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Persistence-Based Summaries for Data Analysis with Applications to Cyber Security

by Thomas Davies

First formalised by Poincaré in his seminal text Analysis Situs, meaning the geometry of
position, topology is the mathematical study of structure that remains invariant under
continuous deformation. For over a hundred years this understanding of shape was
confined to pure mathematics, but the advent of persistence-based summaries which
enable practitioners to compute concise representations of the topology of data with
strong theoretical guarantees has led to applications of the topological notion of shape
to data analysis and machine learning.

The first part of this thesis is concerned with understanding and extending the applica-
tion of persistence-based summaries to machine learning. Motivated by an investigation
into the utility of topological loss terms through the lens of statistical learning theory,
we adapt a recent extension of the higher-order Laplacian to the persistent case for
machine learning, suggesting a vectorisation scheme and baselining its efficacy on the
MNIST and MoleculeNet datasets. We find that it outperforms persistent homology
across all of our baseline tasks. We also extend the ubiquitous fuzzy c-means clustering
algorithm to the space of persistence diagrams, proving the same convergence guaran-
tees as the Euclidean case. We apply the fuzzy clustering algorithm to model selection,
matching pre-trained deep learning models to datasets via the topology of their decision
boundaries.

In the second part of this thesis we consider applications of persistence-based summaries
to cyber security. Cyber security is a critical application domain, with the annual cost
of cyber crime to the UK economy estimated to be in excess of £27 billion and cyber
attacks considered a tier 1 national security risk by the UK government. We investigate
the utility of persistence-based summaries when detecting malicious behaviour in host-
based computer logs, which are intrinsically extremely structured. We find that our
methods can rival a standard baseline from the literature.
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Chapter 1

Introduction

Topology is the study of shape, characterising spaces by structure that remains constant
under continuous deformation. Leibniz called this Analysis Situs, or the geometry of
position (Leibniz and Gerhardt, 1863). In the introduction to his seminal paper of the
same name, Poincaré (1895) described it as

“... the art of reasoning well from badly drawn figures; however, these figures,
if they are not to deceive us, must satisfy certain conditions; the proportions
may be grossly altered, but the relative positions of the different parts must
not be upset.”

Later in the paper he formalised for the first time what such an altering may look like by
defining a homeomorphism: a function between (topological) spaces which is continuous,
bijective, and has a continuous inverse (Poincaré and Stillwell, 2010). This function
may deform and stretch the underlying space, but by definition the resultant space
is topologically the same; the structure is preserved. The archetypal example is the
homeomorphism between a mug and a doughnut: a doughnut may be continuously
and bijectively deformed into a mug, and vice versa, so they are topologically the
same. A depiction of homeomorphisms is shown in Figure 1.1, which shows an artistic
interpretation of such continuous deformations.

In order to better understand structures with the same topology, mathematicians looked
to find topological invariants: properties of spaces that do not change under homeomor-
phism. First Brouwer (1911) showed that dimension is a topological invariant. Shortly
after the Betti number, introduced by Betti (1871) to study the p-dimensional connectiv-
ity of spaces, was shown to be a topological invariant by Alexander (1915). Informally,
the Betti number β0 corresponds to the number of connected pieces, β1 corresponds
to the number of holes, and β2 corresponds to the number of voids. It was later that
Noether (1926) realised that the natural way to view Betti numbers was as an invariant
of homology groups; algebraic groups Hp that encode aspects of the topological structure.
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FIGURE 1.1: Anatoly Fomenko’s ‘Topological Zoo’ depicts the continuous deformations
which preserve topological structure. Reproduced from Fomenko and Fuchs (2016).

These are topological invariants: if two spaces are homeomorphic (in fact, homotopic),
their homology groups are isomorphic, where an isomorphism is a bijective function
between groups f : G → H such that f (gh) = f (g) f (h) for all g ∈ G and h ∈ H.
An equivalence class of the homology group corresponds to a topological feature, and
the rank of Hp is the Betti number βp. In the words of topologist and Bletchley Park
codebreaker Hilton (1988), Noether’s work meant that the mathematical place of these
topological invariants was properly understood for the first time.
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ϵ = 0 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 4

FIGURE 1.2: A filtration of simplicial complexes. Note that Kϵ ⊆ Kϵ′ whenever ϵ ≤ ϵ′.
In this case ϵ is a threshold with respect to the Euclidean distanc between points.

Over a century after Poincare’s Analyis Situs, topologists laid out the case for the ap-
plication of topological methods to data analysis. One such paper was ‘Topology and
Data’ by Carlsson (2009), in which he posited that theoretically motivated topological
summaries are capable of efficiently representing high-dimensional noisy datasets. One
of the tools he mentions is persistent homology. Persistence refers to the idea of computing
homology groups over a growing sequence of topological spaces called a filtration, which
traces its roots back to work by Frosini (1992) on size functions and Robins (1999) on
the topology of attractors in dynamical systems (Perea, 2018). Persistent homology
groups are typically computed over a filtration of simplicial complexes. We can think of
an (abstract) simplicial complex is a higher-order graph, consisting of p-dimensional
triangles called simplices. A 0-simplex is a vertex, and a p-simplex (p > 0) is a collection
of p + 1 vertices. Formally, a simplicial complex K is a collection of subsets, called
simplices, σ such that every subsimplex σ′ ⊆ σ (called a face of σ) is also in K. A filtration
of simplicial complexes is a collection of simplicial complexes {Ki}i∈I indexed by an
ordered set I such that Ki ⊆ Kj whenever i ≤ j. An example of a filtration of simplicial
complexes is shown in Figure 1.2.

Given a filtration {Ki}i∈I , the persistent Betti number β
i,j
p tells you the number of p-

dimensional homology classes that are present in Ki and persist to (are still present
in) Kj (we formally define this in Section 2.2.4). Edelsbrunner et al. (2002) give a first
algorithm for the efficient computation of the persistent Betti numbers, and introduces
the persistence barcode as a representation of the persistent homology. This depicts the
birth and deaths of the homology classes, i.e., the points in the filtration {Ki}i∈I such that a
persistent homology class enters the filtration at Ki and vanishes (becomes zero) in Kj; an
example is shown in Figure 1.3i. Zomorodian and Carlsson (2005) then characterised the
persistent homology as a graded module, which meant that decomposing this module
using the structure theorem for finitely generated modules enabled a decomposition
of the persistence module into a basis which directly corresponded to the birth/death
coordinates of persistent homology classes. This representation was shown to be an
isometry by Chazal et al. (2016), building on earlier work by Cohen-Steiner et al. (2007)
which showed it was a stable representation of functional filtrations. An equivalent
representation called the persistence diagram, a planar representation of the persistent
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0 1 2 3 4 5

H0

H1

∞
(i) A persistence
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FIGURE 1.3: The persistence barcode (i) and persistence diagram (ii) corresponding to
the filtration in Figure 1.2. We formally define these summaries in Section 2.2.4.

homology which is equivalent to persistence barcodes with birth values on the x axis and
death values on the y axis, has become the prevalent visual depiction of the persistent
homology. An example is shown in Figure 1.3ii. This is one example of a persistence-based
summary, which are the representations of data that underpin this thesis.

With the theoretical foundations laid the stage was set for the field of Topological Data
Analysis (TDA) to take off. Initially persistence diagrams and their feature vectors were
investigated via the development of statistics on the space of persistence diagrams,
which we review in Section 3.1. However, persistence diagrams are not a convenient
representation to use with downstream data analysis tools: it is expensive to compute
distances between them, their means are not unique, and the number of points depends
on the topology of the underlying data. Because of this, a significant number of featuri-
sation methods that map persistence diagrams into a vector in Rn have been proposed.
We discuss common methods in Section 3.2.2, but we are inclined to agree with Bubenik
(2020), who believes that “perhaps since the persistence diagram is such a rich invariant,
it seems that any reasonable way of encoding it in a vector works fairly well”.

Each of these vectorisations of the persistence diagram is also a persistence-based
summary; in this thesis we are particularly interested in their application to machine
learning. Machine learning studies computational algorithms that ‘learn’ from data.
In fact, the development of a feature vector which summarises the topology of an
underlying dataset with strong theoretical guarantees makes it a natural candidate
for usage in machine learning methodologies. Machine learning algorithms are either
supervised, in which an algorithm learns a function fω with parameters ω which maps
data X to labels y from a training dataset with ground truth labels, or unsupervised,
in which a function f is learnt to infer labels from a dataset X with no ground truth.
Typically, they are either for classification, in which the learner aims to map input data
x ∈ X into a discrete category, or regression, in which input data x ∈ X is mapped
to a continuous variable (Bishop and Nasrabadi, 2006). In this thesis, we often use
random forests (Ho, 1995), a supervised learning method that can be used for either
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Input: x = (x1, x2, x3, x4) ∈ X

x1 > 10

True False

x3 ≥ 5 x4 ≥ 12

Prediction 1 0 2 0

x4 ≥ −2

True False

x2 ≥ 21 x1 ≥ 4

3 0 1 2

x3 > 10

True False

x1 ≥ −1 x3 ≥ 42

4 0 3 2

y1 y2 y3

Prediction: ensemble(y1, y2, y3)

T F T F T F T F T F T F

FIGURE 1.4: An example random forest with three decision trees. Each decision tree
takes the data as an input at the top, which passes down through learnt thresholds
to make a prediction. The predictions of each tree are ensembled by averaging for

regression or majority voting for classification.

classification or regression, and works by aggregating the predictions of individual
decision trees (Breiman, 2017). A random forest comprising of three decision trees is
shown in Figure 1.4. Each node in a decision tree learns a parameter and threshold when
it is being trained, which it can then use to make predictions. Individual predictions are
typically ensembled by majority voting for classification tasks and computing the mean
prediction for regression tasks. Although an individual tree is prone to overfitting, a
random forest will significantly increase the performance over an individual tree, at the
cost of being less able to inspect the tree to interpret its prediction (Hastie et al., 2009).
We typically use random forests as our downstream models when applying persistence-
based summaries, specifically in Chapters 4 and 7. We extend an unsupervised learning
algorithm to persistence diagrams in Chapter 5.

Techniques like random forests are sometimes referred to as shallow learning, as they are
learning relatively few parameters. In comparison, work pioneered by LeCun, Bengio,
and Hinton (2015) has led to a deep learning revolution in which models with sometimes
hundreds of billions of parameters have performed extremely well at a broad array
of tasks. Topological tools have been integrated into deep learning models, providing
knowledge of the topology of the data to the learner. In particular, deep learning
models typically use gradient descent optimisers that rely on a loss function L(y, y′) that
computes the error between the ground truth labels y and the models current predictions
y′. By computing the error of the learner fω : X→ y in terms of the parameters ω, deep
learning can update the parameters to decrease the error of the model. This is of course a
simplification, but it means that as long as we can differentiate through the computation
of persistence diagrams we can integrate topological priors into the training of a deep



6 Chapter 1. Introduction

learning model by adding a topological term to the loss function L. We review this
process in more detail in Section 3.2.3, before investigating the efficacy of such methods
through the lens of statistical learning theory in Chapter 4.

1.1 Research Contributions

The specific research contributions of this thesis are as follows. Citations correspond to
our peer-reviewed work.

• In the first part of Chapter 4 (Section 4.1), we provide the first investigation of
topological loss terms in deep learning through the lens of statistical learning
theory. A topological loss term implicitly restricts the hypothesis class of the
learner to the preimage of a persistence diagram. We show that one cannot
provide learning theoretic guarantees about such hypothesis classes (Bishop et al.,
2020).

• In the remainder of Chapter 4, we build on recent work introducing the persistent
Laplacian. We propose a vectorisaton scheme to enable its use its machine learning
and evaluate its efficacy on the MNIST and MoleculeNet datasets, demonstrating
that it outperforms persistent homology (Davies et al., 2023b).

• In Chapter 5 we extend the fuzzy c-means (FCM) clustering algorithm to the space
of persistence diagrams, proving the same convergence guarantee as Euclidean
FCM. We apply the algorithm to match pre-trained deep learning models to
datasets (Davies et al., 2023a). We also implemented this algorithm for Riemannian
manifolds (Miolane et al., 2021).

• In Chapter 6 we review the literature applying Topological Data Analysis to cyber
security (Davies, 2022a).

• In Chapter 7 we apply TDA to host-based computer logs, proposing a method
to represent host-based logs as a filtration of simplicial complexes in order to
identify malicous activity. We evaluate the performance of our method against
three baselines in two different scenarios and at two levels of data acuity (Davies,
2022b).

• We have released our implementations of fuzzy c-means clustering for persistence
diagrams and the persistent Laplacian for machine learning, enabling practitioners
to utilise our methodologies.

I have also contributed to the following publications on topics outside the main focus of
this thesis:

https://github.com/tomogwen/fpdcluster
https://github.com/tomogwen/fpdcluster
https://github.com/tomogwen/hodgelaplacian
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• Fernanda Ribeiro, Valentina Shumovskaia, Thomas Davies and Ira Ktena. How
fair is your graph? Exploring fairness concerns in neuroimaging studies, Machine
Learning for Healthcare Conference, PMLR 182:459-478, 2022.

• Fernanda Ribeiro, Valentina Shumovskaia, Thomas Davies and Ira Ktena. Evalu-
ating graph fairness in transductive learning, Medical Imaging with Deep Learning
Conference, 2022.

• Sunil Manghani and Thomas Davies. Structuralism, Large Language Models and
Electronic Life, under review.

1.2 Thesis Structure

The main body of this thesis is presented in three parts.

• In Part I we introduce the necessary preliminaries, giving the required theoretical
background in Chapter 2 and reviewing the literature on Topological Data Analysis
and Topological Machine Learning in Chapter 3.

• In Part II we present our research into persistence-based summaries, evaluating
the efficacy of the recently introduced persistent Laplacian as a feature vector
for machine learning in Chapter 4 and extending the fuzzy c-means clustering
algorithm to persistence diagram space in Chapter 5.

• In Part III we consider applications of Topological Data Analysis to cyber security,
reviewing the relevant literature in Chapter 6 and applying persistence-based
summaries to host-based computer logs in Chapter 7.

We end by concluding the thesis in Chapter 8, listing our references and providing
revelant additional details in Appendices A, B, and C.





Part I

Preliminaries





Chapter 2

Theoretical Background

In this chapter we expand on the theoretical background behind persistence-based
summaries. We introduced the persistence diagram at a high level in the introduction,
but in this chapter we give more specific details on the construction of persistent ho-
mology. The focus of this thesis is on the application of these tools and the adaptation
of recent theory to the field of data analysis. As such this section is scoped to provide
the theoretical background underpinning many of these tools, without proving the
main results. Further reading on Topological Data Analysis can be found in textbooks
such as Carlsson and Vejdemo-Johansson (2021) or Dey and Wang (2022), or there are
many excellent lectures notes available, for example those by Nanda (2021). For an
introduction to homology theory, see perhaps Munkres (1984) or Hatcher (2000).

In this thesis we also consider the Laplacian as a feature vector. The (graph) Laplacian
is a linear operator on graphs that was originally introduced by Kirchhoff (1958) to
study electrical circuits. It is the basis of Spectral Graph Theory, a field that uses
the spectrum of the Laplacian, and other matrices associated to graphs, to study the
structure of graphs (Nica, 2016). It has been extended to simplicial complexes in the form
of the combinatorial Laplacian (Horak and Jost, 2013), and recently a persistent version
has been defined for pairs of simplicial complexes, the so-called persistent Laplacian
(Mémoli et al., 2022). In fact, the nullity of the p-Laplacian is the p-Betti number βp,
and the non-zero eigenvalues are known to contain information about the structure of
graphs, so the Laplacian contains significant topological and other structural detail. For
this reason we use it throughout this thesis as an alternative, although closely related,
way to analyse the structure of data. In fact, Chapter 4 evaluates the persistent Laplacian
as a feature vector for machine learning. We introduce the relevant theory in Section 2.3.
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2.1 Complexes and Boundaries

We start by introducing data structures which can represent interactions (pairwise, and
higher-order), and the boundary operator defined on those representations.

2.1.1 Graphs and simplicial complexes

A graph is a discrete structure consisting of vertices V connected by edges E ⊆ V ×
V that represent pairwise interactions between vertices. In order to study higher-
order topological features like holes and voids, we also need to consider higher-order
interactions. A simplicial complex is a collection of p-dimensional triangles, p-simplices,
that represents higher-order structure; 0-simplices and 1-simplices are nodes and edges,
just like graphs, but k-simplices are collections of k + 1 nodes, corresponding to k + 1
cliques in a graph. This is shown in Figure 2.1. In particular, an abstract simplicial
complex is a collection of sets K which is closed under taking subsets, i.e., given any set
σ ∈ K, for any subset τ ⊆ σ we have that τ ∈ K.

(i) 0-simplex (ii) 1-simplex (iii) 2-simplex (iv) 3-simplex

FIGURE 2.1: Examples of p-simplices.

We can also think about a simplicial complex as a geometric object. In this case each sim-
plex is realised in a real space Rd, for some d ∈ N+. We call a set of points x0, . . . , xp ∈ Rd

for some d ∈ N+ affinely independent if the vectors {x1 − x0, . . . , xp − x0} are linearly in-
dependent. Intuitively, this means that the p + 1 points do not lie on a p− 1 dimensional
space. For example, three points cannot be colinear. Given a set of affinely independent
points {x0, . . . , xp} ⊂ Rd, the geometric p-simplex generated by x0, . . . , xp is the convex hull
of those points. Specifically,

σ =

{︄
p

∑
i=0

tixi :
p

∑
i=0

ti = 1, ti ≥ 0 ∀ i

}︄
.

A face of a simplex σ is a simplex generated by a subset of x0, . . . , xp. This definition of a
face aligns with intuition; for example, a face of a tetrahedron (3-simplex) is one of its
constituent triangles (2-simplices). With this in mind, we have the following definition.
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Definition 2.1. A geometric simplicial complex is a collection of geometric simplices |K|
such that every face of a simplex in |K| is also in |K|, and the intersection of any two
non-disjoint simplices in |K| is a face of both simplices.

In practice, data we are working with may naturally include pairwise or higher-order
interactions, in which case it can naturally be represented as a simplicial complex. If we
are just given point data, then we can choose to add higher-order simplices in several
ways. We may take the 0-simplices to be the points, and add higher-order simplices
via a distance between the points or another property of the data. Carefully tailoring
the construction of the simplicial complex from the input data is often a key step in the
Topological Data Analysis pipeline.

Oriented simplices. We identify a simplex with its set of vertices, and call it oriented
if we fix an orientation, that is, an ordering of its vertices. Given points {x0, . . . , xp}
we write the oriented simplex generated by those points and with the vertex ordering
(x0, . . . , xp) as [x0, . . . , xp]. We say that two orderings of {x0, . . . , xp} are equivalent if
the permutation between them is even (i.e., can be expressed as an even number of
two-element swaps). An ordering on a simplex can be induced onto its faces. For
example, the ordered 2-simplex [x0, x1, x2] has 1-faces [x0, x1], [x1, x2], [x2, x0] with the
induced ordering. Given an ordered simplex σ we say that the simplex with opposite
orientation is one that is not equivalent, i.e., the permutation required to attain it from σ

is odd. We denote a simplex with the opposite orientation as σ′. An example of oriented
simplices is shown in Figure 2.2.

x0

(i) [x0]

x0

x1

(ii) [x0, x1]

x0

x1

x2
(iii) [x0, x1, x2]

x0

x1

x2

x3

(iv) [x0, x1, x2, x3]

FIGURE 2.2: Examples of oriented p-simplices.

Filtrations. A simplicial pair is a pair of simplicial complexes K, L such that K ⊆ L. We
are often concerned with a growing series of simplicial complexes called a filtration.
In particular, a filtration of simplicial complexes is a collection of simplicial complexes
F = {Ki}i∈R such that Ki ⊆ Kj is a simplicial pair whenever i ≤ j. A filtration of
simplicial complexes, which we often refer to as simply a filtration, is a key way to
represent data that we consider throughout this thesis. An example of a filtration is
shown in Figure 2.3.

Building complexes. To study the topology of a set of points X ⊂ Rd, we map them
into a simplicial complex; two closely related techniques are the Cêch (Čech et al., 1966)
and the Vietoris-Rips (Vietoris, 1927) complexes. The ϵ-Cêch complex Cϵ(X) adds the
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ϵ = 0 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 4

FIGURE 2.3: An example of a filtration of simplicial complexes Kϵ, ϵ ∈ R. A filtration
requires that Kϵ ⊆ Kϵ′ for every 0 ≤ ϵ ≤ ϵ′.

ϵ = 0 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 4

FIGURE 2.4: In fact, the filtration in Figure 2.3 is a Čech filtration. When the ϵ-balls
around p + 1 points intersect their convex hull is added as a p-simplex.

simplex generated by n points to the complex K whenever the Euclidean balls of radius ϵ

centered around those n points have non-empty intersection. The ϵ-Rips complex, Rϵ(X),
adds the simplex generated by n points whenever the n points are pairwise at most
ϵ distance apart. The Nerve Theorem (Hatcher, 2000, Corollary 4G.3) tells us that the
Cêch complex is homotopy-equivalent to the union of the balls that we build it from:
roughly, it represents the topology of the union of balls. This gives us a theoretical
guarantee that we are correctly representing the topology of the space. Note that as
increasing ϵ will only add new simplices to the complex for both the Vietoris-Rips and
Cêch complexes, the collection of either complexes for either construction (Kϵ)ϵ∈R+

0
is a

filtration of simplicial complexes, as required. See Figure 2.4 for an example of a Cêch
filtration.

2.1.2 Chains and boundaries

Let K be a simplicial complex with (potentially arbitrarily) ordered simplices. The chain
group is the free Abelian group Cp(K, G) generated by the p-simplices taking coefficients
from an Abelian group G. A p-chain of K is an element of Cp(K, G), and therefore a
(formal) linear combination of p-simplices ∑n

i=1 aiσi where σ1, . . . , σn are the p-simplices
in K and a1, . . . an ∈ G are the coefficients. More generally the coefficients can be taken
from an R-module over a ring R. Typically R = Z, making Cp(K, R) a free Abelian
group, or R is a field such as F2 or R, making Cp(K, R) a vector space over the field.
Taking coefficients from R additionally makes the chain group an inner product space;
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we will see why this is useful in Section 2.1.3 when we define the dual of the chain
group.

Let σ = [x0, . . . , xp] be an ordered p-simplex. The p-boundary operator is a linear map
∂p : Cp(K)→ Cp−1(K) for p > 0 taking a p-simplex to its p− 1 dimensional boundary
given by

∂p[σ] = ∂p[x0, . . . , xp] =
p

∑
i=0

(−1)i[x0, . . . , xi−1, xi+1, . . . , xp].

For example, it sends a triangle to its constituent edges: ∂2([a, b, c]) = [b, c]− [a, c] + [a, b],
or an edge to its vertices: ∂1([a, b]) = b− a, as shown in Figure 2.5.

x0

x1

=

x0

x1

∂1 =

(i) ∂1([x0, x1]) = [x1]− [x0]

x0

x1

x2

∂2 =

x0

x1

x2
(ii) ∂2([x0, x1, x2]) = [x1, x2] − [x0, x2] +

[x0, x1]

∂3 =

x0

x1

x2

x3

x0

x1

x2

x3

(iii) ∂3([x0, x1, x2, x3]) = [x1, x2, x3] −
[x0, x2, x3] + [x0, x1, x3]− [x0, x1, x2]

FIGURE 2.5: Examples of the boundary operator on p-simplices.

The chain groups and boundary operators for all p ∈ Z0 give a sequence of chain groups
connected with linear maps called the chain complex

· · ·
∂p+2−→ Cp+1(K)

∂p+1−→ Cp(K)
∂p−→ Cp−1(K)

∂p−1−→ . . . .

In fact, the boundary of a boundary is always zero, as stated in the following lemma.
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Lemma 2.2. Let L be a chain complex. Given a chain complex consisting of chain groups
Cp(K, Z), p = 0, 1, . . . , and boundary operators ∂1, ∂2, . . . , the boundary of a boundary is
always zero, that is

∂p−1∂p = 0 for all p > 0.

We will see why this lemma is useful when we formally define the homology groups in
Section 2.2, but first we introduce the duals of the chain group and boundary operator.

2.1.3 Cochains and coboundaries

Given an oriented simplicial complex K and chain group Cp(K, G) with coefficients in
an Abelian group G, we define the cochain group

Cp(K, G) = hom(Cp(K, G), G)

where hom(A, B) is the Abelian group of homomorphisms from A to B. For coefficients
in a field F, Cp(K, F) = hom(Cp(K, F), F) is the dual vector space of Cp(K, F). The basis
of Cp(K, G) is given by elementary cochains, where the elementary cochain associated
with a p-simplex σ is given by eσ(σ) = 1 and eσ(τ) = 0 for all τ ̸= σ.

We can then define the coboundary operator δp : Cp(K, R) → Cp+1(K, R) between
cochain groups. Letting f ∈ Cp(K, R) be a cochain, we define its boundary as the linear
map δp f ∈ Cp+1 given by

(δp f )σ = (δp f )[x0, . . . , xp+1] =
p+1

∑
i=0

(−1)i f ([x0, . . . , xi−1, xi+1, . . . , xp+1]).

Note that the coboundary operator moves up a dimension,

· · ·
δp+1←− Cp+1(K, R)

δp←− Cp(K, R)
δp←− Cp(K, R)

δp−2←− . . . .

in contrast to the boundary operator, which maps down through dimensions.

Recall that if we take coefficients from R then Cp(K, R) is an inner product space. If
we choose inner products ⟨·, ··⟩Cp and ⟨·, ·⟩Cp+1 , then we can define the adjoint of the
coboundary operator as δ∗p : Cp+1(K, R) → Cp(K, R) as the unique function δ∗p that
satisfies

⟨δp f1, f2⟩Cp+1 = ⟨ f1, δ∗p f2⟩Cp

for every f1 ∈ Cp and f2 ∈ Cp+1. In fact, δ∗p = ∂p and ∂∗p = δp (Hatcher, 2000, p.198).
This means that when we compute the matrix of the boundary operator (which we do
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in Section 2.4.1), we can obtain the matrix of the coboundary operator by taking the
transpose.

2.2 Homology and Persistence

We have introduced graphs and simplicial complexes to represent higher-order inter-
actions within data, and a collection of free Abelian groups linked by (boundary, and
coboundary) homomorphisms that represent that structure algebraically. Now we intro-
duce homology groups: a notion going back to Poincaré (1895) that enables us to use
these algebraic representations of simplicial complexes to study their topology. When we
build our simlicial complexes from datasets, we are therefore able to study the topology
of data.

2.2.1 Topology

In this section we briefly formalise the notion of a topological space and homeomor-
phism. In particular, following Munkres (1974), a topology on a set X is a collection T of
subsets of X such that

(i) ∅, X ∈ X,

(ii) for any subcollection T′ ∈ T, ∪T∈T′T ∈ T, and

(iii) for any finite subcollection T′ ∈ T, ∩T∈T′T ∈ T.

In other words, a topology on X is a collection of subsets of X that includes both the
empty set and X, and is closed under unions and finite intersections. A set X with a
topology T is said to be a topological space. A homeomorphism between two topological
spaces X, Y is a continuous bijective function f : X → Y with a continuous inverse
f−1 : Y → X. If such a function exists then we say that X and Y are homeomorphic. We
can investigate homeomorphic spaces by proxy via topological invariants, properties of
topological spaces that stay the same under homeomorphism.

2.2.2 Homology

We are now in a position to define homology groups: topological invariants that form
the basis of much of Topological Data Analysis. Given the chain complex associated
with a simplicial complex K we define the group of p-cycles as Zp(K) = ker ∂p and the
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group of p-boundaries as Bp(K) = im ∂p+1. Note that by Lemma 2.2, δp−1δp = 0, so
Bp(K) ⊆ Zp(K) and we can define the p-homology group as the quotient

Hp(K) = Zp(K)/Bp(K).

We define the pth Betti number as βp = rank(Hp). Although it is not obvious from
the definition, the homology groups and their ranks capture important topological
information. In fact, homology groups and βp are topologically invariants: β0 counts
the number of connected components, β1 the number of holes, β2 the number of voids
(Edelsbrunner et al., 2002). This means homology groups extract useful topological
information about simplicial complexes that we can use to understand their structure.

As with the boundary operator, we have δpδp+1 = 0 for the coboundary operator so we
can define the cohomology groups as

Hp(K, Z) = ker δp/im δp−1.

Having defined homology groups, we now briefly provide some intuition about why
they are topologically invariant.

2.2.3 The invariance of homology groups

Let X and Y be topological spaces and f , g : X → Y be continuous functions. Homotopy
theory lets us study a much looser definition of equivalence than homeomorphism.
In particular, we say that f is homotopic to g if there exists a continuous function H :
X× [0, 1]→ Y such that for all x ∈ X, H(x, 0) = f (x) and H(x, 1) = g(x). The function
H is called a homotopy between f and g, and we write that f ≃ g. We call two topological
spaces A, B homotopy equivalent if there exists continuous maps f : A→ B and g : B→ A
such that f · g ≃ idA and g · f ≃ idB. Note that this is a much weaker definition of
equivalence than homeomorphism; a homeomorphism would require the compositions
f · g and g · f to be equal to the identity functions, whereas homotopy equivalence
simply requires they can be deformed into them.

If K and L are simplicial complexes then a map f : K → L is a simplicial map if it sends
each simplex in K to a simplex in L by a linear map taking vertices to vertices. Such a
simplicial map f : K → L induces homomorphisms f∗,p : Hp(K)→ Hp(L). In particular,
if σ = ∑n

i=1 aiσi is a cycle in Hp(K), then f (σ) will be a (potentially trivial) cycle in Hp(L)
under the induced homomorphism given by

f (σ) = f

(︄
n

∑
i=1

aiσi

)︄
=

n

∑
i=1

ai f (σi).
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It can be shown that if f : K → L is a homeomorphism, then the induced homomorphism
f∗,p : Hp(K) → Hp(L) is in fact an isomorphism for each dimension p (Hatcher, 2000,
§2.1). In other words, if two simplicial complexes are homeomorphic (in fact, if they are
homotopy equivalent), then their homology groups are isomorphic. This result confirms
that we are capturing topological information by studying the homology groups.

