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ABSTRACT Sparse multipath channel impulse response (CIR) estimation schemes are conceived for
optical orthogonal frequency division multiplexing (O-OFDM) visible light communication (VLC) systems.
We commence by deriving the input-output models for both asymmetrically clipped optical OFDM (ACO-
OFDM) and direct current-biased optical OFDM (DCO-OFDM) systems. A multipath CIR model is derived
that captures both the diffusive as well as specular reflections of the VLC channel. Next, we introduce both
the sparsity-agnostic conventional least square (LS) and the linear minimum mean square error (LMMSE)
channel estimation (CE) techniques. This is followed by the orthogonal matching pursuit (OMP)-based
sparse recovery technique, which exploits the delay-domain sparsity of the CIR. Furthermore, a novel
sparse multipath CIR estimation scheme is proposed using the Bayesian learning (BL) framework, which
requires only a limited number of pilot subcarriers, hence resulting in a reduced pilot overhead as compared
to other state-of-the-art (SoA) CE techniques. The Bayesian Cramer Rao lower bound (BCRLB) as well
as the Oracle-minimum mean squared error (O-MMSE) estimator are also derived for benchmarking the
estimation performance of the proposed BL-based framework. Our simulation results demonstrate that
the proposed BL method outperforms other existing sparse and conventional CE methods in terms of
various metrics, such as the normalized mean-square-error (NMSE), the outage probability (OP), and the
bit error-rate (BER) despite its reduced pilot overhead.

INDEX TERMS Bayesian learning (BL), BCRLB, channel estimation (CE), expectation maximization,
visible light communication.

I. INTRODUCTION

THE current radio-frequency (RF) spectral bands have
limited time-frequency resources to fulfil the ever-

growing mobile data traffic demands, resulting in an im-
pending spectral bottleneck in next-generation wireless com-
munication systems. To overcome this barrier, visible light
communication (VLC), which operates in the currently un-
derutilized 400 THz to 800 THz frequency band, has evolved
as a viable substitute to conventional RF-based wireless
communication systems, particularly for indoor scenarios
[1]–[3]. To achieve the dual objectives of communication
and illumination, VLC employs light-emitting diodes (LEDs)

wherein the intensity modulation occurs at a rate that is
imperceivable by the human eyes. Compared to traditional
RF systems, VLC offers various benefits, including improved
security, reduced biological effects due to radiation, energy
efficiency, and a superior signal-to-noise ratio (SNR) [1], [4].
Hence, the energy efficiency and low cost of LEDs render
VLC a promising green technology for next generation
communication systems [5].

The channel in VLC is comprised of line-of-sight (LoS)
and non-line-of-sight (NLoS) paths. The LoS path is the
direct path from the LED source to the photodetector (PD)
receiver, whereas the NLoS paths are created when the
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transmitted light from the LED source reaches the PD
of the receiver after reflecting off the walls, objects, and
other surfaces. This multipath propagation results in the
time dispersion of the received signal. The power delay
profile of this is analyzed in [6]. The resultant delay spread
introduces inter-symbol interference (ISI) in indoor VLC
systems [7], [8]. Hence optical orthogonal frequency divi-
sion multiplexing (O-OFDM) has attracted the interest of
several researchers as a viable technique for multicarrier
modulation that can be implemented in LED-based VLC
systems, as a benefit of its ability to reduce the ISI, while
achieving excellent spectral efficiency [4], [9]. In contrast
to typical RF OFDM systems, the modulation of O-OFDM
VLC systems relies on the intensity modulation and direct
detection (IM/DD) technology [10]. Since in IM/DD the
modulated signal can only be non-negative and real-valued,
an O-OFDM system typically employs either asymmetrically
clipped optical OFDM (ACO-OFDM) modulation [11] or
direct current-biased optical OFDM (DCO-OFDM) modu-
lation [12]. The primary difference between the above two
modulation schemes is that while in DCO-OFDM a DC bias
is added to the transmitted signals to produce unipolar sig-
nals, in ACO-OFDM modulation the initial bipolar O-OFDM
signals is clipped at zero and thus the resultant unipolar
signal contains the positive components only. This property
makes the ACO-OFDM technique more energy-efficient than
the DCO-OFDM scheme [9], [10]. However, it must also be
noted that a DCO-OFDM system uses half of the available
subcarriers, whereas its ACO-OFDM counterpart can only
use half the number of odd subcarriers to communicate the
data symbols. This leads to improved spectral efficiency for
the DCO-OFDM technology [9], [10]. Thus, these competing
approaches for VLC systems strike a different compromise
across the optical energy and spectral efficiency (ESE). It is
important to note that the O-OFDM-VLC system’s perfor-
mance critically depends on the equalization at the receiver
to overcome the impact of interference arising from natural
light sources, background noise as well as the multipath
propagation of the channel. Therefore, channel estimation
(CE) is the key to achieve the best performance, thus reaping
the potential benefits of O-OFDM-VLC communication,
which forms the focus of this work. Furthermore, in light of
the above discussion pertaining to the advantageous aspects
of both the DCO-OFDM as well as ACO-OFDM approaches,
our work considers both these modulation schemes. The
existing contributions in this context are critically appraised
in the subsequent section.

A. Literature review
The traditional CE techniques of VLC systems include pilot-
assisted linear minimum mean square error (LMMSE) and
least squares (LS) techniques. The authors of [13] employed
the LS and LMMSE algorithms, respectively, for CE in O-
OFDM-VLC for channels associated with Lh = 6 taps,
where Lh denotes the length of the VLC CIR. The LS

technique is perhaps the easiest to implement, although it
is highly susceptible to noise [13]. On the other hand, the
LMMSE offers a more precise estimate of the channel state
information (CSI) than the LS, but has a slightly higher
complexity [13]. In [14] the authors examined higher-order
reflections in multipath VLC systems for high data rate
systems. In fact, their findings suggest that conventional
VLC channel models, which consider only the first few
reflections, do not provide sufficient accuracy for high-rate
VLC systems. Gong and Xu [15] perform CE using the LS
technique and correlator banks followed by signal detec-
tion using the LMMSE receiver and maximum likelihood
sequence detection (MLSD) schemes. Moreover, the system
model therein considers only NLoS components. A modified
zero-correlation-code pair based algorithm designed for the
estimation of the channel parameters of a multipath VLC
channel was analysed by the authors of [16]. Haigh et al.
[17] conceived artificial neural networks (ANN) and adaptive
decision feedback equalization for VLC systems. However,
the ANN proposed in [17] is challenging to implement due
to its hardware complexity and the technique advocated
relies on simplistic on-off keying (OOK) modulation, that
restricts its general applicability. A novel CE technique
was developed in [18], where O-OFDM was employed to
eliminate the multipath interference in a VLC system having
a CIR of Lh = 32 taps. Lee et al. [19] employed a deep
neural network (DNN)-based framework for dimmable VLC
systems, where the encoder and decoder pair is replaced by
a DNN-based VLC transceiver. However, their simulations
were performed only for OOK modulated VLC systems.
The authors of [20] designed transceivers for multi-coloured
VLC systems using a deep learning (DL)-based scheme.
Similarly, Wang et al. [21] designed a DL-based detector
for generalized spatial modulation (GenSM) in VLC sys-
tems. However, the system model of [20] and [21] only
considers a LoS VLC channel model. Yang et al. [22]
extended the traditional RF-OFDM-based CE techniques
to VLC systems by considering a multipath CIR model
for DCO-OFDM systems. Zhang et al. [23] presented a
novel adaptive CE scheme that employs the least squares
discrete Fourier transform (LS-DFT) combined with the
orthogonal matching pursuit (OMP) algorithm, wherein the
authors initially estimate the VLC channel gains utilising the
LS estimate, and subsequently employ the cubic B-spline
interpolation technique for estimation of the subchannels
across all subcarriers. Finally, the resultant data is subjected
to the DFT to get the frequency-domain (FD) CSI. However,
the BER performance of their suggested technique is not
optimal across the entire SNR range. Explicitly, the LS-DFT
performs better in the low SNR regime, while the OMP
yields an improved performance in the high-SNR range.
Notably, the practical VLC channel model, described in [8],
[18], [24] is more sophisticated, because it comprises a LoS
component as well as several NLoS components.
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TABLE 1: Boldly contrasting our contributions to the current state-of-the-art

