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Rigorous bounds on transport from causality
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We use causality to derive a number of simple and universal constraints on dispersion relations,
which describe the location of singularities of retarded two-point functions in relativistic quantum
field theories. We prove that all causal dissipative dispersion relations have a finite radius of conver-
gence. We then give two-sided bounds on all transport coefficients in units of this radius, including
an upper bound on diffusivity.

INTRODUCTION AND RESULTS

In real-time linear response of relativistic quantum
field theory, the singularities of retarded two-point func-
tions are of considerable interest. At finite temperature,
they describe collective excitations which include slowly
varying hydrodynamic modes as well as transient non-
hydrodynamic ones. In cases where holography provides
a means of calculating the retarded thermal two-point
functions, these singularities are simple poles which en-
code the spectrum of black brane quasinormal modes
(QNMs) [1, 2]. The location of the singularities is de-
scribed by dispersion relations, ω(k). A study of their
analytic structure was initiated in [3], using holography.
The goal of this work is to explore the constraints on the
analytic structure of ω(k) which follow from causality.

Consider the retarded two-point functions of local op-
erators in Minkowski space,

GR(x, y) = −iθ(x0 − y0) 〈[O(x),O(y)]〉 . (1)

GR(0, x) is only non-zero for x in the past closed light
cone, x ∈ V −; this follows from the θ-function and the
commutation of O at spacelike-separated points. In ad-
dition we take GR(x, y) to be a tempered distribution.1

Both of these conditions work together to dictate analyt-
icity properties of its Fourier transform,

G̃R(p) =

∫

ddxGR(0, x)eip·x. (2)

Specifically, provided Im(p) is inside the open forward
light cone, Im(p) ∈ V+, then eip·x acts to exponentially
suppress the integrand (2). This, combined with GR(0, x)
being a tempered distribution, means the integral and
its derivatives converge there and thus G̃R(p) is ana-
lytic [4, 5]. Thus G̃R(p) is analytic for Imω > |Im k|

1 Note that an instability would violate this condition and so we
restrict our analysis to only (linearly) stable phases.

where pµ = (ω, k, 0, 0, . . .)µ for a rotationally invariant
state. Hence, any singularity of G̃R(p), including poles
and branch points, whose location is described by the
complex function ω(k), necessarily obeys

Imω(k) ≤ |Im k|. (3)

Here and throughout we have set the light cone speed
to c = 1, but it can be reinstated at any point on di-
mensional grounds. Using only (3), which is a necessary
condition for causality, we prove a number properties
of ω(k) of physical significance for both hydrodynamic
and nonhydrodynamic modes of quantum field theories.
Note that (3) also applies to any model, not necessarily a
microscopic quantum field theory, provided its retarded
Green’s functions are causal and tempered.

Our main result is as follows:

Theorem 1 (Bounds on transport) Let ω(k) be ana-
lytic in a disk centred at k = 0 with radius R, with Taylor

series ω(k) =
∑∞

n=0 ank
n. The causality constraint (3)

implies for n > 0,

|an| ≤
2(n2 − 1) − (1 + (−1)n) sin θn

n2 − 1

2

πRn−1
− 2Im(a0)

Rn
,

(4)
and also Im(a0) ≤ 0, where θn = arg(an).

The analyticity assumption around k = 0 holds when
fluctuations are negligible such as for large-N QFTs. As
in [3, 6], we regard the radius of convergence of the se-
ries appearing in this bound, R, as an intrinsic com-
putable microscopic scale of the system under consid-
eration. Then, (4) provides nontrivial two-sided bounds
on all transport coefficients in units of this intrinsic mi-
croscopic scale. We have not been able to show that the
right hand side of (4) is sharp; there may be a smaller
coefficient we can write down on the right hand side fol-
lowing only from (3).

By taking R → ∞ it follows from Theorem 1 that

http://arxiv.org/abs/2212.07434v2


2

Corollary 1.1 If ω(k) is an entire function obeying (3)
then ω(k) is a polynomial of at most degree one.

For instance, the well-known result that the heat equa-
tion is not causal follows from Corollary 1.1 since there,
ω(k) = −iDk2, which is entire. Also, the QNMs of BTZ
black branes are entire functions and linear in k [1, 2],
consistent with this result. Another example are the loga-
rithmic branch points of scalar glueball operators in free
SU(N) Yang-Mills theory which have ω(k) linear in k
[7], respecting Corollary 1.1. Of course, one may find
higher-order polynomial ω(k) for modes of nonrelativis-
tic theories like Navier-Stokes or large-D gravity [8, 9]
which do not respect a finite c lightcone.

