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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL SCIENCES

Mathematical Sciences

Doctor of Philosophy

BLACK HOLE MICROSTATE GEOMETRIES AND THEIR HOLOGRAPHIC

DUALS

by Sami Rawash

In this thesis we exploit various tools to investigate aspects of black hole microstate

geometries within the context of the “fuzzball proposal”, which follows from the string

theory construction of black holes in terms of strings and branes. This thesis comprises

three parts.

In Part I, we make use of the gauge-gravity duality to discuss the precision holographic

dictionary, that relates the asymptotic expansion of black hole microstates near the

AdS boundary with the expectation values of certain operators in the dual CFT. In

particular, we derive the dictionary for scalar chiral primary operators of dimension two

and a class of superdescendants of these operators, in the single-particle basis.

In Part II, we construct the first family of three-charge supersymmetric solutions con-

taining a shockwave and we give a proposal for their holographic duals, which passes

non-trivial checks. These gravitational solutions do not represent a single pure state in

gravity: they provide a collective description of a family of microstates whose details

are not resolved in supergravity.

In Part III, we use computer science tools to derive approximate examples of microstate

geometries. In particular, we present an optimization algorithm, based on evolutionary

algorithm and Bayesian optimization, to construct numerical multi-center solutions with

a high number of centers in generic configurations.

The research conducted in this thesis supports the ideas of the fuzzball paradigm, and

develops techniques which can prove useful to examine and test the conjecture in future

scenarios.
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Chapter 1

Introduction

1.1 Puzzles and paradoxes

In the last few years, we have witnessed a very exciting period for black hole physics.

The gravitational waves detected by LIGO [5] and the release of the first picture of

a black hole by the Event Horizon Telescope [6] not only support the idea that black

hole like objects do exist in Nature, but also show that their description in general

relativity (GR) is accurate within our experimental error. These discoveries are another

experimental example indicating the validity of GR, which add to several experimental

tests that general relativity has already passed [7]. Even though there are no empirical

motivations (and thus guidelines) to modify this theory, we have strong theoretical

arguments to believe that the description of black hole physics provided by GR is not

the most fundamental one. This can be motivated at different levels.

First of all, a black hole in general relativity is a singular solution of Einstein’s equa-

tions in which the curvature singularity is hidden behind an event horizon, a one-way

membrane that separates those spacetime points that are connected to infinity by a

time-like path from those that are not. Singularities indicate a breakdown of the theory

in describing phenomena at certain scales, so when dealing with black holes GR predicts

its own failure and we shall look for a more fundamental theory in which the singularity

is resolved.

Deeper motivations come from a closer analysis of black holes in general relativity. The

classical phase space of a black hole is protected by uniqueness theorems, known as “no-

hair theorems” [8]. For example, they state that given a stationary, asymptotically flat

black hole solution coupled to electromagnetism that is non singular outside the horizon,

the solution is fully characterized by its conserved charges (the mass M , the charge Q

and the angular momentum J). Suppose a black hole is formed by gravitational collapse:

no matter the details of the initial configuration, once the system has settled down to

a stationary state its back reaction on spacetime is described only by three parameters.

1



2 Chapter 1 Introduction

This does not imply that the information on the initial state is lost: classically, we can

think of it as hidden behind the horizon. We will see that quantum mechanically the

situation is much more puzzling.

Another important property of black holes is their thermodynamic behaviour. By using

Einstein’s equations one can derive a set of mechanical laws that look analogous to the

laws of thermodynamics [9]. These are (for a review see e.g. [10, 11]):

• Zeroth law: the surface gravity κ is constant over the horizon. This is the law of

thermal equilibrium, with κ playing the role of a temperature.

• First law: the variation of the mass M of a black hole is related to the change of

its horizon area A, angular momentum J and charge Q via

δM =
κ

8πGN
δA+ΩHδJ +ΦδQ , (1.1)

where ΩH and Φ are the angular velocity and electrostatic potential, respectively.

This is the law of conservation of energy.

• Second law: in any mechanical process the area of the event horizon can never

decrease δA ≥ 0. This is the analog of the law stating that entropy is a non-

decreasing function of time, with the area of the event horizon playing the role of

the entropy of the black hole SBH . The relation between these two quantities, in

units where c = ℏ = kB = 1, is:

SBH =
A

4GN
. (1.2)

The second law has then been generalized by Bekenstein [12]:

d
(
SBH + SMatter

)
≥ 0 . (1.3)

This relation states that the total entropy, given by the sum of the entropy of the

black hole and that of the matter in the exterior of the black hole, never decreases.

Even though this analogy between thermodynamics and black hole mechanics seems

quite remarkable, it is not obvious that it should be taken seriously. Black holes, as the

name states, are objects from which nothing can escape: what does it mean to associate

a temperature to a body that does not emit radiation? Moreover, Boltzman has taught

us that the entropy of a thermodynamic system can be understood as the degeneracy of

microstates associated to the macroscopic system:

S ∝ ln(# microstates) . (1.4)

It is useful at this stage to give an order of magnitude of the entropy of a black hole:

by restoring the physical units in Eq. (1.2), one has that a Schwarzschild black hole of
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mass M has a thermodynamic entropy given by:

SSchw ∼ 1076
( M

MSun

)
, (1.5)

which is a remarkably large number. Is this point of view compatible with the no-

hair theorems, i.e. with the triviality of the black hole’s classical phase space? Because

of these conflicts one would be tempted not to take this correspondence seriously and

interpret it as nothing more but a vague analogy.

Taking into account quantum field theory on the curved (fixed) background produced by

a black hole, Hawking showed that the physics is much more mysterious. Even though

classically black holes are black, semi-classically they emit a black body radiation at a

temperature [13, 14]

TBH =
κ

2π
. (1.6)

In a nutshell, Hawking’s computation arises as follows (see e.g. [15] for a review). We

consider a black hole solution coupled with a quantum field and we remind that the

Equivalence Principle implies that a free falling observer crossing the horizon experiences

nothing out of ordinary. The vacuum state of the quantum field is observer dependent

in curved spacetime: when the free falling observer crossing the horizon experiences the

vacuum, an observer at infinity will see a flux of particles. By energy conservation, we

conclude that the particles are emitted by the black hole, which decreases in mass. This

emission process turns out to be exactly thermal, with no correlations between early

and late radiation. An heuristic but useful picture to visualise the Hawking radiation

process is as follows. We can think of the black hole radiation as due to pair production

near the horizon: one member of the entangled pair falls into the black hole, decreasing

its mass, and the other member escapes to infinity, giving rise to the radiation.

This phenomenon enforces the case for taking seriously the thermodynamic behaviour

of black holes and gives rise to puzzling questions. As we outlined above, a thermody-

namic system should be governed by an underlying statistical mechanics: in this view,

the macroscopic system with entropy S is a coarse grained description of eS microstates

which are lumped into the same macroscopic state, meaning that they cannot be dis-

tinguished by macroscopic observables. In the case of a black hole, what/where are the

eSBH microstates? This is the so called entropy puzzle.

Hawking process has another important consequence that has puzzled high energy the-

oretical physicist for over fifty years, which is the so called information paradox [16].

Hawking radiation, in the simplest setup, implies the evaporation of the black hole:

once the emitted radiation has carried away all the energy, the black hole is expected

to disappear. Let us consider the process of creation and evaporation of a black hole as

a scattering experiment. We start from an initial configuration in a pure state which,

under the gravitational interaction, collapses to form a black hole. Under time evolu-

tion, the black hole evaporates and eventually disappears so that the final state is the
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thermal radiation. This process describes the temporal evolution of an initial pure state

to a mixed state: this violates the quantum mechanical principle of unitary.

Of course, one could support the idea that the fundamental laws of nature are not

unitary: with this perspective Hawking evaporation process not only would not be a

problem, but would also provide an indication of this non-unitary behaviour. In this

thesis we will acquire the perspective (and we will give motivations for this in due course)

that quantum gravity is unitary: in this sense, Hawking’s computation is a paradox. We

refer the reader to [17–23] for further discussions on the information paradox.

It has been suggested [24] that black holes do not evaporate completely: the Hawking

process, being a semi-classical computation, should be trusted until the black hole be-

comes Planck-size1. Next, quantum gravity effects take over and they could stabilize

the evaporation process leaving an eternal, or simply a very long-lived, remnant, i.e. an

object which is bounded in mass and size but that can have an unbounded amount of

entanglement with a system far away. In this case, the final state, being the union of

the remnant and the Hawking radiation, is in a pure state. This proposal is problematic

for several reasons. First, this time evolution is in conflict with the Page curve [18, 25],

which states that unitary evolution requires the entanglement entropy between the black

hole and the radiation to start decreasing when about half of the degrees of freedom have

evaporated. Second, having an unbounded amount of entanglement entropy in a finite

size system is in conflict with Bekenstein’s entropy bound and the generalized second

law of thermodynamics [26, 27]. See also [28, 29] for other critics of remnants.

Another general guideline that was suggested to solve the information paradox was that

small quantum gravity effects could restore unitarity. Hawking’s computation neglects

these effects and represents the leading order contribution. We thus expect small, even

though in principle arbitrarily complicated, corrections to the Hawking process due to

unknown quantum gravity physics. Despite being small, these effects are integrated over

a very large number of evaporating bits (see Eq. (1.5)). It was argued that these small

corrections could introduce subtle correlations between the early and late radiation,

resulting in an order one correction to the final state of the evaporation process that

restores unitarity.

However, the “small correction theorem” proven in [30] (see also [20, 31] for further dis-

cussions) shows that this common lore is a misconception: small corrections to Hawking

evaporation process that are localized in the neighborhood of the horizon cannot restore

unitarity. One has either to incorporate (and justify) order one corrections to Hawking

evaporation process that are localized near the horizon or non-local effects that can be

arbitrarily small but have to extend across the full space-like slice that connects the

horizon with the observer at infinity.

These examples show that, even if we expect that a UV complete theory of gravity

1Assuming there is no new physics before the Planck scale.
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should shed light upon the information paradox, it is not obvious a priori how this may

happen. Hawking’s computation treats the gravitational field as a classical background.

At a fundamental level we believe that all physical fields should undergo the general

framework of quantum physics: gravity is no exception [32]. However, we generally

expect quantum gravity effects to become important at some fundamental scale which

we typically take to be the Planck scale lp. On the other hand, Hawking process is

sensitive to a scale (i.e. the radius of the event horizon R) which, at least while the

black hole is large, is macroscopic and we have lp ≪ R: it is thus not obvious how

quantum gravity effects can resolve the information paradox. Why should the semi-

classical approximation fail for Hawking’s computation? And when does it cease to be

a good approximation?

It would be unfair to proceed further without mentioning some recent advances to

solve the information paradox, that go under the general framework of the “island

paradigm” [33–36] (see [37] for a review). In these papers, the entanglement entropy of

the radiation was computed via the gravitational path integral, with a method that is

similar in spirit to the computation of the entropy of an Euclidean black hole [38]. The

resulting formula prescribes that in order to compute the entanglement entropy of the

radiation, one has to take into account an “island” contribution, i.e. one has to consider

the entropy of a system that is the union of the radiation and a part of the interior of the

black hole. Since the information paradox arises from the entangled nature of black hole

and radiation, by prescribing that in order to compute the fine-grained entropy of the

radiation one has to consider also Hawking modes in the interior, the Page curve is re-

covered. Note that this is a semi-classical computation that does not require knowledge

on the UV completion of gravity.

This computation does not give the details of the actual outgoing modes, i.e. of the final

state of the evaporation process: the subsystem containing only the radiation is still in

a mixed state, and the prescription is interpreted as the “unreasonable effectiveness” of

the semi-classical limit. At a fundamental level, the meaning of this prescription and

of the statement “that the interior belongs to [...] the radiation” [37] remains quite

mysterious. In particular, it has been argued in [39] that, as a consequence of the “small

correction theorem”, the island paradigm requires the presence of non-local effects across

the full space-like slice in the quantum theory.

In this thesis we will follow a different paradigm, according to which the information

paradox is solved because of order one corrections to the evolution of Hawking modes

at the horizon. In the next section we will discuss how this can be realised in a theory

of quantum gravity, string theory.
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1.2 The fuzzball proposal

As it is well known, the canonical quantization approach to GR fails because it is a non-

renormalizable theory. The attempts to define a consistent theory of quantum gravity

have led in the past decades to different approaches, guided by different underlying ideas:

string theory, loop quantum gravity, asymptotic safety (just to name a few). String

theory is one of the most promising attempts, and we will work within this framework.

The fundamental objects of the theory are not point-like particles, but one dimensional

objects - the strings - whose different modes of oscillation give rise to a spectrum that

contains, among others, a spin-two massless particle (the graviton). A black hole in string

theory is a bound state of the fundamental objects of the theory: namely strings and

D-branes. To be more precise, changing the string coupling constant gs, which controls

the strength of the gravitational coupling (g2s ∼ GN ), one can interpolate between the

bound state description of the system, when there is no gravitational interaction, and the

black hole regime, when gravity is turned on. Using this paradigm, remarkable progress

has been made in the last decades.

To start with, for a class of supersymmetric black holes, it is possible [40] to reproduce the

Bekenstein-Hawking entropy via a microscopic computation2 (see e.g. [43] for a review).

In fact, one can compute the degeneracy of the microstates at vanishing coupling, exploit

the fact that it is protected by supersymmetry as one moves in the moduli space and

compare it with the black hole entropy3.

The agreement between these two quantities not only implies that the Bekenstein-

Hawking entropy has a statistical origin, but also that, at least for certain classes of

black holes, string theory captures correctly the microscopic degrees of freedom of the

gravitational system. This result can be interpreted as a first indication that the black

hole evaporation process is unitary: string theory is a unitary theory and it seems to be

able to describe black holes at the microscopic level. However, since this computation

is based on an extrapolation from weak to strong coupling, it does not give us insight

on the gravitational properties of the microstates: understanding how the microstates

manifest themselves in the black hole regime would be important to shed light upon the

unitary process that replaces Hawking evaporation process at the microscopic level.

One of the ideas in this direction has been motivated by the explicit construction of mi-

crostate solutions of the supersymmetric D1-D5 black hole [44–47]. The D1-D5 system is

connected via a set of string dualities to the F1-P system: a fundamental string carrying

momentum. Indeed, these solutions were first constructed in the F1-P frame and then

dualized to D1-D5. The different microstates of the black hole correspond to the different

2See e.g. [41, 42] for examples of microscopic entropy counting of non-extremal black holes.
3To be precise, the protected quantity is an index that counts the difference between bosonic and

fermionic degrees of freedom. One then exploits the fact that the index and the absolute degeneracy
agree at leading order.
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ways in which the string carrying momentum can vibrate. The common lore before the

explicit solutions were constructed was that, by increasing the gravitational coupling,

the string configuration would shrink until its characteristic size becomes smaller then

the associated Schwarzshild radius: at that point a horizon would form and the resulting

geometry would be that of a conventional black hole [48]. The resulting geometries, in-

stead, turned out to be different: they are smooth (in the D1-D5 duality frame [49]) and

horizonless. In particular, a microstate is indistinguishable from the classical black hole

solution asymptotically, but start to differ from it already at the characteristic scale set

by the string vibrations, which is the scale of the would-be horizon. These microstates

include both low curvature solutions which are well described in supergravity and limits

in which the curvature is string scale. All of them together reproduce the black hole

entropy. A typical microstate is a superposition of these solutions and, thus, is highly

quantum in nature.

This result motivated the fuzzball proposal [30, 50–52]: according to this conjecture,

there are strong quantum gravity effects already at the horizon scale due to the size

of the underlying bound state. At the fundamental level, a black hole solution should

be replaced with eSBH microstates, which are indistinguishable from the black hole

asymptotically, but start to differ from it at the horizon scale: in particular, they are

horizonless and non-singular. Importantly, typical microstates are expected to be highly

quantum in nature and to be solutions of the full string theory: only a subset of these are

low curvature supergravity solutions. According to this paradigm, the (naive) black hole

solution represents the coarse grained description of the system, which is not accurate

enough to describe the evaporation process.

Some comments are in order. First, the fact that the black hole microstates do not

have an horizon enables to interpret them as pure states of the ensemble. If they

had an horizon, we could have associated an entropy to each them. But does it make

sense to associate an entropy to a microstate? A microstate is any of the possible

microscopic description of the system which gives rise to the same thermodynamics:

in this sense, entropy is hidden information. However, since a microstate provides a

complete description of the system, we shall not associate an entropy to it. Secondly,

it is commonly accepted that quantum modifications to GR should become important

at some fundamental microscopic scale and, in particular, that the quantum gravity

effects that resolve the singularity would be localized in its neighborhood. The fuzzball

proposal conjectures that the classical black hole solution should be modified long before:

corrections occur already at the horizon scale. This paradigm has the potential to solve

the information paradox: the generic microstate is a very non-trivial quantum bound

state in the region where the horizon would have been, instead of the smooth vacuum

as Hawking assumed.

Let us now briefly review the status of the fuzzball proposal. We have a good under-

standing of all the microstates responsible for the entropy of the D1-D5 extremal black
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hole [46, 47, 53–55] and they all satisfy the properties conjectured by the fuzzball pro-

posal. The D1-D5 black hole, however, is microscopically small, i.e. its horizon area is

zero in supergravity. The next challenge is to study how much of this physics is carried

over by the microstates of a macroscopic black hole: the main playground in this direc-

tion has been the study of microstates of the supersymmetric D1-D5-P black hole. Two

main classes have been constructed (and we will review both of them in this thesis): one

goes under the name of “superstrata” solutions (see e.g. [56–66]) and the second one is

given by a subset of the multi-center solutions (see e.g. [51, 67–75]). Again, the structure

of these microstates are compatible with the fuzzball proposal, but it has been shown

that these alone are not enough to account for the entropy of the black hole [66, 76, 77].

Last, it is important to develop further our understanding of microstates of non-extremal

black holes, as this could give further insight on the unitary process that replaces Hawk-

ing evaporation at the microscopic level. An important progress in this direction has

been the example provided in [78]: these microstates, that go under the name of JMaRT

solutions, do not have a horizon but do have an ergoregion. In this context, Hawk-

ing evaporation has been reinterpreted as a process of ergoregion emission [79–85]: this

process produces entangled pairs, but in this case the inner particle stays in the ergore-

gion, affects the evolution of the later quanta and can itself evaporate at a later time.

The resulting evaporation process is unitary, in the very same way in which a piece of

coal burns in a unitary way. See also [86–89] for further examples and discussions on

non-supersymmetric microstates.

The fuzzball proposal has been also discussed in the context of the AdS formulation

of the information paradox [90]. Large AdS black holes do not evaporate completely:

the AdS boundary is reflective, so that the radiation bounces at the boundary and falls

back into the black hole. For this reason, the formulation of the information paradox

that we have introduced in the previous section does not hold in general. However, one

can characterize the loss of information for AdS black holes by looking at the late-time

behaviour of two-point functions of light boundary operators [90]. In the naive black

hole geometry (see e.g. [91] for the result in a BTZ) the two-point function decays at late

Lorentzian time: this is an indication of information loss. An intuitive interpretation

of this behaviour is that the more the boundary operators are separated, the deeper

the dual gravitational excitation probes the bulk of spacetime: when the probe crosses

the horizon, its correlation with the exterior decays and the information gets lost in the

black hole.

It was suggested in [92] that, in order to restore unitarity, higher order corrections in GN

had to be included. By following the fuzzball paradigm, the authors in [93] (see also [94,

95]) proposed a different conclusion: they analyzed the late time behaviour of a two-point

function on a fuzzball geometry background and found no signal of information loss.

This provides an example that black hole microstates are not accurately described by

the naive black hole geometry. In this perspective, the full higher dimensional geometry
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contributes to the correlator and the traditional black hole does not have enough degrees

of freedom to restore unitarity.

It is fair to say that, despite these examples, the fuzzball proposal is a conjecture at the

present state of things. In order to further explore the validity of the proposal the tools

provided by the AdS/CFT duality come at hand, as we shall now discuss.

1.3 The role of holography

In order to introduce the role that holography can play within the context of the fuzzball

proposal, let us briefly introduce the setup that will be used throughout this thesis (we

will provide a more detailed description in Chapters 2 and 3). We consider Type IIB

string theory in R
1,4×S1×M, whereM is either T 4 or K3. We take the S1 to be large

and the characteristic size of the internal manifoldM to be microscopic. Even though

working in four non-compact direction is more interesting for phenomenological reasons,

the spacetime topology we chose simplifies the problem: in five non-compact dimensions

three charges are enough to construct a macroscopic black hole. Had we chosen to work

in four non-compact dimensions, we would have needed to add a fourth charge [96] (and,

of course, the fewer the number of charges the simpler the system).

The black hole under consideration is a bound state of N1 D1 branes that extend along

S1, N5 D5 branes that wrap the compact directions and possibly np units of momentum

P along S1. The resulting geometry has a near horizon region which is asymptotically

AdS3×S3×M, so holography is applicable: the gauge side of the duality involves a two

dimensional CFT, known as D1-D5 CFT. The basic rules of holography in its mature

formulation were described in [97–99]. The duality relates the spectrum (and the dy-

namics) of string theory in a spacetime that is asymptotically AdS with that of gauge

invariant operators in the dual CFT. In particular, holography provides a map between

states in the bulk and states in the CFT. Note that, since holography conjectures an

exact equivalence between the bulk and the boundary theory, and the latter is unitary,

holography is another indication that the microscopic dynamics of black hole should not

lead to information loss. Our main interest is in black hole microstates: supersymmetric

D1-D5(-P) microstates are understood to be dual to CFT states |H⟩ in the RR sector,

which break 1/4 (1/8) of the supercharges and have a conformal dimension of order of

the central charge c = 6N1N5 ≡ 6N [52, 100, 101]. We work in the best controlled limit

of the AdS/CFT duality: when the supergravity approximation is a good description of

the bulk physics and 1/N and α′ corrections are ignored.

On the gauge side, this regime is dual to a strongly coupled point in the moduli space,

which makes it difficult to gain a complete understanding of the gravitational physics

from the CFT side of the duality. However, one can focus on quantities which, being

protected by supersymmetry, are moduli independent: they can be computed at the
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free orbifold point of the CFT (where the theory reduces to a collection of free bosons

and fermions) and reliably compared with the bulk duals. Quantities of this type are

the expectation values of chiral primary operators (and descendants) on 1/4 or 1/8-BPS

states [102, 103]: on the gravity side these quantities are encoded in the asymptotic

expansion of the bulk solution around AdS3×S3. Roughly speaking, expectation values

of such operators on the state |H⟩ characterize the deviation of the dual microstate from

the vacuum.

In general, a complete description of the CFT state |H⟩ is determined by the expectation

values ⟨H|Oi |H⟩, where Oi denotes all operators in the theory (not only the chiral

primary ones). On the bulk side, the equivalent statement is that the deviation of one

microstate from another is encoded in the different deviation of the fields from pure

AdS: these fields are generically those of the full string theory. Restricting our attention

to chiral primary operators (and descendants) means probing a microstate at the level

of its supergravity modes [100].

A general result of statistical mechanics implies that most of the pure states of an ensem-

ble, when probed with simple operators of the theory (i.e. with operator whose dimension

does not scale with the central charge), are indistinguishable from each other and from

the thermal state up to exponentially suppressed terms in the large N limit [104, 105].

This means that, according to the fuzzball paradigm, a black hole microstate is a so-

lution of the full string theory which is typically not reliably distinguishable from the

corresponding black hole solution in the low energy approximation. Restricting our-

selves to the supergravity regime means dealing with atypical states which fill a very

small volume of the phase space, but, nonetheless, might be valuable to gain insight on

the typical structure of the microstates.

An analysis of the map between expectation values of operators in a CFT state and

asymptotic expansion of the dual geometry was pioneered in [54, 55, 106, 107], where it

was applied to D1-D5 configurations. A complete study of the dictionary for operators

of (total) conformal dimension one, and its extension to 1/8-BPS black hole microstates

was given in [103].

1.4 Outline of the thesis

This thesis collects the results presented in [1–4]. The fil rouge of this work is to extend

our current understanding of black hole microstates in the black hole regime by exploiting

holographic, supergravity and computer science tools. The thesis is organized in three

parts, as follows.

In Part 1 we review the precision holographic dictionary for chiral primary operators of

dimension one, and extend it to two other sectors: scalar chiral primary operators of
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dimension two and superdescendants of such operators. In doing this, we will present

the dictionary in the single-particle basis, applying to the AdS3 case some recent devel-

opments occurred in the context of AdS5 holography.

In Part 2 we will derive the first family of three-charge supersymmetric solutions con-

taining a shockwave in their core region, and propose a holographic description for these

gravitational solutions. We will discuss that this new geometries do not describe a single

pure state in gravity, but rather provide a collective description of a family of microstates

as the microscopic details of the shockwave are not resolved in supergravity.

In Part 3 we will discuss why obtaining analytic multi-center solutions with a high

number of centers (> 4) in generic configurations is a hard task. This is mainly because

physical consistency - smoothness, charge quantization and absence of closed time-like

curves (CTCs) - impose several constraints on the equations that have to be solved.

We present an optimization algorithm, based on evolutionary algorithm and Bayesian

optimization, to construct numerical multi-center solutions with a high number of centers

in generic configurations that satisfy all the flux quantization conditions and are free of

CTCs.
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Precision holographic dictionary
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Chapter 2

AdS3 holography at dimension 2

This chapter reports the work presented in [1]. The aims of this project are to construct

a fully explicit holographic dictionary for chiral primary operators (CPOs) of dimension

(1, 1) and use it to perform new precision holography tests on the class of three-charge

microstate solutions constructed in [56, 58, 62].

Holographic studies involving expectation values of operators of total dimension higher

than one present some interesting complications. As pointed out in [107], the map be-

tween CFT operators and supergravity fields cannot be uniquely fixed by the quantum

numbers, because of degeneracies present in the CFT: first of all, single-trace operators

Oi with the same quantum number can mix, which means that the dictionary proposed

in [54] needs to be rotated by a mixing matrix M, whose explicit form has been iden-

tified in [107]. Moreover, for some time it has been understood that the identification

of supergravity fields and single-trace operators (or a linear combination of single-trace

operators) fails to give a consistent result for all observables [107–109], even at leading

order in large N . An example of this are extremal correlators, i.e. correlators in which

the conformal dimension of the heaviest operator equals the sum of the conformal dimen-

sions of the other two. To fix these inconsistencies, one needs to take into account the

mixing between single-trace and multi-trace operators with the same quantum numbers.

Aside from extremal correlators, the correct dictionary must be used also in certain

(non-extremal) heavy-light-heavy correlators, which are the observables we will focus

on in this work. Even though multi-trace operators naturally involve powers of 1/N ,

their Wick contraction with heavy operators can produce other factors of N : as a result,

multi-trace operators can contribute to the value of the correlator at leading order in

large N .

The holographic dictionary involves an identification between expectation value of oper-

ators in the CFT state and expansion of the dual gravitational solution around AdS3×
S3: the geometric quantities relevant for CPOs at dimension (1, 1) have been computed

in [54, 55]. We will compute the the precise linear combination of single and multi-trace

15
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operators relevant for the holographic dictionary in this sector of the theory, by apply-

ing the following strategy. After imposing a consistent normalization of both the CFT

operators and the asymptotic expansion of the gravity solution, we consider the most

general linear combination of single and multi-trace operators allowed by the quantum

numbers. Next, we fix the numerical coefficients that define the operators mixing by

matching the CFT predictions with some reference D1-D5 geometries, whose dual CFT

states are already well-established. This procedure determines the single-trace oper-

ators mixing matrix M, in agreement with the result in [107], and the admixture of

multi-trace operators.

Consistency of the holographic dictionary imposes some stringent requirements on its

explicit form. First, the numerical coefficients defining the operators admixture have

to be independent of the state. Second, they have to respect invariance under the R-

symmetry group, which implies that the coefficients defining the holographic map should

be the same for all the operators in the same R-charge multiplet. Beside analysing these

general features, consistency of the dictionary has been checked by performing several

tests both on two-charge and three-charge microstates.

This Chapter is organized as follows. We review the correspondence between 1/4-BPS

coherent states of the orbifold CFT and the family of D1-D5 supergravity solutions in

Section 2.1. The holographic map for chiral primary operators (CPOs) of dimension 1 is

summarized in Section 2.2; this is mostly a recollection of previous results [54, 55, 103,

106], however we clarify some minus signs that are needed to make the dictionary for

the SU(2)L × SU(2)R R-currents consistent. In Section 2.3 we describe all the CPOs

of dimension (1, 1), including single and double-trace operators, and we first work out

the holographic dictionary for the simpler subsector of operators, which does not involve

mixing between different single-traces. The more complicated subsector is analyzed in

Section 2.4, in which we fix in turn each of the coefficients defining the holographic

dictionary, and then make some non-trivial tests on 1/4 BPS states. In Section 2.5 we

apply our results to perform new precision holographic tests of D1-D5-P superstrata.

2.1 Holography for D1-D5 black hole microstates

In this section we give a brief review of holography for D1-D5 black hole microstates,

with the main purpose of setting up notation that is needed in the rest of the chapter.

The dual gravitational description of the Ramond-Ramond (RR) ground states of the

D1-D5 CFT is well known [46, 47, 55, 101, 106, 110]. There is a family of supergravity

solutions that can be associated with coherent RR ground states of the D1-D5 CFT,

in the sense that protected correlators involving such states agree, as discussed in the

Introduction.
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The states of the D1-D5 CFT have a simple description at the free orbifold locus in

moduli space, where the CFT is the (4, 4) sigma-model with target spaceMN/SN , with

M either T4 or K3 (recall N = n1n5). A review of the orbifold CFT can be found

for example in [111]. We will use the notation and the conventions of [60, 103]. A

generic state of the orbifold CFT is described by a collection of “strands” involving

spin-twist operators; the ground state of each strand is characterized by a spin s and

a winding number k and is denoted by |s⟩k. We will consider bosonic ground states,

and excitations thereof, that are insensitive to the structure of the internal manifold

M, so that our results apply when M is either T4 or K3 (the generalization to more

general states is straightforward). For this class of ground states, there are five possible

spin configurations: s = (0, 0), (±,±), (±,∓), where (j, j̄) denotes a state with SU(2)L

charge j and SU(2)R charge j̄; SU(2)L×SU(2)R is the R-symmetry of the (4, 4) theory,

which corresponds on the gravity side to rotations in the four spatial directions. A RR

ground state with N
(s)
k strands of type |s⟩k is denoted by

ψ{N(s)
k } ≡

∏

k,s

(|s⟩k)N
(s)
k , (2.1)

and is an allowed state if the total winding number sums up to N :

∑

k,s

kN
(s)
k = N . (2.2)

It will be convenient to work with non-normalized states; for later use we record the

norm of the states (2.1), which was derived in [103]:

∣∣∣ψ{N(s)
k }

∣∣∣
2
=

N !
∏
k,sN

(s)
k ! kN

(s)
k

. (2.3)

States of the form (2.1) are eigenstates of the SU(2)L × SU(2)R currents (J3, J̃3); we

are interested in coherent states that are linear combinations of R-symmetry eigenstates

labeled by complex coefficients A
(s)
k ,

ψ({A(s)
k }) ≡

∑

{N(s)
k }

′∏

k,s

(A
(s)
k |s⟩k)N

(s)
k , (2.4)

where the sum
∑

{N(s)
k }

′ is restricted by the constraint (2.2). The states that admit a

good supergravity description are those for which this sum is peaked over large values

of N
(s)
k : as shown in [103], in this semiclassical limit the parameters A

(s)
k determine the

average numbers N
(s)
k of strands of type |s⟩k, via

k N
(s)
k = |A(s)

k |2 . (2.5)
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The constraint (2.2) then implies

∑

k,s

|A(s)
k |2 = N . (2.6)

The supergravity solutions describing coherent bound states of large numbers of D1 and

D5 branes are well-known and are given in terms of a profile function gi(v
′) (parametrized

by a null coordinate v′) in R
8 [47, 55, 110]. For configurations invariant on the internal

manifoldM, the profile function takes values in R
5:

g1(v
′) + ig2(v

′) =
∑

k>0

(
ā
(++)
k

k
e

2πik
L

v′ +
a
(−−)
k

k
e−

2πik
L

v′

)
,

g3(v
′) + ig4(v

′) =
∑

k>0

(
ā
(+−)
k

k
e

2πik
L

v′ − a
(−+)
k

k
e−

2πik
L

v′

)
,

g5(v
′) = −Im

(∑

k>0

ā
(00)
k

k
e

2πik
L

v′

)
.

(2.7)

The map between the CFT states in (2.4) and the supergravity solutions parameterized

by the profile gi(v
′) which will be described in more detail below, is given by relating

the Fourier modes a
(s)
k to the coherent state parameters A

(s)
k , via1

A
(±±)
k = R

√
N

Q1Q5
a
(±±)
k , A

(00)
k = R

√
N

2Q1Q5
a
(00)
k . (2.8)

The curve gi(v
′) arises because the D1-D5 system is U-dual to a fundamental string

(F1) carrying momentum (P): in the F1-P duality frame, the curve (2.7) represents the

oscillation profile of the string in the five transverse directions that are U-dual to D1-D5

states invariant onM. The D1-D5 supergravity solution associated with a curve gi(v
′)

is as follows. The 6D Einstein metric of this solution is given by

ds26 = − 2√
P
(dv + β)

(
du+ ω +

F
2
(dv + β)

)
+
√
Pds24 , (2.9)

with

P = Z1Z2 − Z2
4 . (2.10)

The 4D metric ds24 describes the four spatial non-compact directions xi, and, for all the

solutions considered in this article, is the flat R
4 metric

ds24 = dxidxi . (2.11)

1We note that in Eq. (2.7), the minus sign in front of a
(−+)
k and the complex conjugations differ from

those given in [103]. We will see in due course that these details in Eq. (2.7) are needed for consistency
of the holographic map (2.8) and the rest of our conventions.
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The u and v coordinates parametrize time t and the S1 direction y, which we take to

have radius Ry:

u ≡ t− y√
2

, v ≡ t+ y√
2
. (2.12)

The D1 and D5 charges of the solution are given by

Q1 =
(2π)4 n1 gs α

′4

V4
, Q5 = n5 gs α

′ , (2.13)

where gs is the string coupling, and V4 is the coordinate volume ofM. The periodicity

L of the curve gi(v
′) is L = 2πQ5/Ry. The solution is specified by the scalar functions

Z1, Z2, Z4 and F and by the 1-forms with legs along R
4, β and ω. The solutions dual to

RR ground states have F = 0 and all the other scalars and 1-forms are only functions

of xi, specified by the curve gi(v
′) as follows:

Z1 =
Q5

L

∫ L

0
dv′
|ġi(v′)|2 + |ġ5(v′)|2
|xi − gi(v′)|2

, Z2 =
Q5

L

∫ L

0
dv′

1

|xi − gi(v′)|2
,

Z4 = −Q5

L

∫ L

0
dv′

ġ5(v
′)

|xi − gi(v′)|2
, A = −Q5

L

∫ L

0
dv′

ġj(v
′)dxj

|xi − gi(v′)|2
,

dB = − ∗4 dA , β =
−A+B√

2
, ω = −A+B√

2
,

(2.14)

where the dot indicates the derivative with respect to v′ and ∗4 is the Hodge dual with

respect to the flat metric ds24. Besides the 6D metric ds26 in (2.9), the solution contains

all other NSNS and RR fields of type IIB supergravity: their form is entirely specified

by the curve gi(v
′) through the above functions, and is recorded for completeness in

Eq. (C.1).

In summary, the geometry dual to the RR ground state (2.4) is completely specified

by the curve gi(v
′) (2.7), through Eqs. (2.9)–(2.14). Given the identification between

gravity and CFT parameters in Eq. (2.8), the CFT constraint (2.6) becomes

∑

k>0

(
|a(++)
k |2 + |a(−−)

k |2 + |a(+−)
k |2 + |a(−+)

k |2 + 1

2
|a(00)k |2

)
=

Q1Q5

R2
y

, (2.15)

which, on the gravity side, is the regularity condition for the solution (2.9)–(2.14).

Let us note that the holographic map does not relate D1-D5 supergravity solutions that

have generic classical profile functions with individual basis states of the usual basis of

RR ground states of the D1-D5 CFT, as originally suggested in [47], but with coherent

superpositions thereof [54] (see also [106]). The reason being that, because of charge

conservation, expectation values of charged operators on RR ground states are trivially

zero, while, as we will see in various examples in this chapter, holographic one-point

function of charged operators on D1-D5 microstates are generically non zero.

The holographic map can also be extended to a subset of the BPS states carrying D1, D5
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and momentum (P) charge, which in CFT terms are states with L0 > L̃0 = c
24 . There

is not yet a general understanding of the full class of D1-D5-P states, however there has

been much recent progress in constructing large families of explicit solutions known as

“superstrata” [56–63, 112–114]. There is an explicit proposal for the dual CFT states of

these solutions [56–58, 60, 62]. This family of solutions, and the proposed map to states

of the orbifold CFT, will be reviewed in Section 2.5. Their 6D metric can still be written

in the form (2.9) with a flat ds24, but now F ̸= 0 and the scalars and 1-forms specifying

the solution are functions of v as well as xi. Given the similarities of the supergravity

description of this class of D1-D5-P states with the D1-D5 states, one can formulate a

unified recipe to extract expectation values of operators of dimension one and two from

the geometry. We proceed to do this in the next three sections.

2.2 Expectation values of operators of dimension one

In this section we review the holographic map for expectation values of operators of

dimension one, making precise some details that will be important in the following

sections.

We start by setting up some notation for the field content of the D1-D5 orbifold CFT. We

label the N copies of the CFT onM by the index r = 1, . . . , N . The orbifold CFT has

R-symmetry group SU(2)L × SU(2)R, whose spinorial indices we denote by α, α̇ = ±,
and there is also an SU(2)1×SU(2)2 group of rotations on the tangent space ofM that

is useful for labelling operators, whose spinorial indices we denote by A, Ȧ = 1, 2. On

each copy of the CFT, the fundamental fields are four bosons XAȦ
(r) , and four left-moving

plus four right-moving fermions ψαȦ(r) , ψ̃
α̇Ȧ
(r) .

The theory also contains spin-twist operators, that change the boundary conditions of

the fields, and that are labelled by permutations of SN . For example, the ‘bare’ twist

operator σ(rs) joins or splits the copies r and s. When acting on untwisted strands in

their respective NS vacuum state, σ(rs) creates the state that is the lowest state on a

twist-two strand, which is the NS vacuum of the two-fold covering space. A brief review

of covering space methods and a more general definition of spin-twist operators is given

in Appendix B. We also have left and right-moving spin-fields Sα, S̄α̇ in each twisted

sector, that map NS ground states to R ground states.

Though this description in terms of free fields ceases in general to be useful away from

the orbifold point, there are physical quantities that are guaranteed to be independent

of the moduli, and hence can be quantitatively described by the free orbifold CFT.

We will focus on the expectation values of chiral primary operators (CPOs) and their

(global) SU(2)L × SU(2)R descendents in states preserving eight or four supercharges

[102]: the first class of states are the RR ground states described in the previous section

and the states in the second class include the D1-D5-P states that will be considered in



Chapter 2 AdS3 holography at dimension 2 21

Section 2.5. Note that in both classes, the states are “heavy”, in the sense that their

left and right dimensions h and h̄ are of order of the CFT central charge c = 6N : one

has h = h̄ = c/24 for the D1-D5 states and h > h̄ = c/24 for the D1-D5-P states. The

CPOs we will consider are instead “light”, having h, h̄ of order c0. In particular we will

restrict to CPOs with h + h̄ ≤ 2. The purpose of the next two sections is to formulate

and test a recipe to compute the expectation values of light CPOs in heavy states from

the asymptotic expansion of the geometries dual to the heavy states.

Expectation values of CPOs with total dimension ∆ = h + h̄ = 1 have already been

considered in [54, 55, 103]. The only operators with h = ±j = 1, h̄ = j̄ = 0 are the

SU(2)L generators J±:

J± =
∑

r

J±
(r) = ±

∑

r

ψ±1
(r)ψ

±2
(r) ; (2.16)

analogously one has the SU(2)R generators J̃±, with h = j = 0, h̄ = ±j̄ = 1:

J̃± =
∑

r

J̃±
(r) = ±

∑

r

ψ̃±1
(r) ψ̃

±2
(r) . (2.17)

We define J3 to be normalized according to the standard commutation relation [J+, J−] =

2J3 and such that the eigenvalue of J3 on the RR ground state |±+⟩ is ±1/2; similarly

for J̃
3
; see Appendix B for more details. We normalize the corresponding vector spher-

ical harmonics in the same way, see Appendix A for details. Note that this convention

means that the normalized affine descendant of J+ is 1√
2
[J−, J+] = −

√
2J3, which

means that some factors of
√
2 will show up in equations such as (2.25).

Next we have the operators with h = j = h̄ = j̄ = 1/2. The first of these is the twist-two

operator

Σ++
2 =

∑

r<s

σ++
(rs) , σ++

(rs) = S+
(rs)S̄

+
(rs)σ(rs) (2.18)

where the operator σ(rs) is the ‘bare’ twist operator that joins or splits the copies r and

s, and S+
(rs), S̄

+
(rs) are spin fields. When acting on untwisted strands in the NS vacuum

state, σ++
(rs) creates the twisted RR vacuum state |++⟩2 .

The second chiral primary with h = j = h̄ = j̄ = 1/2 is the untwisted operator

O++ =
∑

r

O++
(r) =

∑

r

−i√
2
ϵȦḂ ψ

+Ȧ
(r) ψ̃

+Ḃ
(r) . (2.19)

More generally, one has operators like in (2.19) for each of the h1,1(M) elements of the

(1, 1) cohomology ofM: we focus on the unique SU(2)1×SU(2)2 operator O
++ because

it is the only one that has non-trivial expectation values on the M-invariant class of

states introduced in Section 2.1.

For any CPO one also has the whole multiplet of (global) SU(2)L×SU(2)R descendants,

obtained in the usual way by acting on the CPO with J−
0 and/or J̃−

0 . We denote the
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generic elements of the multiplet by Ja, J̃a, with a = +, 3,−, and Oα,α̇, Σα,α̇, with

α, α̇ = ±. For later use we record our convention that O−− = (O++)†, whereupon

consistency with the SU(2)L × SU(2)R algebra implies that O−+ = −(O+−)†, since

(O+−)† = ([J̃−
0 , O

++])† = −[J̃+
0 , O

−−] = −O−+. Analogous expressions hold for Σα,α̇.

The expectation values of the CPOs and their descendants in a heavy state are encoded in

the asymptotic expansion of the dual geometry near their AdS3×S3 boundary. Roughly

speaking, given a radial coordinate r, operators of increasing dimension correspond

to terms of higher order in 1/r. The precise map involves identifying gauge-invariant

quantities [54, 115]; having done so, in practice it is convenient to choose a particular

gauge in which to work. Though there is, in general, no canonical choice for r, for the

class of geometries of the form (2.9) with a flat ds24 one can canonically identify r with

the radial coordinate of R
4 in standard polar coordinates:

ds24 = dr2 + r2(dθ2 + sin2 θ dϕ2 + cos2 θ dψ2) . (2.20)

Similarly we can use the θ, ϕ, ψ coordinates to define spherical harmonics on S3. This

leaves us with the only ambiguity of choosing the origin of polar coordinates, which will

be fixed shortly. One can then define the following asymptotic expansion2 [54, 55]:

Z1 =
Q1

r2


1 +

2∑

k=1

k/2∑

mk,m̄k=−k/2
f1k (mk,m̄k)

Y mk,m̄k
k

rk
+O(r−3)


 ,

Z2 =
Q5

r2


1 +

2∑

k=1

k/2∑

mk,m̄k=−k/2
f5k (mk,m̄k)

Y mk,m̄k
k

rk
+O(r−3)


 ,

Z4 =

√
Q1Q5

r2




2∑

k=1

k/2∑

mk,m̄k=−k/2
Ak (mk,m̄k)

Y mk,m̄k
k

rk
+O(r−3)


 ,

A =

√
Q1Q5

r2

3∑

a=1

(aa+Y
a+
1 + aa−Y

a−
1 ) +O(r−3) , F = −2Qp

r2
+O(r−3) ,

(2.21)

where Y mk,m̄k
k are S3 scalar harmonics of degree k and Y a±

1 are vector harmonics of

degree one; we list our definitions and conventions regarding the spherical harmonics in

Appendix A.

The D1, D5 charges Q1, Q5 have been defined in (2.13); Qp represents the momentum

charge and is quantized in terms of the integer np as

Qp =
(2π)4 np g

2
s α

′4

R2
y V4

. (2.22)

2This equations has been changed compared to the one in [1]. The expression reported in [1] is valid
when the Zis are harmonic functions, which is true only for a 1/4-BPS microstates. When the P charge
is not vanishing, the second equation in (C.8) shows that the Zis satisfy a Laplace equation with a source
term.
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By an appropriate choice of the R
4 origin, one can choose

f11(α,α̇) + f51(α,α̇) = 0 for α, α̇ = ± , (2.23)

which completely fixes the coordinate system (for notational convenience we use the

indices (α, α̇) = (±,±) instead of (m1, m̄1) = (±1/2,±1/2) for k = 1). At the first

non-trivial order, one thus has the independent coefficients f11(α,α̇), A1(α,α̇) and aa±, and

these encode the expectation values of the dimension one operators Σαα̇2 , Oαα̇, Ja, and

J̃a.

In the CFT we will mostly use null coordinates on the cylinder, which we also denote by

(u, v), and which are related to the CFT time and spatial coordinates analogously to the

corresponding spacetime coordinate relations (2.12). All the CFT one-point functions

in this work will consist of a light operator Oi inserted at a generic point (u, v) in the

background of a heavy state:

⟨Oi⟩ ≡ ⟨H|Oi(u, v)|H⟩ . (2.24)

The dependence on the insertion point (u, v) is determined by conformal invariance,

and in fact the expectation values of the operators we consider in RR ground states are

independent of (u, v) and are controlled solely by the zero mode of the light operator Oi.

For the superstratum states that we shall study in Section 2.5, some of the one-point

functions will however have non-trivial v dependence.

When the expectation value is taken in the heavy state dual to the geometry corre-

sponding to (2.21), the precise map3 is [54, 55, 103]

√
2

N
⟨Σαα̇2 ⟩ = (−1)αα̇ 2

√
N

Q1Q5
Ry f

1
1(−α,−α̇)

1√
N
⟨Oαα̇⟩ = (−1)αα̇ 2

√
N

Q1Q5
RyA1(−α,−α̇) ,

1√
N
⟨J±⟩ =

√
2

√
N

Q1Q5
Ry a∓,+,

1√
N
⟨J̃±⟩ =

√
2

√
N

Q1Q5
Ry a∓,− ,

1√
N
⟨J3⟩ =

√
N

Q1Q5
Ry a0,+,

1√
N
⟨J̃3⟩ =

√
N

Q1Q5
Ry a0,− ,

(2.25)

where the numerical factors have been chosen in such a way that the operators on the

left-hand side have unit norm in the large N limit. As anticipated below Eq. (2.17), our

(standard) choice of normalization of Ja, J̃a introduces different coefficients for J± and

J3 in this dictionary. Taking into account that the correctly normalized descendant of

3The term (−1)αα̇ gives a minus sign when (α, α̇) = (±,∓). This is required by SU(2)L × SU(2)R
invariance: the scalar product between two operators O1 and O2 with indices in the fundamental of

SU(2)L × SU(2)R is given by O1 · O2 = ϵαβϵα̇β̇Oαα̇
1 Oββ̇

2 .
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J+ is −
√
2J3, and likewise for J̃a, the above expressions indeed respect the SU(2)L and

SU(2)R R-symmetries.

2.2.1 An example

Several non-trivial tests of the map (2.25) have already been performed in [103]. We

present here one further example, which concentrates on the expectation values of Ja

and J̃a, because it will justify the choice of sign for a
(−+)
k in (2.7); this sign will be

relevant in testing the map for dimension two operators.

Consider the state

∑

p,q

(A |++⟩1)N−p−q (B |+−⟩1)p (C |−+⟩1)q . (2.26)

From Eq. (2.7), the profile function associated to this state has the following components:

g1(v
′)+ig2(v

′) = ā e
2πi
L
v′ , g3(v

′)+ig4(v
′) = b̄ e

2πi
L
v′−c e− 2πi

L
v′ , g5(v

′) = 0 . (2.27)

This profile encodes the data needed to generate the dual geometry through Eq. (2.14):

since we are interested in the expectation values of the left and right currents, it follows

from Eq. (2.25) that the coefficients we need are

a++ =
Ry√
Q1Q5

ac̄√
2
, a−+ =

Ry√
Q1Q5

āc√
2
,

a−− =
Ry√
Q1Q5

āb√
2
, a+− =

Ry√
Q1Q5

ab̄√
2
,

a0+ =
Ry√
Q1Q5

|a|2 + |b|2 − |c|2
2

, a0− =
Ry√
Q1Q5

|a|2 − |b|2 + |c|2
2

.

(2.28)

The zero-mode of the CFT operator J3, i.e. J3
0 , has eigenvalue 1/2 on the strands

|++⟩1 and |+−⟩1 while it has eigenvalue −1/2 on the strands of type |−+⟩1. Since each
component of the superposition in (2.26) is an eigenstate of J3

0 , its expectation value is

controlled by the average number of strands of each type:

⟨J3⟩ = 1

2

(
N̄++ + N̄+− − N̄−+

)
=

1

2

R2
yN

Q1Q5

(
|a|2 + |b|2 − |c|2

)
, (2.29)

where we have used Eqs. (2.5) and (2.8). Analogously one can compute the expectation

value of the operator J̃3, which gives

⟨J̃3⟩ = 1

2

(
N̄++ − N̄+− + N̄−+

)
=

1

2

R2
yN

Q1Q5

(
|a|2 − |b|2 + |c|2

)
. (2.30)

Let us now consider the operator J+. Its zero-mode, J+
0 , maps a strand of type |−+⟩1
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into |++⟩1; the strand |+−⟩1 is annihilated, so is just a spectator. Thus the expectation

value is determined by the following process (here and in similar expressions, to lighten

the notation we suppress the subscript 0 and it should be understood that we are con-

sidering the zero mode of the operator, since this is the only mode that contributes to

the correlator for RR ground states):

J+
(
|++⟩N−p−q

1 |+−⟩p1 |−+⟩q
)
= (N−p−q+1)

(
|++⟩N−p−q+1

1 |+−⟩p1 |−+⟩q−1
)
. (2.31)

Here the factor N − p − q + 1 arises from observing that J+ can transform any of the

q strands of type |−+⟩1 and imposing that the total number of terms on the left and

right-hand sides of the equation match. (We will explain similar steps in more detail in

Section 2.3.1). Thus we obtain

⟨J+⟩ = C

A
(N − p̄− q̄) =

R2
yN

Q1Q5
āc . (2.32)

As in Eq. (2.5), the bar over p and q denote the average number of strands of each type.

