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Electromagnetic pulses are typically treated as space-time (or space-frequency) separable solutions of
Maxwell’s equations, where spatial and temporal (spectral) dependence can be treated separately. In contrast to
this traditional viewpoint, recent advances in structured light and topological optics have highlighted the nontriv-
ial wave-matter interactions of pulses with complex space-time nonseparable structure, as well as their potential
for energy and information transfer. A characteristic example of such a pulse is the “flying doughnut” (FD), a
space-time nonseparable few-cycle pulse with links to toroidal and nonradiating (anapole) excitations in matter.
Here, we propose a quantum-mechanics-inspired methodology for quantitatively characterizing space-time
nonseparability in structured pulses. In analogy to the mathematics of nonseparability in quantum mechanics,
we introduce the concept of space-spectrum nonseparable states to describe the space-time nonseparability of a
classical electromagnetic pulse and apply the state tomography method to reconstruct the corresponding density
matrix. Using the example of the FD pulse, we calculate the fidelity, concurrence, and entanglement of formation
as their quantitative measures, and we demonstrate that such properties dug out from quantum mechanics can
quantitatively characterize the spatiotemporal evolution of general structured pulses. Our results highlight the
potential of space-time nonseparable pulses as information carriers and facilitate their deployment in information
transfer and cryptography applications.
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I. INTRODUCTION

The generation, diagnostics, and applications of spatiotem-
poral electromagnetic pulses have attracted growing interest
from diverse research communities, including metamateri-
als [1,2], communications [3], particle acceleration [4,5],
laser machining [6–8], and nonlinear and topological photon-
ics [9–12]. Typically, such pulses are treated as space-time
(or, equivalently, space-frequency) separable solutions of
Maxwell’s equations, which can be expressed as a prod-
uct of a spatial mode and a temporal (or spectral) function,
following the traditional separation of variables for solving
partial differential equations. Since it is widely endorsed that
electromagnetic pulses are practically space-time separable,
the space-time nonseparability (STNS) is usually ignored for
simplification, but STNS actually exists in any pulse [13].
STNS can play a major role in the propagation dynamics
[14–16], nondiffraction [17–19], and anomalous refraction
[20] of pulses. A simple but important consequence of STNS
is the separation of pulse frequency components upon prop-
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agation leading to distinct effects, such as isodiffraction
and isodivergence [14]. The parameters of these monochro-
matic components can hence define the overall shape and
characteristics of these pulses, such as evolution of trans-
verse spectral distribution and carrier envelope phase, which
can then be tailored for efficient control of attosecond pro-
cesses [21], chemical reactions [22] and ultrafast pump-probe
experiments [23].

Space-time nonseparable exact solutions of Maxwell’s
equations have been known to exist for a long time. In
1983, Brittingham proposed the localized (e.g., nondiffract-
ing) solutions to Maxwell’s equations termed “focus wave
modes” [24], as typical examples of STNS pulses. Soon
after, Ziolkowski generalized the STNS solutions to the
scalar wave equation with moving complex sources [25] and
proposed that superpositions of such pulses lead to finite-
energy pulses termed “electromagnetic directed-energy pulse
trains” (EDEPTs) [26]. A series of methods for construct-
ing and designing localized waves and nondiffracting waves
then emerged based on the EDEPT method [27–30]. Special
cases of Ziolkowski’s solutions were studied by Hellwarth,
Nouchi, and co-workers, who found closed-form expressions
that describe single-cycle finite-energy STNS solutions to the
homogeneous Maxwell’s equations, the family of which in-
cludes both linearly polarized pulses, termed “pancakes” [31],
and pulses of toroidal symmetry, termed ‘flying doughnuts”
(FDs) [32]. The exotic FD pulses hold promise as novel
information and energy carriers, particularly in the contexts
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of nonradiating anapole configurations [33,34], topological
information transfer [35], probing ultrafast light-matter in-
teractions [36], and toroidal excitations in matter [37,38].
Recently, it was demonstrated that the FD pulses can be gen-
erated by tailored metamaterials which can convert traditional
few-cycle pulses into STNS pulses [39,40].

Nonseparability is also a quintessential property of quan-
tum entanglement between particles; for example, an entan-
gled particle pair state cannot be expressed as the product
of two single-particle states, and as a result the measurement
of one particle affects the measurement outcome of another
[41]. A typical example is the polarization-entangled photon
pair where the polarization states of the two photons are
nonseparable. Over the past century, an extended toolbox has
been developed that allows us to quantify the nonseparabil-
ity of entangled states, including state tomography, density
matrix, fidelity, linear entropy, and concurrence, etc. [42,43].
Recently, the tools of quantum mechanics were constructively
applied not only to quantum physics but also to classical optics
[44–48]. For example, the concept of quantum coherent states
can be used to describe complicated laser modes [49–53]. The
quantum Bell’s measure was also applied in classical optical
coherence [54]. Many classical analogs of quantum states
were realized in vortex beams such as Laughlin states [55]
and Schrödinger’s cat states [56]. Moreover, vector vortex
beams with space-polarization nonseparability can simulate
spin-orbital angular momentum entanglement [57–60]. Re-
cently, a measure of entanglement, the Schmidt number, was
used to characterize nondiffracting properties in optical wave
packets [61]. These useful applications of quantum mechanics
in classical optics have motivated the development of novel
methods in (tele)communications [62–64], cryptography [65],
and metrology [66–68].

