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Abstract—A Deep Learning (DL) aided Logarithmic Likeli-
hood Ratio (LLR) correction method is proposed for improving
the performance of Multiple-Input Multiple-Output (MIMO)
receivers, where it is typical to adopt reduced-complexity al-
gorithms for avoiding the excessive complexity of optimal full-
search algorithms. These sub-optimal techniques typically ex-
press the probabilities of the detected bits using LLRs that often
have values that are not consistent with their true reliability,
either expressing too much confidence or not enough confidence
in the value of the corresponding bits, leading to performance
degradation. To circumvent this problem, a Deep Neural Net-
work (DNN) is trained for detecting and correcting both over-
confident and under-confident LLRs. We demonstrate that the
complexity of employing the DL-aided technique is relatively low
compared to the popular reduced-complexity receiver detector
techniques since it only depends on a small number of real-valued
inputs. Furthermore, the proposed approach is applicable to a
wild variety of iterative receivers as demonstrated in the context
of an iterative detection and decoding aided MIMO system,
which uses a low-complexity Smart Ordering and Candidate
Adding (SOCA) scheme for MIMO detection and Low-Density
Parity Check (LDPC) codes for channel coding. We adopt
Extrinsic Information Transfer (EXIT) charts for quantifying
the Mutual Information (MI) and show that our DL method sig-
nificantly improves the BLock Error Rate (BLER). Explicitly, we
demonstrate that about 0.9 dB gain can be achieved at a BLER
of 10−3 by employing the proposed DL-aided LLR correction
method, at the modest cost of increasing the complexity by 16%
compared to a benchmarker dispensing with LLR correction.

Index Terms—DL, LLR, MIMO, iterative detection and de-
coding, LDPC codes

I. INTRODUCTION

State-of-the-art wireless receivers rely on soft decision
decoding, wherein soft information is used to express not
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only what the most likely value of each bit is, but also
how likely it is. This soft information is typically represented
using Logarithmic Likelihood Ratios (LLRs) processed by in
probabilistic detection [1], [2]. However, in some practical
systems, these LLRs may not accurately express true confi-
dence in the values of the bits, owing to deficiencies in channel
estimation or the adoption of reduced-complexity algorithms.
This may lead to inaccurate LLRs being passed from the
detector into a sensitive decoder, such as the offset min-sum
Low-Density Parity Check (LDPC) decoder [3], which can
result in performance loss [4]–[9]. Xu et. al. [7] demonstrate
for a tree-search algorithm-based Multiple-Input Multiple-
Output (MIMO) detector that the LLRs may become less self-
consistent, with some LLRs being over-confident and some
LLRs being under-confident, owing to the use of a reduced-
complexity Sphere Decoder (SD) technique. In this treatise,
we mitigate this problem.

To elaborate, we reduce the performance degradation
caused by inconsistent LLRs using a low-complexity DL
technique. More specifically, a Deep Neural Network (DNN)
[10], [11] is trained to learn the relationship between the
inconsistent LLRs and the true LLR values, which may be
then applied for correcting the LLRs. More specifically, the
mapping function is learned during an offline learning process
as a function of the channel SNR per bit (Eb/N0), of the
iteration index, and of the raw LLRs. During the training
data processing, we employ a novel statistical method to
avoid running complex Maximum-Likelihood (ML) MIMO
detection algorithms. We demonstrate that the technique pro-
posed is eminently suitable for a low-complexity MIMO
system detector exchanging LLRs with an LDPC decoder.
The iterative exchange of extrinsic LLRs between the MIMO
detector and LDPC decoder has been shown to achieve
beneficial performance gain over non-iterative receivers [12],
[13]. While the full-search-based ML algorithm [14]–[16]
achieves optimal MIMO detection, its complexity is excessive
for a high number of antennas or high-order modulation
schemes. To address this challenge, many reduced-complexity
non-linear MIMO detectors have been proposed, which aim
to select subsets of the detection candidates to be used in the
numerator and denominator of the LLR calculation algorithm
[7] of Eq. 11. This includes the Smart Ordering and Candidate
Adding (SOCA) scheme of [17], which is particularly suited
to practical implementations using parallel processing and low
latency hardware implementation [18]. While the selection
of subsets of the detection candidates to use the numerator
and denominator of the LLR calculation algorithm can sig-
nificantly reduce the complexity, this is at the cost of reducing
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the self-consistency of the LLRs. In this paper, we propose
a DL-aided scheme for correcting the self-consistency of the
LLRs and therefore improving the performance of the iterative
MIMO detection. Our technique is suitable for any reduced-
complexity iterative MIMO detector and we demonstrate it
for the case of using SOCA detection. Here, a tree structure
is used for representing all possible candidates explored by
an ML detector, but rather than traversing all tree nodes,
the SOCA algorithm reduces the complexity by pruning the
number of candidates considered during the MIMO detection.
However, the natural consequence of this is that the self-
consistency of the LLRs proposed by the SOCA detector is
degraded, which can cause performance degradation.

We benchmark the proposed DL technique against a
LookUp Table (LUT) based method for LLR correction as
proposed in [4], [7]. This LUT-aided LLR correction scheme
takes raw LLRs as its input and quantizes them to the nearest
value in the LUT, which then provides the corresponding
corrected LLR values. Here, different LUTs may be used
depending on the values of the system parameters, such as the
index of the iteration between detection and decoding, or the
Signal to Noise Ratio (SNR), which again must be quantified
to the nearest represented value. However, having multiple
LUTs for the LLRs and SNRs limits the practical feasibility
of this scheme. Furthermore, a large amount of memory may
be required to store the LUTs.

We also consider an alternative benchmarker, namely the
Fast-convergence Sparsely connected detection Network (FS-
Net) proposed by Nguyen et al. [19], [20] to find highly likely
candidates for signal detection at low complexity. FS-Net
represents the only DL technique available in the literature,
which may be combined with a traditional MIMO detector
for iterative detection and decoding. More specifically, FS-
Net is a DL technique that has been shown to offer good
performance in traditional hard-decision MIMO detection,
which outputs the estimated IQ signals directly. In this
work, we build a benchmarker by combining the FS-Net
with a SOCA algorithm by consulting an iterative detection
and decoding scheme. In this FS-Net-aided SOCA-LDPC
benchmarker, we use the FS-Net to search for the most
likely estimated signal candidate. Then, during the SOCA
tree search, the candidates with higher costs than the most
likely candidate may be pruned from the search. However,
in contrast to the DL technique proposed for correcting the
SOCA LLRs, our results show that the FS-Net is unable to
improve the decoding performance of the reduced-complexity
SOCA MIMO detector.

The main contribution of this work is that we propose a
DL-aided LLR correction technique, which can be employed
in different scenarios, where the LLRs are not self-consistent,
such as when a reduced-complexity MIMO detector is used.
We proposed the use of the histogram statistic based method
for generating the training data, in order to train the DNN.
Furthermore, we show that the training is based on a small
number of input parameters to obtain improved performance
gains with lower memory requirements compared to a LUT
based benchmarker. Owing to the use of a small number of
input parameters, we demonstrate that the training is simple
and robust. Here, we explicitly contrast our contributions to
the state-of-the-art in Table I and detail them below:

TABLE I: Contrasting our contribution to the state-of-the-art
[4] [5] [6] [7] [8] [9] Proposed

LLR correction
√ √ √ √ √ √ √

DL
√

MI analysis
√ √ √ √

Clipping LLRs
√ √

Histogram statistic method
√

Offline training
√

• We conceive the first DL-aided LLR correction tech-
nique, which has a simple structure, hence it is easy to
build and train.

• We propose a novel histogram-based statistical method
for generating training data, which avoids the require-
ment for using a full-search-based ML MIMO detector,
which significantly reduces the complexity of the training
phase. Furthermore, we demonstrate that our DL tech-
nique can be trained offline, which reduced the complex-
ity compared to reinforcement learning. We show that
once the DNN is well-trained, it can be employed for
different use cases. Furthermore, an additional benefit of
offline training is the reduction of the memory required
to store the trained DNN.