2.2.4 Persistent homology

We have defined homology groups and seen that they capture the topological structure
of a simplicial complex. We also now know that we can build simplicial complexes
from point data using e.g. the Vietoris-Rips complex, but this construction requires a
parameter determining how close the points must be to connect them/form a simplex.
How should we choose that parameter? If ϵ is too small then the majority of points will
remain disconnected, or if its too large every point will be connected and any potentially
interesting structure will be obscured. The persistence trick answers this question by
enabling homology groups to be computed over an entire filtration (i.e., for all choices
of a parameter). We start by introducing persistence for a pair of simplicial complexes,
and then introduce it over a filtration.

For complex pairs. We define a complex pair, written K ⊆ L, as two simplicial complexes
K and L with the same set of vertices and such that all simplices of K are simplices of L.
Let K ⊆ L be a complex pair, then the boundary maps of K and of L can be written as a
commutative diagram where vertical arrows are inclusion maps

. . . CK
p+1 CK

p CK
p−1 . . .

. . . CL
p+1 CL

p CL
p−1 . . .

∂K
p+1 ∂K

p

∂L
p+1 ∂L

p

Now we can define persistent homology on a simplicial complex pair K ↪→ L by HK,L
p =

ZK
p /(BL

p ∩ ZK
p ). This represents homology classes present in Hp(K) that are also present

in Hp(L), i.e., topological features in K that are still present in L. We can similarly define
the p-persistent Betti number βK,L

p = rank HK,L
p , which counts these persistent topological

features from K to L.

For a filtration. Let F = {Ki}i∈I be a filtration indexed by a set I. Then we can define
the pth persistent homology group from Ki to Kj as

Hi,j
p = ZKi

p /(B
Kj
p ∩ ZKi

p ),

and the pth persistent Betti numbers as β
i,j
p = rank Hi,j

p . Then β
i,j
p counts the pth

dimensional homology classes which persist from H(Ki) to H(Kj). Zomorodian and
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Carlsson (2005) showed that the persistent homology can be represented via a basis
{(bk, dk)}n

k=1 with bk ∈ R and dk ∈ R ∪∞. This basis admits a topological interpretation:
each bk and dk give the birth and death respectively of a topological feature (namely,
a homology class in dimension p) through the evolving filtration. Note that some
topological features can last forever (for example, in any non-trivial filtration there
will always be at least one connected component). We say that the death time of
such a topological feature is ∞. The birth and death times give rise to a convenient
representation of the persistent homology that we now introduce.

2.2.5 Persistence diagrams

We can represent the points {(bk, dk)}n
k=1 as a multiset in the extended plane R× (R ∪

{∞}), called a persistence diagram. We can see in Figure 2.6i how the births (x-axis) and
deaths (y-axis) are represented in the persistence diagram. Comparing to the filtration
in Figure 2.4 which corresponds to the persistence diagram, we can see for example that
there is one (one-dimensional) hole, which is born at ϵ = 3 and dies (is filled in) at ϵ = 4,
detected by H1. This is correspondingly represented in the persistence diagram by a
point at (3, 4). Similarly, the connected components correspond to points in H0. Note as
we move from ϵ = 2 to ϵ = 3 the addition of more simplices to the filtration means that
we go from two connected components to one connected component. Therefore one
connected component, which was born at ϵ = 0, dies at ϵ = 3, and so there is a point
at (0, 3) in the persistence diagram.. Defining xk = (bk, dk), persistence diagrams are
often denoted as a discrete measure µ = ∑n

k=1 δxk in statistical applications where δx is
the Dirac delta function. Persistence diagrams can be used interchangeably with the
equivalent persistence barcode. The barcode is an equivalent representation of birth-death
pairs consisting of n horizontal lines in the plane, which start at x = bk and end at x = dk

for each k. A barcode is shown in Figure 2.6ii.

Given a persistence diagram D, we add all points (a, a), a ∈ R+
0 , to D with infinite

multiplicity. This allows the distance between diagrams with differing numbers of
points to be well defined. Specifically the p-Wasserstein distance between two diagrams
D1, D2 is given by

Wp(D1, D2) =

(︄
inf

ϕ:D1→D2
∑

x∈D1

||x− ϕ(x)||p
)︄1/p

, (2.1)

where the infimum is taken over all bijections ϕ. That is, each point in D1 is matched to
either a point in D2 or the diagonal, and vice versa. The Wasserstein distance minimises
the total distance between each matching. This matching distance is commonly used in
many areas of research, and is sometimes referred to as the Earth mover’s distance. We
will use it in Chapter 5 to compare persistence diagrams. Note that the p-Wasserstein
distance is a metric on the space of persistence diagrams, but not on isometry classes



2.3. The Laplacian 21

of point clouds - this is relevant in the clustering of context as the triangle inequality is
important to the quality of the clustering (Rass et al., 2022). The p-Wasserstein distance
can be extended to p = ∞ as the bottleneck distance given by

W∞(D1, D2) = inf
ϕ:D1→D2

sup
x∈D1

||x− ϕ(x)||.

The stability of persistence diagrams as representations of the underlying data has
been studied with respect to the this distance. Given f , g : X → R, the first stability
result for persistence diagrams characterised the stability of the persistence diagrams
of the filtrations on X induced by f , g (where the filtration induced by f on X at ϵ is
Kϵ = {x ∈ X : f (x) < ϵ}) as

W∞(D( f ),D(g)) ≤ || f − g||∞. (2.2)

We will see in Section 3.1.1 that this stability result means that if we are sampling data
from a distribution, then the persistence diagram of the sampled data is guaranteed to
be close to the persistence diagram of the distribution.

0 1 2 3 4 5

0

1

2

3

4

∞

H0

H1

(i) Persistence dia-
gram

0 1 2 3 4 5

H0

H1

∞
(ii) Persistence bar-

code

FIGURE 2.6: The persistence diagram (i) and persistence barcode (ii) corresponding to
the filtration in Figure 2.3.

2.3 The Laplacian

We use the Laplacian as a feature vector throughout this thesis. We introduce it in this
section, as well as recent work on the persistent Laplacian which we consider as a feature
vector for machine learning for the first time in Chapter 4.

2.3.1 The graph Laplacian

The graph Laplacian, first introduced by Kirchhoff (1847) to study electrical circuits, is
a linear operated associated to a graph G = (V, E). It is given by L = D − A, where
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D is the |V| × |V| degree matrix given by D(v, v) = degree(v), and 0 otherwise, and A
is the |V| × |V| adjacency matrix given by A(v, v′) = 1 if vv′ ∈ E, and 0 otherwise. We
can also express it in terms of the boundary and coboundary operators. Note that we
can do that as a graph is just a simplicial complex, where the nodes are 0-simplices and
the edges are 1-simplices. Therefore, given a graph G = (V, E) the boundary operator
∂1 : E→ V takes us down a dimension (from edges to vertices), and the couboundary
operator δ1, which is the adjoint of the boundary operator (so that δ1 = ∂∗1) will take
us up a dimension (from vertices to edges). Then the graph Laplacian is defined
as the composition of the coboundary and boundary operators, ∆0 : V → E → V,
∆0 = ∂1 ◦ (∂1)

∗. This coincides with the interpretation of the graph Laplacian as a
discrete update step for the heat equation: it can be viewed as moving energy from
nodes, onto connected edges, then sharing it amongst neighbouring vertices, i.e., it is
aggregating energy in the neighbourhoods of each node.

The graph Laplacian, and in particular its eigenvalues, are deeply tied to the structure
of the graph G. For example, Kirchoff’s work introducing the graph Laplacian was
generalised to show that the number of spanning trees in a connected graph is equal
to 1

n λ1, . . . , λn−1, where n is the number of vertices and λ1, . . . , λn−1 are the non-zero
eigenvalues of the Laplacian (Biggs, 1993). The Cheeger inequality for graphs (Dodziuk,
1984) relates the second smallest eigenvalue of the Laplacian to the sparsest cut, a
measure of how well connected a graph is. In particular, the first n eigenvectors of the
Laplacian of a graph G (ordered by ascending size of their respective eigenvalues) gives
us an optimal mapping of G into Rn (Belkin and Niyogi, 2001). Applying this to a graph
built from points using pairwise distances as the edge weights (i.e. if A is a dissimilarity
matrix) gives rise to the widely used spectral clustering (Pothen et al., 1990; Demmel,
1999). Convolutions in the eigenbasis of the graph Laplacian are (approximately) used
in Graph Convolutional Networks (Kipf and Welling, 2017).

To illustrate how the spectrum of the Laplacian arises in practice, we demonstrate how
its eigenvectors correspond to low dimensional representations of graphs (Belkin and
Niyogi, 2001). Suppose you have a weighted graph G = (V, E), where each edge
(i, j) ∈ E has a corresponding weight w(i,j). Then the (i, j)th entry in the weighted
adjacency matrix A is given by w(i,j) if (i, j) ∈ E or 0 otherwise. Suppose we wish to
map G onto R in a way that best preserves structure. In particular, so that the higher the
weight between connected nodes, the closer together the resulting points are. Specifically,
for each node i ∈ V we wish to find yi ∈ R so that

∑
i,j∈V

(yi − yj)
2aij

is minimised. Let y = (y1, . . . , yn)T and observe that the non-zero entries of the degree
matrix D are dii = ∑j aij. Then since
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∑
i,j
(yi − yj)

2aij = ∑
i,j
(y2

i + y2
j − 2yiyj)aij

= ∑
i

y2
i aij + ∑

i
y2

j aij − 2 ∑
i,j

yiyjaij

= 2

(︄
∑

i
y2

i dii −∑
i,j

yiyjaij

)︄
= 2

(︂
yTDy− yT Ay

)︂
= 2yT(D− A)y

= 2yT Ly,

we get that

arg min
yT Dy=1

1
2 ∑

i,j
(yi − yj)

2aij = arg min
yT Dy=1

yT Ly, (2.3)

where the constraint yTDy = 1 has been added to remove an arbitrary scaling factor.
Then Equation 2.3 is minimised by the minimal eigenvalue λ from the generalised
eigenvalue problem Ly = λDy, as

yT Ly = λ ⇐⇒ yT Ly = λyTDy ⇐⇒ Ly = λDy.

If the graph is connected, then the first eigenvalue of L is 0 with eigenvector 1 constant
one (we will see why later). To prevent this trivial solution we add the additional
constraint that our solution must be orthogonal to 1, to give the solution

yopt = arg min
yT Dy=1,yT D1=0

yT Ly.

2.3.2 The combinatorial Laplacian

The graph Laplacian can be extended to simplicial complexes. This ‘higher-order’
Laplacian is referred to in the literature as the combinatorial Laplacian, the higher Laplacian,
or the discrete Hodge Laplacian. Consider a simplicial complex K, and the chain complex
along with the coboundary and boundary (dual) operators at each dimension,

. . . CK
p+1 CK

p CK
p−1 . . .

∂K
p+1

(∂K
p+1)

∗

∂K
p

(∂K
p )
∗

The up and down combinatorial Laplacians are defined as the linear maps

∆K
p,up = (∂K

p+1)
∗ ◦ ∂K

p+1 and ∆K
p,down = ∂K

p ◦ (∂K
p )
∗
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respectively, and the combinatorial Laplacian is defined as

∆K
p = ∆K

p,up + ∆K
p,down.

This generalises the graph Laplacian, as the up 0-Laplacian coincides with the graph
Laplacian (see above), and the down 0-Laplacian is zero. Moreover, the combinatorial
Laplacian captures the (non-persistent) homology at each dimension.

It turns out the p-Laplacian is connected to the p-homology group. In fact, we know
that the kernel of the p-Laplacian is in direct correspondence with the p-cohomology
group via the following theorem, due to Eckmann (1944/45).

Theorem 2.3. Let K be an abstract simplicial complex. Then

ker ∆p(K) ∼= Hp(K, R).

This theorem means that the combinatorial Laplacian captures topological information,
as well as the structural information contained in the non-zero eigenvalues. This makes
it a natural candidate for application to data analysis, particularly given the recent
introduction of the persistent Laplacian, which we now introduce.

2.3.3 The persistent Laplacian

The combinatorial Laplacian, like homology, has an extension to pairs of simplicial
complexes. Lieutier (2014) first introduced the persistent Laplacian in a presentation
given at Inria. Wang et al. (2019) later reintroduced the persistent Laplacian, and Mémoli
et al. (2022) formalised and further studied the persistent Laplacian, characterising its
theoretical properties and introducing an efficient algorithm for its computation. We
follow their notation in our introduction.

Let K ⊆ L be a simplicial pair and consider the subspace of CL
p given by

CL,K
p =

{︂
c ∈ CL

p : ∂L
p(c) ∈ CK

p−1

}︂
⊆ CL

p . (2.4)

That is, CL,K
p consists of all simplices in CK

p that have their boundary in CK
p−1 ⊆ CL

p−1.
Write ∂L,K

p for the restriction of the boundary operator to this subspace, i.e., ∂L
p |CL,K

p
. Then,

the persistent p-Laplacian is defined by Mémoli et al. (2022) as

∆K,L
p =

(︂
∂L,K

p+1

)︂∗
◦ ∂L,K

p+1 + ∂K
p ◦ (∂K

p )
∗, (2.5)

with the up persistent p-Laplacian given by ∆K,L
p,up =

(︂
∂L,K

p+1

)︂∗
∂L,K

p+1. The relation between
each operator is shown in the diagram from Mémoli et al. (2022) below.
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CK
p+1 CK

p CK
p−1

CL,K
p+1 CL,K

p+1

CL
p+1 CL

p CL
p−1

∂K
p+1(︂
∂L,K

p+1

)︂∗
∂K

p

(∂K
p )
∗

∂L,K
p

∂L
p+1 ∂L

p

The persistent Laplacian captures the same information as the persistent Betti numbers.
In particular, the p-th persistent Betti number βK,L

p = nullity ∆K,L
p (Mémoli et al., 2022,

Theorem 2.7). We investigate the usage of the persistent Laplacian for data analysis in
Chapter 4.

2.4 Matrix Representations

As presented so far, each of these operators and representations are purely abstract. We
detail here how to represent each of them in matrix form. With the notable exception
of the persistent Laplacian, the computational packages to implement most of these
representations are very well-developed. In fact, we provide the first Python implemen-
tation of the persistent Laplacian as part of Chapter 4, and the only implementation that
computes the persistent Laplacian for cubical complexes.

2.4.1 Boundary operator

Let K be a simplicial complex and CK
p , CK

p−1 be the chain groups generated by [σ0], . . . , [σnp ]

and [τ0], . . . , [τnp−1 ] respectively. The boundary operator ∂p : CK
p → CK

p−1 is given by

∂p([σi]) =
np−1

∑
j=1

λj,i[τj], for each i = 1, . . . , np.

The matrix representing the boundary operator is then given by

Bp =

[σ0] [σ1] . . . [σnp ]⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

λ0,0 λ0,1 . . . λ0,np [τ0]

λ1,0 λ1,1 . . . λ1,np [τ1]
...

...
. . .

...
...

λnp−1,0 λnp−1,1 . . . λnp−1,np [τnp−1 ]

for some λi,j with 1 ≤ i ≤ np and 1 ≤ j ≤ np−1, with the corresponding basis el-
ements (in terms of fundamental chains) shown alongside the rows and columns of
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the boundary matrix, to aid interpretation. This is a matrix whose (i, j)-entry is ±1 if
the jth (oriented) (p− 1)-simplex is a constituent of the ith (oriented) p-simplex, and
0 otherwise, with sign depending on orientations. It can be computed by Algorithm
1, which takes as input matrices Cp ∈ R(p+1)×np and Cp−1 ∈ Rp×np−1 representing
the ordered simplices σ0, . . . , σnp and τ0, . . . , τnp−1 respectively, in terms of their con-
stituent 0-simplices. Specifically, if Cp consists of oriented p-simplices σ0, . . . , σnp with
σi = [αi,0, . . . , αi,p] for i = 1, . . . , np and αi,j being 0-simplices, then Cp is represented as a
matrix as

Cp =

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

α0,0 α0,1 . . . α0,p σ0

α1,0 α1,1 . . . α1,p σ1
...

...
. . .

...
...

αnp,0 αnp,1 . . . αnp,p σnp

.

In Algorithm 1 the ismember(A, B) function represents the package of the same name
available for R and Python which finds the positions I of elements of A in B. The
boundary operator corresponds to multiplication of the matrix Cp by the boundary
matrix Bp. Since the coboundary operator is the adjoint of the boundary operator, we
can simply take the transpose of the matrix, i.e., the matrix BT

p corresponds to the
coboundary operator δp = ∂∗p.

Algorithm 1 Boundary matrix
Input Simplex matrices Cp, Cp−1
Output Boundary matrix Bp

1: np ← |Cp|
2: np−1 ← |Cp−1|
3: Bp ← ZeroMatrix(np−1 × np)
4: for i in 0..p do
5: Btemp ← Cp[:, [0, . . . , i− 1, i + 1, . . . , p]]
6: I ← ismember(Btemp, Cp−1)
7: for j in 1..np do
8: B[Ij, j] = (−1)i−1

9: end for
10: end for
11: return Bp

2.4.2 Homology groups

Recall that homology groups are the quotient of the cycle group Zp = ker ∂p by the
boundary group Bp = im ∂p+1. A (not necessarily square) matrix is in Smith normal form
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if it is in the form ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 0 0 . . . 0
0 a1 0 . . . 0

0 0
. . .

...
... ar

0
. . .

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for 0 < a0 ≤ · · · ≤ an and is such that ai|ai+1 for all i. Any integer-valued matrix can be
reduced to Smith normal form via row and column operations (Howard, 2002, Theorem
5.8). As the rows and columns correspond to bases of Cp and Cp−1 in our case we also
keep track of the corresponding change to the bases. We reduce the boundary matrix Bp

into Smith normal form to obtain the matrix B̃p, updating the bases with row/column
operations to get a basis e1, . . . enp of Cp and a basis f1, . . . , fnp−1 of Cp−1. In particular,
we get

B̃p =

e1 . . . er er+1 . . . enp⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a1 f0
. . .

...
arp fr

0 fr+1
. . .

...
0 fnp−1

.

Then erp+1, . . . , enp is a basis for Zp and a1 f1, . . . arp frp is a basis for Bp−1 (Zomorodian,
2005). It follows that the Betti number is given by βp = np − rp − rp+1, as rank Zp =

np − rp, rank Bp = rp+1, and

βp = rank Hp = rank Zp/Bp = rank Zp − rank Bp.

Persistent homology. Surprisingly, the entire persistent homology can also be computed
with one matrix reduction. This algorithm is first given in Zomorodian and Carlsson
(2005); we follow an algorithm for finite fields described in Edelsbrunner and Harer
(2010). Given a simplicial complex K, begin by ordering all simplices σ1, . . . , σn so that
whenever σi enters the filtration before σj we have that i < j, and whenever σi is a face
of σj, again we have that i < j. The boundary matrix for this computation is an n× n
matrix representing simplices of every dimension, and is given by

B(i, j) =

⎧⎨⎩1, σi is a face of σj with codimension 1,

0, else.
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Define low(j) to be the row index of the lowest 1 in column j, or undefined if there is no
1 in column j. We update the boundary matrix B by iteratively adding columns from left
to right. When low(j0) ̸= low(j) for every non-zero column j0, j we say that the matrix
is reduced. This process, shown in Algorithm 2, will update the boundary matrix B until
it is reduced. In fact, we can read the persistent homology off the reduced boundary

Algorithm 2 Persistent Homology Reduction
Input Boundary matrix B
Output Reduced matrix B̃

1: for j in 1..n do
2: while there exists j0 < j such that low(j0) = low(j) do
3: Add column j0 to column j
4: end while
5: end for

matrix B̃. In particular, the zero columns correspond to the birth of a homology class.
Suppose the zero column is column j. Then the addition of σj to the filtration gave birth
to the topological feature, and so that is the birth time of the homology class. To find
the death time, inspect row j. If there is a lowest 1 in row j, say at column k, then σk

entering the filtration killed the homology class, and that similarly gives the death time.
If there is no lowest 1 in that row, then the homology class never dies. The proof of this
algorithm is in Edelsbrunner and Harer (2010, VII.1).

2.4.3 Graph and combinatorial Laplacian

As the Laplacian is expressed directly in terms of the boundary operator it is relatively
simple to express it now that we have an algorithm to compute a matrix representation
of ∂p. We have seen that the graph Laplacian is equal to

∆0,up = ∂1∂∗1 ,

and we can compute ∂1 in matrix form B1 using the algorithm above. Therefore the
graph ∆1 = B1BT

1 . It can be shown that B1BT
1 = D− A, where D is the degree matrix

and A is the adjacency matrix, recovering the usual definition of the graph Laplacian
matrix (Horak and Jost, 2013). Similarly, the combinatorial Laplacian for p > 0 is given
by ∆p = ∂p+1∂∗p+1 + ∂∗p∂p, which can be represented via the above computation of the
boundary matrix as Bp+1BT

p+1 + BT
p Bp.

2.4.4 Persistent Laplacian

Recall that the persistent Laplacian for a simplicial pair K ↪→ L is given by ∆K,L
p =(︂

∂L,K
p+1

)︂∗
◦ ∂L,K

p+1 + ∂K
p ◦ (∂K

p )
∗. We have matrix representations for the non-persistent
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boundary operator ∂K
p , but not for the persistent part of this operator, given by ∆K,L

p,up =

(∂L,K
p+1)

∗ ◦ ∂L,K
p+1. Mémoli et al. (2022) show that the up persistent p-Laplacian can be

computed via the Schur complement of certain matrices. In particular, given a block
matrix

M =

(︄
A B
C D

)︄
∈ Rn×n

with D ∈ Rd×d, the generalised Schur complement of D in M is M/D = A− BD†C,
where † denotes the Moore-Penrose generalised inverse (Penrose, 1955; Agarwal and
Flaut, 2017). Let IL

K be the indices of rows in ∆L
p,up which correspond to p-simplices not

in K. Then ∆K,L
p,up = ∆L

p,up/∆L
p,up[IL

K, IL
K]. We have developed an implementation of this in

Python, and there is another implementation in C++ called HERMES (Wang et al., 2020),
although this is restricted to a limited number of simplicial complex constructions and
does not use the Schur complement to find the persistent Laplacian, instead relying on a
projection of the non-persistent boundary matrix onto the basis of the group CK,L

p .





Chapter 3

Literature Review

In this chapter we review the literature on statistics for persistence diagrams (Section 3.1)
and topological machine learning (Section 3.2). We aim to provide high-level results and
methodologies, contextualising how pieces of research fit into the broader Topological
Data Analysis literature. We start by introducing statistics for persistence diagrams,
both at the data level (answering questions like how does sampling potentially noisy
data effect the computation of the persistence diagram?) and at diagram level (how
do we compute standard statistical objects like means of persistence diagrams?). The
former provides guarantees that persistence diagrams are a reasonable way to represent
data, and the latter is useful in Chapter 5, when we use means of persistence diagrams
to cluster them. We end this chapter by reviewing how topological tools are currently
utilised in machine learning in Sections 3.2 and 3.3.

3.1 Statistics for Persistence Diagrams

3.1.1 Data-level statistics

Consider a set of points X = {x1, . . . , xn} sampled independently and identically dis-
tributed (i.i.d.) from a manifold X ⊂ Rd which is the support of some measure µ. We
know from the previous section that we can stably represent the topology of X at all
scales, but two key questions remain.

1. When does Xϵ :=
⋃︁

x∈X Bϵ(x) have the homotopy-type of the manifold X? I.e.,
when is the topology of our approximation correct for a fixed scale?

2. When is the persistence diagram of X close to the persistence diagram of X?

The first question is answered by Niyogi et al. (2008) in the case that µ is uniform. Given
a condition number τ associated with X, Niyogi et al. show that whenever 0 < ϵ < τ/2
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and
n > γ1

(︃
log(γ2) + log

(︃
1
δ

)︃)︃
,

the homology of Xϵ is equal to the homology of X with probability greater than 1− δ.
The values of γ1, γ2 are defined in Niyogi et al. (2008), but depend on ϵ and X. This
work was extended by Balakrishnan et al. (2012), who bound the minimax risk that the
homology of Xϵ is different to the homology of X even when some points are affected
by noise that take them out of the vicinity of X.

A notable first attempt at the second question was carried out by Bubenik and Kim
(2006), where they give bounds on the distance between barcodes for points sampled on
a d-hypersphere by the parametrised von Mises–Fisher distribution. They extend this
work in Bubenik et al. (2010), where they consider bounds for nonparametric estimators
for manifolds. It is answered more conclusively by Fasy et al. (2014a). They start by
defining a distance with respect to any closed subset A ⊂ Rd as

dA(x) = inf
a∈A
||x− a||.

Then Xϵ = {y : dX(y) < ϵ}. Furthermore, this distance function allows them to use the
stability theorem for persistence diagrams to show that

W∞(D(X),D(X)) ≤ ||dX − dX||∞ = H(X, X),

where H is the Hausdorff distance, defined by

H(A, B) = max
{︃

max
x∈A

min
y∈B
||x− y||, max

x∈B
min
y∈A
||x− y||

}︃
= inf{ϵ : A ⊂ Bϵ and B ⊂ Aϵ}.

Therefore the question of upper bounding the distance betweenD(X) andD(X) reduces
to upper bounding H(X, X). Using this insight, they give explicit expressions for an ϵ

(dependent on n) such that

lim inf
n→∞

P [W∞(D(X),D(X)) ≤ ϵ] ≥ 1− δ.

Similar bounds were also given by Chazal et al. (2014b), however the presence of
unknown constants means that finding explicit confidence intervals using their bounds
is not tractable. Niyogi et al. (2011) show that if noisy data centred on a sum of Gaussians
is sampled, you can recover the homology of the Gaussians with high confidence.
Blumberg et al. (2012) consider distributions of persistence barcodes. By considering
the process of computing the barcode of X sampled from X according to µ, you define
an empirical measure that can be used to show that the barcode of X converges to
the barcode of X as sample size increases. They also use this interpretation to give
confidence intervals for persistence barcodes.
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Outlier robustness. Although we’ve seen stability properties that guarantee small errors
in the data only causes small changes in the persistence diagram, in practice outliers (a
small number of data points with a large error) can cause persistence diagrams to be
significantly incorrect. Instead of producing filtrations directly from sampled points,
we can use sampled points to construct a density estimator in some outlier-resistant
way, then compute the persistence diagram of that density estimator. To do so we must
compute the persistence diagram via the sublevel sets of a function. Given a real valued
function f , the sublevel sets are f−1((−∞, c]), with c varying over (−∞, ∞) as the scale
parameter. There are several functions used in the literature to produce outlier-resistant
persistence diagrams, all of which offer confidence bounds on their persistence diagrams.
Chazal et al. (2011) introduce a distance-to-measure (DTM) function and Vishwanath
et al. (2020) use reproducing kernels.

When these are computed in practice, the persistence diagrams of the sublevel sets of
the function are not computed. Rather, the density estimator f is computed from the
sampled points and evaluated at points on a grid over the domain of the function. This
grid is triangulated and a filltration is induced from the values of the density estimator
on the vertices. This was implemented by Fasy et al. (2014b).

Universal Probability Law. Bobrowski and Skraba (2022) study persistence diagrams
generated from random point clouds and find a universal probability law. In particular,
they find that the distribution of the death/birth ratio is universal, in the sense that
the ratio is independent of the distribution that the point cloud is sampled from (as
you the number of points sampled tends to infinity). This is analagous to the Central
Limit Theorem for sampled random variables, and allows for hypothesis testing with
persistence diagrams.

3.1.2 Diagram-level statistics

To define statistics at a diagram level we consider both statistics on the space of diagrams
and on functional summaries of diagrams.

On diagrams. The first paper to consider statistics on the space of persistence diagrams
was Mileyko et al. (2011). They consider the space

Dp =
{︁

D : Wp(D, ∆) < ∞
}︁

,

where ∆ is the diagonal with infinite multiplicity. The role of the diagonal provides the
main distinction between the Wasserstein distance between persistence diagrams and
between probability measure. They also show that means and expectations exist on Dp:
the Fréchet mean and variance (Fréchet, 1944) extend the standard mean/variance to
general metric spaces. Given a probability measure P on Dp with finite second moment,
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the Fréchet variance is given by

VarP := inf
D∈Dp

(︃
Fp(D) =

∫︂
Dp

Wp(D, D̂)dP(D̂)

)︃
,

and the Fréchet mean is any diagram D that attains the variance:

Ep = {D : Fp(D) = VarP}.

Mileyko et al. (2011) show that EP exists whenever P has compact support. Therefore
under mild assumptions the space of persistence diagrams has means and variances:
concepts which underpin most of statistics.

With a proof that the Fréchet mean is well-defined, Turner et al. (2012) developed an
algorithm to compute it. They show that their algorithm converges to a local minimum,
and give a law of large numbers for Fréchet means of diagrams with samples drawn
i.i.d according to some measure. We use an extension of this algorithm to compute
the weighted Fréchet mean in Section 5.2.2. However, Turner et al.’s algorithm, as
well as the contemporary algorithms to compute the Wasserstein distance, relied on
the fundamentally combinatoric Hungarian algorithm (Munkres, 1957) to compute the
optimal matching problem that is core to both problems. This problem was tackled
by Lacombe et al. (2018), who framed the problem of computing the Fréchet mean as
an optimal transport problem, and so was able to use the entropic Sinkhorn algorithm
(Cuturi, 2013; Cuturi and Doucet, 2014) to compute them. As shown in Figure 3.1,
this algorithm is far more scalable, and can be parallelised across GPU’s for additional
performance. An alternate approach to speed up the computation of the Fréchet mean,
proposed by Vidal et al. (2020), is to iteratively consider only the most persistent points,
only considering the least persistent (and therefore most noisy) points towards the end
of the computation. Another technique to speed up the process of finding the optimal
matching required by the Wasserstein distance was provided by Kerber et al. (2017), who
follow the approach of Efrat et al. (2001) to improve the speed to compute the bottleneck
distance by pruning the search for potentially matched points in the persistence diagram.
They also improve the speed to compute the 1-Wasserstein distance by implementing
a geometric version of the auction algorithm (Bertsekas, 1988), an iterative method to
solve the optimal matching problem.

