visual trials on the basis of the final choice. 465 

Regions of interest (ROIs): ROIs for the effective connectivity analysis comprised the 466 

frontal valuation areas and the sensory regions that contained stimulus value representations 467 

for auditory and visual modalities according to the univariate analysis (Figure 3, Table 2 and 468 

Supplementary Figure S5). The resulting five ROIs from which the representative time series 469 

for DCM analysis were extracted were as follows: 1) The overlapping activation area for visual 470 

and auditory value representations in vmPFC during each respective condition, 2) The 471 

overlapping activation area of left latpostOFC during intra-modal auditory and inter-modal 472 

auditory conditions – i.e., audOFC, 3) The overlapping activation area of left latpostOFC 473 

during intra-modal visual and inter-modal visual conditions – i.e., visOFC, 4) bilateral 474 

activations in auditory sensory cortex – i.e., audSen, and 5) bilateral activations in visual 475 

sensory cortex – i.e, visSen. The representative time series for any ROI was the first principal 476 

component of the pre-processed fMRI time series of the selected ROI. 477 

Defining the model space for a 5-node network: In order to understand how 478 

modality-specific valuation is supported by a network comprising modality-general and 479 
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modality-specific areas, we estimated 21 biologically plausible models for the value and the 480 

control tasks, with three types of connections: driving input, intrinsic, and modulatory. These 481 

models were developed over a base model comprising driving inputs and intrinsic connections, 482 

which did not vary with the experimental conditions. The models differed from each other over 483 

modulatory connections, which depended on the experimental conditions. In the base model, 484 

intrinsic connections were defined between every pair of nodes in the network and as self-485 

connections. Because the stimuli were presented aurally or visually, two types of driving inputs 486 

to the network were defined for auditory and visual sensory cortices: 1) an input to ROI audSen 487 

in auditory and audio-visual conditions of both tasks, and 2) an input to ROI visSen in visual 488 

and audio-visual conditions of both tasks. The driving input was modelled by entering ones at 489 

the onset of stimuli options belonging to a certain condition type and else zeros (see also the 490 

Supplementary Tables S5 and S6). 491 

The model space of all possible connectivity models would be extensive for a 5-node 492 

network (Friston et al., 2011), where a modulatory connection between any two nodes can exist 493 

in none or more of the 4 experimental conditions of a task (intraAud, intraVis, interAud, 494 

interVis) and 2 directions (directed and reciprocal). Thus, we constrained the model space 495 

based on the following assumptions: 496 

1) We included models with only bidirectional modulatory connections between 497 

nodes (Friston et al., 2011), based on the past findings that anatomical connectivity 498 

between two cortical areas is generally bidirectional (Zeki and Shipp, 1988). 499 

Additionally, large connectivity databases indicate a strong likelihood of cortico-cortical 500 

connections to be reciprocal (Kötter and Stephan, 2003). Moreover, this constraint does 501 

not imply that connection strengths would be identical for both the directed and 502 

reciprocal connection between two nodes. Further, we included models with each node 503 

connected (modulatory) to at least one other node of the network with the exception of a 504 

null model, which has no modulatory connectivity in the network due to experimental 505 

conditions of any task.  506 

2) We observed from univariate analysis results in the intra-modal condition that 507 

the value activations in ROIs audOFC and visOFC were mutually exclusive, thus we 508 

included models with no modulatory connection between these two nodes. We note that 509 

this constraint may not apply to the data of inter-modal condition. However, to be able 510 

to use the simplest and least exhaustive model space that could be tested for its fit to the 511 

data of both intra- and inter-modal conditions, we assumed this constraint to also hold 512 

for inter-modal trials. This assumption is plausible since inter-modal trials were separated 513 
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based on the modality that determined the final choice, and the evidence accumulation 514 

process that drives the final value-based choices is most strongly influenced by the 515 

information related to the valuation of the chosen compared to the unchosen modality, 516 

especially in vmPFC (Wunderlich et al., 2012).  517 

3) Further, we observed that auditory valuation ROIs – i.e., vmPFC, audOFC, and 518 

audSen- were significantly activated as auditory SVR, thus forming an auditory value 519 

sub-network. Similarly, the visual valuation ROIs -i.e., vmPFC, visOFC, and visSen- 520 

were significantly activated as visual SVR, forming a visual value sub-network. Thus, 521 

we included models with symmetric modulatory connections across the two sub-522 

networks. 523 

This resulted in a biologically plausible connectivity model space consisting of 10 524 

models per task (shown in Figure 4A) plus a null model. We estimated each of the 21 models 525 

individually for all the 20 subjects. However, for one subject the parameter estimation did not 526 

converge and therefore, we excluded that subject from the effective connectivity analysis. 527 

Thereafter, we identified the most likely model using a group-level random effects Bayesian 528 

model selection (rfxBMS) approach (Stephan et al., 2009). The model exceedance probability 529 

used to find the best model as shown in Figure 4B represents the probability that a particular 530 

model m is more likely than any other model in the model space (comprising of M models), 531 

given the group data. Note that the exceedance probabilities over the model space add to one 532 

(Stephan et al., 2009). Next, we estimated the connection strength parameters for connections 533 

of interest using Bayesian parameter averaging (BPA) approach (Figure 4C).  534 

Results 535 

Behavioural results 536 

We examined participants’ performance in two behavioural tasks (Figure 1) referred to 537 

as the value-based (value) and the instruction-based (control) tasks. In both tasks, participants 538 

aimed at maximizing their performance, i.e., the reward magnitude in the value task and the 539 

accuracy in following the instructions in the control task, by selecting one of the two presented 540 

stimuli options (either two auditory stimuli or two visual stimuli or one auditory and one visual 541 

stimulus, as shown in Figure 1A-B; for details see Material and Methods). A choice was made 542 

either from stimulus set 𝑆  = {low pitch, green, auditory} or corresponding stimulus set 𝑆  = 543 

{high pitch, red, visual}.  544 
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In the value task, participants experienced an unpredictable outcome scenario with a 545 

dynamic reward structure (see Materials and Methods). Reward baiting and change over delay 546 

(COD) strategies along with uninformed changes in the reward ratio across every block of trials 547 

motivated an exploratory choice pattern. Overall, the choice pattern in the value task exhibited 548 

matching behaviour nearly in accordance with the Herrnstein’s Matching Law (Herrnstein and 549 

Baum, 1970), which relates the choice behaviour to reward ratios {1:3, 1:1, 3:1}, as shown in 550 

Figure 2A for all modality domains (auditory, visual, audio-visual). Specifically, the choice 551 

ratios, which indicate the number of choices made towards one reward option (𝑆 ) over another 552 

(𝑆 ), increased as the 𝑆 : 𝑆  reward ratio increased. Importantly, the choice patterns were 553 

consistent across sensory modalities. This effect was captured by a strong main effect of reward 554 

ratio on choice ratio (F[2,38] = 183.8, p < 0.001) and no significant interaction between reward 555 

ratios and options’ modality (F[4,171] = 0.95, p = 0.34) in a two-way repeated-measures 556 