Features [18] [19] [25] [26] [27] [28] [29] [30] [31] [32] [33] Proposed
DCO-OFDM ✓ ✓ ✓ ✓ ✓ ✓ ✓

ACO-OFDM ✓ ✓ ✓ ✓

LoS with NLoS channel model ✓ ✓ ✓ ✓ ✓ ✓ ✓

BL-based CE ✓ ✓

BCRLB/CRLB ✓ ✓ ✓

FOCUSS ✓

Sparse CIR and OMP ✓ ✓ ✓ ✓ ✓ ✓

Oracle MMSE ✓

Perfect CSI ✓ ✓ ✓ ✓ ✓

Interestingly, the small number of multipath components,
in comparison to the large delay spread results in the VLC
channel being sparse in the delay domain [23], [25], [27]–
[30], [34]–[36]. Therefore, sparsity-based CE techniques can
lead to a significant increase in estimation accuracy as
compared to the conventional LMMSE and LS algorithms
[29]. Several researchers have tried to enhance the accuracy
of CE in VLC systems by leveraging this sparsity, which
includes various cutting edge sparse signal recovery algo-
rithms, namely the OMP and its variants. Zhao et al., in their
seminal paper [29] employed the OMP scheme relying on a
partially superimposed training sequence for CE in an ACO-
OFDM VLC system, with an Lh as high as 80, while setting
the CIR coefficients having magnitudes lower than 10−4

to zero. The authors of [28] used the estimation of signal
parameters via rotational invariance technique (ESPRIT) for
determining the multipath parameters, which are then used to
build the dictionary matrix. Following this, the basis pursuit
denoising (BPDN) algorithm [28] was used in their work for
the reconstruction of the VLC channel frequency response
(CFR). However, only NLoS optical wireless communication
was considered in their channel model, and the O-OFDM
modulation schemes used were not specified. The authors
of [33] consider sparse Bayesian relevance vector machine
(RVM) regression-based CE for OFDM-VLC systems using
complex training symbols, while considering only the optical
LoS channel gain. However, their results are only validated
for DCO-OFDM systems, with the constraint that the real
and imaginary parts of the transmitted training symbols are
identical, which limits the applicability of their work. More-
over, closed-form expressions for performance benchmarks
such as the Bayesian Cramer-Rao lower bound (BCRLB)
and Oracle-MMSE (O-MMSE) estimator are not derived
in [33]. Niaz et al. [25] reported a self-aware step size
sparsity adaptive matching pursuit (SS-SAMP) technique for
CE in an ACO-OFDM system, that offers superior perfor-
mance in terms of BER and minimum mean square error
(MMSE) compared to the conventional CE approaches of
VLC systems. In [37], Manur and Ali extended the concept
of [25] to MIMO-ACO-OFDM systems using the dynamic

step-size sparsity adaptive matching pursuit (DSS-SAMP)
technique for both spatially multiplexed (SM) and for space-
time block coded (STBC) VLC systems. A key drawback of
the proposed techniques of [25] and [37] is that their perfor-
mance depends on the choice of thresholds utilized, which
must be empirically adjusted for best results. Furthermore,
the performance of their proposed algorithms is dependent
on the choice of the measurement matrix. Thus, the per-
formance of a majority of the sparse estimation techniques
proposed in the existing VLC literature, is dependent on the
specific choice of the dictionary/measurement matrix and the
particular stopping criterion employed. However, they tend
to lead to convergence errors and significant performance
degradation [25], [38]. To overcome these shortcomings of
the state-of-the-art (SoA) sparse CE algorithms, we propose
a novel BL-based sparse multipath CIR estimation technique
for O-OFDM-VLC systems, considering both the popular
ACO/ DCO-OFDM modulation formats. Compared to ex-
isting sparse recovery techniques, such as OMP and FOCal
Underdetermined System Solver (FOCUSS) [38], [39], the
proposed BL-based approach is shown to yield significantly
improved estimates. The main contributions of this treatise
are summarized below.

B. Contributions of the work
1) A sparse multipath CIR model is developed for wide-

band VLC channels by incorporating both the diffusive
as well as specular reflections along with the attributes
of the optical reflectors, source, and receiver.

2) Commencing from the popular LS and LMMSE based
CE, we develop a CE model, which justifies the delay
domain sparsity of the CIR in VLC systems. This is
followed by the OMP based sparse recovery technique,
which exploits the resultant CIR sparsity, albeit facing
several drawbacks.

3) Subsequently, a novel sparse multipath CIR CE is con-
ceived using the novel BL framework for O-OFDM-
VLC systems. The proposed BL-based CE technique
requires only a limited number of pilot subcarriers,
hence resulting in an enhanced spectral efficiency and
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FIGURE 1: Schematic diagram of a DCO-OFDM transmitter and receiver.

reduced pilot overhead (ρ) in contrast to the current
CE approaches. Furthermore, the proposed technique
is free of tuning/regularization parameters and has a
robust convergence.

4) Closed-form expressions are derived for the BCRLB
and O-MMSE estimator to benchmark the performance
of the BL-based technique conceived for sparse VLC
CE.

5) The efficacy of the proposed BL-based CE approach
is exhaustively evaluated for both DCO-OFDM and
ACO-OFDM for different simulation environments, in
terms of several metrics, which include the bit-error-
rate (BER), outage probability (OP), normalized mean
squared error (NMSE), and the pilot overhead along
with the complexity analysis and speed of convergence
of the proposed BL-based CE technique.

C. Organization of the paper
The rest of this paper is arranged as follows. Section-II
examines the DCO-OFDM and ACO-OFDM system models.
Section-III investigates the multipath channel model, which
includes both diffusive as well as specular reflections of
the VLC channel, followed by Section-IV that presents our
OMP-based greedy technique developed for sparse VLC
CE. Section-V develops the proposed novel BL-based CE
technique along with the relevant performance benchmarks
such as the O-MMSE estimator and a lower bound on
the MMSE given by the BCRLB. Section-VI includes the
simulation results characterizing the performance of the
proposed sparse CE techniques in comparison to the existing
benchmarks. Section-VII offers our conclusions.

Notations: The following notations are used throughout
this paper: Uppercase boldface letters such as A denote ma-
trices, while lowercase boldface letters such as a denote vec-
tors. The operators (·)∗, (·)T , (·)−1, (·)H , and (·)† represent
the conjugate, transpose, inverse, Hermitian, and pseudoin-
verse of a matrix, respectively. CM×N ,RM×N , and RM×N

+

are the sets of M × N matrices, whose elements are
complex-valued, real-valued, and non-negative real-valued,
respectively. The operator E{·} represents the statistical
expectation, diag{a} represents a diagonal matrix with a on
its principal diagonal, and arg f(·) denotes the argument
of the function f(·). IN is the N × N identity matrix
while | · |, || · ||, and || · ||p represent the scalar magni-
tude, vector norm, and lp norm, respectively. Furthermore,
M(i, :) and M(:, j) represent the ith row and jth column of
the matrix M. The function det(·) represents the determinant
of the corresponding matrix and Re(·) denotes the real part
of a complex number. The quantity (̃·) denotes a variable
in FD, (·) denotes a vector in FD, and (̂·) denotes an
estimate of the variable. The signal rect(x) is defined as,

rect(x) =

{
1, if |x| ≤ 1,

0, if |x| > 1.

II. Optical OFDM System Models
Optical OFDM systems are significantly different from con-
ventional RF-based OFDM systems, since the former modu-
lates the intensity of LEDs, which constrains the waveform to
be non-negative as well as real-valued. Again, the two most
popular schemes for optical modulation are ACO-OFDM and
DCO-OFDM, which are briefly touched upon next.