In this paper, we draw on the mathematic analogies be-
tween classical STNS and quantum entanglement and exploit
mathematic tools from quantum mechanics to measure the
STNS of classical pulses. In particular, we present a state

tomography approach to reconstruct the density matrix of
space-time nonseparable states. We apply our approach to
general pulses with prescribed STNS, such as the FD pulse
and superposed Laguerre-Gaussian (LG) modes. We demon-
strate that the STNS measures introduced here allow us to
quantitatively characterize the evolution of the pulse’s spa-
tiospectral structure upon propagation. This work introduces
a new toolkit for characterizing a general family of pulses
with various degrees of intrinsic space-time coupling and pro-
vides new perspectives to study their spatiotemporal structure
and propagation dynamics. The approach proposed here will
lead to insights into light-matter interactions with ultrafast
structured pulses and extend applications in spectroscopy,
cryptography, and communications.

II. DYNAMICS OF FLYING DOUGHNUT PULSE

FDs are few-cycle doughnutlike electromagnetic pulses
with a toroidal configuration of electric and magnetic fields.
They exist both as transverse electric (TE) and as transverse
magnetic (TM) pulses. In the former case, the electric and
magnetic fields are given by [32]

E = Eθ θ̂ = − f0i

√
μ0

ε0

r(q1 + q2 − 2ict )

[r2 + (q1 + iτ )(q2 − iσ )]3 θ̂, (1)

H = Hr r̂ + Hz ẑ = f0i
r(q2 − q1 − 2iz)

[r2 + (q1 + iτ )(q2 − iσ )]3 r̂

− f0
r2 − (q1 + iτ )(q2 − iσ )

[r2 + (q1 + iτ )(q2 − iσ )]3 ẑ, (2)

where σ = z + ct , τ = z − ct , f0 is a normalization con-
stant, (q1, q2) represent the effective wavelength and Rayleigh
range, respectively, and (r̂, θ̂, ẑ) are the three normalized basis
vectors of cylindrical coordinates. In particular, the value of
the ratio q2/q1 indicates whether the pulse is well collimated
(q2/q1 � 1) or strongly focused. In the TE mode, the electric
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FIG. 1. (a) Spatiotemporal structure of the FD pulse: The spatial isosurfaces of the electric field E (t, r, z) of the TE FD at different times of
t = 0 and ±q2/(2c), at amplitude levels of E = ±0.2. (a1) The y-z cross section of the instantaneous electric field E of the FD pulse at x = 0
for t = 0 and ±q2/(2c). (a2) The x-z cross section of the electric field intensity |E |2 of the FD pulse at x = 0, at t = 0 and ±q2/(2c). (a3) The
x-y cross section of the electric field intensity of the FD pulse integrated over all times at the z = 0 plane

∫ ∞
−∞ |E (t, r, 0)|2dt . The inset at top

left shows the electromagnetic vector structure of the FD pulse at the focus (z = 0). (b) Spectral structure of the FD pulse: The slices in the
r-λ domain show |Ẽ (λ, r, z)|2 of the spectral components of the FD pulse at propagation distances z. The color map in the r-z plane shows a
false-color image constructed by the distribution of monochromatic components at the corresponding radial position; the inset shows a similar
false-color image in x-y plane.
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(a) (b) (c) (e)

(d)

FIG. 2. (a) Profiles of radial distribution of normalized intensity I (λ, r, z) = |Ẽ (λ, r, z)|2/ max(r,λ)[|Ẽ (λ, r, z)|2] of different spectral
components of the FD pulse at the focus (z = 0). Lines of different color represent monochromatic components of different wavelengths.
(b) The color-coded traces of the radial positions where the intensity I (λ, r, z) reaches its maximum for different wavelengths of the FD pulse.
(c) Ratio ξ (λ, z) = rλ/rλn , where rλ is the radial position of the peak of the intensity I (λ, r, z) of the monochromatic component at wavelength
λ. Here, the radius rλn is used for normalization and corresponds to the position of peak intensity for a given wavelength λn of the FD
pulse. (d) Peak value of the intensity, Im(λ, z) = I (λ, rλ, z), for each monochromatic component of the FD pulse as a function of propagation
distance z. (e) The normalized total field I0(r, z) = ∫