ANOVA. Only a weak effect of modality on choice ratios was observed (F[2,38] = 5.95, p = 557 

0.024), which corresponded to a tendency of participants to choose visual option more often 558 

than auditory options in the audio-visual block (for more details see the Supplementary 559 

Information).  Therefore, we collapsed the behavioural analysis results across modalities for a 560 

concise presentation of results (choice ratios collapsed across modalities for each reward ratio, 561 

as shown in Figure 2B).  562 

We next tested whether participants’ choices in the value task followed the predictions 563 

of our computational framework; i.e., they adhered to an LNP model (for details see Material 564 

and Methods). To this end, we approximated the linear filter weights using the best-fitting 565 

exponentially decaying function (quantified by time scale parameter 𝜏; Figure 2C), and the 566 

probability of choice function using the best-fitting sigmoidal function (quantified by biasness 567 

𝜇, and sensitivity to value differences 𝜎; Figure 2D), for each participant. Across participants 568 

the mean time scale parameter 𝜏 was 1.22 (±0.15 s.e.m), which was significantly greater than 569 

zero t[19] = 8.39, p < 0.05, indicating that choices were in fact most impacted by recent rewards 570 

rather than distant rewards in the past (Figure 2E). Mean biasness 𝜇 across participants was 571 

0.07 (±0.07 s.e.m), which was not significantly different than zero t[19] = 0.66, p = 0.52, 572 

indicating that participants did not have a bias towards any particular option. Finally, the mean 573 

sensitivity 𝜎 across participants was 0.81 (±0.10 s.e.m), which was significantly greater than 574 

zero t[19] = 8.81, p < 0.05 and insignificantly lesser than one t[19] = 1.95, p = 0.07, indicating 575 

that participants were aware of the value difference between options and had indeed adopted 576 

an optimal balance between exploration and exploitation. Following this optimal strategy, 577 
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participants were able to harvest 94.94% (±0.84% s.e.m) of the total rewards available. Overall, 578 

participants exhibited choice behaviours that were strongly predicted by the filter weights, 579 

estimated subjective values, and sigmoidal decision-criteria of the LNP model. 580 

 581 
Figure 2. Behavioural Data. (A) Mean choice ratio across participants for each reward ratio {1:3, 1:1, 3:1} over 582 
option 1: option 2, separately for each modality condition of the value task (AudAud, VisVis and AudVis). (B) 583 
Mean 𝑆 : 𝑆  choice ratios in (A) collapsed across modalities for individual reward ratios. (C) Linear filter weights 584 
(dots) and exponential approximation (solid line) showing how past rewards are weighed based on their time in 585 
past for a single participant in the value task. Parameter 𝜏 shows the timescale component of the best-fitting 586 
exponential. (D) Mapping of differential value of option 1 and 2 to the probability of choice for option 1 (dots) 587 
and sigmoidal approximation (solid line) for the same participant as in (C). Parameters 𝜇 and 𝜎 of the best-fitting 588 
cumulative normal function show the participant’s biasness towards an option and sensitivity to value differences, 589 
respectively. (E) Mean parameters of the best-fitting curves across participants. (F) Relationship between 590 
feedback colors and absolute differential value for value and control task, across all participants.  𝑆 : 𝑆591 
𝑙𝑜𝑤 𝑝𝑖𝑡𝑐ℎ: ℎ𝑖𝑔ℎ 𝑝𝑖𝑡𝑐ℎ, 𝑔𝑟𝑒𝑒𝑛: 𝑟𝑒𝑑, 𝑎𝑢𝑑𝑖𝑡𝑜𝑟𝑦: 𝑣𝑖𝑠𝑢𝑎𝑙  , 𝑆 𝑆 𝑙𝑜𝑤 𝑝𝑖𝑡𝑐ℎ ℎ𝑖𝑔ℎ 𝑝𝑖𝑡𝑐ℎ, 𝑔𝑟𝑒𝑒𝑛592 

𝑟𝑒𝑑, 𝑎𝑢𝑑𝑖𝑡𝑜𝑟𝑦 𝑣𝑖𝑠𝑢𝑎𝑙 . Error bars indicate standard error of the mean (s.e.m.) across participants. 593 
 594 

In order to demonstrate that the LNP model uniquely predicted the learning and choices 595 

in the value task, the fit parameters were also inspected for the data of the control task. Overall, 596 

in the control task participants passively followed the instruction provided by the feedbacks 597 

with a high accuracy (i.e., 95.2% ± 1.33% collapsed across keep/switch feedbacks), which 598 

indicated that they were aware of the task strategy. As choices in the control task were 599 

instructed, participants’ choices in this task were expected not to reflect any trial history-based 600 

tracking of option values beyond the instruction provided in the immediately preceding trial. 601 

In fact, this is exactly what we found when we compared participants’ beliefs about options’ 602 

value in the current trial depending on the type of feedback received in the past trial (blue or 603 

yellow). This effect (Figure 2F) was captured by a significant interaction F[1,19] = 254.7, p < 604 
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0.001 between the task type (value or control) and feedback (yellow or blue) on determining 605 

the absolute differential values (absDVs; a measure of subjective preferences), where absDVs 606 

showed a significant difference between the two types of feedbacks in the value task 607 

(mean±s.e.m. = 0.12±0.01 and 0.74±0.03 for blue and yellow feedbacks, respectively, 608 

p< 10 ) but not in the control task (mean±s.e.m. = 0.27±0.02 and 0.26±0.02 for blue and 609 

yellow feedbacks, respectively, p = 0. 11). Analysis of the mean reaction times (RT) for the 610 

two types of feedbacks in the value and the control tasks revealed no significant mean or 611 

interaction effect (all ps>0.05, for details see the Supplementary Information).  612 

Overall, our behavioural results confirmed that in the value task participants learned 613 

and updated their beliefs about options’ values through monitoring the feedbacks received on 614 

each trial, whereas in the control task they passively followed the instructions without any 615 

further processing of stimulus value, as intended. 616 

fMRI results 617 

Modality-general and modality-specific stimulus value representations: vmPFC and 618 

OFC 619 

In order to identify the modality-specific and modality-general stimulus value 620 

representations in the frontal cortex (see the Material and Methods and Figure S1 for 621 

specifications of the search area), we performed group-level random-effects analysis on the 622 

contrast images obtained from fMRI data of all participants. In intra-modal conditions (AudAud 623 

and VisVis), we estimated an overall effect of value-modulated regressors separately in auditory 624 

and visual sensory domains by defining contrasts: intraaudSV > 0 and intravisSV > 0, where 625 

intraaudSV>0 = lpSV>0 + hpSV>0 and intravisSV>0 = rSV>0 + gSV>0 (see Table 1 for the 626 

detailed description of contrasts).  627 

The auditory contrast revealed significant activations in vmPFC and left lateral OFC 628 

(latOFC) and the visual contrast activations in vmPFC and left posterior OFC (postOFC, 629 