Turner (2020) studies the median of distributions f persistence diagrams. Munch et al.
(2015) introduce a ‘probablistic Fréchet mean’ that, unlike the ordinary Frêchet mean,
is unique and continuous. The Expected Persistence Diagram (EPD) is a statistical
summary of multiple persistence diagrams. Divol and Lacombe (2021) propose a
version of the empirical EPD which is quick to compute, is guaranteed to have small
support, and approximates the EPD with near-optimal rates.
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FIGURE 3.1: Turner et al.’s algorithm (B-Munkres) vs Lacombe et al.’s algorithm
(Sinkhorn). Figure reproduced from Lacombe et al. (2018)

Persistence Landscapes. Another approach to define statistics on persistence diagrams is
to map a diagram to a function in a Banach space called a persistence landscape (Bubenik,
2015). This comes with several advantages, the primary being that you can view
the persistence landscape as a Banach space-valued random variable, which gives
you access to a wealth of pre-existing theory (Ledoux and Talagrand, 2011). Also
important is that means of landscapes are unique and easy to precisely compute, neither
of which is true for Fréchet means. Formally, the persistence landscape is a function
λ : N × R → [−∞, ∞], although it can be thought of as a sequence of functions
λk : R → [−∞, ∞], where λk(t) = λ(k, t). Define

λk(t) = sup
{︁

m ≥ 0 : βt−m,t+m ≥ k
}︁

,

where βi,j is the pth persistent Betti number. To help visualise the persistence landscape,
we extend it to a function λ̄ : R2 → [−∞, ∞] given by

λ̄(x, t) =

⎧⎨⎩λ(⌈x⌉, t), x > 0,

0, x ≤ 0.

An example of a persistence landscape, including an image of the above extension is
shown in Figure 3.2.

Consider a set of landscapes λi computed from data Xi = {xi
1, . . . , xi

m} sampled from X

according to some measure µ, for i = 1, . . . , n. Then a unique mean can be computed
pointwise, i.e.,

mean(λ1, . . . , λn) =
1
n

n

∑
i=1

λi : N×R → [−∞, ∞].
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FIGURE 3.2: A persistence diagram (top left) with its rank function counting the bars in
the corresponding barcode (top right), and the persistence landscape (bottom left) with

its extension λ̄ (bottom right). Figure reproduced from Bubenik (2015).

The process of computing the landscape of points sampled from µ gives a Banach space-
valued random variable. Using known results about such random-variables (Ledoux
and Talagrand, 2011) gives a Central Limit Theorem, Strong Law of Large Numbers,
and confidence intervals for persistence landscapes.

The persistence landscape was further studied by Chazal et al. (2014a, 2015) who show
that the mean landscape can be used an unbiased estimate for the expected value of a
sampled landscape, and a biased estimate for the landscape of X = supp(µ). They also
propose a similar functional summary, that they call the silhouette. Robins and Turner
(2015) perform PCA on rank functions, which are closely tied to persistence landscapes,
to analyse colloids and sphere packing. Amongst other things, landscapes have been
used to analyse protein bindings (Kovacev-Nikolic et al., 2016), financial crashes (Gidea
and Katz, 2018), microbiomes (Petrov et al., 2020), and swarm behaviour Corcoran and
Jones (2016). A comprehensive list of applications can be found in Bubenik (2020).

3.2 Topological Machine Learning

With the theory of persistence and relevant statistics better understood, it became natural
to ask how to use these tools within machine learning.

A note on weighting functions: many techniques require weighting points in the per-
sistence diagram. This can be done in the interest of stability, as without giving a low
weight to points with low persistence a point moving off the diagonal will introduce
a discontinuity (Adams et al., 2017). In addition, the Homology Inference Theorem
(Cohen-Steiner et al., 2007) tells us that when we have a sufficiently dense sample of
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points, the points in the diagram that are most representative of the features of the dis-
tribution have low birth values and high persistence, so it makes sense to weight higher
persistence points more. However, its been found that points with small (Patrangenaru
et al., 2018) or medium (Bendich et al., 2016) persistence can be more discriminative in
some machine learning tasks: it is likely that the value of points with different levels of
persistence will in fact rely on the underlying data, and the weighting should be chosen
with that in mind.

3.2.1 Mapper

The Mapper algorithm (Singh et al., 2007) was one of the first algorithms to take advan-
tage of a topological viewpoint of data. Although it doesn’t use persistence diagrams, it
uses topological ideas to build an algorithm that can map complex high-dimensional
datasets into a simplicial complex. This low-dimensional representation of the dataset is
typically more interpretable than the data itself, and can be used to highlight areas of
interest.

Suppose we have a dataset X and a continuous map f : X → Z, for some parameter
space Z. If Z = R then mapper computes a stochastic Reeb graph (Reeb, 1946); if Z = R2,
then you get a 2-dimensional simplicial complex; and if Z = S1 then you produce a map
from the graph to the unit circle. Suppose now that Z = R. Let I = range( f |X), and
S be a partition of I. Specifically, let S = {Ij} be a collection of intervals covering I,
described by the intervals length l and percentage overlap p. Then for each Ij ∈ S , define
Xj = {x ∈ X : f (x) ∈ Ij}, so that {Xj} defines a cover of X. Cluster each Xj (using a
clustering method of your choice) to get clusters {Xjk}. Finally, you obtain a simplicial
complex with vertices {Xjk}j,k and an edge from Xjk to Xlm whenever Xjk ∩ Xlm ̸= ∅.
In this way you map large dimensional datasets into a simplicial complex in the plane.
The results of Mapper depend heavily on your choice of filter function f , as well as
your clustering technique and parameters l, p, but experiments have proven Mapper
capable of being very successful when complemented with sufficient human input:
semi-supervised labelling of representative samples of the resulting simplicial complex
is used to classify the underlying data. Lum et al. (2013) offered applications of Mapper
to datasets including tumours, voting, and player performance in the NBA. Famously,
Nicolau et al. (2011) used Mapper to identify a new subtype of breast cancer with high
survival rates (see Figure 3.3). A spin-off company, Ayasdi, was founded with the
Mapper algorithm at the core of its algorithm. Although less detail is offered on their
workings, they use the Mapper algorithm for applications including protein analysis
(Gilmore et al., 2016; Sardiu et al., 2017), traumatic brain injury biomarkers (Nielson
et al., 2017), and infection tolerance (Torres et al., 2016; Louie et al., 2016).



38 Chapter 3. Literature Review

FIGURE 3.3: The results of the Mapper algorithm on breast cancer tumour genetic data.
The resulting complex has structure that is deeply tied to the underlying data. The
c-MYB+ tumour type was discovered using Mapper. Figure reproduced from Nicolau

et al. (2011).

3.2.2 Vectorisation and kernel methods

Because the space of persistence diagrams with the Wasserstein distance is non-Hilbertian
(Turner and Spreemann, 2019), it is difficult to apply existing ML methods that require
more than the metric structure offered under the Wasserstein distance. Techniques to
map diagrams into a more applicable form fall into two categories: finite vectorisation,
or the definition of a positive-definite kernel on diagram space. Most of these techniques
have strong stability properties and empirically perform well. In the words of Bubenik
(2020), “perhaps since the persistence diagram is such a rich invariant, it seems that any
reasonable way of encoding it in a vector works fairly well”. Some featurisation methods
do, however, have both stronger theoretical properties and empirical performance, and
regardless we will see shortly that any mapping into a Hilbert space necessarily deforms
the Wasserstein metric structure.

Feature vectors. Adcock et al. (2016) define a ring of algebraic functions on barcodes
that they use as coordinates to vectorise diagrams. They use these coordinates with
success as inputs to SVM’s, but they are not stable with respect to the Wasserstein
distance. Kališnik (2018) gives tropical coordinates for persistence barcodes that she
shows are stable with respect to the Wasserstein distance. The idea behind both of
these papers is to identify the space of persistence barcodes with the orbit of some
action, then find a generating set of the space that can be used to produce feature
vectors. Fabio and Ferri (2015) extended work originally developed for size functions
(Ferri and Landi, 1999) that identifies a persistence diagram’s points with the complex
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FIGURE 3.4: The pipeline from data to persistence image. Figure reproduced from
Adams et al. (2017).

roots of some polynomial, then uses the coefficients of that polynomial as a vector
representation. Pachauri et al. (2011) bin a kernel density estimate of a persistence
diagram to obtain a finite vector, which they use to analyse cortical thickness to study
neural disorders. Carrière et al. (2015) map a persistence diagram to a vector of its points
pairwise distances, proving that the mapping is stable with respect to the bottleneck
distance. Bendich et al. (2016) transforms a persistence diagram from birth/death axes
to the equivalent birth/persistence axes, then bins the plane and counts the number of
points in each bin to form a vector representation of the diagram. This approach is used
by Bendich et al. (2016) to analyse brain arteries, but the vector representations are not
stable. This was fixed by Adams et al. (2017) with the development of persistence images,
a vectorisation technique that is commonly used in practice. They place a Gaussian,
weighted by persistence, on each point of a diagram with birth/persistence axes. One
obtains the persistence image by integrating the summated Gaussians over some binning
of the space. This gives a stable representation of the persistence diagram. Specifically,
given a diagram D = {(x, y)}, define a map T((x, y)) = (x, y− x) and let ϕu be the
normalised symmetric Gaussian in the plane, with mean µ and variance σ2. Let f be a
weighting function. Then the persistence surface is defined as

ρD(z) = ∑
u∈T(D)

f (u)ϕu(z).

Discretise a relevant subdomain of ρD into a grid {p1, . . . , pn} with n ‘pixels’. Then
integrating over each pi gives the persistence image:

I(ρD) =

[︃∫︂∫︂
pi

ρDdydx
]︃n

i=1
.

Figure 3.4 gives an example of the entire pipeline. Adams et al. (2017) use an SVM
on the resulting vectors to discriminate between synthetic data and to classify discrete
dynamical models. Kimura et al. (2018) use PCA on persistence images to identify
trigger sites in materials science. They were also used to analyse 3d surface scans by
Zeppelzauer et al. (2016). Chen et al. (2015) offer a statistical analysis of the persistence
surface, which they call the persistence intensity function. Turkes et al. (2022) evaluate
the efficacy of persistence images and persistence landscapes as feature vectors fed to
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SVMs across a range of tasks, demonstrating that they can powerfully capture structures
such as curvature and convexity.

More recent approaches include template functions given by Perea et al. (2019). They de-
scribe a general vectorisation technique using template functions that are only required
to be continuous and compactly supported. They provide realisations using tent maps
and interpolating polynomials, and match or exceed the state of the art for previous
vectorisations. Zieliński et al. (2019) adapt bag-of-words vectorisation, a technique
that vectorises by binning the diagram, but the bins are decided by k-means clustering.
Chevyrev et al. (2020) realise the barcode as a path in some vector space, and use the path
signature as a feature vector. Moon and Lazar (2020) provide a two-stage hypothesis test
specifically for vectorised persistence diagrams. Hacker (2020) develop k-simplex2vec,
an extension of the celebrated node2vec algorithm (Grover and Leskovec, 2016). This
can learn mappings of simplicial complexes into Euclidean space in a way that respects
the structure of the simplicial complex.

Kernel methods. Given the prevalence of kernel methods in machine learning (Hofmann
et al., 2008), it makes sense to look for a kernel on the space of persistence diagrams and
gain access to those techniques for persistence diagrams. The p-Wasserstein distance
does not naturally lead to a valid kernel on the space of persistence diagrams for any
1 ≤ p ≤ ∞ (Reininghaus et al., 2015), but work has been done on defining a valid
positive-definite kernel (Cuturi, 2009) on persistence diagram space. The first kernel for
persistence diagrams was proposed by Reininghaus et al. (2015), who propose a kernel
given by the solution to a heat diffusion problem with Dirac delta representations of
diagrams, along with their reflections in the diagonal, as the initial conditions. When
solved, this gives the kernel between persistence diagrams D and E given by

k(D, E) =
1

8πσ ∑
p∈D
q∈E

exp
(︃
−||p− q||2

8σ

)︃
− exp

(︃
−||p− q̄||2

8σ

)︃
,

where σ can be interpreted as a scale parameter and q̄ denotes the reflection of q in the
diagonal. This gives a stable positive-definite kernel on persistence diagrams. Note that
without the addition of the reflection in the diagonal, this is similar to the persistence
surface in persistence images (Adams et al., 2017). Reininghaus et al.’s kernel was
used by Kwitt et al. (2015) as a basis for statistics on diagrams. Another function on
diagrams that we’ve encountered is the persistence landscape (Bubenik, 2015). In fact,
Reininghaus et al. (2015) show that for the 2-Wasserstein distance, the landscape admits a
positive-definite kernel. Similar to the persistence landscape is the Persistence Indicator
Function (Rieck et al., 2019b) (sometimes called the Betti curve), which is also shown
to admit a kernel. Another stable kernel was proposed by Kusano et al. (2016) who
add weighted Gaussians to define the Persistence Weighed Gaussian Kernel. Carriere et al.
(2017) develop a stable kernel based on an approximation of the 1-Wasserstein distance
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called the Sliced Wasserstein distance (Rabin et al., 2011). Unlike the other kernels we’ve
seen, they analyse how their kernel deforms the original metric structure on diagram
space, and prove that their kernel is discriminative with respect to the original diagrams.
They further show that their kernel empirically outperforms the previous kernels, and
offer a technique to more efficiently approximate their kernel matrix. Le and Yamada
(2018) use the Fisher information metric (Amari and Nagaoka, 2000), a Riemmanian
distance between distributions, to define another kernel for persistence diagrams.

Metric deformation. The deformation analysis of Carriere et al. (2017) is studied more
generally. We know that when defining a positive-definite kernel on diagram space, you
are implicitly mapping into a Hilbert space. As the p-Wasserstein metric structure on the
space of persistence diagrams does not admit an isometry into a Hilbert space for any
1 ≤ p ≤ ∞ (Turner and Spreemann, 2019), we necessarily distort diagram space with
this implicit mapping. An effort has been made to lower-bound the distortion caused.
Carrière and Bauer (2019) study embeddings in which the metric is distorted linearly,
showing that for infinite dimensional Hilbert spaces a lower bound is dependant on
the cardinality of the diagram, and for finite dimensional Hilbert spaces finding such
an embedding is impossible. Coarse embeddings into Hilbert spaces are also studied,
which require the distortion of the metric is uniform. A coarse embedding of persistence
diagram space with the p-Wasserstein distance is shown to be impossible for p = ∞
by Bubenik and Wagner (2019) and for p > 2 by Wagner (2019). The first positive
result regarding embedding persistence diagrams into Hilbert space was given by Mitra
and Virk (2021), and states that the space of persistence diagrams on n points with the
p-Wasserstein distance does coarsely embed into Hilbert space for any p. However, they
also show that the space of persistence diagrams with finitely many points does not
coarsely embed into Hilbert space for p = ∞.

3.2.3 Deep learning

Although we’ve seen tailored representations of persistence diagrams, deep learning
has demonstrated over the last decade that learning a task-specific representation of
persistence diagrams could be more effective. The first efforts to use machine learning
with persistence diagrams focused on learning parameters to better represent the dia-
gram. Later efforts integrated various learnt and fixed representations of persistence
diagrams, generally referred to as persistence-based summaries, into machine learning
techniques in various ways. To use deep learning, its important to understand how we
can differentiate through persistence diagrams.

Differentiability. Let K be a simplicial complex, f the filtration map, and ω some
parameters that we wish to optimise. The differentiability of persistence diagrams
was studied by Poulenard et al. (2018), who introduce a map π : D → K, given by
(x, y) ↦→ (vx, vy), which maps points in the persistence diagram to the simplices in
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the underlying filtration which give rise to the topological feature that the diagram
point represents. Slightly perturbing the filtration function f can always make this map
bijective (Skraba et al., 2020), so it can be used to map a point in the diagram back to
the simplex (and thus, the data points) that cause the birth or death of a topological
feature. Using this map, they show that the derivative of the persistence map is locally
well-defined, and show that for a point (x, y) in a persistence diagram we can get the
derivative (︃

∂x
∂ω

,
∂y
∂ω

)︃
=

(︃
∂ f
∂ω

π((x, y))|b,
∂ f
∂ω

π((x, y))|d
)︃

.

Given a function F : D → R that we wish to optimise, we can use the chain rule to
obtain the derivative of F on D = {(xi, yi)}i∈I with respect to the parameters ω by
computing

∂F
∂ω

= ∑
i∈I

∂F
∂xi
· ∂xi

∂ω
+

∂F
∂yi
· ∂yi

∂ω

= ∑
i∈I

∂F
∂xi
· ∂ f

∂ω
π(x)|b +

∂F
∂yi
· ∂ f

∂ω
π(y)|d.

Poulenard et al. (2018) used their differentiability for what they call function simplification
and alignment, forms of regularisation and loss that would be utilised by later work in
a deep learning context. Leygonie et al. (2019) studied the differentiability of maps to
and from persistence diagrams using the theory of diffeological spaces; their framework
comprehensively answers the question of differentiability for persistence. Carrière
et al. (2020) simplify the process of optimising through the persistence map, which they
characterise as simply a permutation of a vector containing the filtration indices. With
this characterisation they give a proof of convergence for stochastic gradient descent of
a loss function L composed with the persistence map, as long as L is locally Lipschitz.
Solomon et al. (2021) introduce a novel backpropogation scheme that is both faster and
more stable.

Learnt vectorisation. Instead of fixed vectorisations, Hofer et al. (2017, 2019b) first
proposed learning stable task-specific representations of persistence diagrams in the
form of an input layer for neural networks that accepted diagrams. The representation
is similar to some kernel functions for diagrams (Reininghaus et al., 2015; Kusano et al.,
2016), but now the parameters of the representation are learnt rather than fixed. Using
this approach achieved the state of the art in classifying social network graphs. Figure
3.5 shows the pipeline for their layer. PersLay is a general topological layer architecture
proposed by Carrière et al. (2020). It is defined by

PersLay(D) = Γ({w(p) · ϕ(p)}p∈D),

where w is a weighting function, ϕ is a function on a point of the diagram (e.g., a
Gaussian centred at the point), and Γ is a permutation invariant function (such as
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FIGURE 3.5: Instead of fixed representations, Hofer et al. (2017) propose learning task-
specific vectorisations using a parameterised function. Figure reproduced from Hofer

et al. (2019b).

max, min, average, etc). Note that this formulation is very general, and by selecting
specific functions Γ, w and ϕ this can represent many of the diagram representations
that we’ve already seen. As we can parameterise Γ, w and ϕ, we can learn them using
PersLay. Using a variety of different functions for Γ, w and ϕ, they are able to match
or surpass the previous state of the arts for dynamical systems analysis and graph
classification. Note that PersLay can be used with topological representations other than
persistence diagrams: Elkin and Kurlin (2020) introduce the mergegram, an extension
of the 0-persistent homology with desirable theoretical properties that can outperform
other invariants when using PersLay (Elkin and Kurlin, 2021). Kim et al. (2020) learn
representations for peristence landscapes using the previously introduced DTM function
(Chazal et al., 2011) for outlier robustness, and show that doing so reduces the metric
deformation implicit to any mapping of a diagram into a Hilbert space. They compute a
collection of weighted persistence diagrams, and process them with a parameterised
differentiable map into a vector. Their layer is stable and differentiable, so can learn
the parameters, and is shown to be experimentally comparable to the similar approach
by Hofer et al. (2017). Zhao and Wang (2019) define a weighted kernel, where the
weighting function is learnt. Using this kernel as a basis for classification, they match or
outperform the state of the art on some graph classification tasks.

Topological loss and regularisation. Chen et al. (2018) first proposed a topological
regularisation term. They define the robustness of a connected component, a concept
that is closely related to persistence. Their regulariser is the sum of squares of the
robustness of each of the connected components of the decision boundary. They analyse
the differentiability of their regulariser and empirically demonstrate that it improves
classifier performance on several synthetic and real-world datasets. Gabrielsson et al.
(2020) define a topological loss function inspired by the tropical coordinates vectorisation
technique developed by Adcock et al. (2016). Specifically, given a diagram D = {(bi, di)}i
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with points in descending order of persistence, the loss is given by

L(p, q, i0, D) =
|D|

∑
i=i0

|di − bi|p
(︃

di + bi

2

)︃q

,

where p, q define a polynomial, and i0 represents prior topological knowledge. By
ignoring the first i0 most persistent points, you can promote having i0 topological
features. This can be used either as topological regularisation: having a low value for
i0 promotes topological simplicity; or to incorporate topological prior knowledge by
choosing a value that you know is correct (e.g., an 8 in MNIST has two loops). They
empirically demonstrate that topological regularisation leads to cleaner generated data
and incorporating topological prior knowledge can improve the generation quality.
Gallego-Posada and Forré (2021) investigate a topological regularisation term that aims
to preserve the simplicial structure of the data. Interestingly, it had been hypothesised
that the use of topological features could improve ML models’ robustness against
adversarial attacks (Chakraborty et al., 2018). Gabrielsson et al. demonstrate for the
first time that this is true: adding their topological loss to an MNIST classifier took an
adversarial attack (Goodfellow et al., 2015) from 100% success rate to 25.2% success rate.
Clough et al. (2020) also offer a topological loss function, which uses topological prior
knowledge in the form of Betti numbers.

Autoencoders and GANs. Hofer et al. (2019a) propose a topological loss for autoen-
coders called the connectivity loss. Imposing structure on the latent space of autoencoders
has been shown to improve performance (Makhzani and Frey, 2014; Vincent et al., 2010;
Rifai et al., 2011). Hofer et al. control the structure of the latent space using prior
topological knowledge. Intuitively, the connectivity loss encourages the autoencoder to
topologically organise the latent space by controlling the number of connected compo-
nents. In their example, they focus on one-class learning and use their loss to encourage
the latent space to have two connected components. Moor et al. (2019) also propose
a form of topological autoencoders. They restrict the latent space to have the same
topology as the input space by adding a topological term to the reconstruction loss. They
introduce a directional topological loss: any diagram D can be represented by the distance
matrix of the underlying points A and the pairings π that link birth/death simplices
to the data points that give rise to them. Moore et al. link the birth/death simplices
of the input space to the pairwise distances of the latent space , and vice versa. This
means that rather than just attempting to match topology, they pass information about
the topologically important points between the input and latent space. With synthetic
data, they find that allows them to maintain important structural information that ordi-
nary autoencoders lose: see Figure 3.6 for details. Dey and Das (2020) use topological
regularisation to constrain the topology of the latent space in generative adversarial
networks (GANs). Zhou et al. (2021) define a topological metric for disentanglement on
the generative model in GANs. An interesting insight on any dimensionality reduction
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FIGURE 3.6: Given a dataset with nested spheres, only the topological autoencoder
preserves the nesting relationship in the latent space. Figure reproduced from Moor

et al. (2019).

technique is given by Landweber et al. (2016), who show that any function Rm → Rn,
with m > n, is either discontinuous (and therefore make close points distant) or collapses
an unbounded domain to a single point (so is losing information), meaning that any
dimensionality reduction methodology can be deceptive.

Convolutional networks. Zhao et al. (2020) use persistence images to enhance graph
neural networks. Specifically, a spatial graph convolution uses reweighting vectors
that contain information about local structure in the graph that ordinarily uses node
degrees or learnt self-attention mechanisms. Zhao et al. learn a mapping from pixels
of the persistence image to the reweighting vector in order to include information
about loops in the local graph structure. They outperform existing benchmarks across
a large variety of tasks. Both Hofer et al. (2019c) and Rieck et al. (2019a) also use the
persistence diagram for additional topological information when learning from graph
data. Gabrielsson and Carlsson (2019) topologically analyse convolutions in CNNs,
demonstrating that the integration of topological information can improve network
performance and proving that topological complexity correlates to generalisation ability.
They also analyse topological groupings of convolutions to aid interpretability. Yan
et al. (2021) compute the (extended) persistent homology of local neighbourhoods of
graphs to inform link prediction with Graph Neural Networks. Rieck (2023) evaluates
the context and efficacy of persistent homology within graph learning.

Image processing. Interpreting pixels as a cubicial complex gives a natural structure for
filtrations on images. Using this filtration, persistence-based summaries have been used
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to find topologically discriminative shapes in image data. An early work by Letscher
and Fritts (2007) split the image into regions using persistent homology, then merged
regions in order of persistence for semi-supervised segmentation. Qaiser et al. (2016) split
tumour images into patches, then use the k-nearest neighbour algorithm on the Kullback-
Leibler divergence (Kullback and Leibler, 1951) distances on persistence diagrams to
match similar patches together. Assaf et al. (2017) use the cubicial complex to find the
most persistent connected components and treat those as segmented objects for labelling.
Luo et al. (2019) also select regions with large persistence for segmentation, and offers
an extensive comparison to other image segmentation techniques. Clough et al. (2020)
combine their loss with CNN-based segmentation to give cleaner segmentation via the
incorporation of topological priors. Hu et al. (2019) use a similar approach, giving a
topological loss based on enforcing topological priors (via known Betti numbers) to
improve image segmentation. They extended this work in Hu et al. (2021). Rieck et al.
(2020) take a time series of fMRI images to compute a stack of persistence images: one
for each time step. They show that clustering the stacks of persistent images results
in meaningful groupings of data. Other topological invariants for images have been
studied, for example, Kurlin (2015a) introduces an invariant called the homologically
persistent skeleton, which they also show to be stable under perturbations and later extend
to point clouds (Kurlin, 2015b; Kalisnik et al., 2019; Smith and Kurlin, 2021).

Neural network analysis. Persistent homology has been used to analyse the structure
of neural networks. Given a diagram D, Rieck et al. (2019c) define neural persistence as

||D||p =

(︄
∑

(b,d)∈D
|d− b|p

)︄1/p

.

They find that the neural persistence of perceptrons that are trained to convergence
differs significantly to perceptrons that diverge or have random weights. Used for early-
stopping, it can achieve comparable results to validation loss as a convergence indicator.
Guss and Salakhutdinov (2018) show that the topological capacity of a network, defined
in terms of the Betti number of the decision boundary, is a limiting factor in its ability to
generalise. Gebhart and Schrater (2017, 2019) demonstrate that adversarial examples
can be characterised and detected through the use of persistent homology. Carlsson and
Gabrielsson (2020) used Mapper to analyse the topology of pretrained networks, leading
to increased interpretability of each layer in a network. Liu et al. (2020) compute the
persistent homology of neural networks to detect feature interactions across the network.
Wu et al. (2020) use connected components in datasets to clean potentially noisy data.

3.2.4 Unsupervised learning

Initially, persistent homology was used in clustering algorithms to automatically deter-
mine the correct number of clusters (Chazal et al., 2013). Using the algorithm proposed
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by Turner et al. (2012), it became possible to perform clustering directly on the space
of persistence diagrams. Hard k-means clustering was implemented by Maroulas et al.
(2017), who also performed the convergence analysis. Lacombe et al. (2018) implemented
a version of the same algorithm using their faster technique to compute Fréchet means.
In the next chapter, we develop fuzzy c-means clustering for persistence diagrams by
extending Turner et al.’s algorithm to the weighted case, as well as providing the same
convergence guarantees as traditional fuzzy clustering. Stratification learning assumes
that data is sampled from a collection of different manifolds, and attempts to infer
which points belong to the same strata. Persistent homology has been used for this
task (Bendich et al., 2010, 2012). We extend the fuzzy c-means clustering unsupervised
learning algorithm to the space of persistence diagrams in Chapter 5.

3.3 The Laplacian in Machine Learning

The graph Laplacian has many applications in machine learning. We saw in Section
2.3.1 how it forms the basis of optimal graph embeddings, which underpins spectral
clustering (Pothen et al., 1990; Demmel, 1999). The eigenbasis of the graph Laplacian
provides convolutions for graph neural networks (Kipf and Welling, 2017). Deng et al.
(2022) use the spectrum of the Laplacian to construct a trusted spectral representation of
graphs to increase resilience against adversarial attacks on graph neural networks.

The (higher-order) combinatorial Laplacian has more limited applications in the litera-
ture, but with more interest in higher-order interactions the combinatorial Laplacian is
being increasingly used. Notably, it is used by Bodnar et al. (2021) to provide updates
for an extension of graph neural networks to simplicial complexes. They define an
attention mechanism over their simplicial neural nets in Goh et al. (2022). Research
groups led by Wei and Xia have recently been releasing a body of work looking at the
combinatorial Laplacian as a feature vector. They compute the combinatorial Laplacian
at fixed intervals over a filtration, looking at applications in fullerene analysis (Wang
et al., 2019), protein binding (Meng and Xia, 2021; Wee and Xia, 2022), chromosome
structures (Gong et al., 2022), and drug design (Jiang et al., 2021). In Qiu and Wei (2023)
they investigate applications to protein engineering, linking the persistent homology
and combinatorial Laplacian back to the persistent Laplacian, providing evidence for
the application of persistent Laplacian to data science. In fact, in Chapter 4 we use the
persistent Laplacian for data science for the first time.

https://users.math.msu.edu/users/weig/
https://personal.ntu.edu.sg/XIAKELIN/index.html
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Chapter 4

The Persistent Laplacian

In Section 2.3.3 we described the persistent Laplacian - an extension of the combinatorial
Laplacian to the persistent case that has recently been introduced. In this first research
chapter we consider the persistent Laplacian as the theoretical grounding of a new type
of persistence-based summary, which we propose and evaluate. It makes sense as a
persistence-based summary: we have seen that its kernel contains all the information of
the homology groups, and we know that the spectrum of its non-zero image contains
detailed information about its structure in the case of the 0-Laplacian - its not far fetched
to consider that is also the case for the higher Laplacians. In fact, we provide some initial
evidence of the efficacy of the higher-order non-zero image, by examining its utility as a
feature vector.

In the first section of this chapter, however, we look at some motivation for seeking out
persistence-based summaries that contain more than just the topological information
in persistence diagrams. Having completed the literature review of applications of
persistence-based summaries in machine learning, we were left considering an obvious
initial question: is there a quantifiable advantage to using topological information in
machine learning? In Section 4.1 we present our attempts to provide a statistical learning
theoretic justification for the inclusion of persistence diagrams when learning. We
show, however, that restricting hypothesis classes via topological prior knowledge in
the form of a persistence diagram does not result in even a nonuniformly learnable
class of functions. That is, the additional knowledge provided by including topological
information does not reduce the complexity of the hypothesis class sufficiently to provide
useful information in the eyes of statistical learning theory. With hindsight, we feel that
this result follows intuition: structures that have the same homology groups can be
different enough that vastly different underlying data can have the same persistence
diagram. Thus there will be plenty of cases in which topological information is far from
sufficient for good ML. This offers the motivation for studying the persistent Laplacian,
as it gives a new persistence-based summary that can be used in machine learning which
contains both topological and geometric information.
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Publications and contributions. A version of the work on topological learnability in
which we incorrectly believed the hypothesis class to be learnable was presented as a
spotlight presentation at the NeurIPS 2020 workshop on TDA & Beyond (Bishop et al.,
2020). The application of the persistent Laplacian was accepted to ICML (Davies et al.,
2023b). In the statistical learning theory work, the idea was conceived jointly between
myself and the co-first author of the paper, Nick Bishop. He provided the background on
statistical learning theory and I provided the background on the fibre of the persistence
map and the role of topological loss terms in machine learning. I proved the main result
from that work, namely Theorem 4.6. In the application of the persistence Laplacian to
data science, I conceived the research. Our coauthor Zhengchao Wan verified that the
Schur complement formulation of the persistent Laplacian holds for cubical complexes.
I developed our representation as a feature vector and ran the experiments, ablation
studies, and comparisons to non-topological models.