I (λ, r, z)dλ/ maxr[
∫

I (λ, r, z)dλ] plotted versus the value of η(r, z) = r/rmax(z) at each
propagation distance z, where rmax(z) is the radius at which I0(r, z) reaches its maximum. Note the isodiffraction property: ξ (λ), |Ẽm(λ)|2, and
I (η) do not depend on z. The red and blue arrows demonstrate the positions of spectral and spatial states. Spectral states are represented by the
trajectories of the electric field intensity maxima of the various monochromatic components, i.e., rλ(z), and spatial states are represented by
the trajectories of prescribed positions r(z) fulfilling the prescribed radial ratios of ηi = r/rmax(z).

field is azimuthally polarized with no longitudinal or radial
components, whereas the magnetic field is oriented along the
radial and longitudinal directions with no azimuthal compo-
nent [see Fig. 1(a)]. Two different pulses can be constructed
respectively from the real and imaginary parts of the complex
electromagnetic fields of Eqs. (1) and (2), both types of which
are exact solutions to Maxwell’s equations. The real part is
single cycle in the electric field and 1 1

2 cycle in the magnetic
field at the focus (z = 0), while the imaginary part is 1 1

2 cycle
in the electric field and single cycle in the magnetic field at
the focus. Thus the real part is referred to as the single-cycle
pulse, and the imaginary one is referred to as the 1 1

2 -cycle
pulse. Upon propagation, the single-cycle (1 1

2 -cycle) pulse
transforms to the 1 1

2 -cycle (single-cycle) pulse due to the
Gouy phase shift [69]. The propagation dynamics of a single-
cycle FD pulse (q2 = 100q1) are revealed by the isosurfaces
of the electric field at various times in Fig. 1(a). Away from
the focus (z = ±q2/2), the pulse displays 1 1

2 cycle composed
of a central bright doughnut and two darker toroidal lobes.
At the focus (z = 0 and t = 0), the pulse is single cycle with
two equal-amplitude doughnuts corresponding to the two half
cycles of the pulse.

III. SPACE-SPECTRUM NONSEPARABLE STRUCTURE

Due to its spatiotemporal structure, the FD pulse ex-
hibits a frequency spectrum Ẽ (λ, r, z) with an exotic spatial
distribution over a very broad spectral band [32]. Gen-
erally, all temporal properties can be fully characterized
in the spectral domain; thus the STNS property can be
equivalently interpreted by space-spectrum nonseparability,
and the two terms will be used here interchangeably. The
spatially dependent frequency spectrum of the FD pulse
at various propagation distances is depicted in Fig. 1(b),
which can be obtained by the closed-form expression of
Fourier transforms of the FD pulse presented in our previous

works [70]. Here, the short-wavelength (bluish) compo-
nents are always tightly confined close to the center of
the doughnut, while the long-wavelength (reddish) compo-
nents are located at the periphery of the pulse [see the
inset in Fig. 1(b)]. The spatial normalized intensity dis-
tribution, I (λ, r, z) = |Ẽ (λ, r, z)|2/ max(r,λ)[|Ẽ (λ, r, z)|2], of
monochromatic components of different wavelengths λi (i =
1, 2, . . . , n) is depicted in Fig. 2(a). The STNS in the FD
pulse manifests as isodiffraction [71], ensuring that in each
transverse plane (normal to the propagation direction) the
spatial profiles of intensity for every frequency component
scale along the trajectory of the beam in the same way.
To illustrate the isodiffracting nature of the FD pulse, we
trace the radial position, rλi , of the peak of the intensity of
each wavelength upon propagation in Fig. 2(b), I (λi, rλi , z) =
maxr[I (λi, r, z)]. We introduce the dimensionless ratio ξ =
rλi/rλn of each trace, where the position of peak intensity
of each monochromatic component is normalized to that
of a given component at wavelength λn. In contrast to the
radial positions of peak intensity [Fig. 2(b)], the ratio ξ

of each monochromatic component is propagation invariant
[Fig. 2(c)]. A similar propagation-invariant picture can be
seen for the peak intensity value, Im(λ, z) = I (λ, rλ, z), of
various wavelengths [Fig. 2(d)]. To investigate the evolu-
tion of the transverse profile of total electric field intensity
(integrated over the wavelength components), we introduce
normalized radial positions η = r/rmax(z), where rmax(z) is
the position of the maximum of the total electric field intensity
in the transverse plane at propagation distance z. As shown
in Fig. 2(e), the normalized total intensity profile, I0(η, z) =∫

I (λ, η, z)dλ/ maxr[
∫

I (λ, η, z)dλ], versus the normalized
radius η is also z independent.