• We demonstrate that the proposed DL LLR correction
technique may be applied in different iterative receiver
schemes, which suffer from performance degradation
caused by low-complexity algorithms, which generate
approximate LLRs.

• Furthermore, we demonstrate the application of our DL-
aided LLR correction technique in a particular SOCA-
LDPC system. We employ a Mutual Information (MI)
analysis-based technique for characterizing the self-
consistency of the iteratively exchanged LLRs and use
this to demonstrate that our proposed DL-aided LLR
correction indeed improves the self-consistency of the
iteratively exchanged LLRs in a quantifiable manner, and
this leads to a BLER vs. SNR improvement of about
0.9 dB at the cost of only increasing the complexity
by 16%. This is comparable to that of the LUT-aided
LLR correction benchmarker, which can achieve about
0.7 dB gain at the cost of increasing the complexity by
about 20%. However, the benchmarker has a much higher
memory requirement than the proposed approach. We
show that the FS-Net-aided benchmarker has the lowest
complexity but at the cost of significantly degraded
performance.

The rest of this paper is organized as follows. Section II
introduces our novel technique for DL-aided LLR correc-
tion, including a discussion of training data generation and
DNN training. Furthermore, our MI analysis shows that
the proposed DL-aided LLR correction improves the self-
consistency of the corrected LLRs. Following this, Section
III demonstrates the application of the DL-aided LLR cor-
rection in a specific SOCA-LDPC system. The equations
of the complexity derived for the proposed scheme and for
the benchmarkers are formulated in Section IV. Following
this, Bit Error Rate (BER), BLock Error Rate (BLER), and
complexity comparison simulation results are presented in
Section V. Finally, we offer our conclusions in Section VI.
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II. DNN FOR DEEP LEARNING

In this section, we introduce a DNN for our DL technique
in the context of improving the self-consistency of LLRs
produced by low-complexity detectors. We discuss how offline
processing may be used for training a DNN, and how the DNN
may be applied at run time for improving the self-consistency
of LLRs. Section II-A describes how the training data may
be generated, while Section II-B introduces our DNN for this
DL application.

A. Training data generation

TABLE II: Definition of parameters in an example scheme,
which comprises an LDPC decoder and a low complexity
MIMO SOCA detector.
K′ Number of information bits in each frame
R LDPC coding rate
Nt Number of transmit antennas
Nr Number of receive antennas
M =
[M1, ...,MNt ]

Mn: number of surviving nodes in the nth layer
of the SOCA tree search

K =
[K1, ...,KNt ]

Kn: number of nodes to extend from each parent
node in the nth layer of the SOCA tree search

Lmax LLR clipping value
ILDPC Number of LDPC decoding iterations
ISOCA−LDPC number of iterations performed between SOCA

detection and LDPC decoding
iSOCA−LDPC Index of the iteration ithSOCA−LDPC between

SOCA detection and LDPC decoding

Figure 1(a) portrays our turbo detection aided scheme,
wherein a reduced-complexity inner decoder iteratively ex-
changes LLRs with an outer decoder. Our novel scheme
introduces a DL and an LLR clipping function for improving
the self-consistency of the LLRs provided by the reduced-
complexity inner decoder. A binary vector a, comprising K ′

bits are encoded by an outer encoder in order to obtain the
encoded bit vector b, which comprises E > K ′ bits. Then, the
order of the bits in the encoded vector b is rearranged by the
turbo interleaver Π, in order to obtain the bit vector c, which
also comprises E bits. This is entered into an inner encoder in
order to construct the transmitted signal vector s, comprising
F number of symbols. The symbols of the vector s are then
transmitted through the channel of Figure 1(a), in order to
obtain the received signal vector r, which also comprises F
symbols. This is detected using a reduced-complexity inner
decoder in order to obtain the extrinsic LLR vector c̃e, which
pertains to the bit vector c and hence comprises E number
of LLRs. Next, the values of the extrinsic LLRs in the vector
c̃e are clipped to Lmax by the clipping function to obtain
the extrinsic LLR vector c̃′e. These clipped extrinsic LLRs
of c̃′e are input to the DL scheme to obtain the vector of E
corrected extrinsic LLRs c̄e. The order of LLRs in the vector
of c̄e is rearranged by the de-interleaver Π−1 in order to obtain
the vector of E a priori LLRs b̃a, which are then passed to
the outer decoder of Figure 1(a). The vector of E extrinsic
LLRs b̃e output by the outer decoder are in turn interleaved
by the interleaver Π to obtain the vector of E a priori LLRs
c̃a, which are then clipped to obtain the vector c̃′a. Having
now completed the first iteration, the second iteration may be
performed, in which the reduced-complexity inner decoder
accesses both the received signal vector r and the a priori

LLR vector c̃′a, as its inputs. The process is repeated until
the affordable number of iterations is completed, whereupon
the estimated binary vector â, comprising K ′ bits is output
by the outer decoder of Figure 1(a).

Figure 1(b) illustrates the signal flow of generating training
data for the proposed DL-aided LLR correction scheme. As
shown by the dashed lines in Figure 1(b), it differs from
Figure 1(a), because it replaces the DL scheme by a block
counting and correcting the LLRs, which requires a priori
knowledge of the encoded bit vector c. This is reasonable in
this offline training environment, but naturally it is impossible
in a realistic system in a real deployment.

As described in Section I, the use of a reduced-complexity
inner decoder namely a SOCA may lead to relatively poor
self-consistency for the extrinsic LLRs in the vector c̃′e,
compared to the LLRs produced by a full-complexity ML
decoder. Hence, the objective of the proposed DL technique
of Figure 1(a) is to replace these LLRs by a vector of corrected
extrinsic LLRs c̄e having improved self-consistency. Here,
the self-consistency of the raw extrinsic LLR vector c̃′e may
be quantified by its Mutual Information (MI). In particular,
we may adopt two different techniques for measuring MI.
The true measured MI of the raw extrinsic LLR vector
c̃′e may be quantified by the histogram-based method of
[21], which makes a comparison with the bit vector c. By
contrast, the claimed MI of the raw extrinsic LLR vector c̃′e

may be quantified by the averaging method, which does not
consider the bit vector c. Instead, intuitively trusts the LLRs
by assuming that the high-magnitude LLRs resultant a high
MI, even though sometimes the values or signs of the LLRs
may be inaccurate. In our solution, the measured value is
calculated using the histogram-based method by considering
the corresponding bit sequence of the LLRs, which represents
the true MI. In cases where the claimed MI obtained by the
averaging method differs from the true measured MI obtained
by the histogram-based method, we can deduce that the LLRs
are not self-consistent.

Figure 2 plots the quality of the extrinsic LLRs c̃′e output
by the SOCA detector for the case of an example scheme,
where it is concatenated with an LDPC decoder. The pa-
rameters of this scheme are captured in Table II and are
further elaborated on in Section III. More explicitly, Figure 2
characterizes the self-consistency of the raw extrinsic LLRs
c̃′e as a function of channel SNR per bit (Eb/N0), after
performing I = 3 iterations between the LDPC decoder
and SOCA detector. Here, the solid lines characterize the
MI of the raw extrinsic LLRs c̃′e, which are obtained using
the averaging method of [22]. Furthermore, the dashed lines
represent the measured MI of the raw extrinsic LLRs c̃′e,
which are obtained using the histogram based method of [21].
Here, the match between the claimed MIs and measured MIs
in the case of the LLR is self-consistent, where a smaller
gap between the claimed MIs and measured MIs represents
improved self-consistency between the raw extrinsic LLRs
c̃′e. Figure 2 characterizes the claimed and measured MIs
when employing clipping for different clipping values Lmax.
Explicitly, clipping mitigates the LLRs that have unwarranted
high values, which express over-confidence, as mentioned
before. As shown in the figure, the scheme that does not
use clipping suffers from the substantial discrepancy between
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Fig. 1: 1(a) schematic of the proposed DL-aided LLR correction in an iterative receiver scheme. 1(b) schematic of generating training data
for the proposed DL-aided LLR correction scheme.
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2
, M = [8 1 1 1], K = [8 8 8 8], ILDPC=20

iterations inside the LDPC decoding, I = 3 iterations between
SOCA detector and LDPC decoder and 16-QAM modulation for
communication over Rayleigh fading channel.