A. DCO-OFDM system model
A serial bit sequence is mapped to N complex-valued
symbols that belong to a digital constellation such as quadra-
ture amplitude modulation (QAM), where N denotes the
number of subcarriers. Figure 1 depicts the DCO-OFDM
transceiver. The complex-valued data vector can be repre-
sented as follows: x = [x̃0, x̃1, x̃2, . . . , x̃N−1]

T ∈ CN×1,
where x̃0 = x̃N/2 = 0 to avoid the DC component, and
the symbols x̃1 to x̃N/2−1 satisfy the symmetry property
x̃j = x̃∗N−j , for N/2 + 1 ≤ j ≤ N − 1 [40], [41]. The N -
point inverse fast Fourier transform (IFFT) is subjected to the
vector x to produce the real-valued time-domain (TD) signal,
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FIGURE 2: Schematic diagram of an ACO-OFDM transmitter and receiver.

which can be modeled as x = Wx̄, where W denotes the
N×N IDFT matrix defined as W = {wn,k}N−1

n,k=0 ∈ CN×N

and wn,k = 1
N e

j( 2πnk
N ). Thus, the nth component xn of the

TD signal x is obtained as

xn =
1

N

N−1∑
k=0

x̃ke
(j 2πkn

N )

=
1

N

N/2−1∑
k=1

(
x̃ke

(j 2πkn
N ) + x̃N−ke

(j 2π(N−k)n
N )

)

=
1

N

N/2−1∑
k=1

(
x̃ke

(j 2πkn
N ) + x̃∗ke

(−j 2πkn
N )

)

=
2

N

N/2−1∑
k=1

Re
(
x̃ke

(j 2πkn
N )

)
.

(1)

The TD signal (x) is converted with the aid of a parallel-
to-serial (P/S) converter to a serial stream, followed by the
addition of a cyclic prefix (CP) of length LCP. Note that in
order to remove the ISI, LCP must be longer than the delay
spread of the multipath VLC channel. The signal is then
passed through both a digital to analog converter (DAC) and
a low pass filter (LPF) that produces the waveform x(t).
Since x(t) is bipolar in nature, to render it compatible with
intensity modulation, a DC bias (BDC) is introduced in x(t),
where BDC = V

√
E{x2(t)}, and V is a constant [40], [41].

In the literature, BDC is typically set as 10 log(V2 + 1) [12].
Thus, the unipolar signal xB(t) is obtained as follows [2]:

xB(t) = x(t) + BDC. (2)

Furthermore, any negative clip after the addition of BDC is
forced to zero. The resultant DCO-OFDM signal is then
transformed to an optical signal and transmitted over the
multipath VLC channel, which can be represented by the
CIR vector h = [h(0), h(1), . . . , h(Lh − 1)]

T ∈ RLh×1
+ ,

where Lh is the order of the VLC CIR [4]. After CP
removal, serial to parallel (S/P) combiner and the fast Fourier

transform (FFT) based demodulation at the receiver, the
input/output (i/o) model of the signal received at the kth

subcarrier becomes [4]:

ỹk = h̃kx̃k + w̃k, k = 1, . . . , N − 1, (3)

where w̃k is the zero-mean complex additive white Gaus-
sian noise (AWGN) that has a variance of σ2

AWGN [42],
and the VLC channel transfer function is given by,
h̃k =

∑Lh−1
n=0 h(n)e

−j2πnk
N . The vector representation y =

[ỹ0, ỹ1, . . . , ỹN−1]
T of the FFT output can be described as

y = diag{h}x+w, (4)

where w = [w̃0, w̃1, . . . , w̃N−1]
T and h =

[h̃0, h̃1, . . . , h̃N−1]
T [4]. In the TD, VLC systems

are affected by both thermal and shot noise. Their
cumulative effect can be modeled by AWGN of variance
σ2

VLC = σ2
Shot + σ2

Thermal, where σ2
Shot = 2qR[PS(t) + PD]

and σ2
Thermal = 4kbBT

r [18], [43], [44]. The quantity
q represents electron charge, r is the input resistance,
PS(t) is the instantaneous received power, R denotes the
PD responsivity, B is the bandwidth, T represents the
temperature, kb denotes Boltzmann’s constant, and PD is
the mean power received in an indoor environment from
diffuse sunlight. The FD equivalent of the above VLC noise
can be approximated by AWGN, whose variance is given
by σ2

AWGN = 2qRN(PR + PD) + Nσ2
Thermal, where PR

is the mean optical power within the room [18]. Similar
to conventional OFDM, in a DCO-OFDM VLC system,
single tap FD equalization may be used for recovering the
FD symbols x̂k. Each subcarrier is subsequently input to a
demodulator that maps the complex symbol estimates x̂k to
a set of information bits to retrieve the transmitted data.

B. ACO-OFDM system model
Figure 2 shows a schematic representation of an ACO-
OFDM transceiver. The primary difference between the
DCO-OFDM and ACO-OFDM systems lies in the assign-
ment of the data symbols to the subcarriers. In ACO-
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OFDM, the data symbols are assigned to the odd subcar-
riers of the first N/2 subcarriers in a Hermitian symmet-
ric fashion, similar to a DCO-OFDM system. Thus, the
ACO-OFDM system carries only N/4 information symbols.
Therefore, the IFFT based modulator’s input has the form,
x = [0, x̃1, 0, x̃3, . . . , x̃N−1]

T ∈ CN×1, where x̃j =
x̃∗N−j for N/2+1 ≤ j ≤ N−1 [41], [45]. Note that the TD
signal generated by the IFFT based modulator is real and
anti-symmetric, i.e.,

xn =
1

N

N−1∑
k=0

x̃ke
(j 2πkn

N ) =
1

N

N/2−1∑
m=0

x̃2m+1e
(j 2π(2m+1)n

N )

= − 1

N

N/2−1∑
m=0

x̃2m+1e
(j 2π(2m+1)(n+N/2)

N ) = −xn+N/2,

(5)
where n = 0, 1, . . . , N/2 − 1. We observe from (5) that
the first and second halves of the samples have identical
amplitudes and opposite signs. Consequently, the negative
valued samples, i.e., xn < 0, are clipped to zero. Thus, there
is no need for a DC bias to render it unipolar. The resultant
clipped signal (xn,cs) is as follows:

xn,cs =

{
xn, if xn > 0,

0, if xn ≤ 0.
(6)

The clipped TD signal is then passed to a P/S converter,
which is followed by the CP addition, DAC conversion
and LPF, ultimately resulting in x(t). This is then opti-
cally modulated and transmitted through a multipath VLC
channel [10]. The relationship between the FD clipped data
symbols x̃2m+1,cs and the original data symbols x̃2m+1 can
be formulated as:

x̃2m+1,cs =
1

N

N−1∑
n=0

xn,cs e
(−j

2π(2m+1)n
N )

=
1

N

N/2−1∑
n=0

(xn,cs − xn+N/2,cs) e
(−j

2π(2m+1)n
N )

=
1

2N

N/2−1∑
n=0

(xn − xn+N/2) e
(−j

2π(2m+1)n
N )

=
1

2
x̃2m+1 ,where m = 0, 1, . . . , N/2− 1.

(7)
Thus, due to clipping, at the odd subcarriers the magnitudes
of the FD clipped data symbols after FFT are reduced
to half the magnitudes of the corresponding original data
symbols [4], [10]. Therefore, the receiver side processing
of an ACO-OFDM system is identical to that of its DCO-
OFDM counterpart, with the exception that in the former,
only the odd subcarriers are retrieved after the FFT based
demodulation. The outputs are subsequently passed through
the equalizer and demapper blocks. The next section outlines
the model of a multipath VLC channel.

FIGURE 3: The generalized Lambertian radiation lobes for
mode numbers l = 1, 3, and 50.