The introduction of the radial position ratios ξ (λ), nor-
malized radial coordinates η, and normalized electric field
intensities Im(λ) and I0(η, z) allows us to highlight the
propagation-invariant characteristics of isodiffracting pulses,
such as the FD. Indeed, in isodiffracting pulses, ξ (λ), Im(λ),
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and I0(η) do not depend on the propagation distance z.
In contrast, a generic polychromatic beam (e.g., a wide-
band superposed LG beam) is not expected to exhibit such
propagation-invariant properties. Based on these properties,
we can introduce two sets of states to describe STNS in
broadband beams and pulses: (1) Spectral states |λi〉 (i =
1, 2, . . . , n) are (monochromatic) states of light of defined
wavelength λi and with defined radial position (rλi ) of peak
intensity; (2) spatial states |ηi〉 are (generally polychromatic)
states of light located at the position with defined radial ratio
of ηi = r/rmax, where rmax is the radial position at which the
total intensity of the light field (e.g., the broadband beam or
pulse) reaches its maximum. Based on the prior theory in
Ref. [47], here we can apply Dirac notation to the spectral
and spatial states because the representations of the two states
are both spatially distributed functions and the eigenvectors
are expressed in the infinite-dimensional Hilbert space. Gen-
erally, the positions of the spectral and spatial states depend
on propagation distance z. For convenience, we can also
use the normalized radial position of η = r/rmax. Thus, at a
transverse plane at propagation distance z, we can represent
spectral state |λi〉 by the peak intensity Im(λi, z) at ηλi (z) =
rλi (z)/rmax. Similarly, a spatial state |ηi〉 can be represented
by the intensity value I0(ηirmax, z) at normalized radial po-
sition ηi. The locations of spatial and spectral states, ηi and
ηλi (z), respectively, define trajectories in the η-z plane (see
Fig. 3). For an arbitrary polychromatic beam, the trajectories
of ηi are always vertical lines in this plane, while ηλi (z) can
follow arbitrary trajectories. However, for an ideal isodiffract-
ing pulse, both spectral and spatial states are represented by
vertical trajectories reflecting the propagation invariance of
the spatial and spectral intensity profile. Moreover, here, we
choose sets of states in such a way that spatial and spectral
states are perfectly coincident; that is, ηλi (z) = ηi for isod-
iffracting pulses. The introduction of spatial and spectral sets
of states allows us to distinguish apparently similar broadband
waves. As an example, we consider two doughnutlike pulses
with different STNS, the FD pulse and a wideband LG beam.
Both pulses exhibit toroidal topology [see Figs. 3(a) and 3(b)]
and a similar wideband spectrum, but they exhibit very dif-
ferent spatiospectral structure and propagation dynamics as
illustrated by the corresponding spatial and spectral states.
For the FD pulse, the spectral states are coincident with the
corresponding spatial states upon propagation, as Fig. 3(c)
shows. In contrast, the wideband LG beam is constructed by a
set of monochromatic LG modes (see details of the wideband
LG beam construction in Note 1 of the Supplemental Material
[72]). As a result, the corresponding spectral and spatial states
are naturally separated [see Fig. 3(d)], and the spatiospectral
structure of the beam varies dramatically as it propagates.
For example, at the focus, long-wavelength components are
located close to the axis of the beam [Fig. 3(d1)], whereas
away from the focus they move to the periphery of the beam
[Fig. 3(d2)]. The difference between the isodiffracting FD and
the broadband LG beam can be emphasized further in the
η-z plane. Here, as expected, the spectral states of the FD
pulse [Fig. 3(e)] are z invariant and coincident with the cor-
responding spatial states. On the other hand, the profile of the
wideband LG beam [Fig. 3(f)] suffers substantial distortion
as illustrated by the trajectories of the spectral states. This is
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FIG. 3. (a) and (b) The transverse intensity patterns I0(r)|z=0

of the FD pulse (a) and a wideband LG beam (see Note 1 of the
Supplemental Material [72]) (b). (c) and (d) The propagation profiles
of spectral (|λi〉) and spatial (|ri〉) states of the FD beam (c) and
wideband LG beam (d). The two insets in (d) show the spatial profiles
of different wavelength components of the wideband LG beam at
two different propagation distances, z = 0 (d1) and z = 200z0 (d2),
respectively, where z0 is 1/100 of the Rayleigh length (averaged over
all monochromatic components of the beam). (e) and (f) The η-z
map of spectral and spatial states of the FD beam (e) and wide-
band LG beam (f). Note that the LG beam experiences dramatic
distortion upon propagation, whereas the FD pulse profile remains
invariant owing to its isodiffracting nature. In this illustration, we
have considered 20 different spectral and spatial states, |λi〉 and |ηi〉
(i = 1, 2, . . . , 20), where wavelength values are set as λi = iq1 and
radial ratios are selected as ηi = rλi /rmax.

a direct result of the noncoincidence of spectral and spatial
states.