the claimed and measured MIs, because the LLRs are not
self-consistent. By contrast, the introduction of clipping can
be seen to significantly improve the self-consistency of the
raw extrinsic LLRs c̃′e, although some discrepancy remains,
which is mitigated by DL as discussed in Section II. Here, the
results show that the clipping value Lmax should be chosen
carefully since a low clipping value Lmax may make the LLRs
insufficiently confident, while a high clipping value Lmax

may retain those LLRs that are over-confident. As shown in
Figure 2, Lmax = 6 is a good choice for improving the self-

consistency of the raw extrinsic LLRs c̃′e, like with [4].
Figure 3 characterizes the MIs for different M1 values in

the conventional SOCA-LDPC scheme. It may be observed
that the solid lines and the dashed lines converge as the
Eb/N0 is increased, indicating that the extrinsic LLRs c̃e

become self-consistent at high Eb/N0 values, but suffer
from inconsistency at low Eb/N0 values. As the number of
extended tree nodes M1 is increased, the complexity of the
SOCA detector is increased and hence a higher LLR self-
consistency is achieved. But as shown in Figure 3, when
M1 is low, large MI discrepancies are observed between the
claimed and measured MI, which indicates that the extrinsic
LLRs c̃′e are not self-consistent. These discrepancies may be
explained by the large fraction of signal candidates that are
not considered in the LLR calculation of the low-complexity
SOCA detector when M1 is small. This leads to sub-optimal
LLR values. This degrades the performance of a conventional
SOCA-LDPC scheme, which deinterleaves the extrinsic LLRs
c̃′e and directly passes the resultant a priori LLRs b̃a to the
outer decoder without employing LLR correction.

In order to correct the inconsistent extrinsic LLRs c̃′e

provided by a reduced-complexity inner decoder, a DNN may
be trained to find the relationship between the raw value of
the extrinsic LLRs c̃′e and the optimal values of corrected
extrinsic LLRs c̄e. More specifically, supervised learning may
be employed using a large amount of training data, comprising
pairs of the raw values of the extrinsic LLRs c̃′e with the
optimal values of the corrected extrinsic LLRs c̄e. Hence,
it is necessary to generate training data based on corrected
extrinsic LLRs c̄e before building a DNN. Figure 4 shows
the flow of generating the corrected extrinsic LLRs c̄e for the
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2
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inside the LDPC decoding, I = 3 iterations between SOCA detector
and LDPC decoder, and 16-QAM modulation for communication
over Rayleigh fading channel.

DL training data, which was generated by analyzing the raw
values of the extrinsic LLRs c̃′e with the aid of the correct bit
sequence c, representing the function of the ‘Count/correct‘
block of Figure 1(b). Naturally, the correct bit sequence c is
not known in the real system, but in our offline process of
generating training data, the correct bit sequence c may be
assumed as a prior knowledge. In the first step of the flow of
generating the training data, each extrinsic LLR in the training
vector c̃′e is matched to its corresponding bit in the sequence
c, and when the corresponding bit has the value 0, the LLR
is placed into the sequence c̃′e0 . Otherwise, it is placed into
the sequence c̃′e1 . Following this, the mean of the LLRs in
c̃′e0 is calculated, which is used for calculating the variance
σ2
0 of the LLRs in c̃′e0 . Likewise, the mean of the LLRs in
c̃′e1 is calculated and used for calculating the variance σ2

1 of
the LLRs in c̃′e1 . As shown in Figure 4, these two variances
of c̃′e0 and c̃′e1 are used for calculating a bin width β, which
will be used to perform histogram analysis. This is achieved
by using the following equation:

β =
1

2

(
3.49

√
σ2
0 × (V0)

−1
3 + 3.49

√
σ2
1 × (V1)

−1
3

)
. (1)

where Eq. 1 is adopted from the technique of [23] for auto-
matically choosing the appropriate bin width of a histogram
for Gaussian distribution data. Here, β is the width of each
histogram bin, V0 is the number of elements in c̃′e0 , and V1 is
the number of elements in c̃′e1 .

Following this, the range spanning from the smallest value
to the largest value among the extrinsic LLRs of c̃′e separated
into a certain number of bins, each having a width of β.
Next, the number of LLRs V t

0 and V t
1 in each of c̃′e0 and

c̃′e1 corresponding to the bin having each index ∈ [1, T ] is
counted, in order to obtain a pair of histograms, as shown
in Fig 4. Following this, we may quantify the probability
of a 0-valued bit corresponding to an LLR value in the tth

bin as P t
0 =

V t
0

V0
. Similarly, the probability of a 1-valued bit

corresponding to an LLR value in the tth bin is given by
P t
1 =

V t
1

V1
. Then, the optimal value for an LLR falling into the

tth bin may be calculated as

Lt = ln

(
P t
0

P t
1

)
. (2)

A LUT may be used to store both a raw LLR value and the
corresponding corrected LLR for each bin. More specifically,
the LUT comprises two rows, where the first row contains T
raw LLR values, which are taken from the middle value of
each bin. By contrast, the second row contains the correspond-
ing corrected LLR value for each bin, obtained using Eq. 2.
Following this, linear interpolation may be used for selecting
a corrected LLR value of c̄e for each of the raw LLRs in
c̃′e. Then, the sequences of raw extrinsic LLRs c̃′e and the
corrected extrinsic LLRs c̄e may be employed for training the
DNN. In order to train the DNN more accurately, the process
may be repeated over the number of frames denoted using
the notation O. In this way, O frames bit sequence c are
simulated to obtain O frames raw extrinsic LLRs c̃′e and O
frames corrected extrinsic LLRs c̄e. The training of a DNN
is discussed in the next section.

B. DNN for deep learning

In this section, we introduce the DNN proposed for LLR
correction. In Section II-B1, the training phase of the DL is
introduced. Furthermore, Section II-B2 introduces the method
proposed for correcting the raw extrinsic LLRs c̃′e.

1) Offline training: In this work, a DNN is trained using
the generated training data discussed in Section II-A, which
characterizes the relationship between the raw extrinsic LLRs
c̃′e and the corresponding corrected extrinsic LLRs c̄e. Fig-
ure 5 shows a typical fully connected neural network having
L = 5 layers, including an input layer having three input
elements, three hidden layers each having six neurons, and
an output layer having a single output element. In this DNN,
(L− 1) non-linear transformations are performed to map the
input x1 = [Eb/N0 iinner−outer c̃′ei ]

T to the output yL

according to

yL = Φ(x;∆) = fL−1
(
. . .
(
f1 (x1;∆1) ; . . .) ;∆L−1

)
. (3)

Here, the function f l(·) of the lth layer is expressed as

f l
(
xl;∆l

)
= αl

(
W lxl + θl

)
, (4)

where αl represents a Rectified Linear Unit (ReLU) activation
function for the lth layer. We employ dl to represent the num-
ber of nodes in the lth layer. Here, we have ∆l ≜

{
W l;θl

}
,

whose W l ∈ Rdl×dl−1

is the weight-matrix, x ∈ Rdl×1 is
the input of the lth layer and θl ∈ Rdl×1 is the bias vector.
Furthermore, ∆ contains all weight matrices and bias vectors
for all layers.