Figure 3). However, we did not find any significant activation in the right OFC for either of 630 

these contrasts. Lateralization of reward responsiveness in OFC could be related to a functional 631 

specialization of the left and right lateral OFC and has been reported in the past (Lopez-Persem 632 

et al., 2020). Crucially, we found a segregation of value-processing clusters across the sensory 633 

domains in OFC (d = 20.59 mm, d: Euclidean distance). On the contrary, the auditory and 634 

visual clusters in vmPFC were substantially overlapping with a separation d < 8 mm between 635 

the cluster peaks (for separation criteria - see Poline et al., 1997; Hallett, 1998). These findings 636 
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provide answers for our study’s first question of whether modality-general and modality-637 

specific stimulus value representations exist in the valuation regions of the frontal cortex. 638 

To determine whether and how the modality-wise segregation of value modulations in 639 

OFC persists during the simultaneous presentation of options from both sensory domains in 640 

the inter-modal condition (AudVis), we estimated the average effect of value modulations in 641 

both sensory modalities using the contrast: interaudvisSV > 0, where interaudvisSV>0 = 642 

aSV>0 + vSV>0 (see Table 1 and Figure S3). This contrast showed significantly activated 643 

clusters in vmPFC and in left anterior OFC (antOFC). Interestingly, we observed that in the 644 

activated latOFC cluster, there were two local maxima peaks which were closer to the auditory 645 

and visual peaks found in the intra-modal conditions (-48, 30, -12, t(19) = 3.93 and -36, 24, -646 

18, t(19) = 4.61). Further, to specifically test whether these peaks corresponded to individual 647 

sensory modality value representations, we estimated the individual effects of value in sensory 648 

modalities in inter-modal condition by using contrasts: aSV > 0 and vSV > 0. The individual 649 

contrasts revealed overlapping clusters in vmPFC (d = 6.63 mm) and separate clusters in lateral 650 

and posterior OFC (d = 18.76 mm) (Figure 3, Table 1). These modality-specific valuation 651 

clusters in OFC were found to overlap with their respective modality clusters found in intra-652 

modal conditions (separation d < 8 mm), as shown in Figure 3 F-G.  653 

An alternative explanation for the segregation in modality-wise representations is that 654 

rather than reflecting the functional specialization of OFC neurons for the visual and auditory 655 

values, they reflect differences in the sensory properties of stimuli options. To rule out this 656 

possibility, we next examined the control task (for details see the Supplementary 657 

Information). Crucially, the modality-specific activations in OFC were absent in the control 658 

task when the same contrasts as in the value task were examined, demonstrating that they 659 

exclusively reflect the trial-by-trial updating of stimulus-value associations rather than the 660 

sensory features of stimuli or choice based on the instruction. On the contrary, in the control 661 

task weak activations overlapping with the modality-general representations in vmPFC were 662 

found (see Figure S4 and Table S3) highlighting a general role of this area in representing the 663 

final choice irrespective of whether or not choices are informed by value or are instructed. 664 

These results were corroborated by testing more stringent interaction contrasts that compared 665 

the value and control task against each other (see the Supplementary Information and Table 666 

S4).  667 

 668 

 669 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 26, 2022. ; https://doi.org/10.1101/2022.12.25.521898doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.25.521898


22 
 

Table 1. Modality-related stimulus value representations in vmPFC and OFC for 

various contrasts 

Contrast Region X Y Z t(19) k 

intraaudSV > 0 vmPFC -6 58 -14 5.33 121 

 latOFC_L -48 32 -10 5.31 134 

intravisSV > 0 vmPFC -8 58 -14 4.70 142 

 postOFC_L -30 26 -18 6.20 143 

interaudvisSV > 0 vmPFC 0 52 -10 6.93 537 

 antOFC_L -36 36 -14 7.60 242 

aSV > 0 vmPFC -2 52 -8 3.61 481 

 latOFC_L -48 32 -8 6.04 203 

vSV > 0 vmPFC -4 58 -10 6.81 491 

 postOFC_L -36 24 -18 3.89 153 

MNI coordinates (x, y, z) and T value corresponds to the local maxima peak of the cluster 

activations at SVFWE corrected P < 0.005 (cluster labels are from AAL atlas (Rolls et al., 

2020)).  

 

intraaudSV: contrast capturing responses elicited by changes in subjective value (SV) when 

choice options consisted of two auditory stimuli (AudAud). This contrast was calculated as 

intraaudSV>0 = lpSV>0 + hpSV>0, averaging responses to the low and high pitch auditory 

stimuli (lpSV and hpSV, respectively) against baseline. 

 

intravisSV: contrast capturing responses elicited by changes in subjective value (SV) when 

choice options consisted of two visual stimuli (VisVis). This contrast was calculated as 

intravisSV>0 = gSV>0 + rSV>0, averaging responses to the green and red colors of visual 

stimuli (gSV and rSV, respectively) against baseline. 

 

interaudvisSV: contrast capturing responses elicited by changes in subjective value (SV) 

when choice options consisted of one auditory and one visual stimulus (AudVis). This contrast 

was calculated as interaudvisSV>0 = aSV>0 + vSV>0, averaging responses to the auditory 

and visual stimuli (aSV and vSV, respectively) against baseline. 

 670 

Together, these findings provide strong evidence that the valuation of stimuli from the 671 

auditory and visual sensory modalities is confined to segregated loci in OFC. Additionally, our 672 

results indicate that the representation of stimulus value is independent of sensory modality in 673 

vmPFC and that this region is involved in processing information related to the final choice 674 

across different tasks.   675 
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 676 
Figure 3. Stimulus value representations (SVR) across different sensory modalities. (A-E) In intra-modal 677 
conditions, segregated modality-specific SVR in OFC for auditory modality in left lateral OFC (red cluster) and 678 
for visual modality in left posterior OFC (blue cluster); and overlapping modality-general SVR in vmPFC for 679 
auditory and visual modalities (purple cluster due to overlap of red and blue). In inter-modal condition, the SVR 680 
for (F) auditory stimulus (corresponding to contrast aSV > 0) and (G) visual stimulus (corresponding to contrast 681 
vSV > 0), in valuation regions (OFC and vmPFC) were found to be overlapping with the SVRs of the same 682 
modality identified in intra-modal condition (as shown in (A), see also Figure S3). All cluster activations, shown 683 
here, are significant at SVFWE corrected P < 0.005.  684 
 685 
Stimulus value representations outside of frontal valuation regions: Whole-brain analysis 686 

Past studies have shown that reward value modulates the early sensory processing 687 

(Rutkowski and Weinberger, 2005; Shuler and Bear, 2006; Pleger et al., 2008; Serences, 2008; 688 

Goltstein et al., 2013). Thus, in order to identify regions exhibiting value modulations outside 689 

the valuation regions, specifically in auditory and visual sensory cortices, we performed a 690 

whole-brain analysis using the GLM described previously. For this purpose, we estimated the 691 

average effect of value across all conditions in the value task (AudAud, VisVis and AudVis), 692 

which revealed bilateral activations in the auditory and visual cortices (whole-brain FWE 693 

corrected P < 0.05, cluster size k > 10 voxels; Table 2, Figure S5A and S5B). Further, when 694 

estimating the value modulations for individual conditions separately (auditory, visual), we 695 

found modality-specific activations in respective sensory cortices only (see Figure S5C-D), 696 

whereas in intermodal condition both sensory cortices were activated (see Figure S5E-F).  697 