To quantify STNS in doughnutlike pulses, we interpret the
problem as a measurement of an entanglementlike system,
i.e., the nonseparability of two classical spatial fields [47]. In
our implementation, the classical fields of the spectral state
|λi〉 and the spatial state |ηi〉 are represented as

Eλi (r, z) =
√

I (λi, r, z)H
(
r − δ

(λ)
i−1

)
H

(
δ

(λ)
i − r

)
, (3)

Eηi (r, z) =
√

I0(r, z)H
(
r − δ

(η)
i−1

)
H

(
δ

(η)
i − r

)
, (4)

where H (r) is the Heaviside step function H (r) = 1 if r > 0
and is zero otherwise, δ(λ)

i = rλi + 

(λ)
i /2 and δ

(η)
i = ηirmax +



(η)
i /2 for i = 1, 2, . . . , n − 1, δ

(λ)
0 = δ

(λ)
1 − 


(λ)
1 , and δ

(η)
0 =

δ
(η)
1 − 


(η)
1 ; here, 
(λ)

i (
(η)
i ) for i = 1, 2, . . . , n − 1 is the dis-

tance between the positions of two adjacent spectral (spatial)
states, and 


(λ)
i−1 = 


(λ)
i (
(η)

i−1 = 

(η)
i ) for i = 1 and n, so that

distributions of spectral (spatial) states are nonoverlapping
with each other. Both sets of spectral and spatial states are
orthogonal, 〈λi|λ j〉 = δi j and 〈ηi|η j〉 = δi j , where δi j is the
Kronecker delta. The inner product of two states is given
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FIG. 4. (a1) and (a2) Procedure for experimental determination
of spectral states |λi〉 (i = 1, 2, . . . , 5): (a1) The transverse intensity
profiles corresponding to different monochromatic components can
be obtained by capturing an image of the pulse after propagation
through spectral filters at selected wavelengths λi. (a2) The radial
distribution of the intensity patterns presented in (a1). The radius
rλi marks the position at which the intensity of the monochromatic
component of wavelength λi reaches its maximum value. (b1) and
(b2) Procedure for experimental determination of spatial states |ηi〉
(i = 1, 2, . . . , 5): (b1) The captured transverse profile of the total
electric field intensity with the marked position of the recorded radius
of r = rmax (η = 1) at which the total intensity reaches its maximum.
Based on the recorded position of η = 1, the positions of various
spatial (|ηi〉) states can be recorded through radially scaling the
position of η = 1 by corresponding ratios of ηi. (b2) Spatial states
represented by trajectories in the η-z plane. As the trajectories of the
spatial states are parallel to the z axis in the η-z map, each position of
the spatial state can be determined by the corresponding normalized
radius ηi = r/rmax. (c) Measurement matrix of state tomography of
space-spectrum entangled states, where the inner products are noted
as 〈i| j〉 = 〈ηi|λ j〉 (i, j = 1, 2, . . . , 5). The values of ηi are selected so
that the measurement matrix is diagonal for the ideal isodiffracting
pulses. Here, the sample number is set to 5 for spectral and spatial
states for illustration purposes.

by 〈ηi|λ j〉 = ∫
EηiE∗

λ j
dr. Here, the definitions of the classi-

cal fields Eλi , Eηi have been introduced with respect to the
radial coordinate r in order to clarify the experimental process
for their retrieval. Equivalent definitions can be obtained in
terms of the normalized radial coordinate η by substituting
r = ηrmax.

The classical fields of spectral and spatial states can be
experimentally retrieved as follows. For a given spectral state
|λi〉, the transverse profile of the monochromatic field propa-
gating through a filter at the corresponding wavelength λi can
be recorded by a CCD camera at a given propagation distance
z [see Fig. 4(a1)]. This allows us to retrieve the peak position
of the corresponding intensity rλi and calculate the field func-
tion by Eq. (3) [Fig. 4(a2)]. For a spatial state |ηi〉, we should
record the total intensity pattern (in the absence of spectral
filters) at a propagation distance z, which allows us to obtain

the total intensity peak position rmax [see Fig. 4(b1)]. The
corresponding field profile for the spatial state at r = ηirmax

can then be calculated by Eq. (4). The values of ηi are selected
with reference to a perfectly isodiffracting pulse (such as the
FD), so that the inner product 〈ηi|λ j〉 is nonzero only if i = j
in this ideal STNS case.

Based on the above picture, the STNS is successfully
translated into the nonseparability of spectral and spatial
states, which resembles the nonseparability of entanglement.
In quantum mechanics, there are plenty of mature techniques
to quantitatively measure the nonseparability of various kinds
of high-dimensional entangled states, such as spin-to-orbital
angular momentum entanglement [73], energy-to-time entan-
glement [74], and radial position-to-momentum entanglement
[75]. Based on the analogous mathematical description and
physical origin, we introduce the new concept of a space-
spectrum nonseparable state that allows us to quantitatively
describe pulses with prescribed STNS, such as the FD,
i.e., |ψ〉 = ∑n

i=1 ci|ηi〉|λi〉, where c2
i = 〈ηi|λi〉 and

∑
i c2

i = 1.
On the other hand, for a general pulse, the space-spectrum
state is expressed as |ψ〉 = ∑n

i=1

∑n
j=1 ci, j |ηi〉|λ j〉, where

c2
i, j = 〈ηi|λ j〉 and

∑
i j c2

i j = 1. Experimentally, spatiotempo-
ral pulses can be precisely described by such states with a
sufficiently large number n of measurements. We note that
here we consider classical broadband beams and pulses as
pure states. Our approach can be readily expanded to mixed
states, by examining, e.g., pairs or triads of beams and pulses
separated in space and/or time (akin to the implementation of
the mixed state in prior classical nonseparable modes [76]).