III. Multipath VLC Channel Model
This section defines the properties of the optical source,
multipath VLC channel, reflector, and receiver. Typically,
the LEDs serve as the optical sources that emit radiation
according to the generalized Lambertian pattern RL(ϕ) with
uniaxial symmetry formulated as [12]

RL(ϕ) =
l + 1

2π
PS cosl(ϕ) for ϕ ∈ [ −π/2, π/2 ] , (8)

where l represents the mode number corresponding to the
particular radiating lobe, PS represents the optical sources
radiated power, and ϕ is the source irradiance angle with
regard to the unit-length vector n̂S, which is normal to the
radiation surface. As illustrated in Figure 3, the mode number
l defines the form of the radiation lobe and the directionality
of the radiation source. Thus, a large mode number signifies
a higher directionality, while the mode number l = 1 pertains
to a generalized Lambertian source. The maximum radiation
intensity is obtained at ϕ = 0◦, and thus, RL,max(ϕ) =
l+1
2π PS . The semi-angle at half of the maximum radiation

intensity is given by ϕ1/2 = arg(RL(ϕ) = RL,max/2) =
cos−1(2−1/l). In general, we characterize any optical point
source by the ordered three-tuple S = {rS, n̂S, l}, where rS
represents the optical source position vector. Similarly, the
optical receiver is characterized by the ordered four-tuple
R = {rR, n̂R, AR,ΨFoV}, where rR is the receiver’s position
vector, n̂R is a unit-length vector normal to the radiating
surface, AR is the area of the receiver, and the field-of-view
(FoV) angle is given by ΨFoV. The light signal is detected
by the receiver if the angle of incidence (Ψ) (with regard
to n̂R) is lower than ΨFoV. Let the refractive index of the
optical concentrator be given by µ. Generally, a non-imaging
concentrator is utilized to boost the received signal intensity,
whose gain is given by [12] [46]

g(Ψ) =

{
µ2

sin2 ΨFoV
, if 0 ≤ Ψ ≤ ΨFoV,

0, if Ψ > ΨFoV,
(9)

where ΨFoV ≤ π/2. The reflector model can be described
with the aid of the source and receiver models. In the litera-
ture [12], reflecting materials such as walls, tiles, wood, and
carpets are typically approximated as Lambertian. Thus, the
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differential reflecting element (ε) first behaves as a receiver
associated with the ordered four-tuple {rε, n̂ε, Aε, π/2}.
Subsequently, it behaves as a source with the ordered three-
tuple {rε, n̂ε, 1}. The incident power is Pε and the radiated
power is ρPε, where the reflecting element’s reflection coef-
ficient is ρ. Thus, the reflector typically attenuates the power
by a factor of ρ, where 0 < ρ < 1 [12].

The multipath VLC channel is characterized by both a
LoS as well as NLoS paths. Figure 4 shows the geometry
of a single optical source (Sa), the receiver (Rb), and a
pair of reflective elements (ε1, ε2) with a multipath VLC
system for an indoor environment. The LoS path for any
general source Sa = {ra, n̂a, l} and any general receiver Rb
= {rb, n̂b, ARb ,ΨFoV} has an impulse response, which is
approximated as a delayed and scaled Dirac delta function,
given as [12], [46], [47]

h(0)(t;Sa,Rb) =
la + 1

2πd2a,b
ARb cos

la(ϕa,b) cos(Ψa,b)g(Ψa,b)

×rect
(

Ψa,b

ΨFoV,b

)
δ

(
t− da,b

c

)
,

(10)
where c denotes the speed of light, the FoV of Rb is ΨFoV,b,
ARb represents the PD area, da,b denotes the distance across
Sa and Rb, δ(.) is the Dirac delta function. Furthermore, Ψa,b
is the angle of incidence at Rb, la represents the mode number
of the radiation lobe of Sa, and ϕa,b is the irradiance from
Sa, so that, da,b = ||ra − rb||, cos(ϕa,b) = n̂a.(ra − rb)/da,b,
cos(Ψa,b) = n̂b.(ra − rb)/da,b.

In the NLoS path, light travels from the optical source
to the receiver’s photodetector (PD) through multiple reflec-
tions. The impulse response of the NLoS rays spanning from
Sa to Rb is composed of k + 1 paths, where the number of
reflections is k. The impulse response of the link spanning
from Sa to the first reflection (ε1 = {r1, n̂1, Aε1 , π/2}) as
shown in Figure 4 is given by [46]

h(0)(t;Sa, ε1) =
la + 1

2πd2a,1
Aε1 cos

la(ϕa,1) cos(Ψa,1)

×rect
(
Ψa,1

π/2

)
δ

(
t− da,1

c

)
.

(11)

The successive LoS reflections from the reflective ele-
ment (εj = {rj, n̂j, 1}) to the reflective element (εk =
{rk, n̂k, Aεk , π/2}) yields the corresponding impulse re-
sponse formulated as

h(0)(t; εj, εk) =
1

πd2j,k
Aεk cos(ϕj,k) cos(Ψj,k)

×rect
(
Ψj,k

π/2

)
δ

(
t−

dj,k

c

)
.

(12)

Finally, the last reflection from (εq = {rq, n̂q, 1}) to Rb
yields the impulse response

h(0)(t; εq,Rb) =
1

πd2q,b
ARb cos(ϕq,b) cos(Ψq,b)g(Ψq,b)

×rect
(

Ψq,b

ΨFoV,b

)
δ

(
t−

dq,b

c

)
.

(13)

FIGURE 4: Geometry of the transmitter (LED), receiver
(PD), and reflectors in a multipath VLC channel. The blue
(“—”) component represents the LoS path, red (“· · ·”)
ray represents the NLoS path considering a second-order
reflection, and the kth order multipath is in green (“– –”).

As illustrated in Figure 4, the NLoS path spanning from
Sa to Rb after two reflections at ε1 and ε2 has the impulse
response given by

h(2) (t;Sa, ε1, ε2,Rb) = h(0) (t;Sa, ε1)⊗ ρ1h
(0) (t; ε1, ε2)

⊗ρ2h
(0) (t; ε2,Rb) ,

(14)
where ρ1 and ρ2 are the reflectivities of the elements ε1
and ε2, respectively. Therefore, when there are Mr reflective
elements and k reflections between Sa to Rb, the impulse
response can be modeled as

h
(k)
a→b (t;Sa,Rb) =

la + 1

2π

Mr∑
i=1

Aiρi

d2a,i
cosla(ϕa,i) cos(ψa,i)

×rect
(
ψa,i

π/2

)
h(k−1)

(
t− da,i

c
; εi,Rb

)
.

(15)
Finally, the impulse response representing K reflections

between the ath source Sa and bth receiver Rb for the
multipath VLC channel is the summation of the LoS impulse
response (10) and NLoS (15) impulse responses, which is
given by

ha→b (t;Sa,Rb) = h
(0)
a→b (t;Sa,Rb) +

K∑
k=1

h
(k)
a→b (t;Sa,Rb) .

(16)
In the above expressions, K = 0 represents the LoS com-
ponent of the channel, whereas K ≥ 1 represents the NLoS
components. Let the number of LED sources be denoted by
NLED. The multipath VLC channel spanning from all the
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(a) (b) (c)

FIGURE 5: Received optical power distribution in a VLC system for a single illuminating source with g(Ψa,b) = 1, la = 1,
and ΨFoV,b = 60◦ for (a) an LoS path; (b) an NLoS path considering a first-order reflection and ρ = 0.8; (c) LoS and NLoS
paths considering first-order reflections and ρ = 0.8.

LEDs to the receiver Rb can be represented as

hb(t) =

NLED∑
i=1

[
h
(0)
i→b (t;Si,Rb) +

K∑
k=1

h
(k)
i→b (t;Si,Rb)

]
.

(17)
Furthermore, the average received optical power is PR which
is as follows PR = h̃0 × PS . Here, PS denotes the average
transmitted optical power and h̃0 is the DC channel gain
where, h̃0 =

∫∞
−∞ hb(t) dt.

Figure 5 depicts the distribution of the optical power
received from a single source of illumination. The optical
power distribution for the LoS path is depicted in Figure 5a.
The optical power distribution for the NLoS path considering
first order multipath reflections from four of the walls
is depicted in Figure 5b. Here each wall consist of Mr

reflection grids with each grid having an area of Aε, where
Mr = 4300 and Aε = 0.0025 m2. Figure 5c shows the
distribution of the optical power for the NLoS and LoS paths
at the receiver, using the simulation parameters of Table 2.