In the hydrodynamic context, Corollary 1.1 demon-
strates that the only causal and entire dispersion relation
is that which follows from the perfect fluid equations of
motion. It follows that any attempt to modify the dis-
persion relation by adding, for example, dissipative trans-
port coefficients such as viscosity necessarily results in a
complex singularity of ω(k) and a finite radius of conver-
gence. It has been shown on a case-by-case basis that
the radius of convergence of hydrodynamic modes (and
QNMs generally) is finite in relativistic theories [3, 10–
27]. Our main result, Theorem 1, proves that it always
is, in complete generality.

Having established that complex singularities are an
unavoidable feature for all but the simplest of cases, it is
natural to ask whether (3) constrains which singularities
are allowed. Indeed, we show:

Theorem 2 (No poles or essential singularities)
If ω(k) obeys (3) then it does not contain any poles or

essential singularities.

The absence of poles in hydrodynamic dispersion re-
lations was argued in [6]. We have not considered any
nonisolated singularities in this work. However, we note
that branch points are not ruled out by (3) and are al-
lowed to appear in a causal ω(k). Indeed, as pointed out
in [3], there are causal theories for which the radius of
convergence of ω(k) is set by a square-root branch point.

The bound (4) is our most general, applying to all coef-
ficients. However, the more information available about
structure of a given mode, the more the bound following
from (3) can be refined. We consider such refined bounds
two physical cases of interest, sound and diffusive modes
in classical hydrodynamics:

Theorem 3 (Sound modes) Let ω(k) be a sound

mode, i.e. in a Taylor series around k = 0 we have

ω(k) = vk − iΓs

2
k2 + . . . with a radius of convergence

R > 0 and where v,Γs ∈ R. Then (3) constrains

|v| ≤ 1, 0 ≤ Γs

2
≤ 16

3π

1

R
, (5)

as well as a bound relating the two coefficients,

Γs

2
≤ 4

√

2

3

(

8√
6π

− |v|
)

1

R
. (6)

Note that for CFTd one has |v| = 1√
d−1

and hence (6)

gives upper bounds on ΓsR which are stronger than (5)
in dimensions d = 2, 3, 4. An approximate upper bound
on Γs in terms of 1 − v was given in [28].

Theorem 4 (Diffusive modes) Let ω(k) be a diffusive

mode, i.e. in a Taylor series around k = 0 we have

ω(k) = −iDk2 + . . . with a radius of convergence R > 0
and where D ∈ R. Then (3) constrains

0 ≤ D ≤ 16

3π

1

R
. (7)

For example, in the case of the telegrapher’s equation,
which describes shear channel perturbations in MIS the-
ory [29, 30], the maximum value of the diffusion constant
is set by the relation DR = 1/2. Of the examples we have
checked in the literature, the largest value of DR we have
found is DR ≃ 0.78 which occurs for the shear mode the
dual of Reissner-Nordström-AdS5 [13], at the first ‘cusp’
shown in figure 1 there.2 We also provide a mathematical
test function which has DR ≃ 1.22 (24). Note that, in
theories where ε + p = Ts, (7) gives an upper bound on
η
s
≤ 16

3π
T
R

.
In [31] arguments were made for a parametric upper

bound on D, given approximately by a local equilibration
timescale, τeq. A precise version of this bound could be
derived from Theorem 4 should one identify R−1 with τeq
(as a reminder, we have set c = 1 throughout).

In the remainder of this Letter we give proofs of each
of the theorems above and give some concluding remarks.

PROOFS

Bounds on transport. Our proof of Theorem 1 starts
by following the derivation of a real-part theorem in [32]
(the improvement of theorem 3.1 presented there), with
adjustments to accommodate the more specific bound at
hand, (3).3 Let k = reiθ and for r < R write,

ω(k) =
∞
∑

n=0

ank
n = U(r, θ) + iV (r, θ). (8)

2 Using analytically known branch points for RN-AdSd+1 [3, 13]
which set R at intermediate T , one can prove that an additional
branch point must appear at high T so that (7) is not violated.
This indeed happens [13] resulting in this cusp.