IV. QUANTUM-ANALOGOUS MEASUREMENT

In this section, we provide the technical details of measur-
ing the STNS with the assistance of the numerical simulations.
In analogy with quantum state tomography, we can perform
tomography measurements of the space-spectrum state of a
spatiotemporal pulse, as Fig. 4(c) shows. Based on the def-
inition of the spectral and spatial states adopted here, the
tomography matrix for an isodiffracting pulse, such as the FD
pulse, should be diagonal, as shown in Fig. 5(a), revealing
space-spectrum entanglement. Importantly, the tomography
matrix for isodiffracting pulses is diagonal at any transverse
plane; that is, it is propagation invariant. For comparison, we
emulate a hypothetical experimentally generated FD pulse
by adding noise (see Note 2 of the Supplemental Material
[72]) into the ideal FD pulse and calculate the corresponding
tomography matrix as shown in Fig. 5(b). Here, the presence
of off-diagonal elements indicates that the spectral and radial
states are slightly separated and that the pulse indeed deviates
from the ideal one. On the other hand, for a wideband LG
beam without isodiffraction, the tomography results are prop-
agation dependent. In this case, we average the tomography
matrices [Fig. 5(c)] evaluated at various propagation distances
[Fig. 5(d)]. The tomography matrices evaluated at different
transverse planes, as well as the averaged matrix, are non-
diagonal indicating substantial deviation from isodiffracting
propagation. Thus the state tomography method introduced
here allows us to distinguish the type of STNS in broadband
light fields. Indeed, both the FD pulse and the wideband
LG beam have degrees of STNS to some extent; however,

013236-5



SHEN, ZDAGKAS, PAPASIMAKIS, AND ZHELUDEV PHYSICAL REVIEW RESEARCH 3, 013236 (2021)

F=0.7648   C=0.9804   E=0.9718 F=0.0142   C=0.8413   E=0.6097

(a) (b)

(g)(f)(e)

0.04

0.02

0.04

0.02

0 0

0.015

0.01

0.005

0

|1 |1

| |i
j

| 20 | 20

11| |

0
20 | 2 |

| |ji

F=1     C=0.9997   E=0.9995

0

1
1              20i

1

20

j

1

20

j

1

20

j

1              20i (c) 1              20i (d) 250z 150z 50z

50z 150z 250z

}

|1 |1

| |i
j

| 20 | 20

11| |

0
20 | 2 |

| |ji
|1 |1

| |i
j

| 20 | 20

11| |

0
20 | 2 |

| |ji

F=0.05   C=0   E=0
(i)
1

0.5

0

|1 |1

| |i
j

| 20 | 20

11| |

0
20 | 2 |

| |ji

(h)1              20i
1

20

j

20 20

19 20

2 1

1

0

j

j

i

i

j

2 1

1 1

⋯
⋯

⋯
⋯

20
20

19
19

18
182 200

19
19

18 18

⋯
⋯

⋯⋯
⋯

⋯

20
20

19
19

18
182 200

19
19

18 18

⋯
⋯

⋯⋯
⋯

⋯ 20
20

19
19

18
182 200

19
19

18 18

⋯
⋯

⋯⋯
⋯

⋯

20
20

19
19

18
182 200

19
19

18 18

⋯
⋯

⋯⋯

⋯
⋯

FIG. 5. (a)–(c) The numerical results of quantum-analogous state tomography of the ideal FD pulse (a), the FD pulse with noise (b), and
the wideband LG beam (c). The insets at the top right of (a)–(c) are the corresponding results of the intensity-normalized measurements. In (c),
the tomography matrix is obtained by averaging multiple measurements at various propagation distances from z = −250 to z = 250 with a step
of 50 (unit: q1 for FD and z0 for LG). (d) The selected tomography matrices of the wideband LG beam at distances of z = ±250, ±150, ±50
(unit: z0). (e)–(g) The reconstructed density matrices for the ideal FD pulse (e), the FD pulse with noise (f), and the wideband LG beam
(g), with marked values of fidelity, concurrence, and EoF, respectively. (h) and (i) The tomography matrix (h) and density matrix (i) for a
monochromatic beam. In all panels, red and blue indices, i and j, denote spatial |ηi〉 and spectral states |λ j〉. See the full data set of tomography
and density matrices of the wideband LG beam at various propagation distances in Note 3 of the Supplemental Material [72].

only in the case of FD, the STNS leads to isodiffracting
propagation.