IV. Sparse CE Model for VLC systems
This section describes the sparse multipath VLC channel
model and CE techniques proposed in this work. In general,
in an indoor environment, the light wave is diffusive in
nature, which implies that it undergoes multiple internal re-
flections prior to reaching the receiver. Multipath reflections
result in diffused rays that arrive at the receiver, in addition
to the specular component of the signal. The multipath VLC
channel can generally be described as [16], [48]

h(n) =

Lh−1∑
l=0

h(l)δ (n− νl), (18)

where h(l) is the VLC CIR coefficient and νl represents
the propagation delay of the lth transmission path. Typically,
a significant fraction of the transmitted optical power is
concentrated in the specular reflection, whereas the dif-

fused reflection paths have lower optical power [23], [29].
As a result, the multipath VLC channel has a few paths
having significant power, with little or no power in the
rest [49]. Therefore, ignoring the insignificant channel paths
can potentially enhance the CE performance. A thresholding
technique can be employed to choose the most significant
paths, with the gains of the other paths of negligible optical
power set to zero [23]. Therefore, the multipath VLC channel
can be regarded as a sparse channel [23], [25], [27]–[30],
[35], [36]. Due to the increased attenuation of the longer
paths, the amplitudes in a diffuse optical wireless channel
tend to decay as the delay increases [48]. Hence, the TD
CIR coefficient h(l) of the lth path can be modeled as an
exponentially decaying function [13], [29], [50], [51]

h(l) =
e−lts/τ∑Lh−1

l=0 e−lts/τ
, (19)

where τ represents the delay spread of the channel, which
eventually relies on the average reflectivity of the surfaces
and the size of the room, ts represents the sampling period of
the OFDM TD samples, and usually τ ∈ [0.5ts, 1.5ts] [48],
[50], [52]. The values of h(l) below 10−8 are assumed to be
zeros [29]. The resultant s-sparse VLC CIR has a maximum
of s non-zero coefficients, where s << Lh. Note that (17)
describes the continuous TD channel response of the VLC
system which comprises the LoS path and NLoS paths,
whereas (18) describes the discrete-time domain model of the
multipath VLC channel. Furthermore, (19) gives the model
of the normalized samples of the TD CIR coefficients of
the VLC system. Thus, (18) and (19) collectively define the
sparse multipath CIR model of the VLC system. As empha-
sised at the beginning of this paper, CE and equalisation
at the receiver side play a critical role in increasing the
performance of O-OFDM-VLC systems. This motivates us
to present novel CE models and schemes, which leverage
the inherent sparsity of the multipath VLC channel.
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Toward this, let the set of indices of the pilot subcarriers
be defined as

PI = {I0 + k × IP , k = 0, 1, . . . ,MP /2− 1}, (20)

where IP is the interval between the pilot subcarriers, MP

denotes the number of pilots in an OFDM block satisfying
the condition (MP /2 − 1)IP < N/2, and I0 is the starting
index of the pilot subcarriers. Hence, the pilot subcarrier
indices can be described as Ipilot = {p|p ∈ PI}∪{p|N−p ∈
PI} and those of the data subcarriers belong to the set Idata =
{0, 1, . . . , N−1}−Ipilot. The FD channel transfer function is
given by h = Qh, where Q ∈ CN×Lh denotes the truncated
DFT matrix associated with Qk,l = e−j( 2πkl

N ), for 0 ≤ k ≤
N−1, 0 ≤ l ≤ Lh−1. Let x = [x̃0, x̃1, . . . , x̃N−1]

T ∈ CN×1

represent the FD data vector having embedded pilots. The
output after FFT at the receiver yields

y = diag{h}x+w = diag{x}h+w= diag{x}Qh+w.
(21)

The outputs corresponding to the pilot indices are ob-
tained using the extraction matrix E ∈ RMP×N

+ , where
[E]i,[Ipilot]i = 1, with the rest of the elements being zero.
This obeys EEH = IMP

. The extraction matrix E is
employed to select the MP pilot outputs corresponding to
the subcarrier indices Ipilot. The extracted pilot output vector
yP = [y]Ipilot

∈ CMP×1 can be modeled as

yP = diag{xP }EQh+wP = Bh+wP , (22)

where xP = [x]Ipilot ∈ CMP×1 denotes the FD data vector
having embedded pilots with the average pilot power set to
Px, i.e., E[|xP |2] = Px. Furthermore, B = diag{xP }EQ ∈
CMP×Lh is the measurement matrix. The next section briefly
highlights the conventional LS and LMMSE-based CE tech-
niques used for estimating the multipath VLC CIR h from
the pilot output yP .

A. Conventional VLC CE techniques
The LS CE problem may be formulated as

ĥLS = argmin
h
||yP −Bh||22. (23)

Differentiating the cost function of (23) with respect to the
CIR vector h and setting it to zero yields:

∂

∂h
[(yP −Bh)H(yP −Bh)] = 0, (24)

where (24) represents the well-known LS solution, which is
given as ĥLS = (BHB)−1BHyP [53]. The estimated CFR
is obtained as hLS = QĥLS. Although the LS approach has
a low computational complexity, it is prone to noise under
low-SNR conditions [13].

By contrast, the LMMSE estimator minimizes the mean
square error (MSE) of the channel estimate, which relies on
a linear estimator defined as ĥLMMSE = LyP . The MSE is
characterized by E

[
||ĥLMMSE − h)||22

]
. Minimizing the MSE

with respect to L results in L = RhyP
R−1

yPyP
. Thus, the

LMMSE estimator of the multipath CIR h is given by

ĥLMMSE = RhyP
R−1

yPyP
yP , (25)

where RhyP
= E[hyH

P ] and RyPyP
= E[yPy

H
P ] are the

cross-covariance between the CIR h and the pilot output
yP , and auto-covariance of yP , respectively. Substituting the
expressions for the above quantities into (25), the estimator
can be reduced to [53]

ĥLMMSE = (BHR−1
w B+R−1

hh)
−1BHRwyP , (26)

where Rhh = E[hhH ] denotes the a priori covariance
matrix of the CIR vector h and Rw = E[wPw

H
P ] denotes

the noise covariance matrix [53].
We note however that these conventional CE techniques

do not exploit the sparsity of the CIR h. Furthermore, these
schemes require the number of pilots to satisfy MP ≥ Lh,
for having a reliable estimate, which can lead to a substantial
pilot overhead. To avoid this, one can beneficially leverage
the sparsity of the multipath scattering VLC channel using
sparse signal reconstruction approaches, which are eminently
suitable for the CE problem in (22). In this context, the
modified l0-norm minimization-based sparse CE problem
constructed for noisy observations can be formulated as
shown below

minimize
h

∥h∥0

subject to ∥yP −Bh∥22 ≤ ξ,
(27)

where ξ is a suitably chosen threshold. Typically, since ξ
depends on the noise power, it is set as ξ = Tr (Rw), where
Rw = E[wPw

H
P ] denotes the noise covariance matrix. A

prominent advantage of the sparse signal recovery based
problem formulation above is that one can readily recover
the sparse vector h by relying on a reduced number of
observations in the vector yP , thanks to the advances in
sparse signal recovery [54], [55]. The next section describes
an OMP-based algorithm conceived for efficiently solving
the above sparse reconstruction problem using a low number
of measurements, i.e., MP << Lh.

B. OMP-based sparse VLC CIR estimation
The OMP algorithm is a canonical greedy iterative algo-
rithm designed for sparse approximation [56], which finds
the atom, i.e., a column of the measurement matrix B in
each iteration, that is best aligned with the current residual
measurement vector. In its successive iterations, the OMP
specifically chooses an atom for ensuring that the residual
error is orthogonal to the previously picked atoms. This
process continues until a suitable termination criterion is
satisfied. The process of sparse CE relying on OMP is
shown in Algorithm 1. The primary steps of this method
can be summarized as follows. For every iteration t, Step-3
evaluates the column index J of the measurement matrix
B that has the maximum correlation with the residue vector
rt−1. The index set Υt is updated in Step-4. In Step-5, the
matrix BΥ is augmented by incorporating the J th column
of the measurement matrix B. Step-6 yields the LS solution
ht and Step-7 updates the residue rt, respectively. This
process terminates once the difference between the l2-norm
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Algorithm 1: OMP-based sparse VLC CIR estima-
tion
Input: Measurement matrix B, observation vector

yP , stopping parameter Ξ
Output: Estimated CIR h

1 Initialization: Index set Υ0 = [], residue r−1 = 0,
r0 = yP , iteration number t = 1, BΥ =[],
ĥOMP = 0

2 while (| ||rt−1||22 − ||rt−2||22 | ≥ Ξ) do
3 J = arg max

k=1,2,...,Lh

|B(:, k)Hrt−1|

4 Υt = Υt−1 ∪ J
5 BΥ = [BΥ B(:,J )]
6 ht = (BΥ)†yP

7 rt = yP −BΥht

8 t = t + 1

9 end
10 return: ĥOMP(Υt) = ht

of successive residues falls below a specified threshold Ξ,
as described in Step-2. Finally, the non-zero locations of the
OMP-based estimate ĥOMP are assigned the corresponding
coefficients of the LS estimate ht obtained in the last itera-
tion, as per the column indices of the measurement matrix
chosen in the various iterations. Although OMP is a popular
low-complexity sparse signal recovery technique, it suffers
from several drawbacks. To begin with, its performance is
sensitive to both the stopping criterion employed as well as
to the choice of the measurement matrix B. Furthermore,
the iterative process may also lead to errors that propagate
to the final solution [38], [39], [57].

