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We use causality to derive a number of simple and universal constraints on dispersion relations, which
describe the location of singularities of retarded two-point functions in relativistic quantum field theories.
We prove that all causal dissipative dispersion relations have a finite radius of convergence in cases where
stochastic fluctuations are negligible. We then give two-sided bounds on all transport coefficients in units of
this radius, including an upper bound on diffusivity.
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Introduction and results.—In real-time linear response of
relativistic quantum field theory, the singularities of
retarded two-point functions are of considerable interest.
At finite temperature, they describe collective excitations
which include slowly varying hydrodynamic modes as well
as transient nonhydrodynamic ones. In cases where holog-
raphy provides a means of calculating the retarded thermal
two-point functions, these singularities are simple poles
which encode the spectrum of black brane quasinormal
modes (QNMs) [1,2]. The location of the singularities is
described by dispersion relations, ωðkÞ. A study of their
analytic structure was initiated in [3], using holography.
The goal of this work is to explore the constraints on the
analytic structure of ωðkÞ which follow from causality.
Consider the retarded two-point functions of local

operators in Minkowski space,

GRðx; yÞ ¼ −iθðx0 − y0Þh½OðxÞ;OðyÞ�i: ð1Þ
GRð0; xÞ is only nonzero for x in the past closed light cone,
x ∈ V̄−; this follows from the θ function and the commu-
tation of O at spacelike-separated points. In addition, we
take GRðx; yÞ to be a tempered distribution [4]. Both of
these conditions work together to dictate analyticity proper-
ties of its Fourier transform,

G̃RðpÞ ¼
Z

ddxGRð0; xÞeip·x: ð2Þ

Specifically, provided ImðpÞ is inside the open forward
light cone, ImðpÞ ∈ Vþ, then eip·x acts to exponentially
suppress the integrand (2). This, combined with GRð0; xÞ
being a tempered distribution, means the integral and its
derivatives converge there and thus G̃RðpÞ is analytic [5,6].
Thus, G̃RðpÞ is analytic for Imω > jImkj where pμ ¼
ðω; k; 0; 0;…Þμ for a rotationally invariant state. Hence, any
singularity of G̃RðpÞ, including poles and branch points,
whose location is described by the complex function ωðkÞ,
necessarily obeys

ImωðkÞ ≤ jImkj: ð3Þ

Here and throughout we have set the light cone speed to
c ¼ 1, but it can be reinstated at any point on dimensional
grounds. Using only (3), which is a necessary condition for
causality, we prove a number properties of ωðkÞ of physical
significance for both hydrodynamic and nonhydrodynamic
modes of quantum field theories. Note that (3) also applies
to any model, not necessarily a microscopic quantum field
theory, provided its retarded Green’s functions are causal
and tempered.
Our main result is as follows:
Theorem 1: Bounds on transport.—Let ωðkÞ be analytic

in a disk centred at k ¼ 0 with radius R, with Taylor series
ωðkÞ ¼ P∞

n¼0 ank
n. The causality constraint (3) implies for

n > 0,

janj≤
2ðn2−1Þ− ½1þð−1Þn�sinθn

n2−1

2

πRn−1−
2Imða0Þ

Rn ; ð4Þ

and also Imða0Þ ≤ 0, where θn ¼ argðanÞ.
The analyticity assumption around k ¼ 0 holds when

fluctuations are negligible such as for large-N QFTs.
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As in [3,7], we regard the radius of convergence of the
series appearing in this bound, R, as an intrinsic comput-
able microscopic scale of the system under consideration.
Then, (4) provides nontrivial two-sided bounds on all
transport coefficients in units of this intrinsic microscopic
scale. We have not been able to show that the right hand
side of (4) is sharp; there may be a smaller coefficient we
can write down on the right hand side following only
from (3).
By taking R → ∞ it follows from Theorem 1 that
Corollary 1.1.—If ωðkÞ is an entire function obeying (3)

then ωðkÞ is a polynomial of at most degree one.
For instance, the well-known result that the heat equation