From the evaluated state tomography matrices, we can
reconstruct the corresponding density matrices of the space-
spectrum state, �̃ = |ψ̃〉〈ψ̃ | (where |ψ̃〉 is the measured state).
Results for the ideal FD, FD with noise, and wideband LG
pulses are listed in Figs. 5(e)–5(g), respectively. Importantly,
knowledge of the density matrix allows us to apply quantum
measures, e.g., fidelity and concurrence [42,43], to quantita-
tively characterize the properties of the pulse.

Fidelity. In quantum mechanics, the fidelity is a mea-
sure of similarity of two quantum states, defined as F =
(Tr

√√
ρ1ρ2

√
ρ1)2, where ρ1 and ρ2 are the density matrices

of the two states. If the target state is a pure state |ψ1〉, the
density matrix is given by ρ1 = |ψ1〉〈ψ1|, and the fidelity is
simplified to F = Tr(ρ1ρ2) = 〈ψ1|ρ2|ψ1〉 [42]. Here, we set
the target state as the ideal FD pulse |ψ〉 = ∑n

i=1 ci|ri〉|λi〉.
The fidelity of a measured state can then be calculated as F =
〈ψ |̃�|ψ〉, where �̃ is the density matrix of the measured state.
In our implementation, fidelity can quantitatively measure the
degree of similarity to an ideal FD pulse taking values from 0
to 1. The result for the FD with noise is F = 0.7648, which
indicates a high degree of similarity to the ideal FD, while
in the case of the wideband LG beam, fidelity approaches
zero, F = 0.0142. Fidelity can be readily defined with respect
to different reference pulses (e.g., linearly polarized STNS
“focused pancakes” [31]).

Concurrence. In quantum mechanics, the concurrence is
a continuous measure of nonseparability of two-dimensional
entangled states [42]. This concept was also generalized for
high-dimensional cases, usually called I concurrence, defined

by C =
√

2[1 − Tr(ρ2
A)], where ρA is the reduced density ma-

trix [77]. For an arbitrary d-dimensional state, the concurrence
is usually normalized as C/νd and takes values from 0 to 1
[νd = √

2(1 − 1/d )], indicating the absence of entanglement
(or pure separability) and strong nonseparability (maximum

entanglement), respectively. In our study, we use d = 20 cor-
responding to the 20 spectral and spatial states. The results
for the ideal FD, FD with noise, and wideband LG beam are
C = 0.9997, C = 0.9804, and C = 0.8413, correspondingly.
The FD pulse exhibits strong STNS with near-maximum “en-
tanglement,” while the wideband LG beam also exhibits a
substantial degree of STNS upon propagation owing to the
mixing of the different monochromatic components.

Entanglement of formation. In quantum mechanics, the
entanglement of formation (EoF) is also a commonly encoun-
tered measure of quantum entanglement. EoF is calculated by
the von Neumann entropy of the reduced density matrix E =
−Tr[ρA log2(ρA)] and is typically normalized as E/ log2(d ) in
the d-dimensional case [78]. In contrast to concurrence, EoF
is more sensitive to strong nonseparability due to the convex-
ity of entropic measures. The results for the ideal FD, FD with
noise, and wideband LG beam are E = 0.9995, E = 0.9718,
and E = 0.6097, respectively. The lower EoF of the wideband
LG beam unveils that it exhibits weaker STNS. We note
here that both EoF and concurrence quantify the degree of
nonseparability; yet the choice between the concurrence and
EoF can be informed by the specific application at hand: EoF
(concurrence) is better suited to distinguish between pulses
with strong (weak) STNS (see Note 4 of the Supplemental
Material [72] for an example explanation).

We note that the ideal FD pulse exhibits very high values
of concurrence and EoF (0.9997 and 0.9995), which indi-
cates that the FD is a near-maximally entangled state. Here,
the small deviation of the entanglement measures’ values
from unity is a result of different intensity levels at differ-
ent spatial and spectral states. However, depending on the
problem at hand, we can focus only on the positions of the
spatial and spectral states omitting the effects of different
intensity levels for different states; then we could regard the
FD pulse as a perfect maximally entangled state. In such
a case, we can use an intensity-normalized calculation of
the inner product 〈ηi|λ j〉 = ∫

EηiE∗
λ j

dr/(
∫ |Eηi |dr

∫ |Eλ j |dr)
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TABLE I. Parameter comparison of various kinds of pulse. Fid., fidelity; Conc., concurrence; N-Fid., N-Conc., and N. EoF, fidelity,
concurrence, and EoF in intensity-normalized measurement, respectively; W. LG, wideband LG beam; M. LG, monochromatic LG beam.