Another competing sparse signal reconstruction technique
is the FOCUSS, whose performance is sensitive to the
regularisation parameter and has a propensity to converge
to suboptimal local minima, resulting in convergence defi-
ciencies [38], [39], [57]. To overcome these drawbacks of
OMP and FOCUSS, we propose a BL-based sparse signal
recovery method, which is free of regularization/tuning and
exhibits robust convergence [57].

V. Bayesian Learning (BL)-Aided Sparse CSI Estimation
in VLC systems
This section outlines the BL technique proposed for the
estimation of the sparse VLC CIR h using the received pilot
vector yP . The BL technique proposed begins by assigning a
parameterized Gaussian prior f(h;Γ) to the unknown sparse
VLC CIR vector h ∈ RLh×1 as follows [57]

f(h;Γ) =

Lh∏
k=1

(2πγk)
− 1

2 exp

(
− |h(k)|

2

2γk

)
, (28)

where Γ = diag(γ1, γ2, . . . , γLh
) ∈ RLh×Lh

+ is the hyperpa-
rameter matrix and γk is the hyperparameter, which denotes
the prior variance of the kth component of h. From the

initial assignment of the prior above, it can be seen that
when the hyperparameter obeys γk → 0, the corresponding
channel component h(k) → 0 [57]. Therefore, estimating
the VLC channel vector h is equivalent to estimating the
associated hyperparameter vector γ = [γ1, γ2, . . . , γLh

]T .
Note that the hyperparameters γk are unknown and the
proposed BL procedure estimates them by maximizing the
Bayesian evidence f(yP ;Γ). Toward this, consider the like-
lihood function f(yP |h) shown below, which follows from
wP ∼ CN (0,Rw):

f(yP |h) = (π)−MP |Rw|−1

×exp
(
− (yP −Bh)

H
R−1

w (yP −Bh)
)
.

(29)

Thus, the Bayesian evidence is given by

f(yP ;Γ) =

∫
f(yP |h)f(h;Γ)dh

= (π)−MP (det(ΣyP
))−1 exp

(
−yH

P Σ−1
yP

yP

)
,

(30)
where ΣyP

= Rw +BΓBH ∈ CMP×MP is the covariance
matrix of the output pilot vector yP . The optimization ob-
jective formulated for determining the maximum-likelihood
(ML) estimate of the hyperparameter vector γ is given by

log f(yP ;Γ) = −MP log (π)−log
(
det
(
ΣyP

))
−yH

P Σ−1
yP

yP .
(31)

Observe that the direct maximization of log f(yP ;Γ) is
intractable, since it has multiple local maxima, which renders
it non-concave. In the face of this impediment, the EM
algorithm may be harnessed for the iterative maximization
of log f(yP ;Γ). In each iteration, the optimization objective
increases due to the properties of the EM method, which
ensure that the log-likelihood metric converges to a fixed
point. Consequently, the robust convergence of the EM
technique and the unique prior assignment f(h;Γ) of the
proposed BL result in beneficial performance enhancement
for the sparse CIR estimator of VLC systems. The EM steps
of hyperparameter estimation are derived next.

Let γ̂(m)
k represent the kth hyperparameter estimate calcu-

lated in the mth iteration, and the associated hyperparameter
matrix be Γ̂(m) = diag(γ̂

(1)
k , γ̂

(2)
k , . . . , γ̂

(Lh)
k ). The expecta-

tion step (E-step) uses the complete dataset {yP ,h} in the
mth iteration for computing the log-likelihood L(Γ|Γ̂(m))
as follows

L(Γ|Γ̂(m)) = Eh|yP ;Γ̂(m)

{
log f(yP ,h;Γ)

}
= Eh|yP ;Γ̂(m)

{
log f(yP |h) + log f(h;Γ)

}
.

(32)
One can observe from (29) that the likelihood f(yP |h) is
independent of the hyperparameter matrix Γ. Hence, one can
ignore the first term of (32) in the following maximization
step (M-step). Next, the M-step updates the hyperparameter
vector γ̂m+1 by maximizing the above optimization objec-
tive with respect to γ as

γ̂(m+1) = argmax
γ

Eh|yP ;Γ̂(m)

{
log f(h;Γ)

}
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Algorithm 2: BL-based sparse VLC CIR estimation

Input: Received pilot vector yP ∈ CMP×1,
measurement matrix B ∈ CMP×Lh , noise
covariance matrix Rw, stopping parameters
ϵ and mmax

Output: Estimated CIR h
1 Initialization:

γ̂
(0)
k = 1, ∀1 ≤ k ≤ Lh =⇒ Γ̂(0) = ILh

Initialize
counter m = −1 and Γ̂(−1) = 0

2 while (∥ γ̂(m+1) − γ̂(m) ∥2> ϵ && m < mmax) do
3 m← m+ 1
4 E Step: Compute the a posteriori covariance and

mean as
5 Σ

(m)
h =

(
BHR−1

w B+
(
Γ̂(m)

)−1 )−1

6 µ
(m)
h = Σ

(m)
h BHR−1

w yP

7 M Step: Update the estimates of the
hyperparameters as

8 for k = 0, 1, 2, . . . , Lh do
9 γ̂

(m+1)
k = Σ

(m)
h (k, k) + |µ(m)

h (k)|2

10 end
11 end
12 return: ĥBL = µ

(m)
h

= argmax
γ

Lh∑
k=1

(
− log(2πγk)

2
−

Eh|yP ;Γ̂(m)

{
|h(k)|2

}
2γk

)
.

(33)

From (33) above, it can be observed that the maximization
problem can be decomposed into Lh distinct maximization
problems related to the particular hyperparameters γk as
follows

γ̂
(m+1)
k = argmax

γk

(
− log(2πγk)

2
−

Eh|yP ;Γ̂(m)

{
|h(k)|2

}
2γk

)
.

(34)

Upon differentiating (34) with respect to γk and setting it to
zero, the estimate of the hyperparameter γk can be obtained
as

γ̂
(m+1)
k = Eh|yP ;Γ̂(m)

{
|h(k)|2

}
= |µ(m)

h (k)|2 +Σ
(m)
h (k, k).

(35)

In the above, the last step follows from the a pos-
teriori probability density function of h given as
f(h|yP ; Γ̂

(m)) ∼ CN
(
µ

(m)
h ,Σ

(m)
h

)
[58], where the

µ
(m)
h = Σ

(m)
h BHR−1

w yP ∈ CLh×1 is the mean and

Σ
(m)
h =

(
BHR−1

w B +
(
Γ̂(m)

)−1 )−1

∈ CLh×Lh is the
corresponding covariance matrix. Therefore, the BL-based
sparse CSI estimate of the VLC channel upon convergence is
computed as ĥBL = µ

(m)
h . Algorithm 2 summarizes the steps

involved in the proposed BL-aided sparse CSI estimation.