In addition to sensory cortices, we found significant value modulations in areas 698 

involved in processing of different aspects of value-related information, such as detecting the 699 

reward prediction errors (Caudate), formation of memories about past events (hippocampus), 700 

selection of action sets (SFGmed/ dmPFC) (Rushworth et al., 2004) and processing of 701 
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symbolic/linguistic information related to monetary value (Angular gyrus). Since the specific 702 

aim of the current study was to shed light on how modality-specific and modality-general 703 

valuation is coordinated across the frontal and sensory areas, we only included the whole-brain 704 

activations that were located in early visual or auditory areas in our subsequent effective 705 

connectivity analyses.     706 

 707 

Table 2. Stimulus value representations outside of valuation regions 

Region X Y Z t(19) K 

SFGmed 0 54 40 10.50 64 

Caudate_L -14 24 8 10.37 67 

visSen_L -20 -90 2 9.75 81 

visSen_R 24 -96 10 8.86 119 

Hippoc_L -36 -38 -12 9.62 30 

Hippoc_R 34 -22 -12 9.51 29 

audSen_L -66 -30 -4 9.08 24 

audSen_R 66 -12 -4 8.99 15 

Angular_L -42 -56 26 8.62 55 

MNI coordinates (x, y, z) and T value corresponds to the local maxima peak of the 

cluster activations at FWE corrected P < 0.05 (cluster labels are from AAL atlas (Rolls 

et al., 2020)). SFGmed – medial Superior Frontal Gyrus; Hippoc – Hippocampus; 

visSen – Visual Sensory Cortex; audSen – Auditory Sensory Cortex. Highlighted (in 

bold) activations were used as ROIs in the effective connectivity analysis. 

Modality-specific effective connectivity between sensory and valuation areas  708 

We next examined the effective connectivity (EC) of a network consisting of sensory 709 

and valuation regions that showed significant value-related modulations (i.e., 5 ROIs, see 710 

Material and Methods for details). The EC analysis (Friston et al., 2003) provides an estimation 711 

of the degree to which different connectivity patterns across this network contribute to the 712 

generation of modality-specific representations on the one hand and guide the final value-based 713 

choices on the other hand. The most probable connectivity pattern was captured by one out of 714 

10 biologically plausible models (shown in Figure 4A) plus a null model, which was selected 715 

based on a Bayesian model comparison approach (Stephan et al., 2009).  716 

We found that a model containing modulatory connections between the sensory 717 

cortices, modality-specific clusters in OFC and vmPFC was the most likely model in the value 718 

task (i.e. model 6, Figure 4A-B). Importantly, the winning model contained two distinct 719 

valuation sub-networks: an auditory sub-network comprising audSen, audOFC and vmPFC, 720 
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and a visual sub-network with visSen, visOFC and vmPFC as nodes (see Table 2 for 721 

abbreviations of the ROIs). Moreover, the sensory cortices did not directly communicate with 722 

vmPFC (models 2, 4, 5, 7, 8 and 10) and we did not find evidence for the cross-modality of the 723 

connectivity between the sensory cortices and the value regions in OFC (models 1, 3, 4, 5, 9 724 

and 10, containing a connection between visual cortex and auditory OFC or auditory cortex 725 

and visual OFC). These findings provide compelling evidence for the existence of modality-726 

specific communication pathways which broadcast the value-related information across the 727 

brain. 728 

 729 
Figure 4. Modality-specific effective connectivity. (A) Model space consisting of 10 biologically plausible 730 
models (modulatory connections shown here) per task (value or control) plus a null model resulting into 21 731 
potential models (Nodes: V – Valuation region, S – Sensory region, purple V – vmPFC, red V – Auditory OFC, 732 
blue V – Visual OFC, red S – Auditory Sensory Cortex, blue S – Visual Sensory Cortex). Modulatory connections 733 
in red exist during conditions when an auditory stimulus was selected and those in blue exist during conditions 734 
when a visual stimulus was selected in both intra- and inter-modal conditions. (B) Exceedance probabilities for 735 
the 21 potential connectivity models. Model 6 of value task is the most likely model. (C) Winning model shown 736 
with modulatory connection strength parameters for feedforward (dashed) and feedback (solid) connections 737 
during conditions when an auditory (red) or a visual (blue) stimulus either in intra-modal or inter-modal conditions 738 
(connection weights in brackets) was selected. All parameters significant at posterior probability of P > 0.99.   739 
 740 

In order to understand how reward value modulates the communication of information 741 

across the brain areas, we next examined the strength of modulatory connections in the winning 742 

model. We found that during both intra-modal and inter-modal trials of the value task, all 743 

modality-specific connections were significantly modulated by value at a posterior probability 744 

P > 0.99 (Figure 4C). Interestingly, the connection strengths were negative for directed 745 
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feedforward connections from sensory ROIs to OFC ROIs to vmPFC, indicating inhibitory 746 

modulatory connections and positive for feedback connections from vmPFC to OFC ROIs to 747 

sensory ROIs, indicating excitatory modulatory connections (For parameters of intrinsic 748 

connections and driving inputs, refer to Supplementary Information: Table S5-S6)  749 

Additionally, to test whether effective connectivity between any two nodes of the 750 

network was unidirectional, we estimated all possible unidirectional models for the winning 751 

model (i.e. model 6). As a modulatory connection between two nodes can exist in three possible 752 

ways: directed, reciprocal, bidirectional; the total number of all possible unidirectional models 753 

for the model 6 of the value task were 9, shown in Figure 5A. The base model for all these 754 

nine models was the same as for the bidirectional model space. Here again, the most likely 755 

model was the network with bidirectional connectivity between the nodes (see model 756 

exceedance probabilities, Figure 5B).  757 

Together, the effective connectivity results showed that auditory and visual sensory 758 

cortices communicate with separate clusters in OFC, which contain modality-specific stimulus 759 

value representations (SVR) corresponding to each sensory modality. Further, the modality-760 

specific SVR in OFC were linked with modality-general SVR in vmPFC to guide the final 761 

value-based choices. 762 

763 
Figure 5. Uni- and bi-directional variants of the winning model in the value task. (A) Model space consisting 764 
of all possible unidirectional models (details in text; also refer to the legend of Figure 4A for information on nodes 765 
and modulatory connections). (B) Exceedance probabilities for the model space in (A). Model U1, i.e., a model 766 
containing bidirectional connections, is the most likely model. 767 
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Discussion 768 