3 Alternative bounds can be constructed using the Borel-
Carathéodory theorem and associated real-part theorems [33],
but typically these bounds end up relying only on Im(ω) ≤ |k|
and are weaker than the one we derive here, since |Im(k)| ≤ |k|.
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Let an = αn + iβn. Then

V (r, θ) =

∞
∑

n=0

rn (αn sin(nθ) + βn cos(nθ)) . (9)

Hence for n > 0, let θn = arg(an)

|an|rn = (αn + iβn)e−iθnrn (10)

=
1

π

∫ 2π

0

V (r, θ) sin(nθ + θn)dθ, (11)

where we used sine/cosine orthogonality integrals to ex-
tract αn, βn from (9), and we also used that the left hand
side is real. The bound (3) is V ≤ r| sin θ|, but to bound
an integral we need to make sure that what multiplies it
is non-negative. Hence instead consider

|an|rn + 2β0 =
1

π

∫ 2π

0

V (r, θ) (1 + sin(nθ + θn)) dθ, (12)

≤ r

π

∫ 2π

0

| sin θ| (1 + sin(nθ + θn)) dθ, (13)

=
2r

π

2(n2 − 1) − (1 + (−1)n) sin θn
n2 − 1

. (14)

Sending r → R we obtain (4). Note if n is odd, then the
dependence on θn drops out. If n is even and we don’t
know θn we can obtain an agnostic bound by maximising
the right hand side over θn, i.e. by picking θn = −π/2.
Finally we note that (3) at k = 0 implies β0 ≤ 0.

No poles or essential singularities. Given an isolated
singularity at a ∈ C we can form the Laurent series valid
in the punctured disk, 0 < |k − a| < R

ω =
∞
∑

n=nmin

cn(k − a)n, (15)

for some order of the pole, nmin < 0 with cnmin
6= 0. Take

k = a + reiθk then

Imω =
∞
∑

n=nmin

|cn|rn sin(arg(cn) + nθk), (16)

and in the limit k → a we have, restricting arg(a) to its
principal value,

|Im k| = |a| sin(| arg(a)|). (17)

Thus if we approach k = a at an angle θk = −(arg(cn)−
| arg(a)|)/nmin then we violate (3). Hence (3) rules out
poles. If we take nmin → −∞ this rules out essential
singularities too, with the limit taken along θk = 0.

Sound modes. Consider a sound mode ω(k) = vk −
iΓs

2
k2 + . . . with v,Γs ∈ R. Take (3) with k = reiθ then

vr sin(θ) + . . . ≤ r (18)

hence by dividing by r and taking a limit r → 0 we
find |v| ≤ 1, i.e. no superluminal sound modes. Note
that using (4) at n = 1 gives |v| ≤ 4/π which does not
improve this bound. Next consider Im k = 0 so that

−Γs

2
k2 + . . . ≤ 0. (19)

By dividing by k2 and taking a limit k → 0 we find
Γs ≥ 0. Note that using (4) at n = 2, θ2 = π/2 gives
Γs

2
≥ − 8

3π
1
R

which does not improve this lower bound.
To obtain an upper bound, we use (4) at n = 2, θ2 =
−π/2, so that Γs

2
≤ 16

3π
1
R

. Altogether we have the two-
sided bound (5).

To prove the relational bound (6), we take the hy-
drodynamic sound mode with v ≥ 0, and consider the
identity

4δvr +
Γs

2
r2 =

1

π

∫ 2π

0

V (r, θ) (γ+4δ sin(θ)− cos(2θ)) dθ,

(20)
which follows from (11) upon taking into account that
V (0, θ) = 0 and v, Γs ≥ 0. We assume that δ ∈ [0, 1).
Under this condition, the function

f(θ) ≡ γ+4δ sin(θ)− cos(2θ) (21)

has absolute minima at sin(θ) = −δ, with value γ − 1 −
2δ2. Choosing γ = 1 + 2δ2 ensures that f(θ) is a non-
negative function, thus allowing to employ the bound (3),
V ≤ r| sin(θ)|, to obtain the following inequality

Γs

2
≤ 4δ

(

4 + 6δ2

3πδ
− v

)

1

R
. (22)

The value δ =
√

2
3
< 1 minimizes the first term inside

the parenthesis on the right-hand side and leads to the
relational bound (6).

Diffusive modes. Consider a diffusive mode ω(k) =
−iDk2 + . . . with D ∈ R. Consider Im k = 0 so that

−Dk2 + . . . ≤ 0 (23)

then by dividing by k2 and taking the limit k → 0 we
obtain D ≥ 0. The upper bound is obtained from (4) at
n = 2, θ2 = −π/2, i.e. D ≤ 16

3π
1
R

. Altogether we have
the two-sided bound (7). To find examples with as large
as possible DR we have explored the following class of
test functions,

ω(k) = A0 +

N
∑

i=1

Ai

√

1 −Bik2, (24)

with A0 set so that there is no gap. The largest value
we found is DR ≃ 1.22, though we anticipate this can
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be improved.4 This satisfies (3) asymptotically for large
and small k, at each of its branch points, and has been
checked numerically for k ∈ C.