Using J− = (J+)†, we have

⟨J−⟩ = ⟨J+⟩∗ =
R2
yN

Q1Q5
ac̄ . (2.33)

Analogously we obtain

⟨J̃+⟩ = B

A
(N − p̄− q̄) =

R2
yN

Q1Q5
āb , ⟨J̃−⟩ = ⟨J̃+⟩∗ =

R2
yN

Q1Q5
ab̄ . (2.34)

Comparing the gravity coefficients in Eq. (2.28) and the CFT results in Eqs. (2.29)–

(2.34), one can verify the consistency of (2.7), (2.8) and (2.25).

2.3 D1-D5 holography at dimension two

Deriving the holographic map for operators of total dimension two involves two new

levels of complication. First, as pointed out in [54], not all operators are distinguished

by their quantum numbers, and the map between the operator expectation values and the

coefficients obtained from the asymptotic expansion of the geometry (2.21) may involve

a non-trivial mixing matrix. The mixing matrix was subsequently derived in [107],

and our explicit tests confirm this result. Second, single-trace dimension-two operators

can also mix with “double-trace” operators given by sums of products of dimension-one

operators evaluated on different CFT copies. This possibility was also discussed in [107],

however the precise structure of the mixing was not worked out in full detail.

In this section we derive the full explicit holographic dictionary for all single and double-

trace operators of dimension (h, h̄) = (1, 1). We choose to study operators of dimension



26 Chapter 2 AdS3 holography at dimension 2

(1,1) as it is for these operators that the mixing is most non-trivial, and because these

operators enable us to perform new precision holographic tests of superstrata.

Single-trace operators in a symmetric product orbifold CFT are operators that involve

a single sum over copies of the CFT (the ‘trace’ is over the discrete gauge group SN ).

We begin by describing the single-trace CPOs of dimension (1,1), which are as follows:

• An operator of twist three,

Σ++
3 =

∑

r<s<t

(σ++
(rst) + σ++

(rts)) , σ++
(rst) ≡ J̃+

− 1
3

J+
− 1

3

σ(rst) (2.35)

where it should be understood that the fractional moded operators in the definition

of the chiral primary σ++
(rst) are those associated with the permutation (rst); more

details can be found in Appendix B.

• An operator of twist two,

O++
2 ≡

∑

r<s

O++
(rs) , O++

(rs) ≡
(
O++

(r) +O++
(s)

)
σ++
(rs) . (2.36)

Here O++
(rs) is the operator (of unit norm) that joins or splits the copies r and s

and raises the spin by (1/2, 1/2); for example, when acting on copies 1 and 2:

O++
(12) |−−⟩

2
1 = |00⟩2 , O++

(12) |00⟩2 = |++⟩21 . (2.37)

As we discussed for the operator O++ below (2.19), there are h1,1(M) similar

operators, and we focus on the one that has non-zero expectation values in the

states we consider.

• An operator in the untwisted sector,

Ω++ =
∑

r

ψ+1
(r)ψ

+2
(r) ψ̃

+1
(r) ψ̃

+2
(r) =

∑

r

J+
(r)J̃

+
(r) . (2.38)

As usual one can also consider the global SU(2)L×SU(2)R descendants of these CPOs:

the multiplet of Σ++
3 will be denoted by Σaȧ3 with a, ȧ = +, 0,−, and analogously for the

other operators. We define the descendants to have the same norm as the highest weight

state, thus for example Ω0+ = 1√
2
[J−

0 ,Ω
++] = −

√
2
∑

r J
3
(r)J̃

+
(r) and Ω00 = 2

∑
r J

3
(r)J̃

3
(r).

As mentioned above, double-trace operators also play an important role: they are defined

by taking products of single-trace operators acting on disconnected subsets of the N
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copies. The double-trace operators with dimension (1, 1) are

(Σ2 · Σ2)
++ ≡ 2

N2

∑

(r<s) ̸=(p<q)

σ++
(rs)σ

++
(pq) , (J · J̃)++ ≡ 1

N

∑

r ̸=s
J+
(r)J̃

+
(s) ,

(Σ2 ·O)++ ≡
√
2

N3/2

∑

r<s
t ̸=r,s

σ++
(rs)O

++
(t) , (O ·O)++ ≡ 1

N

∑

r ̸=s
O++

(r) O
++
(s)

(2.39)

and descendants thereof; we have chosen the N -dependent factors to normalize the

operators. The constraints in the sum defining the double-trace (Σ2 ·Σ2) mean that we

are summing over all couples of pairs that have no indices in common and where, in

each pair, the first entry is smaller than the second one.

On the gravity side, the asymptotic expansion of the bulk quantities in (2.21) gives,

at the next order in 1/r, the set of coefficients f12 I , f
5
2 I and A2 I , where for brevity

I ≡ (a, ȧ) with a, ȧ = +, 0,−. These coefficients are related to the expectation values

of the three single-trace CPOs in (2.35), (2.36), (2.38) [54, 55], eventually mixed with

the double-traces in (2.39). Since the operator O2 is in fact part of a set of h1,1(M)

operators, it is natural to assume that it does not mix with the other two, and that the

associated gravity coefficient is A2 I ; the quantum numbers related with M-rotations

suggest that O2 may mix with the double-trace (Σ2 · O). We will examine this simple

subset in the next subsection. A more intricate and interesting structure involves Σ3,

Ω and the remaining double-traces (Σ2 · Σ2), (J · J̃), (O ·O) in (2.39). This will be the

focus of Section 2.4.

2.3.1 The operator O2

On the gravity side, the only relevant coefficient in this sector is A2 (a,ȧ) [55]; on the CFT

side, this should be mapped to the expectation value of Oaȧ2 , with a possible mixing with

the double-trace (Σ2 ·O):

√
2

N
⟨Oaȧ2 ⟩+ c1⟨(Σ2 ·O)aȧ⟩ = (−1)a+ȧ γA2 (−a,−ȧ) , (2.40)

where the sign (−1)a+ȧ is needed for SU(2)L×SU(2)R invariance, as one can understand

following the same logic explained in Footnote 3. We will determine the coefficients γ

and c1 by calibrating the map (2.40) using some appropriately chosen RR ground states.

Tests of this map will be performed in Section 2.5, by comparing with some three-charge

superstratum states.

A set of states in which O−−
2 and O++

2 have a non-vanishing expectation value is

N/2∑

p=1

(A1 |++⟩1)N−2p(B1 |00⟩2)p . (2.41)
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This expectation value can be computed following the general logic explained in [103],

which we now briefly review. Acting on two chosen strands of type |++⟩1, (the zero

mode of) O−−
2 joins them into the strand |00⟩2:

O−−
2 |++⟩21 = |00⟩2 . (2.42)

When acting on the full state (|++⟩1)N−2p(|00⟩2)p, there are
(
N−2p

2

)
ways to choose two

out of N − 2p strands |++⟩1; one should also take into account that the states ψ{N(s)
k }

defined in (2.1) are composed of
∣∣∣ψ{N(s)

k }

∣∣∣
2
terms, with

∣∣∣ψ{N(s)
k }

∣∣∣
2
given in (2.3). This

leads to

O−−
2

(
|++⟩N−2p

1 |00⟩p2
)

= (p+ 1) |++⟩N−2p−2
1 |00⟩p+1

2 , (2.43)

where the factor p+1 is the one needed to match the number of terms on the two sides

of the equation, since

(
N − 2p

2

) ∣∣(|++⟩1)N−2p(|00⟩2)p
∣∣2 = (p+ 1)

∣∣(|++⟩1)N−2p−2(|00⟩2)p+1
∣∣2 . (2.44)

The expectation value of O−−
2 in the state (2.41) then follows from (2.43) and the

definition of the state (2.41):

⟨O−−
2 ⟩ =

A2
1

B1
(p+ 1) ≈ A2

1

B1
p =

A2
1 B̄1

2
, (2.45)

where we have taken the large N (and large p) limit and used (2.5). On the gravity side

the state (2.41) is dual to the D1-D5 geometry associated with the profile

g1(v
′) + ig2(v

′) = ā1 e
2πi
L
v′ , g3(v

′) = g4(v
′) = 0 , g5(v

′) = −Im
(
b̄1
2
e

4πi
L
v′
)
,

(2.46)

with the a1, b1 parameters linked to A1, B1 by (2.8). Using the definition of Z4 in (2.14)

it is immediate to extract from the expansion (2.21) the coefficients A2 (a,ȧ):

A2 (+,+) =
(
A2 (−,−)

)∗
=

Ry

2
√
3 (Q1Q5)1/2

a21 b̄1 =
Q1Q5

N3/2R2
y

A2
1 B̄1√
6

. (2.47)

Note that A1 (α,α̇) = 0, consistently with the fact that the expectation value of Oα,α̇ in

the state (2.41) vanishes. Comparing the CFT (2.45) and gravity (2.47) results with the

general map (2.40), one determines the parameter γ:

γ =
√
3
N1/2R2

y

Q1Q5
. (2.48)

To fix the coefficient c1 we must consider a state with a non-vanishing expectation value
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for the double-trace (Σ2 ·O)++. An example is

N/2∑

q=1

N−2q∑

p=1

(A2 |++⟩1)N−p−2q(B2 |00⟩1)p(C2 |++⟩2)q . (2.49)

The geometry associated with this state is sourced by the following profile:

g1(v
′)+ig2(v

′) = ā2 e
2πi
L
v′+

c̄2
2
e

4πi
L
v′ , g3(v

′) = g4(v
′) = 0 , g5(v

′) = −Im
(
b̄2 e

2πi
L
v′
)
.

(2.50)

Choosing coordinates in which (2.23) is satisfied and using (2.14), we obtain that the

coefficient encoding the expectation value of (Σ2 · O) takes the following value for this

microstate:

A2 (1,1) =
R3
y

(Q1Q5)3/2
ā2(b

3
2 c̄2 + 8ā22 b2 c2)

16
√
3

. (2.51)

We now consider the action of (Σ2 ·O)++ =
√
2N−3/2Σ++

2 O++ on the state (2.49). The

operator O++ contributes via the basic process O++ |00⟩1 = |++⟩1, so that we have:

(Σ2 ·O)++
(
|++⟩N−p−2q

1 |00⟩p1 |++⟩q2
)

=

√
2

N3/2
Σ++
2 (N − p− 2q + 1)

(
|++⟩N−p−2q+1

1 |00⟩p−1
1 |++⟩q2

)
,

(2.52)

where the factor (N − p− 2q+1) arises from imposing that the number of terms on the

two sides of the equation match, after taking into account that the operator O++ can

act on any of the p strands of type |00⟩1. The action of the operator Σ++
2 is slightly

more complicated: its expectation value receives a contribution both by the splitting a

strand of type |++⟩2 into two |++⟩1 and from the joining of two |++⟩1 to form a |++⟩2.
We thus have to consider the following basic processes (as before, the zero mode should

be understood):

Σ++
2 |++⟩2 = |++⟩1 |++⟩1 , Σ++

2 |00⟩1 |00⟩1 =
1

4
|++⟩2 , (2.53)

where the coefficient of the latter process is computed in Appendix B, see Eq. (B.32).

Continuing from Eq. (2.52), we obtain

(Σ2 ·O)++( |++⟩N−p−2q
1 |00⟩p1 |++⟩q2) =

√
2

N3/2
(N − p− 2q + 1)

[
1

2
(N − p− 2q + 2)(N − p− 2q + 3)(|++⟩N−p−2q+3

1 |00⟩p−1
1 |++⟩q−1

2 )

+
q + 1

4
(|++⟩N−p−2q+1

1 |00⟩p−3
1 |++⟩q+1

2 )

]
,

(2.54)

where the combinatorial factors again arise from matching the norms of the states on
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both sides of the equation. In the large N limit, this gives rise to the one-point function:

〈
(Σ2 ·O)++

〉
=

√
2

N3/2

(Ā3
2B2C2

2
+
Ā2B

3
2 C̄2

8

)
=

R5
yN

(Q1Q5)5/2

( ā32 b2 c2
2

+
ā2 b

3
2 c̄2

16

)
,

(2.55)

where we have used Eqs. (2.6) and (2.8). By comparing the results in Eqs. (2.51)

and (2.55) and the map (2.40), we determine the unknown coefficient to be

c1 = − 1

N1/2
. (2.56)

The holographic map in this subsector can then be summarized as

√
2

N

〈
Õaȧ2

〉
= (−1)a+ȧ

√
3
N1/2R2

y

Q1Q5
A2 (−a,−ȧ) , (2.57)

where

Õ++
2 ≡

∑

r<s

O++
(rs) −

1

N

∑

r<s
t ̸=r,s

σ++
(rs)O

++
(t) . (2.58)

Note that the extremal three-point functions containing the operator Õ++
2 vanish [54,

107–109, 116]. The only extremal correlator that is not trivially zero because of the

quantum numbers is

〈
Õ++

2 O−−Σ−−
2

〉
=
N2

2

〈
O++

(12) (O
−−
(1) +O−−

(2) )σ
−−
(12)

〉
− N2

2
, (2.59)

where the first term on the right-hand side comes from the single-trace part of Õ++
2 and

the second term is produced by the double-trace part. The definition of O++
(12), Eq. (2.37),

implies that 〈
O++

(12) (O
−−
(1) +O−−

(2) )σ
−−
(12)

〉
= 1 , (2.60)

and thus the extremal correlator (2.59) vanishes.

2.4 The operators Σ3 and Ω

In this section we turn to the sector of dimension (1,1) operators that contains Σ3 and

Ω, in which the mixing is more involved. We begin this section by importing the results

of [54, 55] that for a metric of the form (2.9), with the choice of coordinates defined by

(2.20) and (2.23), the geometric quantities dual to the operator expectation values in

this sector are linear combinations of the following gauge-invariant quantities (evaluated

in this gauge) [54, Eq. (6.4)],[55, Eq. (5.27)]:

gI ≡
√
6 (f12 I − f52 I) , g̃I ≡

√
2 (−(f12 I + f52 I) + 8 aa+ab− fIab) , (2.61)
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where the coefficients fIab are defined by the overlap between a scalar S3 spherical

harmonic of degree two and the scalar product of two vector spherical harmonics of

degree one, and are given in Appendix A.

A first guess for the holographic dictionary might have been that gI should be dual

to the expectation value of Σ−I
3 and g̃I should be dual to the expectation value Ω−I ,

however in [54] it was pointed out that this guess was inconsistent with the structure of

known CFT correlators, and a modified map was proposed in [107]. In what follows we

shall not assume any previous results on the holographic dictionary beyond (2.61), and

we shall simply start with the most general map, allowing for generic mixings with the

double-traces that can mix with Σ3 and Ω:

√
3

N3/2

〈
Σaȧ3

〉
+ a1

〈
(J · J̃)aȧ

〉
+ a2

〈
(Σ2 · Σ2)

aȧ
〉
+ a3

〈
(O ·O)aȧ

〉

= (−1)a+ȧ
[
α g(−a,−ȧ) + α̃ g̃(−a,−ȧ)

]
,

1

N1/2
⟨Ωaȧ⟩+ b1⟨(J · J̃)aȧ⟩+ b2⟨(Σ2 · Σ2)

aȧ⟩+ b3⟨(O ·O)aȧ⟩

= (−1)a+ȧ
[
β g(−a,−ȧ) + β̃ g̃(−a,−ȧ)

]
.

(2.62)

As usual the numerical factors in front of Σ3 and Ω have the purpose of normalizing the

operators, and the sign (−1)a+ȧ is required by SU(2)L × SU(2)R invariance.

In the following, we shall determine in turn the unknown coefficients α, α̃, β, β̃, ai

and bi by applying the holographic map to an appropriate set of D1-D5 RR ground

states. Note that we have implemented SU(2)L × SU(2)R invariance by requiring that

coefficients be independent of the R-symmetry indices (a, ȧ). (The real coefficients α, β

should not be confused with the one-form β or the spinorial indices of the R-symmetry

group SU(2)L × SU(2)R used elsewhere.) We will then perform a set of non-trivial

checks of the resulting dictionary by testing it on a wider class of states. Further tests

involving D1-D5-P superstrata will be performed in Section 2.5.

2.4.1 Determining the first set of coefficients

To determine the values of the coefficients α, α̃, β, β̃, we consider states in which Σ3

and Ω have non-zero expectation values, and in which the expectation values of the

double-traces in (2.62) vanish. Two simple choices are

ψ(1)(A1, B1) =

N/3∑

p=1

(
A1 |++⟩1

)N−3p(
B1 |++⟩3

)p
, (2.63)

and

ψ(2)(A2, B2) =

N∑

p=1

(
A2 |++⟩1

)N−p(
B2 |−−⟩1

)p
, (2.64)
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which, according to the map in Section 2.1, correspond respectively to the profiles

g
(1)
1 (v′) + ig

(1)
2 (v′) = ā1 e

2πi
L
v′ +

b̄1
3
e

6πi
L
v′ , g

(1)
3 (v′) = g

(1)
4 (v′) = g

(1)
5 (v′) = 0 , (2.65)

and

g
(2)
1 (v′) + ig

(2)
2 (v′) = ā2 e

2πi
L
v′ + b2 e

− 2πi
L
v′ , g

(2)
3 (v′) = g

(2)
4 (v′) = g

(2)
5 (v′) = 0 . (2.66)

The computation of the gravity parameters gI and g̃I follows straightforwardly from

Eqs. (2.14), (2.21) and (2.61); for the state ψ(1) one obtains

g
(1)
(0,0) = −6

√
2
R2
y

Q1Q5
|a1|2 |b1|2 , g̃

(1)
(0,0) =

14
√
6

27

R2
y

Q1Q5
|a1|2 |b1|2 ,

g
(1)
(1,1) = (g

(1)
(−1,−1))

∗ =
√
2
R2
y

Q1Q5
a31 b̄1 , g̃

(1)
(1,1) = (g̃

(1)
(−1,−1))

∗ = −
√
2√
3

R2
y

Q1Q5
a31 b̄1 ,

(2.67)

and for the state ψ(2) one obtains

g
(2)
(0,0) = 2

√
2
R2
y

Q1Q5
|a2|2 |b2|2 , g̃

(2)
(0,0) = 2

√
6
R2
y

Q1Q5
|a2|2 |b2|2 ,

g
(2)
(1,1) = g

(2)
(−1,−1))

∗ = −
√
2 a2 b̄2 , g̃

(2)
(1,1) = (g̃

(2)
(−1,−1))

∗ = −
√
6 a2 b̄2 .

(2.68)

On the CFT side, Σ−−
3 and Ω−− have non-vanishing expectation values respectively in

ψ(1) and ψ(2), while the expectation values of all the double-trace operators in (2.62)

with spin (−1,−1) are zero, as can be easily seen from the fact that the action of the

dimension-one operators Σ−−
2 , J−, J̃− or O−− on either ψ(1) or ψ(2) would produce

strands of a type that is not present in the state itself.

The expectation value of Σ−−
3 in ψ(1) arises from the process in which three strands of

winding one are joined into a strand of winding three. In general one has (as before the

zero mode should be understood here and in similar equations that follow)

σ−−
(3) |++⟩k1 |++⟩k2 |++⟩k3 = ck1,k2,k3 |++⟩k1+k2+k3 , (2.69)

where (3) denotes a permutation that joins together the three strands |++⟩ki and where

ck1,k2,k3 = k1+k2+k3
3k1k2k3

[117]. We first focus on three particular strands of winding one and

one particular permutation, say (123), of the three strands, for which we thus have

σ−−
(123)

(
|++⟩1

)3
= |++⟩3 . (2.70)

When considering the action of the full operator Σ−−
3 on the state |++⟩N−3p

1 |++⟩p3, one
must also include the appropriate combinatorial factors, as follows. The twist operator

can act on any three of the N−3p strands of winding one, and for each choice of the three

strands there are two inequivalent three-cycles (c.f. Eq. (2.35)). Thus Σ−−
3 can act in
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2
(
N−3p

3

)
ways on (|++⟩1)N−3p(|++⟩3)p to produce the state (|++⟩1)N−3p−3(|++⟩3)p+1.

Moreover one has to take into account that the initial and final states have a non-trivial

norm given by (2.3). Matching the norm of the states on both sides of the following

equation, one finds

Σ−−
3

(
(|++⟩1)N−3p(|++⟩3)p

)
= (p+ 1) (|++⟩1)N−3p−3(|++⟩3)p+1 . (2.71)

The above result and the definition of the state ψ(1) in (2.63) imply that, in the large

N limit, the expectation value of Σ−−
3 in the state ψ(1) is:

⟨Σ−−
3 ⟩1 =

A3
1

B1
p̄ =

A3
1 B̄1

3
=

N2R2
y

3 (Q1Q5)2
a31 b̄1 , (2.72)

where we have used p̄ = |B|2/3 (from (2.5)) and the relation (2.8).

Next, the expectation value of Ω−− in the state ψ(2) arises from the basic process where

Ω−− maps |++⟩1 to |−−⟩1. There are N − p choices of strand for Ω−− to act on the

state (|++⟩1)N−p(|−−⟩1)p to give (|++⟩1)N−p−1(|−−⟩1)p+1. Matching the norms of left

and right-hand sides gives

Ω−− ((|++⟩1)N−p(|−−⟩1)p
)
= (p+ 1) (|++⟩1)N−p−1(|−−⟩1)p+1 , (2.73)

and thus the expectation value of Ω−− on ψ(2) is

⟨Ω−−⟩2 =
A2

B2
p̄ = A2 B̄2 =

N R2
y

Q1Q5
a2 b̄2 , (2.74)

where we have again used (2.5) and (2.8).

Comparing ⟨Σ−−
3 ⟩1 and ⟨Ω−−⟩2 with the gravity data g

(i)
−1,−1, g̃

(i)
−1,−1 (i = 1, 2) uniquely

fixes α, α̃, β, β̃ to be

α = −β̃ =

√
3

4
√
2

N1/2R2
y

Q1Q5
, α̃ = β = − 1

4
√
2

N1/2R2
y

Q1Q5
. (2.75)

These values agree precisely with the results of [107]. The expectation values of Σ++
3

and Ω++ are simply the complex conjugates of the ones considered above, and do not

add new information. The expectation values of Σ00
3 and Ω00 are also non-vanishing,

and should be compared with g
(i)
0,0. For this value of the spin, however, double-trace

operators play a role and so we will return to this comparison in Section 2.4.6, where

we will perform some non-trivial consistency checks of the full dictionary.
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2.4.2 Determining the coefficients a1, b1

The coefficients a1, b1 in the general map (2.62) correspond to the double-trace operator

(J ·J̃). An RR ground state in which (J ·J̃)++ is the only operator with j = j̄ = 1 to have

non-vanishing expectation value is the state given in Eq. (2.26). It is straightforward

to compute this one-point function in the orbifold CFT, where J̃+ can map any of the

p strands of type |+−⟩1 into |++⟩1, and likewise J+ can act on any of the q |−+⟩1
strands. Taking into account the normalization (2.3) of the states, one finds

(J · J̃)++
(
|++⟩N−p−q

1 |+−⟩p1 |−+⟩q1
)

=
(N − p− q + 1)(N − p− q + 2)

N
|++⟩N−p−q+2

1 |+−⟩p−1
1 |−+⟩q−1

1 ,
(2.76)

and, in the large N limit,

⟨(J · J̃)++⟩ = BC

A2

(N − p̄− q̄)2
N

=
Ā

2
BC

N
=

N R4
y

(Q1Q5)2
ā2 b c . (2.77)

Notice that, up to the normalization factor N−1, the expectation value of (J · J̃)++ is

just the product of the expectation values of J+ and J̃+, at large N .

On the gravity side, the relevant coefficients extracted from the metric associated with

the profile (2.27) are

g1,1 = (g−1,−1)
∗ =
√
2

R2
y

Q1Q5
a2 b̄ c̄ , g̃1,1 = (g̃−1,−1)

∗ =
√
6

R2
y

Q1Q5
a2 b̄ c̄ , (2.78)

which, taking into account the values of α, α̃, β, β̃ derived in (2.75), implies that

α g−1,−1 + α̃ g̃−1,−1 = 0 , β g−1,−1 + β̃ g̃−1,−1 = −
N1/2R4

y

(Q1Q5)2
. (2.79)

Then comparison with (2.62) yields

a1 = 0 , b1 = −
1

N1/2
. (2.80)

Using the above value of b1, one sees that the combination appearing in the holographic

map is

1

N1/2


Ω++ − 1

N

∑

r ̸=s
J+J̃+


 ≡ 1

N1/2
Ω̃++ . (2.81)

We note that the operator Ω̃++ has the property that its extremal three-point function

with J− and J̃− vanishes,

⟨Ω̃++ J− J̃−⟩ = 0 . (2.82)
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2.4.3 Determining the coefficients a2, b2

The coefficients a2, b2 in the map (2.62) correspond to the operator (Σ2 · Σ2). An

RR ground state in which (Σ2 · Σ2)
−− is the only operator with j = j̄ = −1 to have

non-vanishing expectation value is

N/2∑

p=1

(A |++⟩1)N−2p(B |++⟩2)p . (2.83)

The CFT expectation value follows from the relation

(Σ2 · Σ2)
−−

(
|++⟩N−2p

1 |++⟩p2
)
=

2(p+ 1)(p+ 2)

N2
|++⟩N−2p−4

1 |++⟩p+2
2 ; (2.84)

the combinatorial factor is derived by noting that the first σ−−
2 in the double-trace can

act in
(
N−2p

2

)
ways on the N−2p strands |++⟩1 and similarly the second σ−−

2 can act in(
N−2p−2

2

)
ways on the remaining N − 2p− 2 strands |++⟩1; one then, as usual, equates

the numbers of terms composing the states on the two sides of (2.84) and multiplies by

the normalization factor 2/N2. The expectation value in the coherent state (2.83), for

which 2p̄ = |B|2, is then

⟨(Σ2 · Σ2)
−−⟩ = A4

B2
,
2 p̄2

N2
=
A4 B̄

2

2N2
=

N R6
y

(Q1Q5)3
a4 b̄

2

2
. (2.85)

We note that, in the large N limit, the expectation value of the double-trace (Σ2 ·Σ2)
−−

is given again by the square of the normalized single trace (
√
2/
√
N)Σ−−

2 , which was

computed in Eq. (4.14) of [103].

The geometry dual to the state (2.83) is generated from the profile

g1(v
′) + ig2(v

′) = ā e
2πi
L
v′ +

b̄

2
e

4πi
L
v′ −

R2
y

2Q1Q5
ā2 b , g3(v

′) = g4(v
′) = g5(v

′) = 0 ,

(2.86)

where we have shifted the profile centre in order to implement the gauge condition

f11 + f51 = 0. From this geometry one derives

g1,1 = (g−1,−1)
∗ = −

√
2

R4
y

(Q1Q5)2
a4 b̄

2
, g̃1,1 = (g̃−1,−1)

∗ =
1√
6

R4
y

(Q1Q5)2
a4 b̄

2
.

(2.87)

Comparing with (2.62) and using the values (2.75), one deduces

a2 = − 7

4
√
3

1

N1/2
, b2 =

1

4

1

N1/2
. (2.88)
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2.4.4 Determining the coefficients a3, b3

The coefficients a3, b3 in the map (2.62) correspond to the double-trace operator (O ·O).

A set of RR ground states in which (O · O)−− is the only operator with j = j̄ = −1 to

have non-vanishing one-point function is

N∑

p=1

(A |++⟩1)N−p(B |00⟩1)p , (2.89)

which is just a particular case of the state (2.49) with C2 = 0 and A2 = A, B2 = B. The

expectation value ⟨(O ·O)−−⟩ is, as usual, proportional to the square of the single-trace

expectation value ⟨O−−⟩ = AB̄, as computed in [118]. We obtain

⟨(O ·O)−−⟩ =
A2B̄

2

N
=

N R4
y

(Q1Q5)2
a2 b̄

2

2
. (2.90)

The relevant gravity coefficients are

g1,1 = (g−1,−1)
∗ =

√
2

4

R2
y

Q1Q5
a2 b̄

2
, g̃1,1 = (g̃−1,−1)

∗ = −
√
2

4
√
3

R2
y

Q1Q5
a2 b̄

2
,

(2.91)

which determines a3 and b3 to be

a3 =
1

2
√
3

1

N1/2
, b3 = 0 . (2.92)

2.4.5 The holographic dictionary at dimension (1,1)

We can now summarize our results and write the explicit holographic map in the Σ3, Ω

sector as:

√
3

N3/2

〈
Σaȧ3

〉
+

1

4
√
3

1

N1/2

[
− 7
〈
(Σ2 · Σ2)

aȧ
〉
+ 2

〈
(O ·O)aȧ

〉]
= (−1)a+ȧ h(−a,−ȧ) ,

1

N1/2

〈
Ωaȧ

〉
− 1

N1/2

[〈
(J · J̃)aȧ

〉
− 1

4

〈
(Σ2 · Σ2)

aȧ
〉]

= (−1)a+ȧ h̃(−a,−ȧ) ,
(2.93)

where (recall that g, g̃ were defined in (2.61))

h(a,ȧ) ≡
N1/2R2

y

4
√
2Q1Q5

[√
3 g(a,ȧ) − g̃(a,ȧ)

]
,

h̃(a,ȧ) ≡ −
N1/2R2

y

4
√
2Q1Q5

[
g(a,ȧ) +

√
3 g̃(a,ȧ)

]
. (2.94)

We also repeat for the reader’s convenience the results from the O2 sector, (2.57) and

(2.58): √
2

N

〈
Õaȧ2

〉
= (−1)a+ȧ

√
3
N1/2R2

y

Q1Q5
A2 (−a,−ȧ) , (2.95)
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where

Õ++
2 ≡

∑

r<s

O++
(rs) −

1

N

∑

r<s
t ̸=r,s

σ++
(rs)O

++
(t) . (2.96)

For the class of M-invariant supergravity solutions with a flat four-dimensional base

space, Eqs. (2.93)–(2.96) comprise the holographic dictionary at dimension (1, 1).

One can check that not all extremal three-point functions of the operator combinations

dual to g, g̃ vanish. Based on general expectations, there should be an appropriate field

redefinition such that all extremal three-point functions vanish [54, 107–109, 116]. We

will discuss this further in Chapter 3.

2.4.6 Tests of the holographic dictionary on two-charge states

Having determined all the coefficients in the holographic map (2.93), we can now use the

map as a non-trivial consistency check on the correspondence (2.8) between the 1/4-BPS

RR ground states (2.4) and the supergravity solutions (2.14). We re-emphasize that the

SU(2)L × SU(2)R symmetry requires the coefficients in (2.93) to be independent of the

spin (a, ȧ); thus, even if the most efficient way to fix the coefficients is to focus on the

highest (or the lowest) spin component, as we have done in the previous subsections,

the same coefficients must necessarily reproduce the expectation values of all other

components. A relatively involved example is given by the operators

Ω00 = 2
∑

r

J3
(r)J̃

3
(r) and Σ00

3 =
1

2
[J−

0 , [J̃
−
0 ,Σ

++
3 ]] . (2.97)

We will next work out a couple of examples that demonstrate how the one-point functions

of these operators are correctly reproduced by the map (2.93). More examples involving

1/8-BPS D1-D5-P states will be examined in the next section.

• First, consider the state (A |++⟩k)
N
k with k ∈ N.

The dual geometry is generated from the profile

g1(v
′) + ig2(v

′) =
ā

k
e

2πi k
L

v′ , g3(v
′) = g4(v

′) = g5(v
′) = 0 , (2.98)

and from the asymptotic expansion of the geometry one deduces that

h(a,ȧ) = h̃(a,ȧ) = 0 for all (a, ȧ) . (2.99)

This is a reflection of the fact that the geometry is a Zk quotient of AdS3 × S3, with

non-trivial constant gauge fields mixing S3 and AdS3.
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Given the simple structure of the geometry, one would naively expect that on the CFT

side only the R-symmetry currents, which couple to the S3 gauge fields, have non-trivial

expectation values; the situation is however a bit more interesting. While it is true that

to leading order at large N all expectation values appearing in the first line of (2.93)

vanish4, the expectation values of the single-trace Ω00 and of the double-trace (J · J̃)00
are non-trivial; consistency with the map (2.93) requires that the two expectation values

precisely cancel. To compute the expectation value of Ω00 one notes that

Ω00 |++⟩k =
1

2k
|++⟩k . (2.100)

The 1/k factor in this equation is not a-priori obvious and can be understood as follows.

Consider the action of the zero-mode of the SU(2)L current J3
0 on a strand of winding k,

such as |++⟩k. Since there are identical copies of the SU(2)L algebra in any twist sector

of the orbifold theory, the value of J3
0 cannot depend on k: J3

0 |++⟩k = 1/2 |++⟩k; on the

other hand J3
0 =

∑k
r=1 J

3
(r),0 = k J3

(r),0, with J
3
(r),0 the zero-mode of the operator acting

on a single copy of the CFT. One deduces that, in the k-twisted sector, J3
(r),0 = 1/k J3

0

and analogously J̃3
(r),0 = 1/k J̃3

0 . This implies that Ω00
0 = 2

∑k
r=1 J

3
(r),0J̃

3
(r),0 = 2/k J3

0 J̃
3
0 ,

from which (2.100) immediately follows.

The action of Ω00 on the full state (|++⟩k)
N
k is then given by multiplying by the number

of strands N/k:

Ω00
(
|++⟩k

)N
k =

N

2k2
(
|++⟩k

)N
k . (2.101)

This immediately implies
〈
Ω00
〉
=

N

2k2
. (2.102)

As for the expectation value of the double-trace (J · J̃)00, one should first note that the

correctly normalized affine descendant of (J · J̃)++, which is what appears in the map

(2.93), is given by

(J · J̃)00 =
2

N

∑

r ̸=s
J3
(r)J̃

3
(s) . (2.103)

When acting on the state (|++⟩k)
N
k , J3 can be applied on any of the N/k strands, and

it has eigenvalue 1/2. The same happens for J̃3 on the remaining N/k − 1 strands. In

the large N limit one finds

(J · J̃)00
(
|++⟩k

)N
k =

2

N

N2

k2
1

4

(
|++⟩k

)N
k =

N

2 k2
(|++⟩k)

N
k , (2.104)

4Naively one could think that the expectation value of the double-trace (Σ2 ·Σ2)
00 ∼ ∑

σ++
(rs)σ

−−
(pq) +

σ+−
(rs)σ

−+
(pq) could receive a contribution, for example, from the process in which a σ−− joins two strands

|++⟩k into |++⟩2k and a σ++ splits the newly created |++⟩2k strand again into two |++⟩k strands. One
can however see that this expectation value, unlike the one computed in (2.85), does not grow with N ,
and hence it does not contribute to the holographic map at the leading order in the large N expansion.
The origin of the difference with (2.85) is that in the present situation the second twist operator can
only act on a particular strand, while in (2.85) it could act on O(N) strands. This observation confirms
the general rule that the expectation value of a double-trace operator is given by the product of the
expectation values of the single-trace components at leading order in N .
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and thus 〈
(J · J̃)00

〉
=

N

2 k2
. (2.105)

The two expectation values (2.102) and (2.105) are equal, as required by the holographic

map.

• Second, let us consider the state

N/k∑

p=1

(A |++⟩1)N−k p(B |++⟩k)p , k ∈ N , k ≥ 3 . (2.106)

The supergravity analysis is done along the usual lines: starting from the dual profile

g1(v
′) + ig2(v

′) = ā e
2πi
L
v′ +

b̄

k
e

2πi k
L

v′ , g3(v
′) = g4(v

′) = g5(v
′) = 0 , (2.107)

(where for simplicity we take a, b ∈ R) one extracts the supergravity data defined in

(2.94):

h(0,0) =

√
3

6

(k + 1)2

k2
N1/2R4

y

(Q1Q5)2
a2 b2 , h̃(0,0) =

1

2

(k − 1)2

k2
N1/2R4

y

(Q1Q5)2
a2 b2 . (2.108)

Note that in the following manipulations the regularity constraint a2+ b2 = Q1Q5

R2
y

(2.15)

will be used.

The second line of (2.93) works in a way that is qualitatively similar to the previous

example. We take k ≥ 3 for simplicity, where the non-vanishing expectation values are

⟨Ω00⟩ and ⟨(J · J̃)00⟩ (for k = 2, one would also need to include ⟨(Σ2 · Σ2)
00⟩). The

one-point functions can be computed by applying the rules already explained:

⟨Ω00⟩ = 1

2

N R4
y

(Q1Q5)2
k2a4 + (k2 + 1)a2b2 + b4

k2
,

⟨(J · J̃)00⟩ = 1

2

N R4
y

(Q1Q5)2
k2a4 + 2ka2b2 + b4

k2
.

(2.109)

One can verify that substituting these expectation values in the second line of (2.93)

reproduces the value of h̃(0,0) given in (2.108).

The first line of (2.93) introduces a novel ingredient: the expectation value of Σ00
3 (the

other double-trace operators clearly do not play a role in this example, at large N).

The mechanism by which Σ00
3 acquires a non-zero expectation value in the state (2.106)

for any k > 1 is as follows. Take for example k = 3 and consider the action of Σ00
3

on the strands |++⟩1 and |++⟩3 corresponding to the permutation (1) (234); when the

twist 3 operator acts with the permutation (132) it produces a state described by the

permutation (2) (341), which represents again two strands of type |++⟩1 and |++⟩3. In
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other words, the operator Σ00
3 maps the state (2.106) into itself, permuting the copy

|++⟩1 with one of the copies forming the strand |++⟩3. To compute the expectation

value associated with this process we need to know the coefficient C
−,−(1),−
k,3,k defined by

σ00(3) |++⟩1 |++⟩k = C
−,−(1),−
k,3,k |++⟩1 |++⟩k , (2.110)

where (3) denotes any three cycle that maps the state on the left to the state on the

right. This coefficient is equal to C
−(1),−,−
3,k,k , corresponding to a three-point function that

differs from the one giving C
−,−(1),−
k,3,k by the ordering of the operators. One can see that

the coefficients are equal using e.g. [119, Eq. (2.2.48)]. The coefficient C
−(1),−,−
3,k,k was

computed in [120, Eq. (6.28)] using the techniques reviewed in Appendix B, giving

C
−,−(1),−
k,3,k =

(k + 1)2

6 k2
. (2.111)

The full expectation value of Σ00
3 is given by dressing C

−,−(1),−
k,3,k by the appropriate

combinatorial factors: the twist operator can act on any of the (N − k p) p pairs of

strands |++⟩1 |++⟩k and can cut the |++⟩k strand in k different positions (note that

only one of the two permutations (rst) and (rts) that appear in the definition of Σ3

(2.35) contributes to the present process, and thus one does not have an additional

factor of 2). We thus find

Σ00
3 |++⟩N−k p

1 |++⟩pk = C
−,−(1),−
k,3,k (N − k p) p k |++⟩N−k p

1 |++⟩pk , (2.112)

which gives
〈
Σ00
3

〉
=

(k + 1)2

6 k2
A2B2 =

(k + 1)2

6 k2
N2R4

y

(Q1Q5)2
a2 b2 . (2.113)

The CFT prediction agrees, via the map (2.93), with the gravity coefficient h(0,0) in

(2.108).

2.5 Precision holographic tests of superstrata

We now perform new precision tests of the proposed holographic dictionary for a re-

cently constructed set of superstratum solutions and proposed dual CFT microstates.

The term ‘superstratum’ refers to a large class of supergravity solutions describing black

hole microstates [56–63, 112–114]. The key property of superstrata is that the isometries

preserved by the black hole are explicitly broken (apart from the single null isometry

guaranteed by supersymmetry). These solutions include sub-classes whose proposed dual

CFT states display momentum fractionation [57], and include solutions that have para-

metrically long AdS2 throats (in full, the throats are approximately AdS2×S1×S3×T4)

[58, 60], which have potentially important implications for AdS2 holography [112]. Some

special sub-families have the remarkable property of having completely integrable null
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geodesics [61]; for some recent studies of superstrata, see [114, 121–123].

We will perform tests on a couple of specific sub-families of superstrata, including some

of the most recently constructed solutions [62]. In all cases the proposed CFT description

passes these new precision tests, which lends strong support to the proposed families of

holographically dual CFT states.

2.5.1 Key properties of superstrata

We now briefly summarize the elements of the superstratum construction that will be

relevant for our studies. The main purpose will be to introduce the necessary notation for

the holographic tests that follow. For a more comprehensive introduction to superstrata,

we refer the reader to [60].

The superstrata that have been constructed to date are six-dimensional solutions where

the four-dimensional base is flat R
4. The six-dimensional metric, four-dimensional base

and relation between t, y and u, v coordinates are as given in Eqs. (2.9)–(2.12). The

one-form β takes the value

β =
Rya

2

√
2Σ

(
sin2 θ dϕ− cos2 θ dψ

)
. (2.114)

The remaining quantities in the supergravity ansatz (C.1) are organized by the almost-

linear structure of the six-dimensional BPS equations. For completeness we give the

full Type IIB ansatz and BPS equations in Appendix C, and we summarize the content

here. The four-dimensional base and the one-form β are referred to as the data of the

“zeroth” layer of equations. Then the first layer of BPS equations involves the scalars

Z1, Z2, Z4 and two-forms Θ1, Θ2, Θ4. By convention Z3 is related to F , and Θ3 = dβ.

Finally, the second layer of equations determines the scalar F and the one-form ω.

In the class of superstratum solutions that we will consider, Z2 has the simple form

Z2 =
Q5

Σ
. (2.115)

The first important feature of the solutions is encoded in the function Z4 which enters

directly into the Type IIB NS-NS two-form B2, and the RR forms C(0) and C(4), and

also into the metric via the combination P = Z1Z2 − Z2
4 . The function Z4 takes the

general form (more generally a phase could also be introduced in the definition of Z4)

Z4 = Ry
∑

k,m,n,q

δq,0 b
k,m,n,q
4

∆k,m,n

Σ
cos v̂k,m,n , (2.116)

where bk,m,n,q4 are real coefficients (the inclusion of q in the indices is somewhat super-
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fluous because of the δq,0, however we choose to keep the notation general), and where

∆k,m,n ≡
(

a√
r2 + a2

)k ( r√
r2 + a2

)n
cosm θ sink−m θ ,

v̂k,m,n ≡ (m+ n)

√
2 v

Ry
+ (k −m)ϕ−mψ , Σ ≡ r2 + a2 cos2 θ .

(2.117)

The ansatz for Z1 involves a linear combination of terms similar to those appearing in

Z4, with coefficients chosen to facilitate the construction of smooth solutions without

horizons. This procedure is known as “coiffuring” [56, 124, 125]. In practical terms,

this means making the combination P = Z1Z2 − Z2
4 have desired properties, which in

the simplest cases means arranging that P is independent of v̂k,m,n. Several families of

asymptotically AdS3 solutions have this property, and in fact have the property that

the full metric is also independent of the phase v̂k,m,n and all explicit dependence on

this phase is in the matter fields. We will discuss the explicit form of Z1 that exhibits

“coiffuring” once we specialize the discussion to the solutions that we consider in this

section.

The proposed CFT interpretation of the superstratum solutions involves coherent su-

perpositions of several strands of the following type. The states are labelled by integers

(m,n, k, q) with5 q = 0, 1; n ≥ 1; and k > 0, k − q ≥ m ≥ 1. For ease of notation

it is convenient to define the states in the NS-NS sector, where they are given by [56–

58, 60, 62]

|k,m, n, q⟩NS =
1

(m− q)!(n− q)! (J
+
0 )m−qLn−q−1

(
G+1

− 1
2

G+2
− 1

2

+
1

k
J+
0 L−1

)q
|O−−⟩NS

k ,

(2.118)

with |O−−⟩NS
k the NS-sector anti-chiral primary corresponding to the RR ground state

|00⟩k. Then the states we are interested in are the RR states obtained by performing

left and right spectral flow transformations with parameters (1/2, 1/2), and for ease of

notation we shall denote the resulting RR states by |ki,mi, ni, qi⟩, where i runs over the
different types of superstratum strands that are present in a given state. Our spectral

flow conventions are recorded in Eqs. (B.14)–(B.16) and are such that spectral flow with

parameters (1/2, 1/2) on an individual copy of the CFT maps the NS-NS vacuum to the

RR ground state |++⟩.

We are interested in coherent superpositions of the states involvingNi copies of the above

superstratum-type strands |ki,mi, ni, qi⟩ and N (s)
k copies of the bosonic RR ground state

strands |s⟩k introduced around Eq. (2.1):

ψ{N(s)
k ,ni}

≡
4∏

s=1

∏

k

|s⟩N
(s)
k

k

∏

i

|ki,mi, ni, qi⟩Ni . (2.119)

5We use the notation of [63] which differs from that of CRS [62] by (m−q)here = mCRS and (n−q)here =
nCRS.
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The resulting family of (non-normalized) CFT states ψ({A(s)
k , Bi}) is defined, in a way

similar to (2.4), as

ψ({A(s)
k , Bi}) ≡

∑

{Ni,N
(s)
k }

′
[

4∏

s=1

∏

k

(
A

(s)
k |s⟩k

)N(s)
k
∏

i

(
Bi |ki,mi, ni, qi⟩

)Ni

]
. (2.120)

where the prime on the overall sum indicates that it is a restricted sum (as in Eq. (2.4))

over all states whose total number of copies adds up to N :

∑

k,s

kN
(s)
k +

∑

i

kiNi = N . (2.121)

Having defined the general class of superstratum states, we now specialize to those that

we will consider in this chapter. We consider states with one type of ground state

strands, with winding k = 1 and polarization s = ++, and one type of superstratum

strand:

ψ(A1, Bk,m,n,q) =

N/p∑

p=1

(
A1 |++⟩1

)N−pk(
Bk,m,n,q |k,m, n, q⟩

)p
. (2.122)

This class is both sufficiently tractable and sufficiently interesting to enable the new

precision holographic tests that follow.

The computations in the following subsections make use of a number of technical results,

such as the norm of the states ψ{N1 ,Nk,m,n,q}, the average numbers N i of strands in the

coherent state (2.120), and the map between the CFT parameters A1, Bk,m,n,q and the

coefficients a, bk,m,n,q4 that define the supergravity solution. For the examples considered

below, it will be sufficient to present these results for q = 0, whose derivation can be

found in [60]:

∣∣∣ψ{N1, Nk,m,n,0}
∣∣∣
2
=

N !

N1!

∏

k,m,n

1

Nk,m,n,0!

[
1

k

(
k

m

)(
n+ k − 1

n

)]Nk,m,n,0

, (2.123)

N1 = |A1|2 , kNk,m,n,0 =

(
k

m

)(
n+ k − 1

n

)
|Bk,m,n,0|2 , (2.124)

|A1| = Ry

√
N

Q1Q5
a , |Bk,m,n,0| = Ry

√
N

2Q1Q5

(
k

m

)−1(n+ k − 1

n

)−1

bk,m,n,04 .

(2.125)

2.5.2 Holographic tests of superstrata with the operator O2

We now make the first precision holographic test of superstrata at dimension two, focus-

ing on the expectation value of the operator O2. Since the one-point function of O2 is



44 Chapter 2 AdS3 holography at dimension 2

extracted from the metric function Z4, which is the basic ingredient in the construction

of the superstrata solutions, these are the most direct tests of the identification between

superstrata and CFT states.

Superstrata with k = 2, m = 1

We now consider the following set of states:

N
2∑

p=1

(
A |++⟩1

)N−2p
(
B
(L−1 − J3

−1)
n

n!
J+
−1 |00⟩2

)p
. (2.126)

To begin with we will set n = 0, before extending to general n. We thus first consider

the states
N
2∑

p=1

(
A |++⟩1

)N−2p(
BJ+

−1 |00⟩2
)p
. (2.127)

In the CFT, of the operators O2 and (Σ2 · O) entering in the holographic dictionary

(2.40), only the single-trace O2 has a non trivial expectation value: the expectation

value of the operators O and Σ2 are zero on this state, thus also that of the double-trace

(Σ2 ·O) is zero.

Moreover, since the strands |++⟩1 and J+
−1 |00⟩2 carry spin (12 ,

1
2) and (1, 0) respectively,

by angular momentum conservation we conclude that only O0−
2 and its hermitian con-

jugate have non-vanishing one-point functions. The basic process is that in which O0−
2

links two strands |++⟩1 into a strand J+
−1 |00⟩2 and the corresponding amplitude is

(12) ⟨00| J−
+1O

0−
2 (v, u) |++⟩(1) |++⟩(2) =

√
2e
i
√
2 v

Ry . (2.128)

In deriving this result we have used the fact that the ground state is annihilated by the

positive modes of the current operator to replace J−
+1O

0−
2 (v, u) by their commutator6

[J−
+1, O

0−
2 (v, u)] =

√
2 e

i
√
2 v

Ry O−−
2 (v, u) , (2.129)

and the hermitian conjugate of the second relation in (2.37). Note that it is important to

insert the operator O0−
2 at a generic worldsheet point (v, u) to obtain a non-trivial result:

had we inserted it at past infinity, it would have killed the initial state |++⟩(1) |++⟩(2).

We must now dress the result (2.128) with the proper combinatorial factor: the operator

O0−
2 can act on any of the

(
N−2p

2

)
pairs of |++⟩1 to produce the state J+

−1 |00⟩2. Using
(2.123) and requiring that both sides of the equation contain the same number of terms,

6The factor
√
2 in the commutator (2.129) ensures, as usual, that all components of Oaȧ

2 have unit
norm.
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we obtain

O0−
2

(
|++⟩1

)N−2p(
J+
−1 |00⟩2

)p
=

p+ 1√
2
e
i
√

2v
Ry
(
|++⟩1

)N−2(p+1)(
J+
−1 |00⟩2

)p+1
.

(2.130)

This implies that

〈
O0−

2 (v, u)
〉
=

A2

√
2B

p̄ e
i
√
2v

Ry =
A2B̄√

2
e
i
√

2v
Ry =

N
3
2 R3

y

4(Q1Q5)
3
2

a2 b̄ e
i
√

2v
Ry , (2.131)

where we have used (2.124) to compute p̄ and (2.125) to express the final result in terms

of the gravity parameters.

On the supergravity side, we require the first non-trivial terms in the large r expansion

of the function Z4 given in (2.116) where k = 2, m = 1, n = 0, q = 0 and b2,1,0,04 = b :

Z4 ∼
√
Q1Q5

r4
Ry a

2 b

2
√
6
√
Q1Q5

(
−ei

√
2v

Ry Y 0,1
2 + e

−i
√
2v

Ry Y 0,−1
2

)
. (2.132)

Comparing the result (2.131) with (2.132) using the dictionary in (2.57) and (2.58), one

obtains exact agreement.