In order to generate specific predictive signals for adaptive goal-directed choices, the 769 

brain must encode information about the sensory modality of reward predicting stimuli as well 770 

as the most recent value associations with the stimuli. Moreover, to be able to compare and 771 

choose between stimuli having fundamentally distinct sensory features, general value 772 

representations are equally important. Here, we used stimuli from auditory and visual sensory 773 

modalities as reward-predicting cues in a value-based decision-making task with a dynamic 774 

foraging paradigm, enabling us to dissociate auditory and visual value representations using 775 

univariate fMRI analysis and examine the underlying neural mechanisms of goal-directed 776 

choice using effective connectivity analyses. We found that modality-specific value 777 

representations in OFC played a central role in generation of a modality-specific valuation 778 

network involving the value representations encoded in the sensory cortices and the modality-779 

general value representations in vmPFC. 780 

We found trial-by-trial value representations of auditory and visual sensory modalities 781 

to be present in segregated non-overlapping lateral and posterior regions of OFC, respectively. 782 

Recent studies have proposed OFC as a key neural substrate for supporting the formation of a 783 

“cognitive-map” of the current task space (Wilson et al., 2014; Stalnaker et al., 2015). Such a 784 

cognitive map of task space is fundamental for goal-directed behaviour by keeping track of all 785 

possible relevant states of the environment, required for generating specific predictive 786 

information about upcoming decisions such as those related to their specific sensory features, 787 

especially when a task involves reversal learning (Tsuchida et al., 2010; Stalnaker et al., 2015) 788 

or the states change in a way that require devaluation of previously valuable options (Pickens 789 

et al., 2003). We employed a behavioural paradigm which varied value independently of the 790 

modality of the reward options. The dynamic reward structure of the value task required 791 

participants to track the reward history of each sensory modality on a trial-by-trial basis, as 792 

these could change over time. Using a task that required rapid updating of value associations 793 

of auditory and visual stimuli, which draws on the role of OFC in representing a map of task 794 

space, we found segregated value representations for each sensory modality. Interestingly, this 795 

segregation existed not only when both options were from different sensory domains 796 

competing against each other but also when the options were from the same modality domain. 797 

Furthermore, we verified using the control task that the segregation in modality-specific 798 

representations does not exist due to differences in sensory processing mechanism underlying 799 

the auditory and visual sensory modalities. Thus, our findings show for the first time that 800 
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dedicated neuronal populations exist in OFC for individual sensory modalities that encode 801 

value separately to reflect updates in value associations of a particular modality and generate 802 

specific predictive signals. As such, the present study extends our understanding of OFC’s role 803 

in goal-directed behaviour to include the implementation of a modality-specific cognitive map 804 

of the task space.  805 

In contrast to the modality-specific value representations found in OFC, we found 806 

modality-general value representations in vmPFC. Here, the auditory value representations 807 

were found overlapping with the visual value representations. This is in line with previous 808 

studies highlighting vmPFC as a common currency coding hub for distinct reward categories 809 

such as money, food, social rewards (Hare et al., 2008, 2010, 2011; Chib et al., 2009; Lebreton 810 

et al., 2009; Rolls et al., 2010; Smith et al., 2010; Levy and Glimcher, 2011; Lin et al., 2012; 811 

McNamee et al., 2013). However, previous work has also highlighted the idea that subdivisions 812 

from general to specific valuation exist in vmPFC in the posterior-to-anterior direction 813 

(Kringelbach and Rolls, 2004; Sescousse et al., 2010; Smith et al., 2010; Clithero and Rangel, 814 

2013; McNamee et al., 2013), where anterior vmPFC represents values of distinct reward 815 

categories in a general manner and posterior vmPFC in a specific manner. The loci of 816 

overlapping activations, which we found in this study, were in anterior vmPFC and thus in line 817 

with the role of the anterior vmPFC in common currency coding of value. However, we did 818 

not find any modality-specific value representations in vmPFC, which may either be due to 819 

OFC being exclusively responsible for implementing modality-specificity in a task such as ours 820 

or be related to the specific type of reward category, i.e., monetary rewards, that we employed 821 

in our task (McNamee et al., 2013). Future studies will be needed to reveal whether posterior 822 

vmPFC will undertake a role in representing the identity of rewards of different sensory 823 

modalities when they are associated with other categories of reward other than monetary value. 824 

Interestingly, we also found that vmPFC activations, albeit at a weak level, were also present 825 

in the control task where no continuous and gradual value-related information processing was 826 

needed. This finding is in line with recent theoretical frameworks suggesting a general role of 827 

vmPFC in computation of choice rather than valuation and further calls for revisiting the 828 

common currency models of valuation (Klein-Flügge et al., 2022).  829 

Whereas the majority of previous studies have underscored a common currency coding 830 

of reward value, few recent studies have provided evidence for the identity-specific 831 

representations of value (Klein-Flügge et al., 2013; McNamee et al., 2013; Howard et al., 2015; 832 

Howard and Kahnt, 2017) and affect/valence (Čeko et al., 2022). In fact, identity-specific value 833 

representations in previous studies could only be identified when highly sensitive data 834 
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acquisition or analysis of fMRI data were undertaken, for instance BOLD adaptation 835 

suppression (Klein-Flügge et al., 2013) or multivariate analysis across a range of different types 836 

of rewards in addition to and apart from monetary rewards (McNamee et al., 2013). We are 837 

only aware of one recent imaging study with humans (Shuster and Levy, 2018), where 838 

modality-specificity of valuation across auditory and visual domains was examined. Using a 839 

risk-evaluation task where lotteries were presented either visually or aurally they found that the 840 

anterior portion of vmPFC represents value irrespective of the sensory-modality, whereas no 841 

evidence for modality-specificity was found beyond sensory areas. However, in their study 842 

(Shuster and Levy, 2018) modality-specific value information was rendered redundant per 843 

design of the experiment, because the decisions involved comparison of explicit lottery options 844 

associated with different amounts of monetary risk and a safe option, in which lotteries’ 845 

monetary value were either presented visually or aurally. Since both visual and auditory stimuli 846 

could be translated to the same abstract numeric value and no dynamic change in options 847 

sensory identity occurred, valuation process could entirely occur without tracking the sensory 848 

modality. In contrast, in the present study, we used a design in which trial-by-trial updating of 849 

computed values of specific identity of sensory stimuli was necessary, thus allowing us to tap 850 

into the intricate role of OFC in modality-specific updating of value. Another important aspect 851 

of our approach was to account for the covariation of sensory features and reward value 852 

(Howard and Kahnt, 2021) in determining neuronal responses. This was done by employing a 853 

control task that was identical to the value task in terms of sensory requirements and final 854 

choice but differed in whether updating of computed reward value of each sensory modality 855 

was necessary or not. Together, a dynamic reward structure and the comparison against a task 856 

with different dimension of decision variable allowed us to unravel the co-existence of 857 

modality-specific and modality-general representations in the frontal cortex.  858 