is not causal follows from Corollary 1.1 since there,
ωðkÞ ¼ −iDk2, which is entire. Also, the QNMs of BTZ
black branes are entire functions and linear in k [1,2],
consistent with this result. Another example are the
logarithmic branch points of scalar glueball operators in
free SUðNÞ Yang-Mills theory which have ωðkÞ linear in
k [8], respecting Corollary 1.1. Of course, one may find
higher-order polynomial ωðkÞ for modes of nonrelativistic
theories like Navier-Stokes or large-D gravity [9,10] which
do not respect a finite c light cone.
In the hydrodynamic context, Corollary 1.1 demon-

strates that the only causal and entire dispersion relation
is that which follows from the perfect fluid equations of
motion. It follows that any attempt to modify the dispersion
relation by adding, for example, dissipative transport
coefficients such as viscosity necessarily results in a
complex singularity of ωðkÞ and a finite radius of con-
vergence. It has been shown on a case-by-case basis that the
radius of convergence of hydrodynamic modes (and QNMs
generally) is finite in relativistic theories [3,11–28]. Our
main result, Theorem 1, proves that it always is, in
complete generality.
Having established that complex singularities are an

unavoidable feature for all but the simplest of cases, it is
natural to ask whether (3) constrains which singularities are
allowed. Indeed, we show the following:
Theorem 2: No poles or essential singularities.—If ωðkÞ

obeys (3) then it does not contain any poles or essential
singularities.
The absence of poles in hydrodynamic dispersion

relations was argued in [7]. We have not considered any
nonisolated singularities in this work. However, we note
that branch points are not ruled out by (3) and are allowed
to appear in a causal ωðkÞ. Indeed, as pointed out in [3],
there are causal theories for which the radius of conver-
gence of ωðkÞ is set by a square-root branch point.
The bound (4) is our most general, applying to all

coefficients. However, the more information available
about structure of a given mode, the more the bound
following from (3) can be refined. We consider such refined
bounds two physical cases of interest, sound and diffusive
modes in classical hydrodynamics.

Theorem 3: Sound modes.—Let ωðkÞ be a sound mode,
i.e., in a Taylor series around k ¼ 0 we have ωðkÞ ¼
vk − iðΓs=2Þk2 þ � � � with a radius of convergence R > 0
and where v;Γs ∈ R. Then (3) constrains

jvj ≤ 1; 0 ≤
Γs

2
≤
16

3π

1

R
; ð5Þ

as well as a bound relating the two coefficients,

Γs

2
≤ 4

ffiffiffi
2

3

r �
8ffiffiffi
6

p
π
− jvj

�
1

R
: ð6Þ

Note that for CFTd one has jvj ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
and hence

(6) gives upper bounds on ΓsR which are stronger than (5)
in dimensions d ¼ 2, 3, 4. An approximate upper bound on
Γs in terms of 1 − v was given in [29].
Theorem 4: Diffusive modes.—Let ωðkÞ be a diffusive

mode, i.e., in a Taylor series around k ¼ 0 we have ωðkÞ ¼
−iDk2 þ � � �with a radius of convergence R > 0 and where
D ∈ R. Then (3) constrains

0 ≤ D ≤
16

3π

1

R
: ð7Þ

For example, in the case of the telegrapher’s equation,
which describes shear channel perturbations in Müller-
Israel-Stewart (MIS) theory [30,31], the maximum value of
the diffusion constant is set by the relation DR ¼ 1=2. Of
the examples we have checked in the literature, the largest
value of DR we have found is DR ≃ 0.78 which occurs for
the shear mode the dual of Reissner-Nordström-AdS5 [14],
at the first “cusp” shown in Fig. 1 there [32]. We also
provide a mathematical test function which has DR ≃ 1.22
(24). Note that, in theories where εþ p ¼ Ts, (7) gives an
upper bound on ðη=sÞ ≤ ð16=3πÞðT=RÞ.
In [33] arguments were made for a parametric upper

bound on D, given approximately by a local equilibration
timescale, τeq. A precise version of this bound could be
derived from Theorem 4 should one identify R−1 with τeq
(as a reminder, we have set c ¼ 1 throughout).
In the remainder of this Letter we give proofs of each of

the theorems above and give some concluding remarks.
Proof of Theorem 1: Bounds on transport.—Our proof

starts by following the derivation of a real-part theorem
in [34] (the improvement of Theorem 3.1 presented there),
with adjustments to accommodate the more specific bound
at hand, (3) [35]. Let k ¼ reiθ and for r < R write