During the offline training phase, the input of the DNN
includes three parameters of the system, namely Eb/N0, the
index of the iteration iinner−outer being performed between
the inner and outer decoder, as well as the raw extrinsic
LLRs c̃ei being corrected. In this way, the DNN is trained
with independent input vectors, given by:

x1
i = [Eb/N0 iinner−outer c̃′ei ]

T . (5)

Each raw extrinsic LLR c̃′ei has an index ∈ [1, E×O], because
there are E bits of LLR in one frame and in order to obtain
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a well-trained DNN, we generate training data comprising
O number of LLR vectors c̃′e. We merge these O vectors
into a single vector and then marry each of the LLRs c̃′ei (∈
[1, E × O]) with the corresponding Eb/N0 and the iteration
index iinner−outer, in order to generate each input vector. The
DL can flexibly apply different corrections to the raw LLRs
across a range of Eb/N0 and iinner−outer values, owing to
the use of different Eb/N0 and iinner−outer values for training
the DNN during the offline training phase. The weights and
biases of the DL are obtained by minimizing the following
Mean-Squared Error (MSE) based loss function

Loss(M) =
1

E ×O × U × ISOCA−LDPC
×

E×O×U×ISOCA−LDPC∑
i=1

|c̄ei − Φ(xi;∆)|2 . (6)

Here, c̄ei represents the corrected extrinsic LLRs correspond-
ing to the raw extrinsic LLR c̃ei , as calculated during the
training data generation phase using Figure 4. Moreover,
U is the number of different Eb/N0 values considered and
ISOCA−LDPC is the number of iterations calculated between
SOCA detection and LDPC decoding. A batch of inputs
obtained using Eq. (5) is fed to the DNN, in order to obtain
the output yL = Φ(x;∆), which represents the corrected
LLR estimate. The DNN is trained by minimizing the MSE
loss function of Eq. (6), where c̄ei represents the true value
that the LLR should adopt as obtained using the histogram
statistic based method introduced in Section II-A.

2) Online LLR correction: During online LLR correction,
the DNN’s (L− 1) weight matrices and (L− 1) bias vectors
stored during the offline training are employed to correct
the raw extrinsic LLRs c̃′e. We consider the training phase
required for the proposed scheme to be practical, since it
only relies on O = 500 frames, each comprising 1000 LLRs,
in order to complete the training for each combination of
our 10 selected Eb/N0 values and 3 iteration indices. More

specifically, the training is completed by merging the O
frames into a matrix, where each row comprises the pairing
of an input LLR value and the desired corrected output LLR
value. We use 15 epochs during the training, which takes
about 10 to 20 minutes. We repeated the training three times
for each of the three different M1 values that are considered
in this paper. During the training phase, the Eb/N0 and
the iteration index are set at the input of the DNN accord-
ing to x1

i = [Eb/N0 iinner−outer c̃′ei ]
T . Furthermore, in

accordance with the training phase, the ‘ReLU’ activation
function [20] is employed, and the corrected extrinsic LLR
c̄ei is formulated as

Φ(xi;M) =

L−1∏
l=1

max
{
0,
(
W lxl

i + θl
)}

,

i = 1, . . . , E. (7)

The complexity of utilizing the trained DNN to correct the
LLRs may be expressed as follows [24]

CDL =

L∑
l=2

(2dl−1 + 1)× dl. (8)

As shown in Eq. 8, the complexity associated with employ-
ing the trained DNN depends both on the number of layers and
the number of neurons employed in each layer, which in turn
depend on the number of input elements. Typically, the more
input elements, the more layers, and neurons are required,
where the size of a DNN is usually selected by simulations
[20]. Hence, an advantage of our proposed scheme is that
the input vector comprises only three elements, which are not
influenced by the choice of the specific inner decoder.

Figure 6 characterizes the MI of the corrected extrinsic
LLRs c̄e using the proposed DL-aided LLR correction ap-
proach in a particular iterative SOCA-LDPC scheme. The
same parameters are used in this figure as in Figure 3. Again,
the solid lines represent the claimed MI values and the dashed
lines represent the measured MI values. As seen from Figure
6, the discrepancies between the claimed and measured MI
values of the corrected extrinsic LLRs c̄e are much smaller
compared to those associated with the raw extrinsic LLRs c̃′e

in Figure 3. In particular, when M1 is small, the discrepancy
reduction is particularly significant. The discrepancy reduction
indicates that the corrected extrinsic LLRs c̄e have become
more self-consistent, owing to the adoption of the proposed
DL-aided LLR correction scheme. As a result, the a priori
LLRs b̃a of the LDPC decoder become more self-consistent
than the a priori LLRs b̃a of the conventional SOCA-LDPC
scheme, leading to improved performance, as it will be
characterized in Section V. The MI analysis presented here
demonstrates that our proposed DL-aided LLR correction
approach successfully corrects the inconsistent LLRs.
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bits, a coding rate of R = 1

2
, an LLR clipping level of Lmax = 6,

M = [M1 1 1 1], K = [M1 M1 M1 M1], ILDPC = 20 iterations
inside the LDPC decoding, I = 3 iterations between SOCA detector
and LDPC decoder, and 16-QAM modulation for communication
over Rayleigh fading channel.

III. SYSTEM MODEL

In this section, we introduce a specific example of the
serially concatenated iterative receiver of Figure 7, which em-
ploys a reduced-complexity MIMO detector to show that the
proposed DL technique is beneficial for improving the self-
consistency of the iteratively exchanged LLRs. Furthermore,
the transmitter, channel model and receiver of LDPC-coded
MIMO system are detailed in Sections III-A, III-B and III-C,
respectively.

A. Transmitter
As shown in Figure 7, the input of the proposed transmitter

is a random binary vector a having a length K ′, which is
encoded by an LDPC encoder, in order to obtain the binary
vector b comprising E > K ′ number of bits. The resultant
coding rate is R = K ′/E. The order of the encoded bits
in the vector b is randomly rearranged by the interleaver
Π in order to obtain the bit vector c, whose bits are QAM
modulated and distributed among the Nt number of transmit
antennas. Here, G = 2ω-ary QAM modulation is employed,
i.e. ω bits are transmitted per QAM symbol. More specifically,
each antenna transmits a sequence comprising F = E/(ωNt)
QAM symbols, over a series of F time instants. The signal
transmitted in each time instant is represented by the vector
s = [s1, . . . , sNt ]

T , where each component of s is a QAM
symbol having an average power Es.

B. Channel model
We assume that Nr receive antennas are employed. The

symbol vector s of each time instant is transmitted through
a (Nr ×Nt) MIMO channel, hence the received signals may
be represented as

r = Hs+ n. (9)

We assume an uncorrelated narrow-band Rayleigh fading
channel, where H ∈ CNr×Nt . Here, n ∈ CNr×1 is a
zero-mean complex Gaussian distributed random noise vector,
where each element has a variance of N0. The SNR at each
receive antenna is given by Es/N0, which may be expressed
as the SNR per bit of Eb/N0 = Es/(N0 ·R · ω).

C. Receiver

In this section, we detail the proposed receiver. We com-
mence by describing the iteratively exchanged extrinsic LLRs
between an LDPC decoder and a reduced-complexity MIMO
detector in Section III-C1. Here, the MIMO detector adopts
the SOCA algorithm. Following this, we detail the operations
of the reduced-complexity SOCA detector in Section III-C2.

1) Iterative detection and decoding: For the receiver, we
assume perfect channel estimation. The received signals are
processed by the SOCA detector applied to the a priori LLRs
c̃a provided by the LDPC decoder, in order to obtain the
extrinsic LLRs c̃e. In the first iteration, the a priori LLR
vector c̃a is initialized with zero-valued LLRs. Following
SOCA detection, the extrinsic LLRs c̃e are clipped in order to
improve the system performance [25]–[27]. More specifically,
the extrinsic LLRs having a magnitude of |c̃e| > Lmax are set
to ±Lmax in order to obtain the extrinsic LLRs c̃′e. Owing
to the reduced-complexity of the SOCA detector, the raw
extrinsic LLRs c̃′e may suffer from a lack of self-consistency,
as discussed in Section II-A. In order to address this, we pass
the raw extrinsic LLRs c̃′e to the trained DNN to obtain the
corrected extrinsic LLRs c̄e. During the DL-aided correction
of each raw extrinsic LLR in the sequence c̃′e, the inputs
of the trained DNN are the SNR per bit Eb

N0
, the index of

the current iteration iSOCA−LDPC and the corresponding LLR
gleaned from the sequence of all raw extrinsic LLRs c̃′e, as
shown Eq. (5). The DL technique employs the weight matrices
W l, bias vectors θl, and activation function αl trained during
the offline training process, where l = 1, . . . , L−1 is the index
of each layer in the DNN.