Apart from the frontal cortex, we found value modulations in sensory cortices, which 859 

provide evidence that representations of value are not restricted only to higher cognitive areas, 860 

as has been shown before (Serences, 2008). The value representations in sensory cortices were 861 

largely modality-specific, which means that individual sensory cortices represented the value 862 

of stimuli presented in their own sensory domain, a finding that is in line with previous studies 863 

on representation of value (Shuster and Levy, 2018) and valence (Čeko et al., 2022). These 864 

findings raised interesting questions regarding whether and how a communication of value-865 

related information exists between sensory cortices and valuation regions. Interestingly, we 866 

found that the auditory and visual sensory cortices were bi-directionally connected to the lateral 867 

and posterior OFC (corresponding to auditory and visual value representations), respectively, 868 
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in a modality-specific manner. Specifically, the modality-specific effective connectivity results 869 

revealed a high degree of selectivity: in a trial when planning to choose auditory reward 870 

stimulus, there was a significant connectivity from the auditory sensory cortex to lateral OFC 871 

for that trial and not otherwise. A similar modality-specific significant connectivity existed 872 

from visual sensory cortex to posterior OFC for choosing visual reward stimulus. This finding 873 

is in line with a previous work showing connectivity between OFC and piriform cortex 874 

(relevant in case of odour stimuli) for the formation of identity-specific value representations 875 

in OFC (Howard et al., 2015). Moreover, past studies have shown that lateral and posterior 876 

regions of OFC receive direct afferent inputs from auditory and visual sensory cortices (Barbas, 877 

1993; Carmichael and Price, 1995), providing neuroanatomical support for our findings.  878 

The connectivity between sensory cortices and modality-specific representations in 879 

OFC reveals an underlying mechanism by which modality-specific sensory features of a reward 880 

option are extracted from the respective sensory cortex, and then further processed in OFC (and 881 

not in vmPFC) along with value information to support formation of modality-specific value 882 

codes. The sign of this connectivity provides additional information regarding how modality-883 

specific valuation is implemented. We found that feedforward connectivity in modality-884 

specific networks was predominantly inhibitory. The inhibitory feedforward connectivity 885 

indicates that when choices involve a specific sensory modality, early sensory areas send 886 

inhibitory signals to OFC. Feedforward inhibition has been suggested as a key mechanism in 887 

imposing temporal structure to neuronal responses (Womelsdorf and Everling, 2015) and 888 

expanding their dynamic range of activity (Pouille et al., 2009). This mechanism highlights the 889 

role of OFC in the formation of an integrated memory trace of the sensory and value 890 

information over time, rather than encoding the exact sensory features of stimuli at each 891 

instance. This finding is supported by a notion of OFC as a cognitive map that stores task space 892 

over time, as proposed before (Wilson et al., 2014; Stalnaker et al., 2015). Additionally, 893 

connectivity results showed that the value modulations in sensory cortices were driven by top-894 

down feedback signals generated in respective valuation regions in OFC. This is in line with 895 

previous work showing that biasing signals generated from frontal and parietal areas modulate 896 

spatially selective visual areas (Serences, 2008). In fact, recent studies have provided robust 897 

causal evidence for the role of lateral OFC in value-driven guidance of information processing 898 

in sensory cortices (Banerjee et al., 2020). Our finding of the presence of excitatory feedback 899 

connectivity between the modality-specific representations in lateral and posterior OFC and 900 

auditory and visual cortices, provides strong support for the causal role of top-down valuation 901 
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signals in shaping sensory perception during decision-making, through enhancing the sensory 902 

information that is most relevant for the current choice.  903 

Further, we found that specific value representation in OFC were linked to general value 904 

representations in vmPFC. Specifically, we showed that when planning to select an auditory 905 

reward option, there was a change in the connectivity between the auditory value 906 

representations in OFC and modality-general representations in vmPFC, with a similar pattern 907 

found for the selection of the visual reward options. This result highlights the underlying 908 

mechanism whereby value representations in OFC provide input to the vmPFC to support the 909 

formation of general value representations needed for the comparison of options from distinct 910 

domains and deriving the final choice. These finding are in line with the role of OFC in 911 

providing fine-tuned value information that can drive the choice (Setogawa et al., 2019) and 912 

the role of vmPFC in the final comparison and computation of choice that guides actions (Hare 913 

et al., 2011). Importantly, the modality-specific connectivity between OFC and vmPFC is in 914 

line with a previous work showing that sensory-specific satiety-related changes in connectivity 915 

between OFC and  vmPFC predicted choices in a devaluation task (Howard and Kahnt, 2017). 916 

Together, these results show how common currency coding of value integrates identity-specific 917 

information about reward options in a dynamic environment to guide choices.   918 

Understanding whether valuation signals in frontal cortex contain information about the 919 

sensory modality of rewarded stimuli has a number of important theoretical and clinical 920 

implications that go beyond the specialized field of neuroeconomics and value-based decision 921 

making (Rangel et al., 2008; Levy and Glimcher, 2012; Padoa-Schioppa and Schoenbaum, 922 

2015). We show that value-based choices involving reward options with distinct sensory 923 

features are supported by bi-directional connectivity between the sensory areas and the 924 

modality-specific representations in OFC. Although the top-down modulation of perception 925 

through interactions between frontal and sensory areas has been the basic tenet of a number of 926 

influential theoretical frameworks (Desimone and Duncan, 1995; Corbetta and Shulman, 2002; 927 

Friston, 2005; Gardner and Schoenbaum, 2021), the importance of modality-specific 928 

representations of reward value in frontal areas that could provide a biologically plausible 929 

implementation of these putative interactions has been largely ignored. Therefore, our study 930 

provides novel insight for future computational work on how top-down signals can be 931 

selectively routed to impact on sensory processing. In doing so, it is important to note that the 932 

modality representations that we found may adapt and reorganize under different contexts 933 

rather than being hardwired and fixed in the brain. In fact, outcome-related adaptation in the 934 

representation of value can occur during the same task (Rich and Wallis, 2016), which provides 935 
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a flexible mechanism for reorganizing neuronal codes of value based on the context. Future 936 

studies will be needed to examine whether and to what extent the modality-specific coding of 937 

value can adapt to the specific features of a task.  From a clinical perspective, our results suggest 938 

that localized lesions to OFC may be associated with specialized impairments of value-based 939 

decisions in visual or auditory domains, an interesting possibility that can be further 940 

investigated by future studies. Additionally, our findings may allow a better understanding of 941 

pathological states such hallucinations (Frith, 1996; Rolls et al., 2008) where illusory percepts 942 

arise in the absence of external stimuli (Powers et al., 2016), likely due to the aberrations in 943 

communication pathways between the frontal and sensory areas (Allen et al., 2008). More 944 

generally, the present study, together with previous efforts in understanding how value-related 945 

information is communicated between the frontal and sensory areas (Howard et al., 2015; 946 

Howard and Kahnt, 2018; Banerjee et al., 2020), provide instrumental insights regarding how 947 

perceptual and cognitive processes are coordinated in the brain.  948 

In summary, our results provide evidence for the co-existence of modality-specific and 949 

modality-general codes in OFC and vmPFC, respectively, pointing to the specialized functions 950 

of these two valuation areas. A general value signal would facilitate the comparison between 951 

distinct rewards (Levy and Glimcher, 2011, 2012) and the transformation of stimulus values 952 

into motor commands (Hare et al., 2011). On the contrary, modality-specific value encoding 953 

associated to respective sensory cortical representations would support goal-directed adaptive 954 

behaviour by generating specific predictive signals about impending goals (Stalnaker et al., 955 