It is now straightforward to generalize the n = 0 computation to the general set of states

(2.126). On the CFT side the computation proceeds along the same lines as before, with

the only difference that the correlator (2.128) should be replaced by

(12) ⟨00|
(L1 − J3

1 )
n

n!
J−
+1O

0−
2 (v, u) |++⟩(1) |++⟩(2) =

√
2e
i(n+1)

√
2v

Ry . (2.133)

The extra factor e
in

√
2v

Ry is produced by commuting the operator (L1−J3
1 )
n withO−−

2 (v, u),

using
[
(L1 − J3

1 )
n, O−−

2 (v, u)
]
= n! e

in
√

2v
Ry O−−

2,0 , (2.134)

where O−−
2,0 denotes the zero-mode of O−−

2 , which is the only one contributing to the

correlator after having eliminated the momentum-carrying operators. On the gravity

side, it follows immediately from (2.116) that the only modification to Z4 at order r−4

is an extra factor e
in

√
2v

Ry . We thus see that the exact agreement persists for any value

of n.

Superstrata with k = 2, m = 2

As a further consistency check, we consider the set of superstratum states with k = 2,

m = 2:
N
2∑

p=1

(A |++⟩1)N−2p

(
B

(L−1 − J3
−1)

n

n!

(J+
−1)

2

2
|00⟩2

)p
. (2.135)
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We follow the same presentation and first set n = 0, before extending to general n.

Thus, we first consider the coherent state

N
2∑

p=1

(A |++⟩1)N−2p

(
B

(J+
−1)

2

2
|00⟩2

)p
. (2.136)

The strand (J+
−1)

2 |00⟩2 carries spin (2, 0), thus, by conservation of angular momentum,

we conclude that only the operator O+−
2 = 1

2

[
(J̃−

0 )2, O++
2

]
and its hermitian conjugate

will have non-trivial expectation values; the expectation value of the multi-trace (Σ2 ·O)

is trivially zero. This operator carries out the fundamental process

O+−
2 (v, u) |++⟩1 |++⟩1 = e

i 2
√
2v

Ry
(J+

−1)
2

2
|00⟩2 , (2.137)

where we have used the commutation relation [(J−
1 )2, O+−

2 (v, u)] = 2 e
i 2

√
2v

Ry O−−
2 (v, u),

the relation defining O−−, given by the hermitian conjugate of (2.37), and the fact

that
(J+

−1)
2

2 |00⟩2 has unit norm. The complete action of the operator O+−
2 on the state

is obtained implementing the appropriate combinatorial factor (which follows, as usual,

noticing that O+−
2 can choose among

(
N−2p

2

)
pairs of |++⟩1 and imposing that the norms

on the two sides of the equation are equal). We obtain

O+−
2 (v, u)

[
(|++⟩1)N−2p

(
(J+

−1)
2

2
|00⟩2

)p ]

= e
i 2

√
2v

Ry (p+ 1)(|++⟩1)N−2p−2

(
(J+

−1)
2

2
|00⟩2

)p+1

.

(2.138)

This gives rise to the expectation value

〈
O+,−

2 (v, u)
〉
= e

i 2
√

2v
Ry p̄

A2

B
= e

i 2
√
2v

Ry
A2B̄

2
= e

i 2
√
2v

Ry
N

3
2 R3

y

2
√
2(Q1Q5)

3
2

a2 b̄ . (2.139)

Expanding the Z4 function of the dual geometry (2.116) (with k = 2, m = 2, n = q = 0,

b2,2,0,04 = b) for large r up to the first non-trivial order, we obtain

Z4 ∼
√
Q1Q5

r4
Ry a

2b

2
√
3
√
Q1Q5

(
e
i 2

√
2v

Ry Y −1,1
2 + e

−i 2
√

2v
Ry Y +1,−1

2

)
. (2.140)

Eqs. (2.139) and (2.140) are in exact agreement with the dictionary given in Eqs. (2.57)

and (2.58).

As explained around Eq. (2.134), it is straightforward to extend this result to the states

with general n given in Eq. (2.135): both the CFT and the gravity results are simply

multiplied by the factor e
in

√
2v

Ry .
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2.5.3 Holographic tests of superstrata with the operators Ω00 and Σ00

3

We now consider the class of states with m = 1, n = 0, q = 0 and general (positive

integer) k:
N/k∑

p=1

(
A |++⟩1

)N−kp(
B J+

−1 |00⟩k
)p
. (2.141)

The one-point function of O2 in the state with k = 2 has already been considered in the

previous subsection; here we concentrate on the other dimension-two operators, with the

purpose of testing the dictionary (2.93). This enables us to check some features of the

dual geometry other than Z4, and in particular the metric function Z1. Setting for ease

of notation bk,1,0,04 = b, for this class of metrics Z1 is given by (see e.g. [60, Eq. (4.3)]):

Z1 =
Q1

Σ
+
R2
y b

2

2Q5

∆k,1,0

Σ
cos v̂2k,2,0 , (2.142)

where

Q1 =
R2
y

Q5

(
a2 +

b2

2k

)
. (2.143)

The term proportional to Q1 is the standard term encoding the dependence on the D1

charge; the term proportional to b2 is more subtle, since it cannot be inferred simply on

the basis of the global charges or of the supergravity equations, which would be satisfied

also in the absence of that term. Its presence is however crucial for the smoothness of

the solution. The general mechanism by which regularity is ensured in the superstratum

construction has been dubbed “coiffuring” [124, 125], and in this example it amounts

to choosing the ansatz for the function Z1 such that the combination P = Z1Z2 −Z2
4 is

independent of v.

The holographic dictionary can provide a more direct CFT understanding of the coiffur-

ing construction: we will show that the b2 contribution to Z1 originates from the mixing

of both Ω and Σ3 with the double-trace operator (O ·O).

We first consider the second line of the holographic dictionary (2.93), which involves the

expectation values of Ω00 and (J ·J̃)00 (in these states the one-point function of (Σ2·Σ2)
00

is trivially zero for any k). Since these operators act in a way that has essentially already

been explained in Section 2.4.6, we will be brief in the following. The operator Ω00 acts

non-trivially only on the |++⟩1 strands, for which Ω00 |++⟩1 = 1/2 |++⟩1, so we obtain

〈
Ω00
〉
=
|A|2
2

=
1

2

N R2
y

Q1Q5
a2 =

1

2

N R4
y

(Q1Q5)2
a2
(
a2 +

b2

2k

)
, (2.144)

where we used (2.125) and, for later convenience, the regularity constraint (2.143). The

expectation value of the double-trace (J · J̃)00 can be expressed, as usual, as the product
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of the expectation values of J3 and J̃3:

〈
(J · J̃)00

〉
=

2

N

〈
J3⟩ ⟨J̃3⟩ = |A|

2

N

( |A|2
2

+ |B|2
)

=
1

2

N R4
y

(Q1Q5)2
a2
(
a2 +

b2

k2

)
.

(2.145)

Substituting in the second line of (2.93), we find a value of h̃(0,0) in exact agreement

with the one extracted from the geometry:

h̃(0,0) =
N1/2R4

y

(Q1Q5)2
k − 2

4 k2
a2b2 . (2.146)

The first line of the holographic dictionary (2.93) works in a more interesting way, and

it requires us to distinguish the states with k = 1 from the ones with k > 1. For k = 1

we have ⟨Σ3⟩ = 0, however the following components of the double-trace (O ·O) play a

role:

(O·O)00 =
1

N

∑

r ̸=s

(
O++

(r) O
−−
(s) +O

+−
(r) O

−+
(s)

)
, (O·O)+− =

1

N

∑

r ̸=s
O+−

(r) O
+−
(s) , (2.147)

as well as the hermitian conjugate (O·O)−+. On the CFT side the expectation values are

straightforward to compute as the product of the expectation values of the single-particle

operators O+− and O−+, which were derived in Eqs. (4.38), (4.39) of [103]:

〈
(O ·O)00

〉
= −|A|

2 |B|2
N

,
〈
(O ·O)+−〉 = e

i 2
√
2v

Ry
A2 B̄2

N
. (2.148)

On the gravity side the term responsible for ⟨(O · O)+−⟩ is the term quadratic in b in

the metric function Z1 (2.142), from which one extracts

h(−,+) = (h(+,−))
∗ =

N1/2R4
y

Q2
1Q

2
5

e
i 2

√
2v

Ry
a2b2

4
√
3

and h(0,0) = −
N1/2R4

y

Q2
1Q

2
5

a2b2

4
√
3
,

(2.149)

which agree precisely with the CFT results. As we discussed below Eq. (2.142), the

term contributing to h(−,+) is the one deduced, quite indirectly, from the “coiffuring”

method. It is satisfying to see that holography provides a sharp CFT explanation of

this supergravity construction.

When k > 1 the relevant operator is Σ00
3 , which, as we have already seen, has to be

analyzed with some care. The non-trivial part of the computation is in the derivation

of the coefficient C
00(m=1)
k3k , which captures the action of the twist-three operator on a

particular pair of states |++⟩1 and J+
−1 |00⟩k:

σ00(3)

(
|++⟩1 J+

−1 |00⟩k
)

= C
00(m=1)
k3k

(
|++⟩1 J+

−1 |00⟩k
)
. (2.150)

Similarly to our explanation of the process (2.110), the twist operator σ00(3) can cut the

strand |00⟩k and join it with the strand |++⟩1, while at the same permuting the spins of
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the two copies involved in the process. To our knowledge the coefficient C
00(m=1)
k3k does

not appear in the literature, and we thus derive it in Appendix B.2, by evaluating the

three-point function (B.17). The result is

C
00(m=1)
k3k =

k − 2

6k
. (2.151)

When acting on the full state, the twist operator Σ00
3 can act on any of the N−pk strands

|++⟩1 and on any of the p strands J+
−1 |00⟩k, and can cut the latter in k positions (after

this choice is made, the permutation by which the twist operator can act is completely

fixed); this translates, according to the usual logic, into the identity

Σ00
3

(
|++⟩N−kp

1

(
J+
−1 |00⟩k

)p)
= C

00(m=1)
k3k (N − kp) p k |++⟩N−kp

1

(
J+
−1 |00⟩k

)p
,

(2.152)

and thus, using the result (2.124) to compute p̄ and the CFT–gravity parameter map

(2.125), one arrives at

〈
Σ00
3

〉
= C

00(m=1)
k3k k A2B2 =

k − 2

12 k2
N2R4

y

(Q1Q5)2
a2 b2 . (2.153)

From the dual gravity solution one extracts:

h0,0 =
k − 2

4
√
3 k2

N1/2R4
y

(Q1Q5)2
a2 b2 , (2.154)

which agrees precisely with the prediction of the map (2.93).

Let us note that Eq. (2.154) reduces to the second term in Eq. (2.149) when k = 1.

This is quite a non-trivial result: as we have just discussed, the geometric term h0,0 is

sourced by different CFT operators depending on the value of k.

2.5.4 A holographic test of supercharged superstrata

A more recently constructed, and therefore less-studied, class of superstrata is that of

[62], where some of the momentum is carried by the CFT supercurrents G. We will

focus here on the simplest state in that class, the one with k = 2, m = 1, n = 0, q = 1

in the notation of (2.118), which we rewrite in the Ramond sector as:

N/2∑

p=1

(A |++⟩1)N−2p

[
B

(
G+1

−1G
+2
−1 +

1

2
J+
−1(L−1 − J3

−1)

)
|00⟩2

]p
. (2.155)

We now verify the important feature of the supergravity solution dual to this state,

namely that Z4 = 0 (as indicated by the δq,0 in Eq. (2.116)). For consistency with the

holographic dictionary (2.57)–(2.58), one expects that the expectation values of O2 and

(Σ2 · O) vanish. While this is obvious for the double-trace (Σ2 · O), at first sight one
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could have a non-vanishing expectation value for O0+
2 , generated by the correlator

1 ⟨++| 1 ⟨++| O0+
2 (z, z̄)

(
G+1

−1G
+2
−1 +

1

2
J+
−1(L−1 − J3

−1)

)
|00⟩2 . (2.156)

It is simpler to perform the computation in the NS sector, where this correlator becomes

z̄ NS ⟨0| O0+
2 (z, z̄)

(
G+1

−1/2G
+2
−1/2 +

1

2
J+
0 L−1

) ∣∣O−−〉NS

2
, (2.157)

with NS ⟨0| the NS vacuum and |O−−⟩NS

2 ≡ O−−
2 (0, 0) |0⟩NS the anti-chiral-primary state

with h = h̄ = 1 and j = j̄ = −1 introduced after Eq. (2.118). One can write

O0+
2 (z, z̄) = [J−

0 , O
++
2 (z, z̄)] = [J−

0 , O
++
2 (∞)] + z−1 [J−

0 , [L1, [O
++
2 (∞)]] + . . . ,

(2.158)

where the dots represent terms with higher powers of L1 or L̃1, which cannot contribute

to the correlator. Inserting (2.158) in (2.157), one finds that the correlator is proportional

to

NS
2

〈
O−−∣∣ J−

0 L1

(
G+1

−1/2G
+2
−1/2 +

1

2
J+
0 L−1

) ∣∣O−−〉NS

2

= NS
2

〈
O−−∣∣ J−

0

(
−J+

0 + J+
0 L0

) ∣∣O−−〉NS

2
= 0 ,

(2.159)

where we have used the chiral algebra commutation relations and the fact that

L0 |O−−⟩NS

2 = |O−−⟩NS

2 , as in [62, Eq. (2.7)]. The vanishing of Z4 for the state (2.155) is

thus in exact agreement with the CFT prediction.

2.6 Discussion

The main result of this chapter is the derivation of the holographic map relating the

expectation values of chiral primary operators of dimension (1, 1) in a 1/4 or 1/8-BPS

state of the D1-D5 CFT with the geometric coefficients extracted from the asymptotic

expansion of the supergravity solution dual to the state. The precision holographic

dictionary in this sector is consistent with the requirements coming from the R-symmetry

and has passed non-trivial tests performed on two-charge geometries, whose CFT duals

are well understood.

The usefulness of this dictionary for the development of the fuzzball program can be

justified at different levels. First of all, it is a powerful tool to perform high precision

test on three-charge microstate solutions and dual CFT states. Given a gravitational

solution, the identification of the dual CFT state is generically a difficult task, the reason

being that the point in the moduli space where CFT states can be easily described (i.e.

the free orbifold point) is far from the supergravity regime. By focusing on protected

quantities, the holographic dictionary provides a bridge between the two description and
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might simplify this task.

Despite the tests we have performed, the precision holographic dictionary we have con-

structed cannot prove that the proposed holographic description of superstrata con-

ducted in [56–63, 112–114] is correct in all its details; the limitation being the one

discussed in Section 1.3: there can be many states with the same one-point function of

low dimensional chiral primary operators. Nonetheless, the fact that the candidate CFT

duals have passed the tests performed in Section 2.5 is non-trivial and provides strong

and stringent evidences on its validity.

This holographic description, moreover, shows that the coefficients in the geometry are

sourced by the operators in the CFT; this point of view might turn valuable in con-

structing new gravitational microstates: evaluating correlators in free CFT may in cer-

tain contexts be easier than solving the supergravity equation of motion. In particular,

it has been shown in this work that certain terms entering in the gravitational solution

that were determined using the so-called ”coiffuring” technique (i.e. by requiring the

smoothness of the geometry) could in principle have been predicted simply by comput-

ing correlators in the orbifold CFT: their CFT interpretation is simply a consequence of

the mixing between single and multi-trace operators.





Chapter 3

Supercharged AdS3 holography

This chapter contains the work presented in [2]. The main goal is to construct the

precision holographic dictionary in a novel sector of the theory and use it to perform

tests of supercharged superstrata [62] and of a family of multi-mode superstrata derived

in [63, 64]. The novel sector is given by superdescendants of chiral primary operators of

conformal dimension (1, 1).

As discussed in the previous chapter, the identification of the precise CFT operator

dual to a supergravity excitation is a non-trivial task, as it usually involves mixing

between single-trace and multi-trace operators that are degenerate in their quantum

numbers. In this chapter we resolve this mixing in the sector of interest by exploiting a

different strategy with respect to the one presented in Chapter 2. In particular, it has

been proposed in the context of AdS5×S5 holography that single-particle supergravity

excitations are dual to N = 4 SYM operators (in short multiplets) that are orthogonal

to all multi-trace operators [126, 127]. This property, in AdS5, uniquely fixes (up to a

normalization constant) the admixture between single and multi-trace operators in the

single-particle basis, and it has passed recent checks [127].

In this chapter we will consider this perspective in the context of AdS3×S3 and we

will discuss that in this case the situation is more complicated than in AdS5×S5. In

the AdS3 case, in fact, while orthogonality between single-particle operators and multi-

trace operators provides constraints, one must resolve additional operator mixing. Such

mixing has been studied previously in [107]. We will resolve this point fully in the sector

in which we work, by combining and improving upon the results of [1] and [107]. As we

will discuss in more detail later, this residual ambiguity in the AdS3 case is due to the

fact that there are degeneracies between single-trace operators, which are not present in

the AdS5 case.

We will construct the holographic dictionary in the single-particle basis as follows. First,

we recast the dictionary in Section 2.4.5 in the single-particle basis. On the CFT side,

53
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this requires taking slightly different admixtures of single and multi-trace operators,

such that all extremal three-point functions involving these operators vanish; on the

bulk side, we have to consider the expansion of different geometric quantities. Having

derived the mixing for chiral single-particle operators of dimension (1, 1), we generate

their superdescendants by using the supercharges of the small N = 4 superconformal

algebra: by construction, the resulting operators will be orthogonal to all multi-trace

operators.

Next, we use the method introduced in [115] to construct the gauge-invariant combina-

tions of supergravity fields that describe the single-particle excitations of interest. We

then determine the proportionality coefficient between the asymptotic expansion of these

gravitational quantities and the expectation values of the dual single-particle operators

by calibrating the holographic dictionary on some reference states. We finally check that

this proportionality coefficients is universal, i.e. depends only on the charges and moduli

of the theory, but not on the precise details of the microstate chosen for calibration.

Having derived the dictionary, we make two non-trivial holographic tests of super-

strata: first we test the coiffuring proposal of general non-supercharged superstrata

of [63, 64]. Second, we test a ‘hybrid’ superstratum involving both supercharged and

non-supercharged modes. These tests also represent further cross-checks on the holo-

graphic dictionary itself.

The structure of this chapter is as follows. In Sections 3.1 we report some technical

results relevant for the holographic description of supercharged superstrata. Section 3.2

is a review of relevant aspects of the supergravity theory, superstrata, and precision

holography. In Sections 3.4 and 3.5 we begin the construction of the dictionary in both

gravity and CFT. In Section 3.6 we fix the normalization coefficients in the dictionary

and perform tests of two distinct families of superstrata. In Section 3.8 we discuss our

results; technical details are recorded in four appendices.

To avoid confusions with other quantities, in this Section we will denote by k,m, n, q the

CFT paramenters that in the previous section were denoted by k,m, n, q.

3.1 Supercharged superstrata: some technical results

One of the aims of this project is to extend the tests on the recently constructed su-

percharged superstrata. Thus, let us resume the discussion in Section 2.5.1 in order to

derive and develop the technical results summarized in Eqs.(2.123) , (2.124) and (2.125)

for supercharged superstrata.

Chiral primary operators (CPOs) are the top components of the short multiplets of the

SU(1, 1|2)L × SU(1, 1|2)R symmetry. These operators, together with their descendants

under the generators of the anomaly-free part of the small N = (4, 4) superconformal
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State J3 L0 J̄3 L̄0 SU(2)1

|CP ⟩ h h h̄ h̄ 1

G2 |CP ⟩ h− 1 h+ 1 h̄ h̄ 1

Ḡ2 |CP ⟩ h h h̄− 1 h̄+ 1 1

GḠ |CP ⟩ h− 1/2 h+ 1/2 h̄− 1/2 h̄+ 1/2 1⊕ 3

G2Ḡ2 |CP ⟩ h− 1 h+ 1 h̄− 1 h̄+ 1 1

Table 3.1: Bosonic structure of the short multiplets. The group SU(2)1 is introduced at the
beginning of Section 2.2.

algebra, i.e. {J−
0 , L−1, G

−,A
−1/2} and {J̄

−
0 , L̄−1, Ḡ

−,A
−1/2}, play a central role in the construc-

tion of the holographic dictionary, because of their relation to single-particle excitations

in supergravity [128–130].

The bosonic structure of the SU(1, 1|2)L × SU(1, 1|2)R short multiplets is sketched in

Table 3.1. In Table 3.1, G2 is a short hand for the combination

G+1
− 1

2

G+2
− 1

2

+
1

2h
J+
0 L−1 , (3.1)

where h is the eigenvalue of L0 for the CPO we act upon; similarly for Ḡ2. By work-

ing with this linear combination, one obtains a state that is orthogonal to the other

descendants of the CPO, which is then dual to an independent supergravity fluctua-

tion [62, 76, 111]. Moreover, this combination gives a state that is an eigenstate of the

Casimirs of SU(2)L × SU(2)R and SL(2,R)× SL(2,R), as one can check making use of

the anomaly-free part of the chiral algebra in the NS-NS sector, composed of L0, L±1,

Ja0 , G
αA
±1/2. Setting temporarily m,n = 1, 0,−1 and r, s = ±1

2 , the anomaly-free part of

the chiral superconformal algebra is

[
Lm, Ln

]
= (m− n)Lm+n ,

[
Ja0 , J

b
0

]
= iϵabcJc0 ,

[
Ln, J

a
0

]
= 0 ,

[
Ja0 , G

αA
s

]
=

1

2
GβAs

(
σa
)α
β
,

[
Lm, G

αA
s

]
=
(m
2
− s
)
GαAm+s ,

{
GαAr , GβBs

}
= ϵαβϵABLr+s + (r − s)ϵAB

(
σaT

)α
γ
ϵγβJar+s ,

(3.2)

where a, b, c = {±, 3} are indices in the adjoint of SU(2)L. When discussing superstrata,

it will be convenient for our conventions to work with anti-chiral primary operators

(ACPOs): these are descendants of CPOs obtained acting the maximal number of times

with the generators J−
0 , J̄

−
0 and are characterized by h = −j, h̄ = −j̄.

The momentum-carrying building blocks of the 1/8-BPS states dual to superstrata are

the descendant states obtained by acting upon the anti-chiral primary
∣∣O−−

k

〉
NS
, which

corresponds to the RR ground state |00⟩k, with the holomorphic generators of the small

N = 4 superconformal algebra J+
0 , L−1 and G+A

− 1
2

. We will denote these by |k,m, n, q⟩,
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and one has [56–58, 60, 62, 63]

|k,m, n, q⟩ =
1

(m− q)!(n− q)!
(J+

0 )m−qLn−q
−1

(
G+1

− 1
2

G+2
− 1

2

+
1

k
J+
0 L−1

)q

|O−−
k ⟩NS , (3.3)

where the parameters can take values q = 0 or 1, n ≥ q, k > 0, and q ≤ m ≤ k− q [62]

(our notation follows [63]). We describe states with q = 1 as supercharged states. We are

interested in superstrata whose CFT dual state is made up of strands of type |k,m, n, q⟩
and the NS-NS vacuum |0⟩1: a basis for these states is given by the following eigenstates

of the SU(2)L × SU(2)R currents

ψ{N0,Ni} ≡ |0⟩
N0
1

∏

i

|ki,mi, ni, qi⟩Ni (3.4)

subject to the constraint that the total number of copies must saturate the strand-

budget:

N0 +
∑

i

kiNi = N (3.5)

The black hole microstates that are well described in supergravity limit are coherent

states [52] that are linear combinations of the ψ{N0,Ni}, weighted by complex coefficients

A,Bi

ψ({A,Bi}) ≡
∑

{N0,Ni}

′
[∏

i

(
A |0⟩1

)N0
(
Bi |ki,mi, ni, qi⟩

)Ni

]
. (3.6)

where the prime symbol denotes that the sum is subject to the constraint (3.5). In the

large N limit, the sum is peaked over some average numbers {N̄0, N̄i} of strands, which
are related to the complex coefficients A,Bi.

In Section 2.5.1 we reported the results of [103] and [60] concerning non-supercharged

superstrata (i.e. concerning the state (3.6) with qi = 0). We now generalize this dis-

cussion to the states (3.6) with generic qi: this will enable us to determine the norm

of (3.4), the average numbers {N̄0, N̄i} and the relation between the CFT coefficients

A,Bi and the supergravity one a, bi. These results will be used in the following sections.

The state ψ{N0,Ni} is univoquely determinated by the distribution of strands {N0, Ni}
(which define a conjugacy class of the permutation group SN ), and the quantum num-

bers (ki,mi, ni, qi) carried by each strand. Following [103] (see in particular Section 3),

we assign to ψ{N0,Ni} a norm given by the product of the number of ways one can gen-

erate the desired distribution of strands starting from the identity element of SN times

the norm of each strand |ki,mi, ni, qi⟩. The former is given by

N !

N0!
∏
iNi!k

Ni
i

(3.7)

In order to determine the norm of a single strand |k,m, n, q⟩, we will make use of Eq.

(3.2), the fact that an anti-chiral primary is killed by G−A
−1/2 and J−

0 (beside all pos-
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itive modes of the anomaly-free subalgebra) and the following relations on hermitian

conjugation:

(GαAn )† = −ϵαβϵABGβB−n (Jan)
† = J−a

−n (Ln)
† = L−n (3.8)

We start by considering m = n = q = 1, which gives:

⟨k, 1, 1, 1|k, 1, 1, 1⟩ = k2 − 1 . (3.9)

In order to compute the contribution to the norm coming from the contractions of the

J+
0 insertions, it is useful to consider the following state, using the shorthand m̂ = m−q:

J−
0

(
J+
0

)m̂(
G+1

− 1
2

G+2
− 1

2

+
1

k
J+
0 L−1

)q ∣∣O−−
k

〉

=
(
− 2(m̂− 1) + k− 2q + J+

0 J
−
0

)(
J+
0

)m̂−1
(
G+1

− 1
2

G+2
− 1

2

+
1

k
J+
0 L−1

)q ∣∣O−−
k

〉

= m̂

(
k− m̂+ 1− 2q

)(
J+
0

)m̂−1
(
G+1

− 1
2

G+2
− 1

2

+
1

k
J+
0 L−1

)q ∣∣O−−
k

〉
.

(3.10)

Here we have used the relations J3
0 |k, q, q, q⟩ = (− k

2+q) |k, q, q, q⟩ and J−
0 |k, q, q, q⟩ = 0.

Iterating this procedure and using (3.9) one obtains

⟨k,m, q, q|k,m, q, q⟩ =

(
k− 2q

m− q

)
(k2 − 1)q . (3.11)

We proceed similarly for the Virasoro generators, using n̂ = n− q:

L1

(
L−1

)n̂(
G+1

− 1
2

G+2
− 1

2

+
1

k
J+
0 L−1

)q ∣∣O−−
k

〉

= n̂
(
k+ n̂− 1 + 2q

)(
G+1

− 1
2

G+2
− 1

2

+
1

k
J+
0 L−1

)q ∣∣O−−
k

〉
.

(3.12)

Here we have used the relations L0 |k, q, q, q⟩ = ( k2 + q) |k, q, q, q⟩ and L1 |k, q, q, q⟩ = 0.

Iterating this procedure and using (3.9) one obtains

⟨k, q, n, q|k, q, n, q⟩ =

(
k+ n+ q− 1

n− q

)
(k2 − 1)q . (3.13)

Since the Virasoro generators commute with J±
0 , we can directly combine the results

in (3.9), (3.11) and (3.13) to obtain

⟨k,m, n, q|k,m, n, q⟩ =
(
k− 2q

m− q

)(
k+ n+ q− 1

n− q

)
(k2 − 1)q . (3.14)

This result, along with (3.7), gives the norm of the building-block state (3.4),

|ψ{N0,Ni}|2 =
N !

N0!

∏

i

1

Ni!

[(k2i − 1
)qi

ki

(
ki − 2qi
mi − qi

)(
ki + ni + qi − 1

ni − qi

)]Ni

. (3.15)
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This implies that the norm of the full coherent state (3.6) is

|ψ({A,Bi})|2 ≡
∑

{N0,Ni}

′ N !

N0!
|A|2N0

∏

i

1

Ni!

[
|B2

i |
(
k2i − 1

)qi
ki

(
ki − 2qi
mi − qi

)(
ki + ni + qi − 1

ni − qi

)]Ni

.

(3.16)

We now determine the average number of strands in the coherent state by requiring that

the variation of the summand of (3.16) with respect to N0, Ni vanishes [103], obtaining

N̄0 = |A|2 kiN̄i =
(
k2i − 1

)q
i

(
ki − 2qi
mi − qi

)(
ki + ni + qi − 1

ni − qi

)
|Bi|2 . (3.17)

This equation, combined with the strand budget constraint (3.5), implies

|A|2 +
∑

i

(
k2i − 1

)qi
(
ki − 2qi
mi − qi

)(
ki + ni + qi − 1

ni − qi

)
|Bi|2 = N . (3.18)

3.2 Supergravity and Superstrata

In this section we briefly review the supergravity theory in which we work, the su-

perstratum solutions we study, and the Kaluza-Klein spectrum of the six-dimensional

supergravity theory reduced on S3.

3.2.1 Six-dimensional supergravity fields

The D1-D5 system admits an AdS3 decoupling limit leading to configurations that have

AdS3×S3 ×M asymptotics [97]. In the limit in which the internal manifold M is mi-

croscopic, dimensional reduction of the 10-dimensional theory on M gives a D = 6

supergravity theory with n tensor multiplets1, whose equations of motion were first de-

rived by Romans in [131]. The bosonic field content of the theory is as follows: a graviton

gMN (M,N = 0, ..., 5 are curved 6D indices), 5 two-forms whose field strengths Hm are

selfdual (m = 1, ..., 5 is a vector index of SO(5)), n two-forms whose field strengths Hr

are anti-selfdual (r = 6, ..., n+5 is a vector index of SO(n)) and 5n scalars ϕmr. Dimen-

sional reduction on the T 4 also gives rise to 16 vectors: their CFT duals, however, belong

to the short multiplets of fermionic CPOs and we shall not consider them further in the

present work. The scalars live in the coset space SO(5, n)/(SO(5)× SO(n)), which can

be parametrized by vielbeins (V m
I , V r

I ) where I = (m, r) is an SO(5, n) vector index.

We also introduce field strengths GI which are related to the selfdual and anti-selfdual

1Some details of the theory change depending on whether the internal manifold is T 4 or K3. In the
first case the number of supersymmetries is N = (2, 2), while in the other one has N = (2, 0). Note
that this is the 6D supersymmetry counting. Let us take the case of T4: N = (2, 2) supersymmetries in
6D means that we have 32 supercharges. The addition of D1 and D5 branes leaves unbroken 1/4 of the
supercharges; moreover, when performing the near horizon limit the supercharges get enhanced to 16,
which is exactly the number of supercharges of the D1-D5 dual CFT. Moreover, n = 5 when the internal
manifold is T 4 while n = 21 when M = K3.
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field strengths through the vielbeins via Hm = GIV m
I and Hr = GIV r

I . In order to

support the global AdS3× S3 vacuum, one must turn on one of the fluxes, which we will

take to be Hm=5. We parametrize fluctuations of the six-dimensional supergravity fields

around the AdS3× S3 background as follows:

gMN = g0MN+hMN , G(A) = g0(A)+g(A) , V m
I = δmI +ϕ(mr)δrI , V r

I = δrI+ϕ
(mr)δmI .

(3.19)

The explicit expression for the background fields g0MN and g0(A) is given in Eq. (3.29)

below.

3.2.2 Superstrata

In this subsection we briefly review certain aspects of superstrata that will be relevant

to the remainder of the chapter.

Superstrata are supersymmetric supergravity solutions in which the isometries preserved

by the corresponding black hole solution are broken by momentum-carrying waves, see

e.g. [56–64, 132, 133]. These include the first families of smooth horizonless solutions with

large BTZ-like AdS2 throats, general angular momentum, and identified holographic

duals in the AdS3 limit [58, 60]. In the D1-D5-P frame, these are typically constructed

in the context of the general 1/8-BPS ansatz of Type IIB supergravity that carries D1,

D5, P charges and is invariant on M. This was derived in [134] and is reproduced in

Appendix C for completeness.

Upon reduction to 6D, this ansatz gives rise to minimal 6D supergravity coupled to

n = 2 tensor multiplets, which we will take to be labelled by r = 6, 7. The main interest

of this work will be the holographic dictionary involving the field strength G6 and G7.

Let us therefore discuss the relation between these fields and those given in Appendix

C. The 6D metric takes the form

ds26 = −
2√
P
(dv + β)(du+ ω +

F
2
(dv + β)) +

√
Pds24 . (3.20)

We first define the following three-form field strengths (here and until the end of the

subsection we use a, b = 1, 2, 4)

Ga = d
[
− 1

2

ηabZb
P

(du+ ω) ∧ (dv + β)
]
+

1

2
ηab ⋆4 DZb +

1

2
(dv + β) ∧Θa (3.21)

where

η12 = η21 = −η44 = 1 , P = Z1Z2 − Z2
4 . (3.22)

The field strengths Ga respect the self-duality condition:

⋆6 G
a =Ma

bG
b, Mab =

ZaZb
P
− ηab. (3.23)
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The Ga arise from the dimensional reduction of the type IIB field strengths of C2, C6 and

B, see App. C. The relation between these three-forms and the field strengths G5, G6, G7

introduced above was derived in [55] and in our conventions is given by

G5 =
Q1G

1 +Q5G
2

2Q1Q5
, G6 = −Q1G

1 −Q5G
2

2Q1Q5
, G7 =

1√
Q1Q5

G4 . (3.24)

The scalar fields ϕ(56) and ϕ(57) arise from the dilaton, C0, and the component of C4 with

all legs onM. These can be obtained from the vielbein matrix in [55, Eqs. (3.33), (B.20)],

along with Eq. (3.19). In our conventions they take the form

ϕ(56) =
1

2
√
Q1Q5

(
Q1Z1 −Q5Z2√

Z1Z2

)
, ϕ(57) =

Z4√
Z1Z2

. (3.25)

The general structure of superstratum solutions is as follows. The construction begins

with a seed solution which is usually taken to be a circular supertube [44, 45] with

characteristic length-scale a. Momentum-carrying waves are added by a linear superpo-

sition of terms within the linear system of BPS equations, specifically at the level of the

“first layer” recorded in Eq. (C.8). These momentum-carrying waves come with a set of

dimensionful Fourier coefficients bi. This construction is designed to correspond to the

structure of the CFT states in Eq. (3.6). For further details, see e.g. [60, 63].

Smoothness of the supergravity solutions imposes the relation [63, Eq. (4.13)–(4.14)]

Q1Q5

R2
= a2 +

∑

i

b2i
2
x̂i , x̂i = (

(
ki − 2qi
mi − qi

)(
ki + ni + qi − 1

ni − qi

)
(k2i − 1))−1 (3.26)

which has the same form of the CFT strand budget constraints (3.5), (3.18), and in-

deed this is no accident. By comparing the two, the proposed superstratum holographic

dictionary involves the following map between the CFT coefficients A,Bi and the su-

pergravity coefficients a bi:

A√
N

= R

√
1

Q1Q5
a ≡ a ,

Bi√
N

= R

√
1

2Q1Q5

((ki − 2qi
mi − qi

)(
ki + ni + qi − 1

ni − qi

)
(k2 − 1)q

)−1
bi

=

√
1

2

((ki − 2qi
mi − qi

)(
ki + ni + qi − 1

ni − qi

)
(k2 − 1)q

)−1
bi ,

(3.27)

where we have also defined the quantities a, b which will be used later in the chapter.
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3.3 Kaluza-Klein spectrum

In order to discuss the Kaluza-Klein spectrum of the 6D theory compactified on the

S3 [128, 130] (see also e.g. [54, 62]), we must expand the six-dimensional fluctuations in

harmonics of S3. Before doing this, however, it is convenient to perform the following

rescalings:

r → a0 r̃ , t→ Ry t̃ , y → Ry ỹ , β → Ry β̃ , ω → Ry ω̃ , Zi →
Z̃i
a20
, (3.28)

with a20 ≡ Q1Q5

R2
y

. We then reabsorb the overall scale factor
√
Q1Q5 in the metric2 to

obtain

g
(0)
MN =

dr̃2

r̃2 + 1
− (r̃2 + 1)dt̃2 + r̃2dỹ2 + dθ2 + sin2 θdϕ2 + cos2 θdψ2 ,

g0(A=5) = cos θ sin θdϕ ∧ dψ ∧ dθ − r̃dr̃ ∧ dt̃ ∧ dỹ , g0(A ̸=5) = 0 .

(3.29)

We now introduce a multi-index I for the S3 harmonic degree k and (j3, j̄3) quantum

numbers, I = (k,m, m̄). In some places we will write k explicitly, and continue to use I

for the remaining quantum numbers (m, m̄). Harmonics on S3 and AdS3 are reviewed

in Appendix A. We split the 6D curved indices into AdS3 indices µ, ν = 0, 1, 2 and S3

indices a, b = 1, 2, 3. The subscript (ab) denotes the symmetric traceless component

of the field. Then expanding the six-dimensional fluctuations in harmonics of S3, one

obtains [54, 128]

hµν =
∑

hIµνY
I

hµa =
∑

hI(v)µY
I
a + hI(s)µDaY

I

h(ab) =
∑

ρIY I
(ab) + ρI(v)DaY

I
b + ρI(s)D(aDb)Y

I

haa =
∑

πIY I

gAµνρ =
∑

3D[µb
(A)I
νρ] Y

I

gAµνa =
∑

b(A)Iµν DaY
I + 2D[µZ

(A)I
ν] Y I

a

gAµab =
∑

DµU
(A)IϵabcD

cY I + 2Z(A)I
µ D[bY

I
a]

gAabc = −
∑

ϵabcΛ
IU (A)IY I

ϕmr =
∑

ϕ(mr)IY I .

(3.30)

In what follows, the main focus will be on the AdS3 vector fields Z
(A=6)I
µ ≡ Z

(6)I
µ and

Z
(A=7)I
µ ≡ Z

(7)I
µ , obtained by expanding in S3 harmonics the field strengths G6 and G7

introduced in (3.24).

2This step allows us to use Eq. (3.44) in the form given.
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3.4 Constructing the supercharged holographic dictionary

In this section we review the single-particle basis and use it derive the correspondence

between the operators of interest and their dual bulk fields. In Section 3.4.1 we discuss

how the single-particle basis can be used to determine most, but not all, of the mixing

between single and multi-trace operators from CFT arguments alone. In Section 3.4.2

we compute the gauge-invariant fluctuations of supergravity fields that are dual to the

CFT operators of interest. In Section 3.5 we derive the holographic map in the sector

we study, in the single-particle basis. This involves resolving the operator mixing by

combining and refining the results of [1] and [107]. In Section 3.5.1 we then generate the

superdescendants within this supermultiplet that we use in the remainder of the work.

In Section 3.5.2 we record the explicit holographic dictionary in the single-particle basis

for convenient reference.

3.4.1 Single-particle operator basis

AdS/CFT duality relates AdS fields and boundary CFT operators through a matching

of the observables of the theories; we shall focus on protected correlation functions,

which can be compared between supergravity and the orbifold CFT.

On the bulk side, correlation functions can be computed by dimensionally reducing the

6D Lagrangian on S3: the AdS3 action takes the schematic form

SAdS3 ∼
∫

AdS3

(
L2 + L3 + · · ·

)
(3.31)

where Ln contains the interactions between n KK modes and is relevant for computing

n-point functions and higher.

The first ingredient in the holographic dictionary is the identification of the quantum

numbers of the fields and the dual operators. With linear field redefinitions one can

diagonalize the quadratic term L2, and thus identify the quantum numbers that the

CFT operators dual to each supergravity field must carry.

On the CFT side, however, there are degeneracies: in general there are single and multi-

trace operators with the same quantum numbers. A further complication in the AdS3

case (which is absent, for example, in the long-studied case of AdS5) comes from the

fact that there are degeneracies also between the single-traces: as discussed in Section

2.4, the chiral primaries Σ3 and Ω cannot be distinguished by their quantum numbers.

In order to identify the mixing matrix, one must analyze the three-point functions on

both sides of the duality [120, 135–137]. On the gravity side, these are generated by con-

sidering the cubic Lagrangian L3. The cubic Lagrangian was derived in [137] and a priori

involves derivative couplings. It was shown, however, that the derivative couplings can
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be reabsorbed via a non-linear redefinition of the fields. While this transformation does

not change non-extremal three-point functions, it has been emphasized in [108, 109, 116]

that extremal three-point functions require special attention. An important fact is that

non-derivative extremal cubic couplings vanish. This is no coincidence: in the extremal

case, the spacetime integral that occurs in the Witten diagram diverges, so the extremal

coupling must vanish in order to avoid a divergence in the value of the correlator. The

extremal correlator can still gain contributions from the derivative couplings in the La-

grangian, since they give rise to boundary terms upon partial integration [108]. The

field redefinition, however, removes the derivative terms and thus all extremal three-

point functions vanish.

The bulk field redefinition is interpreted on the CFT side as a change of basis [109],

since it amounts to forming an admixture between the operator dual to the original

field and certain multi-trace operators. By AdS/CFT, in this basis all CFT extremal

three-point functions vanish. Let us denote by Φi the AdS field with respect to which

the Lagrangian contains derivative terms, and let us denote its CFT dual by O∆i . Then

the operator Õ∆i dual to the redefined field Φ̃i will take the form:

Õ∆i = O∆i +
1√
N

∑

k

cikO∆i−∆kO∆k + . . . , (3.32)

where the ellipses denote other double-traces or higher multi-trace operators, the only

constraint being that they must have the same quantum numbers as the operator O∆i .

Note that the operators O∆
i and Õ∆

i coincide if ∆i = 1, as at dimension one the spectrum

of the theory consists only of single-trace operators.

In generic correlators, the contribution of the double-trace operators to the correlator is

subleading in the 1/N expansion (see e.g. the discussions in [107, 108]). This is the CFT

version of the bulk statement that the field redefinition Φi → Φ̃i leaves non-extremal

correlators unchanged. However for certain correlators, the double-traces contribute at

leading order in large N . This happens in extremal correlators and also in certain (non-

extremal) mixed heavy-light correlators. In this work we are interested in precisely such

mixed heavy-light correlators.

In recent work it was proposed that single-particle supergravity excitations around global

AdS5×S5 are dual to CFT operators (in short multiplets) that are orthogonal to all multi-

trace operators [126]. This was then extensively used in [127] to discuss the properties

of the single-particle operator basis in free N = 4 SYM.3

We now argue that the redefinition that removes cubic couplings gives rise to precisely

the same set of single-particle CFT operators defined as those that are orthogonal to all

multi-trace operators. We follow in part the discussions in [108, 139]. First of all, we

recall that conformal symmetry implies that a two-point function can be non-zero only

3See also [138] for further discussion.
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if the two operators have the same dimension. To show that an operator with dimension

k1 is a single-particle operator, we must therefore show that it has vanishing two point

function with all multi-traces
(
Ok2Ok3

)
(z) such that k1 = k2+k3. The first non-singular

term in the OPE Ok2(z2)Ok3(z3), with coefficient one, is the multi-trace
(
Ok2Ok3

)
(z2).

Now consider the extremal (k1 = k2 + k3) three-point function (the coefficient c is zero

in this basis however we keep it for convenience)

⟨Ok1(z1)Ok2(z2)Ok3(z3)⟩ =
c

(z1 − z2)2k2(z1 − z3)2k3
. (3.33)

By taking the z2 → z3 limit (which is smooth at extremality) one obtains

⟨Ok1(z1)
(
Ok2Ok3

)
(z2)⟩ =

c

(z1 − z2)2k1
. (3.34)

This shows the equivalence of the single-particle CFT basis of [126, 127] and the CFT

basis dual to supergravity fields with derivative cubic couplings removed. The vanishing

of the three-point coefficient c in (3.33) implies the orthogonality between the operator

Ok1 and all multi-particle operators in Eq. (3.34), and vice versa4.

Before proceeding to our analysis let us make a few comments on the derivation of

the holographic dictionary for scalar operators of dimension two in Chapter 2. In that

chapter we did not use the single-particle basis, however we shall use the single-particle

basis in the present work, so let us describe the difference in the two approaches.

The method used in Chapter 2 was as follows. First, the most general linear combination

of single and double-trace operators allowed by the quantum numbers was worked out

(higher multi-trace operators are trivially absent at dimension two). Then a set of

different backgrounds were considered, for which there was already a well-established

holographic description (the two-charge Lunin-Mathur solutions [47]). CFT expectation

values of these light fields in a selection of these heavy states were then matched to the

expansion of the dual bulk fields identified in [54] and [55]. By considering an exhaustive

set of examples, the combinations of single and multi-trace operators in the CFT dual to

certain supergravity fluctuations were fixed, as were the overall normalization coefficients

of the holographic dictionary in this sector.

In the present project we work in the single-particle basis. In this basis, the identification

of the single-particle operators partially reduces to the identification of the operators

4Following this discussion, in order to make contact with the AdS5 literature, we find it useful to
modify the definition of the multi-trace operators given in Eq. (2.39). In this section we will define scalar
multi-trace operators of dimension two as follows:

(Σ2 · Σ2)
++ ≡ 2

N2

∑

(r<s),(p<q)

σ++
(rs)σ

++
(pq) , (J · J̃)++ ≡ 1

N

∑

r,s

J+
(r)J̃

+
(s) ,

(Σ2 ·O)++ ≡
√
2

N3/2

∑

r<s
t

σ++
(rs)O

++
(t) , (O ·O)++ ≡ 1

N

∑

r,s

O++
(r) O

++
(s)

(3.35)
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that have the property that all their extremal three point functions vanish. This is

purely a CFT computation, which works as an input in constructing the holographic

dictionary. Importantly, this does not resolve all the mixing, as we shall discuss shortly.

3.4.2 Gauge-invariant combinations of supergravity fields

We now determine the gauge-invariant combinations of supergravity fluctuations that

are dual to the operators we consider.

Not all the fluctuations in the KK harmonic expansion (3.30) are independent: some

of them are connected to the background fields or to other fluctuations through small

coordinate transformations. For instance, consider the vacuum state, which corresponds

to empty global AdS3× S3. If one performs a change of coordinates that dies off at

infinity, one can turn on some of the AdS3 fields in the KK harmonic expansion (3.30).

Of course these are not physical excitations and there are no boundary operators that

source them.

In the study of the KK spectrum in [128], the authors dealt with this redundancy by

fixing the (de Donder) gauge. Here we follow instead the gauge-invariant KK reduction

method developed in [115]. The strategy is to organize the AdS3 fields in combinations

that have the correct transformation properties under a gauge transformation.

The coordinate transformation

xM → x′M = xM − ξM (3.36)

generates a perturbation of the metric and three-form which, up to linear order in the

gauge parameter, reads

δhMN = DMξN +DNξM +DMξ
RhRN +DNξ

RhRM + ξRDRhMN ,

δgAMNP = 3D[Mξ
RgoANP ]R + 3D[Mξ

RgANP ]R + ξRDRg
A
MNP .

(3.37)

In order to deal with the non-linear terms, one must project onto the basis of S3 har-

monics.

As we will discuss in Section 3.5.2, to study supercharged superstrata we will need to

construct the holographic dictionary for the AdS3 vector fields Z6
k=1 and Z7

k=1. The

operators dual to Z(6)k=1 and Z(7)k=1 have dimension 3: in principle, we would need

the transformation up to second order in the gauge parameter [140, 141], namely the

terms quadratic in ξ and linear in g0(A). However, since g0(A) = 0 for A ̸= 5, these terms

do not contribute in the analysis of the vector fields in the tensor multiplets and so the

gauge-invariant combinations up to the order we are interested in can be obtained using

Eq. (3.37). Using the KK spectrum (3.30) together with the decomposition of ξM in
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harmonics,

ξµ =
∑

I

ξIµY
I , ξa =

∑

I,J

ξIvY
I
a + ξJsDaY

J , (3.38)

one obtains that under a small diffeomorphism, the second order transformation of

Z(6)k=1 and Z(7)k=1 reads (here A ̸= 5, so for us A = 6, 7):

δZ(A)K
µ = DµU

(A)J
[
ξIs (n

v
IJK + cvIJK) + ξIv(p

v
IJK + gvIJK)

]

− EJIK
λk

[
Dµξ

IνDνU
(A)J + ξIνDνDµU

(A)J
]
− ΛkEKIJ

λ2k
ϵµνρξ

IνDρU
(A)J

− ΛjU
(A)J

λk

[
Dµξ

I
vfIJK +Dµξ

I
sEIJK

]
,

(3.39)

where the degree k associated with the multi-index K must be equal to 1 in order for

the equality to hold. The triple overlap coefficients nvIJK , c
v
IJK , p

v
IJK , g

v
IJK , EIJK are

defined in Appendix A.1.3.

The gauge-invariant combination associated with the (A ̸= 5) field Z
(A),k=1
µ will take

the form Z
(A),k=1
µ = Z

(A),k=1
µ + ... , where the ellipses represent fields and product of

fields such that their transformation properties compensate those on the right-hand side

of (3.39), such that the redefined field has the correct transformation properties. With

this aim, we consider linear-order variations of

h(ab) =
∑

I,J,K

ρItY
I
ab + ρJvD(aY

J
b) + ρKs D(aDb)Y

K ,

hµa =
∑

I,J

hv,Iµ Y I
a + hs,Jµ DaY

J ,
(3.40)

where (ab) denotes symmetric traceless. The transformations read:

δh(ab) = Daξb +Dbξa = 2ξIvD(aY
I
b) + 2ξJsD(aDb)Y

J ,

δhµa = Dµξa +Daξµ = Dµξ
I
vY

I
a + (Dµξ

J
s + ξJµ )DaY

J .
(3.41)

We thus obtain

δρIv = 2ξIv , δρIs = 2ξIs , δĥs,Iµ = ξIµ , δhv,Iµ = Dµξ
I
v , (3.42)

where we have defined ĥs,Iµ = hs,Iµ − 1
2Dµρ

I
s. One can further check that the fields

U (A ̸=5)k=1 are gauge invariant, so one has (again for A ̸= 5)

Z(A)K
µ = Z(A)K

µ +
EJIK

λk
(ĥs,I,νDνDµU

(A)J +Dµĥ
s,I,νDνU

(A)J)

+
EKIJ

λ2k
ϵµνρĥ

s,I,νDρU
(A)J +

ΛjU
(A)J

λk
(
1

2
Dµρ

I
vf

IJK +
1

2
Dµρ

I
sE

IJK)

−DµU
(A)J(

1

2
ρIsn

v
IJK +

1

2
ρIvp

v
IJK +

1

2
ρIsc

v
IJK +

1

2
ρIvg

v
IJK) .