The order of the corrected extrinsic LLRs c̄e is rearranged
by a de-interleaver employing the same interleaving pattern
as the transmitters’ interleaver, in order to create the a priori
LLRs b̃a. These LLRs in b̃a are processed by the LDPC
decoder in order to obtain the extrinsic LLRs b̃e is discussed
in [28]. Correspondingly, the order of the extrinsic LLRs
b̃e are rearranged by a corresponding interleaver in order to
obtain the a priori LLRs c̃a, which are clipped as discussed
above, in order to obtain the a priori LLRs c̃′a for the SOCA
detector.

2) SOCA detection: In each time instant, the task of the
SOCA detector is to derive extrinsic LLRs pertaining to the
transmitted signal s, based on the channel is input information
(H , N0), on the received signals r and on the a priori
LLRs c̃′a. More specifically, the SOCA detector has to find
a list of the most likely candidates of transmitted signals s,
and then map these onto values for the encoded bits c, in
order to calculate the extrinsic LLRs c̃e. Then A Posteriori
LLRs c̃p(ĉi) pertaining to each bit in the sequence c may be
calculated as

c̃p(ĉi) ≜ ln

(
P (ĉi = 0|r)
P (ĉi = 1|r)

)
, (10)

where i = 1, . . . , ω × Nt. More specifically, in each time
instant, there are ω×Nt extrinsic LLRs c̃e(ĉi), i = 1, . . . , ω×
Nt, which may be obtained by detecting the transmitted signal
r. Furthermore, the extrinsic LLRs c̃e(ĉi), i = 1, . . . , ω ×Nt

obtained from each of the F time instances may be concate-
nated in order to obtain the extrinsic LLR vector c̃e as the
output of the SOCA detector.
After the application of Bayes’ rules and the max-log ap-
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Fig. 7: Schematic of the proposed DL-aided LLR correction LDPC-coded MIMO system.

proximation [29], the corresponding extrinsic LLRs c̃e(ĉi)
pertaining to the ith bits ĉi may be calculated as

c̃e(ĉi) = c̃p(ĉi)− c̃′a(ĉi)

= min
ŝ∈X1

i

(
∥r −Hŝ∥2

N0
− 1

2

ω×Nt∑
i=1

(2ĉi − 1)× c̃′a(ĉi)

)

− min
ŝ∈X0

i

(
∥r −Hŝ∥2

N0
− 1

2

ω×Nt∑
i=1

(2ĉi − 1)× c̃′a(ĉi)

)
− c̃′a(ĉi),

(11)
where c̃′a(ĉi) is the corresponding a priori LLR. Moreover,X 1
i denotes the set that includes all encoded bit sequence

candidates ĉ, in which the corresponding bit ĉi adopts a value
of 1. Similarly, X 0

i denotes the set that comprises all encoded
bit sequence candidates, in which the corresponding ĉi adopts
a value of 0. Furthermore, the candidate signal vector ŝ having
a length of Nt is the hypothetical signal corresponding to ĉ
according to a specific bit to constellation mapping.

In order to calculate the extrinsic LLRs c̃e, the sets X 1 and
X 0 should be explored, as shown in Eq. (11). When using
a high number of antennas Nt and/or a modulation scheme
having a number of constellation points G, the cardinality
N = GNt of the superset of X 1 and X 0 is very large.
Hence, the traditional Maximum A Posteriori (MAP) algo-
rithm suffers from excessive complexity, since it considers
all candidates of the encoded bits ĉ, when calculating the
extrinsic LLRs c̃e(ĉi), i = 1, . . . , ω ×Nt. In order to reduce
the complexity, the SOCA algorithm [17] considers only
subsets of X 1 and X 0 when considering each of the encoded
bits in ĉ. More specifically, these subsets are designed to
comprise the most likely candidate and its counter-hypothesis,
which are found using a tree search. Figure 8 presents
a simple example of a SOCA tree search for the case of
Nt = 2 transmit antennas, using QPSK modulation, which
has G = 4 constellation points. While this toy example has
only N = GNt = 42 = 16 candidates, the modernist case
using for example Nt = 4 transmit antennas and G = 16-
QAM has N = 164 = 65 536 candidates, leading to much
higher complexity and motivating the SOCA algorithm.

In the tree search, each tree layer considers the signal
transmitted by a particular one of the transmit antennas.
However, we have the freedom to order the transmit antennas
as we please, when constructing the tree. Furthermore, the
number of child nodes derived from each parent node is
given by the modulation order G and hence the total number
of child nodes in the nth, n ∈ [1, Nt] layer is equal to
Gn. Furthermore, each child node in the tree corresponds to

a binary code word, according to the specific constellation
points that it represents, as shown in Figure 8. In the SOCA
algorithm, there are only Mn ≤ G child nodes derived from
each parent node, which will be extended in the nth layer,
where the particular set that is extended is selected according
to the node metrics ψ quantified by the squared Euclidean
distance [17]. In the case where we have Mn = G for all
layers, the SOCA algorithm becomes identical to the ML
algorithm, which traverses all possible nodes in the tree. In
the example of Figure 8, we adopt M1 = 3 and hence only the
3 child nodes having the smallest node metrics are extended
from the root node, with the remaining child nodes being
pruned. Once 3 nodes in the first layer have been traversed,
these extended child nodes are then traversed as parent nodes
in the second layer. Note that the pruned child nodes in the
first layer will not be traversed as parent nodes in the second
layer. The example of Figure 8 adopts M2 = 2 and hence the
2 child nodes of each parent node having the smallest metrics
are extended in the second layer, with all other child nodes
being pruned. Furthermore, when traversing all layers besides
the first layer, the SOCA algorithm additionally extends the
counter-hypothesis of the child node having the lowest node
metric across the layer. For example, the child node in the
second layer of Figure 8 identified as having the lowest
node metric is associated with the codeword ‘0 0‘, which
has the counter-hypotheses of ‘0 1‘ and ‘1 0‘. Hence the
child nodes corresponding to these codewords and extending
from the same parent node as the child nodes having the
lowest metrics are also extended in Figure 8. As an additional
constraint, Kn child nodes having lower node metrics in the
nth layer will survive, while the child nodes having high node
metrics are pruned. The example of Figure 8 adopts K1 = ∞
and hence all surviving child nodes are retained in the first
layer. Furthermore, our example in Figure 8 adopts K2 = 6
and hence some of the child nodes identified for extension
are pruned. Owing to this complexity reduction mechanism,
the counter-hypothesis may not be extended for some layers
and hence X 1

i or X 0
i may be empty in some cases, leading

to ±∞ valued LLRs from Eq. 11. In these cases, we clip
the corresponding LLRs to Lmax. In the case of Figure 8,
the K2 = 6 surviving child nodes are associated with the
corresponding candidates:

X =

first layer 0 0 0 0 0 1
first layer 0 0 0 1 1 1
second layer 0 1 1 0 1 1
second layer 0 0 1 0 0 0

, (12)
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Fig. 8: An example of SOCA tree search with Nt = 2 and employing QPSK modulation.

Reduced-complexity detection may be achieved by reorder-
ing the spatial streams arriving from the transmit antennas
according to the SNR [4]. In this case, the Smart Ordered QR
Decomposition (SOQRD) technique of [17] is an attractive
method for reordering spatial streams. More specifically, if the
layer of the tree emanating from the root node corresponds
to a spatial stream having a high effective SNR, then a
complexity reduction may be attained. To elaborate further,
it may be assumed that the spatial streams having the highest
SNR will rarely suffer demodulation errors and so we may
reduce the number of child nodes that are explored in this
layer and prune a significant portion of the tree at an early
stage in the algorithm, hence reducing its complexity. Let us
consider the example where the first layer of the tree search in
Figure 8 corresponds to the spatial stream transmitted from
the second transmit antenna. Correspondingly, in this case,
the second layer of the tree search corresponds to the spatial
stream transmitted from the first transmit antenna. In this case,
the candidates obtained would be ordered according to

X =

second layer 0 1 1 0 1 1
second layer 0 0 1 0 0 0
first layer 0 0 0 0 0 1
first layer 0 0 0 1 1 1

. (13)

Furthermore, the authors of [30] have proven that perfor-
mance vs. complexity trade-off can be achieved by using
Minimum Mean Square Error (MMSE) based pre-processing,
which takes the noise in the received signal into account.
This may be achieved using the QR decomposition (QRD)

of the extended channel matrix H =

[
H
σINt

]
, where σ2 =

NtN0/Es.
By employing the MMSE-SOQRD in the SOCA tree

search, the input-output relationship of Eq. (9) becomes

r̂ = Ĥs̃+ n̂, (14)

where the inputs of the SOQRD are H and K1, and the

outputs are Q,
[

Ĥ
0Nr×Nt

]
and P . Here, P is a permutation

matrix, which represents the reordering of the spatial stream
as they are mapped to the layers of the tree. Furthermore,
these outputs of the SOQRD are employed to transform
the input-output relationship of Eq. (9) to Eq. (14), where

r̂ = Q(1 : Nr, 1 : Nt)
H × r, s̃ = Ps.