4.1 Motivation: Topological Learnability

In Section 3.2.3 we saw many techniques that have recently been introduced to add
persistence-based terms to loss functions, either seeking to integrate knowledge of
topological priors or to regularise the algorithm by encouraging topological simplicity.
In both cases, the implicit role of this term is to topologically restrict the class of functions
from which the learnt function can be selected. There has been empirical success in
specific topologically-motivated settings, but there exists no theoretical justification for
the inclusion of such topological restrictions in a general setting. We investigate the use
of Statistical Learning Theory to characterise the utility of Topological Data Analysis in
machine learning. In the context of statistical learning theory, if a hypothesis class of
functions is learnable then there are bounds on the number of sampled points required to
probably approximately learn the best classifier. In this section we prove that restricting
a hypothesis class to all decision boundaries that give rise to a specific persistence
diagram is not sufficient to make the hypothesis class (nonuniformly) learnable. In
other words, topological prior knowledge does not restrict the possible functions we
can learn sufficiently for any classical results on learnability. This result, which is
potentially unsurprising given the extent to which homotopic spaces can differ, justifies
our investigation of the persistent Laplacian for data science: an operator which contains
both topological and geometric information.

Our setup is the following. Given prior knowledge about the topology in the form of a
persistence diagram D, topological loss terms implicitly restrict the decision boundaries
to the class of functions

PH−1(D) = { f : PH( f ) = D} ,

https://scholar.google.com/citations?user=bfaCPiYAAAAJ
https://scholar.google.com/citations?user=kmTKYtoAAAAJ


4.1. Motivation: Topological Learnability 53

where PH is the persistence map. This class of functions has been studied by Curry
(2018). Given a real-valued function f : [0, 1]→ R, we identify its graph as the decision
boundary of a binary classifier h f : [0, 1]×R → {0, 1} by

h f ((x, y)) =

⎧⎨⎩0, f (x) ≤ y,

1, f (x) > y.

Thus we are studying the hypothesis class

HD = {h f : f ∈ PH−1(D)}.

4.1.1 The fibre of the persistence map

We use work by Curry (2018) on the fibre of the persistence map to understand the
hypothesis class HD. We say two continuous functions f , g : [0, 1] → R are graph-
equivalent if there is an orientation preserving homeomorphism ϕ : [0, 1]→ [0, 1] such
that f = g ◦ ϕ. We say a continuous function f : [0, 1] → R is Morse-like if it is graph
equivalent to a piecewise linear function where every critical point is isolated and has a
distinct critical value. Let PH0 :M→ D, whereM is the set of Morse-like real-valued
functions on the interval with local minima at x = 0 and x = 1, and D is the space of
persistence diagrams. Then Curry (2018, Theorem 6.12) tells us that for any persistence
diagram D,

PH−1
0 (D) =

⋃︂
i∈I
H fi ,

where I is a finite indexing set over some collection of functions { fi}i andH fi = {g ∈
M : g ∼ fi} with ∼ denoting graph equivalence. Note that Smith and Kurlin (2022)
studies the families of metric spaces with identical persistence in dimension 1, although
we do not use this result (in contrast to this, Widdowson and Kurlin (2023) introduce an
invariant which is a complete and Lipschitz continuous invariant of finite unlabelled
pointclouds in Euclidean space).

4.1.2 Statistical learning theory

Statistical Learning Theory aims to quantify the efficacy of machine learning algorithms.
In particular, given an algorithm that can draw potential classifiers from some hypothesis
class, it aims to tell you whether the algorithm can probably, approximately correctly
learn to classify any labelled dataset. We use these tools to investigate the efficacy of
topological loss functions.

In the standard supervised machine learning setting a learner is given a sample x from a
data space X and would like to accurately predict a corresponding target label y from
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a label space Y . The learner has access to a finite sample S = {(xi, yi)}m
i=1 of training

examples sampled from a distribution µ over X ×Y .

The goal of the learner is to select a hypothesis h : X → Y from a hypothesis set H
which achieves low expected error with respect to the distribution µ. The error of a
hypothesis rule h on a labelled sample (x, y) is given via a loss function ℓ : Y × Y → R

by evaluating ℓ(h(x), y). More formally, the goal of the learner is to select a hypothesis
which attains low risk, where risk is formalised by

Lµ(h) = E
(x,y)∼µ

[ℓ(h(x), y)] .

A learning algorithm is a mapping from samples to the hypothesis set H. Of course,
the learner would like to employ a learning algorithm which selects a hypothesis that
attains low risk with high probability. These motivations are captured by the agnostic
probably-approximately-correct (PAC) framework, first introduced by Valiant (1984).

Definition 4.1. A hypothesis classH is agnostic PAC learnable if there exists a function
mH : (0, 1)2 → N and a learning algorithm such that for every ϵ, δ ∈ (0, 1) and for
every distribution µ over X ×Y , when running the learning algorithm on m ≥ mH(ϵ, δ)

independent and identically distributed (i.i.d.) examples generated by µ, the algorithm
returns a hypothesis h such that, with probability of at least 1− δ (over the choice of the
m training examples),

Lµ(h) ≤ min
h′∈H

Lµ(h′) + ϵ.

We call any such algorithm an agnostic PAC learning algorithm for the setH.

In other words, a hypothesis set is agnostic PAC learnable if there exists a learning
algorithm such that for any (ϵ, δ), there exists an m ∈ N such that when the algorithm
receives at least m training examples, it returns a hypothesis rule that attains risk ϵ-close
to the that of the best hypothesis in the set with probability 1− δ. Of course, any learner
would like to employ an agnostic PAC learning algorithm when one is available, as they
give theoretical guarantees on the risk achieved as the sample size increases. Typically,
m is referred to as the sample complexity necessary for a given algorithm to guarantee
an ϵ-efficient hypothesis with probability 1− δ.

In the context of binary classification, we have Y = {0, 1}. In this setting, a useful
property to consider when analysing the PAC learnability of a hypothesis setH is the
Vapnik-Chervonenkis (VC) dimension ofH (Vapnik and Chervonenkis, 1971, Section
1.1).

Definition 4.2. Let C = {c1, . . . , cm} ⊂ X andHC be the restriction ofH to C defined by

HC = {(h(c1), . . . , h(cm)) : h ∈ H}.
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Then we say thatH shatters C if |HC| = 2|C|.

Intuitively, this definition means that given any labelling of the points C, there exists a
classifier in H that will give assign the points that labelling. The following definition
captures the scale of this. That is, the number of points that a hypothesis class is able to
label in any possible way.

Definition 4.3. The VC dimension of a hypothesis classH, denoted by VCdim(H) is the
maximal size of a set C ⊂ X , which can be shattered byH. IfH shatters sets of arbitrary
size, we say thatH has infinite VC dimension.

In fact, it is well-known that VC dimension fully characterises the PAC learnability of a
hypothesis class in the case of binary classification. That is, a hypothesis setH is PAC
learnable if and only if it has finite VC dimension (Vapnik, 2000).

In many cases we desire learnability guarantees for complex hypothesis sets which do
not have finite VC dimension. In such cases, we can consider a relaxation of the PAC
framework called nonuniform learnability (Benedek and Itai, 1988) in which we can
derive weaker, but still useful, guarantees for generalisation.

Definition 4.4. A hypothesis classH is nonuniformly learnable if there exists a learning
algorithm, A, and a function mNUL

H : (0, 1)2 ×H → N such that, for every ϵ, δ ∈ (0, 1)
and for every h ∈ H, if m ≥ mNUL

H (ϵ, δ, h) then for every distribution µ, with probability
at least 1− δ over the choice of S ∼ µm, it holds that

Lµ(A(S)) ≤ Lµ(h) + ϵ.

Similarly to the framework of PAC learning, nonuniform learnability of hypothesis
classes for binary classification can be characterised through VC dimension (Benedek
and Itai, 1988).

Theorem 4.5. A hypothesis classH of binary classifiers is nonuniformly learnable if and only if
it is a countable union of agnostic PAC learnable hypothesis classes.

4.1.3 Topologically restricted hypothesis classes

Following the work by Curry on the fibre of the persistence map (Curry, 2018), we
concern ourselves with Morse-like real-valued functions on the unit interval with local
minima at x = 0, 1, and the 0th persistence diagram. Although this is clearly a restricted
setting, it allows us to perform an initial investigation into the learnability of topolog-
ically restricted hypothesis classes. Curry (2018) tells us that PH−1

0 (D) is finite when
we introduce graph equivalence on the set of functions. Moreover, Theorem 4.5 tells us
that a hypothesis class of binary classifiers is nonuniformly learnable if and only if it is a
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(i) Shattering one point (ii) Shattering several points

FIGURE 4.1: We can shatter arbitrarily many points between two critical points using
graph equivalent functions, proving that the VC dimension ofH f is unbounded.

countable union of agnostic PAC learnable hypothesis classes. Therefore, to show that
restricting a hypothesis class of functions to those with a unique persistence diagram
is nonuniformly learnable, we would have to show that the class of graph equivalent
functions is agnostic PAC learnable, or equivalently, that it has finite VC dimension.
Therefore our focus is on the collection of classifiers with decision boundaries that are
graph equivalent to some function f , which we denoteH f .

We initially believed that VCdim(H f ) = 0. However, to prove that VCdim(H f ) > 0
we just need to find one point that can be shattered by H f . Recall that two functions
are graph equivalent if there is an orientation preserving homeomorphism between
them, and a continuous function f is Morse-like if it is graph equivalent to a piecewise
linear function where every critical point is isolated and has a distinct critical value. By
applying orientation-preserving transformations, we can ‘stretch and squeeze’ the x
axis, but we can never change the number of critical points or their values. Imagine
the most simple case: a point to be classified lying between two critical points that are
connected with a line. We can easily find orientation-preserving homeomorphisms that
allow us to classify that point as either 0 or 1, as shown in Figure 4.1i. Therefore we have
shattered that point. In fact, if there are arbitrarily many points lying on a line between
two critical points, then we can shatter them, as demonstrated in Figure 4.1ii. Therefore
the VC dimension ofH f = ∞.

Now, our counterexample to the nonuniform learnability of H f came about when
we introduced inflection points. As these allow our classifier to change from convex
to concave without introducing additional critical points, this lets graph equivalent
functions be extremely expressive. We considered that perhaps restricting the number
of inflection points allowed within H f could lead to a finite VC dimension? Such a
restriction is realistic: the number of inflection points is finite in many common learning
algorithms, including neural networks. However, there remains sets of points that
can be shattered, as we show in the following theorem (which also captures the more
expressive case where we have unbounded inflection points).

Theorem 4.6. Let f : [0, 1]→ R be a Morse-like real-valued function on the unit interval with
local minima at x = 0, 1, andH f be the class of functions that are graph equivalent to f . Addi-
tionally suppose that the number of inflection points (i.e., points where the function f changes



4.1. Motivation: Topological Learnability 57

FIGURE 4.2: Bounding the number of inflection points does not prevent an arbitrary
number of points from being shattered.

from convex to concave) is finite. Then VCdim(H f ) = ∞ and HD is not (nonuniformly)
learnable.

Proof. Without loss of generality, consider a section of f that is increasing and concave,
i.e., it lies between two critical or inflection points (x0, y0), (xn+1, yn+1). Place n points
(x1, y1), . . . , (xn, yn) between them so that 2xi = xi−1 and yi = 2yi−1 for all i = 1, . . . , n +

1. Define a new list of points by

(αi, βi) =

⎧⎨⎩(xi + ϵ, yi), if (xi, yi) is labelled 1,

(xi − ϵ, yi), if (xi, yi) is labelled 0,

for some small ϵ > 0. The decision boundary defined by connecting {(αi, βi)}i into a
piecewise linear function can attain any labelling of the n points, and so shatters them.
Furthermore, it is increasing, has no critical points, and is concave (an example is shown
in Figure 4.2). Therefore n points can be shattered by such a function for arbitrary n, and
VCdim(H f ) = ∞.

In fact, we cannot find any reasonable conditions on the hypothesis classes that would
make them learnable. This highlights a key problem with learning with persistence
diagrams: although they provide topological information which can be useful in specific
cases, our analysis indicates that they cannot always provide additional useful informa-
tion. This is due to the amount of information discarded when we are only interested in
shape up to homotopy equivalence: when learning we need more than just information
about the topological invariants. Motivated by this, we now investigate the persistent
Laplacian for machine learning: an operator on simplicial complexes that contains all
of the information in homology groups in its kernel, as well as additional geometric
information in its non-zero image.
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4.2 The Persistent Laplacian for Data Science

The persistent Laplacian is a recent theoretical extension of the combinatorial Laplacian
to the persistent case. Recall from Section 2.3.3 that the persistent Laplacian is defined
as follows. Let K ⊆ L be a simplicial pair and consider the subspace of CL

p given by

CL,K
p =

{︂
c ∈ CL

p : ∂L
p(c) ∈ CK

p−1

}︂
⊆ CL

p , (4.1)

so that, CL,K
p consists of all simplices in CK

p that have their boundary in CK
p−1 ⊆ CL

p−1. We
write ∂L,K

p for the restriction of the boundary operator to this subspace. The persistent
p-Laplacian is defined by Mémoli et al. (2022) as

∆K,L
p =

(︂
∂L,K

p+1

)︂∗
◦ ∂L,K

p+1 + ∂K
p ◦ (∂K

p )
∗, (4.2)

with the up persistent p-Laplacian given by ∆K,L
p,up =

(︂
∂L,K

p+1

)︂∗
∂L,K

p+1. The relation between
each operator is shown in the diagram from Mémoli et al. (2022) below.

CK
p+1 CK

p CK
p−1

CL,K
p+1 CL,K

p+1

CL
p+1 CL

p CL
p−1

∂K
p+1(︂
∂L,K

p+1

)︂∗
∂K

p

(∂K
p )
∗

∂L,K
p

∂L
p+1 ∂L

p

We have also seen that this operator contains both topological information, as its kernel
is isomorphic to the homology groups (Theorem 2.3), and geometric information via
its non-zero eigenvalues. This combination of different types of structural information
makes it a natural candidate for investigation in the context of data science. In the
remainder of this chapter, we consider the persistent Laplacian as a feature vector for
machine learning for the first time and assess its usefulness in practical applications.
Namely, we empirically investigate its efficacy in comparison to other topological and
geometric techniques at MNIST classification and the prediction of molecular properties
from the MoleculeNet dataset Wu et al. (2018). Additionally, we evaluate the importance
of utilising the filtration in the persistent Laplacian and different magnitude eigenvalues
to the success on the downstream task. We provide the first evidence that the persistent
Laplacians outperforms the current mainstream topological tools, paving the way for its
wider use by the ML and TDA communities.
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4.2.1 The persistent Laplacian for cubical complexes

Computer vision is the area of computer science which concerns itself with processing
images and videos, and makes up a significant part of machine learning research. In
fact, one of the classical benchmark datasets for any new technique in machine learning
is MNIST, a dataset of 28x28 images of handwritten digits (LeCun et al., 2010). In order
to make the persistent Laplacian applicable to image datasets (including MNIST, which
we wish to benchmark our dataset on) we need to consider a new type of complex. Up
until now we have only considered simplicial complexes - collections of p-dimensional
triangles that enabled us to represent the structure of our datasets. Although we could
construct simplicial complexes from pixel data, it makes much more sense (and is the
standard approach) to instead use cubical complexes. A cubical complex is built from
p-cubes. Like simplices, a 0-cube is still a point [x0] and a 1-cube is still an edge [x0, x1],
but a 2-cube is a square [x0, x1, x2, x3] and a 3-cube is a cube [x0, . . . , x7], as shown in
Figure 4.3. Just as a simplex has an orientation given by an ordering of its vertices and
chain groups Cp consisting of formal sums of p-simplices, we can orient p-cubes and
consider the chain groups Cp generated by p-cubes.

(i) 0-cube (ii) 1-cube (iii) 2-cube (iv) 3-cube

FIGURE 4.3: Examples of p-cubes.

We can also defined the boundary operator taking p-cubes to their (p− 1)-boundaries,
∂p : Cp → Cp−1. Elementary p-cubes can be seen as products of p unit intervals
In = [m, m + 1]. For example, a unit 2-cube in R2 is a product of two unit intervals
[0, 1]× [0, 1]. In fact, this definition helps characterise cubical complexes in Rd: a subset K
of Rd is said to be a cubical complex if it is a finite union of p-cubes, where each p-cube is a
product of p unit intervals, and the intersection of every cube in K is also in K. We define
the boundary of a p-cube recursively. The boundary of a 0-cube [m] is defined to be zero,
so that ∂0[m] = 0. The boundary of a 1-cube [m, m + 1] is ∂1[m, m + 1] = [m + 1]− [m],
aligining with our expectation for the boundary of a 1-simplex. Given p > 1, the
boundary of a p-cube Q = I0 × · · · × Ip−1 is

∂Q = (∂I0 × · · · × Ip−1) + (I1 × ∂I2 × · · · × Ip−1) + · · ·+ (I1 × · · · × ∂Ip−1).

With Cp and ∂p defined, we can construct our chain complex as in Section 2.1.2.

· · ·
∂p+1−→ Cp

∂p−→ Cp−1
∂p−1−→ . . . .
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In fact, it does not matter to the algebraic structures we are now considering whether or
not there are simplicial or cubical complexes beneath the chain complex, and we can
define CK,L

p via Equation 2.4 then restrict the boundary operator and define the persistent
Laplacian identically to Equation 2.5. For more details on cubical persistent homology,
please see Strömbom (2007).

We also need to compute the persistent Laplacian. In Section 2.4.4 we saw that a succinct
matrix representation of the persistent Laplacian exists. In particular, Mémoli et al. (2022)
show that the matrix representation for up persistent Laplacians of simplicial pairs can
be computed via Schur complement of certain matrices. More precisely, let K ↪→ L be a
simplicial pair. We let ∆∆∆L

up,p denote the matrix representation of the p-th up Laplacian
∆L

up,p for L. Then, if we let IL
K denote the indices of rows (or columns) in ∆∆∆L

up,p which
correspond to p-simplices not belonging to K, then ∆∆∆K,L

up,p = ∆∆∆L
up,p/∆∆∆L

up,p(IL
K, IL

K) is, in fact,
the matrix representation of ∆K,L

up,p under the canonical choice of basis of CK
p . In our paper

(currently under review), my collaborator Zhengchao Wan verified that the computation
of the persistent Laplacian via the Schur complement still holds for cubical complexes.
Therefore we can continue to use the persistent Laplacian for cubical complexes, simply
by updating the boundary operator to compute the boundary of cubical complexes.

4.2.2 As a feature vector

One problem with using the persistent Laplacian as a feature vector remains. Typically
in Topological Data Analysis we will be working with a filtration: a collection of com-
plexes Ki such that Ki ⊆ Kj, with i a continuous real parameter in some range [i0, iT].
Algorithms from persistent homology theory can handle the entire filtration efficiently
and generate persistence diagrams as the topological summary of the filtration, enabling
us to understand the whole filtration via the births and deaths of topological features.
On the other hand, the persistent Laplacian ∆K,L

p is defined for just two complexes: a
complex pair (either a simplicial pair or a cubical pair) K ↪→ L. Given a filtration, which
complex pairs do we select to compute the persistent Laplacian?

We compute the persistent Laplacian only for pairs in a small subset of the filtration:
start by selecting a resolution R. We investigate the effect of R in Section 4.9ii. Then,
we compute an increment I = (iT − i0)/R to get a subset of the filtration F = [i0, i0 +
I, i0 + 2I, . . . , i0 + RI = iT]. We then consider complex pairs Ki ↪→ Kj where i, j ∈ F and
i ≤ j. An example of a sequence of complexes is given in Figure 4.4, where we show
three sequential cubical complexes generated from an MNIST digit. The filtration is a
simplified height filtration: we are adding non-zero pixels to the filtration as we move left
to right across the image. Given the complex pairs, we compute their Laplacians and
eigenvalues using our codebase. In Figure 4.4 we compute the persistent Laplacian for
the three inclusion pairs generated from the subset of the filtration parameter F = [0, 1, 2]

https://zhengchaow.github.io/
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(i) Complex K0 (ii) Complex K1 (iii) Complex K2

(iv) Eigenvalues of 0-PL (v) Eigenvalues of 1-PL

FIGURE 4.4: A filtration of cubical complexes K0 ↪→ K1 ↪→ K2 of an MNIST digit,
alongside the eigenvalues of the persistent Laplacian. The x axis is the eigenvalue
position and the y axis is its value (i.e., the y value at x = a is the value of the ath

smallest eigenvalue).

and for dimension p = 0, 1. We can see the differences between the eigenvalues in their
plots.

As feature vectors need to have a consistent length and as the number of eigenval-
ues depends on the size of the underlying complexes, which can change throughout
the filtration, it is not sufficient to simply compute eigenvalues of the Laplacian and
concatenate them. To solve this we set a length parameter that truncates or zero pads
to ensure a consistent length regardless of the underlying complex. The effect of this
truncation/zero padding is investigated in Section 4.3.3. Flattening the eigenvalues
across complex pairs and dimensions gives the final feature vector. With resolution R,
max dimension D and truncating/zero padding eigenvalues to length L, we end with a
1
2 R(R + 1)DL dimensional feature vector. The entire process is captured in Figure 4.5,
which showcases the pipeline.

We know from Mémoli et al. (2022) that the time complexity for the computation of
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FIGURE 4.5: The pipeline to compute feature vectors from data using the persistent
Laplacian. We first map the data into a filtration of cubical or simplicial complexes,
then compute the persistent Laplacian for a selection of complex pairs and dimensions,
before taking the eigenvalues (λi,j

p,∗ denotes the p-eigenvalues of ∆i,j
p ), truncating/zero-

padding (if necessary), then flattening into a feature vector.

the persistent Laplacian for one complex pair is similar to (and sometimes better) than
that of persistent homology. However, when using this technique over a filtration, we
are computing it 1

2 R(R + 1) times, so increasing the time complexity similarly. If the
time taken is going to be a restraint for this technique, we recommend reducing R - we
investigate the effect this will have on the performance of the feature vector in Section
4.3.3. We report the runtimes for all of the techniques considered in this Chapter in
Appendix B.1.2.

4.3 Experiments

We evaluate the persistent Laplacian against other topological and geometric represen-
tations of data. The main baseline we are comparing against is persistent homology,
as this is the primary technique used for topological representations of data in TDA.
Our specific vectorisation of the persistence diagram once computed depends on the
application: we would typically recommend using persistence images (Adams et al.,
2017) but we use other vectorisations if they are better according to published baselines.
We also compare against the graph Laplacian and (where there is data with more than
edgewise interactions) the combinatorial Laplacian, as these represent the non-persistent
versions of the k-persistent Laplacian for k = 0 and k > 0 respectively. We run experi-
ments on the MNIST handwritten digit dataset (LeCun et al., 2010) to provide a base
demonstration of value in a machine learning setting, and the MoleculeNet dataset (Wu
et al., 2018), a collection of molecular data along with chemical properties to predict.
The MoleculeNet data serves to evaluate the applicability of the persistent Laplacian to
realistic application scenarios. In the remainder of this section we expand on our exact
methodology for each dataset and baseline, and specify precisely the data and tasks we
consider.
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FIGURE 4.6: Examples of digits sampled from the MNIST dataset.

4.3.1 MNIST

MNIST is a standard machine learning benchmark dataset consisting of 28x28 grayscale
images (LeCun et al., 2010). Each image is one handwritten digit and the task is to
classify that digit - we display example digits sampled from MNIST in Figure 4.6.
Each of our baselines takes a filtration as input, so we need to represent grayscale
images. According to the Giotto-TDA documentation1 the best performing filtration
for persistent homology is the height filtration with direction [1, 0] . To implement this
we first threshold the image, discarding all pixels with a grayscale value less than 0.4
(which is in fact the optimal value for our primary competitor, persistent homology). The
distance from the plane defined by our direction (in this case, the leftmost edge of the
image) gives the value at which each cube (a pixel or 2x2 collection of pixels, as we are
using a cubical complex) enters the filtration. We then compute the persistent Laplacian
feature vector as defined in Section 4.2.2, with resolution R = 4 and using dimensions
p = 0, 1. We compute the persisent homology and diagrams using Giotto-TDA, then
vectorise it as proposed by Garin and Tauzin (2019) and implemented in the Giotto-
TDA baseline, using persistence entropy and diagram amplitudes with a collection of
metrics. Note that they ensemble vectorisations of 17 different filtrations, using different
directions and starting points for directional and radial filtrations. In order to control
the filtration, we only use the filtration which performs best with persistent homology
in their experimentation. This is the directional filtration with direction [1, 0]. The
graph Laplacian and combinatorial Laplacian are vectorised identically to the persistent
Laplacian, only as they are not persistent we simply compute them at the start values
of the complex pairs, i.e., we compute the eigenvalues for the graph and combinatorial
Laplacian for R = 4 values of the filtration. In the notation of Section 4.2.2, given
discrete values of our filtration F = [α, β, , . . . ], we compute ∆Kα

p , ∆
Kβ
p , . . . with p = 0 for

the graph Laplacian and p = 0, 1 for the combinatorial Laplacian. We then represent the
eigenvalues in the same way as the combinatorial Laplacian.

1https://giotto-ai.github.io/gtda-docs/0.3.1/notebooks/MNIST_
classification.html

https://giotto-ai.github.io/gtda-docs/0.3.1/notebooks/MNIST_classification.html
https://giotto-ai.github.io/gtda-docs/0.3.1/notebooks/MNIST_classification.html
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We vastly exceed the performance of persistent homology with the persistent Laplacian
feature vector on MNIST. In particular, we attain 82% accuracy with a simple represen-
tation, which vastly outperforms the 62.5% accuracy attained by persistent homology,
even with the ensembled representations utilised in the benchmark from Giotto-TDA.
We also outperform the graph Laplacian and the versions of the combinatorial Laplacian
that we evaluate. The full results can be seen in Figure 4.7. We consider this performance
strong evidence for the suitability of the persistent Laplacian for feature representation
in Topological Data Analysis.

Feature Importance. We also evaluate the feature importance that the MNIST model
assigns to each eigenvalue, in terms of the Mean Decrease in Impurity metric Scornet
(2023). In Figure 4.8, we display the feature importance grouped both by the positions
of the complex pair in the filtration, and by the size of the eigenvalue, in order to
ascertain the effect of each factor on the discriminative information the corresponding
eigenvalues contain. For the complex pair feature importance plots, our x axis is the
start value of the filtration, and the y axis is the shift forwards through the filtration.
For example, if the start value is 1 and the shift forward is 2, then our complex pair
is K1 ↪→ K3. We compute the feature importance plots for the MNIST model. From
the feature importance by filtration plots (Figure 4.8), it is clear that the model is using
features from each of the complex pairs that we generate. This means that persistence is
providing valuable discriminative information that the model is utilising. This is particularly
true in the 0-persistent Laplacian, but also for the 1-persistent Laplacian. Next, we
consider the plots that relate the size of the eigenvalue to the feature importance. Note
that the smallest eigenvalue of the 0-persistent Laplacian has zero importance. This
makes sense, as we know from Theorem 2.3 that this eigenvalue will always be 0, as
there is always at least one connected component, and the nullity of 0-PL is the number
of connected components. The spike immediately following it also makes sense, as
the number of following zero eigenvalues gives topological information, namely the
number of connected components, and the smallest following non-zero eigenvalues are
known to contain significant information about the structure of the graph. Moving onto
the 1-persistent Laplacian, we see, unsurprisingly, that the zero eigenvalues having high
importance, as they quantify the number of holes present in the complex. It is interesting
that there remains high feature importance for the small non-zero eigenvalues, as this
implies they are also capturing discriminative information. On the whole, we can see
from our feature importance plots that the combined features of the persistent Laplacian
are providing value to the model: the zero eigenvalues and small non-zero eigenvalues,
corresponding to topological and geometric information respectively, and complex
pairs corresponding to the persistent version of the Laplacian all score highly when we
examine the feature importance.
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FIGURE 4.7: The classification accuracy of random forests trained on different repre-
sentations of MNIST. The violin plots show the distribution over 10 repeats of each
method. The persistent Laplacian performs notable better than persistent homology,

and performs best across techniques.

4.3.2 MoleculeNet

MoleculeNet (Wu et al., 2018) is a collection of benchmark datasets designed to evaluate
machine learning methods for prediction of molecular properties. We focus on two
subsets of MoleculeNet: QM7 (Blum and Reymond, 2009; Rupp et al., 2012) and QM7b
(Blum and Reymond, 2009; Montavon et al., 2013). The data comes in two forms: 3D
coordinates of the atoms in each molecule, and the Coulomb matrix of each molecule, a
matrix M = [mi,j]i∈I for some list of nuclei I, where mi,j is the electrostatic interaction
between atomic nuclei in the molecule. We map the 3D coordinates into a simplicial
complex using the Vietoris-Rips construction Vietoris (1927), as described in Section
2.1.1. We represent the Coulomb matrices by letting each nucleus i ∈ I enter the filtration
as a point at time 0, then adding edges ij at their electrostatic interaction value mi,j. In
this way we use the electrostatic interactions to induce the filtration. As we are only
adding vertices and edges to this filtration, we do not consider the 1-Laplacian in our
benchmarks, as it would be the same as the graph Laplacian. Each of the MoleculeNet
tasks we consider is a regression task for which we must predict specific electrochemical
properties. For QM7 the task is to predict the atomisation energy of each molecule
Blum and Reymond (2009), and we do so with both the 3D coordinates and Coloumb
matrices (CM). For QM7b, there are only CM matrices available, and the specific tasks
are reported in Table B.1.
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(i) 0-PL importance, by filtration (ii) 1-PL importance, by filtration

(iii) 0-PL importance, by value (iv) 1-PL importance, by value

FIGURE 4.8: We aggregate feature importance by the complex pair and value of the
eigenvalues, and across dimensions 0 and 1. We can see that the persistence is being
utilised, as there are discriminative features across the eigenvalues of each complex

pair.