(3.43)
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In the following sections, we will also review the holographic dictionary for CPOs of

dimension one and scalar chiral primaries of dimension two. Discussing this dictionary

in an explicit gauge-invariant fashion requires studying the gauge-invariant combinations

associated to other fields. In practise however, it is often convenient to partially fix the

gauge and use the holographic dictionary in a preferred system of coordinates, and we

will do this explicitly in Appendix E.

3.5 Refining the existing holographic dictionary

The action for the AdS3 fields is obtained by substituting the KK harmonic expan-

sion (3.30) into the six-dimensional Lagrangian. This procedure leads to a three-

dimensional Lagrangian which has a non-diagonal mass matrix. The duality between

3D fields and operators prescribes that the dimension of the operator corresponds to the

energy of the bulk excitation. Thus in order to identify the AdS fields dual to the oper-

ator of the D1-D5 CFT, one must perform the linear field redefinition that diagonalizes

the mass matrix.

Moreover, as discussed in Section 3.4.1, by performing quadratic field redefinitions it

is possible to recast the cubic Lagrangian into a form with no derivative couplings:

this corresponds to the basis of single-particle excitations. For a general discussion we

refer to [128, 137]; here we just discuss the AdS fields that will enter the holographic

dictionary we are going to construct. Recall that in [128, 137] the KK spectrum has been

studied in de Donder gauge, while we are interested in a gauge independent discussion.

It follows from [115] that this can be obtained by simply replacing the fields with the

corresponding gauge-invariant combination: in the following, unless explicitly stated,

this replacement will be understood.

The field redefinitions that diagonalize the linearized field equations are (r = 6, 7)

s
(r)k
I =

√
k√

k + 1

(
ϕ
(5r)k
I + 2(k + 2)U

(r)k
I

)
,

σkI =

√
k(k − 1)

3
√
k + 1

(
6(k + 2)U

(5)k
I − πkI

)
,

A
(±)k
Iµ = ±2Z(5)(±)k

Iµ − h(±)k
Iµ , Z

(r)k
Iµ → 4

√
k + 1Z

(r)k
Iµ ,

(3.44)

where the superscripts (±) are used to distinguish the fields that couple to left (+)

and right (−) SU(2) vector harmonics. The overall k-dependent factors are needed to

canonically normalize the quadratic Lagrangian [137]. These fields have masses:

m2
s(r)k

= m2
σk = k(k − 2) , mA(±)k = k − 1 , mZ(r)k = k + 1 . (3.45)
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Restriction to fields with low k

We focus on the low-order fields, in particular we shall restrict to s(r)k with k = 1, 2 ;

σk with k = 2 ; A(±)k with k = 1 ; and Z(r)k with k = 1. Among these fields, only

σk=2 has a cubic coupling involving derivatives: the equation of motion reads5

✷σ
(k=2)
I =

11

12
√
2

∑

r=6,7

(
s
r(k=1)
i s

r(k=1)
j −Dµs

r(k=1)
i Dµs

r(k=1)
j

)
aIij , (3.46)

where aIij is defined as the following triple overlap in Eq. (A.9).

Following the discussion in Section 3.4.1, we wish to remove the derivative couplings,

which can be done with the following field redefinition:

σ
(k=2)
I → σ̃

(k=2)
I = σ

(k=2)
I +

11

24
√
2

∑

r=6,7

s
r(k=1)
i s

r(k=1)
j aIij . (3.47)

We now identify the single-particle operators of the D1-D5 CFT that are dual to the

fields in Eqs. (3.44) and (3.47). At dimension one there are no multi-trace operators, nor

there are degeneracies among the single traces, so the basis of single-trace and single-

particle operators coincide. The explicit dictionary for these fields was derived in [103]

and is recorded in Table 3.2 below.

For dimension two operators the situation is more complicated, as follows. The spectrum

of single-trace CPOs discussed in Section 2.3 splits into two subsectors, according to the

quantum numbers. The supergravity theory has an SO(n) symmetry that acts on the

tensor multiplets. However, in the full string theory theory, only an SO(n−1) subgroup

is preserved [107]. From a CFT point of view, the symmetry breaking to SO(n − 1)

is related with a marginal deformation (see e.g. [142] for a discussion on the marginal

deformation of the D1-D5 CFT) that connects the orbifold point with the supergravity

point in the moduli space. This means that the dimension two operator O2 can only

mix with the double trace (Σ2 · O). By contrast, since Σ3 and Ω are scalars under this

SO(n − 1), they mix with each other and with the multi-traces (Σ2 · Σ2), (J · J̄) and

(O ·O). This has been explicitly verified in [1] (see Chapter 2).

We have already observed around Eq. (2.59) that all extremal three-point functions

involving the operator Õ2 introduced in Section 2.3.1 vanish. This implies that the

single-particle CPO in the first of these subsectors is [1]

Õ++
2 =

(√2O++
2

N
− 1√

N
(Σ2 ·O)++

)
. (3.48)

The coefficient in front of O++
2 is chosen such that this first term on the right-hand side

is a unit-normalized operator in the large N limit. Since (Σ2 · O) is unit-normalized at

5This is [54, Eq. (5.8)] with implemented SO(h1,1(M) + 1) invariance.
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large N , the full operator Õ++
2 also has unit norm at large N . We observe that the

mixing coefficient between the unit-normalized operators scales as 1/
√
N . We will see

that this is a general feature of all the examples we study.6 As noted above, in generic

correlators the multi-trace contribution is subleading at large N , however in extremal

or certain heavy-light correlators it can contribute at leading order in large N . We

note that for this operator, all coefficients are fixed from CFT considerations: this is a

consequence of the fact that there is no degeneracy among single trace operators in this

sector.

In the second subsector, Σ3 and Ω mix among themselves, and also with the multi-

traces (Σ2 · Σ2), (J · J̄) and (O · O). CFT considerations alone are not sufficient to

identify the two individual single-particle CPOs: if one imposes orthonormality and

orthogonality with all multi-traces, one is left with a one-parameter family of possible

pairs of candidate single-particle operators. We discuss this and the following steps

in more detail in Appendix D. To proceed, we fix the mixing among the single-traces

Σ3 and Ω using additional information from comparison with supergravity, using the

mixing matrix derived in [107]. Once we incorporate this single-trace mixing, imposing

orthonormality and orthogonality with all multi-traces determines all the remaining

admixture coefficients, resulting in the single-particle operators:

Σ̃++
3 ≡ 3

2

[(
Σ++
3

N
3
2

− Ω++

3N
1
2

)
+

1

N
1
2

(
−2

3
(Σ2 · Σ2)

++ +
1

6
(O ·O)++ +

1

3
(J · J̄)++

)]
,

Ω̃++ ≡
√
3

2

[(
Σ++
3

N
3
2

+
Ω++

N
1
2

)
+

1

N
1
2

(
−(Σ2 · Σ2)

++ − 1

2
(O ·O)++ − (J · J̄)++

)]
.

(3.49)

Let us make a similar comment on the factors of N and numerical coefficients in

Eq. (3.49). The linear combinations of the single-particle operators inside Σ++
3 and

Ω++ ensure that these single-trace combinations (and thus the full single-particle oper-

ators) are orthonormal in the large N limit, as we discuss in more detail in Appendix D.

Again the admixture coefficients between the unit-normalized single-traces and multi-

traces are of order 1/
√
N ; in generic correlators the contributions from the multi-traces

are subleading; but in extremal or certain heavy-light correlators, the multi-traces con-

tribute at leading order in large N .

We now make two observations. We note that in this work, the coefficients of the

multi-traces have been derived from a purely CFT calculation of orthogonality with

all multi-traces. The only direct supergravity input here is the mixing between Ω and

Σ3 derived in [107]. This contrasts with the method of [1] which fixed the multi-trace

coefficients holographically. The fact that these two methods agree is non-trivial, and is

6The scaling of 1/
√
N per additional trace for the mixing coefficients of multi-trace operators has

appeared before in discussions of extremal correlators [107]. Note that in the case of a bound state of
N3 D3 branes giving rise to SU(N3) N = 4 SYM, the analogous scaling of such admixture coefficients
is 1/N3 per additional trace (see e.g. [127] and references within).
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AdS3 field Dual operator (jsl, j̄sl) (jsu, j̄su)

s(6)k=1 Σ2 (12 ,
1
2) (12 ,

1
2)

s(6)k=2 Σ̃3 (1, 1) (1, 1)

s(7)k=1 O (12 ,
1
2) (12 ,

1
2)

s(7)k=2 Õ2 (1, 1) (1, 1)

σ̃k=2 Ω̃ (1, 1) (1, 1)

A
(+)k=1
µ J (1, 0) (1, 0)

A
(−)k=1
µ J̄ (0, 1) (0, 1)

Z
6(−)k=1
µ GGΣ̃3 (2, 1) (0, 1)

Z
7(−)k=1
µ GGÕ2 (2, 1) (0, 1)

Table 3.2: This table shows the duality between AdS3 fields and the CFT operator. We denote
with (jsl, j̄sl) the quantum numbers associated with the Casimirs of the two copies of SL(2,R)
and with (jsu, j̄su) those associated to the Casimir of the two copies of SU(2)

explored further in Appendix E.

Secondly, let us emphasize that the non-trivial mixing between Ω and Σ3 demonstrates

that there is no one-to-one correspondence between k-cycles in the CFT and single-

particle supergravity excitations, even at the level of single traces: single-particle states

in the bulk are dual to a linear combination of single cycles of the symmetric group

(c.f. the discussions in [62, 107]).

3.5.1 Supercharged CFT operators

In the following, we will construct the holographic dictionary for the bosonic 1/8-BPS

supercharged descendants of the single-particle operators Õ2 and Σ̃3. We denote these

by GGÕ2 and GGΣ̃3 respectively, and we obtain:

(
GGÕ2

)(0,a) ≡ 1√
3

(
G+1

− 1

2

G+2
− 1

2

+
1

2
J+
0 L−1

)
Õ−,a

2

=
1√
3

(
G+1

− 1

2

G+2
− 1

2

+
1

2
J+
0 L−1

)[√2O2

N
− 1

N1/2
(Σ2 ·O)

]−,a

, (3.50)

(
GGΣ̃3

)(0,a) ≡ 1√
3

(
G+1

− 1

2

G+2
− 1

2

+
1

2
J+
0 L−1

)
Σ̃−,a

3

=

√
3

2

(
G+1

− 1

2

G+2
− 1

2

+
1

2
J+
0 L−1

)[( Σ3

N
3

2

− Ω

3N
1

2

)
− 1

N
1

2

(
2

3
(Σ2 · Σ2)−

1

6
(O ·O)− 1

3
(J · J̄)

)]−,a

.

The overall numerical coefficients follow from Eqs. (3.9), (3.48) and (3.49) and are re-

quired to normalize the operators to one at large N . Being descendants of single-particle

operators, they are orthogonal to all multi-trace operators. They carry quantum num-

bers (jsl, j̄sl) = (2, 1) associated with the Casimirs of the two copies of SL(2,R) and
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quantum numbers (jsu, j̄su) = (0, 1) associated to the Casimirs of SU(2)L×SU(2)R (we

refer the reader to Appendix A for explicit definitons).

Using the relation between the mass m of a field in AdSd+1 and the dimension of the

dual operator (see for example [100]) one can identify the map between single-particle

operators and AdS3 fields. The residual degeneracy between s(6)k=2 and σ̃k=2 can be

fixed by comparing non-extremal three-point functions [107]: s(6)k=2 is dual to Σ̃3 and

σ̃k=2 is dual to Ω̃. These results are recorded in Table 3.2.

3.5.2 Refined holographic dictionary at dimension one and two

For convenient reference we now record the holographic dictionary for CPOs of dimension

one and scalar CPOs of dimension two derived in [1, 54, 55, 103], after having recasted

it in the single-particle basis. The dictionary relates the asymptotic expansion of the

AdS3 fields in a non-trivial background with the expectation value of the dual operators

O in the dual heavy CFT state |H⟩,

⟨O⟩ ≡ ⟨H| O(t̃, ỹ) |H⟩ , (3.51)

where (t̃, ỹ) is a generic insertion point on the CFT cylinder. We remind the reader that

the coordinates r̃, t̃ and ỹ are defined in Eq. (3.28).

For scalars, the holographic prescription relates the expectation value of a scalar operator

of dimension ∆ with the coefficient of r̃−∆ of the large r̃ expansion of the dual scalar

field. The mass of the scalar fields s(r)k and σk in Eq. (3.45) implies that their dual

operators have dimension ∆ = k. This motivates introducing the following asymptotic

expansion of scalar fields: we denote with
[
Φk

]
the first non-vanishing term7 of the

expansion of the scalar field Φk,

Φk =

[
Φk

]

r̃k
+O(r̃−(k+1)) . (3.52)

Similarly, for the one-forms A
a(±)
k=1 we expand as [54, 143]

A
a(±)
k=1 =

[
A
a(±)
k=1

]
(dt̃± dỹ) +O(r̃−1) . (3.53)

7Here we are restricting our attentions to solutions describing heavy states within the same holo-
graphic CFT, rather than deformations of the holographic CFT, i.e. when there are no non-normalizable
modes.
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We then have the dictionary

√
2

N
⟨Σαα̇2 ⟩ = (−1)αα̇

√
N√
2

[
s
(6)(−α,−α̇)
k=1

]
,

1√
N
⟨Oαα̇⟩ = (−1)αα̇

√
N√
2

[
s
(7)(−α,−α̇)
k=1

]
,

1√
N
⟨J±⟩ = −

√
N√
2

[
A

∓(+)
k=1

]
,

1√
N
⟨J̄±⟩ = −

√
N√
2

[
A

∓(−)
k=1

]
,

1√
N
⟨J3⟩ = −

√
N

2

[
A

0(+)
k=1

]
,

1√
N
⟨J̄3⟩ = −

√
N

2

[
A

0(−)
k=1

]
,

⟨Õa,ȧ2 ⟩ = (−1)a+ȧ
√
N√
2

[
s
(7)(−a,−ȧ)
k=2

]
, ⟨Σ̃a,ȧ3 ⟩ = (−1)a+ȧ

√
N√
2

[
s
(6)(−a,−ȧ)
k=2

]
,

⟨Ω̃a,ȧ⟩ = −(−1)a+ȧ
√
N√
2

[
σ̃
(−a,−ȧ)
k=2

]
.

(3.54)

The numerical coefficients and factors of N on the left hand side of each equality are

such that the operators are unit-normalized at large N . With this choice, we note that

the coefficients in the first and fourth lines of the dictionary respect the SO(n) symmetry

between the n tensor multiplets of the supergravity theory.

3.6 Supercharged holographic dictionary

In this section we construct the precision holographic dictionary for the single-particle

operators GGÕ
(0,a)
2 and GGΣ̃

(0,a)
3 defined in (3.50). We saw in Table 3.2 that the

expectation value of these operators corresponds to the bulk asymptotic expansion of

the vector fields Z
7(−)k=1
µ and Z

6(−)k=1
µ . The linearized equation of motion for these

fields is [137]

⋆ dZ
(A)(−)
k = −(k + 1)Z

(A)(−)
k , (3.55)

for A = 6, 7. We note that this is the equation obeyed by the left AdS3 harmonics

B
(±)l,l̄
L,l in Eq. (A.28), with the identification l = k + 3. Left vector harmonics on AdS3

are discussed in Appendix A.2.2: their large r̃ expansion reads

B
(±)l,l̄
L,l ∼ dt̃+ dỹ

r̃(l−2)
+O

( 1

rl−1

)
. (3.56)

This motivates, for k = 1, the following asymptotic expansion of the bulk fields, where

we use the same square bracket notation introduced in the previous subsection for the

leading term:

Z
7(a,−)
k=1 =

[
Z

7(a,−)
k=1

]dt̃+ dỹ

r̃2
+O

( 1

r̃3

)
, Z

6(a,−)
k=1 =

[
Z

6(a,−)
k=1

]dt̃+ dỹ

r̃2
+O

( 1

r̃3

)
.

(3.57)

We consider the following ansatz for the dictionary involving supercharged operators
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dual to vector fields in the tensor multiplet:

〈
GGÕ

(0,a)
2

〉
= α

[
Z

7(a,−)
k=1

]
,

〈
GGΣ̃

(0,a)
3

〉
= β

[
Z

6(a,−)
k=1

]
.

(3.58)

where α and β are unknown coefficients that we will determine by evaluating the ansatz

(3.58) on some reference heavy states. Consistency of the dictionary requires that α and

β are universal, i.e. they depend neither on the SU(2)R quantum number a nor on the

heavy state considered.

Moreover, based on the SO(n) symmetry between the tensor multiplets of the super-

gravity theory, one expects to find α = β, and we shall verify explicitly that this is the

case.

3.6.1 Normalizing the supercharged holographic dictionary

In this section we fix the coefficient α in the supercharged holographic dictionary in

Eq. (3.58) by looking at one of the simplest examples of supercharged superstrata:

the one sourced by the mode (k,m, n, q) = (2, 1, n, 1). This supergravity solution was

constructed in [62]. Since we work in the conventions of [63], a slightly more convenient

reference for the explicit form of the supergravity quantities we need in the following8

is [63, Eqs. (2.4), (4.1), (4.4), (4.13), (4.14)].

The CFT state that is proposed to be dual to this bulk solution is

∑

p

(
A |0⟩1

)N−2p(
B

Ln−1
−1

(n− 1)!

(
G+1

− 1
2

G+2
− 1

2

+
1

2
J+
0 L−1

) ∣∣O−−
2

〉 )p
. (3.59)

The single-particle operator GGÕ2 has a non-vanishing expectation value on this state,

sourced by its single-trace constituent. In order to compute the correlator, we first

consider the basic process described by the correlator

〈
O++

2

∣∣
(
−G−1

1
2

G−2
1
2

+
J−
0 L+1

2

) Ln−1
1

(n− 1)!

(
G+1

− 1
2

G+2
− 1

2

+
J+
0 L−1

2

)
O−−

2 (t̃, ỹ) |0⟩⊗2
1 (3.60)

= z2z̄
〈
O++

2

∣∣
(
−G−1

1
2

G−2
1
2

+
J−
0 L+1

2

) Ln−1
1

(n− 1)!

(
G+1

− 1
2

G+2
− 1

2

+
J+
0 L−1

2

)
O−−

2 (z, z̄) |0⟩⊗2
1 ,

where we have mapped the one-point function from the cylinder to the plane and inserted

the appropriate conformal factor.

Upon expanding, we obtain four terms. The one with four supercharge modes evaluates

8In what follows we will label with b the supergravity coefficient that is denoted by c4 in [63].



74 Chapter 3 Supercharged AdS3 holography

to

−
〈
O++

2

∣∣(G−1
1
2

G−2
1
2

) Ln−1
1

(n− 1)!

(
G+1

− 1
2

G+2
− 1

2

)
O−−

2 (z, z̄) |0⟩⊗2
1

= − 1

(n− 1)!

〈
O++

2

∣∣ (G−1
1
2

G−2
1
2

)[
(n2 − 3n)G+2

1
2

G+1
1
2

Ln−3
1 + (n− 1)G+2

1
2

G+1
− 1

2

Ln−2
1

+ (n− 1)G+2
− 1

2

G+1
1
2

Ln−2
1 +G+1

− 1
2

G+2
− 1

2

Ln−1
1

]
O−−

2 (z, z̄) |0⟩⊗2
1

=
(n2 + 2n+ 1)

(n− 1)!

〈
O++

2

∣∣Ln−1
1 O−−

2 (z, z̄) |0⟩⊗2
1 , (3.61)

where we have used the anomaly-free algebra (3.2). By similar standard manipulations

the other three terms evaluate to

− 1

2(n− 1)!

〈
O++

2

∣∣Ln
1L−1O

−−
2 (z, z̄) |0⟩ =

n(n+ 1)

(n− 1)!

〈
O++

2

∣∣Ln−1
1 O−−

2 (z, z̄) |0⟩⊗2
1 .

(3.62)

We note that the commutation relation between Ln
1 and a primary with left dimension

h is

[Ln
1, Oh] =

n∑

m=0

n!

(n−m)!m!
wn+m (2h+ n− 1)!

(2h+m− 1)!
∂mOh . (3.63)

Collecting all terms and using (3.60) and (3.63) we obtain

〈
O++

2

∣∣(−G−1
1
2

G−2
1
2

+
1

2
J−
0 L+1

) Ln−1
1

n− 1!

(
G+1

− 1
2

G+2
− 1

2

+
1

2
J+
0 L−1

)
O−−

2 (t̃, ỹ) |0⟩⊗2
1

=
n(n+ 1)(n+ 2)

2
ei((n+2)t̃+nỹ) .

(3.64)

This basic process describes the contribution to the expectation value of the single-

particle operator when it acts on two copies of the CFT vacuum. We now use this to

compute the effect of the single-particle operator acting on the full state (3.59). To do

so, we must compute a combinatorial factor, as we shall describe momentarily. Com-

bining the amplitude in (3.64) with this combinatorial factor, the relevant contribution

is represented by

GGÕ
(0,−)
2 (t̃, ỹ)

[(
|0⟩N−2p

1

)( Ln−1
−1

(n− 1)!

(
G+1

− 1
2

G+2
− 1

2

+
1

2
J+
0 L−1

) ∣∣O−−
2

〉 )p]
(3.65)

=

√
2(p+ 1)√

3N
ei((n+2)t̃+nỹ)

[(
|0⟩N−2p−2

1

)( Ln−1
−1

(n− 1)!

(
G+1

− 1
2

G+2
− 1

2

+
1

2
J+
0 L−1

) ∣∣O−−
2

〉 )p+1]
.

The factors in (3.65) arise as follows (c.f. [103]). The norm of the states on each side

of the equality must match. The factor of
√
2/(
√
3N) comes from the normalization

of Õ2, (3.50). The factor of (p + 1) is a combination of a combinatorial factor and the

n-dependent factor in (3.64). The norm of the state on the left-hand side (LHS) of the

equation is given by the norm of the state in square brackets (on the LHS) multiplied

by the number of ways in which the single-particle operator can act on any two of the
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N − 2p vacua, namely
(
N−2p

2

)
. The norm of the states in square brackets on both the

LHS and RHS are given in Eq. (3.15). These factors all combine with the n-dependent

prefactor in (3.64) to give (3.65).

When we compute the amplitude with the full coherent state (3.59), we obtain an ad-

ditional factor of A2/B due to the fact that the process annihilates two A-type strands

and creates one B-type strand (c.f. [103, Eq. (4.19)]). Furthermore, we work at large

N and with coherent states in which the average p̄ is of order N , so we approximate

(p̄+ 1) ≃ p̄. We then obtain the amplitude

〈
GGÕ

(0,−)
2

〉
=

√
2 p̄√
3N

A2

B
ei((n+2)t̃+nỹ) . (3.66)

From Eq. (3.17), p̄ is of order B2. Using Eqs. (3.17) and (3.27), we obtain the final

result for the correlator,

〈
GGÕ

(0,−)
2

〉
=
√
N

a2b

2
√
3
ei((n+2)t̃+nỹ) . (3.67)

Since GGÕ
(0,+)
2 =

(
GGÕ

(0,−)
2

)†
, the expectation value of the operator GGÕ

(0,+)
2 must

also be non-vanishing. We thus obtain

〈
GGÕ

(0,+)
2

〉
=
〈
GGÕ

(0,−)
2

〉∗
=
√
N

a2b

2
√
3
e−i((n+2)t̃+nỹ) . (3.68)

In order to evaluate the coefficient α in Eq. (3.58), we must perform an asymptotic ex-

pansion of the gauge-invariant combination Z7
k=1, given in Eq. (3.43). The supergravity

solution with modes (k,m, n, q) = (2, 1, n, 1) is characterized by U7
k=1 = 0, which implies

that the field Z7
k=1 that appears in the Kaluza-Klein reduction (3.30) coincides with the

gauge-invariant combination Z7
k=1. We thus obtain (recall n ≥ 1)

Z
7(−−)
k=1 = Z

7(−−)
k=1 = −a2b e−i((n+2)t̃+nỹ) r̃n−1

(r̃2 + 1)n/2+2

(
+ idr̃ + r̃(r̃2 + 1)(dt̃+ dỹ)

)
,

Z
7(+−)
k=1 = Z

7(+−)
k=1 = −a2b ei((n+2)t̃+nỹ) r̃n−1

(r̃2 + 1)n/2+2

(
− idr̃ + r̃(r̃2 + 1)(dt̃+ dỹ)

)
,

(3.69)

where we recall that the rescaling in Eq. (3.44) has been performed, and where the

superscript (±−) indicates that the field couples to the Y (±−) harmonic respectively.

The large r̃ expansion of (3.69) gives

[
Z

7(−−)
k=1

]
= −a2b e−i((n+2)t̃+nỹ) ,

[
Z

7(+−)
k=1

]
= −a2b ei((n+2)t̃+nỹ) . (3.70)

Using the ansatz for the holographic dictionary in Eq. (3.58), along with Eqs. (3.67),
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(3.68) and (3.70), we obtain

α = −N
1/2

2
√
3
. (3.71)

We observe that the value of α is independent of the quantum numbers that specify the

state, as required.

3.6.2 Holographic test of general non-supercharged superstrata

We now compute the coefficient β defined in Eq. (3.58) and find that α = β, verifying

the expectation discussed below Eq. (3.58). In doing so, we will also test the coiffuring

proposal for general multi-mode superstrata developed in [63, 64]. In the present subsec-

tion we test the non-supercharged part of this proposal, and in the following subsection

we shall test the hybrid supercharged plus non-supercharged part.

Recall that “coiffuring” refers to imposing a set of algebraic relations on the parameters

in the supergravity solution, required for smoothness [124, 125, 144]. A significant

achievement of [63] was a proposal for particular families of multi-mode superstrata

that had proven impossible to construct with previous methods, as we describe in more

detail below. This came as part of a more general proposal for the coiffuring of multi-

mode superstrata, where the modes could be either of supercharged or non-supercharged

type. This was expressed in a more general holomorphic formalism in [64].

From the supergravity point of view, coiffuring relations are often not easy to give an

interpretation to, beyond being a consequence of requiring solutions to be smooth. By

contrast, holographic calculations can give a microscopic interpretation to coiffuring

relations, as has been done in [1, 103]. We will now test the new type of coiffuring

relation proposed in [63, 64], and we will find perfect agreement.

We focus on the family of (1,m, n) muiltimode non-supercharged superstrata constructed

in [132, App, D]. This family of solutions is given in terms of two holomorphic func-

tions F0, F1 of a complex variable ξ which is related to the standard six-dimensional

coordinates in Eq. (3.3) via

ξ =
r̃√
r̃ + 1

ei(t̃+ỹ) . (3.72)

We consider the two-mode solution in which both F0 and F1 consist of a single mode,

F0(ξ) = bξnb , F1(ξ) = dξnd . (3.73)

The explicit supergravity solution is given in full detail in [132, Eqs. (D.15)–(D.29)] and

we shall not reproduce it here.
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The proposed family of dual CFT states is

∑

p,q

(
A |0⟩1

)N−p−q(
B

1

nb!
Lnb
−1

∣∣O−−〉 )p(D 1

nd!
J+
0 L

nd
−1

∣∣O−−〉 )q . (3.74)

The supergravity mode parameters (b, d), the CFT parameters (B,D), and the conve-

nient parameters (b, d) are related as before by Eq. (3.27), which in this specific case

takes the form

B√
N

=
R√

2Q1Q5
b =

b√
2
,

D√
N

=
R√

2Q1Q5
d =

d√
2
. (3.75)

When nb ̸= nd, this is a class of multimode superstrata where (kbmd−kdmb)(kbnd−kdnb) ̸=
0. This is the class of superstrata that had evaded construction since [60] until the

proposal of [63]. We have taken kb = kd = 1, since higher values of kb and/or kd would

require extending the holographic dictionary even further beyond the sector of conformal

dimensions that we consider in this work. With kb = kd = 1, this family of states

essentially contains the full class of states in which (kbmd−kdmb)(kbnd−kdnb) ̸= 0: since

m ≤ k, we must have one excited strand with m = 0 and one with m = 1. Furthermore,

once one has control over the general two-mode family (3.73)–(3.74), adding further

modes of the same type is a straightforward generalization in both supergravity and

CFT.

We start from the CFT side. We shall see that when nb ̸= nd, the operator GGΣ̃
(0,a)
3 has

a non-vanishing expectation value in this state. Expanding the definition of GGΣ̃
(0,a)
3 ,

we have

〈
GGΣ̃

(0,a)
3

〉
≡
〈 1√

3

(
G+1

− 1

2

G+2
− 1

2

+
1

2
J+
0 L−1

)
Σ̃−,a

3

〉
= (3.76)

〈√3
2

(
G+1

− 1

2

G+2
− 1

2

+
1

2
J+
0 L−1

) [( Σ3

N
3

2

− Ω

3N
1

2

)
+

1

N
1

2

(
−2

3
(Σ2 · Σ2)+

1

6
(O ·O)+

1

3
(J · J̄)

)]−,a 〉
.

This expectation value is sourced only by the double-trace term (we suppress overall

factors and restore them at the end)

GG(O ·O) =
1

N

(
G+1

− 1
2

G+2
− 1

2

+
1

2
J+
0 L−1

)∑

r,s

O−−
r O−−

s . (3.77)

Expanding this product, the GG combination of modes can act either on strand r or

strand s, giving rise to eight terms. Two of these terms give rise to fermionic strands,

and so do not contribute to the correlator. The remaining terms can be written as

1

N

∑

r,s

[
−1

2
O−−
r

(
J+
0 L−1O

−−
s

)
+

1

2

(
L−1O

−−
r

)(
J+
0 O

−−
s

)]
, (3.78)

where we have used the relation
(
G+1

− 1
2

G+2
− 1

2

+ J+
0 L−1

)
O−− = 0, which holds because

O−− is a scalar operator of dimension one.
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The operator in Eq. (3.78) transforms two copies of the vacuum into one strand of

type |1, 0, nb, 0⟩ and another of type |1, 1, nd, 0⟩. We now compute the contribution

of this fundamental process. After doing so, we will again dress it with the appro-

priate combinatorial factor. The initial state is given by two copies of the vacuum

|0⟩r=1 |0⟩r=2, which can be transformed into the state |1, 0, nb, 0⟩r=1 |1, 1, nd, 0⟩r=2 or

|1, 0, nd, 0⟩r=1 |1, 1, nb, 0⟩r=2 : the two processes contribute with equal amplitudes, so we

compute only one of them, and multiply the result by two. For ease of notation (and

to avoid confusion with the twist-two operator O2), we shall abbreviate the subscripts

r = 1, 2 to (1), (2).

We proceed to compute

(1)

〈
O++

∣∣ L
nb
1

nb!
(2)

〈
O++

∣∣ L
nd
1

nd!
J−
0

[(
G+1

− 1
2

G+2
− 1

2

+
1

2
J+
0 L−1

)
O−−

(1) O
−−
(2)

]
(t̃, ỹ) |0⟩(1) |0⟩(2)

= z2z̄
[
− 1

2 (1)

〈
O++

∣∣ L
nb
1

nb!
O−−

(1) (z, z̄) |0⟩(1) (2)

〈
O++

∣∣ L
nd
1

nd!
J−
0

(
J+
0 L−1O

−−
(2)

)
(z, z̄) |0⟩(2)

+
1

2 (1)

〈
O++

∣∣ L
nb
1

nb!

(
L−1O

−−
(1)

)
(z, z̄) |0⟩(1) (2)

〈
O++

∣∣ L
nd
1

nd!
J−
0

(
J+
0 O

−−
(2)

)
(z, z̄) |0⟩(2)

]
.

(3.79)

Using standard manipulations, together with the commutation relation in Eq. (3.63)

and the anomaly-free algebra (3.2), one can rewrite this amplitude as

(1)

〈
O++

∣∣L
nb
1

nb!
(2)

〈
O++

∣∣ L
nd
1

nd!
J−
0

[(
G+1

− 1
2

G+2
− 1

2

+
1

2
J+
0 L−1

)
O−−

(1) O
−−
(2)

]
(t̃, ỹ) |0⟩(1) |0⟩(2)

=
1

2

[
− (nd + 1) + (nb + 1)

]
ei(nb+nd+2)t̃+i(nb+nd)ỹ

=
1

2
(nb − nd)e

i(nb+nd+2)t̃+i(nb+nd)ỹ .

(3.80)

Already we see that the expectation value is non-zero only when nb ̸= nd.

We now dress this with the combinatorial factor as before. The relevant contribution

can be represented as

(
GG(O ·O)

)0−
(t̃, ỹ)

[(
|0⟩N−p−q

1

)( 1

nb!
Lnb
−1

∣∣O−−〉 )p( 1

nd!
J+
0 L

nd
−1

∣∣O−−〉 )q]

=
(
(nb − nd)e

i(nb+nd+2)t̃+i(nb+nd)ỹ
)(p+ 1)(q + 1)

N

×
[(
|0⟩N−p−q−2

1

)( 1

nb!
Lnb
−1

∣∣O−−〉 )p+1( 1

nd!
J+
0 L

nd
−1

∣∣O−−〉 )q+1]
.

(3.81)

The first term on the RHS is the contribution of the fundamental process, given by

twice the result in Eq. (3.80). The second term comes requiring that the normalization

of the two sides of the equality are the same. The expectation value of the single-particle

operator is then obtained by combining Eq. (3.81) with the normalization factors we sup-

pressed from Eq. (3.76), along with the relation between the CFT and the supergravity
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coefficients in Eq. (3.75). This gives

〈
GGΣ̃0−

3

〉
=

1

8
√
3N1/2

〈(
GG(O ·O)

)0−〉

=
1

4
√
3

p̄ q̄

N3/2

A2

BD
(nb − nd)e

i(nb+nd+2)t̃+i(nb+nd)ỹ

=

√
N

8
√
3
a2 bd(nb − nd)e

i(nb+nd+2)t̃+i(nb+nd)ỹ ,

〈
GGΣ̃0+

3

〉
=
(〈
GGΣ̃0−

3

〉)∗

=

√
N

8
√
3
a2 bd(nb − nd)e

−i(nb+nd+2)t̃−i(nb+nd)ỹ .

(3.82)

These CFT expectation values are holographically encoded in the expansion of the

gauge-invariant vector field Z6
k=1. The supergravity solution is obtained combining [132,

Eqs. (D.15)-(D.29)] with the holomorphic functions F0 and F1 in Eq. (3.73). One can

check that, as in the example studied in Section 3.6.1, the AdS3 scalar field U6
k=1 van-

ishes on this background. Eq. (3.43) then implies that Z6
k=1 = Z6

k=1. The vector fields

are given by

Z
6(+−)
k=1 =

a2 b d

4
(nd − nb)

r̃nb+nd−1 ei((nb+nd+2)t̃+(nb+nd)ỹ)

(1 + r̃2)
(nb+nd+4)

2

(
− idr̃ + r̃(r̃2 + 1)(dt̃+ dỹ)

)
,

Z
6(−−)
k=1 =

a2 b d

4
(nd − nb)

r̃nb+nd−1 e−i((nb+nd+2)t̃+(nb+nd)ỹ)

(1 + r̃2)
(nb+nd+4)

2

(
idr̃ + r̃(r̃2 + 1)(dt̃+ dỹ)

)
,

(3.83)

where we have used the normalization in Eq. (3.44) and the relation between the CFT

and the supergravity modes in Eq. (3.75).

The coefficient β in Eq. (3.58) is obtained performing the asymptotic expansion (3.57) of

the three-dimensional vectors (3.83) and comparing it with the CFT result in Eq. (3.82).

We find that

β = −N
1/2

2
√
3
, (3.84)

thus explicitly verifying that α = β.

We emphasize again that this amplitude is non-vanishing only when nb ̸= nd. This can

be interpreted as the CFT telling us that for the set of states (3.74), when nb ̸= nd the

bulk solution must involve an extra field that is not turned on when nb = nd. This is

precisely the field that was introduced in the more general coiffuring proposal of [63].

So we have seen that a very non-trivial holographic test of this more general coiffuring

is passed.
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3.6.3 Holographic test of hybrid supercharged superstrata

At this point we have fixed all coefficients of the holographic dictionary in the sector

in which we work. We now use the dictionary to make a precision holographic test

of a “hybrid” superstratum solution that combines non-supercharged and supercharged

elements. Our computation tests both the proposed holographic dictionary for hybrid

superstrata and the supergravity coiffuring procedure for combining non-supercharged

and supercharged modes of [63, 64]. This test also serves as an additional non-trivial

cross-check of the operator mixing in the dictionary. Note that this operator mixing

has already passed thorough holographic tests [1]. The tests in [1] were performed

in a different basis to the single-particle basis, however our results are equivalent, as

demonstrated in Appendix E. The test that follows involves a non-trivial and delicate

cancellation between a set of terms.

We consider the multi-mode hybrid superstratum composed of modes (k1,m1, n1, q1) =

(2, 1, 0, 0), and (k2,m2, n2, q2) = (2, 1, 1, 1), constructed in [64, App. (B.1)]. There, the

solution was given in terms of two holomorphic functions F and S of the complex variable

ξ defined in Eq. (3.72). In our conventions, we have

F (ξ) = b , S(ξ) = d
ξ

6
. (3.85)

The supergravity solution is given explicitly in [64, Eqs. (6.8), (6.9), (B.1)–(B.12)] and

so we shall not reproduce it here. Performing the Kaluza-Klein reduction of this back-

ground, one obtains that the gauge-invariant field Z6
k=1 in Eq. (3.43) vanishes. The

holographic dictionary in Eq. (3.58) then predicts that the expectation values of the

single-particle operator (GGΣ̃3)
0a on the dual CFT state must vanish. We will now

explicitly check that this is indeed the case.

The proposed dual CFT state is

∑

p,q

(
A |0⟩1

)N−2p−2q(
BJ+

0

∣∣O−−
2

〉 )p(
D
(
G+1

− 1
2

G+2
− 1

2

+
1

2
J+
0 L−1

) ∣∣O−−
2

〉 )q
. (3.86)

The CFT coefficients (B,D) and the supergravity Fourier coefficients (b, d) in (3.85) are

again related via Eq. (3.27), which in the present example becomes

B√
N

=
R

2
√
2Q1Q5

b ,
D√
N

=
R

3
√
2Q1Q5

d . (3.87)

The only SU(2)L×SU(2)R component of the single-particle operator (GGΣ̃3)
0a that can

have a non-vanishing expectation value is (GGΣ̃3)
00. Indeed, this single-particle operator

contains three operators that have non-zero expectation values in the state (3.86): the

single-trace operators (GGΣ3)
00, (GGΩ)00 and the double-trace operator (GGJJ̄)00.

First, we compute the expectation value of (GGΣ3)
00, which arises from the basic process
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in which one B-type strand plus one A-type vacuum strand are converted into one D-

type strand plus one A-type vacuum strand:

(
1 ⟨0|

〈
O++

2

∣∣(−G−1
1
2

G−2
1
2

+
1

2
J−
0 L+1

))((
G+1

− 1
2

G+2
− 1

2

+
1

2
J+
0 L−1

)
Σ−0
3

)(
J+
0

∣∣O−−
2

〉
|0⟩1

)

= 3 1 ⟨0|
〈
O++

2

∣∣Σ−0
3 J+

0

∣∣O−−
2

〉
|0⟩1

= −3
(√

2 1 ⟨0|
〈
O++

2

∣∣Σ00
3

∣∣O−−
2

〉
|0⟩ − 1 ⟨0|

〈
O++

2

∣∣ J+
0 Σ−,0

3

∣∣O−−
2

〉
|0⟩1

)

= −3
√
2 1 ⟨0|

〈
O++

2

∣∣Σ00
3

∣∣O−−
2

〉
|0⟩1

= − 1√
2
.

(3.88)

In the equation above, following the prescription after Eq. (2.39), the descendant is

normalized so that it has the same norm as the highest weight state, that is Σ00
3 =

1√
2
[J+

0 ,Σ
−0
3 ]. This three-point function is independent of the insertion point of the light

operator on the cylinder. The last equality follows from

1 ⟨0|
〈
O++

2

∣∣Σ00
3

∣∣O−−
2

〉
|0⟩1 =

1

6
, (3.89)

which can be derived using the covering-space method of Lunin-Mathur [120, 145] anal-

ogously to the computation in B.2.

We now use the basic amplitude in Eq. (3.88) to compute the expectation value of the

single-trace operator (GGΣ3)
00 on the full coherent state (3.86). The relevant contribu-

tion can be represented by

(
GGΣ3

)
00
[(
|0⟩N−2p−2q

1

)(
J+
0

∣∣O−−
2

〉 )p((
G+1

− 1
2

G+2
− 1

2

+
1

2
J+
0 L−1

) ∣∣O−−
2

〉 )q]

= −2
√
2

3

(
N − 2(p+ q)

)
(q + 1)

×
[(
|0⟩N−2(p+q)

1

)(
J+
0

∣∣O−−
2

〉 )p−1((
G+1

− 1
2

G+2
− 1

2

+
1

2
J+
0 L−1

) ∣∣O−−
2

〉 )q+1]
.

(3.90)

The overall factor on the RHS is obtained as before by requiring that the norms on the

two sides of the equality sign are the same. In doing so, we combined Eq. (3.88) with a

combinatorial factor that represents the number of ways in which the operator (GGΣ3)
00

can act on the state on the LHS. In particular, it can act on any of the (N − 2p− 2q)p

pairs of strands |0⟩1
(
J+
0 |O−−⟩2

)
and can cut-and-join these in two inequivalent ways.

We now use Eq. (3.17) to express the average number of strands in a coherent state with

the CFT coefficients A,B,D. We obtain that, in the large N -limit,

〈(
GGΣ3

)00〉
= −2

√
2

3
(N − 2p̄− 2q̄) q̄

B

D
= −

√
2A2BD . (3.91)

Second, we compute the expectation value of the single-trace operator GGΩ, which arises
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from the basic process in which a B-type strand is converted into a D-type strand:

(〈
O++

2

∣∣(−G−1
1
2

G−2
1
2

+
1

2
J−
0 L+1

))((
G+1

− 1
2

G+2
− 1
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2
J+
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)
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)(
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∣∣O−−
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〉)

= 3
〈
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2

∣∣Ω−0
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∣∣O−−
2

〉

= −3
√
2
〈
O++

2

∣∣Ω00
∣∣O−−

2

〉

= −3
√
2 .

(3.92)

The last equality follows from [1, Eq. (5.40)]. To compute the expectation value of the

operator on the full coherent state we again combine the above result with a combina-

torial factor. Doing so, we obtain

(
GGΩ

)00[( |0⟩N−2p−2q
1

)(
J+
0

∣∣O−−
2

〉 )p((
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+
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2
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) ∣∣O−−
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〉 )q]
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√
2
(
q + 1

)

×
[(
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)(
J+
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∣∣O−−
2

〉 )p−1((
G+1

− 1
2

G+2
− 1

2

+
1

2
J+
0 L−1

) ∣∣O−−
2

〉 )q+1]
.

(3.93)

Here we have used the fact that the operator (GGΩ) can act on any of the p strands of

type J+
0 |O−−⟩2, and we have matched the norms on the two sides of the equation. The

expectation value on the full coherent state then follows from Eq. (3.17). We obtain

〈(
GGΩ

)00〉
= −2

√
2 q̄ B

D
= −3

√
2

N
BD

(
A2 + 3D2 + 2B2

)
. (3.94)

For later convenience, in the last equality we have used the strand budget constraint (3.18).

The final operator that contributes to the expectation value of (GGΣ̃3)
00 is

(GGJJ̄)00 =
√
2
((
G+1

− 1
2

G+2
− 1

2

+
1

2
J+
0 L−1

)
J−
)
J̄3 , (3.95)

where the factor of
√
2 follows from the normalization of the SU(2)R descendant. This

operator contributes through the basic process in which a B-type strand is converted

into a D-type strand. This process is mediated only by the holomorphic part of the

operator (GGJJ̄)00. Both B-type and D-type strands are eigenstates of J̄3
0 , so we treat

this contribution separately below. Focusing for now on the holomorphic part, we have

the amplitude

(〈
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∣∣ (−G−1
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2

G−2
1
2

+
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2
J−
0 L+1

))((
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2
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)(

J+
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∣∣O−−
2

〉)

= −6
〈
O++

2

∣∣ J3
∣∣O−−

2

〉

= 6 .

(3.96)

We now compute the expectation value of the multi-trace operator in the full coherent

state (3.86). We include the antiholomorphic part at this point. The relevant contribu-
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tion can be represented by

(
GGJJ̄

)00[( |0⟩N−2p−2q
1

)(
J+
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∣∣O−−
2
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2
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) ∣∣O−−
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〉 )q]

= −4
√
2
(
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)(
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2

G+2
− 1
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J+
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2
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(3.97)

The prefactor on the RHS is a combination of the basic amplitude (3.96), the action of

J̄ , and a combinatorical factor. The combinatorics has two parts: first, the operator J̄

can act either on one of the p strands of type J+
0

∣∣O−−
2

〉
or on one of the q strands of type

GG
∣∣O−−

2

〉
. Second, the operator GGJ can only act upon strands of type GG

∣∣O−−
2

〉
.

Using Eqs. (3.17) and (3.18) we obtain

〈(
GGJJ̄

)00〉
= −4

√
2q̄(p̄+ q̄)B

D
= −6

√
2BD

(3
2
D2 +B2

)
. (3.98)

Finally, we combine the three contributions in Eqs. (3.91), (3.94) and (3.98) using the

definition of the single-particle operator GGΣ̃ in Eq. (3.50) to obtain the anticipated

cancellation: 〈
GGΣ̃00

3

〉
= 0 . (3.99)

This result agrees with the vanishing of the dual AdS3 field Z6
k=1 in the proposed dual

supergravity solution. Thus we see that the proposed holographic dictionary for hybrid

superstrata has passed a non-trivial test. This computation also represents a non-trivial

cross-check of the operator mixing involved in the single-particle operator dual to the

AdS3 vector field Z6
k=1.

3.7 Summary of precision holographic dictionary

For convenient reference we record here a summary of the precision holographic dictio-

nary for single-particle scalar operators of dimension one and two given in Eq. (3.54),
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together with our new results for the superdescendant operators GGΣ̃3, GGÕ2.

√
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k=2

]
,
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〈
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(0,a)
3

〉
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N

2
√
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Z

6(−a,−)
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, ⟨GGÕ(0,a)
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= −
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2
√
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[
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(3.100)

3.8 Discussion

In this Chapter we have derived the precision holographic dictionary in a new sector

of the theory, which involves superdescendants of scalar chiral primary operators of

dimension two. In doing so we also expressed the existing dictionary in the single-

particle basis. Our results are summarized in Eq. (3.100).

We translated into AdS3 holography the proposal that single-particle supergravity fluc-

tuations are holographically dual to half-BPS operators that are orthogonal to all multi-

trace operators [126, 127]. We observed that this property is not sufficient to determine

the single-particle basis in the D1-D5 CFT. We thus combined this proposal with the

mixing between single-trace operators worked out in [107] to obtain the refined dictionary

for scalar operators of dimension two summarized in the first five lines of Eq. (3.100).

We then derived the new part of the dictionary in the last line of Eq. (3.100).

Let us note that the structure of the dictionary in Eq. (3.100) is quite robust: it is con-

strained by the SO(n) symmetry of the supergravity theory, the feature that the single-

particle states are orthogonal to all multi-particle states and the mixing between single-

trace operators mentioned above. Furthermore, the overall normalization of each subsec-

tor of the dictionary has been calibrated successively on the well-established holographic

description of two-charge microstates with R
4 base polarizations, and non-supercharged

superstrata, in [1]. Our computation of the coefficient β in Section 3.6.2 can also be

regarded as a calibration on a non-supercharged superstratum, and is consistent with

the value of α that we obtained by comparison with a supercharged superstratum. We

used the new dictionary for superdescendant operators to perform tests of a special set

of non-supercharged superstrata, and a set of ‘hybrid’ superstrata involving both su-



Chapter 3 Supercharged AdS3 holography 85

percharged and non-supercharged elements. We find precise agreement between gravity

and CFT.

It is worth remarking that the agreement we find in this work does not prove that the

proposal for the dual CFT states of supercharged superstrata is precisely correct. The

reason is simply the standard limitation of precision holographic studies: for a given

superstratum solution in supergravity, and a given precision involving a finite set of

expectation values of light operators, there can be other CFT states that have the same

values of those correlators. Having made this standard caveat, our results support the

proposed holographic description of both non-supercharged and supercharged super-

strata and demonstrate that this existing proposal for the dual CFT states passes all

available state-of-the-art tests.

Let us now discuss the possibility of extending the present precision holographic dic-

tionary to higher dimensional operators. While we do not expect that such extension

requires novel conceptual ingredients, we note that the various sources of non-linearities

in the dictionary imply considerably more involved computations as one analyzes oper-

ators of higher dimension. First, the operators mixing will involve multi-trace operators

with a higher number of traces. Analogously, the identification of the single-particle

basis on the supergravity side (i.e. the identification of the quadratic field redefinitions

that remove derivative couplings in the cubic lagrangian) will be more involved. Last, a

gauge invariant formulation of the dictionary would require retaining higher order terms

in the perturbation of the metric and three-forms in Eq. (3.37). Despite these compli-

cations, the recipe that we have followed in this work is general, and can be applied to

operators of increasing dimension.
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Chapter 4

Shockwaves in black hole

microstate geometries

4.1 Introduction

This chapter reports the work presented in [3], where the first family of three-charge

black hole microstates containing a shockwave in their core region was constructed.

Shockwaves are gravitational solutions describing the backreaction of high-energy mass-

less point particles [146]. These solutions have attracted recent interest in the context

of black hole physics: for example, shockwave collisions near black hole horizons have

been used to probe its absorptive nature and give insights on black hole chaotic be-

haviour [147–149].

Shockwaves have been also considered in the context of black hole microstates. In

particular, a two-charge solution describing the backreaction of a shockwave located in

the core of a supertube was constructed in [101, 150]. This is a deformation of the

circular supertube that represents the backreaction of a uniform distribution of high-

energy massless point particles that does not break supersymmetry and whose details

are not resolved in supergravity. It can be derived as a coarse-grained limit of the general

family of two-charge microstate solutions [47, 53, 55, 110], as we will describe in due

course.