According to [57], the BL-based log-likelihood function
demonstrates fewer local maxima compared to the schemes
like FOCUSS [59], which enables the BL to converge to
the global minima, leading to its improved convergence
properties. Furthermore, the EM algorithm in BL guarantees
global convergence to a fixed log-likelihood point, with the
optimization objective increasing in each iteration. Regard-
ing convergence speed, recent research [60] demonstrates
that when approximating the parameters of a two-component
Gaussian mixture model, the EM algorithm typically con-
verges rapidly, within only 10 iterations. Consequently, the
proposed BL-based method is expected to perform well even
in a time-varying VLC channel since it converges very fast,
typically within 5− 10 iterations. Therefore, combining the
robust convergence of the EM algorithm with the properties
of the BL-based log-likelihood yields improved performance
for sparse CE. The subsequent section presents our perfor-
mance benchmarks, which include the O-MMSE estimator
and the BCRLB.

A. BCRLB and O-MMSE
We now derive various performance benchmarks for the
proposed estimation scheme. The BCRLB harnessed for
benchmarking the MSE of the estimated CSI ĥ is derived
as follows. The Bayesian Fisher Information Matrix (BFIM)
JB ∈ CLh×Lh of the VLC CIR h ∈ RLh×1 is obtained
as [61]

JB = JP + JD. (36)

The quantity JD in the above expression is the FIM
associated with the pilot output yP , which is termed
as the expected information matrix expressed as JD =

−EyP ,h

{
∂2L(yP |h)
∂h∂hH

}
. Furthermore, JP is the FIM associ-

ated with the CSI h, which is termed the prior information

matrix expressed as JP = −Eh

{
∂2L(h;Γ)
∂h∂hH

}
[61]. The quan-

tity L(yP |h) = log f(yP |h) and L(h;Γ) = log f(h;Γ)
represents the log-likelihood corresponding to the received
pilot vector yP and log-prior density of the VLC channel
vector h, respectively, which are expressed as

L(yP |h) = C1 − (yP −Bh)HR−1
w (yP −Bh)

= C1 − yH
P R−1

w yP + hHBHR−1
w yP

+ yH
P R−1

w Bh− hHBHR−1
w Bh

(37)

L(h; Γ) = C2 − hH(Γ)−1h, (38)

where C1 = −MP log (π) − log [det(Rw)] and C2 =
− log [det (Γ)] − Lh log (π) are the constants, independent
of h. Here Γ denotes the true hyperparameter matrix
that is obtained using the known parameter delay profile.
Upon substituting the above quantities into JD and JP

of (36), and rearranging the resultant expressions fur-
ther, the FIMs JD and JP can be formulated as JD =
BHR−1

w B and JP = Γ−1. Thus, the Bayesian FIM JB can
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TABLE 2: Simulation parameters for the VLC system
Parameter Value Parameter Value
Room Dimension 5 m × 5 m × 3 m Transmitter Location (2.5, 2.5, 3)

Reflection Coefficient (ρ) 0.8 Transmit power of each LED (PS ) 20 mW
Number of LEDs in each array (NLED) 60 × 60 (3600) Azimuth angle 0◦

Semi-half power angle (ϕ1/2) 70◦ FoV (ΨFoV) 60◦

PD responsivity (RPD) 1 Detector area (ARb ) 1 cm2

Elevation angle 90◦ Height of receiver plane from the floor 0.85 m
Refractive index of lens (µ) 1.5 Modulation DCO-OFDM, ACO-OFDM
DC Bias 7 dB Constellation 4-QAM
No. of subcarriers (N ) 1024 CP length (NCP) 256
Smallest FD pilot subcarrier index (I0) 2 Outage Capacity (Cζ) 8 bps/Hz
Distribution of pilots Comb type CIR order (Lh) 40
No. of dominant paths 6 FD pilot interval (IP ) 40

be expressed as JB = BHR−1
w B + Γ−1. Therefore, the

BCRLB for the MSE of the sparse VLC CIR estimate ĥ,
defined as MSE = E

[
||h− ĥ||22

]
becomes:

MSE
(
ĥ
)
≥ Tr

(
J−1
B

)
= Tr

([
BHR−1

w B+ Γ−1
]−1
)
.

(39)
We also derive the O-MMSE estimator considering perfect

knowledge of the parameter delay profile of the VLC chan-
nel. Based on the parameter delay profile, let the support-
set S represent the locations of the non-zero indices of the
sparse multipath VLC channel and BO = B(:,S) denote the
oracle-sensing matrix, which is constructed of the columns
of B indexed by S. The O-MMSE estimate is then obtained
as

ĥO-MMSE =
(
BH

O R−1
w BO + I−1

Lh

)−1
BH

O R−1
w yP . (40)

B. Computational Complexity Analysis
In this subsection, we discuss the complexity of the CE tech-
niques developed in our work. The computational complexity
of our BL-based sparse CE technique is of the order O

(
L3
h

)
due to the matrix inversion of size Lh×Lh. By contrast, the
complexity order for the worst-case scenario of the OMP
algorithm is O

(
M3

P

)
, as a result of the intermediate LS

estimate required at each iteration. The traditional LMMSE-
based CE technique has a computational complexity of
the order O

(
L3
h

)
. The performance of the proposed BL-

based approach is compared to that of other conventional
approaches in the following section.

VI. Simulation Results
This section outlines our simulation results to illustrate and
compare the performance of the proposed BL-based scheme
to that of the FOCUSS and OMP-based [5], [25] sparse
signal recovery schemes in addition to the traditional LS [5]
and LMMSE [13] CIR estimators of a multipath O-OFDM
VLC system in the context of the BER, OP, and NMSE
metrics. The BER characterizes the detection performance

attained by the receivers constructed using the CSI esti-
mates gleaned. The OP is defined as the probability that
the maximum achievable rate is below the outage capacity
threshold Cζ, i.e., Pr(log2(1 + SNR) ≤ Cζ) = ζ [62],
[63]. In our simulations, Rw = σ2

AWGNIMP
, Rhh = ILh

,
and the SNR in decibels (dB) is described as the SNR

(dB) = 10 log10

(
Px

σ2
AWGN

)
. Finally, the NMSE is defined as

NMSE =
||ĥ−h||22
||h||22

. The stopping criteria for the BL are set
as ϵ = 10−6 and mmax = 50, whereas that of the OMP is set
to Ξ = 0.1. The regularization parameter for the competing
FOCUSS is set as the noise variance σ2

AWGN, the lp-norm
parameter is set to p = 0.8 with a stopping threshold of
10−5, and the maximum number of iterations is set to 800.
The simulation parameters used are given in Table 2, unless
stated otherwise, which are based on the real environmental
conditions mentioned in [7], [13], [18], [23], [27]–[29], [44].

Figure 6a shows the proposed BL-based technique’s
NMSE performance along with that of the other techniques
for our DCO-OFDM system. It is apparent that the proposed
BL-based approach performs better than the competing tech-
niques. Since the traditional LS and LMMSE techniques
do not leverage the sparsity of the multipath CIR of the
VLC system, their NMSE performance is inferior. The OMP,
although exploits sparsity, performs poorly, because it is
sensitive to both the dictionary matrix chosen and to the stop-
ping parameter, which is set to Ξ = 0.1, while the dismal per-
formance of FOCUSS is due to its inability to converge and
its dependence on the regularization parameter [25], [38],
[57]. By contrast, our BL-based sparse estimation method
efficiently exploits sparsity via EM-based hyperparameter
estimation, which does not require any tuning/regularization
parameter and has robust convergence. As a further benefit,
the proposed BL-based approach is insensitive to the choice
of the dictionary matrix. Furthermore, the NMSE perfor-
mance is also compared with respect to the BCRLB and O-
MMSE of (39) and (40) respectively, which have also been
suitably normalized by ||h||22. As a result, the proposed BL
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FIGURE 6: NMSE versus SNR performance of the VLC system with MP = 16, Lh = 40, and 4 QAM modulation (a)
DCO-OFDM; (b) ACO-OFDM.
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FIGURE 7: BER versus SNR performance of the VLC system with MP = 16, Lh = 40, and 4 QAM modulation (a)
DCO-OFDM; (b) ACO-OFDM.

method yields an NMSE that is closer to the corresponding
O-MMSE and BCRLB derived. The NMSE performance of
the different estimation strategies harnessed for our ACO-
OFDM system is compared in Figure 6b. A similar pattern
has been seen here as well, with the BL technique yielding
the superior result overall. Figure 7a and Figure 7b illustrate
the BER of all the competing systems for DCO and ACO-
OFDM modulation. As illustrated in Figure 7, the BER
attained by our BL-based CE is significantly lower than that
of its OMP and FOCUSS counterparts due to its enhanced
estimation accuracy. In addition, the proposed BL-based
BER performance is seek to approach the BER of a receiver

using perfect CSI (PCSI), demonstrating their significantly
improved potential for high-integrity signal recovery.