Table 4.1 shows our results for the persistent homology-based representations (PH),
Graph Laplacian (GL), combinatorial Laplacian (CL, when higher-order interactions
are present in the data), and the persistent Laplacian representations (PL). We report R2

for the tasks from MoleculeNet, as they are regression tasks. We see that we typically
exceed the performance of persistent homology with the persistent Laplacian across
the MoleculeNet tasks, although there are some tasks on which PH performs better. In
fact, in some of the tasks (which we have left in for completeness) topological tools do
not work effectively at all. On the other hand, we see an almost identical performance
between the persistent Laplacian and its non-persistent versions; we suggest this is due
to the level of information available in the filtration in these cases. It makes sense that
the persistent version of a tool – in this case, persistent homology – is only useful if the
filtration we are analysing contains discriminative information.
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TABLE 4.1: Results across Persistent Homology (PH), Graph Laplacian (GL), Combina-
torial Laplacian (CL) and Persistent Laplacian (PL) methods, on the MoleculeNet QM7
and QM7b datasets. Subtasks are from 3D coordinates (3D) and Coloumb Matrices
(CM), and the numbers refer to tasks explained in Table B.1. We report the mean
absolute error (MAE), as recommended by Wu et al. (2018). The MAE is the sum of
absolute errors across the test set, divided by the number of samples in the test set. GL
and PL use R = 10 and truncate to the mean number of eigenvalues across spectra.
Where – is present we were using the coulomb matrices to construct graphs, so there

are no higher-order interactions to study with the combinatorial Laplacian.

Dataset PH GL CL PL

QM7-3D 92.43± 0.629 69.23± 0.388 68.85± 0.421 68.86± 0.431
QM7-CM 232.0± 6.435 12.42± 0.191 – 12.38± 0.188

QM7b-CM-0 73.12± 1.893 12.39± 0.599 – 12.35± 0.597
QM7b-CM-1 1.916± 0.047 1.731± 0.038 – 1.729± 0.037
QM7b-CM-2 0.122± 0.004 0.096± 0.004 – 0.095± 0.004
QM7b-CM-3 0.484± 0.009 0.393± 0.008 – 0.393± 0.007
QM7b-CM-4 0.510± 0.009 0.362± 0.008 – 0.361± 0.007
QM7b-CM-5 0.651± 0.027 0.427± 0.010 – 0.426± 0.011
QM7b-CM-6 0.485± 0.011 0.406± 0.006 – 0.406± 0.007
QM7b-CM-7 0.548± 0.009 0.393± 0.010 – 0.392± 0.009
QM7b-CM-8 0.302± 0.005 0.272± 0.005 – 0.272± 0.005
QM7b-CM-9 0.305± 0.009 0.226± 0.006 – 0.226± 0.007

QM7b-CM-10 0.335± 0.007 0.306± 0.006 – 0.305± 0.006
QM7b-CM-11 0.236± 0.006 0.197± 0.004 – 0.197± 0.004
QM7b-CM-12 0.696± 0.015 0.352± 0.011 – 0.352± 0.012
QM7b-CM-13 0.726± 0.016 0.285± 0.009 – 0.284± 0.009

4.3.3 Ablation studies on eigenvalue truncation and R

Mapping the persistent Laplacian into a feature vector over a whole filtration as we
describe in Section 4.2.2 requires two parameters: the truncation parameter, which
determines how many of the eigenvalues in the spectra of each persistent Laplacian
we consider, and the resolution R, which determines how we uniformly sample the
continuous filtration to choose complex pairs to compute the persistent Laplacian of.
We ran ablation studies using the MNIST dataset to consider how each of these choices
effects the performance of the downstream classification task. In each case we fixed every
parameter in the pipeline except for the one that we were investigating, and examined
how changing that parameter effected the accuracy of the random forest classifier trained
on the representations of the MNIST digits. The results of these experiments are shown
in Figure 4.9.

Truncation. We investigated two different truncation strategies: truncating to the small-
est n eigenvalues and to the largest n eigenvalues, the results of which are shown in
Figure 4.9i. We found that truncating to the smallest eigenvalues (i.e., dropping the large
eigenvalues) performed significantly better than truncating the largest eigenvalues (i.e.,
dropping the small eigenvalues). This aligns with (i) what we would expect, as the zero
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(i) The effect of truncation. (ii) The effect of R.

FIGURE 4.9: We investigate the effect of eigenvalue truncation and the parameter R on
the efficacy of the persistent Laplacian on the MNIST classification task.

and small eigenvalues of the Laplacian contain topological and structural information
about the underlying data, and (ii) what we have seen in the feature importance inves-
tigation (Figure 4.8), where the smallest eigenvalues are significantly more important
to the performance of the model. In practice, then, we would recommend using only
a small number of eigenvalues - the exact number will be be data-specific. Using too
few eigenvalues results in a sharp drop-off in performance, and using too many leads to
a gradual drop in performance, which we believe comes from significantly increasing
the dimensionality of the resultant feature vector whilst adding a minimal amount of
discriminative information.

Resolution. For very low values of R, the performance is not good - presumably because
the model cannot exploit the additional information contained in the filtration. As
we increase R, and finer details about the filtration become available via the feature
vector, performance increases. We would expect an increase in R to correspond to an
increase in the performance of the model, as additional details are becoming available.
In particular, note that we fully capture the information contained in the persistent
homology whenever R is sufficiently large that I ≤ j− i for every critical pair Ki ⊂ Kj in
the filtration (using the notation in Section 4.2.2). In Figure 4.9ii we see the performance
flattening off for larger R, which likely happens as I → ĵ− î, where Kî ⊂ K ĵ is the critical
pair with the smallest filtration gap.

We also ran the MoleculeNet experiments with both R = 5 and R = 10, seeing a signifi-
cant improvement in the accuracy with the increase of R. In particular, we can see in
Table 4.2 that the persistent Laplacian went from only sometimes outperforming persis-
tent homology to consistently being the best performing method. This improvement in
performance demonstrates again that we are recovering more of the information within
the persistent homology as we increase R.
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TABLE 4.2: Results from Persistent Homology (PH) and Persistent Laplacian (PL)
methods on the QM7b dataset. Note the increase in performance when increasing R

from 5 to 10. Results are reported in MAE.

Dataset PL (R = 5) PL (R = 10)

QM7-3D 81.65± 0.418 68.86± 0.431
QM7-CM 23.21± 0.270 12.38± 0.188

QM7b-CM-0 22.58± 0.176 12.35± 0.597
QM7b-CM-1 1.989± 0.016 1.729± 0.037
QM7b-CM-2 0.112± 0.002 0.095± 0.004
QM7b-CM-3 0.518± 0.004 0.393± 0.007
QM7b-CM-4 0.481± 0.006 0.361± 0.007
QM7b-CM-5 0.613± 0.003 0.426± 0.011
QM7b-CM-6 0.533± 0.005 0.406± 0.007
QM7b-CM-7 0.532± 0.007 0.392± 0.009
QM7b-CM-8 0.346± 0.003 0.272± 0.005
QM7b-CM-9 0.263± 0.003 0.226± 0.007

QM7b-CM-10 0.394± 0.004 0.305± 0.006
QM7b-CM-11 0.225± 0.002 0.197± 0.004
QM7b-CM-12 0.458± 0.004 0.352± 0.012
QM7b-CM-13 0.378± 0.002 0.284± 0.009

4.3.4 Comparison to non-topological methods

We have demonstrated that the persistent Laplacian can outperform other topological
baselines in MNIST and consistently outperform persistent homology in MoleculeNet,
as well as discussed the additional information it can represent due to its theoretical
properties. We consider some additional baselines here. Firstly, for MNIST, we eval-
uated the efficacy of using the flattened raw image as input into a random forest, as
well as a convolutional neural network (LeCun and Bengio, 1998). Both significantly
outperformed our topological methods, with the random forest scoring an accuracy of
0.9387± 0.0022 and the CNN scoring an accuracy of 0.9918± 0.0002. In comparison,
the persistent Laplacian is the best scoring topological method, with an accuracy of
0.821± 0.011 (with R = 5 and truncating to the mean number of eigenvalues). In Table
4.3 we compare the performance of the persistent Laplacian to techniques from shallow
and deep learning. Note that we do not use the QM7-3D dataset, as the coulomb matrix
is typically used as the representation of the data for non-topological methods Rupp
et al. (2012). In particular, we evaluated the performance of random forests (RF) and
kernel ridge regression (KRR) on the flattened coulomb matrices. We also report the
deep learning SOTA using deep tensor neural networks (DTNN) (Wu et al., 2018; Schütt
et al., 2017) and gated graph recurrent neural networks (Shindo and Matsumoto, 2019).
We find that we outperform the shallow methods, but are once again beaten by methods
from deep learning.
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We would argue that despite methods from deep learning beating the persistent Lapla-
cian as a feature vector, we retain several advantages over deep methods.

(i) Firstly, the persistent Laplacian is being used as a feature vectorisation for down-
stream input into a simple classifier. It is a technique that relies heavily on theory,
making the feature vector itself related to real-world understanding of shape and
structure. In comparison, deep learning is famously a black box, and attempts to im-
prove explainability and interpretability struggle in practice Belle and Papantonis
(2021).

(ii) Secondly, the featurisation of the persistent Laplacian relies only on two under-
standble parameters (Section 4.3.3), and is easily reproducible. In comparison, deep
learning techniques are often very sensitive to many opaque hyperparameters.
Reproducing reported models is often impossible, with the ‘reproducibility crisis’
a known problem in the deep learning research community (Jean-Paul et al., 2019) .

Despite these points, clearly deep learning is a vastly powerful tool. In fact, topological
tools are often at their most powerful when partnered with deep learning, as evidenced
by the increasing popularity of Topological Machine Learning (Hensel et al., 2021).
Research such as ours, which introduces a featurisation of the persistent Laplacian for
representing data and evaluates the persistent Laplacian on ML baselines, provides a
strong base for future work on the integration of the persistent Laplacian into Topological
machine learning.

The place of topological tools within deep learning is something we will discuss more in
the following discussion section.

4.4 Discussion

In this work we clearly demonstrate that we can outperform persistent homology:
our experiments show that the persistent Laplacian can always outperform persistent
homology across different datasets and tasks. We have explained that this is due to
its appealing theoretical properties: it contains the homology in its zero eigenvalues
(recovering the full persistent homology with sufficiently large R), and additional
non-topological information is contained in its non-zero eigenvalues. Often, however,
the performance of the graph Laplacian rivals that of the persistent 0-Laplacian. It
appears that the MoleculeNet dataset does not benefit from the inclusion of persistence
when computing the Laplacian. We included the results in our thesis regardless, as
they demonstrate the efficacy of the persistent Laplacian in comparison to persistent
homology, but further work should consider when the addition of persistence in the
computation of the Laplacian provides additional discriminative data. Overall, the
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TABLE 4.3: We also compare the persistent Laplacian to non-topological baselines. We
trained random forests (RF) and kernel ridge regression (KRR) models on the flattened
Coulomb matrices, as is standard in the literature (Rupp et al., 2012). We also report
the results from the SOTA in deep learning: deep tensor neural networks (DTNN)
(Schütt et al., 2017) and gated graph recurrent neural networks (GGRNN) (Shindo and
Matsumoto, 2019). Our techniques outperform the shallow methods, but are beaten
by deep learning. In the discussion (Section 4.4) we consider the place of topological

techniques within the context of deep learning.

Shallow Learning TDA Deep Learning
Dataset RF KRR PL DTNN GGRNN

QM7-CM 11.20± 0.261 26.16± 0.651 12.38± 0.188 8.75 –
QM7b-CM-0 38.17± 0.730 140.0± 3.752 12.35± 0.597 21.5 13.7
QM7b-CM-1 2.473± 0.027 2.668± 0.061 1.729± 0.037 1.26 1.02
QM7b-CM-2 0.130± 0.003 0.164± 0.004 0.095± 0.004 0.074 0.072
QM7b-CM-3 0.708± 0.011 1.192± 0.042 0.393± 0.007 0.192 0.140
QM7b-CM-4 0.768± 0.016 0.813± 0.02 0.361± 0.007 0.159 0.0915
QM7b-CM-5 1.057± 0.022 1.185± 0.034 0.426± 0.011 0.296 0.121
QM7b-CM-6 0.713± 0.011 1.181± 0.043 0.406± 0.007 0.214 0.176
QM7b-CM-7 0.853± 0.016 0.896± 0.022 0.392± 0.009 0.174 0.0940
QM7b-CM-8 0.437± 0.009 0.906± 0.027 0.272± 0.005 0.155 0.142
QM7b-CM-9 0.376± 0.012 0.426± 0.013 0.226± 0.007 0.129 0.092

QM7b-CM-10 0.495± 0.010 1.134± 0.036 0.305± 0.006 0.166 0.142
QM7b-CM-11 0.271± 0.007 0.312± 0.007 0.197± 0.004 0.139 0.118
QM7b-CM-12 0.693± 0.017 1.348± 0.026 0.352± 0.012 0.173 0.100
QM7b-CM-13 0.624± 0.015 1.362± 0.029 0.284± 0.009 0.149 0.0578

results suggest that this new theoretical development, which is able to seamlessly and
efficiently combine topological and geometric information, should be more broadly
researched and utilised in data analysis applications, particularly where key information
for successful analysis is contained in the filtration.

In fact, the primary limitation of the persistent Laplacian in the context of other topo-
logical methods is its restriction to only computing individual complex pairs K ⊆ L,
rather than being able to handle an entire filtration (Ki)i simultaneously, as persistent
homology is. This is the reason for our resolution parameter R, which determines
how regularly we uniformly sample from the filtration. Future work that extends the
persistent Laplacian to the entire filtration would significantly improve its suitability to
a far broader range of data analysis applications. We would suggest this as a key work
for those interested in continuing this line of work.





Chapter 5

Fuzzy c-Means Clustering for
Persistence Diagrams

Unsupervised learning refers to a class of machine learning algorithms that learn classes
for data without being provided with a labelled dataset. Instead, they infer labels by
assuming that points that are clustered together, i.e., nearby in some space and according
to some metric, are in the same class. When combined with Topological Data Analysis,
we can build unsupervised learning algorithms that infer labels from the topology of the
underlying data. In k-means clustering, each point in a dataset is assigned to a cluster
that minimises the distances from each cluster centre, which in turn are computed as the
mean of the points assigned to each cluster. Alternatively computing the assignations
and the cluster centres minimises the total distance from points to clusters. In fuzzy
clustering, each point is assigned k membership values in [0, 1] that represents the extent
to which its assigned to each cluster. In this chapter we extend fuzzy c-means (FCM)
clustering to the space of persistence diagrams, enabling fuzzy topological unsupervised
learning. It is widely accepted that many real-world datasets are not clearly delineated
into hard categories (Campello, 2007). Thus any algorithm that accounts for this is
desirable, as evidenced by the large number of publications studying and using fuzzy
clustering algorithms (Li and Lewis, 2016; Yang et al., 2019; Pantula et al., 2020). Our
algorithm enables practitioners to study the fuzzy nature of data through a topological
lens directly in the space of persistence diagrams.

Fréchet means of persistence diagrams, which we introduce in Section 3.1.2, are the
natural concept to use for our cluster centres. They were first shown to be well-defined
in persistence diagram space by (Mileyko et al., 2011, Section 4.1) and an algorithm for
computation was given by (Turner et al., 2012, Algorithm 1). We extend their algorithm
to compute the weighted Fréchet mean, verifying that their proof of convergence holds
in the weighted case. We perform the convergence analysis for the fuzzy c-means
algorithm in persistence diagram space, giving the same guarantees as Euclidean FCM
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clustering. Namely, we show that every convergent subsequence of iterates tends to
a local minimum or saddle point. As this guarantee could lead to non-convergence
in practice, we empirically evaluate convergence on randomly generated persistence
diagrams with varying properties and find that it converges every time. We evaluate
our algorithm using a variety of distances on persistence diagrams with the fuzzy
RAND index (Campello, 2007), a standard measure of fuzzy cluster quality. We find that
distances that take longer to compute result typically lead to a higher quality clustering,
whereas approximations result in lower quality clusters but can be computed faster. By
enabling the use of these distances, we can take advantage of the computational speed
ups of vectorisations or approximate distances, whilst still having an end product in
persistence diagram space.

We demonstrate the practical value of fuzzy clustering persistence diagrams with an
application to pre-trained model selection. This application is inspired by the somewhat
surprising previous work showing that pre-trained deep learning models perform better
on tasks if they have topologically similar decision boundaries (Ramamurthy et al., 2019).
As one model can perform well on multiple tasks, this is a naturally fuzzy problem, and
so ideally suited to our algorithm. We use our method to cluster pre-trained models and
tasks (unseen datasets) using only the persistence diagrams of their decision boundaries.
Not only is our algorithm able to successfully cluster models to the task it’s originally
trained on based just on the topology of its decision boundary, but we demonstrate that
higher fuzzy cluster membership values imply better performance on tasks that the
model has not been trained on. This gives a fuzzy unsupervised method for matching
pre-trained models to tasks via their topologies.

Publications and contributions. The work in this chapter was published in Proceedings
of Machine Learning Research via the NeurIPS Workshop on Symmetry and Geometry
in Neural Representations (Davies et al., 2023a). The code and a generalisation to
Riemannian manifolds were published in a white paper on topological and geometric
learning (Miolane et al., 2021). I conceived of the project, performed the convergence
analysis, and ran the experiments by myself. The materials science toy dataset was
motivated and found via discussions with Jack Aspinall, a co-author on the paper
(Davies et al., 2023a).

5.1 Clustering Algorithms

5.1.1 k-means clustering

Given n points in Rd, for some d ∈ N+, we are interested in assigning each point to
one of k labels, for a given k ∈ N+. The standard k-means clustering algorithm was
first published by Lloyd (1982). Begin by randomly assigning each of the points xi to a

https://scholar.google.com/citations?user=njb2D3kAAAAJ
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(i) Data generated by
two multivariate Gaus-

sians in the plane.

(ii) After one iteration
the clusters are not opti-
mally labelling the data.

(iii) After 15 iterations
the algorithm has learnt

a better labelling.

FIGURE 5.1: An example of Euclidean k-means clustering on points in the plane. The
class is indicated by the colour of the points and the triangles represent the computed

cluster centres yj.

label 1, . . . , k. Let Sj, j ∈ [1, . . . , j] be the points xi assigned to label j (this is the ‘naieve’
method to find initial clusters). Compute the cluster centres via yj ∈ Rd by taking the
mean of the points with label j, computing

yj =
1
|Sj| ∑

xi∈Sj

xi, for j = 1, . . . , k. (5.1)

Then assign each point to its nearest cluster centre via

Yj =
{︁

xi : |xi − yj|2 ≤ |xi − yl |2 for all l = 1, . . . , k
}︁

. (5.2)

By alternating these two steps, you aim to minimise the least squares distance from
each point to each centroid, learning labels in an unsupervised fashion for each of data
points. The algorithm converges when each Yj is constant, i.e., when the labels no longer
change. Note that convergence to a global minimum is not guaranteed (Lloyd, 1982).
An example of this algorithm on simple data generated by two Gaussians in the plane is
shown in Figure 5.1.

As we saw in Section 3.1.2, Mileyko et al. (2011) have shown that Fréchet means are
well-defined in the space of persistence diagrams and Turner et al. (2012) has developed
an algorithm to compute them. This was used by Maroulas et al. (2017) for k-means
clustering in persistence diagram space, simply replacing the mean of the points in Sj in
Equation 5.1 with the Fréchet mean of the diagrams in Sj, and the Euclidean distance
with the Wasserstein distance when assigning diagrams to clusters.

5.1.2 Examples of k-means clustering on toy data

We now give some examples of k-means clustering, via our implementation of k-means
clustering in persistence diagram space, and ran experiments on toy data to demonstrate
its efficacy at inferring labels based on the topology of the underlying data.
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(i) (ii) (iii)

FIGURE 5.2: An example k-means clustering of persistence diagrams with synthetic
data. In i we show nine synthetic datasets, consisting of noise, one hole, or two holes. In
ii we compute the 1-persistence diagrams, which we recall counts the number of holes.
We cluster these persistence diagrams, resulting in three learnt cluster centres, shown
in iii. The cluster centres have zero, one, and two significantly off-diagonal points: the

clustering algorithm has learnt the topological features of the datasets.

Synthetic Data Example. Figure 5.2 shows an example with synthetic data. In Figure
5.2i we generate nine datasets, three of which are just noise, three of which are shaped
like rings, and three of which are figure of eights. Our goal is to use clustering on the
space of persistence diagrams to infer classes for the datasets based on their topology.
We compute the 1-persistence diagrams (Figure 5.2ii) and run our implementation of
k-means clustering. In Figure 5.2iii we examine the clusters that the algorithm has
converged to, and we can see that they have zero, one, and two off-diagonal points
in the persistence diagram,, corresponding to zero, one, and two loops in the datasets.
The k-means clustering has worked as expected, and grouped the nine datasets by their
topology.

Materials Science Example. In materials science the topology of chemical structures is
key for understanding new materials. A key property for machine learning in materials
science has been identified as “invariance to the basis symmetries of physics [...] rotation,
reflection, translation” (Jonathan Schmidt and Marques, 2019). Persistence diagrams,
which capture affine transformation-invariant properties of datasets, are thus very well-
suited for application in this domain. We demonstrate this with a toy example from
materials science. The large majority of solids are comprised of regularly repeating unit
cells of atoms. This periodic structure directly determines the properties of a material
(Hull and Bacon, 2011) and it has been predicted that machine learning will reveal
presently unknown links between structure and property by identifying new trends
across materials (Meredig, 2019; Wei et al., 2019). The most common periodic structures,
particularly amongst pure metals, are face-centred cubic (FCC) structures and body-
centred cubic (BCC) structures (Putnis, 1992).



5.1. Clustering Algorithms 77

We use atomic positions for the unit-cells of iron MP-150 and iron MP-13 from the
Materials Project (Jain et al., 2013), representing BCC and FCC structures respectively,
for the first toy dataset (displayed in Figures 5.3i and 5.3ii). For our second toy dataset
we use diamond (Figure 5.3iii) and cis-hinged polydiacetylene (Figure 5.3iv) unit-cell
atomic positions from the Samara Carbon Allotrope Database (Hoffmann et al., 2016).
We simulate distinct collections of periodic structures by transforming the atomic co-
ordinates, with no information about bonds given to the algorithms. The properties of
persistence diagrams mean that we can cluster the atomic coordinates derived from the
same base unit-cell regardless of the transformations applied to the coordinate system.
We can see this holds in Figure 5.3. We use the distance matrix between diagrams and
cluster centres to represent persistence diagram space in the plane (Kruskal, 1964)) to
assist with visualisation, and we can see that the persistence diagrams are clustered
together (Figures 5.3ix, x), enabling unsupervised learning using the topology of the
materials.

5.1.3 Euclidean fuzzy c-means clustering

It is widely accepted that many real-world datasets do not fall into clearly delineated
clusters (Campello, 2007). In this case, it is desirable to compute partial membership
values for a data point xi to each cluster centre yi. In particular, the values rij ∈ [0, 1]
denote the extent to which data point xi is assigned to cluster centre yj. They are
computed so that ∑k

j=1 r2
ij = 1 for each i = 1, . . . , n. The fuzzy c-means clustering

algorithm was first given by Dunn (1973), with the convergence studied by Bezdek
(1980). An error with his convergence proof was fixed in Bezdek et al. (1987).

The algorithm to compute the membership values and fuzzy clustering is very similar to
k-means. Instead of assigning each point xi to a label, you compute fuzzy membership
values via

rij =

(︄
k

∑
l=1

|xi − yj|
|xi − yl |

)︄−1

,

and update the cluster centres via a weighted mean

yj =
1

∑n
i=1 r2

ij

n

∑
i=1

r2
ijxi.

In the following section we extend this formulation to the space of persistence diagrams,
verifying that the convergence properties first proven by Bezdek (1980) still hold in
our setting. The example that we introduced in Figure 5.1 is re-run in Figure 5.4 with
the fuzzy c-means algorithm. Note now the continuous membership, represented by a
colour map, rather than just two binary classes.
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(i) BCC (ii) FCC (iii) Diamond (iv) CHP

(v) BCC
Diagram

(vi) FCC
Diagram

(vii) Diamond
Diagram

(viii) CHP
Diagram

(ix) Planar representation of BCC
and FCC persistence diagram

clustering.

(x) Planar representation of dia-
mond and CHP persistence dia-

gram clustering.

FIGURE 5.3: We cluster the persistence diagrams of periodic structures, demonstrating
persistence diagrams ability to distinguish different periodic structures based on their
topology. From left to right we display four examples of the periodic structures,
followed by their persistence diagrams (red is 0-PH, green is 1-PH, and magenta is
2-PH). In the final panels we show persistence diagram space represented in the plane.
Each circular point is a persistence diagram, and the diamond points are the learnt

cluster centres.
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(i) Data generated by
two multivariate Gaus-

sians in the plane.

(ii) After one iteration
the cluster centres are al-

most identical.

(iii) After 15 iterations
the clustering is far bet-

ter.

FIGURE 5.4: An example of Euclidean fuzzy c-means clustering on the same data as
used in Figure 5.1. The cluster centres are represented by the triangles. The membership
values are represented by the continuous colour map on the points. Note that points

between two cluster centres now partially belong to both.

5.2 Algorithmic Design

5.2.1 Clustering persistence diagrams

We use the 2-Wasserstein L2 distance as a metric on the space of persistence diagrams,
as defined in Equation 2.1. Recall that given diagrams D1, D2, the distance is defined as

W2(D1, D2) =

(︄
inf

γ:D1→D2
∑

x∈D1

||x− γ(x)||22

)︄1/2

,

where the infinum is taken over all bijections γ : D1 → D2. We also saw that in order
for the Wasserstein distance to be well defined between persistence diagrams with
different numbers of points, we add the points {(a, a) : a ∈ R} to each diagram with
infinite multiplicity; we call this the diagonal and denote it ∆. If an off-diagonal point is
matched to the diagonal the transportation cost is simply the shortest distance to the
diagonal. We work in the space D2 = {D : W2(D, ∆) < ∞}, as that is required for the
convergence. Doing so is standard practice in applications of TDA to machine learning
(e.g., Chepushtanova et al. (2015)). To ensure that our persistence diagrams are all in
this space, we map points at infinity to a hyperparameter T that is much larger than
other death values in the diagram. As in our applications we are using the Rips complex,
there will only ever be one point at infinity (which will be in 0-PH). This hyperparameter
ensures that the one point at infinity will always be matched to the corresponding point
at infinity when computing the Wasserstein distance between diagrams.

Our rjk is the same as traditional FCM clustering, adapted with the Wasserstein distance.
That is,

rjk =

(︄
c

∑
l=1

W2(Mk, Dj)

W2(Ml , Dj)

)︄−1

. (5.3)
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To update Mk, we compute the weighted Fréchet mean of the persistence diagrams
{Dj}n

j=1 with the weights {r2
jk}n

j=1. Specifically,

Mk ←− arg min
D̂

n

∑
j=1

r2
jkW2(D̂, Dj)

2, for k = 1, . . . , c. (5.4)

As the weighted Fréchet mean extends weighted centroids to D2, this gives our fuzzy
cluster centres. The computation of the weighted Fréchet mean is covered in Section
5.2.2. By alternatively updating Equations 5.3 and 5.4 we get a sequence of iterates. We
now analyse the convergence properties of these iterates.

Algorithm 3 FPDCluster
Input Diagrams D = {Dj}n

j=1, number of clusters c, maximum iterations MAXITER

Output Cluster centres M = {Mk}c
k=1, membership values R = {rjk}

1: D = ADDDIAGONALS(D)
2: M = INITCENTRES(D)
3: for count in 1..MAXITER do
4: for j in 1..n do
5: for k in 1..c do
6: rjk ←

(︂
∑c

l=1
W2(Mk ,Dj)

W2(Ml ,Dj)

)︂−1

7: end for
8: end for
9: for k in 1..c do

10: Mk ← WFRECHETMEAN(D, Rk)
11: end for
12: end for
13: return M, R

We first need to consider our separate updates as a single update procedure. Let
F : M ↦→ R be defined by Equation 5.3 and G : R ↦→ M be defined by Equation 5.4, and
for R = {rjk} and M = {Mk} consider the sequence{︂

T(l)(R, M) : l = 0, 1, . . .
}︂

, where T(R, M) = (F ◦ G(R), G(R)).

We wish to show convergence of the iterates of T to a local minimum or saddle point of
the cost function

J(R, M) =
n

∑
j=1

c

∑
k=1

r2
jkW2(Mk, Dj)

2.

The two stage update process of T is too complicated to use standard fixed point
theorems, so following (Bezdek, 1980, Section 3) we shall use Zangwill’s Convergence
Theorem (Zangwill, 1969), which we state in the general case before demonstrating
how it corresponds to convergence in our setting. This theorem allows us to study the
convergence of an algorithm, i.e., an iterated function. It studies whether iterates of the
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algorithm converge to a desired point in the so-called solution set, which we consider in
terms of our cost function, which has to fulfill specific conditions to be a descent function.

Theorem 5.1 (Zangwill’s Convergence Theorem). First, let X = Rd for some d > 0 have
the standard topology. Let A : X → 2X be a point-to-set map on X. Given x0 ∈ X, generate a
sequence {xk}∞

k=1 such that xk+1 ∈ A(xk) for every k. Let Γ ⊂ X be a subset of X called the
solution set, and suppose that the following hold.

(i) The sequence {xk} ⊂ S ⊂ X for a compact set S.

(ii) There exists a continuous function Z : X → R such that if x ̸∈ Γ then Z(y) < Z(x) for
all y ∈ A(x), and if x ∈ Γ then Z(y) ≤ Z(x) for all y ∈ A(x). The function Z is called a
descent function.

(iii) The map A is closed on X \ Γ.

Then every convergent subsequence of {xk} tends to a point in the solution set Γ.