ωðkÞ ¼
X∞
n¼0

ankn ¼ Uðr; θÞ þ iVðr; θÞ: ð8Þ

Let an ¼ αn þ iβn. Then
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Vðr; θÞ ¼
X∞
n¼0

rn½αn sinðnθÞ þ βn cosðnθÞ�: ð9Þ

Hence, for n > 0, let θn ¼ argðanÞ

janjrn ¼ ðαn þ iβnÞe−iθnrn ð10Þ

¼ 1

π

Z
2π

0

Vðr; θÞ sinðnθ þ θnÞdθ; ð11Þ

where we used sine and cosine orthogonality integrals to
extract αn, βn from (9), and we also used that the left hand
side is real. The bound (3) is V ≤ rj sin θj, but to bound an
integral we need to make sure that what multiplies it is non-
negative. Hence, instead consider

janjrnþ 2β0 ¼
1

π

Z
2π

0

Vðr;θÞ½1þ sinðnθþ θnÞ�dθ; ð12Þ

≤
r
π

Z
2π

0

j sin θj½1þ sinðnθ þ θnÞ�dθ; ð13Þ

¼ 2r
π

2ðn2 − 1Þ − ½1þ ð−1Þn� sin θn
n2 − 1

: ð14Þ

Sending r → R we obtain (4). Note if n is odd, then the
dependence on θn drops out. If n is even and we do not
know θn we can obtain an agnostic bound by maximizing
the right hand side over θn, i.e., by picking θn ¼ −π=2.
Finally, we note that (3) at k ¼ 0 implies β0 ≤ 0.
Proof of Theorem 2: No poles or essential singular-

ities.—Given an isolated singularity at a ∈ C we can
form the Laurent series valid in the punctured disk,
0 < jk − aj < R

ω ¼
X∞
n¼nmin

cnðk − aÞn; ð15Þ

for some order of the pole, nmin < 0 with cnmin
≠ 0. Take

k ¼ aþ reiθk then

Imω ¼
X∞
n¼nmin

jcnjrn sin½argðcnÞ þ nθk�; ð16Þ

and in the limit k → a we have, restricting argðaÞ to its
principal value,

jIm kj ¼ jaj sin½j argðaÞj�: ð17Þ

Thus, if we approach k ¼ a at an angle θk ¼ −½argðcnÞ −
j argðaÞj�=nmin then we violate (3). Hence (3) rules out
poles. If we take nmin → −∞ this rules out essential
singularities too, with the limit taken along θk ¼ 0.

Proof of Theorem 3: Sound modes.—Consider a sound
mode ωðkÞ ¼ vk − iðΓs=2Þk2 þ � � � with v;Γs ∈ R. Take
(3) with k ¼ reiθ then

vr sinðθÞ þ � � � ≤ r; ð18Þ

hence, by dividing by r and taking a limit r → 0 we find
jvj ≤ 1, i.e., no superluminal sound modes. Note that using
(4) at n ¼ 1 gives jvj ≤ 4=π which does not improve this
bound. Next, consider Imk ¼ 0 so that

−
Γs

2
k2 þ � � � ≤ 0: ð19Þ

By dividing by k2 and taking a limit k → 0 we find Γs ≥ 0.
Note that using (4) at n ¼ 2; θ2 ¼ π=2 gives ðΓs=2Þ ≥
−ð8=3πÞð1=RÞ which does not improve this lower bound.
To obtain an upper bound, we use (4) at n ¼ 2; θ2 ¼ −π=2,
so that ðΓs=2Þ ≤ ð16=3πÞð1=RÞ. Altogether, we have the
two-sided bound (5).
To prove the relational bound (6), we take the hydro-

dynamic sound mode with v ≥ 0, and consider the identity

4δvrþ Γs

2
r2 ¼ 1

π

Z
2π

0

Vðr; θÞ½γ þ 4δ sinðθÞ − cosð2θÞ�dθ;