In addition to the MMSE pre-processing of the received
signal r, the tree search of the SOCA detection benefits
from the a priori LLRs provided by the LDPC decoder,
enabling iterative detection and decoding. More specifically,
when extending the g′th (g′ ∈ [1, G]) child node in the
(n + 1)th layer from the gth ∈ [1, G] parent node in the
nth layer, the node metric may be calculated as

ψg,g′

n+1 = ψg
n+
1

∣∣∣∣∣∣r̂n+1 −
∑

1≤v≤n+1

ĥn+1,v s̃
g′

v

∣∣∣∣∣∣
2

8(n+1)+3

−
ω∏

i=1

exp ((1− ĉi)c̃
′a(ĉi))

1 + exp (c̃′a(ĉi))

7ω

−σ2
∥∥∥s̃g′

v

∥∥∥2
5

, (15)

where, n ∈ [0, Nt−1] and ψg
0 = 0 in the case of the root node.

Note that Eq. (15) is annotated with the associated complexity
matrix, which will be discussed in Section IV.

The node metrics quantified by the squared Euclidean
distance of Eq. (15) are employed in the SOCA tree search
to evaluate the child nodes in each layer and to obtain
the candidate set X for the encoded bits ĉ, including the
most likely candidate and its counter-hypothesis, as discussed
above. Following this, the extrinsic LLR vector c̃e can be
calculated using Eq. (11) according to the inputs of the
SOCA detector, namely the channel information (H , N0), the
received signal r and the a priori LLR vector c̃a provided by
the LDPC decoder. Furthermore, the corrected extrinsic LLR
vector c̄e is obtained according to the online LLR correction
discussed in Section II-B2.

IV. COMPLEXITY ANALYSIS

In this section, we quantify the complexity of the MIMO
detector for the case of SOCA detection without DL-aided
LLR correction and for the case, where the DL-aided LLR
correction is employed. The LDPC complexity is not consid-
ered here, because we employ the same LDPC decoder in all
schemes.

The complexity of each part in the SOCA detector algo-
rithm may be quantified by the number of additions, multi-
plications, divisions, and exponential calculations performed.
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Here, each complex-valued multiplication may be represented
by four real-valued multiplications and two real-valued addi-
tions. Moreover, each complex addition may be considered to
comprise two real-valued additions.

The SOCA detection algorithm comprises two parts,
namely the tree search and the LLR calculation. In the
first part, the complexity of tree search is incurred when
calculating the node metric. More specifically, the complexity
associated with the g′th path in the (n+1)th (n ∈ [0, Nt−1])
layer in Eq. (15) may be expressed as

Cn+1 = 8n+ 7ω + 17, (16)

where ω is the number of bits per symbol.
The complexity of the second part of the SOCA detection,

which calculates an extrinsic LLR using Eq. (11), may be
expressed as

CLLR = KNt × (6NrNt + 6Nr + ωNt + 1) , (17)

where KNt is the number of surviving nodes in the final layer
of the tree search.

Based on the results of Eq. 16 and Eq. 17, the overall
complexity of performing SOCA detection for a conventional
SOCA-LDPC scheme, which does not employ our DL tech-
nique for correcting the LLRs may be calculated as

COS =
{ 2ω × C1 +

K1 × (2ω+1 − K1 − 1)

2


+

[
K2 × 2

ω × C2 + K2 × (2
ω − 1) +

K2 × (K2 + 2ω − 1)

2

]

.

.

.

+

[
Kn+1 × 2

ω × Cn+1 + Kn+1 × (2
ω − 1) +

Kn+1 × (Kn+1 + 2ω − 1)

2

]

.

.

.

+

[
KNt

× 2
ω × CNt

+ KNt
× (2

ω − 1) +
KNt

× (KNt
+ 2ω − 1)

2

] }
×
(

K′

2ωR

)

+ CLLR ×
K′

R
.

(18)

Here, each row of Eq. 18 apart from the last one corresponds
to the calculation complexity incurred in each tree layer, while
the last row corresponds to the complexity of calculating the
LLRs.

Furthermore, the complexity incurred in each iteration when
employing DL-aided SOCA detection may be obtained as the
sum of the complexity of employing the SOCA detection from
Eq. 18 and the complexity of employing the DL from Eq. (8),
which is expressed as:

CDL−SOCA = COS + CDL. (19)

By way of comparison, the complexity associated with
employing the FS-Net-aided scheme proposed in [20] may
be expressed as

CFS−Net = 2Nt(4Nr−1)+4N2
t (2Nt−1)+LF(8N

2
r +10Nr), (20)

where LF is the number of layers in the FS-Net, which is set
to 2 in this paper.

Hence, the overall complexity of employing the FS-Net
SOCA scheme in this work is given by

CFS−Net−SOCA = COS + CFS−Net. (21)

Table III characterizes the complexity of the four schemes
for the case of M1 = 4, M1 = 8 and M1 = 16, respectively.

TABLE III: Average number of operations of different
schemes when Eb/N0 = 10 dB (in millions).

M1 = 4 M1 = 8 M1 = 16
conventional scheme 8.26 16.25 32.22
FS-Net scheme 8.53 16.14 30.14
LUT scheme 9.90 17.92 34.00
DL-aided scheme 9.55 17.54 33.52

In all cases, it may be seen that doubling the value of M1

roughly doubles the associated complexity. Note that, the
addition of the DL-aided and LUT-aided LLR correction does
not significantly increase the complexity of the associated
schemes compared to the conventional SOCA-LDPC scheme,
regardless of M1 value.

When M1 = 4, employing DL-aided LLR correction
increases the complexity by about 16%, while the complexity
increase associated with the LUT-aided LLR correction is
about 20%. However, LUT-aided LLR correction has the addi-
tional cost of requiring LUTs for all the different numbers of
iterations and different Eb/N0 to be stored, which necessitates
a large amount of memory. By contrast, the DL-aided LLR
correction scheme only requires the storage of a small number
of weight matrices and bias vectors. When the LUT stores
the LLR corrections for each Eb/N0 value in the range of
{8, 8.5, 9, . . . , 12} dB, as well as in the number of iterations
in the set {1, 2, 3} between the SOCA detector and LDPC
decoder, a total of 47 920 bytes of memory is required. By
contrast, the DL-aided LLR correction scheme requires only
920 bytes of memory to store the trained weight matrices
and bias vectors for the case where M1 = 4. While the
FS-Net-aided SOCA-LDPC scheme benefits from a reduced
SOCA tree complexity, there is some extra complexity in-
curred by the FS-Net computation. Hence, the FS-Net-aided
SOCA-LDPC scheme has a slightly high complexity than the
conventional SOCA-LDPC scheme, which is about 3%.

In the case of M1 = 8, the complexity of the proposed
DL-aided LLR correction assisted SOCA-LDPC scheme is
about 8% higher than that of the conventional SOCA-LDPC
scheme, and it requires 920 bytes of memory for storing
the trained weight matrices and bias vectors. By contrast,
the LUT-aided LLR correction assisted SOCA-LDPC scheme
requires 35 744 bytes of memory to store the LUTs in the
case of M1 = 8. The reduced memory compared to M1 = 4
is a benefit of only requiring Eb/N0 values in a smaller set
of {8, 8.5, 9, . . . , 10.5} dB. The complexity of the LUT-aided
LLR correction assisted SOCA-LDPC scheme is about 10%
higher than that of the conventional SOCA-LDPC scheme.
Then, in the case of M1 = 8, the complexity of the FS-Net-
aided SOCA-LDPC scheme is about 1% lower than that of
the conventional SOCA-LDPC scheme.