2014; Wilson et al., 2014; Nogueira et al., 2017), such as when planning to choose auditory or 956 

visual reward stimuli. We further show how the communications between sensory areas and 957 

modality-specific representations of reward value in OFC play a central role in supporting 958 

value-based decisions in a multimodal dynamic environment.  959 
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Supplementary Information to “Modality-specific 1173 

and modality-general representations of reward 1174 

value in frontal cortex” 1175 

Dang et al.  1176 

Supplementary Figures 1177 
 1178 

 1179 
Figure S1. Anatomical definition of frontal valuation areas. The search volume used for 1180 
multiple comparisons correction consisted of anatomical parcellations of the orbital surface of 1181 
frontal gyrus as defined in automated anatomical labelling (AAL) atlas (Rolls et al., 2015, 1182 
2020). The search volume, comprised the anatomical parcellations of orbital surface in the 1183 
following format, ROI name (abbreviation): Superior frontal gyrus - medial orbital 1184 
(PFCventmed); Medial orbital gyrus (OFCmed); Anterior orbital gyrus (OFCant); Posterior 1185 
orbital gyrus (OFCpost); Lateral orbital gyrus (OFClat), for the detailed description of these 1186 
areas see Table 2 in Rolls et al. 2015, 2020 (Rolls et al., 2015, 2020). 1187 
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 1188 
 1189 

Figure S2. Illustration of the time course of parametric regressors in the value and control 1190 
tasks. Parametric regressors used for the fMRI analysis are shown for a single participant: (A), 1191 
(B), (C) For the value task, subjective values (SVs) of each option (𝑆 ,  𝑆 ) across trials in a 1192 
block with reward ratios of 3:1, 1:1, 1:3, respectively, are shown. SVs were calculated based 1193 
on the computational modeling of behavioural data (see Material and Methods in the main 1194 
text). (D), (E) For the control task, where instructions where passively followed across trials in 1195 
a block, a weight of 0 or 1 was assigned to each option. The weights assigned to 𝑆  and 𝑆  in 1196 
the control task were determined based on the schema shown in Table S1. 1197 

 1198 
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 1207 

Figure S3. Stimulus value representations (SVR) in inter-modal condition. This figure 1208 
should be compared to Figure 3 in the main text. Here we illustrate the SVRs in the frontal 1209 
valuation areas (search volume shown in Figure S1) only for the inter-modal condition. The 1210 
activations in magenta correspond to the contrast interaudvisSV>0, the activations in yellow 1211 
correspond to the contrast aSV>0, and the activations in cyan correspond to the contrast vSV>0 1212 
(for definition of contrasts see Table 1 in the main text). All cluster activations shown here are 1213 
significant at SVFWE corrected P < 0.005. 1214 

 1215 

 1216 

Figure S4. Activation in vmPFC for the control task shown across all conditions at whole-1217 
brain uncorrected level of P < 0.001. 1218 

 1219 
 1220 
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 1221 
Figure S5. Stimulus value representations in sensory cortices: (A) Visual sensory cortex. 1222 
(B) Auditory sensory cortex. All cluster activations shown in (A) and (B) were significant at 1223 
whole-brain FWE corrected P < 0.05 and are estimated across all conditions (AudAud, VisVis 1224 
and AudVis). (C) When the value modulations were inspected for individual conditions 1225 
separately (whole-brain uncorrected level of P < 0.001), examination of the contrast intravisSV 1226 
> 0 revealed activations in the visual sensory cortex (cluster peaks at (-24, -90, 2) and (18, -94, 1227 
8)) but no activation in the auditory sensory cortex were found. (D) Similarly, for the contrast 1228 
intraaudSV > 0, we found activations in the auditory sensory cortex (cluster peak at (-66, -30, 1229 
-6)) but no activation in the visual sensory cortex. This result indicates that each sensory cortex 1230 
was specifically activated when the value of a stimulus from its specific modality was 1231 
processed. However, for this contrast, we also found activations in higher visual areas 1232 
(occipitotemporal cortex) with cluster peaks at (-36, -66, -8) and (42, -76, -12) that were distinct 1233 
from activations found for the contrast intravisSV > 0 which were in early visual areas in the 1234 
occipital cortex (anatomical definitions are based on https://neurosynth.org/). (E) For the 1235 
contrast interaudvisSV > 0, we found activations in both the visual sensory cortex (cluster peaks 1236 
at (-18, -92, 2) and (22, -90, 6)) and the auditory sensory cortex (cluster peaks at (-64, -20, -12) 1237 
and (66, -10, -4)), as in audio-visual condition trial-by-trial subjective values are updated 1238 
individually for both auditory and visual options (whole-brain uncorrected level of P < 0.001). 1239 
In all figures, crosshairs are placed at the left hemisphere cluster peak. 1240 

 1241 
 1242 
 1243 
 1244 
 1245 
 1246 
 1247 
 1248 
 1249 
 1250 
 1251 
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Supplementary Text and Tables 1252 
 1253 

Definition of parametric regressors for the control task 1254 
Similar to the value task, two regressors were modelled at the onset of stimuli options 1255 

in the control task: one unmodulated regressor representing the modality-wise trial identity and 1256 

two parametrically modulated regressors for each of the two choice options (𝑆  and 𝑆 ). To 1257 

define the parametric regressors, we assigned a weight of either 1 or 0 to each option according 1258 

to the schema shown in Table S1. 1259 

 1260 
Table S1. Definition of parametric regressors for the control task*
Choice on trial t-1 Instruction from trial t-1 Weight assigned on trial t 

𝑆  Not followed 𝑆 - 0, 𝑆  - 0 
𝑆  Not followed 𝑆  - 0, 𝑆  - 0 
𝑆  Followed; Instruction was to keep 𝑆  - 1, 𝑆  - 0 
𝑆  Followed; Instruction was to switch 𝑆 - 0, 𝑆  - 1 
𝑆  Followed; Instruction was to keep 𝑆 - 0, 𝑆  - 1 
𝑆  Followed; Instruction was to switch 𝑆 - 1, 𝑆  - 0 

*When instruction from the previous trial (t-1) was not followed, a weight of 0 was assigned to both 1261 
options 𝑆  and 𝑆 . When the instruction from the previous trial t-1 was correctly followed, the option 1262 
that corresponded to the correct instructed choice in trial t received a weight of 1 and the other option 1263 
received a weight of 0.   1264 

 1265 

Relationship between reward ratios in each modality and the probability of 1266 

choice 1267 
We found a weak main effect of modality (F[2,38] = 5.95, p = 0.024) on choice ratios, 1268 

indicating that choice ratios differed between modalities. This effect corresponded to a 1269 

tendency of participants to choose the visual option more often than the auditory option in the 1270 

audio-visual block even when they had the same reward ratio 1:1 as can be seen in Figure 2A, 1271 

thereby creating a difference between choice ratios of intra- and inter-modal conditions. 1272 