CONCLUSIONS

In this work we have stated a necessary condition, (3),
for a dispersion relations ω(k) to be causal in relativis-
tic quantum field theories, in phases where the retarded
Green’s function is a tempered distribution. We empha-
sise that (3) is universal, independent of model details
such as coupling strength.

We have proved a number of simple and universal con-
straints on ω(k) following from (3). This includes an
infinite number of bounds between transport coefficients
of hydrodynamics and an intrinsic microscopic scale R,
the radius of convergence of the hydrodynamic series.
Among these bounds is an upper bound on the diffu-
sion constant, D (7). There is some unexplored space
DR ∈

(

1.22, 16
3π

]

; ultimately this interval can be shrunk
to zero, either because the upper bound can be refined,
or because there exist causal functions which have larger
values of DR, or both. This remains to be seen.

We note that the two-sided bounds we have obtained
on hydrodynamic transport coefficients are reminiscent of
causality bounds on Wilson coefficients in EFTs obtained
in recent work [34, 35].

We have proved that causal dispersion relations can-
not be entire functions (except for the perfect fluid),
and ruled out poles and essential singularities. Naively,
this leaves branch point singularities in ω(k), consistent
with a growing number of empirical case-by-case obser-
vations. Since in the shear channel there is only one
hydrodynamic mode, the branch point implies the exis-
tence of a nonhydrodynamic shear mode. In turn, this
entails a nonhydrodynamic mode in the sound channel
too, by continuity at k = 0 where the shear and sound
channel degenerate.5 Thus any attempt to formulate a
causal initial value problem for relativistic hydrodynam-
ics must include nonhydrodynamic modes; the two things
are inseparable. This explains the appearance of nonhy-
drodynamic QNMs for asymptotically AdS black branes,
and nonhydrodynamic modes in phenomenological mod-
els such as RTA kinetic theory [37, 38], MIS [29, 30],
BRSSS [39], aHydro [40, 41], HJSW [42], BDNK [43–46]
and the model put forward in [47].

4 With numerical parameters N = 4, A1 = 0.694 + 1.929i, A2 =
−1.396 − 1.198i, A3 = 0.429 − 1.201i, A4 = −0.012 − 0.299i,
B1 = 0.668 + 0.057i, B2 = 0.378 − 0.554i, B3 = 0.109 + 0.657i,
B4 = 0.666 + 0.023i, quoted to three decimal places.

5 This observation does not preclude the radius of convergence
of sound channel hydrodynamic modes being set by a collision
between themselves; such collisions have been observed in [36].

Acknowledgements. We thank Christiana Pantelidou
for providing the data from figure 1 of [13]. We
thank Richard Davison, Luca V. Delacrétaz and Lorenzo
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B. Withers, JHEP 04, 192 (2021), arXiv:2011.13864.

mailto:michal.p.heller@ugent.be
mailto:alexandre.serantes@ub.edu
mailto:michal.spalinski@ncbj.gov.pl
mailto:b.s.withers@soton.ac.uk
http://dx.doi.org/10.1103/PhysRevLett.88.151301
http://arxiv.org/abs/hep-th/0112055
http://dx.doi.org/10.1088/1126-6708/2002/09/042
http://arxiv.org/abs/hep-th/0205051
http://dx.doi.org/10.1007/JHEP06(2018)059
http://arxiv.org/abs/1803.08058
http://www.jstor.org/stable/j.ctt1cx3vcq
http://dx.doi.org/ 10.1103/PhysRevD.104.066002
http://arxiv.org/abs/2007.05524
http://dx.doi.org/10.1088/1126-6708/2005/12/036
http://arxiv.org/abs/hep-th/0508092
http://dx.doi.org/ 10.1007/JHEP06(2016)117
http://arxiv.org/abs/1602.05752
http://dx.doi.org/10.1007/JHEP09(2018)138
http://arxiv.org/abs/1806.00306
http://dx.doi.org/10.1103/PhysRevLett.122.251601
http://arxiv.org/abs/1904.01018
http://dx.doi.org/10.1007/JHEP11(2019)097
http://arxiv.org/abs/1904.12862
http://dx.doi.org/10.1007/JHEP10(2020)076
http://arxiv.org/abs/2007.10024
http://dx.doi.org/10.1007/JHEP10(2020)121
http://arxiv.org/abs/2007.14418
http://dx.doi.org/10.1103/PhysRevD.103.086001
http://arxiv.org/abs/2010.05916
http://dx.doi.org/10.1103/PhysRevX.11.031024
http://arxiv.org/abs/2011.12301
http://dx.doi.org/ 10.1007/JHEP04(2021)192
http://arxiv.org/abs/2011.13864


5

[17] M. P. Heller, A. Serantes, M. Spaliński, V. Svens-
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