Our algorithm is the update function T. We define our solution set as

Γ =
{︁
(R, M) : J(R, M) < J(R̂, M̂ ) ∀ (R̂, M̂ ) ∈ B((R, M), r)

}︁
for some r > 0, where the ball surrounding R is the Euclidean ball in Rnc and the
ball surrounding M is ∪c

k=1BW2(Mk, r). This set contains the local minima and saddle
points of the cost function (Bezdek et al., 1987). We wish to show that our cost function
J(R, M) is the descent function Z. We proceed by verifying each of the requirements for
Zangwill’s Convergence Theorem.

Lemma 5.2. Every iterate T(l)(R, M) ∈ [0, 1]nc × conv(D)c, where

conv(D) =
c⋃︂

k=1

⋃︂
γj

m⋃︂
i=1

conv{γj(y(i)) : j = 1, . . . , n},

with γj a bijection Mk → Dj and conv{γj(y(i)) : j = 1, . . . , n} the ordinary convex hull in the
plane. Furthermore, [0, 1]nc × conv(D)c is compact.

Proof. By construction, every rjk ∈ [0, 1]. Since j = 1, . . . , n and k = 1, . . . , c, we can
view R as a point in [0, 1]nc, and so every iterate of R is in [0, 1]nc. We shall show that
for a fixed k and a fixed bijection γj : Mk → Dj, each updated y(i) is contained in a
convex combination of {γj(y(i)) : j = 1, . . . , n}. Where γj(y(i)) = ∆, let γj(y(i)) = w∆,
where w∆ is the point closest to y(i) on the diagonal ∆, as this is the update point
we use for the diagonal. Since there are a finite number of off-diagonal points, each
updated Mk is therefore contained in the union over all bijections and all points y(i)

of the convex combination of {γj(y(i)) : j = 1, . . . , n}. By also taking the union
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over each k, we show that every iterate of M must be contained in the finite triple-
union of the convex combination of each possible bijection. To show that each up-
dated y(i) is contained in a convex combination of {γj(y(i)) : j = 1, . . . , n}, recall that

y(i) =
(︂

∑n
j=1 r2

jk

)︂−1
∑n

j=1 r2
jkγj(y(i)). Letting t(i)j = r2

jk

(︂
∑n

j=1 r2
jk

)︂−1
, clearly each t(i)j > 0

and ∑n
j=1 t(i)j = 1. Since y(i) = ∑n

j=1 t(i)j γj(y(i)), each y(i) is contained in the convex
combination. Therefore T(l)(R, M) ∈ [0, 1]nc × conv(D)c for each l = 0, 1, . . . .

Now, [0, 1] is closed and bounded, so is compact. The convex hull of points in the
plane is closed and bounded, so conv{γj(y(i)) : j = 1, . . . , n} is compact. Since finite
unions and finite direct products of compact sets are compact, [0, 1]nc × conv(D)c is also
compact.

Lemma 5.3. The cost function J(R, M) is a descent function, as defined in Theorem 5.1(ii).

Proof. The cost function J is continuous, as it’s a sum, product and composition of
continuous functions. Furthermore, we have that for any (R, M) ̸∈ Γ,

J(T(R, M)) = J(F ◦ G(R), G(R)) < J(R, G(R)) < J(R, M),

where the first inequality is due to Bezdek (1980, Proposition 1), and the second in-
equality comes from the definition of the Fréchet mean. If (R, M) ∈ Γ then the strict
inequalities include equality throughout.

We finish by applying Zangwill’s Convergence Theorem to the setting we have de-
scribed.

Theorem 5.4. For any (R, M), every convergent subsequence of {T(l)(R, M) : l = 0, 1, . . . }
tends to a local minimum or saddle point of the cost function J.

Proof. We proceed with Zangwill’s Convergence Theorem (Theorem 5.1). Our algorithm
is the update function T, our solution set is Γ, and our descent function is the cost
function J(R, M). By Lemma 5.2, every iterate is contained within a compact set. By
Lemma 5.3, J is a descent function. Finally, since our function T only maps points in
the plane to points in the plane, it is a closed map. The theorem follows by applying
Theorem 5.1.

We have shown that the FCM algorithm in persistence diagram space has the same
convergence guarantee as Euclidean FCM: that every convergent subsequence will
converge to a minimum or saddle point of the cost function. However, so far we have
assumed that we can compute the weighted Fréchet mean; in the next section we add
weights to the algorithm given by Turner et al. (2012) so we can compute it in practice.
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5.2.2 Computing the weighted Fréchet mean

In Algorithm 3 we add copies of the diagonal to ensure that each diagram has the same
cardinality; denote this cardinality as m. To compute the weighted Fréchet mean, we
need to find Mk = {y(i)}m

i=1 that minimises the Fréchet function in Equation 5.4. The
Wasserstein distance requires the optimal matching given by a bijection γj : y(i) ↦→ x(i)j

for each j. Supposing we know these bijections, we can rearrange the Fréchet function
into the form F(Mk) = ∑n

j=1 r2
jkW2(Mk, Dj)

2 = ∑m
i=1 ∑n

j=1 r2
jk||y(i) − x(i)j ||2.

In this form, the summand is minimised for y(i) by the weighted Euclidean centroid of
the points {x(i)j }n

j=1. Therefore to compute the weighted Fréchet mean, we need to find
the correct bijections. To this end, we adapt the algorithm for the computation of the
unweighted case given by (Turner et al., 2012, Algorithm 1).

We start by using the Hungarian algorithm (Munkres, 1957) to find an optimal matching
between Mk and each Dj. Given a Dj, for each point y(i) ∈ Mk, the Hungarian algorithm
will assign an optimally matched point x(i)j ∈ Dj. Specifically, we find matched points

[︂
x(i)j

]︂m

i=1
←− Hungarian(Mk, Dj), for each j = 1, . . . , n. (5.5)

Now, for each y(i) ∈ Mk we need to find the weighted average of the matched points[︂
x(i)j

]︂n

j=1
. However, some of these points could be copies of the diagonal, so we need to

consider three distinct cases: that each matched point is off-diagonal, that each one is a
copy of the diagonal, or that the points are a mixture of both. We start by partitioning
1, . . . , n into the indices of the off-diagonal points J(i)OD =

{︂
j : x(i)j ̸= ∆

}︂
and the indices

of the diagonal points J(i)D =
{︂

j : x(i)j = ∆
}︂

for each i = 1, . . . , m. Now, if IOD = ∅ then

y(i) is a copy of the diagonal. If not, let w =
(︂

∑j∈J(i)OD
r2

jk

)︂−1
∑j∈J(i)OD

r2
jkx(i)j be the weighted

mean of the off-diagonal points. If J(i)D = ∅, then y(i) = w. Otherwise, let w∆ be the
point on the diagonal closest to w. Then our update is

y(i) ←−
∑j∈J(i)OD

r2
jkx(i)j + ∑j∈J(i)D

r2
jkw∆

∑n
j=1 r2

jk
, for i = 1, . . . , m. (5.6)

We summarise this process in Algorithm 4.

The following theorem shows that Algorithm 4 will converge to the weighted Fréchet
mean, as required.

Theorem 5.5. Given diagrams Dj, membership values rjk, and the Fréchet function F given by

F(D̂ ) =
n

∑
j=1

r2
jkFj(D̂ ), with Fj(D̂ ) = W2(D̂ , Dj)

2, (5.7)
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Algorithm 4 Weighted Fréchet Mean
Input Diagrams D = {Dj}n

j=1, Weights Rk = {rjk}n
j=1 (fixed k)

Output Weighted Fréchet mean Mk = {y(i)}m
i=1

1: m← max1≤j≤n |Dj |
2: for j in 1..n do

3:
[︂

x(i)j

]︂m

i=1
← HUNGARIANALGORITHM(Mk, Dj)

4: end for
5: while

{︂[︂
x(i)j

]︂m

i=1

}︂n

j=1
̸=
{︂[︂

x̂(i)j

]︂m

i=1

}︂n

j=1
do

6: for i in 1..m do
7: J

(i)
OD = {j : x(i)j ̸= ∆}

8: J
(i)
D = {j : x(i)j = ∆}

9: if J(i)OD = ∅ then
10: y(i) ← ∆
11: else
12: w =

(︂
∑j∈J(i)OD

r2
jk

)︂−1
∑j∈J(i)OD

r2
jkx(i)j

13: if J(i)D = ∅ then
14: y(i) ← w
15: else

16: y(i) ←
∑

j∈J(i)OD
r2

jkx(i)j +∑
j∈J(i)D

r2
jkw∆

∑n
j=1 r2

jk

17: end if
18: end if
19: end for
20:

{︂[︂
x̂(i)j

]︂m

i=1

}︂n

j=1
←
{︂[︂

x(i)j

]︂m

i=1

}︂n

j=1
21: for j in 1..n do

22:
[︂

x(i)j

]︂m

i=1
← HUNGARIAN(Mk, Dj)

23: end for
24: end while
25: return {y(i)}m

i=1

then Mk = {y(i)}m
i=1 is a local minimum of F if and only if there is a unique optimal pairing

from Mk to each of the Dj, denoted γj, and each y(i) is updated via Equation 5.6.

Since the proof of this theorem essentially amounts to adding r2
jk coefficients to the proof

given by Turner et al. (2012, Theorem 3.3), we omit it from the main body of this thesis.
The details are available in Appendix A.

5.3 Empirical Behaviour Analysis

We have shown a theoretical guarantee that every convergent subsequence will tend to
a local minimum, but in practice it remains important that our algorithm will converge
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within a reasonable timeframe. To empirically investigate whether or not this happens in
practice we ran experiments on a total of 825 uniformly randomly generated persistence
diagrams, recording the number of iterations and cost functions for both the FCM
clustering and the weighted Fréchet mean (WFM) computation. We considered the
FCM to have converged when the cost function remained within ±0.5%. As explained
in Section 5.2.2, the WFM converges when the matching stays the same. The results,
shown in Figure 5.5 demonstrate that the FCM clustering consistently converges within
5 iterations, regardless of the number of diagrams and points per diagram (note that
the time per iteration increases as the number of points/diagrams increases, even if the
number of iterations remains stable). We had no experiments in which the algorithm
did not converge. The WFM computation requires more iterations as both number of
diagrams and number of points per diagram increases, but we once again experienced
no failures to converge in each of our experiments. In general, running the algorithm
offered no difficulties on a 2018 MacBook Pro (with a 1.4 GHz i5 and 8GB RAM) and we
believe the algorithm is ready for use by practitioners in the TDA community.

The use of the Wasserstein distance in the clustering still means that some datasets with
many points will be difficult to compute the distances for. To explore solutions to this,
we investigated the substitution of different distances in Equation 5.3. Specifically, we
evaluated the quality of learnt clusters using the fuzzy RAND index (Campello, 2007) - a
standard measure of cluster quality - when using the 2-Wasserstein distance, bottleneck
distance, sliced Wasserstein kernel (Carriere et al., 2017), heat kernel, and L2 distance
between persistence images (Chepushtanova et al., 2015). More details on each of these
distances are available in Section 3.2. We find that typically the more expensive optimal
matching-based distances perform best, whereas approximations and embedding-based
distances are faster but score lower. The distance between persistence images may
provide the best compromise in practice. These results are shown in Figure 5.6.

5.4 Application to Pre-Trained Model Selection

Previous work has suggested that deep learning models will perform better on unseen
datasets which have a similar topological complexity to the model’s decision boundary
(Ramamurthy et al., 2019). In fact, there is an increasing amount of work studying the
link between topology and neural network performance (Rieck et al., 2019c; Guss and
Salakhutdinov, 2018). To this end we utilise our algorithm to cluster the topology of the
decision boundaries of pre-trained models and tasks (labelled datasets). Given a task we
find the nearest cluster centre, then select the models nearest to that centre. Even though
the only information utilised for the model selection is the topology of the decision
boundaries, we find that it consistently selects the top performing model as the first
choice, and additional choices perform above average, despite not being trained on the
task. This further confirms that the topology of the decision boundary is indicative of
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(i) Average iterations for the FCM algorithm to converge.

(ii) Average iterations for the WFM algorithm to converge.

FIGURE 5.5: Heatmaps showing average number of iterations for fuzzy clustering
of persistence diagrams (5.5i) and the weighted Fréchet mean computation (5.5ii) to
converge. Convergence of the FCM algorithm is determined when the cost function is
stable to within ±0.5%. Convergence experiments were carried out on a total of 825

persistence diagrams, including three repeats.
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FIGURE 5.6: For computational speedups practitioners may wish to use different
distances in the clustering algorithm. We use the fuzzy RAND index (Campello, 2007)
to evaluate cluster quality when using some common distances. In practice, you may
be best using the distances between persistence images, although the more expensive

bottleneck distance will provide the best results.

generalisation ability to unseen tasks. Furthermore, our algorithm is able to exploit this
information to learn cluster centres that consistently select the best performing models
on tasks.

Specifically, given a dataset with n classes, we fix one class to define n− 1 tasks: binary
classification of the fixed class vs each of the remaining classes. On each of these
tasks, we train a model. We compute the decision boundary of the model f , defined as
(x1, . . . , xm, f (x)) where f (x) is the model’s prediction for x = (xi)i, and the decision
boundary of the tasks, defined via the labelled dataset as (x1, . . . , xm, y) where y is the
true label. We compute the 1-persistence diagrams of the tasks’ and models’ decision
boundaries and cluster them to obtain membership values and cluster centres. To view
task and model proximity through our clustering, we find the cluster centre with the
highest membership value for each task, and consider the models closest to that cluster
centre. Note that model selection is naturally a fuzzy task: one model can (and does)
perform well on multiple tasks. Therefore this is a task best suited to fuzzy clustering.

In particular, in order to assign each task to the top-ranked models, we need to have
a path from a task to the nearest cluster centre, then from that cluster centre to the
k-nearest models (note that when we refer to models/tasks, we’re implicitly referring to
the persistence diagram of their decision boundary). We can always find that route when
fuzzy clustering, as the fractional membership values mean that we have information
about the proximity of every model/task with every cluster centre. However, with
hard clustering we cannot always find that route. Firstly, the hard labelling means that
you lose a lot of information about the proximity of models/tasks to cluster centres.
Therefore, in order to find a route, we need a every task to be assigned to a cluster centre
that also has a model assigned to it. However, there are no guarantees that will happen.
We show an example where no path exists in Figure 5.7.

To assess the ability of our model/task clustering, we performed the above experiment
on three different datasets: MNIST (LeCun et al., 2010), FashionMNIST (Xiao et al.,
2017), and Kuzushiji-MNIST (Clanuwat et al., 2018). MNIST (introduced in Section
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Cluster

Model

Task

(i) Hard clustering (ii) Fuzzy clustering

FIGURE 5.7: We show a planar visualisation of space when clustering the persistence
diagrams of the decision boundaries of different pre-trained models and tasks. To
match models to tasks there must be a path between every model and task. When hard
clustering (i) there is no guarantee that there will be such a path; fuzzy clustering (ii)
guarantees that there will be, and we can use the membership values to evaluate its

quality.

4.2.1) is a dataset of images of handwritten images. FashionMNIST and Kuzushiji-
MNIST are ‘MNIST-like’ datasets, as they are image datasets of the same size (both in
terms of image size and number of samples). FashionMNIST shows images of common
items of clothing, and the task is to classify the item of clothing. Kuzushiji-MNIST is
a dataset of handwritten Japanese characters; the task is to classify the character. Our
goal is to evaluate whether or not the clustering is capturing information about model
performance on tasks, so as a baseline we use the average performance of all models
on a fixed task, averaged over all tasks. Given a task, we find the its nearest cluster
centre, then the three nearest models. We compute the difference in performance of the
selected tasks over the average performance of the models on each task. We display
the results in Figure 5.8i. We see a significant increase in performance, indicating that
the topological fuzzy clustering has selected the model trained on the task, despite
only having information about the topology of the decision boundary. We also show
the performance of the 1st, 2nd, and 3rd choice models separately, in Figures 5.8ii,
5.8iii, and 5.8iv respectively. There is a marked decrease in performance as we descend
in the order of our choices, although we generally still see a statistically significant
increase in performance over average performance, indicating that the fuzzy clusters
are capturing information about model generalisation to unseen tasks. The worst
performance, particularly on the 3rd choice model, is from the Kuzushiji MNIST data. We
hypothesise that this is because the dataset is not particularly amenable to generalisation,
so a model not trained on the specific task will perform significantly worst than the
highest achieving model (which we are selecting in the 1st and 2nd choices), even when
selected using this technique. We repeat each experiment three times using sequential
seeds, resulting in a total of 81 trained models.
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(i) Difference in accuracy for the top three choice models selected via the fuzzy clusters
over average performance.

(ii) 1st choice model (iii) 2nd choice model (iv) 3rd choice model

FIGURE 5.8: Difference in accuracy over average task performance when using the
fuzzy clustered persistence diagrams of decision boundaries for model selection. Given
a task, we find its nearest cluster centre, and use fuzzy membership values to select the
nearest models. Figure i shows the performance of the top 3 models collectively, and ii,

iii, and iv show the performance of the 1st, 2nd, and 3rd closest models separately.

5.5 FCM for Riemannian Manifolds

As part of a Geometric and Topological Machine Learning workshop at ICLR 2021 we
integrated our implementation of FCM for persistence diagrams into two major code
packages in the space. The first was Giotto-TDA (Tauzin et al., 2020), a well known
package used for Topological Data Analysis. This made FCM available to people as part
of a broader TDA ecosystem by using Giotto-TDA to compute persistence diagrams.
We also adapted it for Geomstats (Miolane et al., 2020). Geomstats is a library that
enables machine learning on manifolds. Since Fréchet means are defined on manifolds,
we are still able to use the FCM algorithm we give in Algorithm 3. Furthermore, the

https://giotto-ai.github.io/gtda-docs/0.4.0/library.html
https://geomstats.github.io/
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convergence properties we show in Theorem 5.5 still hold, as the proof relies only on
the definition of the weighted Fréchet mean; it does not matter in what setting that
mean is taken. The only remaining question, therefore, is how to compute the weighted
Fréchet mean on manifolds. Fortunately, Geomstats provides functions to do that, and
we were able to fairly trivially implement the fuzzy c-means algorithm for manifolds.
The implementation is available on their GitHub. See Figure B.1 for an example of the
implementation working on the surface of a sphere.

5.6 Discussion

We have extended the fuzzy c-means clustering algorithm to persistence diagram space,
proving the same convergence guarantee as the Euclidean case. Note that in reality
practitioners may just embed into a feature vector and perform Euclidean clustering,
bypassing the expensive process of computing Fréchet means and distances on persis-
tence diagrams. Despite this the method remains useful, in particular if you wish to
stay in persistence diagram space. This could be the case if, for example, you wish to
backpropogate through the clustering, and cannot differentiate through your vectori-
sation strategy. The application of our algorithm matching pre-trained deep learning
models to unseen datasets is particularly interesting. The link between the topology
of decision boundaries and the generalisation ability of the model to unseen datasets
remains relatively unexplored, and I would suggest this area as both important and
interesting for future work.

https://github.com/geomstats/challenge-iclr-2021/
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Applications to Cyber Security





Chapter 6

A Review of TDA for Cyber Security

Cyber security is defined by the UK’s National Cyber Security Centre as ‘the way in
which individuals and organisations reduce the risk of cyber attack[s]’1, where cyber
attacks are ’malicious attempts to damage, disrupt or gain unauthorised access to
computer systems, networks or devices, via cyber means’2. The stakes are high, as
the cost of cyber crime to the UK economy has been estimated as £27 billion a year
(Detica, 2011), and cyber attacks are considered a Tier 1 national security risk in the UK
National Security Strategy (HM Government, 2010). Cyber systems regularly comprise
of intricate technical systems which record vast amounts of data, and so machine
learning is increasingly being used to understand and exploit systems that would
otherwise require a human operator to put in large amounts of time and have deep
technical expertise. In addition, cyber security data intrinsically contains a large amount
of structure, which is naturally very suited to topological tools. As such, we consider
applications of persistence-based summaries to cyber security in this part (Part III) of
the thesis.

We define cyber security data as referring to any dataset collected from operational
systems or simulations of systems that pertains to the protection of these systems. In
this thesis, this often refers to logs of actions taken on computers, but cyber data could
equally relate to information about computer networks, blockchain transactions, or
many other facets of computer security. In fact, cyber security data is a perfect candidate
for topological tools. It often consists of higher-order interactions which we can study
with persistence-based summaries and other methodologies from Topological Data
Analysis. The global summaries offered by topology, which can be a weakness in some
domains, is a strength in cyber security; Winding et al. (2006) say that “little information
can be gained from analysing individual records, [as] often the presence of intrusion
behaviour or other anomalous activity can only be detected by looking at the aggregate
behaviour of related records”. In Chapter 7 we are interested in representing computer

1https://www.ncsc.gov.uk/section/about-ncsc/what-is-cyber-security
2https://www.ncsc.gov.uk/information/ncsc-glossary

https://www.ncsc.gov.uk/section/about-ncsc/what-is-cyber-security
https://www.ncsc.gov.uk/information/ncsc-glossary
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logs using their higher-order interactions. For now (in Chapter 6), we contextualise the
applications of Topological Data Analysis to cyber security by reviewing the literature
surrounding this area. We will see that TDA is applicable across many areas of cyber
security; topological tools can be used on problems as widely arrayed as fingerprinting
encrypted network traffic to identifying ransomware payments on blockchains.

Recall from Part I that two of the main tools in TDA are Mapper and persistent homology.
Mapper is an algorithm that represents large high-dimensional datasets as a much
smaller graph in a topology-preserving way, enabling its visualisation and analysis.
Persistent homology produces a persistence diagram: a concise summary of the topology
of a dataset which can be vectorised and used as input to other machine learning
methods. Both strands of TDA have found applications in cyber security. Vast networks
are common in this domain, and Mapper can reduce the size of large networks in
a principled way, allowing human operators to better visualise and understand the
datasets they are working with. Indeed, the primary application of Mapper that we see
is to reduce large datasets of network traffic into more interpretable graphs. Clusters in
the mapper graph are shown to represent one type of anomaly (Coudriau et al., 2016),
and proximity to potential anomaly’s within the mapper graph can alert analysts to
traffic worth further investigation (Bihl et al., 2020). Persistence diagrams have also been
used with success on cyber data. Persistence diagrams concisely summarise the global
structure of higher-order interactions, so their application to cyber security seems very
natural. This is demonstrated in the literature, with persistence diagrams being applied
to successfully identify anomalies in network logs (Bruillard et al., 2016) and identify
IoT devices from encrypted packet data (Collins et al., 2020).

The structure of this literature review is as follows. In Section 6.1 we summarise tech-
niques to represent cyber data as either vectors or graphs. In Sections 6.2 and 6.3 we
review the literature on Mapper and persistent homology for cyber respectively. In
Appendix C we list the public cyber datasets found during this review.

Publications and contributions. This review was accepted as a paper and presented at
the AAAI 2022 AI for Cyber Security workshop (Davies, 2022a). This chapter is entirely
my own work.

6.1 Representing Cyber Data

Cyber data often comes in forms that is not immediately amenable to machine learning
techniques. As such, choosing how to represent the data is an important step in any
analysis workflow for cyber security. Much of the data naturally has a graph structure,
as most things we consider live on a network. Some researchers choose to represent the
data in a way that respects this graph structure, whereas others choose to represent it in
a way that disregards it; both options have had success in the literature. In this section
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we cover cyber-specific representations of logs that disregard the graph structure, as
well as general graph embedding techniques.

We often see Mapper applied to vectors that are built in a graph-agnostic way, even
when the initial data has a graph structure. Mapper is capable of being applied directly
to graphs - there is nothing in the algorithm that prevents us from using it on graph
structured data, we just have to choose our partitioning of the data in a way that respects
the graph. Hajij et al. (2018) do exactly that, but their code is not built into the main TDA
libraries and is still in development, which might explain why we see a graph-agnostic
representation in use with Mapper. In the case of persistent homology, again the majority
of papers represent the data in a graph-agnostic way before computing the Vietoris-Rips
complex. However, Collins et al. (2020) use the existing network structure and create
their filtration based on inter-packet time, showing that such an approach is feasible.

6.1.1 Graph-agnostic representations

Winding et al. (2006) proposed vectorising network log data by summing numeric fields
and counting enumerated fields. They suggested the following feature vectors:

• source IP, number of destination IP addresses;

• destination IP, number of failed access attempts;

• source IP, destination IP;

• destination perspective vector (consisting of destination IP, number of successful
accesses, number of failed accesses, count of destination points, number of inbound
bytes, number of outbound bytes).

Figure 6.1 gives an example of this vectorisation scheme for the source IP and number
of destination IP addresses. This technique is regularly used to represent log data in
anomaly detection research (Jakub and Branišová, 2015; Bruillard et al., 2016; Meng et al.,
2019; Bihl et al., 2020). Based on its regular usage in the literature we use it as a baseline
in Chapter 7, referring to it as the ‘counts’ baseline.

Bruillard et al. (2016) proposed mapping NetFlow data into feature vectors that sum-
marise either (i) the cumulative number of packets sent/received by an IP of interest,
(ii) the total number of packets sent/received by each IP, or (iii) the total number of
packets sent/received by each IP to an IP of interest. These vectors are created over a
window of a given length that advances over the whole dataset. The length of window
and increment time are parameters that the authors vary and investigate the change in
performance.



96 Chapter 6. A Review of TDA for Cyber Security

TABLE 6.1: An example of the feature vector creation process proposed by Winding et al.
(2006) which is regularly used to represent logs in the literature. Categorical variables
are counted and numerical variables are summed, so the collection of logs recording

connections to each source IP address is mapped into the feature vector (3, 1, 2, 21).

Log ID Source IP Connections

0 126.173.234.214 10
1 129.210.183.30 1
2 126.173.234.214 3
3 68.223.170.91 1
4 126.173.234.214 2
5 68.223.170.91 4

Log Reference Feature Vector

126.173.234.214 3
129.210.183.30 1
68.223.170.91 2
Connections 21

6.1.2 Event data as graphs

Aksoy et al. (2019) consider a sliding window of 60 seconds that advances 20 seconds
at a time over event logs. For the events in each window they construct a graph - the
specific graphs they consider are listed below.

• Authentication graphs are unweighted graphs built from authentication data that
has source user/destination user as edges.

• Authentication failure graphs are as above, but restricted to failed authentication
events.

• Process graphs are built from start/stop records of processes. The graph consists of
edges between computers and process names.

• DNS graphs are built from DNS lookup events with edges from source computer
to resolved computer.

• Flow graphs are built from the records of every network flow event. The edges are
between the source computer and the destination computer.

Collins et al. (2020) use encrypted packet data to build a filtration. They pick a device of
interest and connect it to the last n devices that it exchanged packets with. They induce a
filtration by the inter-packet arrival time, a metric that has previously shown to contain
discriminative information when the traffic is encrypted. When all edges of a 2-simplex
are present, they add the 2-simplex (Figure 6.8i). By doing so they avoid computing the
expensive Vietoris-Rips complex, instead using the natural structure of the data and a
relevant feature to induce a filtration.

6.1.3 Graph embeddings

Given the prevalence of graph-structured datasets in cyber, we offer a brief review of
techniques to embed graphs into Rd.
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Early methods. Belkin and Niyogi (2001) showed that the eigenvalues of the graph
Laplacian give an optimal embedding into RD, introducing this as a technique for finding
low-dimensional embeddings over 20 years ago. Another early popular technique for
semi-supervised learning on graphs was label propagation (Zhu and Ghahramani,
2002; Zhu et al., 2003). It spreads labels through a graph under the assumption that
nodes that are in close proximity are likely to have the same label. Belkin et al. (2006)
introduced manifold regularisation, an additional loss term that uses the graph Laplacian
to regularise based on inferred structure of the data. Weston et al. (2012) extend this
regularisation scheme to deep networks with their deep semi-supervised learning
framework. These techniques can still provide useful baselines for graph learning
problems.

Skip-gram based models. Skip-gram was introduced by Mikolov et al. (2013a,b) to
improve word embeddings for natural language processing (NLP). Given a word from
a sentence, the idea of skip-gram is to maximise the average log probability that your
model can predict the next word. Node2Vec (Grover and Leskovec, 2016) and LINE
(Tang et al., 2015) adapted this for graph-structured data by maximising the probability
that, given a node v, you can predict a node in the neighbourhood of v. Since the
neighbourhoods over several hops can grow prohibitively large, they are sampled by
random walks, with different adaptations using different sampling techniques.

Graph neural networks. Graph neural networks (GNNs) learn to aggregate feature vec-
tors across nodes by combining features with those of their neighbours. Initially graph
neural networks were classified as either spectral - aggregating neighbours in the spec-
tral domain - or spatial - aggregating otherwise. However, true spectral filters require
an expensive computation of the Fourier basis, so in general this was approximated,
resulting in networks that were essentially spatial. As such, GNNs are now categorised
as either convolutional, attentional, or message-passing (Figure 6.1). The difference lies
in how information from the neighbourhood is aggregated. For convolutional networks,
an updated feature vector hi of a node xi is decided by

hi = ϕ

⎛⎝xi, ∑
j∈N(xi)

ci,jψ(xj)

⎞⎠ ,

where N(xi) is the neighbourhood of xi. In this case, ci,j are fixed weights, normally
determined by the graph’s structure, ϕ is a nonlinearity and ψ is a learnt transformation.
Popular examples of convolutional networks are Chebynet (Defferrard et al., 2016),
GCNs (Kipf and Welling, 2017), and SGCs (Wu et al., 2019). For attentional networks the
update step is

hi = ϕ

⎛⎝xi, ∑
j∈N(xi)

a(xi, xj)ψ(xj)

⎞⎠ ,
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(i) Convolutional (ii) Attentional (iii) Message passing

FIGURE 6.1: Graph neural networks can be sorted into the following taxonomy. Figure
reproduced from Veličković (2021).

where a is a learnt function on xi, xj. This allows the model to determine how important
an edge should be considered, rather than relying on the structure of the graph to inform
that. Popular examples of attentional networks are MoNet (Monti et al., 2017), GAT
(Veličković et al., 2018), and GaAN (Zhang et al., 2018). Interestingly, in the case where
the graph is fully connected, this is the same as the celebrated transformer NLP model
(Vaswani et al., 2017). Finally, message passing networks are the most general way to
aggregate neighbours. Their update step is

hi = ϕ

⎛⎝xi, ∑
j∈N(xi)

ψ(xi, xj)

⎞⎠ .