ð20Þ

which follows from (11) upon taking into account that
Vð0; θÞ ¼ 0 and v;Γs ≥ 0. We assume that δ ∈ ½0; 1Þ.
Under this condition, the function

fðθÞ≡ γ þ 4δ sinðθÞ − cosð2θÞ ð21Þ

has absolute minima at sinðθÞ ¼ −δ, with value
γ − 1 − 2δ2. Choosing γ ¼ 1þ 2δ2 ensures that fðθÞ is a
non-negative function, thus allowing us to employ the
bound (3), V ≤ rj sinðθÞj, to obtain the following inequality:

Γs

2
≤ 4δ

�
4þ 6δ2

3πδ
− v

�
1

R
: ð22Þ

The value δ ¼ ffiffiffiffiffiffiffiffi
2=3

p
< 1 minimizes the first term inside

the parenthesis on the right-hand side and leads to the
relational bound (6).
Diffusive modes.—Consider a diffusive mode ωðkÞ ¼

−iDk2 þ � � � with D ∈ R. Consider Imk ¼ 0 so that

−Dk2 þ � � � ≤ 0; ð23Þ

then by dividing by k2 and taking the limit k → 0 we obtain
D ≥ 0. The upper bound is obtained from (4) at
n ¼ 2; θ2 ¼ −π=2, i.e., D ≤ ð16=3πÞð1=RÞ. Altogether,
we have the two-sided bound (7). To find examples with
as large as possible DR we have explored the following
class of test functions,
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ωðkÞ ¼ A0 þ
XN
i¼1

Ai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Bik2

q
; ð24Þ

with A0 set so that there is no gap. The largest value we
found is DR ≃ 1.22, though we anticipate this can be
improved [36]. This satisfies (3) asymptotically for large
and small k, at each of its branch points, and has been
checked numerically for k ∈ C.
Conclusions.—In this Letter, we have stated a necessary

condition, (3), for a dispersion relationsωðkÞ to be causal in
relativistic quantum field theories, in phases where the
retarded Green’s function is a tempered distribution. We
emphasise that (3) is universal, independent of model
details such as coupling strength.
We have proved a number of simple and universal

constraints on ωðkÞ following from (3). This includes an
infinite number of bounds between transport coefficients
of hydrodynamics and an intrinsic microscopic scale R,
the radius of convergence of the hydrodynamic series.
Among these bounds is an upper bound on the diffusion
constant, D (7). There is some unexplored space
DR ∈ ð1.22; ð16=3πÞ�; ultimately this interval can be
shrunk to zero, either because the upper bound can be
refined, or because there exist causal functions which have
larger values of DR, or both. This remains to be seen.
We note that the two-sided bounds we have obtained on

hydrodynamic transport coefficients are reminiscent of
causality bounds on Wilson coefficients in effective field
theories obtained in recent work [37,38].
We have proved that causal dispersion relations cannot

be entire functions (except for the perfect fluid), and ruled
out poles and essential singularities. Naively, this leaves
branch point singularities in ωðkÞ, consistent with a
growing number of empirical case-by-case observations.
Since in the shear channel there is only one hydrodynamic
mode, the branch point implies the existence of a non-
hydrodynamic shear mode. In turn, this entails a non-
hydrodynamic mode in the sound channel too, by
continuity at k ¼ 0 where the shear and sound channel
degenerate [39]. Thus any attempt to formulate a causal
initial value problem for relativistic hydrodynamics must
include nonhydrodynamic modes; the two things are
inseparable. This explains the appearance of nonhydrody-
namic QNMs for asymptotically AdS black branes, and
nonhydrodynamic modes in phenomenological models
such as RTA kinetic theory [40,41], MIS [30,31],
BRSSS [42], aHydro [43,44], HJSW [45], BDNK [46–49],
and the model put forward in [50]. This observation also
emphasises the physical role of the radius of convergence R
appearing in our bounds: it is the scale of new physics
beyond the low-energy effective theory of relativistic
hydrodynamics.
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