Pulse Fid. Conc. EoF N-Fid. N-Conc. N-EoF

Ideal FD 1 0.9997 0.9995 1 1 1
Noised FD 0.7648 0.9804 0.9718 0.7533 0.9779 0.9683
W. LG 0.0142 0.8413 0.6097 0.0110 0.8541 0.6378
M. LG 0.0410 0 0 0.0500 0 0

during state tomography. For the ideal FD pulse, the intensity-
normalized measurement results in an identity tomography
matrix, while fidelity, concurrence, and EoF are all unity. The
results of this modified measurement for the ideal FD, the
FD with noise, and the wideband LG beam are inserted in
Figs. 5(a)–5(c), correspondingly.

As an extreme case of a space-time separable wave, we
consider a monochromatic LG beam. The corresponding re-
sults of tomography and density matrix are presented in
Figs. 5(h) and 5(i), exhibiting only a single nonzero element.
As a separable state, it can be expressed in the form |ηn〉|λn〉,
resulting in null values of concurrence and EoF. We sum-
marize the results of fidelity and entanglement measures in
Table I, for both normalized and non-normalized intensity
measurements.

It is worth noting that we do not consider the quantum
aspects of the electromagnetic fields, but exploit the math-
ematical tools of quantum measures to describe classical
structured light. Akin to the quantum measures in describing
the correlations between two entangled particles, the quan-
tumlike measures introduced here also have clear physical
meaning related to the propagation dynamics of spatiotem-
poral pulses. In particular, the density matrix contains the full
information of the correlation between the spectral and spatial
states, i.e., the spatial distribution of the monochromatic com-
ponents of the pulse within the transverse profile of the pulse.
The fidelity quantifies the similarity between two pulses. On
the other hand, concurrence and EoF quantify the overlap (i.e.,
correlation) of spectral states (wavelength components) with
the spatial states.

V. DISCUSSION

We have established a toolkit of quantum-analogous meth-
ods to effectively characterize STNS in general electromag-
netic beams or pulses, which can not only evaluate the type,
but also quantify the strength of the nonseparability. The ap-
proach is straightforward and can be easily applied to experi-
mental measurements. Measures such as fidelity, concurrence,
and EoF borrowed from quantum mechanics can fully quan-
tify the STNS of an general pulse. In this paper, we consider
the FD pulse and a superposition of LG beams as examples
for illustration purposes. Nevertheless, with an appropriate
modification of spatial states (selection of radial ratios η) our
method is readily applicable to a wider class of pulses with ar-
bitrary spatiotemporal structure, such as vector vortex beams
[12], pancakelike pulses [31], and isodiverging pulses [14].

Quantitative measures for the characterization of spa-
tiotemporal pulses are crucial for a number of applications.
For instance, fidelity allows us to readily evaluate the quality

of experimentally generated beams and pulses and also to
establish effective criteria for optimizing the corresponding
generation schemes. Quantum-analogous measures, such as
concurrence and entanglement of formation, may result in
translation of quantum techniques (e.g., quantum protocols) in
the classical domain for encoding information into structured
pulses leading to novel optical communication and cryptogra-
phy schemes.

While here we focus on fidelity, concurrence, and EoF,
a much wider set of quantities has been developed to mea-
sure the purity and quality of quantum states, e.g., linear
entropy, negativity, the Bell parameter, and the Greenberger-
Horne-Zeilinger parameter, to name a few. Hence this set can
be mined to further characterize broadband electromagnetic
waves with space-time or even more exotic forms of non-
separability. For example, the linear entropy S = 1 − Tr(ρ2),
where ρ = ∑

j p j |ψ j〉〈ψ j | is the density matrix of a measured
state and p j is the coefficient of jth mixed state, quantifies
how close a quantum state is to a pure (S = 0) or a maximally
mixed (S → 1) state [79]. In this paper, we only consider
waves that are represented by pure states; thus the linear
entropy of such waves should always be 0. However, the
linear entropy would be very useful, if we consider systems
comprising multiple beams. Such a case would be of great
interest as we can use the entropy of sets of multiple pulsed
beams to encode information, enabling novel applications in
high-capacity and encrypted communications by the STNS
of pulses. Finally, here we have focused on intensity-only
STNS effects; however, the method can be readily extended
to include phase effects.

Space-time nonseparable pulses provide unusual and
largely unexplored degrees of freedom in structuring light that
are yet to be exploited. As such, there is growing interest in
the generation and control of high-quality space-time nonsep-
arable pulses. Our method provides the practical quantitative
tools for the generation design, optimization, characterization,
and detection of such complex pulses, as well as for the
study of their light-matter interactions. These key capabil-
ities for taming and exploiting spatiotemporally structured
pulses will lead to novel applications in ultrahigh-capacity
communications, high-security encryption, topology- and
quantum-analogous systems, and metrology that require the
manipulation of an increasing number of degrees of freedom.
Moreover, of particular interest will be the extension of our
work to a unified framework to describe both classical and
quantum nonseparability (entanglement), as well as their in-
terplay and connection.

The data from this paper can be obtained from the Univer-
sity of Southampton ePrints research repository [80].
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