In this case, the coefficient is discarded, and ψ learns what features should be aggregated.
Popular examples are interaction networks (Battaglia et al., 2016), MPNNs (Gilmer et al.,
2017), and GraphNets (Battaglia et al., 2018).

Embedding large graphs. The techniques we’ve discussed so far cannot scale to large
graphs. Computing eigenvalues for Laplacian-based models is prohibitively expensive
even for smaller graphs; Skip-gram based models struggle to compute all the random
walks without running out of memory for larger graphs; and many graph neural
networks hold the entire adjacency matrix in memory, which is clearly unfeasible for
large graphs. GraphSage (Hamilton et al., 2017) observes that to compute the gradient
for a GNN with L layers at one node only requires neighbours up to L hops away.
Furthermore, it samples neighbours rather than fully compute the neighbourhood, and
mini-batches, i.e., only updates the gradients for a limited number of nodes at a time.
By doing so it massively increases the size of graphs that can be processed with GNNs.
However, there is redundant computation within this method as the same node can be
sampled multiple times when neighbhourhoods overlap. ClusterGCN (Chiang et al.,
2019) and GraphSAINT (Zeng et al., 2019) improve on GraphSage by proposing two
techniques to remove these redundant computations.

Both Facebook and Twitter, as two organisations with very large graphs to process, have
developed their own techniques to process very large graphs. Twitter proposed SImple
scalable Graph Neural networks (SIGN), based on the idea that you don’t necessarily
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require deep networks to learn from graphs; perhaps one-hop neighbourhoods are
sufficient for learning. Under this assumption you can pre-compute the diffusion
step, meaning you only have to multiply by weights in the training step. This gives a
speed increase of up to two orders of magnitude over ClusterGCN and GraphSAINT,
along with the ability for large scalability and parallelisation. However, the authors
of this work suggest in a blog post3 that SIGN is best used as as a fast benchmark for
other models, so the lack of depth does ultimately seem to effect the performance of
the network. Pytorch Big Graph (PBG) is Facebook’s contribution (Lerer et al., 2019).
It works on multi-relational graphs: graphs where you can have different types of
edges. For example, in a Facebook graph an edge could represent a friendship, a like,
a comment, or similar. PBG introduces several tricks to allow multi-relational graph
neural networks to work on graphs with billions of nodes and trillions of edges.

6.2 Mapper for Cyber Security

In this section we review the literature on Mapper applications to cyber, splitting it
by application domain. We find that it is most often used as an investigative and
visualisation tool, although in some cases can provide quantitative information.

Anomaly detection. Bihl et al. (2020) apply Mapper to firewall logs from an enterprise-
level organisation. The authors use a graph agnostic representation technique developed
by Winding et al. (2006) that we cover in Section 6.1.1 (counting categorical fields and
summing numerical fields). After representing the logs they compute the histogram
matrix (HMAT) introduced by Gutierrez et al. (2018). This was intended to provide
a way for analysts to visualise logs that may be anomalous over some block of time.
Bihl et al. (2020) associate an HMAT matrix with each node in the mapper graph, then
anomalous nodes in the Mapper graph flag to analysts that adjacent nodes may also
be worth further investigation (Figure 6.2). However, even within the paper this claim
goes relatively untested, and the tool is framed more as an exploratory technique than
something that can reliably find anomalous events.

Network telecopes. Ranges of IPs with no active domains can be used to analyse traffic
not directed towards real hosts. Since devices listening to this traffic are not real, any
traffic to them is likely to be malicious (Fachkha and Debbabi, 2015). In the literature
such traffic is called internet background radiation (IBR) and the listening devices are
referred to as network telescopes. Coudriau et al. (2016) uses Mapper on data from a
darknet telescope to find scans and DDoS attacks, outperforming traditional clustering
algorithms when attacks don’t cover the full range of possible ports or IPs (Figure
6.3). Mapper is also able to distinguish types of attacks from complex data. Applying

3https://blog.twitter.com/engineering/en_us/topics/insights/2021/
simple-scalable-graph-neural-networks

https://blog.twitter.com/engineering/en_us/topics/insights/2021/simple-scalable-graph-neural-networks
https://blog.twitter.com/engineering/en_us/topics/insights/2021/simple-scalable-graph-neural-networks
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FIGURE 6.2: Mapper applied to HMAT matrices. Nodes in close proximity to those
flagged as potentially anomalous could be worth further investigation. Figure repro-

duced from Bihl et al. (2020).

(i) The dataset clus-
tered using DBSCAN.

(ii) The mapper graph
of the dataset.

(iii) The dataset clus-
tered with mapper.

FIGURE 6.3: Packets received by a network telescope plotted with respect to destination
and source IP addresses. The vertical lines show one source IP scanning a range of
destination IPs. In this example, DBSCAN cannot pick up the less dense scans, but

Mapper does. Figure reproduced from Coudriau et al. (2016).

Mapper to source and destination IP/port data from a network telescope and manually
examining the clusters showed that that each cluster represented a distinct attack,
including the attempted exploitation of a known router vulnerability and scanning
(Figure 6.4). Figure 6.5 shows visualisations of portscans and DDoS attacks that were
captured by Mapper in the network telescope dataset. Of the many port scans identified
by Mapper in Figure 6.5, only four were found by the ruleset of the intrusion detection
system Suricata.

Narita (2021) also compute the Mapper graphs of network telescope data, but their
analysis is less complete, instead focusing on describing the resultant graphs without
attempting to link it to different attack types.

Tor traffic detection. If encrypted Tor traffic (which is often used for illegal activities

https://suricata.io/


6.2. Mapper for Cyber Security 101

(i) Original data. (ii) Mapper graph.
(iii) Data coloured by

cluster.

FIGURE 6.4: The data collected by a network telescope is shown in (a). In (b) the data
is clustered using Mapper. Manual examination of the clusters showed that the large
green dot is attempting to exploit a known router vulnerability, the red component is
trying to access Telnet or SSH, the orange component is a sparse port scan from a single
address, and the yellow component is a randomised scan and some noise. In (c), the
initial data is coloured according to the Mapper clusters. We can see that the clusters
are disorderly within the data, despite Mapper pulling out distinct attack types. Figure

reproduced from Coudriau et al. (2016).

(i) Portscans (ii) DDoS

FIGURE 6.5: Portscans and DDoS attacks captured by Mapper in network telescope
data. Figure reproduced from Coudriau et al. (2016).

online) is detected as it passes through a network then connections can be immediately
shut down and further investigated. Veen (2018) investigates supervised and unsu-
pervised methods for Tor traffic detection, using XGBoost with great success to detect
Tor traffic. They investigate Mapper as an unsupervised technique for visualising and
predicting Tor traffic within network traffic. There is some success, with qualitative
observations that Tor traffic tends to be on the extremes of the graph (Figure 6.6).

Ransomware payments. Akcora et al. (2019) build a Mapper graph from Bitcoin transac-
tion data. If a certain proportion of addresses that are within a node of the Mapper graph
are known to receive ransomware payments then the remaining addresses have their
risk scores increased. Repeating over the entire map and thresholding the acceptable
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FIGURE 6.6: Mapper graph of packet data within a network. Extremities of the graph
tend to be Tor traffic. Figure reproduced from Veen (2018).

risk gives a list of suspicious Bitcoin addresses. This approach outperforms DBScan and
XGBoost on feature vectors built from the data.

Attack graphs. Sophisticated attacks on networks can consist of multiple steps, many
of which are not problematic when viewed individually. However, as a whole they
can constitute a powerful attack. This sequence of actions as part of a sophisticated
attack naturally admits a graph structure, referred to as an attack graph. This graph
is susceptible to analysis with topological techniques, which was the focus of work by
Navarro et al. (2018). They apply mapper to event networks in the hope that the reduced
graph is able to be analysed by humans who can find repeated structures across attacks.

6.3 Persistence-Based Summaries for Cyber Security

We have seen that persistence diagrams capture specific topological information about
data which can be vectorised and fed into machine learning methods for further analysis
and prediction. We see in this section that this can be used for detection and classification
in far more quantitative ways than Mapper.

Anomaly detection. Bruillard et al. (2016) uses the distance between persistence dia-
grams computed from NetFlow data to detect anomalies. Vectorising the NetFlow data
via a sliding window over the data counting packets (as described in Section 6.1.1), the
authors compute a baseline persistence diagram from a collection of feature vectors B.
For every other vector x, they compute the Wasserstein distance between the persistence
diagrams of B and B ∪ {x}. The larger the distance, the more topologically different
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FIGURE 6.7: The spike in topological dissimilarity indicates a predicted anomaly. In
fact, this was a port scan. Figure reproduced from Bruillard et al. (2016).

the points are, and they found that spikes in topological dissimilarity are indicative of
anomalies (Figure 6.7).

Activity prediction. Gabdrakhmanova (2018) attempt to predict the activity of network
switches based on previous activity. They compute persistence diagrams for each two
hour period and summarise them as the approximate Euler characteristic: alternating
sums of the total persistence of the diagrams over increasing dimensions. It is not
specified exactly how activity predictions are made with that, but it appears they input
them into a neural network to predict the next Betti number. It is unclear from the paper
whether or not they had any success doing so, as no evaluation of the predictions is
present.

Gabdrakhmanova (2018) summarises persistence diagrams as the Euler characteristic.
Specifically, this is the alternating sum of the Betti numbers, which are approximated
by the persistence of points in persistence diagrams, increasing by dimension. Given
the levels of recent activity at a network switch (say, at an ISP), they wish to predict the
future levels of activity. They have bits/minute data for 7 days. They split the data into
two hour chunks, computing a persistence diagram for each two hour period. From
that, they estimate the Euler characteristic of that period, as described above.

IoT device fingerprinting. Postol et al. (2019) show that TDA works particularly well for
classifying incomplete and noisy data from internet of things (IoT) devices on networks.
They compute the persistence diagrams of vectorised IoT network traffic, and use feature
selection/logistic regression on functional embeddings of the diagrams to classify types
of IoT devices (differentiating between cameras, sensors, and multipurpose devices like
tablets). With data collected over a period of months this worked very well, but over
periods of days it did not. This implies that the pattern of life for different IoT devices
can be better understood with these methods over a longer period of time.

Collins et al. (2020) also study IoT data, only they use the natural network structure of
the graph, introducing a filtration by the inter-packet arrival time (IAT), a feature which
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(i) A simplicial complex built
from packet data.

(ii) Examples of 1-persistence im-
ages of packet data using IAT.

FIGURE 6.8: The 1-persistent homology of packet data can be used to accurately
fingerprint internet of things (IoT) devices on networks, even if the traffic is encrypted.

Figure reproduced from Collins et al. (2020).

FIGURE 6.9: The normalised confusion matrix of IoT device predictions from the 1-
persistent homology of packet data. Figure reproduced from (Collins et al., 2020).

has been previously shown to contain valuable information for traffic classification
and anomaly detection (Uluagac et al., 2013). By using the intrinsic structure of the
graph, they get rid of the need to compute the often prohibitively expensive Rips
complex (Figure 6.8i). Next they compute the 1-homology (holes) of this filtration,
in comparison to previous work on network data that has computed the 0-homology
(connected components). Finally they vectorise the persistence diagrams by mapping
them to persistence images (Figure 6.8ii), and use those to train a CNN. With these
higher-dimensional topological features, they are able to identify IoT devices with high
accuracy, recall, and precision (the confusion matrix is shown in Figure 6.9).

(Hyper)graph metrics. We end this review by briefly mentioning some relevant work
using graph metrics for cyber security data. One way to compare graphs is the relative
Hausdorff distance, which offers a fast but nuanced way to compare two graphs based
on their complementary cumulative degree histograms (CCDH). The CCDH of a graph
G is (N(k))∞

k=1, where N(k) denotes the number of vertices in G with degree at least k.
Comparing these gives us the relative Hausdorff distance, which Aksoy et al. (2019) use
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to detect anomalies in graph sequences built from the Los Alamos dataset (we discuss
open source datasets in Section C). They build authentication graphs, authentication
failure graphs, process graphs, DNS graphs, and flow graphs. Over longer time win-
dows, they find that a spike in pairwise RH distance is indicative of a red-team event.
Joslyn et al. (2019) investigate the use of hypergraphs to represent DNS data.

List of datasets. We have collated a list of relevant datasets for practitioners interested
in working on cyber security data. This is included in Appendix C.





Chapter 7

Structural Representations of
Host-Based Logs

Detecting anomalous behaviour in computer logs is a crucial part of any organisation’s
cyber security operations. Undetected incursions can result in privacy breaches for the
users of the system, and both financial and reputational damage to the organisation
itself. In order to understand what is happening on the computer networks they are
responsible for, cyber security professionals collect logs: records of what is happening
on their computers (hosts) and networks. Ideally, these logs will be analysed in close to
real-time by an Intrusion Detection System (IDS), which in turn is monitored by human
operators in a Security Operations Centre (SOC). The reality is, however, that most
organisations will not have the budget or motivation to properly set up a SOC. Even in a
properly resourced SOC, it can remain difficult to successfully detect security incidents.

Given the high stakes and vast amounts of data, this is a natural domain in which to
apply machine learning. As such, an increasing amount of research effort is being put
into data-driven cyber security, which aims to exploit the large amount of data typically
collected in the cyber security domain. Using these logs in machine learning requires
representing them as a format which is amenable to machine learning methods; typically
this means mapping them into real-valued vectors. Although these logs are intrinsically
extremely structured, consisting entirely of pairwise and higher-order interactions,
standard methods for representing logs entirely disregard this structure. Recall from
Section 6.1.1 the counts vector, which vectorises logs by counting categorical variables
and summing numerical variables. This is often used to represent logs in the literature,
including as input to complicated downstream models, but entirely disregards their
underlying structure. Methods that do account for the structure typically build graphs
from logs. This disregards (i) higher-order interactions in the data, and (ii) the time of
the logs. The time of the logs in particular is considered crucial in determining whether
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behaviour is malicious: there is a big difference between an email attachment launching
unknown software (which is a typical attack vector), rather than the other way around.

In this chapter we propose a methodology to directly represent computer logs into
a filtration of simplicial complexes. This allows us to (i) account for higher-order
interactions, whilst also (ii) using the time of the logs as a filtration parameter. We
evaluate the peristent homology of these filtrations as a feature vector for classifying
malicious behaviour in computer logs. We also evaluate the graph and hypergraph
Laplacian as topological baselines, and the counts vector as a non-topological baseline.

Publications and contributions. The work in this chapter was accepted as a paper and
presented at the SIAM Data Mining workshop on Applications of Topological Data
Analysis (Davies, 2022b; Darling et al., 2022). The application of TDA to cyber security
was proposed by collaborators from the Alan Turing Institute, who also suggested the
baseline and provided the data. I developed the representation technique, implemented
it, ran the experiments, and performed the analysis.

7.1 Background

7.1.1 Host-based logging

Security logging is the practice of recording activity on a computer network. Logs are
typically processed by automatic Intrusion Detection Systems (IDS), which are in turn
monitored within Security Operations Centres (SOCs), providing an invaluable early
warning to cyber security professionals that threat actors are operating within their
computer networks. These logs are typically either network logs or host-based logs
(Khraisat et al., 2019). Network logs are extracted from a network by packet capture or
NetFlow (Hofstede et al., 2014), typically by a network tap or compatible router situated
at network choke points (Hay et al., 2008). Although these taps should be set up so that
any remote infraction on the network necessarily must be logged, the large amount of
data passing through a typical corporate network means that a network-based intrusion
detection system (NIDS) will struggle to evaluate all of the data it is exposed to (Bhuyan
et al., 2014).

In comparison, host-based logs are collected by a service running locally on each com-
puter (i.e., each host). They are typically collected from hosts performing a variety
of tasks; to give just a few examples, host-based logs may be collected from end-user
machines, servers, and databases (Khraisat et al., 2019). They log detailed information on
the processes running on the host, so they are able to detect attacks via vectors that avoid
network activity, one example of which is an insider threat (Creech and Hu, 2014). Our
experiments focus on host-based logs captured by Windows System Monitor1 (Sysmon),

1https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon

https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon
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TABLE 7.1: An example of a Sysmon log.

UtcTime 4/9/2015 07:03:12.343 PM
ProcessGuid {7acfffcf-fbf0-5533-0000-00104820887f}
ProcessId 18704
Image C:\Windows\System32\SearchFilterHost.exe
CommandLine *C:\Windows\system32\SearchFilterHost.exe* 069...
CurrentDirectory C:\Windows\system32
User NT AUTHORITY\SYSTEM
OriginalFileName Cmd.exe
CurrentDirectory C:\Windows\system32
LogonGuid {7acfffcf-3b9b-5524-0000-0020e7030000}
LogonId 0x3E7
TerminalSessionId 0
IntegrityLevel Medium
Hashes SHA1=[hash],MD5=[hash],IMPHASH=[hash]
ParentProcessGuid {7acfffcf-4ed3-5527-0000-0010e196db1c}
ParentProcessId 5756
ParentImage C:\Windows\System32\SearchIndexer.exe
ParentCommandLine C:\Windows\System32\SearchIndexer.exe /Embedding

Windows Sigcheck2, and Windows Event Forwarding3 (WEF), set-up and recorded
using the open-source Logging Made Easy project (LME). Sysmon is a persistent service
that allows you to record:

• process creation events (including the full command line for current and parent
processes);

• the hash of process image files;

• logon sessions;

• loading of drivers and DLLs;

• access to files (including tracking modified file creation times); and

• network connections (including source and destination IP addresses and ports).

Sigcheck shows file versioning, timestamps, and digital signature details. WEF collects
these logs and forwards them on to downstream collectors, where they can be stored
and processed by other tooling which is part of the LME setup. An example host-based
log collected by Sysmon is shown in Table 7.1.

2https://learn.microsoft.com/en-us/sysinternals/downloads/sigcheck
3https://learn.microsoft.com/en-us/windows/security/threat-protection/

use-windows-event-forwarding-to-assist-in-intrusion-detection

https://github.com/ukncsc/lme
https://learn.microsoft.com/en-us/sysinternals/downloads/sigcheck
https://learn.microsoft.com/en-us/windows/security/threat-protection/use-windows-event-forwarding-to-assist-in-intrusion-detection
https://learn.microsoft.com/en-us/windows/security/threat-protection/use-windows-event-forwarding-to-assist-in-intrusion-detection
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7.1.2 Hypergraphs

For the fist time in this thesis we consider the hypergraph as a structure to represent
higher-order interaction data. A hypergraph is a generalisation of a graph G = (V, E)
in which each hyperedge e ∈ E is a subset of V; that is, each edge can now contain
arbitrarily many nodes, rather than just two. They also generalise simplicial complexes,
removing the constraint that for each simplex σ in a simplicial complex K, each face
σ′ ⊆ σ of σ must also be in K. This generalisation is why we are interested in considering
hypergraphs: just because more than two objects interact, does not mean that each subset
of these objects interact. Therefore hypergraphs can offer a more faithful representation
of the underlying data. We consider them for this application to investigate whether this
increases the performance of the representations. We exemplify the distinction between
graphs, simplicial complexes, and hypergraphs in Figure 7.1.

We represent hypergraphs with the hypergraph Laplacian, which is typically defined in
two ways within the literature. The first definition considers subsets of nodes of the same
cardinality: this definition is akin to the combinatorial Laplacian. The other definition
considers all hyperedges as one set, corresponding more closely to an extension of the
graph Laplacian.

Chung (1992b) first studied the hypergraph Laplacian, and falls into the first camp:
she considered the subsets of hyperedges containing k vertices, which we denote Ek.
This restriction is akin to considering k-simplices, although note the off-by-one error: a
k-simplex consists of k + 1 nodes, whereas in the notation of Chung (1992b), a k-edge
consists of k nodes. She defines two (k− 1)-edges as adjacent if they are both part of the
same k-edge, and using this defines analogues of the degree and adjacency matrix. In
particular, she defines the degree of a (k− 1)-edge e ∈ Ek−1 as the number of k-edges it
is contained within, i.e.,

d(e) = |{ f ∈ Ek : e ⊂ f }| .

The diagonal matrix D is an |Ek−1| × |Ek−1|matrix with diagonal entries D(e, e) = d(e)
for e ∈ Ek−1 and D(e, f ) = 0 for e, f ∈ Ek−1, e ̸= f . The adjacency matrix A is a binary
matrix of size |Ek−1| × |Ek−1| defined as A(e, f ) = 1 when e, f ∈ En−1 and e ∪ f ∈ Ek

(i.e., when the two k− 1 edges are both in a k edge), and 0 otherwise. She also defines
the complete graph matrix K as an |Ek−1| × |Ek−1| binary matrix, which is given by
K(e, f ) = 1 if e, f ∈ En−1 and e ∩ f = v for a single vertex v ∈ V, i.e., if two edges differ
only by one node, and 0 otherwise. The k-Laplacian for k ≥ 3 is then given by

L(H) = D− A + ρ(K + (k− 1)I,

where I is the (k− 1)× (k− 1) identity matrix, and ρ is the density of G: the average
node degree d over the number of nodes |V|. She develops a homology theory for
hypergaphs and investigates the spectrum of this Laplacian.
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FIGURE 7.1: Consider the higher-order interactions (v0, v1, v2) and (v2, v3). Since a
simplicial complex requires closure under taking subsets of interactions, the only totally

accurate representation of those two interactions is with a hypergraph.

The hypergraph Laplacian was also studied by Jost and Mulas (2019), who generalise
the Laplace operator for graphs by defining a boundary operator on functions defined
on the vertices of the hypergraph. By considering the Laplacian as a composition of
this boundary operator with its adjoint (cf. Equation 2.4.3) they consider hyperedges
collectively, rather than separating them into k-edges.

However, we focus on the the definition given by Hayashi et al. (2020), mainly because
they provide an implementation of their Laplacian in the package HyperNetX4. They
define a random walk on a hypergraph H = (V, E) as follow. Let ω : E → R+ be
any function which assigns positive weights to the edges of a hypergraph. Let the
current node of our random walk be Xt = vt ∈ V. To move to the next vertex we (i)
select a hyperedge e ∋ vt with probability proportional to ω(e), then (ii) select a vertex
v ∈ e uniformly at random and set Xt+1 = v. The function ω gives rise to a transition
probability matrix of the random walk P ∈ [0, 1]|V|×|V|, defined so that P(v, v′) is the
probability of transitioning to node v′ if you are currently at node v. The hypergraph
random walk Laplacian is then given by I − P. More generally, the eigenvalues of the
graph Laplacian are related to those of the probability transition matrix (Hayashi et al.,
2020), and random walks on graphs are deeply tied to the study of their Laplacians
(Chung, 1992a). Hayashi et al. (2020) demonstrate that the previous critique that some
hypergraph Laplacians can equally be represented as graph Laplacians (Agarwal et al.,
2006) does not hold in their case.

7.1.3 Previous work

In Chapter 6 we reviewed applications of TDA to Cyber Security, covering a broad
array of topics which come under the umbrella of cyber security. We briefly recap the
work which is most relevant to this section, i.e., that which is about mapping log data
into feature vectors. We also introduce some additional non-topological techniques for
representing logs.

4https://pnnl.github.io/HyperNetX/build/index.html

https://pnnl.github.io/HyperNetX/build/index.html
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The counts vector. In Section 6.1.1 we introduced the counts vector (Winding et al.,
2006). As shown in Table 6.1, for categorical variables it counts the number of times each
category occurs, and sums numerical variables. Despite its simplicity, it has been used
to great effect in a number of applications (Jakub and Branišová, 2015; Bruillard et al.,
2016; Meng et al., 2019; Bihl et al., 2020). It will be a baseline for this application.

Representing logs as graphs. Log data is highly structured, and as such it makes sense
to represent it in graphs. Aksoy et al. (2019) built a variety of graphs from logs, using
attributes like users, processes, or IP addresses as nodes, then adding edges based on
interactions between the identifiers in the logs. We gave more details in Section 6.1.2.
Han et al. (2020) build provenance graphs from log data that enables them to attribute
malicious processes to the root cause within the machine in real-time, in particular
targeting the activities of Advanced Persistent Threats (APTs). Hassan et al. (2018) also
built provenance graphs, summarising them using finite automata to reduce network
and storage overheads when processing large amounts of data. Bowman et al. (2020)
built authentication graphs from log data, which they processed with graph neural
networks to detect lateral movement by APTs.

Representing logs as simplicial complexes. There is a limited amount of work in
which simplicial complexes are considered for representing logs. Bruillard et al. (2016)
represent logs using the counts vectorisation, then compute the Vietoris-Rips complexes
of those representations to apply persistent homology. Collins et al. (2020) represent
intercepted packet data from IoT devices into simplicial complexes, making each node
an intercepted packet, connecting them to a central node representing the device of
interest, and inducing a filtration by the inter-packet arrival time (IAT): the time between
each packet is sent. This is shown in Figure 6.8.

Deep learning. Despite the increasing complexity of deep models used for behaviour
classification, a lot of models still use simple representation strategies. According to a
recent evaluation of models by Le and Zhang (2022) DeepLog (Du et al., 2017) is the
state-of-the-art for anomaly detection in logs, but it uses a very simple representation
which assigns each log to an integer based on its event type. Le and Zhang (2022) also
evaluate LogAnomaly (Meng et al., 2019), which uses the counts vector to represent the
log data. Another approach is to semantically represent logs using language models
like FastText or Word2Vec. Although this has been done recently, for example in Lu
et al. (2018) and Zhang et al. (2019), these models were evaluated as worst than those
using simple counts representations by Le and Zhang (2022). It is clear that even the best
performing deep models still rely on simple log representations. Our method focuses on
improving the quality of those representations.
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TABLE 7.2: A simplified example of host-based logs, which we use to demonstrate our
methodology. Each timestep represents one log entry.

Timestep 0 1 2

Process ID 18704 19043 18704
Event Type Process Creation Network Event File Access
New Process ID 19043 – –
Source IP – 192.168.1.12 –
Destination IP – 192.168.1.16 –
Path – – C:\passwords.txt

18704

19043

192.168.1.12

192.168.1.16

18704

19043

t = 0 t = 1

⊆

t = 2

⊆

18704

19043
192.168.1.16

⊆

C:\passwords.txt

192.168.1.12

FIGURE 7.2: An example of how we map logs into a filtration of simplicial complexes,
using the example logs in Table 7.2. Each unique identifier in the logs becomes a
0-simplex (node), and higher order simplices correspond to log entries containing

multiple identifiers. They are added to the filtration at their timestamp.

7.2 Methodology

7.2.1 Higher-order temporal representations

Previous work on representing the structure of logs has focused either on graphs or sim-
plicial complexes. Using graphs discards higher-order interactions and the timestamp
of logs, both of which could provide crucial discriminative information. Similarly, the
previous representation into simplicial complexes by Bruillard et al. (2016) computed the
Vietoris-Rips complex of the counts vectors, which does not utilise the natural structure
and temporal aspect of logs data. Collins et al. (2020) constructs a simplicial complex
by using packet data between IoT devices as nodes, adding 1-simplices to the filtration
based on the inter-packet arrival time, and adding higher-order simplices when each
of the requisite 1-simplices is present. In comparison, we investigate the application of
Topological Data Analysis to a tailored filtration which utilises both the higher-order
interactions and the temporal nature of a filtration to naturally represent the structure
inherent to logs data.

In particular, we construct a filtration of simplicial complexes as follows. The 0-simplices
are the unique identifiers within the host-based logs. Table 7.2 displays some simple
example logs that we will use to help illustrate our method: for example, the unique
identifiers in Table 7.2 are the process IDs 18704 and 19043, the IP addresses 192.168.1.12
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FIGURE 7.3: Having mapped a collection of logs into a filtration, we compute the
persistence images. We show the end of the filtration constructed from the logs of trojan
horse malware, represented as a graph. We compute the persistence diagram from the
full filtration of simplicial complexes (not shown), then the persistence images. Note
the big cluster of nodes: this is the trojan horse creating files as it downloads additional

malware, a structural characteristic than can be captured by our representations.

and 192.168.1.16, and the file path C:\passwords.txt. They are our 0-simplices. Each
higher-order simplex is an individual log entry which contains multiple unique identifiers. For
example, the log entry at t = 0 in Table 7.1 contains two process IDs, so corresponds to a
1-simplex [18704, 19043], and the log entry at t = 1 contains three unique identifers, so
corresponds to a 2-simplex generated by the process ID 19043 and the two IP addresses
192.168.1.12 and 192.168.1.16. This is demonstrated in Figure 7.2. The time of the log
entry is the time the corresponding simplex enters the filtration - any faces of the simplex
that are not already in the complex are also added at this time. In this way each simplex
represents a higher-order interaction between the unique identifiers within the host-
based logs, and the filtration parameter represents the time at which this event happens.
This construction faithfully represents the structure of the logs.

7.2.2 Representations

Given our higher-order temporal representation that naturally represents the structure
inherent to host-based logs, we give an overview of the techniques we are interested
in evaluating on this representation. The primary technique we were interested in
investigating using this representation was persistent homology.

Persistence diagrams. Given that we have a filtration of simplicial complexes, we are
able to follow a fairly standard topological machine learning pipeline. In particular, we
computed the persistence diagrams of the filtrations, then vectorised the persistence
diagrams as persistence images5, techniques which we describe in Sections 2.2.4 and
3.2.2 respectively. This process is shown in Figure 7.3. We investigated the effect of
induced 2-simplices and pixel size of the persistence images on the performance of our
downstream classification task; theses details are available in Appendix B.3.

5Computed using Dionysus and Persim.

https://mrzv.org/software/dionysus2/
https://persim.scikit-tda.org/en/latest/
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Hypergraph Laplacian. The construction of a hypergraph H = (V, E) from logs that
we consider is extremely similar to the filtration of simplicial complexes: each vertex
v ∈ V is a unique identifier within the logs, and each edge e ∈ E contains the nodes
corresponding to the identifiers in one log entry. The differences are twofold: firstly,
we just construct one hypergraph, rather than a filtration, as there is no persistent
hypergraph Laplacian. Secondly, hypergraphs do not require that we add each subset
of a higher-order interaction: we can simply add one hyperedge for each log entry. We
compute the hypergraph Laplacian using the HyperNetX package discussed in Section
7.1.2, then compute its spectrum. As the size of the spectrum depends on the size of the
hypergraph, which will vary over different collections of logs, we featurise the spectrum
of the hypergraph Laplacian by sorting the spectrum, then truncating or zero padding
the resultant vector so that each feature vector is the same length.