However, this difference only reached significance for the reward ratio 3:1 as in inter-modal 1273 

trials as participants chose the auditory modality significantly less often than options in intra-1274 

modal trials (Table S1). Note that since LNP models fitted to the fMRI data were estimated for 1275 

each condition separately, this bias (i.e., preference of visual over auditory stimuli in 1276 

audiovisual blocks) does not have any impact on our reported results regarding the differences 1277 

of value representations between modalities. 1278 

 1279 
 1280 
 1281 
 1282 
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Table S2. Results of the post-hoc pairwise comparisons of choice ratios between 
different modalities. 
Reward Ratio Modality-1 Modality-2 Difference pValue 
1:1 Auditory Visual 0.0417 0.9857 
1:1 Auditory AudioVisual 0.1069 0.0626 
1:1 Visual Auditory -0.0417 0.9857 
1:1 Visual AudioVisual 0.0651 0.3084 
1:3 Auditory Visual 0.0548 0.3278 
1:3 Auditory AudioVisual 0.0701 0.2903 
1:3 Visual Auditory -0.0548 0.3278 
1:3 Visual AudioVisual 0.0154 1.0 
3:1 Auditory Visual 0.0325 1.0 
3:1 Auditory AudioVisual 0.1424 0.0873 
3:1 Visual Auditory -0.0325 1.0 
3:1 Visual AudioVisual 0.1098 0.0156* 

* Indicates significance at p<0.05 1283 
 1284 

Analysis of the reaction times (RTs)  1285 
 Similar to the analysis of the absolute differential value, we analysed the mean reaction 1286 

time (RT) data for the two types of feedback in the value and the control tasks. A two-way 1287 

repeated-measures ANOVA of RTs with task and feedback as factors revealed no significant 1288 

main or interaction effects (p-values > 0.05). However, a trend was found for the main effect 1289 

of task F[2,38] = 4.76, p = 0.06, reflecting faster responses in the control compared to the value 1290 

task. Overall, the mean RT in the control task (787.5(±0.0613) ms), where participants had to 1291 

simply follow instructions for decision-making was shorter than the mean RT in value task 1292 

(824.4(±0.0635) ms). 1293 

Intuitively, a systematic decrease in the mean RTs of value task along with an increase 1294 

in the absolute differential values (from no-reward to reward feedbacks), would indicate that 1295 

participants take more time to reach a decision during difficult choice trials (when both options 1296 

were perceived as having approximately equal values) in comparison to easy choice trials 1297 

(when one option was clearly more valuable than the other). In the value task, mean (±s.e.m.) 1298 

RTs decreased from 828.3(±0.0634) ms (no reward/blue feedbacks) to 819.7(±0.0638) ms 1299 

(reward/yellow feedbacks). On the contrary, in the control task, mean RTs increased from 1300 

786.7(±0.0620) ms (keep/blue feedbacks) to 792.9(±0.0580) ms (switch/yellow feedbacks). 1301 

Although insignificant, the latter effect implies an obvious fact that participants took less time 1302 

when they had to keep their past choice in comparison to making a switch. Neither the main 1303 

effect of feedback type on RTs nor their interaction with the task however reached significance, 1304 

based on ANOVA (Fs<1, p>0.1).  1305 

 1306 
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Comparison of the value and the control task 1307 
      In addition to the value task, we also inspected the control task using the same 1308 

contrasts that were used to detect modality-specific and modality-general representations 1309 

shown in Figure 3. Interestingly, we found that in the control task there were weak activations 1310 

(Figure S4 and Table S2) in vmPFC that overlapped with modality-general representations 1311 

that were found in the value task. This observation indicates that a task with comparable choice 1312 

structure but no valuation requirement also involves vmPFC, underscoring the role of this 1313 

region as a general comparison and choice computation region.  1314 

 1315 

 1316 

In order to rule out that the functional specialization of OFC clusters for visual and 1317 

auditory value is due to the differences in the sensory properties of these stimuli, we explicitly 1318 

compared the two tasks against each other by measuring the interaction between value 1319 

modulations in each modality and task. Specifically, the differential contrasts of all auditory 1320 

domain regressors of the value task against the control task (ValueAud > ControlAud) and all 1321 

visual domain regressors of the value task against the control task (ValueVis > ControlVis) 1322 

were inspected. This analysis revealed the modality-specific valuation clusters in left lateral 1323 

and posterior OFC indicating that these clusters had significantly higher activations in the value 1324 

compared to the control task (Table S4). However, the interaction contrasts revealed no 1325 

activation in modality-general regions identified in vmPFC, again indicating that vmPFC plays 1326 

a general role in the final choices but not the processing of stimulus value. 1327 

 1328 
Table S4. Modality-specific stimulus value clusters in OFC for various differential interaction 
contrasts 
Contrast Region X Y Z t(19) k SVFWE corr
ValueAud > 
ControlAud 

latOFC_L -52 24 -6 6.34 63 
 

P < 0.005 

ValueVis > 
ControlVis 

postOFC_L -36 24 -18 4.91 32 
 

P = 0.096 

MNI coordinates (x, y, z) and T value corresponds to the local maxima peak of the cluster activations at SVFWE 
corrected (cluster labels are from AAL atlas (Rolls et al., 2020)). 

Table S3. Univariate contrasts inspected in the control task
Contrast Region x y z t(19) k SVFWE corr P 
intraaudSV > 0 vmPFC -8 62 -4 4.49 11 0.300 
intravisSV > 0 vmPFC -6 64 -6 4.37 12 0.287 
interaudvisSV > 0 vmPFC -4 56 -12 2.87 8 0.966 
MNI coordinates (x, y, z) and T value corresponds to the local maxima peak of the cluster activations at SVFWE 
corrected P (cluster labels are from AAL atlas (Rolls et al., 2020)).  
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Effective Connectivity Analysis 1329 
The model space shown in Figure 4 and 5 was developed over a base model comprising 1330 

driving inputs and intrinsic connections, which did not vary with the experimental conditions. 1331 

The rest of the models differed from each other over modulatory connections, which depended 1332 

on the experimental conditions. In the base model, intrinsic connections were defined between 1333 

every pair of nodes in the network and as self-connections. In Table S4 and S5, we show the 1334 

estimated strength of the intrinsic connectivity (Table S4) and driving inputs (Table S5) of the 1335 

winning model.  1336 

 1337 

Table S5. Intrinsic connectivity parameters in the network including self-connectivity 
To\From vmPFC audOFC visOFC audSen visSen 

vmPFC -1.4645 -0.0433 0.2394 -0.0680 -0.0310 
audOFC -0.1555 -1.1751 0.2242 -0.0215 0.0809 
visOFC 0.0250 -0.0477 -0.8745 0.0015 0.0514 
audSen 0.0491 -0.0508 -0.0251 -0.9244 0.0671 
visSen -0.0213 0.0334 -0.0159 0.0005 -1.1425 
All parameters are significant at posterior probability of P > 0.99 

   1338 
Table S6. Driving input influence parameters on sensory ROIs of the network 
ROIs\Driving Input* intraAud intraVis interAud interVis 
audSen 0.0042 0 0.0226 0.0224 
visSen 0 -0.0025 -0.0035 0.0240 
All parameters are significant at posterior probability of P > 0.99  
*For trial-types of different conditions of the value task as described in the methods section 
on EC 

 1339 
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