This solution containing a shockwave has proven useful in the analysis of black hole

microstates instability. In recent years, several studies of perturbations of black hole

microstates have been conducted. In the context of two-charge microstate solutions and

three-charge spectral flowed supertubes (also known as GLMT solutions) [78, 85, 151–

159], a classical perturbation analysis was performed in [160]. These microstates do not

have an ergoregion and are linearly stable: indeed, being extremal solution, they belong

to the ensamble of a black hole at zero temperature, which does not evaporate. However,

89
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they present an evanescent ergosurface [161]: this is a surface of infinite redshift with

respect to infinity where a killing vector ceases to be time-like and becomes null. On

this surface, the geodesics are trapped, meaning that they remain confined in a finite

region of space.

It was suggested in [160] that the presence of the evanescent ergosurface leads to a non-

linear instability. The heuristic argument is as follows. Consider a massive particle near

the evanescent ergosurface of the GLMT background. If the backreaction of the particle

is taken into account (i.e. if one couples it to the supergravity fields), the particle will

radiate energy. Due to this process, it will follow a trajectory that minimizes its energy,

approaching the evanescent ergosurface. Even though the energy measured at infinity

will be very small, the energy measured by a local observer will be large, which implies

that the backreaction on the microstate will be large. This suggests an instability at

the non-linear level, in the sense that the instability requires taking into account the

interaction between the massive particle and the supergravity fields.

The implication of this process for the fuzzball program depends on the endpoint of

the instability. It was argued in [162] that the deformed supertube of [101, 150] can be

used to describes the backreaction of massive probe particles approaching the evanescent

ergosurgace in the adiabatic limit. It was suggested that the endpoint of this instability is

not a near-extremal black hole or black ring as proposed in [160], but that the instability

drives the evolution from less typical to more typical microstates.

In this chapter we construct the first family of three-charge microstate solutions contain-

ing a shockwave. By starting with the AdS limit of the deformed supertube containing

a shockwave, we apply a spectral flow transformation to construct the near horizon limit

of a GLMT solution containing a shockwave in the core regions. Next, we exploit the

multi-center formalism developed in [67, 68, 163–165] to extend these solutions to new

asymptotically flat BPS solutions. Beside the physical singularity due to the shockwave,

our solution is everywhere smooth (up to possible orbifold singularities), horizonless and

free of closed time-like curves. By refining the proposal of [101] for the CFT states dual

to the two-charge configuration containing a shockwave, we identify the CFT states

dual to the solutions constructed in this work and show that the proposal passes a pre-

cision holographic test. In these new configurations the shockwave is not located on the

evanescent ergosurface, thus we cannot make direct contact with the discussion in [162].

Nevertheless these new solutions might provide a useful guide for the construction of

more general smooth microstate geometries describing pure states.

As already mentioned, the shockwave describes the backreaction of massless particles

whose details are not fully resolved in supergravity. As a result, the solutions derived

in this chapter do not describe a single gravitational pure state, but rather provide an

approximate description of a family of microstates. On the CFT side, the dual statement

is that any CFT pure state within a family of CFT pure states that we identify is
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approximately described by our bulk solution at the resolution of supergravity.

This chapter is organized as follows. In Section 4.2 we review the two-charge BPS

supertube solutions with shockwaves. In Section 4.3 we construct new three-charge

microstate solutions containing shockwaves. In Section 4.4 we refine the proposal for

the CFT states dual to circular supertube solutions with shockwaves, propose a family

of CFT states dual to our new solutions, and perform tests of this proposal. We discuss

our results in Section 4.5.

4.2 Shockwaves in supertube backgrounds

In this section we review the supergravity solution that describes a shockwave in a

circular supertube background [101, 150], and make a straightforward generalization to

introduce an orbifold parameter k.

As in the previous chapters, we consider Type IIB string theory compactified onM×S1,

whereM is T 4 or K3. We take T 4 for concreteness. We consider the T 4 to be microscopic

and the S1 to be macroscopic. We consider bound states of D1 branes wrapped on S1

and D5 branes wrapped on S1 × T 4. We work in the supergravity limit, with D1 and

D5 supergravity charges Q1 and Q5 respectively. We consider configurations that are

invariant on the T 4, and mostly work in six dimensions. Furthermore, we work in the

truncation that corresponds to minimal 6D supergravity coupled to one tensor multiplet;

the corresponding Type IIB ansatz and BPS equations are recorded in Appendix C.

We begin in the AdS3×S3 decoupling limit, in which the original asymptotic S1, coor-

dinatized by y, has become the angular direction of AdS3. We consider the background

obtained by taking a Zk orbifold of the global AdS3 × S3 vacuum, supported by the

self-dual two-form potential C2:

ds26 =
√
Q1Q5

(
−1 + k2r2

k2
dt2 +

k2

1 + k2r2
dr2 + r2dy2 + dθ2 + sin2 θdϕ2 + cos2 θdψ2

)
,

C2 =
√
Q1Q5

(
cos2 θdϕ ∧ dψ + r2dt ∧ dy

)
.

(4.1)

In this limit the dilaton is a fixed scalar, e2Φ = Q1/Q5. One can deform this back-

ground to add a shockwave while preserving supersymmetry [101, 150]. Let us consider

a distribution of massless quanta at the center of AdS (r = 0) and at θ = π
2 on the S3,

moving in the ϕ direction. We take the energy of each quantum to be large such that we

can treat the quanta as massless point particles, and we consider a uniform distribution

of such quanta along the ϕ coordinate.

The backreaction of this distribution of quanta can be described by a stationary solution

involving an Aichelburg-Sexl type shockwave on the above background. For k = 1 this
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solution was constructed in [150] and further studied in [101]. The generalization to

k > 1 is straightforward and is given in terms of a parameter q with 0 ≤ q < 1 that

parametrises the strength of the shockwave:

ds2 =
√
Q1Q5

[
−1 + k2r2

k2
dt2 +

k2

1 + k2r2
dr2 + r2dy2 + dθ2 + sin2 θdϕ2 + cos2 θdψ2

+ q

(
(kr2 + 1/k)dt+ sin2 θdϕ

)2 −
(
kr2dy − cos2 θdψ

)2

k2r2 + cos2 θ

]
,

C2 =
√
Q1Q5

[
cos2 θ dϕ ∧ dψ + r2dt ∧ dy

− q

k(k2r2 + cos2 θ)

(
k sin2 θ

(
− cos2 θdϕ ∧ dψ + kr2dϕ ∧ dy

)

+ (1 + k2r2)
(
cos2 θdψ ∧ dt+ kr2dt ∧ dy

))]
.

(4.2)

Near the locus (r = 0, θ = π/2), the metric is approximately

ds2 ≃
√
Q1Q5

[
− dt

2

k2
+k2dr2+r2dy2+dθ2+cos2 θdψ2+dϕ2+

q

k2r2 + cos2 θ

(dt
k
+dϕ

)2]

(4.3)

which has a shockwave singularity at (r = 0, θ = π/2). For k = 1 this is an Aichelburg-

Sexl-type shockwave generalized to 5+1 dimensions and smeared along the shockwave

locus [150]. For k > 1 the shockwave singularity is located at the Zk orbifold singularity

of the solution in Eq. (4.1).

Upon spectral flow to the Ramond-Ramond (RR) sector, this solution gives an approx-

imate description of a family of RR ground states of the dual CFT, as we shall review

in Section 4.4.2. The relevant spacetime (fractional) spectral flow coordinate transfor-

mation is as follows:

ϕ→ ϕ+
t

k
, ψ → ψ +

y

k
. (4.4)

The result of this coordinate transformation is a 1/4-BPS two-charge microstate solution

describing the backreaction of a shockwave on a circular supertube geometry, still so far

in the AdS3 decoupling limit.

We now extend the AdS solution to an asymptotically flat (R1,4×S1) solution. For k = 1

this was done in [101] and we make the straightforward generalization to k > 1. To do

so we introduce the scale Ry that will become the asymptotic radius of the y circle, and

a scale a defined in the following equation. We define dimensionful coordinates via the

rescaling

r → r

a
, t→ tRy , y → yRy , a2 =

Q1Q5

k2R2
y

. (4.5)

The extension of this solution to an asymptotically flat one was obtained, for k = 1,

in [101], generalizing the two-charge circular supertube solutions (without shockwaves)
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of [44, 45]. The straightforward generalization to arbitrary k gives the following solution:

ds2 = − 1

h̄(0)
(dt2 − dy2) + h̄(0)f̄(0)

(
dθ2 +

k2dr̄2

k2r̄2 + ā2

)

− ξ 2a
√
Q1Q5

kh̄(0)f̄(0)
(cos2 θ dy dψ + sin2 θ dt dϕ) + h̄(0)

[(
r̄2 + ξ

ā2Q1Q5 cos
2 θ

k2h̄2(0)f̄
2
(0)

)
cos2 θ dψ2

+
(
r̄2 +

ā2

k2
− ξ ā

2Q1Q5 sin
2 θ

k2h̄2(0)f̄
2
(0)

)
sin2 θ dϕ2

]
,

C2 = −Q1dt ∧ dy
f̄(0)h̄1(0)

− a ξ
√
Q1Q5

kf̄(0)h̄1(0)

(
cos2 θdt ∧ dϕ+ sin2 θdy ∧ dϕ

)

+
( ā2q Q1Q5 sin

2 θ

k2f̄2(0)h̄1(0)
+
Q5(k

2Q1 + k2f̄(0) + ā2 sin2 θ)

k2f̄(0)h̄1(0)

)
cos2 θdϕ ∧ dψ ,

e2Φ =
h̄1(0)

h̄5(0)
,

(4.6)

where ξ = 1− q parametrises the strength of the shockwave, and where

r̄ =
√
ξr , ā =

√
ξa , f̄(0) = ξ(r2 +

a2

k2
cos2 θ) ,

h̄1(0) = 1 +
Q1

f̄(0)
, h̄5(0) = 1 +

Q5

f̄(0)
, h̄(0) =

√
h̄1(0)h̄5(0) .

(4.7)

The subscript (0) denotes supertube quantities and we use it to distinguish the above

functions from those that characterize the new solutions that we will report in the next

section.

4.3 Shockwaves in fractionally spectral flowed supertubes

In this section we first review the three-charge, 1/8-BPS, fractionally spectral flowed su-

pertube solutions constructed and studied in [78, 151–154], as well as their decomposition

into two-center solutions of the multi-center formalism of [67, 68, 163–165]. We then

proceed to construct a novel family of BPS solutions involving shockwave deformations

of these solutions.

4.3.1 Fractionally spectral flowed circular supertubes

Fractionally spectral flowed circular supertubes are a family of 1/8-BPS microstates of

the D1-D5-P system. In addition to their D1 and D5 charges, they carry momentum
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charge along y that we denote by Qp. The solutions take the form [152–154]

ds2 = − 1

h
(dt2 − dy2) + Qp

hf
(dt− dy)2 + hf

(
dr2

r2 + a2(γ1 + γ2)2η
+ dθ2

)

+ h
(
r2 + a2γ1(γ1 + γ2)η −

Q1Q5a
2(γ21 − γ22)η cos2 θ
h2f2

)
cos2 θdψ2

+ h
(
r2 + a2γ1(γ1 + γ2)η +

Q1Q5a
2(γ21 − γ22)η sin2 θ
h2f2

)
sin2 θdϕ2

+
Qp a

2(γ1 + γ2)
2η2

hf
(cos2 θdψ + sin2 θdϕ)2

− 2
√
Q1Q5 a

hf
(γ1 cos

2 θdψ + γ2 sin
2 θdϕ)(dt− dy)

− 2
√
Q1Q5 a(γ1 + γ2)η

hf
(cos2 θdψ + sin2 θdϕ)dy ,

C2 = −
√
Q1Q5 a cos

2 θ

H1f
(γ2dt+ γ1dy) ∧ dψ −

√
Q1Q5 a sin

2 θ

H1f
(γ1dt+ γ2dy) ∧ dϕ

+
(γ1 + γ2) a η Qp√

Q1Q5H1f
(Q1dt+Q5dy) ∧ (cos2 θdψ + sin2 θdϕ)

− Q1

H1f
dt ∧ dy − Q5 cos

2 θ

H1f
(r2 + γ2(γ1 + γ2)η +Q1)dψ ∧ dϕ ,

(4.8)

e2Φ =
H1

H5
, (4.9)

where the parameters γ1, γ2 are determined by integer parameters s and k through

γ1 = − s
k
, γ2 =

s+ 1

k
, (4.10)

and where

a =

√
Q1Q5

R
, Qp = a2γ1γ2 , η =

Q1Q5

Q1Q5 +Q1Qp +Q5Qp
,

f = r2 + a2(γ1 + γ2)η(γ1 sin
2 θ + γ2 cos

2 θ) ,

H1 = 1 +
Q1

f
, H5 = 1 +

Q5

f
, h =

√
H1H5 .

(4.11)

In the limit s → 0 these solutions reduce to the two-charge circular supertube solution

of [44, 45].

One can decompose these solutions into the form of the general BPS ansatz for such

solutions [134, 166]; this was done in [163, 165] (see also [164]). We will use this formal-

ism to construct our solutions, so we now briefly review it and introduce appropriate

notation.

The relevant supergravity ansatz is recorded in Appendix C. Supersymmetry and the

U(1)× U(1) isometries along ϕ and ψ imply that the base metric ds24(B) introduced in
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the second line of (C.1) is of Gibbons-Hawking form,

ds24(B) = V −1(dφ1 +A)2 + V ds23 , (4.12)

where ds23 is the flat metric on R
3, V is a harmonic function on R

3, A is a one-form

related to V via ⋆3 dA = dV , and where φ1 = ϕ− ψ. On such a base metric, solutions

can be constructed in terms of a set of multi-center harmonic functions on R
3 [67, 68],

which have poles (centers) at the same points xi on R
3 (here I = 1, 2, 3):

V =
∑

i

q(i)

|x− xi| , KI =
∑

i

d
(i)
I

|x− xi| ,

LI = ℓI +
∑

i

Q
(i)
I

|x− xi| , M =
∑

i

m(i)

|x− xi| .
(4.13)

The relations between these harmonic functions and the quantities ZI , Θ
I , β, ω and F

that appear in the BPS ansatz in Appendix C are given by (see e.g. [51, 59, 154])

ZI = LI +
1

2
CIJK

KJKK

V
, ΘI = dBI , BI =

KI

V
(dφ1 +A) + ξI ,

F = −Z3 , β =
K3

V
(dφ1 +A) + ξ3 , ω = µ(dφ1 +A) + ω̄ ,

(4.14)

where

⋆3dKI = −dξI , µ =
M

2
+
KILI
2V

+
1

6
CIJK

KIKJKK

V 2
,

⋆3dω̄ =
1

2

(
V dM −MdV +KIdLI − LIdKI

)
.

(4.15)

Asymptotically flat solutions are obtained by setting ℓI = 1 ∀ I, while in the AdS3

decoupling limit we have instead ℓ1 = ℓ2 = 0, ℓ3 = 1. Furthermore, in smooth hori-

zonless solutions, the set of coefficients q(i), d
(i)
I , Q

(i)
I ,m

(i) in (4.13) must obey certain

constraints [164, 165]. Firstly, flat R
1,4×S1 asymptotics and at most local orbifold sin-

gularities require that q(i) ∈ Z and
∑

i q
(i) = 1. Next, the coefficients d

(i)
I are quantized

in terms of integers k
(i)
I as (see e.g. [154])

d
(i)
1 =

gsα
′

2Ry
k
(i)
1 , d

(i)
2 =

gsα
′3

2V4Ry
k
(i)
2 , d

(i)
3 =

Ry
2
k
(i)
3 , (4.16)

where the volume of T 4 is (2π)4V4. Regularity of the solution (up to possible orbifold

singularities) requires a cancellation of the poles in the harmonic functions (4.13): this

is ensured if

Q
(i)
I = −|ϵIJK |

2

d
(i)
J d

(i)
K

q(i)
, m(i) =

d
(i)
1 d

(i)
2 d

(i)
3

(q(i))2
. (4.17)

Moreover, a necessary condition for absence of CTCs partially constrains the positions
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of the poles xi, via by the so called “bubble equations”, which are given by:

∑

j ̸=i
Π

(ij)
1 Π

(ij)
2 Π

(ij)
3

q(i)q(j)

|xi − xj | = −
∑

I

d
(i)
I , with Π

(ij)
I =

d
(i)
I

q(j)
− d

(j)
I

q(i)
. (4.18)

Fractionally spectral flowed supertubes are two-center solutions [154, 163]. Indeed they

are the most general asymptotically flat such solutions that are regular up to orbifold

singularities (which in turn are known to be resolved in the string theory description of

these backgrounds [155–158]). We introduce spherical polar coordinates centered on the

locations of the two centers, (r+, θ+, φ2) and (r−, θ−, φ2), where φ2 = −(ψ + ϕ). The

poles in the harmonic functions (4.13) are then located at r+ = 0 and r− = 0. The flat

ds23 base takes the form

ds23 = dr2+ + r2+(dθ
2
+ + sin2 θ+dφ

2
2) = dr2− + r2−(dθ

2
− + sin2 θ−dφ

2
2) , (4.19)

where

r+ =
r2 + a2(γ1 + γ2)

2η sin2 θ

4
, cos θ+ =

r2 cos 2θ − a2(γ1 + γ2)
2η sin2 θ

r2 + a2(γ1 + γ2)2η sin
2 θ

,

r− =
r2 + a2(γ1 + γ2)

2η cos2 θ

4
, cos θ− =

r2 cos 2θ + a2(γ1 + γ2)
2η cos2 θ

r2 + a2(γ1 + γ2)2η cos2 θ
.

(4.20)

In our conventions the functions LI for I = 1, 2, 3 correspond to the (electric) D1, D5

and P charges respectively. Writing Q±
2 = Q±

5 , Q
±
3 = Q±

p , the coefficients of the poles in

the decomposition of the fractionally spectral flowed solutions (4.8) are

q− = −s , q+ = s+ 1 , d−1 = −d+1 = Q5
s(s+ 1)

2Ryk
, d−2 = −d+2 = Q1

s(s+ 1)

2Ryk
,

d−3 = −d+3 =
Ryk

2
, Q−

1 =
Q1(s+ 1)

4
, Q+

1 = −sQ1

4
, Q−

5 =
Q5(s+ 1)

4
,

Q+
5 = −sQ5

4
, Q−

p =
Q1Q5s(s+ 1)2

4R2
yk

2
, Q+

p = −Q1Q5s
2(1 + s)

4k2R2
y

,

m− =
Q1Q5(s+ 1)2

8kRy
, m+ = −Q1Q5s

2

8kRy
, ℓI = 1 ∀ I .

(4.21)

We note that the relations (4.17), (4.18) are satisfied.

In the AdS3 decoupling limit, the solution (4.8) is related via a fractional spectral flow

large coordinate transformation to the vacuum solution (4.1). In order to exhibit this,

we first take the limit in which the Ry is much larger than the scale set by the Q1 and

Q5 charges:

ϵ =
(Q1Q5)

1/4

Ry
≪ 1 ⇒ Qp ≪

√
Q1Q5 , η ≃ 1 . (4.22)
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Physically, this regime implies that the geometry (4.8) has an AdS throat whose proper

length is large in AdS units (see e.g. [167]). The AdS throat is the region of spacetime

where r ≪ √Q1Q5. To take the decoupling limit, we rescale coordinates as

r → a r , t→ t

Ry
, y → y

Ry
, (4.23)

and send Ry →∞ holding fixed the rescaled dimensionless coordinates (r, t, y) and the

charges Q1, Q5. From (4.11) this sends a→ 0, and likewise ϵ→ 0. We then obtain the

decoupled metric

ds2 =
√
Q1Q5

[
− 1 + k2r2

k2
dt2 +

k2

1 + k2r2
dr2 + r2dy2 + dθ2

+ sin2 θ(dϕ− γ2dt− γ1dy)2 + cos2 θ(dψ − γ2dy − γ1dt)2
]
.

(4.24)

The fractional spectral flow coordinate transformation

ϕ→ ϕ+ γ2t+ γ1y , ψ → ψ + γ1t+ γ2y , (4.25)

maps the geometry in Eq. (4.24) into the k-orbifolded global AdS3×S3 solution given in

Eq. (4.1).

4.3.2 Shockwaves in fractionally spectral flowed supertubes

We now construct three-charge solutions involving shockwaves using a straightforward

two-step procedure. In the first step we take the solution involving a shockwave on

global AdS (4.2) and apply the inverse of the fractional spectral flow coordinate trans-

formation (4.25) to obtain a shockwave deformation of the AdS3 limit of the fractionally

spectral flowed circular supertubes. For later use we record the resulting metric:

ds2 =
√
Q1Q5

[
− (1 + k2r2)

k2
dt2 + r2dy2 +

k2dr2

1 + k2r2
+ dθ2

+ cos2 θ(−γ1dt− γ2dy + dψ)2 + (−γ2dt− γ1dy + dϕ)2 sin2 θ

+
q

k2r2 + cos2 θ

(
−
(
kr2dy − (−γ1dt− γ2dy + dψ) cos2 θ

)2

+
(1 + k2r2

k
dt+ (−γ2dt− γ1dy + dϕ) sin2 θ

)2)]
.

(4.26)

In the second step we extend this solution to an asymptotically flat solution. The

method is again straightforward, however the calculation is more involved than the

trivial first step. The method is to decompose the solution obtained in the first step into

the harmonic functions of the multi-center formalism, and then “add back the 1” in the

relevant harmonic functions.

To write the decomposition of the solution obtained in the first step, we rescale the
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location of the two poles of the harmonic functions of the undeformed solution as

r± → ξ r± . (4.27)

The coefficients of the two poles are then

q− = −s , q+ = s+ 1 , d−1 = −d+1 = Q5
s(s+ 1)

2Ryk
, d−2 = −d+2 = Q1

s(s+ 1)

2Ryk
,

d−3 = −d+3 =
Ryk

2
, Q−

1 =
Q1(s+ 1)

4
, Q+

1 = −sQ1

4
, Q−

5 =
Q5(s+ 1)

4
,

Q+
5 = −sQ5

4
, Q−

p =
Q1Q5s(s

2 + 2s+ ξ)

4R2
yk

2
, Q+

p = −Q1Q5s
2(1 + s)

4k2R2
y

,

m− =
Q1Q5(s

2 + 2s+ ξ)

8kRy
, m+ = −Q1Q5s

2

8kRy
, ℓ1 = ℓ2 = 0 , ℓ3 = 1 .

(4.28)

Having expressed the AdS3 solution in this form, we trivially extend the solution to

asymptotically flat space by replacing ℓI = 1 ∀ I.

To generate the closed-form solution describing a shockwave on the fractional spectral

flowed supertube background, we use Eqs. (4.14) and (4.15) to obtain

ds2 =

√
h̄1h̄5f̄dr

2

b2 + r2
+ f̄

√
h̄1h̄5dθ

2 +
(−dt2 + dy2)

h̄1h̄5

+
cos2 θ

f̄2
√
h̄1h̄5

[
ξh̄1h̄5 f̄

2(r2 − s b2) + b2Q1Q5 (2s+ 1) ξ2 cos2 θ

− q
(
b2 s (−Q1Q5 + r2 (s+ 1)(Q1 +Q5)) ξ +Q1Q5 r

2
(
η ξ − f̄

r2 + b2 cos2 θ

))]
dψ2

+ q
2a
√
Q1Q5 sin2 θ(r2 − b2 s)(dt− dy)dϕ
kf̄
√
h̄1h̄5(r2 + b2 cos2 θ)

+
a2 s(dt− dy)2(f̄ + s (r2 + b2 sin2 θ))

k2f̄
√
h̄1h̄5(r2 + b2 cos2 θ)

+
sin2 θ

f̄2
√
h̄1h̄5

(
h̄1h̄5f̄

2(r2 + b2 (s+ 1))ξ − b2Q1Q5(2s+ 1) ξ sin2 θ +
q b2f̄ Q1Q5 sin

2 θ

r2 + b2 cos2 θ

)
dϕ2

− 2a
√
Q1Q5 η ξ dy (cos

2 θdψ + sin2 θdϕ)

kf̄
√
h̄1h̄5

+
a4 s (1 + s) η2 ξ2(cos2 θdψ2 + sin2 θdϕ2)

k4f̄
√
h̄1h̄5

− 2a
√
Q1Q5(r

2 + b2ξ cos2 θ) (dt− dy) (γ1 cos2 θdψ + γ2 sin
2 θdϕ)

f̄
√
h̄1h̄5(r2 + b2 cos2 θ)

,

(4.29)

C2 = −Q1
dt ∧ dy
h1f̄

+
Q5 cos

2 θ

h̄1f̄

(
Q1 + r2ξ + b2(s+ 1)ξ +

b2Q1q sin
2 θ

r2 + b2 cos2 θ

)
dϕ ∧ dψ

+
q a
√
Q1Q5(r

2 + b2) cos2 θ

kh̄1f̄ (r2 + b2 cos2 θ)
dt ∧ dy + q a

√
Q1Q5 r

2 sin2 θ

kh̄1f̄(r2 + b2 cos2 θ)
dy ∧ dϕ

− sin2 θ
(
a
√
Q1Q5 −

q a b2
√
Q1Q5 cos

2 θ

r2 + b2 cos2 θ

) (γ1 dt+ γ2 dy) ∧ dϕ
h̄1f̄

− cos2 θ
(
a
√
Q1Q5 +

q a b2
√
Q1Q5 sin

2 θ

r2 + b2 cos2 θ

) (γ2 dt+ γ1 dy) ∧ dψ
h̄1f̄

+
a b2 s (1 + s) ξ

k
√
Q1Q5 h̄1f̄

(
Q1dt ∧

(
sin2 θdϕ+ cos2 θdψ

)
+Q5dy ∧

(
sin2 θdϕ+ cos2 θdψ

))
,
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e2Φ =
h̄1
h̄5

,

where

f̄ = ξf , b2 =
a2 η

k2
. (4.30)

We note that in the limit s = 0, this solution reduces to that in Eq. (4.6); in this limit

f̄, h̄1 and h̄5 reduce to f̄(0), h̄1(0) and h̄5(0).

In our new solutions the regularity constraints (4.17) are satisfied only by the coefficients

of the pole at r+ = 0 and not by the coefficients of the pole at r− = 0 in (4.28). This

is as it should be, since the solution has a shockwave singularity at f̄(0) = 0, i.e. at

(r = 0, θ = π/2).

We now analyse the absence of CTCs for the solutions we have constructed. First, we

note that Eq. (4.18) is not satisfied. This condition, however, is a necessary condition for

absence of CTCs when the solutions are smooth [51]. For the case at hand the solutions

are not smooth because of the shockwave singularity located at f̄(0) = 0; therefore, we

investigate the conditions for absence of CTCs directly. We do so by completing the

squares in the periodic coordinates (y, ϕ, ψ) and by checking that the overall coefficient

is globally non-negative. We first analyze the solution (4.29) in the decoupling limit,

where the form of the metric is simple enough to perform an analytic analysis. Since the

gφφ and gψψ are not affected by the spectral flow transformation (4.25), we complete the

squares in the following order: first ϕ, then ψ, and finally y. In doing so, the conditions

for absence of CTCs are independent of the spectral flow parameters γ1, γ2. We obtain

the conditions

ϕ coordinate: sin2 θ +
q sin4 θ

k2r2 + cos2 θ
≥ 0 ,

ψ coordinate: k2r2 cos2 θ + (1− q) cos4 θ ≥ 0 ,

y coordinate:
(1− q)(k2r2 + cos2 θ)

k2r2 + (1− q) cos2 θ ≥ 0 ,

(4.31)

which are always satisfied for 0 ≤ q < 1.

For the full asymptotically flat solution (4.29), as is often done we have performed a

numerical analysis, based on which we can rule out CTCs with a high level of confidence.

Note that in our spectral flowed supertube solutions with shockwaves, Eq. (4.29), the

evanescent ergosurface is located at f = 0, where f is given in Eq. (4.11). By contrast,

the shockwave is located at (r = 0, θ = π/2) which is not on the evanescent ergosurface

for s ̸= 0. Correspondingly, for s ̸= 0 the addition of the shockwave does not come

at zero cost in energy, and indeed we will now see that the momentum charge Qp is

modified.

We now record the conserved quantities of our solutions (4.29). As usual we wish to

compare with five-dimensional D1-D5-P BPS black holes [40, 168], so we are interested



100 Chapter 4 Shockwaves in black hole microstate geometries

in the five-dimensional conserved mass and angular momenta obtained after dimensional

reduction along the y direction. These quantities are computed in Appendix F and are

given by Eqs. (F.2) and (F.5), which we record here as

MADM =
π

4G5

(
Q1 +Q5 +

Q1Q5

R2
y

s(s+ ξ)

k2

)
,

J3 =
1

2
(Jφ − Jψ) =

1

2

ξN

k
+
sN

k
,

J̄3 =
1

2
(Jφ + Jψ) =

1

2

ξN

k
.

(4.32)

The condition 0 ≤ q < 1 has a natural interpretation in the holographically dual CFT,

as we shall see in the next section. Although the value q = 1 is excluded, and the

natural regime is small (but not infinitesimal) q, let us comment here on the form of

the solutions as they approach the singular limit q → 1 (ξ → 0) with r̄ =
√
ξr fixed.

As q → 1, our solutions approach small rotating D1-D5-P (BMPV [168]) black holes,

where here ‘small’ means zero horizon size in supergravity. In the AdS3 limit, the

fractional spectral flow transformation (4.25) relates these solutions to the AdS3 limit of

the two-charge D1-D5 BPS (non-rotating) small black hole solution. Similarly, this two-

charge black hole solution is approached in the q → 1 limit of the two-charge solutions

with shockwaves (4.6). It is known that the two-charge black hole solution does not

correspond to a microscopic profile function (or superposition of such functions), as

discussed in [47, 49, 50]. These small black hole solutions are approached here because

the q → 1 limit is a singular limit which effectively coarse grains over all the microscopic

details of the bound state; we shall elaborate on this in the next section once we have

proposed the holographic description of these solutions.

4.4 Holographic description of shockwave solutions

In this section we identify a family of states of the D1-D5 orbifold CFT and propose that

these are holographically dual to the AdS3×S3 limits of the supergravity solutions (4.6)

and (4.29). We perform tests of this proposal, including a precision holographic test,

finding agreement.

4.4.1 D1-D5 CFT

Let us briefly recall some facts about the D1-D5 CFT that we have already introduced

in Chapters 2 and 3, highlighting the aspects that will be useful for the discussion in

the remainder of this chapter. Moreover, for ease of presentation, we also report some

general aspects of the covering space formalism and of the spectral flow transformation

(we refer the reader to Appendix B for a complementary discussion).
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Being a symmetric product orbifold CFT, the D1-D5 CFT contains twisted sectors.

The twist operators are in one-to-one correspondence with the conjugacy classes of the

permutation group SN . These operators change the boundary conditions of the fields:

for example, the boundary conditions corresponding to the permutation (12...k) are

given (on the cylinder) by

X(1) → X(2) → ...→ X(k) → X(1) ,

ψ(1) → ψ(2) → ...→ ψ(k) → ±ψ(1) ,
(4.33)

and analogously for the right-moving fermions. The ± boundary conditions in (4.33) on

the cylinder correspond respectively to the R and NS sectors of the theory on a local

covering space [120, 169]; the lowest-dimension (‘bare’) twist operator corresponds to

the NS-NS vacuum in the covering space. For a more detailed discussion of this point,

see [85]. In the full symmetric product orbifold theory, twist operators are obtained by

symmetrizing over all permutations in a given conjugacy class.

Given a state involving a collection of twist operators of cycle lengths ki, it is common to

describe the state as a collection of effective ‘strands’ of lengths ki. Strands of length ki

can occur with multiplicity Ni, subject to the ‘strand budget’ constraint
∑

iNiki = N .

As a first example, consider the state consisting of N/k identical strands of length k,

each in the lowest dimension state in the k-twisted sector. We denote this state by

|0⟩N/kk = |0⟩(1)k ⊗ |0⟩
(2)
k ⊗ · · · ⊗ |0⟩

(N/k)
k , (4.34)

and we refer to it as the k-twisted NS vacuum. This state is an eigenstate of the left

and right Virasoro modes L0, L̄0 with eigenvalues h = h̄ = c
24(1 − 1

k2
), it is a singlet

under the SU(2)L × SU(2)R R-symmetry group and it is holographically dual to the

k-orbifolded global AdS3×S3 solution given in Eq. (4.1).

Upon mapping twisted states into the local k-fold covering space [120, 169], there are

no longer any twist operator insertions and the original k copies of the fields in (4.33)

are mapped into single-valued fields. In the k-fold covering space, the dimension hc and

central charge cc are related to those in the physical CFT via h = hc/k and c = kcc.

Moreover, the k-twisted sector of the physical CFT contains fractional modes n/k (and

(n+ 1/2)/k), which correspond to integer modes n (half-integer modes n+ 1/2) in the

covering space.

Our main interest is in black hole microstates in the RR sector of the theory, which

arises directly from the AdS3 decoupling limit of asymptotically flat configurations (see

e.g. [100]). One can map the NS sector of the CFT into the R sector using spectral

flow [170]. Starting with a state of left scaling dimension h and SU(2)L J3 charge m

and acting with a left spectral flow transformation with parameter ν, we obtain a state
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in the same twist sector with left dimension and charge (h′,m′) given by

h′ = h+ 2νm+
cν2

6
, m′ = m+

cν

6
. (4.35)

When ν is half integer, a spectral flow transformation maps a state in the NS sector

to a state in the R sector. When considering spectral flow of the full CFT, we have

c = 6N . If we consider an individual strand of length k, we have c = 6k. A similar

transformation holds for the right sector of the theory, with parameter ν̄.

When (ν, ν̄) = (12 ,
1
2), the untwisted NS vacuum |0⟩N1 is mapped into a RR state with

h = h̄ = N/4, which is therefore a RR ground state. It carries R-symmetry charge

m = m̄ = N/2 and we shall denote it with |++⟩N1 . The other RR ground states can be

obtained from spectral flow of other anti-chiral primaries (i.e. operators satisfying the

bound h = j = −m, h̄ = j̄ = −m̄) by applying the same spectral flow transformation.

For a given twist k there are (anti-)chiral primaries of dimension h = k/2, h = (k−1)/2

and h = (k + 1)/2.

Let us now consider the sector of the full CFT composed of N/k strands of length k.

In this sector, there is an enhancement of spectral flow known as fractional spectral

flow [85, 154, 171, 172]. This operation is naturally thought of as ordinary spectral flow

in the k-fold covering space and means that the values ν ∈ Z/k give rise to physical

states in the same (R or NS) sector of the theory, while the values ν ∈ (Z + 1
2)/k map

from R to NS in the k-fold cover.

The backgrounds to which we add shockwaves in this work are the heavy BPS RR states

obtained by chiral fractional spectral flow of the state |++⟩N/kk , studied in [154]. Specifi-

cally, we consider |++⟩N/kk as our reference state and perform left fractional spectral flow

with parameter ν = s/k. These states were proposed to be holographically dual to the

bulk configurations in Eqs. (4.8)–(4.11) in [154] and this proposal has passed non-trivial

holographic tests [93, 154]. We shall exhibit these CFT states in more detail in Section

4.4.4.

4.4.2 Holographic description of shockwaves in supertube backgrounds

The first shockwave solution we reviewed, in Eq. (4.2), for k = 1 describes a shockwave

on the global AdS3×S3 vacuum. As we have discussed, the shockwave describes the

backreaction of a distribution of high-energy massless particles. Supergravity excita-

tions on the vacuum are holographically dual to CFT states in short multiplets whose

top (bottom) component is a chiral (anti-chiral) primary, see e.g. [2, 100]. In our con-

ventions, the shockwave of (4.2) is holographically dual to a set of several anti-chiral

primaries of the dual CFT with large conformal dimension and R-charge, and therefore

high twist [101].
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Upon spectral flow to the RR sector, (anti-)chiral primaries transform into RR ground

states. Recall from Chapter 2 that suitably coherent RR ground states of the D1-D5

system can be described in terms of eight profile functions gi(v
′) in R

8, where v′ is a null

coordinate, with periodicity L = 2πQ5/Ry [47, 55, 110].

Let us consider the twisted circular supertube geometry that is generated by a circular

profile of radius a/k in the x1-x2 plane,

g1(v
′) + ig2(v

′) =
a

k
e

2πik
L

v′ , gi ̸=1,2 = 0 . (4.36)

The CFT state dual to the microstate generated by the profile (4.36) is

|++⟩N/kk . (4.37)

Let us now consider the AdS3×S3 limit of the solution with shockwave in Eq. (4.6).

If we switch off the shockwave excitations by setting q = 0, this solution is the one

corresponding to the profile (4.36) and CFT state (4.37). For non-zero q, this solution

can be generated by an approximate profile function by performing two steps (see [101,

Fig. 2] for a pictorial representation). The first step is to consider a profile which

initially traverses, k times, a circle of radius ā/k = ξa/k in the x1-x2 plane on the

interval v′ ∈ [0, ξL], and which then remains in the same x-location for the remainder

of its length (recall ξ = 1− q):

g1(v
′) + ig2(v

′) =
ā

k
e

2πik
ξL

v′
, 0 ≤ v′ ≤ ξL

g1(v
′) + ig2(v

′) =
ā

k
, ξL ≤ v′ ≤ L

gi ̸=1,2 = 0 .

(4.38)

The constant segment represents the high-twist chiral primaries, corresponding to profile

Fourier modes with high mode numbers and small amplitudes that are not resolved by

supergravity.

The second step is to break this constant segment into several smaller segments and

smear over their locations within the overall profile to obtain a uniform distribution

(subject to additional conditions described in detail in [101]). The resulting approximate

profile reproduces the supergravity solution with shockwave given in Eq. (4.6) [101]. This

procedure is most natural when q is small compared to 1 (but not infinitesimally small).

We now discuss the holographic description of these solutions, refining the discussion

in [101] given for k = 1. The circular segment of the profile function (4.38) corresponds

to a set of strands of type |++⟩k. The constant segment that is smeared corresponds

to some collection of RR ground state strands whose strand lengths are large in a sense

that we will make precise shortly. The polarizations of the RR strands are not resolved

in supergravity; for concreteness we will take them to be the five bosonic RR ground
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states that are invariant on the T 4, commonly labelled by their R-charges as |εε̄⟩ =
|±±⟩ , |±∓⟩ , |00⟩. As a first pass, we write this family of CFT states as follows (and

arbitrary superpositions thereof):

|++⟩N0
k |ε1ε̄1⟩d1k1 · · · |εns ε̄ns⟩dns

kns
,

ki
k
∈ Z,

ki
k
≫ 1 , N0k +

ns∑

i=1

diki = N .

(4.39)

Here N0 is the number of strands representing the supertube background, di is the

degeneracy of the various strands making up the shockwave and ns is the number of

types of strands that do not represent the supertube background. We work at leading

order in large N . We take the parameter k not to scale with N , so that N0 ∼ N . We

also take q and ξ to be independent of N . For ease of terminology we shall refer to the

strands of length ki as the long strands, and to those of length k as the short strands.

In the long strand sector, neither the parameters ki, di, ns, nor the distribution of

polarizations are fixed. This is the CFT analog of the fact that in the bulk the total

energy of the shockwave is known, however it is not known how this energy is distributed

among the high-energy supergravity quanta making up the shockwave.

Each segment of the supergravity profile (4.38) corresponds to a component of the dual

CFT state that contributes a finite fraction of the total strand budget at large N .

Considering the overall strand budget of the set of all long strands, we must also have∑
i diki ∼ N .

We will shortly refine the above to derive that at leading order in large N we must have

kN0 = ξN and thus
∑

i diki = qN . Thus ξ will be the fraction of the total strand budget

taken up by the short strands, and q will be the fraction of the total strand budget taken

up by the long strands.

The supergravity profile does not explicitly include any Fourier modes higher than k

with finite amplitude. From the two-charge dictionary as made precise in [103] (see

Eq. (2.7)), this means that the CFT state cannot contain any long strands with both

ki ∼ N0 and di ∼ N . Therefore no di can scale as N . We shall derive a stronger

condition shortly.

We now refine the condition ki ≫ k stated in [101] (for k = 1). Our main analysis

will involve a precision holography calculation. However it is instructive to make a brief

crude first pass by temporarily making the simplifying assumption that the length of

all the long strands scales in the same way, which we write as ki ∼ N b, where a priori

0 ≤ b ≤ 1. Similarly we temporarily assume that all the degeneracies of the long strands

scale as di ∼ Nd with 0 ≤ d < 1, recalling that we have excluded d = 1 in the previous

paragraph. Then the condition
∑

i diki ∼ N requires that ns ∼ NA with b+ d+A = 1

and a priori 0 ≤ A ≤ 1.

Now, in order for there to be enough different integers ki to have order NA types of long
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strands, we must have b ≥ A. Combining this with the constraint b+ d+A = 1, we find

A ≤ 1− d
2

, b ≥ 1− d
2

⇒ b > 0 . (4.40)

So in this simplified analysis, we see that the length of the long strands must scale with

a positive power of N . Furthermore,

ns∑

i=1

di ∼ N1−b with b > 0 . (4.41)

This relation will be important for matching the conserved charges. Using precision

holography we will shortly establish it in general, with no assumption on the scaling of

the different ki.

As a side comment, let us note that when we allow the different ki to scale as different

powers of N , it is possible for some strand lengths to scale as ki ∼ N0 with degeneracies

that scale as di ∼ Nd with d < 1, provided that ki ≫ k. Since such strands individually

account for a vanishingly small strand budget at large N (of order Nd), one would

discard them unless the same is true for all the other long strands present, for instance

if all diki ∼ Nd and ns ∼ N1−d. However in such a CFT state, the vast majority of

types of strands will have lengths that scale as some positive power of N (at least N1−d).

4.4.3 Precision holography analysis

In this section we shall use the holographic dictionary derived in Chapters 2 and 3 to

perform our precision holography analysis, in which we will prove for general ki that

the condition (4.41) holds in general. This condition will also be sufficient to ensure

agreement between gravity and CFT to the precision we probe. On the bulk side,

we work in the AdS3 decoupling limit. We expand fluctuations in S3 harmonics and

consider a single-particle excitation that is a scalar in AdS3. Since we are considering

a two-charge configuration, the four-dimensional base space of the supergravity ansatz

(C.1) is flat R
4. We work in spherical polar coordinates in which it takes the form

ds24 = dr̄2 + r̄2(dθ2 + sin2 θdϕ2 + cos2 θdψ2) , (4.42)

where we have labeled the radial coordinate by r̄, for consistency with the notation used

in the two-charge solution with shockwave in Eq. (4.6).

In these coordinates it is useful to expand the harmonic functions Z1, Z2 that appear in
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the BPS ansatz in Appendix C in scalar S3 harmonics Y mk,m̄k

k and for large r̄ as follows:

Z1 =
Q1

r̄2

(
1 +

2∑

k=1

k/2∑

mk,m̄k=−k/2

ak0 f
(mk,m̄k)
1k

Y mk,m̄k

k

r̄k
+O(r−3)

)
,

Z2 =
Q5

r̄2

(
1 +

2∑

k=1

k/2∑

mk,m̄k=−k/2

ak0 f
(mk,m̄k)
5k

Y mk,m̄k

k

r̄k
+O(r−3)

)
,

(4.43)

where a0 =
√
Q1Q5

Ry
.

The particular AdS3 scalar we consider is the field s
(6)(a,ȧ)
k=2 defined in (3.44)1. We use

the notation introduced in Section 3.5.2 and denote the coefficient of r̄−2 in its large r̄

expansion by
[
s
(6)(a,ȧ)
k=2

]
. Choosing the gauge f

(m1,m̄1)
11 + f

(m1,m̄1)
51 = 0, one then has (see

Appendix E)
[
s
(6)(a,ȧ)
k=2

]
=

√
3

2

(
f
(a,ȧ)
12 − f (a,ȧ)52

)
. (4.44)

The explicit values of the harmonic functions characterizing the backreaction of shock-

wave on a supertube background were obtained in [101, Eq. (3.18)]. Changing coordi-

nates to recast the base metric into the form (4.42), performing the asymptotic expansion

in (4.43) and using the linear combination in (4.44), one obtains that the AdS3 limit

of the solution describing a two-charge supertube with shockwave in Eq. (4.6) has the

property that [
s
(6)(a,ȧ)
k=2

]
= 0 . (4.45)

By examining Table 3.2, we see that the CFT operator dual to s
(6)(a,ȧ)
k=2 is the single-

particle operator Σaȧ3 introduced in Eq. (3.49). For convenience, we record below its

explicit form

Σ̃aȧ3 ≡
3

2

[(
Σaȧ3

N
3
2

− Ωaȧ

3N
1
2

)
+

1

N
1
2

(
−2

3
(Σ2 · Σ2)

aȧ +
1

3
(J · J̄)aȧ + 1

6
(O ·O)aȧ

)]
.

(4.46)

In this sector, the dictionary reads (3.100)

〈
Σ̃aȧ3

〉
= (−1)a+ȧ

√
N√
2

[
s
(6)(−a,−ȧ)
k=2

]
. (4.47)

Combined with the result in Eq. (4.45), this implies that the dual CFT state (4.39) must

have a vanishing expectation value of the operator Σ̃aȧ3 . This requirement will yield the

claimed constraint (4.41).

For ease of presentation, we shall make two simplifications: first, we take the twist

parameter in (4.39) to be k = 1 for the remainder of this subsection, and second, we

1For consistency with the notation in Chapter 3, we indicate with a, ȧ the SU(2)L ×SU(2)R charges
that are denoted with mk, m̄k, with k = 2, in Eq. (4.43).
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focus on CFT states involving only strands of polarization type |++⟩. The computation

and result for generic k and generic long strand polarizations are entirely analogous. A

more general case involving both |++⟩ and |−−⟩ polarizations for the long strands is

described in Appendix G.1.

We shall focus on a particular SU(2)L × SU(2)R component of the single-particle op-

erator, specifically Σ̃00
3 . Among the operators that mix in Eq. (4.46), there are three

operators that have a non vanishing expectation value on the class of states (4.39): the

single-trace operators Σ00
3 , Ω00 and the double-trace

(
J · J̄

)00
. The contribution of the

other double-trace operator is subleading in N , so we shall ignore it.

First, we analyze the contribution from the twist-three operator Σ00
3 . This operator ac-

quires a non-vanishing expectation value by mapping two strands of different length into

themselves, permuting the copies [1] (see the discussion above Eq. (2.110)). The fusion

coefficient of the process can be computed holographically; we describe the computation

in Appendix G.2. The result is:

σ003 |++⟩k1 |++⟩k2 =
(k1 + k2)

2

6k21k
2
2

(
1− δk1,k2

)
|++⟩k1 |++⟩k2 . (4.48)

The expectation value of Σ00
3 on the full state (4.39) arises from the process

Σ00
3

(
|++⟩N0

1

∏

i

|++⟩di

ki

)
=

(∑

i ̸=j

(ki + kj)
2

6kikj
didj +

∑

i

(ki + 1)2

6ki
N0di

)(
|++⟩N0

1

∏

i

|++⟩di

ki

)
.

(4.49)

The two terms in the first parenthesis after the equality sign correspond respectively to

the processes in which the twist-three operator acts on two long strands, and on a long

and a short strand. Let us consider the first contribution: it is given by combining (4.48)

with the fact that Σ3 can act on any of the didj pairs of strand of different length and

can cut each of them in ki and kj different positions. The second contribution works

analogously.

Second, we analyze the operator Ω00. The states |++⟩k are eigenstates of this operator

with eigenvalue described in Eq. (2.100)

Ω00 |++⟩k =
1

2k
|++⟩k . (4.50)

Therefore the operator Ω00 acquires a non-vanishing expectation value via the process

Ω00
(
|++⟩N0

1

∏

i

|++⟩diki
)

=

(
N0

2
+
∑

i

di
2ki

)(
|++⟩N0

1

∏

i

|++⟩diki
)
. (4.51)

Third, we consider the double-trace operator
(
J · J̄

)00
. Its expectation value arises from
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the process

(
J ·J̄
)00( |++⟩N0

1

∏

i

|++⟩diki
)

=
2

N

(
N2

0

4
+2

N0

2

∑

i

di
2
+
∑

i,j

didj
4

)(
|++⟩N0

1

∏

i

|++⟩diki
)
.

(4.52)

The three terms after the equality sign correspond respectively to: (i) the action of both

the left and the right current on a short strand; (ii) one current acting on a short and

one on a long strand; and (iii) both currents acting on a long strand. By combining

Eqs. (4.49)–(4.52) we obtain the expectation value of the single-particle operator:

〈
Σ̃00
3

〉
=

3

2N3/2

[
2

3
N0

∑

i

di +
∑

i ̸=j
didj

(ki + kj)
2

6kikj
− 1

6

∑

i,j

didj

(ki
kj
− 1
)]

=
1

N3/2

[
N0

∑

i

di +
∑

i ̸=j
didj

k2j + 3kikj

4kikj

]
,

(4.53)

where the last equality follows by noticing that the i = j parts of the last term of the

first line vanish.

With our normalization of the holographic dictionary, the contribution of an operator is

visible in the supergravity approximation if its expectation value is of order N1/2 in the

large N limit. Therefore the expectation value of Σ̃00
3 will agree with Eq (4.45) if and

only if its large N scaling is subleading with respect to N1/2.

We note that Eq. (4.53) is the sum of two positive terms, so no cancellation can occur.

Let us thus consider the first term. We have N0 ∼ N and therefore we require that

ns∑

i=1

di ∼ N1−α for some α > 0 . (4.54)

We emphasize that we have now established that this condition is necessary in general,

for any set of long strand lengths ki.

Next we consider the second term. Again as a crude first pass, suppose that all the

various ki scale as the same power of N . Then an upper bound on the scaling of this

term is N2(1−α) with α > 0, from squaring (4.54). Then this term, and thus the total

expectation value, are subleading compared to N1/2 as required.

More generally, suppose instead that there are different values of ki scaling as different

powers of N . The term corresponding to 3kikj in the numerator of the second line of

(4.53) is subleading compared to N1/2 by the same argument as in the last paragraph.

An upper bound on the remaining term is given by adding in the i = j terms into the

sum, obtaining
1

N3/2

(∑

j

djkj

)(∑

i

di
ki

)
. (4.55)

The first sum is of order N , while the second is bounded above by
∑

i di ∼ N1−α.
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So (4.55) is also subleading compared to N1/2. Therefore the condition (4.54) is also

sufficient to ensure that the precision holographic test is passed.