Graph Laplacian. We also investigate the graph Laplacian as an representation. We
were not yet familiar with the persistent Laplacian (Mémoli et al., 2022), so we also
construct a graph using all logs for the graph Laplacian, rather than consider a filtration
of graphs. We construct our graph G = (V, E) by adding every unique identifier within
the logs as a vertex v ∈ V, and adding every pairwise interaction within an individual
logs as an edge E. This is equivalent to taking the last complex from our filtration of
simplicial complexes and restricting to the 1-skeleton. Our process from now is identical
to the hypergraph Laplacian: we compute the graph Laplacian of each constructed
graph, sort the spectrum, then truncate or zero pad in order to create a feature vector.

Counts vector. The final baseline that we evaluate is the counts vector, first introduced
in Section 6.1.1 and revisited in Section 7.1.3. This vector does not utilise a mapping into
a simplicial complex or similar, instead recall that, given a collection of logs, it counts
the unique entries in categorical variables, and sums numerical variables. Despite its
simplicity, it has been regularly utilised to great effect in the time since it was introduced.

7.3 Experiments

7.3.1 Dataset

We evaluate our representation technique on two synthetic host-based datasets. All logs
are generated by Sysmon, set up and recorded using the open-source Logging Made
Easy (LME) project. One data point is a collection of logs from one run, in which a
computer running LME is turned on, malicious or benign activity takes place on the
host, then the machine is switched off. The collection of logs recorded during this run
gets labelled as benign or malicious depending on the activity. The first dataset is the
‘malware’ dataset; in this dataset the malicious activity is malware being executed on the
host, and the benign activity is cleanware (benign software) being executed on the host.

https://pnnl.github.io/HyperNetX/build/index.html
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TABLE 7.3: The number of examples of benign and malign runs in each dataset.

Malware Dataset Adversary Dataset

Benign 768 800
Malign 841 800

Total 1609 1600

TABLE 7.4: The event types we include in the computation of feature vectors at low
and high acuity.

Low Acuity High Acuity

Process creation Process creation
Network event Network event

Process termination
File creation

The task is to classify each run (i.e., each collection of logs) based on whether malware or
cleanware was executed on the machine. The second dataset is the ‘adversary’ dataset.
The malign activity is simulated with Mitre’s CALDERA adversary emulation platform6.
This is an open-source project that runs an agent on the host, emulating the activities of
an adversary active within the host. This can be more sophisticated than simply running
malware already present on the machine (as in the malware dataset), including the use
of fileless attacks: malicious activity using only software already present on the host.
The benign dataset is the emulated activity of a benign end-user. The number of benign
and malign runs in each dataset is shown in Table 7.3. Note that each run contains many
thousands of individual log entries, taking place over an average time of approximately
three minutes.

7.3.2 Details

We represent the logs using the methodology described in Section 7.2. In particular,
we compute the counts vector, the persistent homology and the spectrum of the graph
Laplacian and hypergraph Laplacian for each run, at two different levels of acuity. The
data acuity refers to how many types of logs we consider: in a low acuity setting we
restrict to fewer event types, to investigate the effect on the performance of the classifier.
We specify the event type of the logs considered at each level of acuity in Table 7.4. We
use a 10-fold cross validated random forest7 as our classifier. The simple nature of the
classifier allows us to focus on the efficacy of the feature representations. Further details
of the classifier are available in Appendix B.3.

6https://caldera.mitre.org/
7Using sci-kit learn (Pedregosa et al., 2011).

https://caldera.mitre.org/
https://scikit-learn.org/
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FIGURE 7.4: The results for each representation across the malware and adversary
datasets, low and high data acuities, and with accuracy, precision, recall, and F1 metrics.
Although the performance is often close, on balance we find that across metrics and
settings we can see that structural representations generally rival or outperform the

counts baseline, with the graph Laplacian our best method overall.

7.3.3 Results

Figure 7.4 shows our results in detail. We evaluate the accuracy, precision, recall, and F1
for each experiment across 10 folds. The variations in method, dataset scenario and data
acuity give us several angles for analysis.

First we consider the effect data acuity has on the results. Somewhat predictably, higher
data acuity generally comes with an increase in performance across metrics and scenarios.
In the adversary dataset the counts baseline is particularly increased relative to the other
representation strategies. On the other hand, the relatively stable performance of the
structural representations suggests that they are resilient to lower data acuity scenarios.
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Since increasing the data acuity increases the computational complexity, being able to
have less degradation in performance relative to the counts vector when decreasing data
acuity is valuable.

In the malware dataset, we find that the counts methodology outperforms persistent
homology significantly, and is marginally better than the graph and hypergraph Lapla-
cians. Although this initial result is dissapointing, as the primary technique we were
aiming to evaluate was persistent homology, the performance of the graph Laplacian is
interesting. In the adversary setting, the counts vector is generally worst than persistent
homology, but is significantly outperformed by the graph and hypergraph Laplacians.
Again, this this indicates that although the primary method we were interested in was
persistent homology, the graph Laplacian is performing significantly better.

Explainability. We ran feature importance analysis on our models using the Mean
Decrease in Impurity (MDI) feature importance technique for random forests (Scornet,
2023). For the persistent homology features we get a ranking over the persistence images,
shown on the left of Figure 7.5, which tell us that topological features that are born at
the start of the filtration and persist throughout it are most important. The execution of
the cleanware or malware is immediately after start-up, suggesting that our methods
are generally picking up on actions that correspond to the software. For the graph
Laplacian we investigated the feature importance, with the eigenvalues on the x-axis
sorted by magnitude (largest first). We see on the right of Figure 7.5 that generally
the largest eigenvalues are most discriminative, although there is a spike towards the
smaller eigenvalues that we hypothesise is due to the importance of small eigenvalues
in characterising the structure of graphs Nica (2016). As each element in an eigenvector
corresponds to a node in the graph we can plot those values on the nodes, leading to a
visualisation that could be used to flag nodes (and therefore logs) of interest.

7.4 Discussion

Although the structural feature vectors do not outperform the counts baseline across
the board, we believe this remains a result of interest: the fact that the topological and
spectral techniques are able to perform at a similar or better level than a proven baseline
using just the structural information contained in the logs is a positive result. The
graph Laplacian in particular can rival or outperform the baseline across all scenarios,
demonstrating that the structure of host-based logs contains discriminative information
on their content. As the topological and spectral feature vectors only use the global
structure that is intrinsic to the log, the fact that our techniques are able to rival the
counts baseline means that just the structural information is somehow fingerprinting the
anomalous behaviour. There was no guarantee that this would be the case.
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FIGURE 7.5: Feature importance of the 0 and 1-persistence images and spectrum of the
Laplacian (ordered by size of the eigenvalue) for the malware dataset. The topological
features that are born early and persist the longest are most valuable, as are the large

eigenvalues.

Furthermore, it is unlikely that any one technique is going to be the silver bullet to find
malware and malicious activity within computer logs. We have demonstrated that the
structural representations can be used to detect both malware execution and adversary
activity within host-based logs, and although the individual performance is far from
what could be used as a sole indicator of anomalous activity, the reality is that any tool
built is going to be part of a suite of indicators that can flag potentially malicious activity
for further investigation.

Future work. As our datasets have balanced classes, which wouldn’t be the case in
a realistic anomaly detection scenario (where benign behaviour would far outweigh
malicious behaviour), future work could be to adapt these structural vectors to a setting
where they are part of a wider anomaly detection pipeline, feeding into a more sophis-
ticated model built for anomaly detection. Further future work should also further
investigate the explainability aspect of these structural feature vectors. Although the
initial explainability results provide some initial understanding of the important struc-
tural features within the underlying logs, further investigation could lead to a better
understanding of the correspondence between malicious activity on the host and the
structural features this leads to. There is also a line of work that we do not compare
to, namely using transformers to learn representations (see, for example, Nedelkoski
et al. (2020); Guo et al. (2021); Le and Zhang (2021)). Further work should compare and
contrast with this line of research.

Within the broader context of my thesis, this research was done before our work on ap-
plications of the persistent Laplacian to data analysis. Given (i) that the graph Laplacian
was our best performing structural representation, and (ii) that the temporal aspect of
the logs is generally considered key information when classifying logs, the persistent
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Laplacian is a natural candidate for further work in representations of computer logs
that account for their intrinsic structure.



Chapter 8

Conclusions

In this thesis we have been interested in understanding and extending applications of
persistence-based summaries to data analysis. We understood the current context of
their application via two literature reviews: in Chapter 3 we reviewed the literature on
methodologies for topological machine learning and data analysis, and in Chapter 6 we
reviewed the literature pertaining to applications of persistence-based summaries to
cyber security. Our research contributions were also aligned by this motivation: in Part
II we investigated the efficacy of topological loss terms in deep learning using statistical
learning theory, applied the recently developed persistent Laplacian to data analysis for
the first time, extended the fuzzy c-means clustering algorithm to persistence diagram
space, and looked at applications of that algorithm to deep learning model selection. In
Part III we considered cyber security as a specific application domain, proposing and
evaluating a new methodology to use persistence-based summaries with host-based
logs. We finish by discussing the specific contributions, limitations, and future work of
each chapter.

We began by investigating the use of topological loss terms in deep learning via statistical
learning theory in Section 4.1. Although this initial investigation into topological loss
terms provided a new framework for thinking about the utility of topological machine
learning, we ultimately showed that we cannot prove classical learnability bounds when
restricting a hypothesis class to the preimage of a persistence diagram. However, just
because the loss term will not always be useful does not mean there is no utility in using
topological information. In some ways, it is not surprising that persistence diagrams
cannot be guaranteed to always provide useful information: they capture invariants up
to isometry, which, although demonstrated in the literature to be of great use in some
domains, can be less useful in other applications. Interesting future work would be
to consider persistent Laplacian-based loss terms; my intuition is that the additional
geometric information provided by the non-zero eigenvalues is likely to enable some
sort of learnability bound to be proven.
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The second part of Chapter 4 proposed a feature vectorisation scheme for the recently
developed persistent Laplacian. Evaluating the persistent Laplacian against topological
and non-topological baselines empirically demonstrated that it can consistently outper-
form persistent homology. The theory also supports this: as the resolution parameter
we define gets large we recover the entire persistent homology, and the non-zero eigen-
values are known to provide additional information that is deeply tied to the structure
of the underlying data. We do not outperform the deep learning baselines that we
report, which is indicative of the wider tension between topological representations
of data and deep learning: deep learning models with rapidly increasing numbers
of parameters are likely to outperform topological methods. As we discussed when
reporting the non-topological baselines (Section 4.3.4), topological techniques do still
retain advantages over deep learning methods: they offer a concise representation of
structure with strong underlying theory, and can be easier to both interpret and train
than deep learning methods. The potential for integrating topological techniques into
deep learning also promises a cooperative approach. An interesting piece of future
work would be a comprehensive investigation into the scenarios where topological tools
retain advantages over deep learning; Turkes et al. (2022) have some interesting work
in this direction. I believe that the application of the persistent Laplacian is the most
interesting contribution of this thesis, offering a novel data analysis technique based on
recently developed theory. As such, further development and usage of the persistent
Laplacian in data science is the future work that I would be most excited to see carried
out. Integrating the persistent Laplacian into deep learning via a topological loss term
would also be valuable future work. Perhaps the biggest weakness of the persistent
Laplacian currently is that it can only be computed for complex pairs K ⊆ L. We would
recommend a theoretical effort to enable the persistent Laplacian to be computed over
an entire filtration simultaneously. This is likely to unlock its full potential for data
science.

In Chapter 5 we extended the fuzzy c-means clustering algorithm to persistence diagram
space, proving the same convergence guarantee as the Euclidean case. The reality is
that in most cases the better option is to map the persistence diagram into a feature
vector and perform Euclidean clustering, bypassing the expensive process of computing
Fréchet means and distances on persistence diagrams. Despite this we have received
interest in our released code from TDA researchers, so we hope it can provide value. It
is of particular use if you wish to stay in persistence diagram space, which is sometimes
the case, for example if you wish to backpropogate through the clustering and cannot
differentiate through your vectorisation strategy. In my opinion the most interesting
result in this chapter is the application to pre-trained deep learning model selection. The
link between the topology of decision boundaries and the generalisation ability of the
model to unseen datasets remains relatively unexplored, and I would suggest this area
as promising future work.
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In Chapter 7 we investigated the application of persistence-based summaries to host-
based logs, proposing representing logs as a filtration of simplicial complexes that
directly captures both their intrinsic structure and temporal nature. Although we evalu-
ated persistent homology, we found that the graph Laplacian, which disregards both
the higher-order interactions and temporal aspect of the logs, was our best performing
representation. However, the fact that we are able to rival a non-topological baseline
which is regularly used in the literature using just the structural information is a sig-
nificant result. A natural extension of this work is to use the persistent Laplacian on
our mapping of host-based logs into a filtration of simplicial complexes. This would
be able to exploit the higher-order structure and temporal features that we anticipated
providing much more information in these experiments.
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Daniel Strömbom. Persistent homology in the cubical setting: theory, implementations
and applications, 2007.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line:
Large-scale information network embedding. In Proceedings of the 24th international
conference on world wide web, pages 1067–1077, 2015.

Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo Caorsi,
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Appendix A

Convergence of the Weighted Fréchet
Mean

To show convergence, recall that the Fréchet mean is computed by finding the arg min
of

F(D̂ ) =
n

∑
j=1

r2
jkFj(D̂ ), with Fj(D̂ ) = W2(D̂ , Dj)

2, (A.1)

for fixed k. We start by recounting work by Turner et al. (2012), which we shall adapt
for the weighted Fréchet mean. The proofs we are adapting use a gradient descent
technique to prove local convergence. In order to use their techniques, we need to define
a differential structure on the space of persistence diagrams. Before we begin, note
that in Turner et al. (2012), the Fréchet mean is defined as the arg min of the Fréchet
function F(D̂ ) =

∫︁
W2(D̂ , Dj)

2dρ(D̂ ) with the empirical measure ρ = n−1 ∑n
j=1 δDj . We

are using the empirical measure ρ =
(︂

∑n
j=1 r2

jk

)︂−1
∑n

j=1 r2
jkδDj , but for ease we drop the

scalar
(︂

∑n
j=1 r2

jk

)︂−1
as it is positive, so doesn’t affect the minimum of the function.

Turner et al. (2012, Theorem 2.5) show that in the space of persistence diagrams DL2 =

{D : W2(D, ∆) < ∞} an optimal bijection γ : D1 → D2 induces a unit-speed geodesic
ϕ(t) = {(1− t)x + tγ(x) : x ∈ D1, 0 ≤ t ≤ 1}. For a point D ∈ D2 we define the tangent
cone TD. Define Σ̂D as the set of all non-trivial unit-speed geodesics emanating from D.
Let ϕ, η ∈ Σ̂D and define the angle between them as

∠D(ϕ, η) = arccos
(︃

lim
s,t↓0

s2 + t2 −W2(ϕ(s), η(t))2

2st

)︃
∈ [0, π]

when the limit exists. Then the space of directions (ΣD,∠D) is the completion of Σ̂D/ ∼
with respect to ∠D, with ϕ ∼ η ⇐⇒ ∠D(ϕ, η) = 0. We now define the tangent cone as

TD = (ΣD × [0, ∞))/(ΣD × {0}).
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Given u = (ϕ, s), v = (η, t), we define an inner product on the tangent cone by

⟨u, v⟩ = st cos∠D(ϕ, η).

Now, for α > 0 denote the space (D2, αW2) as αD2 and define the map iα : αD2 → D2.
For an open set Ω ⊂ D2 and a function f : Ω → R, the differential of f at D ∈ Ω is
defined by dD f = limα→∞ α( f ◦ iD − f (D)). Finally, we say that s ∈ TD is a supporting
vector of f at D if dD f (x) ≤ −⟨s, x⟩ for all x ∈ TD.

Lemma A.1. The following two results are proven by Turner et al. (2012).

(i) Let D ∈ D2. Let Fj(D̂ ) = W2(D̂ , Dj)
2. Then if ϕ is a distance-achieving geodesic from D

to D̂, then the tangent vector to ϕ at D of length 2W2(D̂ , D) is a supporting vector at D of
f .

(ii) If D is a local minimum of f and s is a supporting vector of f at D, then s = 0.

If there is a unique optimal matching γD3
D1

: D1 → D3, we say that it is induced by an
optimal matching γD2

D1
: D1 → D2 if there exists a unique optimal matching γD3

D2
: D2 →

D3 such that γD3
D1

= γD3
D2
◦ γD2

D1
. (Turner et al., 2012, Proposition 3.2) prove that an optimal

matching at a point is also locally optimal. In particular, they show the following.

Lemma A.2. Let D1, D2 ∈ D2 such that there is a unique optimal matching from D1 to D2.
Then there exists an r > 0 such that for every D3 ∈ BW2(D2, r), there is a unique optimal
pairing from D2 to D3 that is induced by the matching from D1 to D2.

We are now in a position to prove Theorem 5.5, which we restate below. It proves that
our algorithm converges to a local minimum of the Fréchet function.

Theorem A.3. Given diagrams Dj, membership values rjk, and the Fréchet function F defined
in Equation A.1, then Mk = {y(i)}m

i=1 is a local minimum of F if and only if there is a unique
optimal pairing from Mk to each of the Dj, denoted γj, and each y(i) is updated via Equation 5.6.

Proof. First assume that γj are optimal pairings from Mk to each Dj, and let sj be the
vectors in TMk that are tangent to the geodesics induced by γj and are distance-achieving.
Then by Lemma A.1(i), each 2sj is a supporting vector for the function Fj. Furthermore,
2 ∑n

j=1 r2
jksj is a supporting vector for F, as for any D̂ ,

dMk F(D̂ ) = dMk

(︄
n

∑
j=1

r2
jkFj(D̂ )

)︄
=

n

∑
j=1

r2
jkdMk Fj(D̂ )

≤
n

∑
j=1
−r2

jk⟨2sj, D̂ ⟩ = −
⟨︄

2
n

∑
j=1

r2
jksj, D̂

⟩︄
.
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By Lemma A.1(ii), 2 ∑n
j=1 r2

jksj = 0. Putting sj = γj(y(i))− y(i) and rearranging gives
that y(i) updates via Equation 5.6, as required. Note that when γj(y(i)) = ∆, we let
γj(y(i)) = w∆ as defined in Equation 5.6, because this minimises the transportation
cost to the diagonal. Now suppose that γj and γ̃j are both optimal pairings. Then by
the above argument ∑n

j=1 r2
jksj = ∑n

j=1 r2
jk s̃j = 0, implying that sj = s̃j and so γj = γ̃j.

Therefore the optimal pairing is unique.

To prove the opposite direction, assume that Mk = {y(i)} locally minimises the Fréchet
function F. Observe that for a fixed bijection γj, we have that

F(Mk) =
n

∑
j=1

r2
jkW2(Mk, Dj)

2

=
n

∑
j=1

r2
jk

(︄
inf

γj :M̂→Dj
∑

y∈Mk

||y− γj(y)||2
)︄

=
n

∑
j=1

r2
jk

m

∑
i=1
||y(i) − x(i)j ||

2

=
m

∑
i=1

(︄
n

∑
j=1

r2
jk||y(i) − x(i)j ||

2

)︄
.

The final term in brackets is non-negative, and minimised exactly when y(i) is updated
via Equation 5.6. Furthermore, the unique optimal pairing from Mk to each of the Dj’s
is the same for every M̂ within the ball BW2(Mk, r) for some r > 0, by Lemma A.2.
Therefore, if Mk is a local minimum of F, then the y(i)’s are equal to the values found
by taking the optimal pairings γj and calculating the weighted means of γj(y(i)) with
the weights r2

jk, as required. It will remain a minimum as long as the matching stays the
same, which happens in the ball BW2(Mk, r), so we are done.





Appendix B

Additional Experimental Details

B.1 The Persistent Laplacian

B.1.1 Task details

The specifics of the MoleculeNet tasks that we evaluate in Section 4.3.2 are in Table B.1.

B.1.2 Runtimes

We report the runtimes for pre-processing (embedding data into filtrations of sim-
plicial/cubical complexes), embeddings (computing the topological summaries), and

TABLE B.1: The QM7b tasks are as follows. Each of these is a property of the molecule
being described, evaluated with different methods. For full details of the tasks please

see Montavon et al. (2013).

Task ID Evaluation Method Description

0 PBE0 Activation energy
1 ZINDO Excitation energy with the most absorption
2 ZINDO Highest absorption
3 ZINDO HOMO
4 ZINDO LUMO
5 ZINDO 1st excitation energy
6 ZINDO Ionization potential
7 ZINDO Electron affinity
8 KS HOMO
9 KS LUMO

10 GW HOMO
11 GW LUMO
12 PBE Polarisability
13 SCS Polarisability
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TABLE B.2: Time taken to pre-process the raw data, in seconds.

Pre-Processing Time (seconds)

Height Filtration1 0.000376
Induced from coulomb matrix (QM7/7b) 0.000376

TABLE B.3: Time taken to embed the pre-processed data, in seconds.

Embedding Time (seconds)

Persistent Homology (p = 0, 1)2 0.000231
Cubical Homology (p = 0, 1)1 0.000231

Graph Laplacian 0.0000292
Combinatorial Laplacian 0.000382

Persistent Laplacian (p = 0, 1, simplicial complex pair) 0.000380
Persistent Laplacian (p = 0, 1, cubical complex pair) 1.855

TABLE B.4: Time taken to post-process the embedded data, in seconds.

Post-Processing Time (seconds)

MNIST Baseline Embedding1 (Garin and Tauzin, 2019) 0.000376
Persistence Images3 0.00188

Persistent Laplacian Vectorisation (Section 4.2.2) 0.00330

post-processing (mapping the topological summaries into a persistence diagram). Note
that each of these timing experiments are run on one core of a 2021 MacBook Pro with
an M1 Pro chip. We report the time in seconds. Note that in these tables we reference
others’ implementation; if there is no reference then it is our implementation. We repeat
each timing experiment 100 times. The error bounds are typically in the order of 10−5,
so for readability we do not report them. Note that the time taken for the computation
of the persistent Laplacian for one simplicial complex pair is of the same order of magni-
tude as the persistent Laplacian. As you increase R, and thus the number of persistent
Laplacians computed increases, the time taken will similarly increase. The time taken
for the cubical complex persistent Laplacian is several orders of magnitude larger - this
is due to our implementation of the cubical boundary.

As we used the Vietoris-Rips persistence function in Giotto-TDA (Tauzin et al., 2020)
for the QM7 3d coordinate experiments we cannot disentangle the time taken for pre-
processing and computing the topological representation. We report the total time to
compute the Vietoris-Rips persistent homology of one set of 3d coordinates from QM7.

1Using Giotto-TDA (Tauzin et al., 2020).
2Using Dionysus 2.
3Using Persim.

https://giotto-ai.github.io/gtda-docs/
https://mrzv.org/software/dionysus2/
https://persim.scikit-tda.org/
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TABLE B.5: Time taken to compute Vietoris-Rips persistence, in seconds.

Post-Processing Time (seconds)

Vietoris-Rips Persistence (p = 0, 1) 1 0.000578
Vietoris-Rips Persistence (p = 0, 1, 2) 1 0.000912

Note that this is an extremely well-optimised package that has been under development
for several years - the persistent Laplacian and our implementation are recent methods
that haven’t been subjected to the same levels of research and optimisation.

B.2 Fuzzy c-Means Clustering for Persistence Diagrams

For models, we trained the standard Pytorch CNN. We trained them on MNIST, Fash-
ionMNIST, and KMNIST, each obtained using torchvision.datasets. We split the
data into 9 binary datasets for classification, class 0 vs each of the remaining classes.
We trained three of each model, seeded with 0, 1, and 2 respectively. MNIST and KM-
NIST were each trained for five epochs, FashionMNIST was trained for 14 epochs. Our
train:test split was 6:1, as is standard for MNIST structured datasets. We used Ripser
(Bauer, 2019) to compute the 1-persistence diagrams using default settings. We limited
the number of points in the diagram to the 25 most persistent when clustering. Our
percentage improvement values use the membership values after 16 iterations. We
compute the standard error bounds when calculating the percentage improvement.

Figure B.1 displays an example of our fuzzy clustering algorithm working on the surface
of a sphere.

B.3 Structural Representations of Host-Based Logs

Table B.6 displays the effect of adding induced 2-simplices to the simplicial complexes;
we concluded that the effect was negligible. This, coupled with the fact that adding
induced 2-simplices is very computationally intensive, meant that we generally did
not add induced 2-simplices when running our experiments. Table B.7 investigates the
effect of persistence image pixel size on the the performance of the classifier; once again
the effect was negligible. Following standard procedure, we map points at infinity in the
diagrams to a hyperparameter that is larger than any death value across all persistence
diagrams in our dataset when mapping persistence diagrams into persistence images.

https://github.com/pytorch/examples/blob/master/mnist/main.py
https://pytorch.org/vision/stable/datasets.html
https://github.com/Ripser/ripser
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FIGURE B.1: We implemented our algorithm for manifolds using the Geomstats package
(Miolane et al., 2020). In this figure we fuzzy cluster points on the surface of a sphere.

TABLE B.6: Investigation of adding induced 2-simplices, using the malware dataset with
low acuity and 0/1-persistence diagrams. We found that there was no real change when
adding induced 2-simplices. We hypothesise this is because most holes were never
destroyed, even when adding the induced 2-simplices. As this was computationally

costly we did not add induced 2-simplices in the rest of the experiments.

No 2-simplices Induced 2-simplices

Accuracy 66.20± 1.65 66.14± 1.49
Precision 68.85± 1.77 68.56± 1.54
Recall 64.58± 1.72 64.34± 1.98
F1 66.56± 1.59 66.34± 1.61

We use scikit-learn’s RandomForestClassifier (Pedregosa et al., 2011) with default set-
tings - the specific parameters are shown in Table B.8. We train and score using scikit-
learn’s cross validate over 10 random folds.
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TABLE B.7: Investigation of persistence image pixel size effect on performance of
classifier using the malware dataset with low acuity and 0/1-persistence diagrams. We
found that there was no real change when using different sizes of pixels. Based on this
we selected a pixel size of 20 as it offered a compromise between resolution and the

dimensionality of the persistence image vector.

Pixel size Accuracy Precision Recall F1

5 63.95± 2.06 66.15± 2.05 63.37± 2.54 64.59± 2.11
10 65.07± 2.19 67.10± 2.19 64.81± 2.59 65.82± 2.24
15 65.58± 1.89 67.53± 1.98 65.77± 2.10 66.54± 1.85
20 64.26± 2.22 66.31± 2.12 63.37± 3.04 64.68± 2.48
50 64.51± 1.87 66.54± 1.78 64.10± 2.23 65.23± 1.94
100 61.96± 1.77 63.83± 1.62 61.93± 2.75 62.71± 2.05

TABLE B.8: Parameters for the scikit-learn random forest classifier used for all experi-
ments.

Parameter Value

bootstrap True
ccp alph 0.0
class weight None
criterion ‘gini’
max depth None
max features ‘auto’
max leaf nodes None
max samples None
min impurity decrease 0.0
min samples leaf 1
min samples split 2
min weight fraction leaf 0.0
n estimators 100
n jobs None
oob score False
random state 0
verbose 0
warm start False





Appendix C

Cyber Security Datasets

We provide a list of available datasets that may be of interest to machine learning
practioners looking to work with cyber security data.

• KDD Cup 1999 provides TCP connections, content features suggested by domain
knowledge, and traffic features, along with labels for anomaly detection (Lipp-
mann et al., 2000). It is a very popular dataset for anomaly detection (although
fairly outdated these days) and is available online on their website. It is based on
the data captured for the DARPA’98 IDS evaluation program.

• ECML-PKDD 2007 provides requests to web servers and was designed for identi-
fying web attacks with machine learning (Dray et al., 2007). It is real-world data
that has been manually processed and is available on their GitHub.

• CSIC 2010 is another dataset for web attacks and is based off real data from an
e-commerce application. It is also available on their website.

• ISOT Botnet and Ransomware provides DNS queries for 9 botnets plus 19 malign
applications, and 420GB of ransomware and benign program execution traces. It
is available on their website.

• CTU-13 consists of network logs for botnets, verified normal hosts, and unverified
background noise (Garcia et al., 2014). It is available on their website.

• ADFA was compiled in 2013 to update intrusion detection datasets like KDD Cup
that were over a decade old. The data consists of labelled system calls and is split
into Linux, Windows, and Windows stealth attacks. It is available on their website.
Although I haven’t verified this, a labelled version of the Linux dataset appears to
be available on GitHub.

• UNSW-NB15 is a comprehensive dataset that covers a variety of different attacks
and is aimed at training and evaluating intrusion detection systems (Moustafa
et al., 2019). It is available on their website.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://gitlab.fing.edu.uy/gsi/web-application-attacks-datasets
https://gitlab.fing.edu.uy/gsi/web-application-attacks-datasets
https://www.uvic.ca/ecs/ece/isot/datasets/botnet-ransomware/index.php
https://www.stratosphereips.org/datasets-ctu13
https://research.unsw.edu.au/projects/adfa-ids-datasets
https://github.com/verazuo/a-labelled-version-of-the-ADFA-LD-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset
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• DARPA Operationally Transparent Cyber (OpTC) is a dataset of event logs from
1000 hosts that have a period of baseline activity, followed by having malware
injected by a red team. It is available on GitHub.

• LANL ARCS, the Los Alamos National Lab Advanced Research in Cyber Systems
dataset, consists of three separate datasets and is available on their website. The
datasets are

(i) Comprehensive, Multi-Source Cyber-Security Events, consisting of DNS and
event data from across the LANL internal network, including labelled red
team anomalies;

(ii) Unified Host and Network Data Set, consisting of network data from the
LANL internal network;

(iii) User-Computer Authentication Associations in Time, which consists of 700
million successful authentication events from the LANL enterprise network.

• BETH is a recent anomaly detection dataset created by collecting over eight million
DNS logs and kernel level events from 23 honeypots (Highnam et al., 2021). The
data is real-life, contemporary and provided in a consistent format, and is available
on Kaggle.

Some of these datasets are described in a review paper by Yavanoglu and Aydos (2017).

https://github.com/FiveDirections/OpTC-data
https://csr.lanl.gov/data/
https://www.kaggle.com/katehighnam/beth-dataset
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