In the case of M1 = 16, the complexity of the proposed
DL-aided LLR correction SOCA-LDPC is about 4% higher
than that of the conventional SOCA-LDPC scheme and it
has the additional requirement of 920 bytes of memory, as
discussed above. By contrast, the LUT-aided LLR correction
SOCA-LDPC scheme requires 29 600 bytes of memory
to store the LUTs for each Eb/N0 value in the set of
{8, 8.5, 9, . . . , 10} dB, as well as in the number of iterations in
the set {1, 2, 3}. The complexity of the LUT-aided scheme is
about 6% higher compared to the conventional SOCA-LDPC
scheme. As seen in Table III, the complexity of the FS-Net-
aided SOCA-LDPC scheme is about 7% lower than that of
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the conventional SOCA-LDPC scheme when M1 = 16, but
the performance is degraded by about 1.2 dB at BLER of
10−3.

V. SIMULATION RESULTS

In this section, we characterized both the performance and
complexity of the proposed DL-aided LLR correction assisted
SOCA-LDPC scheme and compared it to various benchmark-
ers. The density (dl, l = 2, 3, 4) of each hidden layer in
the neural network of the proposed scheme and the optimal
number of iterations to use between the SOCA detector and
the LDPC decoder will be selected according to the simulation
results. Here, we employ the 3GPP 5G NR LDPC code, which
we decode using the log-sum-product algorithm. Moreover,
we will compare the decoding performance of the four dif-
ferent iterative detection and decoding schemes described in
Section III-C. More specifically, the proposed DL-aided LLR
correction SOCA-LDPC scheme employs the trained DNN to
correct the raw extrinsic LLRs c̃′e, as described in Section II.
Furthermore, there are three benchmarkers, the first of which
is a conventional SOCA-LDPC scheme dispensing with LLR
correction. The second benchmarker is the LUT-aided LLR
correction assisted SOCA-LDPC scheme, which corrects the
raw extrinsic LLRs c̃′e using LUTs that are generated using
Figure 4. Finally, the third benchmarker is the FS-Net-aided
SOCA-LDPC scheme, which has been described in Section I.
The use of FS-Net for MIMO detection to estimate the most
likely candidate of transmitted MIMO signals was proposed
in [19], [20]. We augment this work by combining it with
a SOCA detector, in which we may directly delete all tree
nodes in each layer of the SOCA tree search having higher
node metrics than that of the most likely candidate identified
by FS-Net. Hence, the number of surviving tree nodes in the
nth, 1 ≤ n ≤ Nt layer of the tree may be lower than Kn in
the FS-Net-aided SOCA-LDPC scheme.

Throughout this section, we adopt Nr = 4 receive antennas,
Nt = 4 transmit antennas, K ′ = 1024 information bits,
a coding rate of R = 1/2, an LLR clipping level of
Lmax = 6, ILDPC = 20 iterations inside the LDPC decoder,
and 16-QAM for communication over uncorrelated narrow-
band Rayleigh fading channels. Here, the number of inner
iterations in the LDPC decoder can be determined with the aid
of Figure 9. Here, an EXIT chart is a graphical representation
used for analyzing the iterative decoding process, specifically
focusing on the exchange of extrinsic information between
the inner and the outer decoder in a concatenated coding
scheme [31]. Since the extrinsic LLRs produced by the inner
decoder become the a priori LLRs of the outer decoder and
vice versa, it is conventional to swap over the axes of the
outer decoder, so that the a priori information is plotted on
the same axis as the inner decoder’s extrinsic information and
vice versa. Explicitly, Figure 9 is produced by generating b̃a

artificially and then measure the MI of b̃e. The details of
generating the LDPC decoder’s EXIT function are similar to
the processing introduced in [32], [33]. Figure 9 shows that
upon increasing the number of LDPC inner iterations ILDPC,
the LDPC EXIT function moves downwards, which results
in improved decoding performance. Furthermore, diminishing
returns are attained beyond ILDPC = 20, which proves that
the choice of ILDPC = 20 is reasonable.
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Fig. 9: LDPC EXIT functions, for the case of Nt = 4 transmit
antennas, Nr = 4 receive antennas, K′ = 1024 information bits,
a coding rate of R = 1

2
, an LLR clipping level of Lmax = 6,

M = [4, 1, 1, 1], K = [4 4 4 4] and 16-QAM modulation for
communication over Rayleigh fading channel.

Figure 10 characterizes the BER performance of the pro-
posed DL-aided LLR correction SOCA-LDPC scheme, when
employing different numbers dl, (l = 2, 3, 4) of neural nodes
in each hidden layer. Moreover, the parameters for the SOCA
tree search are set as M = [4 1 1 1] and K = [4 4 4 4],
which indicate that in the first layer, the M1 = 4 child nodes
of the root node are extended and all K1 = 4 child nodes
are retained. Then for other layers, Mn = 1, (n = 2, 3, 4)
child node of each parent node is extended and Kn = 4 child
nodes are retained after the corresponding counter-hypotheses
have been introduced in each layer. In Figure 10, I = 3
iterations are performed between the SOCA detector and the
LDPC decoder. As characterized in Eq. 8, the complexity
of the DL algorithm is influenced by the number of layers
L and the density dl(l = 1, . . . , L) of each layer in the
DNN. The performance of the DL may be affected by these
two parameters, where it is typically expected that a higher
performance is achieved when the density and the number of
layers is increased. Therefore, the performance vs. complexity
trade-off may be investigated when using different numbers
of layers L and different densities in each layer. As shown
in Figure 10, increasing the number of hidden layers and the
density of each hidden layer may improve the performance,
as expected. However, diminishing returns may be observed
when having more than 9 hidden layers and more than dl = 3
neuron nodes in each hidden layer. In the case of L− 2 = 9
hidden layers and dl = 3 neuron nodes in each hidden layer,
each LLR correction requires a total of 210 addition and
multiplication operations. By contrast, when using L− 2 = 3
hidden layers and dl = 6 neuron nodes in each hidden layer,
the total number of addition and multiplication operations for
each LLR correction amounts to 211. Both of these cases have
very similar complexity, but we observe that having dl = 6 for
each hidden layer and L− 2 = 3 hidden layers is associated
with slightly better performance. Given this performance vs.
complexity trade-off, we select a density of dl = 6 for each
of the L − 2 = 3 hidden layers throughout the following
investigations.
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Fig. 10: BER performance of the proposed DL-aided LLR correction
SOCA-LDPC scheme having various densities (dl, l = 2, 3, 4) in
each of 3 hidden layers, for the case of Nt = 4 transmit antennas,
Nr = 4 receive antennas, K′ = 1024 information bits, a coding rate
of R = 1

2
, an LLR clipping level of Lmax = 6, M = [4, 1, 1, 1],

K = [4 4 4 4], ILDPC = 20 iterations inside the LDPC decoding,
I = 3 iterations between the SOCA detector and the LDPC decoder,
and 16-QAM modulation for communication over Rayleigh fading
channel.