We now use the condition (4.54) to determine N0, the degeneracy of the twist-k strands,

in the large N limit. The analysis of the conserved charges of the metric (4.6) in [162]

established that the angular momentum carried by the solution describing a shockwave

on a supertube background is suppressed by a factor of ξ with respect to that of the

supertube solution:

〈
J3
〉
Supertube+SW

= ξ
〈
J3
〉
Supertube

= ξ
N

2k
. (4.56)

The same value is obtained upon setting s = 0 in the conserved charges in Eq. (4.32).

The CFT state (4.39) is an eigenstate of the current operator J3, with eigenvalue:

〈
J3
〉
=

N0

2
+

ns∑

i=1

εi
di
2
. (4.57)

Recall that we have taken k ∼ N0 and N0 ∼ N . We have just shown that
∑
di ∼ N1−α

with α > 0. So at large N the contribution of the long strands to the expectation value

of J3 is subleading. As anticipated above, we thus conclude that at leading order in

large N ,

N0 = ξ
N

k
. (4.58)

Therefore, as claimed, q is the fraction of the total strand budget taken up by the long

strands, and ξ = 1−q is the fraction of the strand budget taken up by the short strands.

For convenient reference we now record the more refined version of the family of CFT

states in Eq. (4.39) as

|++⟩N0
k |ε1ε̄1⟩d1k1 · · · |εns ε̄ns⟩dns

kns
,

ki
k
∈ Z,

ki
k
≫ 1 ,

kN0 = ξN ,

ns∑

i=1

diki = qN ,

ns∑

i=1

di ∼ N1−α , α > 0 .

(4.59)

We remind the reader that while the presence of the shockwave decreases the angular

momentum, the total energy of the system is left unchanged and is given by h = h̄ = N
4 .

Let us return to the condition 0 ≤ q < 1 derived in Section 4.3. We make two brief

observations here that shed further light on the condition q < 1. First, the string pro-

file (4.38) would become a straight line in the limit q → 1, which is microscopically

inconsistent with the fact that the configuration carries two charges (see e.g. [50]). Sec-

ond, the family of CFT states (4.39) involves long strands of winding ki ≫ k whose

details are not resolved by supergravity relative to the short strands of length k. In the

limit q → 1, the short strands are no longer present, so the approximation of a smeared
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profile is no longer valid. For such CFT states a more refined bulk description is re-

quired, and is given by the extrapolation of the general two-charge microstate solutions

into the stringy regime [47, 53, 55, 101].

As a final comment on these microstates, we note that the proposed holographic de-

scription of the k = 1 supertube background with shockwave is similar to the proposed

holographic description of small two-charge BPS black rings of the D1-D5 system [173–

175], where again here ‘small’ means zero horizon area in supergravity. It would be

interesting to further investigate this similarity.

4.4.4 Holography of fractionally spectral flowed supertubes

In this section we review in more detail the holographic description of the fractionally

spectral flowed supertube solutions [154] and discuss some of their physical properties.

As mentioned at the end of Section 4.4.1, the dual CFT states to the fractionally spectral

flowed supertube solutions given in Eq. (4.8) are 1/8-BPS microstates obtained by left

fractional spectral flow of the 1/4-BPS state |++⟩N/kk by an amount ν = s/k with s ∈ Z.

The spectral flow adds left-moving fermionic excitations, while leaving the right movers

in the ground state; this results in a non-zero momentum charge np = h− h̄. The state

of each strand takes the explicit form

|++⟩k,s ≡





[
ψ+1
− s

k
ψ+2
− s

k
· · ·ψ+1

− 1
k

ψ+2
− 1

k

]
|++⟩k , s ≥ 1

[
ψ−1

s+1
k

ψ−2
s+1
k

· · ·ψ−1
0 ψ−2

0

]
|++⟩k =

[
ψ−1

s+1
k

ψ−2
s+1
k

· · ·ψ−1
− 1

k

ψ−2
− 1

k

]
|−+⟩k , s ≤ −1 .

(4.60)

Recall that in the k-twisted sector the level spacing of the excitations is in units of 1/k.

This means that spectral flow is the energetically most convenient way to add charge,

corresponding to filling a Fermi sea of excitations up to the fractional level s/k for s ≥ 1,

or the level −(s+1)/k for s ≤ 1. Fractional spectral flow has an entirely analogous effect

on the other RR ground states with polarizations |−−⟩ , |±∓⟩ , |00⟩; for further details

see e.g. [57].

Let us record the charges of the state (4.60). The spectral flow transformation involves

only the left sector of the theory, so the right charges are the same as those of the

two-charge circular supertube. The left charges follow from Eq. (4.35) and are

h =
N

4
+
Ns(s+ 1)

k2
, h̄ =

N

4
,

m =
N

k

(
s+

1

2

)
, m̄ =

N

2k
.

(4.61)

Importantly, not all values of s, k are allowed. The momentum per strand p is required
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Figure 4.1: Quantum numbers (J3, np) for fractional spectral flowed supertube states with
k ≤ 12 and |s| ≤ 12 satisfying the condition (4.62) and for which |J3| ≤ 2N . All points lie
outside the parabola, even though some appear very close to it.

to be an integer:

p =
s(s+ 1)

k
∈ Z. (4.62)

In Figure 4.1 we display the (J3, np) phase diagram for the D1-D5-P system in the RR

sector. The black polygon represents the unitarity bound: allowed CFT states exist only

on and above this threshold. The parabola np = (J3)2/N delimits the region of existence

of finite-size BMPV black holes, which exist only inside the parabola. Note that inside

but very close to the parabola, the small BMPV black holes are sub-dominant to either

a BMPV plus supertube or black ring [176]. The fractionally spectral flowed supertube

solutions live in the region bounded by the black polygon and the purple parabola. We

represent with dots the solutions with k ≤ 12 and |s| ≤ 12.

Note that the dots in the corners of the unitarity bound polygon are the states with

k = 1. In our conventions the interval 0 < J3 < N/2 with np = 0 contains the RR

ground states with k > 1 and s = 0, i.e. the states |++⟩N/kk . Dots in the interval

−N/2 < J3 < 0 with np = 0 correspond to k > 1 and s = −1, which are the two-charge

states |++⟩N/kk,s=−1 = |−+⟩N/kk . Dots on the remaining lines of the polygon correspond

to spectral flowed states that have s/k ∈ Z or (s+ 1)/k ∈ Z.

The remainder of the states are the most interesting physically. These lie closer to the

BMPV parabola, and have k > 1 and neither s/k ∈ Z nor (s + 1)/k ∈ Z. These were

the states of primary interest in [154].
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4.4.5 Holography of shockwaves in fractionally spectral flowed super-

tubes

We now propose the holographic description of the AdS3×S3 limit of the solutions

describing fractional spectral flowed supertubes with shockwaves in Eq. (4.29). The

AdS3×S3 limit of the metrics are given in Eq. (4.26).

Recall that the spectral flow large coordinate transformation (4.25) maps the AdS3

decoupled metric in Eq. (4.26) into that of the supertube with shockwave in (4.2); the

same holds for the two-form potential.

Therefore the natural candidate family of dual CFT states is the family obtained by

fractional spectral flow with parameter ν = s/k of the family of two-charge states in

Eq. (4.59), subject to the condition of integer momentum per strand. We shall show

that this condition is non-trivial, but that it is satisfied by an arbitrarily large number of

states in the large N limit. Recall that the lengths of the long strands ki are required to

be multiples of k, in order that we can make this fractional spectral flow transformation.

To describe this family of states in more detail, let us introduce integer parameters si

which label the amount of spectral flow performed over the strands of length ki. One

has

ν =
s

k
=

si
ki

∀i . (4.63)

Our proposed dual CFT states of the bulk solutions involving a shockwave on a frac-

tionally spectral flowed supertube background in Eq. (4.29) are the following states (and

their superpositions):

|++⟩N0
k,s |ε1ε̄1⟩d1k1,s1 · · · |εns ε̄ns⟩dns

kns ,sns
,

ki
k
∈ Z,

ki
k
≫ 1 ,

kN0 = ξN ,

ns∑

i=1

diki = qN ,

ns∑

i=1

di ∼ N1−α , α > 0 ,

(4.64)

subject to the condition that the momentum on each CFT strand be an integer.

Let us now examine the condition of integer momentum per strand. For the strands

corresponding to the background, recall that we have the condition p = s(s+1)
k ∈ Z,

Eq. (4.62). Similarly, for the strands corresponding to the shockwave, we require

pi =
si(si + εi)

ki
∈ Z ∀ i . (4.65)

This condition is quite non-trivial, because we have noted that the candidate dual CFT

states contain strands of parametrically large ki, and because the numerator is con-

strained by si =
ski
k . Therefore, given an allowed pair (s, k), it is important to ensure
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that there is a set of allowed values of ki that extend to arbitrarily large positive integers.

We now prove that this is indeed the case.

Let us assume without loss of generality that s > 0, and present the proof first for

εi = 1. Recall that k > 0 by definition. Since s and (s+1) share no common factors and
s(s+1)
k ∈ Z, when we decompose k into its prime factors, a subset of these must divide

s, and the rest must divide (s + 1). We can then write the prime factorization of k in

the form

k = k(s)k(s+1) =
∏

i

n
(s)
i

∏

j

n
(s+1)
j , k(s) =

∏

i

n
(s)
i , k(s+1) =

∏

i

n
(s+1)
i ,

(4.66)

where n
(s)
i are primes that divide s, and similarly for n

(s+1)
i . Repeated primes can of

course occur in this decomposition, and n
(s)
i ̸= n

(s+1)
j for all i, j. We can then factorize

s and (s+ 1) as

s = ŝk(s) , s+ 1 = t̂k(s+1) , (4.67)

where ŝ and t̂ are positive integers but are not necessarily prime. We recall that the ki

are multiples of k, such that we can write ki = k̂ik for positive integers k̂i. By using

si = skik and the decompositions in Eqs. (4.66), (4.67), we have that the momentum

carried by the i-th type of strand is given by

pi =
si(si + 1)

ki
=

s(sk̂i + 1)

k
=

ŝ(sk̂i + 1)

k(s+1)
. (4.68)

Let us define p̂i = pi/ŝ and show that there is an infinite sequence of k̂i such that p̂i is

a positive integer. Rearranging, we have

p̂ik
(s+1) − sk̂i = 1 . (4.69)

Since none of the n
(s+1)
j divide s, we have gcd(s, k(s+1)) = 1. Bézout’s identity (and the

extended Euclidean algorithm) then imply that there is an infinite sequence of positive

integer pairs (k̂i, p̂i) such that (4.69) is satisfied, and therefore there is an infinite set of

ki such that pi ∈ Z.

More generally, the right-hand side of Eq. (4.69) is εi. When εi = −1, Bézout’s identity
again ensures the required infinite sequence of positive integer pairs (k̂i, p̂i). When

εi = 0, one can simply take k̂i to be a multiple of k(s+1) to obtain such an infinite

sequence.

The upshot is that there is an infinite family of states of the form (4.64) that obey the

non-trivial condition that the momentum on each strand is an integer, including strands

with arbitrarily large values of ki in the large N limit.

Let us compute the charges of the CFT states (4.64) and compare them with the gravity
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Figure 4.2: Quantum numbers (J3, np) of spectral flowed supertubes without shockwaves
(dots) and corresponding solutions with shockwaves, for q = 0.2 (crosses). Colour coding
and proximity indicate corresponding solutions. Plotted are states with k ≤ 12, |s| ≤ 12,
satisfying (4.62) and with |J3| ≤ N . All plotted points lie outside the parabola, even though
some appear very close to it.

result in Eq. (4.32). The scalings in the second line of Eq. (4.64) will again ensure

agreement. There is no spectral flow in the right sector, so the right charges (h̄, m̄) are

the same as those for the two-charge states dual to supertubes with shockwaves (4.59).

For the left sector, we compute the charges using Eq. (4.35), and derive their large-N

behaviour using the second line of Eq. (4.64). Recalling that si = skik and denoting

subleading terms with ellipses, we obtain

h = N0
k2 + 4s(s+ 1)

4k
+
∑

i

di
k2i + 4si(si + εi)

4ki
=

N

4
+
N

k2
s(s+ ξ) +

s

k

∑

i

εidi

⇒ h =
N

4
+
N

k2
s(s+ ξ) + . . . ,

m = N0

(
s+

1

2

)
+
∑

i

di

(
si +

εi
2

)
=

sN

k
+ ξ

N

2k
+
∑

i

εi
di
2

⇒ m = ξ
N

2k
+
sN

k
+ . . . .

(4.70)

Comparing with the gravity charges given in Eq. (4.32) we see that the angular momen-

tum eigenvalue J3 = m explicitly agrees. We note in passing that in Eqs. (4.32), (4.70)

the s-dependent part of the angular momentum eigenvalue ⟨J3⟩ = m does not depend

on ξ; when s ̸= 0, the long strands contribute a finite fraction of the angular momentum

of the configuration.

To show agreement between the momentum charge Qp and the value of h, we extract
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the quantized CFT y-momentum charge

np = h− h̄ =
N

k2
s(s+ ξ) . (4.71)

We then translate this CFT charge into supergravity normalization using the general

relation between the supergravity charge Qp and the quantized charge np (see e.g. [60,

Eq. (6.26)]),

Qp =
Q1Q5

R2
yN

np =
Q1Q5

R2
y

s(s+ ξ)

k2
. (4.72)

This value, derived from the CFT, is in precise agreement with Eq. (4.32). The agree-

ment of conserved charges supports our proposal for the holographic description of our

solutions.

In Figure 4.2 we plot both the fractionally spectral flowed supertube solutions without

shockwaves (dots) and the microstates obtained adding a shockwave in their core region

(crosses). In all examples, the backreaction of the shockwave drives the fractionally

spectral flowed supertube solutions toward the BMPV parabola, without ever reaching

it except asymptotically in the limit q → 1, which as we have already discussed is a

singular limit.

Let us make some observations on the set of solutions with shockwaves and their con-

served charges. First, let us consider the right-hand side of the np = 0 line, i.e. the

range 0 < J3 ≤ N/2. Upon backreaction of the shockwave, the microstate remains

on the same line. The shockwave reduces the angular momentum, corresponding to a

transition from less typical to more typical two-charge microstates [162].

On the left-hand side of the np = 0 line, when −N/2 ≤ J3 < 0, the behaviour is

quite different: upon adding the shockwave, the momentum charge of the microstate

increases. The difference between the two sides of the np = 0 line can be understood

by first noticing that in all points plotted, the shockwave adds a negative amount of J3.

When the background has positive J3, the shockwave decreases |J3|. However when the

background has negative J3, the shockwave increases both |J3| and the average winding

of the strands in the CFT, so it is not possible for the solution with shockwave to remain

on the np = 0 line. A more direct understanding can be obtained by tracing the spectral

flow orbits of the points on the right-hand side of the np = 0 line (by fractional spectral

flow with ν = −1/k).

Note that there exists a similar set of configurations with shockwaves in which the

shockwave adds a positive amount of J3. These can be obtained by interchanging ϕ↔ ψ

in the solutions we constructed in Eq. (4.29). Their charges are obtained by reflecting

Fig. 4.2 in the np axis. So in fact for each background, there exist two solutions with

shockwaves of the type we have constructed, only one of which is plotted in Fig. 4.2.

The behaviour on the diagonal lines is similar to the respective halves of the two-charge
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line np = 0. Specifically, the behaviour of the states on the left-most diagonal line is

similar to that on the right-hand side of the np = 0 line, being related by (integer)

spectral flow with parameter ν = −1. The configurations with shockwaves remain on

the diagonal line. In the same way, the behaviour on the right-most diagonal line is

similar to that on the left-hand half of the np = 0 line. Recall that the dots on these

lines include all states that have k = 1 and all states that have s/k ∈ Z or (s+1)/k ∈ Z.

The final set of dots are those that already lie close to the parabola, for which k > 1

and neither s/k ∈ Z nor (s + 1)/k ∈ Z. These are the states that involve ‘genuinely’

fractional spectral flow, in the sense that they cannot be obtained from any two-charge

state by spectral flow with parameter ν ∈ Z [154]. The shockwave drives these states to

be closer to the parabola, though in many cases it is not easy to see this from the plot.

We conclude this subsection by returning to the point that for the states with shockwaves

that remain on the two-charge line, the process of adding a shockwave is a process that

drives the system from less typical to more typical two-charge microstates [162]. For our

fractionally spectral flowed supertubes with shockwaves, making a similar interpretation

is complicated by the fact that the conserved charge np in general changes when the

shockwave is added. However in both cases the solutions with shockwaves describe a

family of microstates involving strands with unspecified twists ki, corresponding to the

high-frequency quanta making up the shockwave that are not resolved by supergravity.

Typical microstates of the supersymmetric two-charge black hole are those composed

of strands with winding k ∼
√
N ; for the three-charge supersymmetric black hole, the

typical microstates involve strands with length k ∼ N [50]. Indeed, our proposed dual

CFT states in Eq. (4.64) involve strands with windings that generically are of different

lengths, including lengths scaling as positive powers of N . Therefore, relative to other

microstates with the same respective values of np, the states with shockwaves are nat-

urally thought of as being more typical than the states dual to the fractionally spectral

flowed supertube solutions without shockwaves.

4.4.6 Interpolating between different microstates

We now observe that the class of CFT states that we have studied, given in Eq. (4.64),

contains some simple examples of states that have attracted recent interest as families

that interpolate between different microstate geometries [177, 178]. Those works studied

sub-families of states of the general form

|++⟩N0
k,ν |++⟩d1k1,ν1 , (4.73)

where the pair (k, ν) is not equal to the pair (k1, ν1), and coherent superpositions of such

states. We caution the reader that in this subsection we are parameterizing spectral flow

with the rational parameter ν = s/k rather than the integer s.
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This family of states is interesting because in the separate limits in which d1 = 0 or

N0 = 0, the state reduces to a spectral flowed supertube state (or a two-charge supertube

state). In [177] the sub-family k = k1 = 1, ν = 0, ν1 > 0 was studied (spectral flowed

further to the NS-NS sector). In [178] a general discussion was given, as well as an

explicit analysis of the sub-family in which ν1 = ν − 1
k1
. It was found that the bulk

description of these states involves codimension-2 sources corresponding to an extra

KKM dipole charge in the D1-D5 frame.

The family of states we have analyzed includes another distinct sub-family of states of

the form (4.73), namely that in which k1 ∼ N b with 0 < b ≤ 1, and either ν1 = ν or

ν1 = ν + 1
k − 1

k1
, i.e.

|++⟩N0
k,ν |++⟩d1k1,ν , |++⟩N0

k,ν |++⟩d1
k1,ν+

1
k
− 1

k1

. (4.74)

The first of these values of ν1 is obtained directly by taking the limit of our general family

of CFT states (4.64) in which there is only one type of long strand, of polarization |++⟩.

The second value of for ν1 arises because we have the freedom to flip the sign of the left

angular momentum J3 while keeping the right angular momentum J̄3 invariant. This can

be implemented by the coordinate transformation (ψ, ϕ)→ (ϕ, ψ) in our solutions (4.32),

as discussed below Eq. (4.72). This gives the bulk solutions dual to a set of CFT states

similar to those in Eq. (4.64) but with |++⟩k → |−+⟩k and all εi → −εi. This includes
states of the form

|−+⟩N0
k,ν |−+⟩d1k1,ν . (4.75)

By shifting ν → ν+1/k, we can rewrite these states as the second type of state in (4.74).

Note that setting ν = 0 in the second type of state in (4.74), we obtain a set of states

of which one is a RR ground state and one is a fractional spectral flowed state,

|++⟩N0
k |++⟩d1

k1,
1
k
− 1

k1

. (4.76)

In our setup, the bulk configurations with q = 0 correspond to CFT states with all

strands of one type (of the shorter winding k). Dialling q larger, we obtain solutions

that describe states of the form (4.73) with k1 ∼ N b and either ν1 = ν or ν1 = ν+ 1
k− 1

k1
.

For these states, q controls the fraction of the total strand budget accounted for by the

long strands, as discussed around Eq. (4.58).

In the analysis of [178], emphasis was placed on the ability to interpolate from states

involving strands of all one type to states involving strands of all the other type. On

this point, let us note that there are two limitations to our construction: first, we

cannot interpolate all the way to having only long strands, as this would invalidate the

shockwave approximation we have made; the approximation relies on both long and

short strands contributing an order-one fraction of the overall strand budget. Second,
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our bulk solutions do not differentiate between the polarizations of the long strands, so

the same bulk solutions describe interpolations between different pairs of fractionally

spectral flowed states. In this sense our bulk description is more coarse-grained than

that of [178]. Nevertheless, we have found the bulk description of interesting examples of

states of the general form (4.73), allowing us to describe a partial interpolation between

strands that have different amounts of spectral flow.

4.5 Discussion

In this chapter we have derived the first family of asymptotically flat BPS three-charge

black hole microstate geometries containing a shockwave. We have done so by starting

with the solution that describes the backreaction of a shockwave on an AdS background.

We then exploited the spectral flow transformation together with the multi-center for-

malism of supersymmetric solutions. The result is reported in Eq. (4.29).

The solution is singular at the location of the shockwave and this is a physical singularity.

Besides this, the microstate is smooth everywhere, it is horizonless and free of closed

time-like curves. We have analytically checked this last property in the decoupling limit

and performed a numerical analysis in the full asymptotically flat solution.

We have proposed a family of CFT states dual to the supergravity solution constructed,

refining the proposal in [101]. This identification is supported by computing protected

quantities in supergravity and at the free orbifold point in the dual CFT and by matching

them. We have found perfect agreement in comparing the conserved charges. Further-

more, we have exploited the holographic dictionary, that relates the expectation value

of some CFT operators with the fall off of the dual supergravity fields. Also in this

case perfect agreement has been established. We also noted that in a certain limit our

new solutions provide a partial interpolation between different three-charge microstate

geometries, expanding the class of states discussed in [177, 178].

The new solution describes the backreaction of highly energetic supergravity quanta

on a fractionally spectral flowed supertube background. While the total energy of the

shockwave is fixed, the solution does not contain information about how the energy is

distributed among the supergravity quanta. The dual statement in the CFT is that

the number of single copies involved in the long strands in the state (4.64) is fixed, but

the length and the number of each long strand is not. In this sense, the shockwave

provides a coarse grained description of the high energy quanta. While we know that

in the supergravity approximation we do not have access to highly quantum degrees of

freedom, the shockwave is able to capture a coarse grained description of the physics.

We also observed that in our asymptotically flat solutions, the location of the shockwave

is not on the evanescent ergosurface. As a result, the addition of the shockwave does
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not come at zero cost in energy, and instead changes the momentum charge np along

the y-circle. This is a physical difference from the two-charge solution containing a

shockwave [101], discussed in [162] in the context of an evolution from less typical to

more typical states, related to the perturbation process described in [160]. Nevertheless,

we have argued that the CFT states dual to the solutions constructed in this work are

naturally thought of as more typical than the solutions without shockwaves, when each

is compared to other microstates with the same respective values of np.

Our analysis suggests possible generalizations. One is to generalize this shockwave con-

struction to other supersymmetric two and three-charge microstates. In particular, it

may be possible to compute the backreaction of a shockwave that lies on the evanescent

ergosurface of a fractionally spectral flowed supertube background: this result would

directly connect with the analysis of the non-linear instability of [160]. Second, it would

also be interesting to study the backreaction of a shockwave on the ergoregion of a

JMaRT background [78]: this would provide the evolution of a non-supersymmetric,

linearly unstable microstate solution and might shed light over the unitary evaporation

process that should replace Hawking’s pair production at the microscopic level.
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Chapter 5

Evolutionary algorithms for

multi-center solutions

5.1 Introduction

This chapter contains the work reported in [4]. We will present an optimization algorithm

to construct new approximate multi-center solutions with a high number of centers in

generic configurations.

The multi-center formalism has been introduced in Chapter 4 in the context of two cen-

ters solutions. We remind the reader that multi-center solutions (also known as bubbling

solutions) are described by a set of harmonic functions on a three dimensional euclidean

space and the four dimensional base space is of the Gibbons-Hawking form. While this

set up might seem simple, deriving physically sensible solutions with several centers is

a hard problem. The reason being that asymptotic flatness, charge quantization, regu-

larity and absence of CTCs impose constraints (e.g. the bubble equations introduced in

Eq. (4.18)) that make the positions of the centers and the coefficients of the poles of the

harmonic functions interdependent. Moreover, only a subset of such solutions share the

same asymptotic charges of a macroscopic black hole.

We have a good analytic control of multi-center solutions with a low (≤ 4) number

of centers (see e.g. [72–75, 154]), but less examples with higher number of centers are

known [69] and they usually take all centers to lie on a line, so that the configuration

is axisymmetric. An important step forward to construct multi-center solutions with a

high number of centers was provided in [71]: by taking the fluxes, instead of the distances

between the centers, as dependent variables, the authors wrote the bubble equations as

a linear system of the formMαβ Πβ = Bα, whereM is a symmetric matrix. They also

conjectured that a solution satisfying such equation does not contain CTCs if and only

ifM is positive definite. While such perspective simplified the task of finding physically

123
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relevant solutions, it relies on the requirement that the distances between the centers

shall be rational. Such a requirements ensures that the resulting fluxes are rational,

consistently with flux quantization.

While two-center bubbling solutions have a well-established holographic description [78,

85, 151–154] (which we have reviewed in Section 4.4.4), multi-center solutions with a

higher number of centers do not have a proposed holographic dual. It has been suggested

in [179] that these configurations are not part of the phase space of a supersymmetric

black hole, but they should rather be thought of as microstates of other black objects.

Nonetheless, these class of configurations are interesting examples of gravitational solu-

tions that closely resemble black holes. This is especially true in the so called “scaling”

regime, in which all the centers are localized deep inside a long-black-hole like throat. For

example, multi-center solutions have been used to study potentially observable signatures

of fine-grained structure of black holes in gravitational wave observations [180–182].

In recent years, an increasing domain of String Theory and Particle Physics problems

have been address with the aid of optimization algorithms and machine learning (see

e.g. [183–190]). In this chapter we propose an algorithm, based on Bayesian optimization

and evolutionary algorithm, to generate approximate solutions to the bubble equations

that are free of CTCs, respect all quantization conditions and describe a high number

of centers in a generic configuration.

The starting point is a set of centers in a three dimensional Euclidean space. We use

a Bayesian optimization algorithm to assign charges to these centers that give rise to

solutions with D1 and D5 charges greater than a desired threshold Q̄ (Q1, Q5 > Q̄).

While doing so, we focus on geometries that are in the scaling regime. With this aim,

following [73], we solve the AdS2×S3 version of the bubble equations: these equations are

scale invariant and are relevant to construct scaling solutions, which have the property

that the separation between the centers can be made arbitrarily small while keeping the

asymptotic charges practically constant. The fluxes resulting from this procedure are

in general irrational. In accordance with the flux quantization condition we round the

fluxes and obtain an approximate solution to the bubble equation. Such a solution is

approximate for two reasons: first, the fluxes have been rounded; second, we obtained

this solution by solving the AdS2 version of the bubble equations, rather then the fully

asymptotically flat ones.

We improve on this approximate solution by implementing an evolutionary algorithm

(EA) that changes the positions of the centers to maximize a fitness function (i.e. a

function that measures how well the bubble equations are solved). The evolutionary

algorithm works by generating a population of individuals starting from the aforemen-

tioned approximate solution and making these individuals evolve following the principles

of the Darwinian theory: selection, heredity and variation. This algorithm, iterated over

several generations, leads to new individuals with higher fitness. Once an individual with
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the desired fitness is generated, we check the absence of CTCs by computing the eigenval-

ues of the matrixM. Our algorithm is designed to generate solutions with an arbitrary

number of centers in a generic configuration. We test it explicitly for configurations of

three, five and seven centers and will provide explicit examples in due course. Gener-

ating solutions with a higher number of centers or higher fitness is feasible, although

computationally more expensive.

This chapter is structured as follows. In Section 5.2 we revise the construction of multi-

center scaling solutions with the formalism introduced in [71]. In Section 5.3 we describe

the Bayesian optimization algorithm and the evolutionary algorithm designed for our

task. In Section 5.4 we describe explicit examples of a five-center and a seven-center

configuration obtained with our method. In Section 5.4.3 we discuss the performance of

the algorithm and compare it with a random search. Section 5.5 contains the conclusions.

5.2 Multi-center scaling supergravity solutions

5.2.1 Multi-center solutions

We begin by resuming and extending the review in Section 4.3.1 on multi-center solutions

(also known as bubbling geometries), highlighting the feature that are relevant for the

discussion in this chapter.

For concreteness, we shall primarily have in mind 5D N = 1 Super-Einstein-Maxwell-

Yang-Mills supergravity, whose bosonic field content is given by the metric, three Abelian

vector multiplets, and an SU(2) triplet of non-Abelian vector multiplets.

Multi-center solutions are specified by a set of harmonic functions on a three-dimensional

Euclidean “base” space, which have poles at the location of the centers. The index

a = 0, 1, ..., n − 1 labels the centers, and ra = |r⃗ − r⃗a| is the distance from the a-th

center in the three-dimensional base. In the Abelian sector the harmonic functions are

(i = 0, 1, 2):

H =
n−1∑

a=0

qa
ra
, Ki =

n−1∑

a=0

kia
ra
, Li = li0 +

n−1∑

a=0

lia
ra
, M = m0 +

n−1∑

a=0

ma

ra
, (5.1)

where qa ∈ Z. In the non-Abelian sector [191], denoting the gauge coupling by g, we

have

P = 1 +

n−1∑

a=0

λa
ra
, Q =

n−1∑

a=0

σaλa
ra

. (5.2)

The harmonic function H defines a four-dimensional Gibbons-Hawking metric via

ds24 = H−1(dψ +A)2 +Hds23 , (5.3)
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where ds23 is the flat metric on R
3, and A is a one-form related to H via ⋆3 dA = dH.

For the full five-dimensional fields, we refer the reader to [71].

Only certain subsets of possible coefficients of the poles in Eqs. (5.1) and (5.2) lead to

physically sensible solutions: one needs to impose further constraints. First, asymptotic

flatness requires
∑

a qa = 1. Second, upon uplifting to Type IIB supergravity compacti-

fied on S1 × T 4, the coefficients kia are quantized in terms of integer flux parameters nia

as follows [154],

k0a =
gsα

′

2Ry
n0a , k1a =

gsα
′3

2V4Ry
n1a , k2a =

Ry
2
n2a , (5.4)

where the coordinate volume of T 4 is (2π)4V4 and that of the S1 is 2πRy.

We focus on smooth horizonless supersymmetric solutions.1 The following relations are

imposed by absence of event horizons and singularities (the first three relations) and

asymptotic flatness (the last two relations), see e.g. [71, App. A.3],

lia = −|ϵ
ijk|
2

kjakka
qa

+
δ0i

2g2
, σa =

k0a
qa
, ma =

k0a
2q2a

(
k1ak

2
a −

1

2g2
)
,

l00l
1
0l

2
0 = 1 , m0 = −1

2

∑

a,i

li0k
i
a .

(5.5)

The absence of Dirac-Misner singularities imposes the so-called “bubble equations” [51,

191, 194], which constrain the relation between the positions of the centers and the local

charges: ∑

b ̸=a

qaqb
rab

Π0
ab

(
Π1
abΠ

2
ab −

1

2g2
Tab

)
=
∑

b,i

qaqbl
i
0Π

i
ab , (5.6)

where

Πiab =
kib
qb
− kia
qa
, Tab =

1

q2a
+

1

q2b
. (5.7)

Here rab is the R
3 Euclidean distance between centers a and b, Πiab are the magnetic

fluxes, and we will refer to the coefficients kia as flux parameters. The bubble equations

are a set of n equations among which only (n− 1) are independent: summation over a

leads to a trivial identity, due to the antisymmetry of the Πiab.

1The supersymmetric multi-center formalism can also be used to construct solutions with physical
singularities such as shockwaves [3], which give collective descriptions of families of pure states. Similar
but different multi-center formalisms exist for non-supersymmetric solutions [86, 87, 192, 193].
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The asymptotic charges of the multi-center solutions are [51]:2

Q1 = −
∑

a,b,c

qaqbqcΠ
1
abΠ

2
ac +

1

2g2

∑

a

1

qa
,

Q5 = −
∑

a,b,c

qaqbqcΠ
0
abΠ

2
ac ,

Qp = −
∑

a,b,c

qaqbqcΠ
0
abΠ

1
ac ,

JL = −1

2

∑

a,b,c,d

qaqbqcqdΠ
0
abΠ

1
acΠ

2
ad +

1

4g2

∑

a,b

qbΠ
0
ab

qa
,

J⃗R =
1

4

∑

a,b,a ̸=b
qaqbΠ

0
ab

(
Π1
abΠ

2
ab −

1

2g2
Tab

) r⃗a − r⃗b
|r⃗a − r⃗b|

.

(5.8)

5.2.2 Scaling solutions and their construction

Of particular interest are solutions to the bubble equations (5.6) in which the distances

between the centers can be made uniformly parametrically small by scaling rab → λrab

with λ ≪ 1, while keeping the asymptotic charges approximately constant. These

solutions are known as “scaling” solutions [51, 69, 70]. Note that the rescaling rab → λrab

is equivalent to multiplying the RHS of (5.6) by λ, with λ≪ 1. It will be useful for us

to note that in the limit λ→ 0, one obtains the homogeneous bubble equations [70] (see

also for instance [73]),

∑

b ̸=a

qaqb
rab

Π0
ab

(
Π1
abΠ

2
ab −

1

2g2
Tab

)
= 0 . (5.9)

Therefore, in the scaling regime of small λ, solutions to the full inhomogeneous bub-

ble equations (5.6) are also approximate solutions to the homogeneous bubble equa-

tions (5.9), up to terms of order λ. We will exploit this to construct new scaling solu-

tions.

The full inhomogeneous bubble equations (5.6) have typically been considered as equa-

tions in which the variables to be solved for are the distances rab, see e.g. [51]. This

perspective has two disadvantages [71]. First, it is generically difficult to find solutions

for rab. Second, after solving the equations, one often finds that the resulting rab do

not represent possible distances between points in 3D Euclidean space; for example, the

triangle inequality might not be respected.

A recently developed alternative approach is to exploit the feature that the bubble

equations (5.6) are linear in the flux parameters k2a. Thus, instead of solving for the

distances, one can first specify the positions of the centers, and then solve for the flux

2We use conventions in which JL and JR are interchanged with respect to [51].
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parameters k2a with a = 2, 3, ...n [71]3. While this procedure is general and not restricted

to scaling solutions, let us now review it in the context of scaling solutions. We introduce

a scaling parameter λ that rescales the position of the centers while keeping the shape

of the distribution fixed: i.e. we write the distance between the centers as rab = λdab,

where dab remain constant in the scaling process. We define4

Ā2
ab =

qaqb
dab

Π0
abΠ

1
ab , Ȧ2

ab = −sqaqbl20 ,

B̄2
ab =

n−1∑

b=0

qaqb
dab

1

2g2
TabΠ

0
ab , Ḃ2

a = s

n−1∑

b=0

qaqb(l
0
0Π

0
ab + l10Π

1
ab) ,

(5.10)

where we have introduced the constant s which takes values 0 or 1. These values cor-

respond respectively to the homogeneous and inhomogeneous bubble equations, as we

shall see momentarily. We then introduce (α , β = 1, ..., n− 1)5

M̄2
αβ = Ā2

(α+1)(β+1) − δβα
n−1∑

c=0

Ā2
(α+1)c ,

Ṁ2
αβ = Ȧ2

(α+1)(β+1) − δβα
n−1∑

c=0

Ȧ2
(α+1)c ,

(5.11)

in terms of which, we write the following linear system of equations in the fluxes Π2
ab:

M2
αβΠ

2
1(α+1) ≡

(
M̄2

αβ + λṀ2
αβ

)
Π2

1(α+1) = B̄2
β + λḂ2

β . (5.12)

For s = 1 this linear system is equivalent to the inhomogeneous bubble equations (5.6),

while for s = 0 the system is equivalent to the homogeneous bubble equations (5.9).

Although this perspective has simplified the task of solving the bubble equations, it re-

mains a fact that generic solutions obtained in this way will not respect the quantization

conditions in Eq. (5.4). This can be seen as follows. If we choose generic locations of the

centers, generic relative distances will be irrational numbers. Then generic solutions will

give irrational values of the flux parameters k2α, which is in conflict with the quantization

conditions in Eq. (5.4).

Using this method one can construct exact solutions with quantized fluxes by arranging

a set of non-generic locations of centers, such that all relative distances are rational. For

instance one can take all centers to lie on a line, or on a circle, as discussed in [71].6 While

these constructions provide interesting and valuable exact solutions, the requirement to

work with non-generic locations of centers is a significant limitation.

3The bubble equations are also linear in k0,1
a , so a similar analysis can be carried out for them.

4A numerical typo in [71, Eq. (3.22)] has been corrected.
5To be clear, the ‘2’ are superscript labels for the value of the index i, not exponents. To avoid

potential confusion on this point, we have suppressed the superscript ‘2’ on the matrix M2 in the
Introduction and Discussion sections.

6For earlier examples of solutions with all centers on a line, see e.g. [69].
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To proceed further, an alternative approach is to give up the idea of pursuing exact

solutions and construct approximate solutions to the bubble equations. One can do so

with an iterative approach, as follows. One first chooses a set of center locations, then

solves for k2α, generically obtaining irrational values. One then rounds the k2α to nearby

rational numbers to a desired precision, obtaining an approximate solution, as discussed

in [71] and done in [72, 73].

A further step is to take the rounded flux parameters k2α, re-solve the bubble equations

(in the traditional way) to obtain a new set of distances rab, and then arrange center

positions to have the resulting relative distances. If this could be done analytically, one

can obtain exact solutions, however typically this is hard, for the reasons discussed below

Eq. (5.9). More realistically, one can employ this method to improve the precision of

the approximate solution, as done in [73]. However, for more than four centers, doubt

has been expressed as to the feasibility of this method [71].

In our approach, we first round the flux parameters k2α as above. However, for the

next step, we introduce our new method of varying the positions of the centers using

an evolutionary algorithm. The resulting method can be used to construct numerical

solutions with any number of centers, and with no symmetry imposed on the locations

of the centers. The algorithm constructs numerical solutions whose precision improves

by several orders of magnitude on that of a given seed solution (obtained by simply

rounding irrational quantities). Since we work with the positions of the centers, by

construction the distances between them are always well-defined.

Our primary interest is in scaling solutions, and so we tailor the algorithm to construct

scaling solutions, which have JR ≪ 1, see e.g. [112]. We also ensure that the dimensionful

D1 and D5 charges are sufficiently large that the supergravity approximation is valid.

We do this by introducing a hyperparameter Q̄ and requiring the algorithm to select

only solutions satisfying Q1, Q5 > Q̄, using a Bayesian optimization algorithm.

Following the discussion below (5.9), given a generic set of locations of the centers, we

can obtain a configuration in the scaling regime by first solving the homogeneous bubble

equations (5.9) for the flux parameters k2α, and then rescaling rab → λrab with λ ≪ 1,

as done in [73]. Let us consider the homogeneous bubble equations (5.9) for a = n− 1 :

∑

b ̸=n−1

qn−1qb
r(n−1)b

Π0
(n−1)b

(
Π1

(n−1)bΠ
2
(n−1)b −

1

2g2
T(n−1)b

)
= 0 . (5.13)

Let us further examine the generic case in which all the terms in this sum are non-zero.

Then a necessary condition to have a solution is that not all of the terms in the sum

have the same sign.

Since the distances are positive, the expressions qn−1qbΠ
0
(n−1)b(Π

1
(n−1)bΠ

2
(n−1)b− 1

2g2
T(n−1)b)

should not all have the same sign.
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The next step in the procedure is to round the flux parameters, k2α → k̃2α, to a certain

precision, which is a hyperparameter of the algorithm, and which we call k rounding.

From here onwards, tildes denote rounded quantities. After rounding, Eq. (5.9) will

no longer be exactly satisfied for the same configuration of centers. Our strategy will

be to keep the rounded fluxes Π̃2, and change the location of the centers, to construct

a high-precision numerical scaling solution. Based on the above discussion, we shall

impose that not all of the following expressions have the same sign (note the presence

of the rounded fluxes Π̃2):

qn−1qbΠ
0
(n−1)b

(
Π1

(n−1)bΠ̃
2
(n−1)b −

1

2g2
T(n−1)b

)
. (5.14)

The condition Eq. (5.9) for scaling solutions, and the scaling limit rab → λrab, correspond

to “zooming in” to the core of the solutions, such that the asymptotics become AdS2

fibered over S3; for a general discussion, see [112]. In order to “undo” this limit and

construct solutions with R
4,1 asymptotics, which requires restoring the inhomogeneous

part of the bubble equations (5.6), we will implement an evolutionary algorithm that

moves the positions of the centers in space.

The solutions must also satisfy the absence of CTCs. Let us first review the case in

which only Abelian fields are turned on. To rule out CTCs, two algebraic combinations

of the harmonic functions (5.1) must be globally positive. Generically, the stronger

of these conditions is that the quartic E7(7) invariant, as a function of the harmonic

functions (5.1), is globally positive [164]. Investigating this condition is non-trivial, and

typically done numerically. The generalization to configurations with both Abelian and

non-Abelian fields was discussed in [71, 191]. The authors of [71] conjectured that the

condition for absence of CTCs is equivalent to requiring that the matrix M2 defined

in (5.12) is positive-definite. We will thus investigate absence of CTCs in the solutions

found by the algorithm by examining this condition onM2.

5.3 The algorithm

In this section we will describe the algorithm developed in this work, which is composed

of two main parts. In the first part, we use a Bayesian optimization (BO) algorithm to

find points in parameter space that lead to solutions with Q1, Q5 > Q̄. Upon rounding

the flux parameters k2α, this procedure leads to a approximate solution of the homo-

geneous bubble equations (5.9). The second part of the algorithm makes use of an

evolutionary algorithm to find numerical solutions to the full inhomogeneous bubble

equations (5.6), by varying the positions of the centers.
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5.3.1 The Bayesian optimization algorithm

In the first part of the process, we generate solutions of the homogeneous bubble equa-

tions (5.9), in the form (5.12). We do so by taking the position of the centers r⃗a and

the coefficients qa, l
i
0, k

0,1
a and k20 to be independent variables, and solving for k2α (re-

call α = 1, ..., n − 1). However, generically the resulting global charges will not satisfy

Q1, Q5 > Q̄. To construct solutions such that Q1, Q5 > Q̄, in principle one could max-

imise the first two expressions in (5.8) as functions of both k20 and the full set of k0,1a .

However in practice, it is neither computationally efficient, nor necessary, to maximize

Q1, Q5 with respect to a substantial fraction of the flux parameters k0,1a — it suffices

to focus on the flux parameters of a small number of the centers. We thus introduce a

hyperparameter nb and maximize Q1, Q5 only with respect to the flux parameters of nb

of the centers. In our examples, it will suffice to take nb to be equal to 1 or 2.

The centers whose flux parameters are dependent variables of the optimization process

will be labelled with the index ā = 0, · · · , nb − 1, and the remainder will be labelled

with the index ȧ = nb, · · · , n − 1. In other words, we will fix the value of the flux

parameters k0,1ȧ when initializing the algorithm and we then maximize the value of the

global charges with respect to k20 and k0,1ā .

In order to maximize the value of the global charges we use a Bayesian optimization

algorithm. The reason for this choice is that the global charges Q1, Q5 in (5.8) are

computationally expensive to evaluate: for any given trial configuration, one must first

solve the homogeneous bubble equations for k2α, and then use the result to compute

Q1, Q5.

Let us now provide an intuitive description on how the Bayesian optimization algorithm

works. The Bayesian optimization algorithm is an approach to find the global maxi-

mum (or minimum) of a black-box function, called the objective function. By black-box

function we mean either a function over which we have no analytic control (for example

a stochastic function) or a function that is computationally expensive to evaluate, as

in the case at hand. As a result, we do not have a global knowledge of the function,

i.e. we do not know its value on every point of the domain, but we have the freedom

to evaluate it on a finite set points. With this perspective, the Bayesian optimization

algorithm is a strategy to obtain the maximum of such functions that works better

than a random search. It works as follows, for a review see e.g. [195]. First, a Gaus-

sian process prior is placed on the objective function. Then, the objective function

is evaluated on a set of points [x1, · · · , xn0
] of the domain. At this stage, the data

{[x1, · · · , xn0
], [f(x1), · · · , f(xn0

)]} represent all our knowledge on the objective func-

tion. Of course, there are infinite functions whose value is [f(x1), · · · , f(xn0
)]} when

evaluated on [x1, · · · , xn0
], but, by assuming that the objective function follows a Gaus-

sian process model, these are not all equally probable. Thus, the next step is to obtain

the surrogate function, which, among the infinite functions that have the same value of
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the objective on the points [x1, · · · , xn0
], has the highest probability of representing the

objective7: as such, it is our best estimate of the objective based on the knowledge we

have so far, and has the advantage of being much quicker to evaluate. The last ingredi-

ent of the algorithm is the acquisition function, also known as acquisition strategy. By

evaluating the surrogate function on a finite set of points of the domain, it chooses the

next sampling point of the objective (i.e. the point of the domain that is more likely to

pay off when the objective is evaluated on it), according to some specified strategy (there

are many different possible acquisition strategies, we refer to [195] for further reading on

this topic). By evaluating the objective on this new point we increase the knowledge we

have on the objective, thus after each additional sampling point the surrogate is updated

and the acquisition function is iteratively used to choose the next sampling point, until

an acceptably good approximate maximum (in our case, Q1, Q5 > Q̄) of the objective

is found, or a previously set computational limit is reached (in our case, a maximum

number of iterations N).

We now explain this first part of our algorithm in more detail. We initialize the inde-

pendent variables as follows. The qa must all sum to 1. If n is odd, we use alternating

values ±1, starting and ending with 1. If n is even, the first n− 1 use alternating values

±1, starting and ending with −1, while qn = 2:

qa =




(1,−1, 1, . . . ,−1, 1) n odd

(−1, 1,−1, . . . ,−1, 2) n even
; li0 = 1 ∀ i . (5.15)

Furthermore, we choose the position of the n centers so that they lie inside a cube with

edge length equal to two. We set up the coordinate system in such a way that the first

center is at the origin, the second is at y = 0, z = 0 and the third center is at z = 0, so

that we have a total of 3n − 6 free coordinates. We sample the remaining non-zero ria

from the following uniform distribution:

ria ∼ U
(
− 1, 1

)
. (5.16)

In practice, this sampling is obtained from a discrete distribution whose step-size is

controlled by the hyperparameter prec pos. Similarly, the coefficients k0,1ȧ are sampled

with the discrete uniform distribution U
(
− 10prec k, 10prec k

)
, with step-size equal to 1.

In the following we will set the parameter prec k = 2.

Having initialized all the parameters we are not optimizing over, we now maximize the

objective function

fobj = min
(
Q1, Q5

)
, (5.17)

as a function of the variables {k0,1ā , k20}, which (having set prec k = 2) we also allow to

7This is why this optimization algorithm is called Bayesian: given the knowledge on the objective,
the prior is used to obtain a posterior, which in this case is the surrogate function.
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take integer values in [−100, 100]⊗(2nb+1). The evaluation of fobj works as follows. We

first solve the homogeneous bubble equations (5.9). Next, we round the flux parameters

k2α → k̃2α. Last, we use (5.8) to compute Q1, Q5 and select the minimum of the two.

We evaluate the objective function on n0 points in the (2nb + 1)-dimensional space of

{k0,1ā , k20} sampled from the discrete uniform distribution U
(
−102, 102

)⊗(2nb+1)
. Assum-

ing a Gaussian process prior with a Radial Basis Function as kernel, we use knowledge of

fobj evaluated at this set of points to generate the surrogate function. We use n0 = 200.

We then evaluate the surrogate function on a much higher number (of order 104) of

randomly sampled points, with discrete uniform distribution U
(
− 102, 102

)⊗(2nb+1)
and

step-size 1. We use an acquisition function based on the Probability of Improvement

method (see e.g. [196]) to choose the next point of the domain that is most worth evalu-

ating with the objective function. The knowledge of fobj at this new point is then used to

update the surrogate function. This process is iterated until a point {k0,1ā , k20} such that

fobj
(
{k0,1ā , k20}

)
> Q̄ is found, or a previously set computational limit (the maximum

number of iterations N) is reached. This procedure is summarized in Algorithm 1.

Algorithm 1 BO algorithm

function fobj({k0,1ā , k20})
k2α ← Solve the homogeneous bubble equations (5.9)
k̃2α ← Round k2α
Compute Q1, Q5 via (5.8)
return min

(
Q1, Q5

)

Assume Gaussian process prior

Evaluate fobj on n0 points {k0,1ā , k20} sampled with U
(
− 102, 102

)⊗(2nb+1)

Qmax ← The maximum output of fobj found so far
Generate the surrogate function using the available data
while n < N or Qmax < Q̄ do

Let {k0,1ā , k20}n be the point returned by the acquisition function
Evaluate fobj

(
{k0,1ā , k20}n

)

Qmax ← if fobj
(
{k0,1ā , k20}n

)
> Qmax, update Qmax

Update the surrogate function with the new data
n++

While this algorithm is not guaranteed to find a solution, we found that in practice this

approach is much more successful than a random search.

After a successful run of the BO algorithm, we have an approximate solution to the

homogeneous bubble equations, with charges Q1, Q5 in the desired range. We next

generate another approximate solution by rescaling the positions of the centers obtained

in Eq. (5.16):

ria → r̄ia ≡ λ ria , λ≪ 1 , (5.18)

where for concreteness we take λ = 10−5. We wish to use the resulting configurations

as inputs to the evolutionary algorithm that will find numerical solutions to the inho-
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mogeneous bubble equations. However, before proceeding, we examine two conditions

to check whether the configurations are indeed good seed solutions.

The first condition is the condition that the expressions in Eq. (5.14) do not all have the

same sign, so that it is possible that there is a nearby scaling solution to be found. Next,

we check that the matrixM2 is positive-definite. Even ifM2 depends on the positions

of the centers (and thus will be modified by the EA), we have observed that small

modifications of the distances do not tend to change the eigenvalues much. Of course,

after the evolutionary algorithm, one must recheck the condition on M2. However,

checking the condition at this stage provides a good indication of whether the condition

will be respected in the final solution. If both conditions are satisfied, we use this

configuration as a seed for the evolutionary algorithm.

5.3.2 The evolutionary algorithm

A successful run of the Bayesian optimization algorithm outputs an approximate solu-

tion to the homogeneous bubble equations (5.9) with the desired characteristics. The

approximate nature of this solution is due to the rounding of the flux parameters k2α. Our

task is now to obtain a numerical solution of the inhomogeneous bubble equations (5.6)

by moving the positions of the centers in the R
3 base space.