Figure 8a compares the BER performance of the BL-
based technique conceived to that of the OMP technique for
4, 16, 64, and 256 level QAM for our DCO-OFDM system. It
is apparent that the proposed BL-based method outperforms
the OMP technique for various modulation orders. A similar
BER performance is also observed for the ACO-OFDM, as
illustrated in Figure 8b.

Notably, the BL-based framework proposed for CSI esti-
mation transmits MP pilot symbols in an OFDM block of
N symbols. As a result, the normalized pilot overhead is
given by ρ = MP

N . Figure 9a and Figure 9b demonstrate the
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FIGURE 8: BER versus SNR performance of the VLC system with MP = 16, Lh = 40 (a) DCO-OFDM; (b) ACO-OFDM.
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FIGURE 9: NMSE versus Pilot Overhead (ρ) performance of the VLC system with MP = 16, Lh = 40, SNR = 10 dB,
and 4 QAM modulation (a) DCO-OFDM; (b) ACO-OFDM.

NMSE performance of the DCO and ACO-OFDM systems
for different sparse CSI estimation methods upon varying ρ.
The SNR for this analysis is set to 10 dB. We observe that
increasing the pilot overhead ρ enhances the NMSE perfor-
mance for all the competing schemes. However, the NMSE
of the proposed BL method associated with ρ = 0.018 is
observed to be lower than that of the OMP with ρ = 0.022
in both the O-OFDM systems. This verifies the fact that, for
a specified level of NMSE, the BL-based estimation method
results in a significant reduction in the ρ, which illustrates
its improved bandwidth efficiency.

The OP performance comparison of the suggested BL-
based technique and the other contending schemes harnessed
for the DCO-OFDM system is depicted in Figure 10a, with

the outage capacity, Cζ set as 8 bps/Hz. Compared to the
LS, LMMSE, FOCUSS, and OMP approaches, the OP of the
proposed BL method is substantially lower, as demonstrated
in Figure 10a. The enhanced OP of the BL approach can
naturally be attributed to its enhanced estimation accuracy,
when compared to the other CE methods discussed. Figure
10b illustrates the OP of the ACO-OFDM system. Again, the
BL-based method outperforms the other sparse CE methods.

Figure 11a depicts the convergence of our proposed BL-
based technique as a function of the number of EM iterations
for various values of the number of pilot symbols MP .
This represents the number of EM iterations required for
the convergence of the hyperparameters. For a fixed value
of the convergence parameter ϵ = 10−6, it is evident that the
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FIGURE 10: OP versus SNR performance of the VLC system with MP = 16, Lh = 40, and 4 QAM modulation (a)
DCO-OFDM; (b) ACO-OFDM.
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FIGURE 11: (a)
∥∥∥∥Γ̂(m+1)

− Γ̂
(m)
∥∥∥∥2

F
versus number of EM iterations (m) for N = 1024, Lh = 40, SNR = 10 dB and

4 QAM modulation. (b) NMSE versus SNR performance of the VLC system with MP = 16, Lh = 40, and 4 QAM
modulation for an LoS path, NLoS paths considering the fifth-order reflections, and LoS with NLoS paths considering the
fifth-order reflections in DCO-OFDM.

number of iterations required for convergence decreases as
MP increases.

Figure 11b illustrates the effect of the proposed BL-based
CE method on users located in close proximity to the walls
of the room as well as those positioned near the center of
the room. In the vicinity of the room center, the LoS path
plays a dominant role in comparison to the NLoS paths,
whereas in the vicinity of the walls, NLoS paths become
more significant than the LoS path, as shown in Figure
5. Consequently, in Figure 11b, the “Center” represents

the user’s location in the center of the room, the “Edge”
corresponds to the user’s location that is close to the room
walls, and the “Off-center” represents the user’s location
elsewhere within the room. It can be inferred from Figure
11b that, regardless of the user’s position within the room,
our proposed BL-based method exhibits robust estimation
performance in all plausible scenarios.

In order to demonstrate the advantages of the proposed
method, we have evaluated the advocated BL-based approach
in different simulation environments, where N is 2048, the
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FIGURE 12: Performance of the CE techniques with proposed BL-based technique for MP = 37 and 16 QAM modulation
in DCO-OFDM for (a) NMSE versus SNR; (b) BER versus SNR.
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FIGURE 13: Stylized performance comparison for (a) DCO-OFDM; (b) ACO-OFDM.

no. of dominant paths is 8, the modulation scheme is 16
QAM, IP is 55, and Lh is 45. Figure 12a compares the
variation of NMSE performance to that of other techniques
for our DCO-OFDM system. It is evident that the proposed
BL-based approach outperforms comparable techniques. Ad-
ditionally, Figure 12b shows the BER performance. Observe
that the BER attained by our BL-based CE technique signifi-
cantly lower than that of its OMP and FOCUSS counterparts
due to its enhanced estimation accuracy and because the BL-
based technique seeks to approach the BER of a receiver
using PCSI.

Lastly, the comprehensive performance of the proposed
BL, OMP, and traditional LMMSE techniques is presented
for the DCO-OFDM VLC system in the context of the BER,
NMSE, pilot overhead (NMSEρ), as well as OP in Figure
13a. For this study, the BER and NMSE performance is
obtained at SNR = 20 dB, NMSEρ is obtained at ρ = 0.0186,
while the OP performance is obtained at SNR = 31 dB.
Observe from Figure 13a that for a given SNR, the proposed
BL-based approach yields the best OP, NMSE, and BER.
Furthermore for a given ρ, the best NMSE is obtained for
the BL-based approach. According to the stylized illustration
of Figure 13a, the proposed BL-based approach occupies the
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smallest area of the quadrilateral, visualizing that it has the
lowest BER, OP, NMSE and NMSEρ and it is thus the most
suitable method for CE in the DCO-OFDM system. A similar
comprehensive performance characterization is carried out
also for the ACO-OFDM VLC system, as depicted in Figure
13b. We used similar parameters to those of Figure 13a. Once
again, the proposed BL-based approach has the smallest area
of the quadrilateral, i.e., the best performance. Therefore, the
proposed BL-based sparse recovery technique is particularly
well suited for implementation in O-OFDM VLC systems
as a benefit of its improved CSI estimation, resulting in the
best BER and OP, despite its reduced pilot overhead.

VII. Conclusions
A novel BL-based sparse multipath CIR estimation method
was designed for IM/DD-based O-OFDM VLC systems.
Initially, a sparse multipath CIR model was introduced that
comprehensively captured the LoS and NLoS components
of the wideband VLC channel. Next, the popular LS and
LMMSE CE’s were highlighted, which do not leverage
the sparsity. These discussions were followed by the OMP,
which although exploits the sparsity of the multipath CIR,
suffers from poor convergence due to its sensitivity to
both the dictionary matrix and to the stopping criterion. To
overcome these drawbacks, a novel sparse multipath CIR
CE scheme employing the BL framework was developed
for O-OFDM VLC systems, which is applicable for both
the popular modulation techniques. In comparison to the
existing CE techniques, the BL-based CE scheme conceived
requires a significantly lower pilot overhead. A closed-form
expression was derived for the BCRLB to characterize the
best-case MSE of the proposed estimator, thus benchmarking
its performance. Our simulation results demonstrated that
the BL-based technique outperforms the popular sparse
estimation methods like OMP, FOCUSS, as well as the
conventional LS and LMMSE in terms of a wide array of
metrics, including the MSE, OP, BER, and pilot overhead
while achieving a performance close to the bounds. An
interesting future direction is to analyze the effect of BL-
based CE techniques on the achievable rate of the VLC
system.
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