We shall do so by using an evolutionary algorithm (EA), which is an optimization

algorithm inspired by Darwin’s theory of evolution. The starting point is a population,

i.e. a set of individuals that are approximate solutions to the problem we wish to solve.

The properties of each individual are called genes. We measure how good an approximate

solution is via the fitness function, which is the function we want to maximize. The

fittest individuals are selected to reproduce, by passing some of their genes to their

offspring and in the reproduction process some mutations are implemented, i.e. random

modifications of the genes of the offspring. Then the offspring take the place of the

less fit individuals, which die, such that the population size is constant. This process

is iterated until a sufficiently good solution is found, or a previously set computational

limit is reached.

For the case at hand, each individual is an approximate solution to the bubble equa-

tions (5.6) and is characterized by the positions of the centers and a set of strategy

parameters, whose role will be described shortly. After implementing the translational

and rotational symmetry, the number of free coordinates is 3n − 6, while the number

of independent bubble equations is n− 1. Implementing a genetic algorithm on all the

3n − 6 coordinates would be computationally expensive. Thus, we select a subset of

the coordinates to be fixed to the values of the BO algorithm output, r̄ia of Eq. (5.18).

We observed that fixing approximately one coordinate on each of the last n− 3 centers

provides a good balance between effectiveness and computational cost, and we shall give
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explicit examples of this in Section 5.4. We shall denote by d the number of degrees of

freedom, i.e. the number of unfixed coordinates over which we run the EA.

To describe the algorithm further, we introduce the multi-index A = (a, i) combining

the center label a and the three Euclidean coordinates i. For the pth individual in the

population, we denote the set of coordinates to be varied by r
(p)
A . As noted above, we

work directly with the positions of the centers as genes, so the distances between the

centers are always well-defined. In the reproduction process random mutations can occur

and the magnitude of the mutations is controlled by a strategy parameter σ
(p)
A . Each

direction has an independent strategy parameter, which is a gene of the individual that

undergoes variation and selection itself. As we will describe in the following, we will

initialize the positions of the individuals in the population by sampling from a Gaussian

distribution with fixed standard deviation, which will be taken as the initial value of the

strategy parameter for every individual and every direction.

The genes of the p-th individual in the population are then

{r(p)A , σ
(p)
A } , A = (a, i) . (5.19)

All genes r
(p)
A , σ

(p)
A undergo variation and selection. An individual whose genes are likely

to survive in the evolutionary process will have a good set of positions r
(p)
A , that will be

quantified by having high fitness, and a set of strategy parameters σ
(p)
A that are likely

to give rise to fit offspring, as will become clearer when we discuss reproduction and

mutation. The evolutionary mechanism is iterated over a certain number of generations

controlled by the hyperparameter generations; in each new generation a number of

offspring is generated, specified by the hyperparameter offspring per generation.

The optimal values of these hyperparameters depend on the number of degrees of freedom

of the problem, i.e. the number of centers of the configuration, as we shall see in examples.

Fitness function

We now define the fitness function, i.e. the function the EA algorithm seeks to maximize.

We seek solutions to the inhomogeneous bubble equations (5.6), so we use these to

construct the fitness function. By rearranging the bubble equations, we write:

∑

a ̸=b

qaqb
rab

Π0
ab

(
Π1
abΠ

2
ab −

1

2g2
Tab

)
−
∑

b,i

qaqbl
i
0Π

i
ab = ϵa , (5.20)

where if ϵa = 0 ∀a then the solution is exact. We seek configurations {rA} that minimize∑
a |ϵa|. We thus define our fitness function to be

f(rA) =
1∑
a |ϵa|

. (5.21)
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It will also be useful to define the following inverse fitness function:

finv(rA) =
∑

a

|ϵa| . (5.22)

Population initialization

We initialize a population of pop size individuals by starting with the configuration

of centers obtained in (5.18), and adding to it a random variable δr
(p)
A sampled from

the Gaussian distribution N (0, var pos) with mean 0 and standard deviation var pos,

where var pos is a hyperparameter of the algorithm:

r
(p)
A = r̄A + δr

(p)
A for p = 1, · · · , pop size . (5.23)

The optimal value of var pos depends on the number of centers. If var pos is too small,

we generate a population that is too similar to the seed solution; if var pos is too large,

we obtain a large number of unfit individuals in the initial population. It is not practical

to compute optimal value of var pos directly from the bubble equations Eq. (5.6), so we

optimize it via a simple grid search. Concretely, we examine the populations generated

by a set of candidate values of var pos, and use the population fitness to select the

optimal var pos.

Once an individual is generated, we implement the opposition-based technique [197, 198],

i.e. we compare this individual with the one obtained through reflection symmetry with

respect to the initial configuration (5.18), and keep the one which has the highest fitness.

In other words, given the individual with position r
(p)
A , we consider the individual with

position r
′(p)
A given by:

r′(p)A = 2r̄A − r(p)A , (5.24)

and add to the population (only) the fitter of the two individuals. We initialize the

strategy parameter as σ
(p)
A = var pos for all p,A.

Selection

The selection mechanism of the evolutionary algorithm dictates which individuals pass

their genes to the offspring, and which individuals are replaced in the new generation.

Recall that the number of new offspring per generation is a hyperparameter of the

algorithm. To produce an offspring, the algorithm selects two parents that reproduce

and one individual that will be replaced. This selection process occurs probabilistically,

favouring potential parents with highest fitness, and where those with highest inverse

fitness are most likely to die off.

Our algorithm implements two different selection mechanisms, amongst which the user

can choose. The two methods are (see e.g. [199] for more details):
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• Fitness proportional selection. The probability of an individual to be chosen as a

parent is:

P (p) =
f(r

(p)
A )

∑
p f(r

(p)
A )

, (5.25)

where f is the fitness function (5.21). The probability of an individual to die off is

governed by the same equation, with the fitness function replaced by the inverse

fitness function, defined in Eq. (5.22).

• Sigma scaling. The probability of an individual to be chosen as parent is given

by a modified version of Eq. (5.25), with the fitness function being replaced by

the following auxiliary fitness function f ′, which involves a shift controlled by the

mean f̄ and standard deviation σf of the fitnesses of the population:

f ′(r(p)A ) = max
(
f(r

(p)
A )−

(
f̄ − cσf

)
, 0
)
, (5.26)

where c is a constant which is usually set to 2. Similarly, we also apply this method

to the selection of the individual that dies by replacing the fitness function with

the inverse fitness function.

The first method is less computationally expensive, however it can be less effective due

to the following disadvantages. It is sensitive to adding a constant shift to all f , and

depending on this shift there can be too much or too little selection pressure. For

instance, if there is too much selection pressure, the best individuals tend to dominate

the population very quickly, which can lead to premature convergence.

By contrast, the second method is more computationally expensive, but tends to produce

an appropriate amount of selection pressure.

Reproduction and mutation

Once two parents {r(1)A , σ
(1)
A } and {r(2)A , σ

(2)
A } are selected, their offspring {rA, σA} is

generated as follows. First, separately for each gene, i.e. for each element of the multi-

index A, we assign equal probability to one of the following three reproduction methods

to occur. Before possible mutation, this gene will be set equal to the gene of a parent,

or the average of the two parental genes:

1) {rA, σA} = {r(1)A , σ
(1)
A } ;

2) {rA, σA} = {r(2)A , σ
(2)
A } ;

3) {rA, σA} =
{r(1)A + r

(2)
A

2
,
σ
(1)
A + σ

(2)
A

2

}
.

(5.27)

Next, we implement a mutation mechanism to enable the population to escape from

local minima of the fitness function. Recall that each offspring has a total of d genes
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(A = 1, . . . , d). For each gene of an offspring, we assign a probability of order 2/d for the

gene to mutate away from the value assigned in (5.27). So on average, approximately

two genes of each offspring will mutate.

We implement uncorrelated mutation with different step sizes for different genes (see

e.g. [199]). If a gene is selected for mutation, first σA mutates, then the mutated σ′A
sets the scale for the mutation of the position rA. The mutation of σA is controlled by

two Gaussian random variables: δσ is sampled only once for each offspring, while δσA

is sampled separately for each gene. Both are sampled from the Gaussian distribution

N (0, 1). The mutation strength of σA is controlled by the parameters τ ′ and τ as follows:

σA → σ′A = σA exp
{(
τ ′ δσ + τ δσA

)}
. (5.28)

The motivation behind this choice is to treat different dimensions differently: while the

mutation exp(τ ′ δσ) is common to all direction and allows for an overall change of the

mutation step-size that preserves all degrees of freedom; the term exp(τ δσA) provides

the flexibility to use different mutation strategies in different directions. Following [199],

we set τ ′ = 1/
√
d and τ = 1/

√
2
√
d. Then the position rA mutates with a Gaussian

random variable δrA drawn from N (0, 1), with mutation strength set by the new σ′A:

rA → r′A = rA + σ′A δrA . (5.29)

As the fitness of the population improves, and the algorithm explores narrower regions

of the phase space, we improve upon the mutation mechanism (5.28) to achieve a set

of goals. The mutation should enable an appropriately fine exploration of the narrower

region, while not becoming too small in magnitude. Separately, the mutation should

be able to jump outside local minima. To enable this, we introduce a hyperparameter

generation update. After generation update generations, we update the strategy pa-

rameter of the individuals according to the following prescription. After this update, the

algorithm returns to the mutation (5.28) for the next generation update generations.

The algorithm contains two different methods to update the strategy parameter, among

which the user can choose. These are:

• Random update. We introduce the hyperparameters percentage random update

and factor random update, randomly select (percentage random update)% of

the individuals and rescale σA → σA/factor random update, while rescaling the

strategy parameter of the remaining individuals as σA → (factor random update)σA

.

• Variance update. We update the strategy parameter according to the variance of
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the positions, as follows. For each A, we define the average position

r̂A =
1

pop size

∑

q

r
(q)
A , (5.30)

and reset the strategy parameters in direction A of all individuals to have the same

value,

σ
(p)
A → σ′A

(p) =

√
1

pop size

∑

q

(
r
(q)
A − r̂A

)2
∀p . (5.31)

The variance update method works as follows. If, for instance, the whole popula-

tion is concentrated in a particular region of parameter space, it tends to enable

finer exploration of the local region. By contrast, if for instance the population is

concentrated in two or more separate regions, the variance update tends to enable

the population to explore a larger region of the parameter space.

We performed several runs with both Random and Variance updates. The Variance

update has the advantage that it does not depend on the number of centers, while in the

Random update we are introducing two new hyperparameters that could in principle

be optimized over, depending for instance on the number of centers. Of the two meth-

ods, typically the Variance update is more computationally expensive, and typically

the performance of the algorithm is better than or comparable to the Random update,

depending on the other parameters of the configuration.

For the sake of clarity, suppose we have chosen the variance update method and let us

make an example. Suppose we set the evolutionary algorithm to run for 1000 generations

and generation update = 100. The evolution of the strategy parameter will work as

follows. For the first 100 generations, the σA of each individual will evolve via Eq. (5.28),

then at the 100th generation we will transform the strategy parameters of each individual

in the population by using Eq. (5.31). Next, from the 101th generation we get back to

Eq. (5.28), and we do so until the 200th generation, when we impose Eq. (5.31), etc. We

do so until the 1000th generation, when the algorithm ends.

5.4 Results

In this section we present two explicit examples of numerical scaling solutions obtained

with the algorithm described above, which have five and seven centers respectively.

In both of these examples we use the fitness proportional selection method and the

variance update mechanism described in Section 5.3.2. We discuss the performance of

the algorithm, showing that its performance is several orders of magnitude better than

a random search algorithm. In the examples that we present, the non-Abelian coupling

constant g will be set equal to 1.
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5.4.1 A five-center scaling configuration

As a first application of our algorithm, we provide an example of a five-center configu-

ration. We first optimize the hyperparameters of the EA for a five-center configuration.

We do so with a grid search and obtain the values reported in Table 5.1.

pop size off per gen generations var pos generation update

2000 50 10000 3.34× 10−5 666

Table 5.1: Hyperparameters of the algorithm optimized for five-center configurations. In this
table the hyperparameter off per gen is a shorthand for offspring per generation.

We then follow the procedure described in Section 5.3.1. We use the BO algorithm to

obtain initial positions and flux parameters, recorded in Table 5.2, that give a solution

with global charges Q1 ≈ 2938 and Q5 ≈ 2015.

1st 2nd 3rd 4th 5th

x 0 0.3314 0.7491 −0.6923 0.4644

y 0 0 0.5648 −0.684 0.4799

z 0 0 0 −0.0792 0.549

q 1 1 −1 −1 1

k0 17 −18 63 47 29

k1 −61 66 25 72 80

k2 60 - - - -

Table 5.2: Input parameters of the solution. For ease of notation, the rescaling in Eq. (5.18)
with λ = 10−5 is understood: in the first three rows of this table the coordinates of the
centers are in units of 10−5, i.e. r12 = 0.3314 × 10−5. The underlined coordinates are those
that are genes of the EA, i.e. the coordinates over which the evolution process occurs.

By solving the homogeneous bubble equations (5.9), we obtain the (n − 1) remaining

k2α parameters. After rounding to a precision of k rounding = 10−4, we report their

values in Table 5.3.

1st 2nd 3rd 4th 5th

k2 - 56.0815 −48.5265 −51.1402 47.9087

Table 5.3: Solution of the homogeneous bubble equations, with the input parameters given in
Table 5.2, after rounding.

The parameters in Tables 5.2 and 5.3 define a numerical solution to the inhomogeneous

bubble equations (5.6) with fitness f
(
r̄ia
)
≈ 4.26. The configuration respects the con-

dition discussed around (5.14), and the matrix M2 is positive-definite. Therefore we



Chapter 5 Evolutionary algorithms for multi-center solutions 141

Figure 5.1: Fitness of the fittest five-center configuration, and average fitness of the population
over the generations.

proceed to use the configuration as a seed configuration in the EA. We use as genes the

coordinates underlined in Table 5.2.

We plot in Figure 5.1 how the fitness of the fittest individual and the average fitness

of the population change over the generations. By starting with a seed solution with

fitness ∼ 1 we obtain, after 10000 generations, a numerical solution with fitness ∼ 109.

This means that the EA generated a numerical solution that solves each bubble equation

with a precision of at least 10−9.

The associated matrix M2 is positive-definite, thus we can have confidence that the

geometry does not contain any CTCs. We report in Table 5.4 the coordinates of the

centers of this numerical solution.

1st 2nd 3rd 4th 5th

x 0 0.3314021729760 0.7491065875679 -0.6923 0.4644006034503

y 0 0 0.5648006365055 -0.6839943823786 0.4799

z 0 0 0 -0.0792018993574 0.549

Table 5.4: Output of the EA with highest fitness. Similarly to those in Table 5.2, these
coordinates are in units of 10−5.

We compute the global charges of this solution using Eq. (5.8), obtaining:

Q1 ≃ 2938 , Q5 ≃ 2015 , QP ≃ 3× 104 ,

JL ≃ 4× 105 , JR ≃ 0.0015 .
(5.32)
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Figure 5.2: Fitness of the fittest seven-center configuration, and average fitness of the popu-
lation over the generations.

We note that JR ≪ 1 as desired. We emphasize that the highest fitness value of order 109

is an improvement of eight orders of magnitude from the fitness of the seed configuration.

5.4.2 A seven-center scaling configuration

We now present a seven-center example configuration. We report in Table 5.5 the

hyperparameters of the EA optimized for seven-center configurations.

pop size off per gen generations var pos generation update

2200 90 10000 10−4 666

Table 5.5: Hyperparameters of the algorithm optimized for seven-center configurations. In
this table the hyperparameter off per gen is a shorthand for offspring per generation.

After running the BO algorithm, we obtain an initial configuration with global charges

Q1 ≈ 736 and Q5 ≈ 410, which is described in Table 5.6.

The homogeneous bubble equations (5.9) give the n − 1 remaining flux parameters k2α;

we round them to a precision of 10−5, and report the result in Table 5.7.

The coefficients in Tables 5.6 and 5.7 provide an approximate solution to the inhomoge-

neous bubble equations (5.6) with fitness f
(
r̄ia
)
≈ 3.21. As in the five-center example,

only the underlined coordinates in Table 5.6 are taken to be genes of the EA. As shown

in Figure 5.2, we obtain, after 10000 generations, a numerical solution with fitness of

order 107.
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1st 2nd 3rd 4th 5th 6th 7th

x 0 0.8409 0.3858 -0.0195 0.2188 -0.6853 -0.6294

y 0 0 -0.4476 -0.8449 -0.2569 -0.82 0.8284

z 0 0 0 -0.2854 -0.9864 -0.3303 -0.9516

q 1 -1 1 -1 1 -1 1

k0 66 -38 56 38 86 85 15

k1 99 57 39 30 48 37 72

k2 39 - - - - - -

Table 5.6: Input parameters of the solution. Similarly to those in Table 5.2, the coordinates
in the first three rows are in units of 10−5, and underlined coordinates are genes of the EA.

1st 2nd 3rd 4th 5th 6th 7th

k2 - -37.2187 38.5597 -38.568 38.4874 -38.6549 38.8499

Table 5.7: Solution of the homogeneous bubble equations, with input parameters given in
Table 5.6, after rounding.

The coordinates of the centers of the fittest configuration discovered by the EA are

reported in Table 5.8.

1st 2nd 3rd 4th 5th 6th 7th

x 0 0.84089461 0.38578914 0.0195 0.21881058 -0.68529754 -0.62943306

y 0 0 -0.44760652 -0.84485779 -0.2569 -0.82006997 0.82837416

z 0 0 0 -0.28533642 -0.98638654 -0.33036306 -0.9516

Table 5.8: Output of the EA with highest fitness. Again, coordinates are in units of 10−5.

The matrix M2 is positive-definite, and thus we can have confidence that the configu-

ration is free of CTCs. Finally, we record the global charges of the solution:

Q1 ≈ 736 , Q5 ≈ 410 , QP ≈ 8.9× 104 ,

JL ≈ 1.6× 105 , JR ≈ 0.007 .
(5.33)

We observe that JR ≪ 1 as desired.

5.4.3 Performance of the algorithm

We now make some general comments regarding the algorithm’s performance. We have

run the algorithm in detail for configurations of three, five, and seven centers. As the

number of centers increases, naturally the runtime increases. This is primarily due to

two factors. First, the number of bubble equations that need to be evaluated increases
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linearly with n. Second, a higher number of centers means a higher number of degrees

of freedom of the evolutionary algorithm, thus the population size and the number of

offspring per generation should be increased accordingly, to optimize the algorithm’s

performance.

When run on a three-center configuration, the algorithm typically found of order 10

numerical solutions with fitness ≳ 106 in around 10 hours (all run-times refer to a high-

specification mainstream desktop machine). For a five-center configuration, typically

around 13 hours runtime produced two solutions with fitness ≳ 106. For a seven-center

configuration, in 40 hours runtime the algorithm produced two solutions with fitness

≳ 105, including the one reported above.

In light of the No Free Lunch Theorem, we have compared our algorithm with a ran-

dom search on several examples, and observed it is always preferable, as follows. The

random search is obtained by generating offspring per generation new individuals

via Eq. (5.23) for generations generations, and evaluating their fitness. We did so for

different values of the standard deviation var pos. For large values of var pos, the rel-

evant sampling space is too big, and the probability of finding good solutions is low. As

we decrease var pos, the performance of the random search increases until an optimized

value. Decreasing var pos further results in a loss of performance, as the individuals

are too close to the seed solution r̄A, and thus their fitness is of the same order of f
(
r̄A
)
.

Figure 5.3: Random search over the initial configuration described in Tables 5.2 and 5.3. We
repeat the analysis for four different values of var pos, which are denoted with σ in the plot’s
legend.

In all the examples we analysed, the random search provided an approximate solution

with fitness no higher than around 102. For completeness, in Figure 5.3 we present an

example of such a random search for the five-center configuration discussed in 5.4.1,

with the values of generations and offspring per generation given in Table 5.1.
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This contrasts with the far superior performance of the evolutionary algorithm.

5.5 Discussion

In the present work we developed an optimization algorithm, based on Bayesian op-

timization and an evolutionary algorithm, to find multi-center solutions with a high

number of centers in generic configurations, satisfying all flux quantization constraints.

The Bayesian optimization algorithm enables to focus on a region of the parameter

space with high D1 and D5 charges and provides an approximate solution to the bubble

equations (5.6). Such solution contains two approximations: first, we derived it from

the homogeneous version of the bubble equations; second, we have rounded the flux

parameters to satisfy all flux quantization conditions. The evolutionary algorithm uses

this solution as a seed to generate individuals with improving fitness. In Section 5.4 we

reported two examples of solutions found. In the five center case, by starting with a

seed solution of fitness of order ∼ 1, we obtained an approximate solution with fitness

∼ 109. In the seven-center case, the algorithm improved the fitness of the seed solution

by a factor of ∼ 107. This is much better than any example we analyzed with a random

search, and we gave example of this in Section 5.4.3.

Given a seed solution the evolutionary algorithm may fail to give a good enough approx-

imate solution. On the one hand, this is a limitation of evolutionary algorithms: they

not always find optimal solutions and might get stuck in local minima. On the other

hand, given a seed solution a corresponding exact solution not always exist: for instance,

by rounding the flux parameters, one could access a region of parameter space that does

not admit solutions. It is thus possible that the EA fails in giving a sufficiently good

solution simply because such a solution does not exist. Indeed, we found three-center

examples in which the evolutionary algorithm could not improve the fitness above a

certain value: a detailed analysis of one such example then revealed that a nearby exact

solution did not exist. Despite these inherent limitations, most of the time the algorithm

is very successful at finding high-precision solutions.

As the number of centers grows, naturally, more computational resources are required.

Let us note that the task of finding a good seed configuration to pass on to the evo-

lutionary algorithm becomes more computationally expensive as the number of centers

increases. The reason being that, as the number of centers grows, the Bayesian algorithm

has to be run an increasingly number of times before it finds a solution with appropri-

ately large Q1, Q5 charges and such that the matrixM is positive-definite (for absence

of CTCs). In particular, apart from choosing the flux parameters that we initialize to

have the same sign, as suggested in [71, Footnote 17], finding a goodM is otherwise left

to a random search. Note that the probability of randomly selecting initial parameters

that lead to anM with all positive eigenvalues decreases as the number of centers, and
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thus the dimension of M, increases. It would be interesting to explore more efficient

ways to select parameters that lead to absence of CTCs; we leave this task to future

work.

While we have tested the algorithm for configurations with three, five and seven centers,

it is designed to generate more generic configurations, upon tuning the hyper-parameters

accordingly (this is of course subject to the available computational resources and the

desired fitness of the final solution). The code is publicly available at: https://github.

com/SamiRawash/Multicenter-Scaling-Solutions.

To conclude, we have implemented a novel application of evolutionary algorithms and

Bayesian optimization to the study of multi-centered solutions to supergravity, and have

presented in detail two state-of-the-art high-precision numerical solutions. The prospects

for harnessing the power of computer science algorithms to solve physically interesting

problems in String Theory and related fields appear bright, with an exciting future

ahead.
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Conclusions and Outlook

In this thesis, we have developed various tools to corroborate the Fuzzball proposal,

which conjectures that strong quantum gravity effects occur already at the horizon scale

due to the size of the underlying quantum bound state. As a consequence, a classical

black hole solution represents a coarse-grained representation of the system which is

not detailed enough to correctly describe fine-grained processes, such as the Hawking

evaporation process.

The main playground for analysing this proposal is the D1-D5 system. We have a com-

plete understanding of the microstates responsible of the entropy of the two-charge, su-

persymmetric D1-D5 black hole: these microstates are well understood in term of smooth

supergravity solutions and limits thereof, and their CFT dual states are known. Of more

interest are the microstates of the three-charge supersymmetric D1-D5-P black hole: this

black hole is macroscopic (unlike the two-charged one, it does not have zero horizon area

in supergravity) and it is important to understand how much of the physics learn in the

two-charge context is carried over by the microstates of this black hole. The two main

classes of such microstates constructed so far are represented by superstrata [56–66, 89],

smooth geometries obtained by backreacting a coherent combination of (conventionally)

left-moving excitations in the CFT, and multi-center geometries [51, 67–75], solutions

specified by a set of harmonic functions on a three-dimensional Euclidean space that

involve a non-trivial topologies supported by fluxes in their core region. Despite this

advances, it has been shown that these solutions can account only for a small fraction

of the entropy of the supersymmetric D1-D5-P black hole [66, 76, 77].

Last, we should extend our understanding of microstates on non-supersymmetric black-

hole, for which much less is known. Beside the JMaRT solution [78] and the set of works

in [86, 87] which describes a non-extremal generalization of multi-center solutions, recent

advances in this direction are provided by the construction of “microstrata” [88, 200],

a non-extremal generalization of superstrata where the backreaction of both left and

right-excitations are taken into account.

147
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Let us now summarize the results discussed in this thesis and outline some future research

directions, in the light of the above discussion.

In Chapters 2 we have refined the precision holographic dictionary pioneered in [54, 55]

that relates the fall off of supergravity fields in the bulk with the expectation value

of chiral primary operators of dimension (1, 1) in the dual CFT state. The relevant

operators in the CFT involve a mixing between single and double-trace operators and

this mixing has been interpreted as the holographic origin of the coiffuring relations, i.e.

relations that arise in the bulk after demanding smoothness of the geometry.

In Chapter 3 we have recasted the holographic dictionary in the single-particle basis:

this choice has the advantage that the CFT operators mixing relevant for the dictionary

can be predicted by (almost) only CFT computations. By exploiting this basis, we have

extended the holographic dictionary to a new sector of the theory: superdescendats of

chiral primary operators of dimension (1, 1).

After performing consistency checks of the dictionary, we have used it to test proposed

CFT dual states to families of recently constructed superstrata solutions. As already

discussed in Chapter 2, this tests cannot prove that the holographic description of these

geometries is correct in all its details: given the holographic dictionary for a finite set

of light operators, there can be many CFT states with the same expectation value of

such operators. Despite this limitation, the checks we have conducted provide a strong

indication of validity of the holographic description. Let us briefly discuss the current

status of precision holographic tests:

• General classes of superstrata with a single-mode, such as the family (2,m, n, 0)

and (k, 1, 0, 0), passed the precision holographic tests reported in Section 2.5.

• The family of single-mode supercharged superstrata (2, 0, n − 1, 1) has been ana-

lyzed in Section 3.6.1

• Among the families of multimode (k1,m1, n1, 0)-(k2,m2, n2, 0), non-supercharged

superstrata, the class of solution for which (k1m2 − k2m1)(k1n2 − k2n1) ̸= 0 is of

particular interest: this family evaded construction since [60] until the proposal

of [63]. The work of [63] showed that to construct such solutions a novel type of

coiffuring relation is required, which turns on an extra supergravity field that is

not present when (k1m2− k2m1)(k1n2− k2n1) = 0. We give a CFT interpretation

of this phenomenon in Section 3.6.2.

• A family of hybrid supercharged superstrata has been analysed in Section 3.6.3.

• The precision holographic dictionary has been used in [200] to identify the CFT

state dual to a non-BPS solution and perform some checks on the proposed holo-

graphic description.
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A detailed analysis of more recently constructed, supersymmetric, three-charge mi-

crostates, such as those reported in [65, 89], is still lacking. As for multi-center so-

lutions, their CFT interpretation is not well understood: it has been suggested in [179]

that, when the number of centers is > 3, the resulting configurations should not be

thought of as part of the phase space of a supersymmetric black hole, but they should

rather be interpreted as microstates of other black objects.

The recipe outlined in Chapter 3 can be used to extend the present holographic dic-

tionary to higher dimensional operators. This will be technically more involved due to

the non linearities coming from: i) the mixing between the single and the multi-trace

operators, ii) the identification of the single-particle basis in supergravity and iii) the

identification of the gauge invariant combination of the supergravity fields. Nonetheless,

we do not expect such extension to involve conceptual novelties.

It is perhaps more interesting, however, to generalizie the present dictionary to novel

sectors of the theory. The linearized supergravity spectrum studied in [128] suggests

that there are other excitations that should lead to new smooth superstrata solutions.

Of particular interest are the excitations that lead to a deformed base space (roughly

speaking, the operators dual to these excitations are GGJ̄ and ḠḠJ): these solutions

are computationally harder to construct and it is possible that building an holographic

dictionary for these sectors could inform and guide the construction of the corresponding

bulk solutions.

In Chapter 4 we constructed the first family of three-charge supersymmetric solutions

containing a shockwave in their core region and we made a proposal for their holographic

duals, which passed a set of non-trivial precision holography tests. These solutions

represent a collective description of a family of microstates whose details are not resolved

in supergravity. While not representing a single pure state in gravity, this coarse grained

description has the advantage of being relatively simple: the equations of motion have a

simpler form than those for generic single pure states and this could open up the analysis

of several generalizations of our construction. First, it would be interesting to place the

shockwave on the evanescent ergosurface of the of the GLMT solution: this would enable

a discussion of the non-linear instability for this class of solutions on the line of the one

made in [160] for the supertube. Second, it could be possible to use this set up to study

the properties of non-extremal solutions, for example computing the backreaction of a

shockwave on a JMaRT background or considering shockwave configurations that break

all the supersymmetries of the theory.

Last, in Chapter 5 we developed an optimization algorithm, base on Bayesian opti-

mization and the evolutionary algorithm, to construct new approximate multi-center

solutions with a high number of centers in generic configurations. We provided two

examples of such numeric solutions with five and seven centers, that solve each bub-

ble equation up to orders of 10−9 and 10−7 respectively. This work pioneers the use
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of computer science tools to find new approximate black hole microstates and opens

different research directions. First, one could optimize the code using techniques of par-

allel computing: this would enable the use of greater computer resources by exploiting

the power of modern High Performance Computers. As a consequence, it would be

feasible to obtain solutions with a higher number of centers and fitness then those of

the examples presented in 5. Second, it would be interesting to adapt the code to let

the algorithm solve the non-extremal generalization of the multi-center configurations

developed in [86, 87].

To summarize, the work presented in this thesis supports the ideas of the fuzzball

paradigm, develops techniques which can prove useful to examine and test the con-

jecture in future scenarios and opens different research directions. Despite the progress

made in the last 20 years, the fuzzball conjecture is still a proposal at the present state

of things. It is reasonable to expect that a deeper understanding of the theoretical

framework beyond supergravity will be necessarily to fully understand and resolve the

entropy puzzle and the information paradox.



Appendix A

Harmonics on S3 and AdS3

A.1 Harmonics on S3

A.1.1 Spherical harmonics

The spherical harmonics on S3 are a representation of the isometry group of the three-

sphere SO(4) ≃ SU(2)L × SU(2)R. We will use spherical coordinates in the R
4 base

space that are related to the Cartesian coordinates via

x1 = r sin θ cosϕ , x2 = r sin θ sinϕ ,

x3 = r cos θ cosψ , x4 = r cos θ sinψ ,
(A.1)

where θ ∈ [0, π2 ] and ψ, ϕ ∈ [0, 2π). With this coordinate choice, the S3 line element

ds23 is given by ds23 = dθ2 + sin2 θdϕ2 + cos2 θdψ2. We use conventions in which ϵθφψ=1.

The generators of the isometry group of S3, written in terms of the standard SU(2)

generators, are

J± =
1

2
e±i(φ+ψ)

(
± ∂θ + i cot θ∂φ − i tan θ∂ψ

)
, J3 = − i

2

(
∂φ + ∂ψ

)
,

J̄± =
1

2
e±i(φ−ψ)

(
∓ ∂θ − i cot θ∂φ − i tan θ∂ψ

)
, J̄3 = − i

2

(
∂φ − ∂ψ

)
,

(A.2)

which satisfy the SU(2)L × SU(2)R algebra:

[
J+, J−] = 2J3 ,

[
J3, J+

]
= J+ ,

[
J3, J−] = −J− ,

[
J̄+, J̄−] = 2J̄3 ,

[
J̄3, J̄+

]
= J̄+ ,

[
J̄3, J̄−] = −J̄− .

(A.3)

The left quadratic Casimir operator is J2 = 1
2

(
J+J− + J−J+

)
+
(
J3
)2
, and likewise for

J̄2. A state in a representation with principal quantum number jsu has J2 eigenvalue

jsu(jsu + 1).
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Degree k scalar harmonics live in the (jsu, j̄su) = (k/2, k/2) representation of SU(2)L ×
SU(2)R. We denote these by Y m,m̄

k , and (m, m̄) are the spin charges under (J3, J̄3).

They satisfy the following Laplace equation:

✷S3Y
m1,m̄2

k = −k(k + 2)Y m1,m̄2

k . (A.4)

Denoting the volume of S3 by Ω3 = 2π2, we use normalized spherical harmonics

∫
Y ∗m1,m̄1

k1
Y m2,m̄2

k2
= Ω3 δk1,k2δ

m1,m1δm̄1,m̄2 . (A.5)

One can generate the degree k scalar spherical harmonic wavefunctions acting with the

lowering operators in (A.2) on the highest-weight wavefunctions, which are

Y
± k

2
,± k

2
k =

√
k + 1 sink θe±ikφ . (A.6)

We make use of the degree k = 1, 2 normalized scalar spherical harmonics, given by:

Y
+ 1

2
,+ 1

2
1 =

√
2 sin θ eiφ , Y

+ 1
2
,− 1

2
1 =

√
2 cos θ eiψ ,

Y
− 1

2
,+ 1

2
1 = −

√
2 cos θ e−iψ , Y

− 1
2
,− 1

2
1 =

√
2 sin θ e−iφ ;

(A.7)

Y +1,+1
2 =

√
3 sin2 θ e2iφ , Y +1,0

2 =
√
6 sin θ cos θ ei(φ+ψ) , Y +1,−1

2 =
√
3 cos2 θe2iψ ,

Y 0,+1
2 = −

√
6 sin θ cos θ ei(φ−ψ) , Y 0,0

2 = −
√
3 cos 2θ , Y 0,−1

2 =
√
6 sin θ cos θ e−i(φ−ψ)

Y −1,+1
2 =

√
3 cos2 θ e−2iψ , Y −1,0

2 = −
√
6 sin θ cos θ e−i(φ+ψ) , Y −1,−1

2 =
√
3 sin2 θ e−2iφ .

(A.8)

We also define the triple overlap:

∫
YMk,M̄k
k Y m1,m̄1

k1

(
Y m2,m̄2

k2

)∗
= Ω3 a

Mk,M̄k

(m1,m̄1)(m2,m̄2)
(A.9)

A.1.2 Vector harmonics

Degree k left vector harmonics live in the (jsu, j̄su) = (k+1
2 , k−1

2 ) representation of

SU(2)L × SU(2)R. We denote these by Y m,m̄
L,k where L stands for left; we shall sup-

press the label L when we write explicit S3 vector indices (which will be denoted by a, b).

Similarly, degree k right vector harmonics have (jsu, j̄su) = (k−1
2 , k+1

2 ) and we denote

them by Y m,m̄
R,k . We shall use Y m,m̄

v,k to denote a vector harmonic which can be either

right or left. Vector harmonics satisfy

∇2
S3Y

m,m̄
v,k = −(k2 + 2k − 1)Y m,m̄

v,k , Da(Y m,m̄
v,k )a = 0 , (A.10)
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where ∇2
S3 = gabDaDb and Da is the covariant derivative with Levi-Civita connection.

One could generate the (1, 0) and (0, 1) vector harmonics by dualizing (A.2), i.e. through

Va = gabV
b. We choose a different normalizion for these harmonics by imposing

∫
(Y âA

1 )∗a(Y
b̂B
1 )a = Ω3 δ

â,b̂δA,B , (A.11)

where â, b̂ = ±, 0 denote the range of m and A,B = ± denotes left/right vector harmon-

ics. With this choice, the degree one vector spherical harmonics expressed as one-forms

are

Y ++
1 =

1√
2
ei(φ+ψ) [−i dθ + sin θ cos θ d(ϕ− ψ)] ,

Y −+
1 =

1√
2
e−i(φ+ψ) [i dθ + sin θ cos θ d(ϕ− ψ)] ,

Y 0+
1 = − cos2 θ dψ − sin2 θ dϕ ,

Y +−
1 =

1√
2
ei(φ−ψ) [i dθ − sin θ cos θ d(ϕ+ ψ)] ,

Y −−
1 = − 1√

2
e−i(φ−ψ) [i dθ + sin θ cos θ d(ϕ+ ψ)] ,

Y 0−
1 = cos2 θ dψ − sin2 θ dϕ .

(A.12)

One can generate a degree k vector harmonic using the SU(2) tensor product decompo-

sition

(
k

2
,
k

2
)⊗ (1, 0) = (

k

2
+ 1,

k

2
)⊕ (

k

2
,
k

2
)⊕ (

k

2
− 1,

k

2
) . (A.13)

The highest weight state of (k2 +1, k2 ) is obtained just by multiplying the highest weight

states of (k2 ,
k
2 ) and that of (1, 0) (the Clebsch-Gordan coefficient in this case is always

one). One can then generate all the descendants by acting with the lowering operator

J−. In order to satisfy the generalized normalization condition

∫
(Y m1,m̄1

v,k1
)∗a(Y

m2,m̄2

v,k2
)a = Ω3 δ

k1,k2δm1,m2 δm̄1,m̄2 , (A.14)

one can use the SU(2) algebra to write

Y
k+1
2

−m, k−1
2

−m̄
L,k =

√
(k + 1−m)!

(k + 1)!m!

√
(k − 1− m̄)!

(k − 1)!m̄!

[
(J−)m(J̄−)m̄, Y

k+1
2
, k−1

2
L,k

]
(A.15)

All the previous discussion proceeds analogously for right vector harmonics. We define

the following triple integral:

∫
Y

(mk,m̄k)
k

(
Y a−
1

)
µ

(
Y b+
1

)µ
= Ω3f

(k)
(mk,m̄k)ab

. (A.16)

The explicit value of the components of f
(k)
(mk,m̄k)ab

, defined in (A.16), that have been
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used in this work are

f
(2)
(0,0)00 =

1√
3
, f

(2)
(1,1)−− =

1√
3
, f

(2)
(±1,±1)00 = 0 . (A.17)

One also has ϵabcD
b(Y m,m̄

L,k )c = (k − 1)(Y m,m̄
L,k )a and ϵabcD

b(Y m,m̄
R,k )c = −(k − 1)(Y m,m̄

R,k )a.

A.1.3 Useful definitions

Due to the non linearity of the gauge-invariant combinations at higher order, one has to

project products of harmonics into harmonics of higher order. The following definitions

are useful:

• (Y I)µY J = EIJK

ΛK
DµY K + f IJK(Y K)µ

• ϵµνρD
σY IDσDρY

J = csIJKϵµνρD
ρY K + cvIJKD[νY

K
µ]

• Y σ,IϵµνρDσD
ρY J = gsIJKϵµνρD

ρY K + gvIJKD[νY
K
µ]

• 2D[µD
ρY Iϵν]ρσD

σY J = nsIJKϵµνρD
ρY K + nvIJKD[νY

K
µ]

• 2D[µ(Y
I)ρϵν]ρσD

σY J = psIJKϵµνρD
ρY K + pvIJKD[νY

K
µ]

where I, J,K are the multi-indices defined above, and where on the right-hand side the

index K is summed over.

A.2 Harmonics on AdS3

A.2.1 Scalar harmonics

The scalar harmonics are a representation of the AdS3 isometry group SO(2, 2) ≃
SL(2,R)× SL(2,R). We use coordinates where the line element reads:

ds2AdS3
= −(r̃2 + 1)dt̃2 +

dr̃2

r̃2 + 1
+ r̃2dỹ2 . (A.18)

In our conventions ϵt̃r̃ỹ=1. The generators of the isometry group are given by:

L±1 = ie±i(t̃+ỹ)
(
− 1

2

r̃√
r̃2 + 1

∂t̃ −
1

2

√
r̃2 + 1

r
∂ỹ ±

i

2

√
r2 + 1 ∂r̃

)
, L0 =

i

2

(
∂t̃ + ∂ỹ

)

L̄±1 = ie±i(t̃−ỹ)(−1

2

r̃√
r̃2 + 1

∂t̃ +
1

2

√
r̃2 + 1

r̃
∂ỹ ±

i

2

√
r̃2 + 1 ∂r̃) , L̄0 =

i

2
(∂t̃ − ∂ỹ)

(A.19)
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They respect the algebra

[
L0, L±

]
= ∓L±

[
L1, L−1

]
= 2L0

[
L̄0, L̄±

]
= ∓L̄±

[
L̄1, L̄−1

]
= 2L̄0

(A.20)

The quadratic Casimirs are L2 = 1
2

(
L1L−1 + L−1L1

)
−
(
L0

)2
and the corresponding

antiholomorphic operator L̄2. For a state of L2 quantum number jsl, we have L2 |jsl⟩ =
−jsl(jsl − 1) |jsl⟩.

Scalar harmonics have jsl = j̄sl. We introduce for convenience l = 2jsl. We introduce

scalar harmonics B
(±)
l , where the superscript ± denotes the positive and negative fre-

quency modes. B
(+)00
l is the lowest-weight state in the discrete series representation

D+, and B
(−)00
l is the highest-weight state in the discrete series representation D−. For

ease of language we refer to these both as highest-weight states. These harmonics solve

the following Laplace equation:

✷AdS3B
(±)
l = l(l − 2)B

(±)
l (A.21)

We then have

B
(±)
l =

e∓ilt̃
√
r̃2 + 1

l
L0B

(±)
l = L̄0B

(±)
l = ± l

2
B

(±)
l (A.22)

The fact that this is the highest-weight state can be seen as follows:

[
L1, B

(+)
l

]
=
[
L̄1, B

(+)
l

]
= 0

[
L−1, B

(−)
l

]
=
[
L̄−1, B

(−)
l

]
= 0 (A.23)

A.2.2 Vector Harmonics

We now introduce vector harmonics on AdS3: these live in the representation labeled by

L2 quantum numbers (jsl, j̄sl) = ( l−2
2 , l2) and will be denoted with B

(±)
R,l , where R stands

for right. Analogously, there is also the left representation with quantum numbers

(jsl, j̄sl) = ( l2 ,
l−2
2 ), and we will denote it by B

(±)
L,l . The vector harmonics satisfy the

following Laplace equation

(dδ + δd)B
(±)
v,l = (l − 2)2B

(±)
v,l (A.24)

Here the subscript v stands for vector, meaning that the formula applies to both left

and right vector harmonics. The l = 0 vector harmonics are the killing one forms, which
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can be obtained can be obtained dualizing Eq. (A.19)

L0 = −
i

2

(
(r̃2 + 1)dt̃− r̃2dỹ

)

L± = e±i(t̃+ỹ)
r̃

2
√
r̃2 + 1

(
∓ dr̃

r̃
+ i(r̃2 + 1)(dt̃− dỹ)

)

L̄0 = −
i

2

(
(r̃2 + 1)dt̃+ r̃2dỹ

)

L̄± = e±i(t̃−ỹ)
r̃

2
√
r̃2 + 1

(
∓ dr̃

r̃
+ i(r̃2 + 1)(dt̃+ dỹ)

)

(A.25)

One can generate degree l vector harmonics, as in the S3 case, by multiplying scalar

harmonics with the one forms in Eq. (A.25) exploiting the SL(2,R) tensor product

decomposition. For concreteness, let us consider right vector harmonics, which live in

the representation in the first term of the direct sum

( l
2
,
l

2

)
⊗
(
− 1, 0

)
=
( l − 2

2
,
l

2

)
⊕
( l
2
,
l

2

)
⊕
( l + 2

2
,
l

2

)
(A.26)

Let’s focus on the positive modes: it is important to note that B
(+)
l is a lowest weight

state; in order to obtain the lowest weight of the vectorial representation we need to

take the product with L1, and one has:

B
(+)
R,l = B

(+)
l
2
, l
2

⊗ L1,
[
L0, B

(+)
R,l

]
=
l − 2

2
B

(+)
R,l

[
L̄0, B

(+)
R,l

]
=
l

2
B

(+)
R,l ,

[
L1, B

(+)
R,l

]
=
[
L̄1, B

(+)
R,l

]
= 0

(A.27)

Analogous relations hold for the left vector harmonics. Vector harmonics on AdS3 are

also eigenstates of the following operator:

⋆ dB
(±)
R,l = (l − 2)B

(±)
R,l ⋆ dB

(±)
L,l = −(l − 2)B

(±)
L,l (A.28)
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Computations of CFT correlators

In this appendix we compute the CFT correlators (B.17) and (B.27), which are used

in Eqs. (2.151) and (2.53) respectively, using the method developed in [120, 145]. In

order to do so, and for reference in the main part of the thesis, we also record some

conventions and notation.

B.1 Conventions and notation

We introduce on the CFT cylinder Euclidean coordinates τ = it/Ry, σ = y/Ry. With

coordinate w = τ + iσ, the bare twist operator σk corresponding to the permutation

(12 · · · k) is defined to introduce the following boundary conditions on the fields Xi
(r),

ψαA(r) , r = 1, 2, . . . k as they circle the insertion point w∗ (see e.g. [201, Eq. (2.12)]):

X(1) → X(2) → · · · → X(k) → X(1) ,

ψ(1) → ψ(2) → · · · → ψ(k) → ±ψ(1) , (B.1)

where the ± boundary condition correspond to R and NS sector as in Eq. (4.33), and

an analogous relation holds for the right-moving sector. We have of course suppressed

some indices to lighten the notation here.

In the full symmetric orbifold CFT, a bare twist operator is obtained symmetrizing over

all the copies. We define:

Σk =
∑

k-cycles

σk . (B.2)

The conformal dimension of σk is h = h̄ = 1
4(k − 1

k ) and it is neutral under SU(2)L ×
SU(2)R.

The insertion of a twist operator σk allows the existence of fractional modes of the

operators. Switching to the CFT plane with coordinate z = ew, for a primary operator

157
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O with conformal dimension h, these are defined by [120]:

O−m
k
≡
∫

dz

2πi

k∑

r=1

O(r)(z)e
−2πim

k
(r−1)z−

m
k
+h−1 . (B.3)

To construct a chiral primary operator starting from the bare twist σk we must raise its

charge until h = j and h̄ = j̄. This is achieved by using fractional modes of the current

operators and, for even k, spin fields S± , S̄± [120]. A set of twist-k chiral primary

operators is given by [120] (see also [111, 201])

σ
k−1
2
, k−1

2
k ≡




J̃+
−(k−2)/k...J̃

+
−1/kJ

+
−(k−2)/k...J

+
−1/kσk(z) k odd

J̃+
−(k−2)/k...J̃

+
−2/kJ

+
−(k−2)/k...J

+
−2/k(S

+S̄+)σk(z) k even
(B.4)

These operators have dimension and charge h = h̄ = j = j̄ = k−1
2 .

The covering-space method of [120, 145] for computing correlators of twist operators

involves mapping to a local covering space (with coordinate t), given by a map that is

locally of the form

z − z∗ ≃ b∗(t− t∗)k . (B.5)

The k sets of fields Xi
(r), ψ

αA
(r) , which had untwisted boundary conditions in the absence

of the twist operator, are mapped to one set of single-valued fields in the covering space,

and in the t-plane there are no twist operator insertions; the only parts of the z-plane

operator (B.4) that survive in the covering t-plane are the currents and spin fields.

When the operator is inserted at the origin of the t-plane, the spin fields in (B.4) for

even n create the RR vacuum |++⟩(t) . For more discussion and recent related work, see

e.g. [83, 201–209].

Passing to the t-plane via the map (B.5), one obtains the following relation between the

modes in the z-plane (given in Eq. (B.3)) and those in the covering space:

O
(z)
−m

k
→

∫
dt

2πi

(
dz

dt

)−h+1

O(t)
(
btt

k
)−m

k
+h−1

= b
−m

k
t k1−hO(t)

−m (B.6)

where the superscripts (z) and (t) distinguish the operators in the z-plane from those in

the t-plane.

We are interested in (normalized) three-point functions in the z-plane of the following

form:
⟨O†

1(∞)O2(a)O3(0)⟩
⟨O†

1(∞)O1(0)⟩
(B.7)

where Oi is an operator that is composed of a bare twist contribution σki with conformal

dimension hi =
1
4(ki− 1

ki
) and a spin contribution which we denote schematically by Si,

i.e. Oi = Siσki . As discussed in [120, Eq. (3.18)], the contributions of the twist fields
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and the spin fields in the correlator (B.7) factorize as follows:

⟨O†
1(∞)O2(a)O3(0)⟩
⟨O†

1(∞)O1(0)⟩
= |C1,2,3|12|a|−2(h1+h2−h3) ⟨S

†
1(∞)S2(a)S3(0)⟩
⟨S†

1(∞)S1(0)⟩
(B.8)

where the a dependence is given by conformal invariance and C1,2,3 is the fusion coeffi-

cient of a bosonic theory with c = 1. The exponent 12 appears because we have c = 6

on a single copy. The coefficient C1,2,3 was computed in [145]; we will thus focus on the

spin field correlator, which can be computed using bosonization [120].

We introduce holomorphic (antiholomorphic) bosonic fields ϕ5(z) and ϕ6(z) (ϕ̃5(z̄) and

ϕ̃6(z̄)). We write only the holomorphic expressions for brevity. We bosonize the fermions

as

ψ++ = eiφ5 , ψ+− = e−iφ6 , ψ−+ = eiφ6 , ψ−− = −e−iφ5 . (B.9)

Normal ordering is implicit as usual, and we shall suppress cocycles as these will not be

important for our purposes. We also introduce the notation

ϕ− ≡ ϕ5 − ϕ6 ⇒ eiαφ−(z)eiβφ−(w) ∼ eiαφ−(z)+iβφ−(w)(z − w)2αβ .
(B.10)

In terms of ϕ−, the SU(2)L currents are

J+(z) = eiφ−(z) , J−(z) = e−iφ−(z) , J3(z) =
i

2
∂ϕ−(z) . (B.11)

We will also need the expression for the operator O−−:

O−−(z, z̄) =
−i√
2

(
e−iφ5(z)+iφ̃6(z̄) − eiφ6(z)−iφ̃5(z̄)

)
. (B.12)

Using Eqs. (B.6) and (B.11) we obtain the following expression for the twist-k primaries

in Eq. (B.4) lifted to the covering space:

σ
k−1
2
, k−1

2
k (t, t̄) = |b|− 2p2

k eipφ−(t)eipφ̃−(t̄) , p = k−1
2 . (B.13)

We conclude this section by recording our conventions for spectral flow. Spectral flow

acts on states and operators as

|ϕ⟩ →
∣∣ϕ′
〉
= Uν |ϕ⟩ , O → O′ = UνOU

†
ν , (B.14)

where Uν = eiνφ− in the z-plane, and where on the covering t-plane of a strand of length

k, Uν = eikνφ− . Analogous expressions hold in the antiholomorphic sector. The spectral

flow transformations for the modes of the SU(2)L currents are (for the rest of the chiral
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algebra, see e.g. [111, App. A]):1

J3
m → J3

m −
cν

6
δm,0 , J±

m → J±
m∓2ν . (B.15)

The weight and SU(2) charge (h, j) of states transform as

h → h+ 2νj +
cν2

6
, j → j +

cν

6
; (B.16)

for example, spectral flow with parameters (ν, ν̄) = (12 ,
1
2) maps the NS-NS vacuum to

the RR ground state |++⟩.

B.2 Expectation value of Σ00
3 on a three-charge state

We are now ready to compute the following normalized three-point function, for use in

Eqs. (2.151):

1 ⟨++|k ⟨00| J−
+1σ

00
3 (a)J+

−1 |00⟩k |++⟩1
1 ⟨++|k ⟨00| J−

+1J
+
−1 |00⟩k |++⟩1

≡ C
00(m=1)
k3k |a|−2 . (B.17)

In order to exploit the machinery worked out so far, we map the correlator Eq. (B.17)

to the NS-NS sector using spectral flow with parameters (−1
2 ,−1

2). This is a unitary

transformation (B.14) that leaves invariant the value of the correlator.

This spectral flow transformation maps the RR vacuum |++⟩1 to the untwisted NS-NS

vacuum. From (B.15), the operator J+
−1 becomes J+

0 in the NS sector.

Next, σ003 is defined by σ003 ≡ 1
2 [J

−
0 , [J̃

−
0 , σ

11
3 ]]. Using Eqs. (B.4) and (B.13), we see that

in the covering space σ003 → 2 |b|−2/3J3J̃3, so this operator is invariant under spectral

flow.

To derive the spectral flow of the state |00⟩k, recall that it is defined by:

|00⟩k ≡ O−−
0 |++⟩k =

−i√
2
ϵȦḂψ

−Ȧ
0 ψ̃−Ḃ

0 |++⟩k . (B.18)

In the z-plane, ψ−Ȧ
0 is spectral flowed to ψ−Ȧ

− 1
2

, which is related to the corresponding

covering-space mode through Eq. (B.6), giving

ψ−Ȧ
− 1

2

→ b
− 1

2
t

√
kψ

−Ȧ(t)
− k

2

. (B.19)

Under spectral flow with parameters (−1
2 ,−1

2), the RR ground state |++⟩k is mapped

to an anti-chiral primary state; moving to the covering t-plane gives (normal ordering

1The convention map to the spectral flow parameters of [111] is αthere = 2νhere.
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of exponentials should be understood; we leave this implicit to lighten the notation)

|++⟩k → σ
− k−1

2
,− k−1

2
k |0⟩(t)

NS
= |b|− 2p2

k e−ipφ−(0)e−ipφ̃−(0) |0⟩(t)
NS

(B.20)

where |0⟩(t)
NS

is the NS-NS vacuum of the covering t-plane and again p = k−1
2 . Then from

Eqs. (B.12) and (B.18) we obtain

|00⟩k →
i
√
k√
2
|b|− 2p2

k
−1
(
ψ
−−(t)

− k
2

ψ̃
−+(t)

− k
2

− ψ−+(t)

− k
2

ψ̃
−−(t)

− k
2

)
e−ipφ−(0)e−ipφ̃−(0) |0⟩(t)

NS

=
i
√
k√
2
|b|− 2p2

k
−1

∫
dtdt̄

(2πi)2
t−

k+1
2 t̄−

k+1
2
(
e−iφ5(t)+iφ̃6(t̄) − eiφ6(t)−iφ̃5(t̄)

)
e−ipφ−(0)e−ipφ̃−(0) |0⟩(t)

NS

=
i
√
k√
2
|b|− 2p2

k
−1

∫
dtdt̄

(2πi)2
t−1t̄−1

(
e−iφ5(t)−ipφ−(0)+iφ̃6(t̄)−ipφ̃−(0)

−eiφ6(t)−ipφ−(0)−iφ̃5(t̄)−ipφ̃−(0)
)
|0⟩(t)

NS

=
i
√
k√
2
|b|− 2p2

k
−1

(
e−i

k+1
2
φ5(0)+i

k−1
2
φ6(0)−i k−1

2
φ̃5(0)+i

k+1
2
φ̃6(0)

−e−i k−1
2
φ5(0)+i

k+1
2
φ6(0)−i k+1

2
φ̃5(0)+i

k−1
2
φ̃6(0)

)
|0⟩(t)

NS
(B.21)

so we obtain

J+
−1 |00⟩k →

i
√
k√
2
|b|− 2p2

k
−1

(
e−i

k−1
2
φ5(0)+i

k−3
2
φ6(0)−i k−1

2
φ̃5(0)+i

k+1
2
φ̃6(0)

− e−i k−3
2
φ5(0)+i

k−1
2
φ6(0)−i k+1

2
φ̃5(0)+i

k−1
2
φ̃6(0)

)
|0⟩(t)

NS
.

(B.22)

Before computing the spin correlator in Eq. (B.8), we recall the value of the twist fusion

coefficient we require [145, Eq. (6.25)],

|Ck,3,k|12 =
(k + 1)

k2+1
k

+ 2
3

2
4
3 3

5
3k

4
3 (k − 1)

k2+1
k

− 2
3

. (B.23)

The map from the z-plane to the covering space used to compute this is given in [145,

Eq. (4.34)]. Since it will be needed in the following, we report here the behaviour of this

map near the insertion points z = 0, a,∞, as given in [120, Eq. (6.18)–(6.20)]2:

z ∼ b0t
k = a

k + 1

k − 1
tk near z = 0 ,

z ∼ a+ b1(t− 1)3 = a+ a
(k + 1)k(k − 1)

12
(t− 1)3 near z = a ,

z ∼ b∞t
k = a

k − 1

k + 1
tk near z =∞ .

(B.24)

Note that the map has been chosen so that the point z = a is mapped to t = 1. Because of

the normalization in (B.8), the spin field correlator in the case of (B.17) arises from con-

2We note a typo in [120, Eq. (6.20)]: (d− 1− d2) → (d1 − d2).
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tracting the covering-space operator σ
00(t)
3 (1) = 2|b1|−

2
3J3J̃3(1) = −1

2 |b1|−
2
3∂ϕ−∂̄ϕ̃−(1)

with the operator in Eq. (B.22). The result reads:

⟨S†
1(∞)S2(a)S3(0)⟩
⟨S†

1(∞)S1(0)⟩
=

k(k − 2)

2
|b0|−

2p2

k
−1|b1|−

2
3 |b∞|

2p2

k
+1 , p = k−1

2 .

(B.25)

Using Eqs. (B.8), (B.23) and (B.24) we find

C
00(m=1)
k3k =

k − 2

6k
. (B.26)

B.3 Expectation value of Σ++
2 in the state |00⟩1 |++⟩2

In Eq. (2.53) we make use of the relation σ++
2 |00⟩1 |00⟩1 = 1

4 |++⟩2, which we now

derive. The coefficient corresponds to computing the following correlator:

2 ⟨++|σ++
2 |00⟩1 |00⟩1

2 ⟨++|++⟩2
. (B.27)

We lift this correlator to the covering space with the map (c.f. [201])

z = t(t− 1) . (B.28)

The point z = 0 corresponds to the points t = 0, 1, where we have the insertions

(O−−S+S̄+)(0) , (O−−S+S̄+)(1) . (B.29)

Writing only the holomorphic expressions, the operators S± take the following form in

the covering space:

S±(t) = |bt|−
1
4k e±

i
2
φ−(t) . (B.30)

The operator σ++
2 is inserted at the point t = 1/2 in the covering space (see e.g. [201,

Sec. 4]). The asymptotic behaviour of the map (B.28) at the insertion points t =

0, 1/2, 1,∞ is given in [201, Eq. (C.45)]. Factorizing the correlator as in (B.8), we

compute the spin contribution

⟨(S−S̄−)(∞)(S+S̄+)(12)(O
−−S+S̄+)(1)(O−−S+S̄+)(0)⟩

⟨(S−S̄−)(∞)(S+S̄+)(0)⟩ = |b∞|
1
4 |b 1

2
|− 1

4 |b1|−
1
2 |b0|−

1
2 .

(B.31)

The remaining contributions to the correlator are given in [201, Eqs. (C.5), (C.39)].

Combining these results with (B.31), we obtain the value of the desired coefficient,

σ++
2 |00⟩1 |00⟩1 =

1

4
|++⟩2 . (B.32)



Appendix C

Type IIB supergravity ansatz and

BPS equations

The general solution to Type IIB supergravity compactified on T4 that is 1/8-BPS, has

D1-D5-P charges, and is invariant on the T4 directions is [134, Appendix E.7]:

ds210 =
√
αds26 +

√
Z1

Z2
dŝ24 , (C.1a)

ds26 = − 2√
P

(dv + β)
[
du+ ω +

F
2
(dv + β)

]
+
√
P ds24 , (C.1b)

e2Φ =
Z2
1

P , (C.1c)

B = − Z4

P (du+ ω) ∧ (dv + β) + a4 ∧ (dv + β) + γ4 , (C.1d)

C0 =
Z4

Z1
, (C.1e)

C2 = − Z2

P (du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + γ2 , (C.1f)

C4 =
Z4

Z2
v̂ol4 −

Z4

P γ2 ∧ (du+ ω) ∧ (dv + β) + x3 ∧ (dv + β) , (C.1g)

C6 = v̂ol4 ∧
[
−Z1

P (du+ ω) ∧ (dv + β) + a2 ∧ (dv + β) + γ1

]
, (C.1h)

where

α =
Z1Z2

Z1Z2 − Z2
4

, P = Z1Z2 − Z2
4 . (C.2)

In the above, dŝ24 denotes the flat metric on T 4, and v̂ol4 stands for the corresponding

volume form. This ansatz contains all fields known to arise from worldsheet calculations

of the backreaction of D1-D5-P bound states invariant onM [210].

The BPS equations have the following structure. The base metric, ds24, and the one-

form β satisfy non-linear equations. Having solved these initial equations, the remaining

ansatz quantities are organized into two layers of linear equations [134, 211].
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We denote the exterior differential on the spatial base B by d̃, and introduce [166]

D ≡ d̃− β ∧ ∂

∂v
. (C.3)

In the present thesis we consider only solutions where the four-dimensional base space

is flat R
4, and in which β does not depend on v. Then the BPS equation for β is

dβ = ∗4dβ , (C.4)

where ∗4 denotes the flat R
4 Hodge dual.

To write the remaining BPS equations in a covariant form, we rescale (Z4, a4, γ4) →
(Z4, a4, γ4)/

√
2 for the remainder of this appendix (and only here). We introduce the

SO(1, 2) Minkowski metric ηab (a = 1, 2, 4) via

η12 = η21 = 1 , η44 = −1 . (C.5)

This is used to raise and lower a, b indices. We introduce the two-forms Θ1, Θ2, Θ4 via1

Θb ≡ Dab + ηbc γ̇c . (C.6)

We now have

P ≡ 1
2η

abZaZb = Z1Z2 − 1
2Z

2
4 . (C.7)

The first layer of the BPS equations then takes the form

∗4DŻa = ηabDΘb , D ∗4 DZa = − ηabΘb∧ dβ , Θa = ∗4 Θa . (C.8)

The second layer becomes

Dω + ∗4Dω + F dβ = ZaΘ
a ,

∗4D ∗4
(
ω̇ − 1

2 DF
)

= P̈ − 1
2η

abŻaŻb − 1
4ηab ∗4Θa ∧Θb .

(C.9)

1The relation to the notation of [60] is that Θ1
here = Θthere

1 , Θ2
here = Θthere

2 , (1/
√
2)Θhere

4 = Θthere
4 .



Appendix D

Extremal three-point functions

In this appendix we derive the scalar chiral primary operators of dimension two in

the single-particle basis. The vanishing of extremal three-point functions built with the

operator Õ2 in (3.48) was discussed in Section 2.3.1; here we shall focus on the operators

Ω̃ and Σ̃3 defined in Eq. (3.49). These operators involve a mixing between the single-

trace operators Σ3, Ω and the double-trace operators (Σ2 ·Σ2), (J · J̄) and (O ·O). Let us

first discuss the mixing matrix between the single-traces: the single-particle operators

take the form

Ω̃ ∼ a1
Σ3

N
3
2

+ a2
Ω

N
1
2

, Σ̃3 ∼ b1
Σ3

N
3
2

+ b2
Ω

N
1
2

, (D.1)

where ∼ means that we are retaining only the single-trace contributions and we have

arranged the factors of N so that each term contributes at order N0 to the norm of the

single-particle operators. As we shall discuss below, at large N , the multi-trace contri-

bution to norm of the single-particle operator is subleading. Thus, the orthonormality

conditions

⟨Σ̃++
3 Σ̃−−

3 ⟩ = ⟨Ω̃++Ω̃−−⟩ = 1 , ⟨Σ̃++
3 Ω̃−−⟩ = 0 , (D.2)

give three constraints on the four coefficients a1, a2, b1 and b2. In order to completely

fix the mixing matrix in Eq. (D.1) we need a fourth constraint, which was derived in

[107] from comparison with non-extremal supergravity correlators. The result is

Ω̃ =

√
3

2

(
Σ3

N
3
2

+
Ω

N
1
2

)
, Σ̃3 =

3

2

(
Σ3

N
3
2

− Ω

3N
1
2

)
. (D.3)

We now focus on the mixing of multi-trace operators in the single-particle basis: as we

shall see, it can be completely fixed by CFT computations. Let us consider the most

general linear combination allowed by the quantum numbers that can give rise to the

single-particle operators:

α
Σ3

N3/2
+ β

Ω

N1/2
+ γ(Σ2 · Σ2) + δ(J · J̄) + ϵ(O ·O)++ . (D.4)
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The coefficients α and β are given by the single-trace mixing matrix in Eq. (D.3). We

now fix the coefficients γ, δ and ϵ by imposing that all extremal three-point functions

built with this operator and two operators of dimension one vanish. For ease of notation

we will suppress the standard space-time dependence in the following correlators.

• The first constrain comes by imposing that the three-point function obtained in-

serting the operator in (D.4) with two O−− vanishes. Since the latter belongs to

the untwisted sector of the theory, the contributions coming from the twist opera-

tors in (D.4) are trivially zero; moreover the contribution of the multi-trace (JJ̄)

is subleading at large N . We obtain:

⟨
(
β
Ω++

N1/2
+ ϵ(O ·O)++

)
O−−O−−⟩ = βN1/2 + 2ϵN = 0 . (D.5)

where we have used the definitions in Eqs. (2.19), (2.38) and (3.35).

• Let us now consider the currents insertions: again, since they carry no twist, the

twist operators in Eq. (D.4) do not contribute to the correlator; the contribution

of the double-trace (O · O)++ is subleading in N and we shall ignore it. The

computation leads to

⟨
(
β
Ω++

N1/2
+ δ(J · J̄)++

)
J−J̄−⟩ = βN1/2 + δN = 0 . (D.6)

where we have used the definitions in Eqs. (2.16), (2.38) and (3.35).

• The last constraint comes from inserting two twist operators Σ−−
2 . Leading order

contributions to the extremal three-point function come from the twist operators

and the Ω++ in (D.4). The contraction with Σ3 gives the large-N result

⟨
∑

r<s<t

(
σ++
(rst) + σ++

(rts)

)∑

a<b

σ−−
(ab)

∑

c<d

σ−−
(cd)⟩ =

3N3/2

4
, . (D.7)

The combinatorics works as follows. The choice of the copies r, s, t gives
(
N
3

)
and,

for each choice, there are two inequivalent cycles so that the twist-three operator

can glue three strands out of N in 2
(
N
3

)
ways. To fix the ideas, let us suppose that

the orientation of the 3 copies r, s, t is chosen to be (123): we can still choose the

first σ2 to be the two-cycle (12), (23) or (13) (this fixes the second σ2 to be (23),

(13) and (12) respectively): this gives a factor of three. Eq. (D.7) follows from

combining this combinatorial factor with the building block

⟨σ++
(123)σ

−−
(12)σ

−−
(23)⟩ = 3/4, , (D.8)
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derived in [120, Eq. (5.25)]. The double-trace (σ2 · σ2)++ contributes with

⟨ 2

N2

∑

(r<s) ̸=(p<q)

σ++
(rs)σ

++
(pq)

∑

a<b

σ−−
(ab)

∑

c<d

σ−−
(cd)⟩ = N2, . (D.9)

The computation goes as follows: the choice of the copies r, s and p, q gives the

combinatorial factors N(N − 1)/2 and (N − 2)(N − 3)/2 respectively; moreover,

one can perform two inequivalent Wick contractions, which give an extra factor of

two. Taking into account the normalization of the multi-trace operator, one gets

Eq. (D.9). The last contribution comes from the operator Ω++. One could evaluate

it using the techniques developed in [120, 145], or exploiting Ward identities that

relate different n-point functions in the same R-symmetry multiplet together with

some results obtained in [1]: we are going focus on the latter method. We write

the operator Σ−−
2 as [J−

0 J̄
−
0 ,Σ

++
2 ] and make use the permutation property of the

correlator (e.g. [119, Eq. (2.2.48)]) . Moving the current modes on the other

operators we obtain

⟨Ω++Σ−−
2 Σ−−

2 ⟩ = ⟨Σ−−
2 Ω++Σ−−

2 ⟩

=
〈
Σ++
2

(
2Ω00

)
Σ−−
2

〉
=
N2

4
.

(D.10)

The last equality is obtained spectral flowing the correlator to the R sector, noticing

that Ω carries no twist so that the twist operators need to act on the same copies

carrying a combinatorial factor of
(
N
2

)
and using eq. [1, Eq. (5.40)].

Eq.s (D.5), (D.6), (D.7), (D.9), (D.10) imply that all three-point functions in which the

operator (D.4) is the one with highest dimension vanish if

γ = − 3α

4N1/2
− β

4N1/2
δ = − β

N1/2
ϵ = − β

2N1/2
(D.11)

Combining this result with the single-trace mixing matric in Eq. (D.3) one obtains

Σ̃++
3 ≡ 3

2

[(
Σ++
3

N
3
2

− Ω++

3N
1
2

)
+

1

N
1
2

(
−2

3
(Σ2 · Σ2)

++ +
1

6
(O ·O)++ +

1

3
(J · J̄)++

)]

Ω̃++ ≡
√
3

2

[(
Σ++
3

N
3
2

+
Ω++

N
1
2

)
+

1

N
1
2

(
−(Σ2 · Σ2)

++ − 1

2
(O ·O)++ − (J · J̄)++

)]
.

(D.12)

Note that while the factors ofN that go with the single-trace operators are such that they

contribute at order N0 to the norm of the operators, since the double-trace operators

are already unit normalized, they are naturally suppressed by a factor of 1/
√
N . This

implies, in particular, that the double-trace contribution to the norm of the single-

particle operators is subleading in the large N limit.





Appendix E

Gauge-fixed holographic

dictionary

In Section 3.5.2 we provided the holographic dictionary that relates the expectation

value of single-particle operators at dimension one and scalar single-particle operators

at dimension two in terms of gauge-invariant combination of KK fields. This formulation

has the advantage of being general and manifestly gauge invariant: it can be used to

probe any microstate solution in any coordinate system. From a practical point of view,

however, it is useful to formulate the dictionary in a preferred gauge, as it makes it more

manageable to use.

We choose coordinates such that the four-dimensional metric ds24 in (3.20) takes the

form:

ds24 = dr2 + r2(dθ2 + sin2 θdϕ2 + cos2 θdψ2) . (E.1)

Note that this choice is always possible for the class of solutions discussed in Section

3.2.2, namely for geometries whose base space is flat R
4. One can consider, however, con-

structing superstrata with a non-flat base: for example, solutions that carry excitations

of the field ρI in (3.30) do not fall in this category (on the CFT side, they correspond

to states for which, roughly speaking, the operators GGJ̄ and ḠḠJ have a non trivial

expectation value [62]). For this class of geometries one should apply the gauge-invariant

formulation of the dictionary in Eq. (3.54).

From Eq. (C.8) one can see that for 1/4-BPS solutions, charactered by Θ1 = Θ2 =

Θ4 = 0, the functions Z1, Z2 and Z4 are harmonic. For 1/8-BPS solutions, they obey

a Poisson-type equation, where the Θi play the role of sources. For the superstrata

solution discussed in Section 3.3, the first term in the large r expansion of the sources is

≥ 7. Again, it is convenient to perform the transformation in Eq. (3.28) and reabsorb the
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overall factor
√
Q1Q5 in the metric. Thus, we define the following expansion1 [54, 55]:

Z̃1 =
Q1

r̃2


1 +

2∑

k=1

k/2∑

mk,m̄k=−k/2
f
(mk,m̄k)
1k

Y mk,m̄k
k

r̃k
+O(r̃−3)


 ,

Z̃2 =
Q5

r̃2


1 +

2∑

k=1

k/2∑

mk,m̄k=−k/2
f
k (mk,m̄k)
5k

Y mk,m̄k
k

r̃k
+O(r̃−3)


 ,

Z̃4 =

√
Q1Q5

r̃2




2∑

k=1

k/2∑

mk,m̄k=−k/2
A(mk,m̄k)
k

Y mk,m̄k
k

r̃k
+O(r̃−3)


 ,

Ã =
1

r̃2

3∑

a=1

(aa+Y
a+
1 + aa−Y

a−
1 ) +O(r̃−3) , F = − 2Qp

a0r̃2
+O(r−3) ,

(E.2)

where we have denoted with Y mk,m̄k
k the scalar harmonics on S3 of degree k and with

Y a±
1 the vector harmonics of degree one (see Appendix A). We are still left with the

freedom of choosing the origin of the coordinate system on the flat base. We fix this

redundancy by requiring

f
(α,α̇)
11 + f

(α,α̇)
51 = 0 , (E.3)

which corresponds to placing the origin in the center of mass of the D1-D5 system. The

choices in Eqs. (E.2) and (E.3) imply that all the unphysical fields in (3.30) at order k = 1

vanish [54]. With these choices, the expansion of the bulk quantities in the dictionary

(3.54) in terms of (E.2) yields the gauge-fixed single-particle fields in supergravity:

[
s
(6)(α,α̇)
k=1

]
= −2

√
2f

(α,α̇)
51 ,

[
s
(6)(a,ȧ)
k=2

]
=

√
3

2
(f

(a,ȧ)
12 − f (a,ȧ)52 ) ,

[
s
(7)(α,α̇)
k=1

]
= 2
√
2A(α,α̇)

1 ,
[
s
(7)(a,ȧ)
k=2

]
=
√
6(A(a,ȧ)

2 ) ,
[
σ̃
(a,ȧ)
k=2

]
= − 1√

2

(
f
(a,ȧ)
12 + f

(a,ȧ)
52

)
+ 2
√
2
(
f
(α,α̇)
51 f

(β,β̇)
51 +A(α,α̇)

1 A(β,β̇)
1

)
a
(a,ȧ)

(α,α̇)(β,β̇)

+ 4
√
2ac+ad−f1(a,ȧ)cd ,[

A
a(±)
k=1

]
= −2a−a,± ,

(E.4)

where a
(a,ȧ)

(α,α̇)(β,β̇)
and f1(a,ȧ)cd are triple overlap coefficients defined in (A.9) and (A.16).

Let us compare the dictionary for operators of dimension two given in Eq. (3.54) with

the one given in Chapter 2 . To do so, we first note that the dictionary for the operator

Õ2 given in Eq.s (2.95) and (2.96) is already formulated in the single-particle basis.

Next, we take Eq.s (2.93) and (2.94) and rotate them to express them in terms of the

geometric quantities ga,ȧ, g̃a,ȧ. We note that the operator dual to ga,ȧ coincides with Σ̃3,

thus this sector of holographic dictionary is already given in terms of single-particles.

1Note that this equation is more general than [1, Eq. (3.6)], which applies only to two-charge solutions
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The resulting dictionary for g̃a,ȧ reads:

g̃a,ȧ =
√
2
(
−
(
f
(a,ȧ)
12 + f

(a,ȧ)
52

)
+ 8ac+ad−f1(a,ȧ)cd

)

= −(−1)a+ȧ
√
6
( 1

N3/2
⟨Σaȧ3 ⟩+

1

N3/2

(
⟨Ωaȧ⟩ − 1

3
⟨(Σ2 · Σ2)

aȧ⟩

− ⟨(J · J̄)aȧ⟩+ 1

6
⟨(O ·O)aȧ⟩

))
(E.5)

We observe that the right-hand side of the first line of (E.5) differs from the second-last

line of Eq. (E.4) through the (gauge-invariant) terms of f51 and A1. The holographic

dictionary for f51 and A1 is obtained by combining Eqs. (E.4) and (3.54). We can thus

improve on the dictionary (E.5) by adding the terms in f51 and A1 to both sides of the

equation. Doing so results precisely in the dictionary given in Eq. (E.4). We note that

this shift corresponds to Eq. (5.30) of [54]: in that paper the authors used the basis of

Chapter 2; in that basis the precise dictionary is given by Eqs. (2.93) and (2.94). In

the light of the present work, Eq. (5.30) of [54] should be interpreted as follows. First,

the CFT operator on the left hand side is not a single trace, but the linear combination

of single and multi-trace operators reported in the right hand side of Eq. (E.5). The

momentum π
Σ2

I

(2) is proportional to the right hand side of the third line of Eq. (E.4),

while the product aIijπ
S1
i

(1)π
S1
j

(1) corresponds to the shift that links Eq.s (E.5) and (E.4).

Note that, as discussed in Section 5.4.2 of [54], Eq. (5.30) does not have an analog for

the operators Σ̃3 and Õ2: this is consistent with the fact that for these two sectors, the

dictionaries in Chapters 2 and 3 coincide.

This demonstrates the consistency of the results in Chapters 2 and 3 (i.e. in [1] and [2]),

and is a non-trivial check of the independent methods used in the two works.





Appendix F

Conserved charges of three-charge

solutions with shockwaves

In this appendix we compute the five-dimensional conserved ADM mass and angular

momenta carried by our three-charge microstate solutions with shockwaves, given in

Eq. (4.29). The asymptotic metric to leading order has sphere radius r̄ =
√
ξr in the

presence of the shockwave. With this in mind, we use [212, Eqs. (2.17), (2.18)] (see also

[213, Eqs. (3.3), (3.5)]) to calculate the ADM mass of the solution in (4.29),

MADM =
Ω3L

16πG6
(3ct − cy) (F.1)

=
π

4G5

(
Q1 +Q5 +

Q1Q5

R2
y

s(s+ ξ)

k2

)
, (F.2)

where G6 = LG5, L = 2πRy, and Ω3 = 2π2 is the area of the unit sphere S3, and where

we have used a =
√
Q1Q5

Ry
.

To calculate the conserved five-dimensional ADM angular momenta, we dimensionally

reduce on the y-circle. Following the discussion around [214, Eq. (1.58)–(1.65)] and

again using the coordinate r̄, we compute the angular momentum along ψ, finding

Jψ = − π

4G5

as
√
Q1Q5

k
= −sn1n5

k
, (F.3)

where in the second equality we have used a =
√
Q1Q5

Ry
, G5 =

G10
2πRy(2π)4V4

, G10 = 8π6g2s l
8
s ,

Q1 =
gsn1α′3

V4
and Q5 = gsn5α

′. Similarly the angular momentum along ϕ is

Jφ =
πa(s+ ξ)

√
Q1Q5

4G5k
=

(s+ ξ)n1n5
k

. (F.4)
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Therefore the left and right angular momenta for our new solutions are

J3 =
1

2
(Jφ − Jψ) =

1

2

ξn1n5
k

+
sn1n5
k

,

J̄3 =
1

2
(Jφ + Jψ) =

1

2

ξn1n5
k

.

(F.5)

We note that to compute the ADM mass, we could equally well have used dimensional

reduction combined with [214, Eq. (1.65)].



Appendix G

Precision holographic

computations

In this appendix we record several details of our precision holographic computation of

Section 4.4.2. We refer the reader to Sections 2.2 and 2.3 for the definitions of the

single-trace operators and to Eq. (3.35) for the definition of double-trace operators that

we will use in this appendix.

G.1 Precision holographic test for more general states

We now describe the computation of the expectation value of the single-particle operator

Σ̃00
3 on the following class of states, which is more general than that considered in

Section 4.4.2.

|++⟩N0
1

(
n+
s∏

i=1

|++⟩d
+
i

k+i

)(
n−
s∏

j=1

|−−⟩d
−
j

k−j

)
, N0 +

n+
s∑

i=1

d+i k
+
i +

n−
s∑

i=1

d−i k
−
i = N . (G.1)

Here the superscript ± refers to the strand polarizations |++⟩ and |−−⟩; for ease of

notation we introduce the index m = ± which we shall use in some of the following

expressions.

Let us first consider the contribution from Σ00
3 . Proceeding as explained after Eq. (4.49),

and using Eqs. (G.22) and (G.23) in the following subsection, one obtains that the
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expectation value of Σ00
3 on the full state (4.39) arises from the process

Σ00
3

(
|++⟩N0

1

n+
s∏

i=1

|++⟩d
+
i

k+i

n−
s∏

j=1

|−−⟩d
−
j

k−j

)
=

[∑

i

(k+i + 1)2

6k+i
N0d

+
i +

∑

i

(k−i )
2 + 6k−i + 1

6k−i
N0d

−
i +

∑

m,i ̸=j

(kmi + kmj )2

6kmi k
m
j

dmi d
m
j

+
∑

i,j

(k+i )
2 + 6k+i k

−
j + (k−j )

2

6k+i k
−
j

d+i d
−
j

(
1− δk+i k−j

)
](
|++⟩N0

1

n+
s∏

i=1

|++⟩d
+
i

k+i

n−
s∏

j=1

|−−⟩d
−
j

k−j

)
,

(G.2)

where the indices i, j run from 1 to n+s (n−s ) when m = + (m = −).

Second, we consider the operator Ω00. By using Eq. (4.50), it acquires a non-vanishing

expectation value via the process

Ω00

(
|++⟩N0

1

n+
s∏

i=1

|++⟩d
+
i

k+i

n−
s∏

j=1

|−−⟩d
−
j

k−j

)
=

(
N0

2
+
∑

i,m

dmi
2kmi

)(
|++⟩N0

1

n+
s∏

i=1

|++⟩d
+
i

k+i

n−
s∏

j=1

|−−⟩d
−
j

k−j

)
.

(G.3)

Third, we consider the double-trace operator
(
J · J̄

)00
. Its expectation value arises from

the process described after Eq. (4.52),

(
J · J̄

)00
(
|++⟩N0

1

n+
s∏

i=1

|++⟩d
+
i

k+i

n−
s∏

j=1

|−−⟩d
−
j

k−j

)
= (G.4)

[
N2

0

2
+N0

∑

i

d+i −N0

∑

i

d−i +
∑

m,i,j

dmi d
m
j

2
−
∑

i,j

d+i d
−
j

](
|++⟩N0

1

n+
s∏

i=1

|++⟩d
+
i

k+i

n−
s∏

j=1

|−−⟩d
−
j

k−j

)
.

By combining the definition of the single-particle operator Σ̃00
3 with Eqs. (G.2)–(G.4),

we obtain the expectation value of the single-particle operator. We find cancellation of

all terms that are clearly of order N1/2, leaving the following remainder:

〈
Σ̃00
3

〉
=

1

N3/2

[
N0

∑

m,i

dmi +
∑

m,i ̸=j
dmi d

m
j

(kmj )2 + 3kmi k
m
j

4kmi k
m
j

+
∑

i,j

d+i d
−
j

(
1− 2δk+i ,k

−
j

)]
.

(G.5)

We must ensure that this remainder is subleading compared to N1/2. When the long

strands were all of polarization |++⟩, this condition led to the constraint
∑

i di ∼ N1−α

with α > 0. We will obtain the analogous constraint, however to do so we must take

care since now (G.5) is not the sum of positive terms, due to the final term.

Let us therefore examine the final term. Without loss of generality, let us assume

n+s ≥ n−s . To obtain a bound on this term, let us consider the worst-case scenario in

which k+i = k−i for all i = 1, . . . , n−s . The magnitude of the negative contribution to this



Appendix G Precision holographic computations 177

term is then given by

1

N3/2

n−
s∑

i=1

d+i d
−
i . (G.6)

Since no dmi can scale as N , and since N0 ∼ N , the magnitude of this term is subleading

with respect to the first term in (G.5). Therefore these terms cannot cancel each other,

and so the first term in (G.5) must by itself be subleading with respect to N1/2. This

implies that: 


n+
s∑

i=1

d+i +

n−
s∑

i

d−i


 ∼ N1−α , α > 0 . (G.7)

Upon imposing this condition, the other terms in (G.5) are also subleading with respect

to N1/2, using similar reasoning to that used in the main text. We thus find that the

condition (G.7) is necessary and sufficient for the precision holographic test to be passed

for this more general class of states. The completely general case, i.e. the one in which

the long-strands can have any RR polarization, is analogous.

G.2 Fusion coefficients for Σ3

In this final section we compute the fusion coefficients ck1k2 for the following processes:

σ003 |++⟩k1 |++⟩k2 = c
(++)
k1k2

(
1− δk1,k2

)
|++⟩k1 |++⟩k2 ,

σ003 |−−⟩k1 |−−⟩k2 = c
(−−)
k1k2

(
1− δk1,k2

)
|−−⟩k1 |−−⟩k2 ,

σ003 |++⟩k1 |−−⟩k2 = c
(+−)
k1k2

(
1− δk1,k2

)
|++⟩k1 |−−⟩k2 .

(G.8)

The factor (1 − δk1,k2) can be explained as follows. The operator σ003 corresponds to a

three-cycle that, when acting on two permutations of length k1 and k2, produces another

pair of permutations of length k1 and k2 by shuffling the copies (see the discussion around

Eq. (2.110)): this process can occur only if k1 ̸= k2.

We now give an explicit derivation of the coefficient c
(++)
k1k2

. The derivation of the coeffi-

cients c
(−−)
k1k2

and c
(+−)
k1k2

is analogous, and we simply report their values at the end of the

appendix.

We compute the coefficient c
(++)
k1k2

by requiring that the precision holography dictio-

nary (4.47) for the single-particle operator Σ̃3 holds on the two-charge CFT state:

∑

N1

(
A |++⟩k1

)N1
(
B |++⟩k2

)N−N1

, (G.9)

where, for concreteness, we take k1 ̸= k2. Here A,B are coefficients that we take to be
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real; they are related to the average number of strands N̄1 and N − N̄1 via [103]

k1N̄1 = A2 , k2(N − N̄1) = B2 . (G.10)

Let us first compute the bulk quantity
[
s
(6)(−a,−ȧ)
k=2

]
defined in Eq. (4.44). We do so

by generating the harmonic functions Z1 and Z2 as in Eq. (2.14), making use of the

following profile functions:

g1(v
′) =

a

k1
e

2πik1
L

v′ +
b

k2
e

2πik2
L

v′ , gi ̸=1(v
′) = 0 . (G.11)

The supergravity Fourier modes a, b are related to the CFT coefficients A,B via

A = Ry

√
N

Q1Q5
a , B = Ry

√
N

Q1Q5
b , (G.12)

and satisfy the usual relation

a2 + b2 =
Q1Q5

R2
y

. (G.13)

Upon performing the asymptotic expansion in Eq. (E.2), one finds that the spin com-

ponent (0, 0) is non-vanishing, with value

[
s
(6)(0,0)
k=2

]
=
√
2
a2b2

k1k2

R4
y

(Q1Q5)2
. (G.14)

The holographic dictionary in Eq. (4.47) then predicts that the single-particle scalar

CPO Σ̃00
3 has the following expectation value on the CFT state (G.9):

〈
Σ̃00
3

〉
=

a2b2

k1k2

R4
y

(Q1Q5)2
N1/2 . (G.15)

We now fix the fusion coefficient ck1k2 by requiring that this is indeed the case. The CFT

operators in the linear combination (4.46) that contribute at leading order at large N to

the expectation value of the single-particle operator Σ̃00
3 are the single-trace operators

Σ00
3 and Ω00 and the double-trace

(
J · J̄

)00
.

First, we consider the operator Σ00
3 . Its expectation value is obtained by multiplying the

fundamental process (G.8) by the number of different ways the twist operator can act

on the coherent state, as we shall describe momentarily. When the operator Σ00
3 acts on

a term in the coherent state sum (G.9), the contribution is

Σ00
3

[
|++⟩N1

k1
|++⟩N−N1

k2

]
= c

(++)
k1k2

N1(N −N1)k1k2

[
|++⟩N1

k1
|++⟩N−N1

k2

]
. (G.16)

The numerical factor N1(N −N1) follows from the fact that the twist operator can act

on any of the N1(N −N1) pairs of |++⟩k1 , |++⟩k2 , while the term k1k2 occurs because



Appendix G Precision holographic computations 179

each strand can be cut in k1 and k2 different positions respectively. Using Eqs. (G.10)

and (G.12) we find
〈
Σ00
3

〉
= c

(++)
k1k2

a2 b2
R4
yN

2

(Q1Q5)2
. (G.17)

Second, we consider the operator Ω00. The relevant contribution to the expectation

value of Ω00 then follows from Eq. (4.50) via the basic process

Ω00
[
|++⟩N1

k1
|++⟩N−N1

k2

]
=
(N1

2k1
+
N −N1

2k2

)[
|++⟩N1

k1
|++⟩N−N1

k2

]
. (G.18)

It follows from Eqs. (G.10)–(G.13) that

〈
Ω00
〉

= (a2 + b2)

(
a2

2k21
+

b2

2k22

)
R4
yN

(Q1Q5)2
. (G.19)

Third, we consider the double-trace operator
(
J · J̄

)00
= 2

N

∑
r,s J

3
(r)J̄

3
(s). When acting

on a member of the coherent state (G.9), this operator produces three terms, which

correspond to: (i) both left and right currents acting on a strand of twist k1, (ii) both

currents acting on a strand of length k2, and (iii) each current acting on a different type

of strand. This produces the following contribution:

(
J · J̄

)00[ |++⟩N1

k1
|++⟩N−N1

k2

]
=

2

N

(N2
1

4
+
N1(N −N1)

2
+

(N −N1)
2

4

)[
|++⟩N1

k1
|++⟩N−N1

k2

]
,

(G.20)

which implies
〈(
J · J̄

)00〉
=
( a4
2k21

+
a2b2

k1k2
+

b4

2k22

) R4
yN

(Q1Q5)2
, (G.21)

where we have used Eqs. (G.10) and (G.12). By using the definition of the single-particle

operator Σ̃3 in Eq. (4.46), we have that the holographic prediction in Eq. (G.15) holds

provided that

c
(++)
k1k2

=
(k1 + k2)

2

6k21k
2
2

. (G.22)

With similar computations, one obtains

c
(−−)
k1k2

=
(k1 + k2)

2

6k21k
2
2

, c
(+−)
k1k2

=
k21 + 6k1k2 + k22

6k21k
2
2

. (G.23)





Bibliography

[1] S. Giusto, S. Rawash, and D. Turton, “Ads3 holography at dimension two,”

JHEP 07 (2019) 171, arXiv:1904.12880 [hep-th].

[2] S. Rawash and D. Turton, “Supercharged AdS3 Holography,” JHEP 07 (2021)

178, arXiv:2105.13046 [hep-th].

[3] B. Chakrabarty, S. Rawash, and D. Turton, “Shockwaves in black hole

microstate geometries,” JHEP 02 (2022) 202, arXiv:2112.08378 [hep-th].

[4] S. Rawash and D. Turton, “Evolutionary algorithms for multi-center solutions,”

arXiv:2212.08585 [hep-th].

[5] LIGO Scientific Collaboration and Virgo Collaboration , “Observation of

gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116 (Feb,

2016) 061102. https://link.aps.org/doi/10.1103/PhysRevLett.116.061102.

[6] Event Horizon Telescope , K. Akiyama et al., “First M87 Event Horizon

Telescope Results. I. The Shadow of the Supermassive Black Hole,” Astrophys. J.

875 no. 1, (2019) L1, arXiv:1906.11238 [astro-ph.GA].

[7] C. M. Will, “The confrontation between general relativity and experiment,”

Living Reviews in Relativity 9 no. 1, (Mar, 2006) .

https://doi.org/10.12942%2Flrr-2006-3.

[8] M. Heusler, “Stationary black holes: Uniqueness and beyond,” Living Rev.Rel. 1

(1998) 6. , http://www.livingreviews.org/lrr-1998-6.

[9] J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D7 (1973) 2333–2346.

[10] R. M. Wald, General Relativity. Chicago Univ. Pr., Chicago, USA, 1984.

[11] A. Zee, Einstein Gravity in a Nutshell. Princeton University Press, New Jersey,

5, 2013.

[12] J. D. Bekenstein, “Generalized second law of thermodynamics in black hole

physics,” Phys. Rev. D9 (1974) 3292–3300.

181



182 BIBLIOGRAPHY

[13] S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43

(1975) 199–220. Erratum: [Commun. Math. Phys. 46, 206 (1976)].

[14] J. B. Hartle and S. W. Hawking, “Path-integral derivation of black-hole

radiance,” Phys. Rev. D 13 (Apr, 1976) 2188–2203.

https://link.aps.org/doi/10.1103/PhysRevD.13.2188.

[15] J. Polchinski, “The Black Hole Information Problem,” in Theoretical Advanced

Study Institute in Elementary Particle Physics: New Frontiers in Fields and

Strings, pp. 353–397. 2017. arXiv:1609.04036 [hep-th].

[16] S. W. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys.

Rev. D14 (1976) 2460–2473.

[17] S. B. Giddings and W. M. Nelson, “Quantum emission from two-dimensional

black holes,” Physical Review D 46 no. 6, (Sep, 1992) 2486–2496.

https://doi.org/10.1103%2Fphysrevd.46.2486.

[18] D. N. Page, “Black hole information,” arXiv:hep-th/9305040.

[19] S. D. Mathur, “What Exactly is the Information Paradox?,” Lect. Notes Phys.

769 (2009) 3–48, arXiv:0803.2030 [hep-th].

[20] S. D. Mathur and C. J. Plumberg, “Correlations in Hawking radiation and the

infall problem,” JHEP 09 (2011) 093, arXiv:1101.4899 [hep-th].

[21] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, “Black Holes:

Complementarity or Firewalls?,” JHEP 1302 (2013) 062, arXiv:1207.3123

[hep-th].

[22] D. Harlow, “Jerusalem lectures on black holes and quantum information,”

Reviews of Modern Physics 88 no. 1, (Feb, 2016) .

https://doi.org/10.1103%2Frevmodphys.88.015002.

[23] S. Raju, “Lessons from the information paradox,” Phys. Rept. 943 (2022) 1–80,

arXiv:2012.05770 [hep-th].

[24] Y. Aharonov, A. Casher, and S. Nussinov, “The Unitarity Puzzle and Planck

Mass Stable Particles,” Phys. Lett. B 191 (1987) 51.

[25] D. N. Page, “Average entropy of a subsystem,” Phys.Rev.Lett. 71 (1993)

1291–1294, arXiv:gr-qc/9305007 [gr-qc].

[26] J. D. Bekenstein, “A Universal Upper Bound on the Entropy to Energy Ratio for

Bounded Systems,” Phys. Rev. D23 (1981) 287.

[27] J. D. Bekenstein, “Entropy bounds and black hole remnants,” Phys. Rev. D49

(1994) 1912–1921, arXiv:gr-qc/9307035.



BIBLIOGRAPHY 183

[28] L. Susskind, “Trouble for remnants,” arXiv:hep-th/9501106.

[29] S. B. Giddings, “The Black hole information paradox,” arXiv:hep-th/9508151.

[30] S. D. Mathur, “The information paradox: A pedagogical introduction,” Class.

Quant. Grav. 26 (2009) 224001, arXiv:0909.1038 [hep-th].

[31] S. G. Avery, “Qubit Models of Black Hole Evaporation,” JHEP 1301 (2013) 176,

arXiv:1109.2911 [hep-th].

[32] R. P. Feynman, Feynman lectures on gravitation. 1996.

[33] A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield, “The entropy of bulk

quantum fields and the entanglement wedge of an evaporating black hole,”

Journal of High Energy Physics 2019 no. 12, (Dec, 2019) .

https://doi.org/10.1007%2Fjhep12%282019%29063.

[34] G. Penington, “Entanglement Wedge Reconstruction and the Information

Paradox,” JHEP 09 (2020) 002, arXiv:1905.08255 [hep-th].

[35] G. Penington, S. H. Shenker, D. Stanford, and Z. Yang, “Replica wormholes and

the black hole interior,” JHEP 03 (2022) 205, arXiv:1911.11977 [hep-th].

[36] A. Almheiri, R. Mahajan, J. Maldacena, and Y. Zhao, “The Page curve of

Hawking radiation from semiclassical geometry,” JHEP 03 (2020) 149,

arXiv:1908.10996 [hep-th].

[37] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, “The

entropy of Hawking radiation,” Rev. Mod. Phys. 93 no. 3, (2021) 035002,

arXiv:2006.06872 [hep-th].

[38] G. W. Gibbons and S. W. Hawking, “Action Integrals and Partition Functions in

Quantum Gravity,” Phys. Rev. D 15 (1977) 2752–2756.

[39] B. Guo, M. R. R. Hughes, S. D. Mathur, and M. Mehta, “Contrasting the

fuzzball and wormhole paradigms for black holes,” Turk. J. Phys. 45 no. 6,

(2021) 281–365, arXiv:2111.05295 [hep-th].

[40] A. Strominger and C. Vafa, “Microscopic Origin of the Bekenstein-Hawking

Entropy,” Phys. Lett. B379 (1996) 99–104, arXiv:hep-th/9601029.

[41] K. Sfetsos and K. Skenderis, “Microscopic derivation of the bekenstein-hawking

entropy formula for non-extremal black holes,” Nuclear Physics B 517 no. 1-3,

(Apr, 1998) 179–204.

https://doi.org/10.1016%2Fs0550-3213%2898%2900023-6.

[42] C. G. Callan and J. M. Maldacena, “D-brane approach to black hole quantum

mechanics,” Nuclear Physics B 472 no. 3, (Jul, 1996) 591–608.

https://doi.org/10.1016%2F0550-3213%2896%2900225-8.



184 BIBLIOGRAPHY

[43] S. De Haro, J. van Dongen, M. Visser, and J. Butterfield, “Conceptual analysis

of black hole entropy in string theory,” Stud. Hist. Phil. Sci. B 69 (2020) 82–111,

arXiv:1904.03232 [physics.hist-ph].

[44] V. Balasubramanian, J. de Boer, E. Keski-Vakkuri, and S. F. Ross,

“Supersymmetric conical defects: Towards a string theoretic description of black

hole formation,” Phys. Rev. D64 (2001) 064011, arXiv:hep-th/0011217.

[45] J. M. Maldacena and L. Maoz, “De-singularization by rotation,” JHEP 12

(2002) 055, arXiv:hep-th/0012025.

[46] O. Lunin and S. D. Mathur, “Metric of the multiply wound rotating string,”

Nucl. Phys. B610 (2001) 49–76, arXiv:hep-th/0105136.

[47] O. Lunin and S. D. Mathur, “AdS/CFT duality and the black hole information

paradox,” Nucl. Phys. B623 (2002) 342–394, arXiv:hep-th/0109154.

[48] L. Susskind, “Some speculations about black hole entropy in string theory,”

arXiv:hep-th/9309145.

[49] S. D. Mathur and D. Turton, “The fuzzball nature of two-charge black hole

microstates,” arXiv:1811.09647 [hep-th].

[50] S. D. Mathur, “The fuzzball proposal for black holes: An elementary review,”

Fortsch. Phys. 53 (2005) 793–827, arXiv:hep-th/0502050.

[51] I. Bena and N. P. Warner, “Black holes, black rings and their microstates,” Lect.

Notes Phys. 755 (2008) 1–92, arXiv:hep-th/0701216.

[52] K. Skenderis and M. Taylor, “The fuzzball proposal for black holes,” Phys. Rept.

467 (2008) 117–171, arXiv:0804.0552 [hep-th].

[53] M. Taylor, “General 2 charge geometries,” JHEP 03 (2006) 009,

arXiv:hep-th/0507223.

[54] I. Kanitscheider, K. Skenderis, and M. Taylor, “Holographic anatomy of

fuzzballs,” JHEP 04 (2007) 023, arXiv:hep-th/0611171.

[55] I. Kanitscheider, K. Skenderis, and M. Taylor, “Fuzzballs with internal

excitations,” JHEP 06 (2007) 056, arXiv:0704.0690 [hep-th].

[56] I. Bena, S. Giusto, R. Russo, M. Shigemori, and N. P. Warner, “Habemus

Superstratum! A constructive proof of the existence of superstrata,” JHEP 05

(2015) 110, arXiv:1503.01463 [hep-th].

[57] I. Bena, E. Martinec, D. Turton, and N. P. Warner, “Momentum Fractionation

on Superstrata,” JHEP 05 (2016) 064, arXiv:1601.05805 [hep-th].



BIBLIOGRAPHY 185

[58] I. Bena, S. Giusto, E. J. Martinec, R. Russo, M. Shigemori, D. Turton, and N. P.

Warner, “Smooth horizonless geometries deep inside the black-hole regime,”

Phys. Rev. Lett. 117 no. 20, (2016) 201601, arXiv:1607.03908 [hep-th].

[59] I. Bena, E. Martinec, D. Turton, and N. P. Warner, “M-theory Superstrata and

the MSW String,” JHEP 06 (2017) 137, arXiv:1703.10171 [hep-th].

[60] I. Bena, S. Giusto, E. J. Martinec, R. Russo, M. Shigemori, D. Turton, and N. P.

Warner, “Asymptotically-flat supergravity solutions deep inside the black-hole

regime,” JHEP 02 (2018) 014, arXiv:1711.10474 [hep-th].

[61] I. Bena, D. Turton, R. Walker, and N. P. Warner, “Integrability and Black-Hole

Microstate Geometries,” JHEP 11 (2017) 021, arXiv:1709.01107 [hep-th].

[62] N. Ceplak, R. Russo, and M. Shigemori, “Supercharging Superstrata,” JHEP 03

(2019) 095, arXiv:1812.08761 [hep-th].

[63] P. Heidmann and N. P. Warner, “Superstratum Symbiosis,” JHEP 09 (2019)

059, arXiv:1903.07631 [hep-th].

[64] P. Heidmann, D. R. Mayerson, R. Walker, and N. P. Warner, “Holomorphic

Waves of Black Hole Microstructure,” JHEP 02 (2020) 192, arXiv:1910.10714

[hep-th].
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