Figure 11(a) characterizes the BER performance of the
proposed DL-aided LLR correction SOCA-LDPC scheme and
compares it to that of the three benchmarkers, for the case of
using M = [4 1 1 1] and K = [4 4 4 4] during the SOCA
tree search in all schemes. Note that, in the FS-Net-aided
SOCA-LDPC scheme, the actual number of the surviving tree
nodes may be smaller than Kn, 1 ≤ n ≤ Nt, as mentioned
above. As detailed in Section II, the selection of a low M1

value leads to less self-consistent raw extrinsic LLRs c̃′e at the
output of the SOCA detector, which may degrade the decoding
performance. As these inconsistent raw extrinsic LLRs c̃′e are
exchanged between the SOCA detector and LDPC decoder,
the decoding performance can actually degrade in each suc-
cessive iteration, as demonstrated by the BER performance
of the conventional SOCA-LDPC scheme in Figure 11(a).
More specifically, the performance degradation observed for
the SOCA detector may be attributed to its use of complexity-
reducing mechanisms, such as the early termination of the tree
search [34]. As a result, the SOCA detector may generate
sub-optimal extrinsic LLRs c̃′e, which do not satisfy the self-
consistency condition [7] that channel decoders rely upon for
maximising their performance [4]. As shown in Figure 3,
the self-consistency of the raw extrinsic LLRs c̃′e may be
improved by increasing the value of the SOCA detector’s
M1 parameter, leading to the elimination of performance
degradation in successive iterations, as shown in Figure 11(c).
However, the proposed DL-aided LLR correction eliminates
the performance degradation caused by the inconsistent LLRs,
accordingly, the BER performance improves after each suc-
cessive iteration, as shown in Figure 11(a). Furthermore, the
LUT-aided LLR correction assisted SOCA-LDPC scheme can
also be seen to eliminate performance degradation. However,
the decoding performance of the FS-Net-aided SOCA-LDPC
scheme shows about 0.5 dB BER degradation compared to the
conventional SOCA-LDPC scheme. This may be attributed
to the FS-Net failing to correctly identify the most likely
decoding candidate and the SOCA detector being unable to
remedy this owing to its reduced-complexity. Furthermore, the
FS-Net-aided benchmarker does not benefit from any LLR
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Fig. 11: BER performance of the proposed DL-aided LLR correction
SOCA-LDPC scheme and the various benchmarkers, for the case of
Nt = 4 transmit antennas, Nt = 4 receive antennas, K′ = 1024
information bits, a coding rate of R = 1

2
, an LLR clipping level of

Lmax = 6, M = [M1, 1, 1, 1], K = [M1 M1 M1 M1], ILDPC =
20 iterations inside the LDPC decoding, and 16-QAM modulation
for communication over Rayleigh fading channel.

correction.
Figure 11(b) characterizes the BER performance of the four

schemes, for the case of using M = [8 1 1 1] and K =
[8 8 8 8] during the SOCA tree search. When M1 is increased
to M1 = 8, more candidates are considered during the SOCA
tree to search and when calculating the LLRs, this requests in
improved self-consistency. As a result, the performance of the
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conventional SOCA-LDPC scheme observed after deleterious
iterations between the SOCA detector and the LDPC decoder
may be eliminated. However, no significant performance gains
are achieved after successive iterations of the conventional
SOCA-LDPC scheme and a performance gap of about 0.15 dB
may be observed in Figure 11(b), relative to the proposed
DL-aided LLR correction assisted SOCA-LDPC scheme and
to the LUT-aided benchmarker. To elaborate further, the DL-
aided LLR correction assisted SOCA-LDPC scheme and the
LUT-aided benchmarker can achieve performance gains in
successive iterations between the SOCA detector and the
LDPC decoder, as a benefit of using the corrected extrinsic
LLRs c̄e. In the case of M1 = 8, the FS-Net-aided SOCA-
LDPC benchmarker still has worse performance than the
conventional SOCA-LDPC scheme, where a performance gap
can be observed in Figure 11(b).

Figure 11(c) shows the BER performance of the four
schemes, for the case of using M = [16 1 1 1] and K =
[16 16 16 16] during the SOCA tree search. When employing
M1 = 16, the performance gain offered by the proposed DL-
aided LLR correction assisted SOCA-LDPC scheme is about
0.25 dB when employing three iterations instead of one at a
BER of 10−5. While the conventional SOCA-LDPC scheme
achieves some iteration gains in the case of M1 = 16, only
limited gains of less than 0.1 dB are attained after the second
iteration. The LUT-aided LLR correction scheme can be seen
to offer a similar iteration gain to the conventional SOCA-
LDPC scheme. As shown in Figure 11(c), the FS-Net-aided
SOCA-LDPC scheme still offers no BER performance BER
improvement upon employing iterations between the SOCA
detector and LDPC decoder for a larger M1. In fact, it suffers
from about 1.6 dB performance loss compared to the proposed
DL-aided LLR correction assisted SOCA-LDPC scheme.
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Fig. 12: BLER performance of the conventional SOCA-LDPC
employing the various number of iterations between the SOCA
detector and LDPC decoder, for the case of Nt = 4 transmit
antennas, Nr = 4 receive antennas, K′ = 1024 information bits,
a coding rate of R = 1

2
, an LLR clipping level of Lmax = 6 and

Eb/N0 = 10, K = [M1 M1 M1 M1], ILDPC = 20 iteration inside
the LDPC decoding, and 16-QAM modulation for communication
over uncorrelated narrow-band Rayleigh fading channels.

In contrast to the BER performance, the BLER performance
of the conventional SOCA-LDPC scheme does improve in
successive iterations between the SOCA detector and the
LDPC decoder for both small and large M1 values, as shown
Figure 12. This demonstrates that while the prevalence of

block errors is reduced upon increasing the number of decod-
ing iterations, the number of bit errors within those erroneous
blocks increases in successive iterations. This phenomenon
may be attributed to the LDPC decoder’s convergence towards
an incorrect solution in the case of these erroneous blocks,
with successive iterations increasingly deviating from the
original block. Significant iteration gains may be observed
in Figure 12 up to 3 iterations. However, diminishing returns
are observed beyond 3 iterations. Given the trade-off between
the performance and complexity, we offer I = 3 iterations in
the following investigation for all the schemes considered.

Figure 13(a) characterizes the BLER performance of the
four schemes for the case of M = [4 1 1 1] and K =
[4 4 4 4]. It may be observed that the proposed DL-aided
LLR correction assisted SOCA-LDPC scheme offers a 0.9 dB
performance gain at a BLER of 10−3, compared to the
conventional SOCA-LDPC scheme. This BLER vs. SNR gain
may be attributed to the proposed DL-aided LLR correction
of the extrinsic LLRs c̄e. By way of comparison, the LUT-
aided LLR correction scheme offers about 0.7 dB of gain
at a BLER of 10−3, compared to the conventional SOCA-
LDPC scheme. Here, the proposed DL-aided LLR correction
scheme achieves 0.2 dB better performance than the LUT-
aided LLR correction scheme because of deviations from the
ideal correction factor during the linear interpolation between
the values stored in the LUT. Although linear interpolation is
employed in the training data generation of the DL-aided LLR
correction scheme, the relationship between the raw extrinsic
LLRs c̃′e and the corrected extrinsic LLRs c̄e are learned
in the DNN. This allows the near-ideal correction of each
raw extrinsic LLR c̃′e during the operation of the proposed
DL-aided LLR correction SOCA-LDPC scheme. The FS-
Net-aided SOCA-LDPC scheme suffers from a performance
degradation of about 0.4 dB at a BLER of 10−3 compared to
the conventional SOCA-LDPC scheme.

Figure 13(b) characterizes the BLER performance of the
four schemes for the case of M = [8 1 1 1] and K =
[8 8 8 8]. The proposed DL-aided LLR correction assisted
SOCA-LDPC scheme can be seen to offer about 0.6 dB
gain compared to the conventional SOCA-LDPC scheme at a
BLER of 10−3, while the LUT-aided LLR correction assisted
SOCA-LDPC scheme offers about 0.55 dB gain. Figure 13(b)
shows that the performance degradation of the FS-Net-aided
SOCA-LDPC scheme becomes more pronounced at M1 = 8,
compared to M1 = 4. This may be attributed to having
high node metrics compared to the most likely candidate
and being deleted in the SOCA tree search when M1 = 8.
More specifically, when more leaf nodes are deleted in the
SOCA tree search, fewer candidates are available for the
LLR calculation, which degrades the FS-Net-aided scheme’s
ability to generate self-consistent LLR values. As seen in
Figure 13(a), Figure 13(b), and Table III, the proposed DL-
aided scheme offers about 0.9 dB gain compared to the
conventional SOCA scheme when M1 = 4, at the cost of a
complexity increase of around 16%. This may be compared to
the observation that increasing M1 in the conventional SOCA
scheme to 8 offers around 1.3 dB of gain compared to the
conventional SOCA scheme using M1 = 4, at the cost of
roughly doubling its complexity. Furthermore, from a practical
hardware implementation perspective, in order to improve the
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Fig. 13: BLER performance of the proposed DL-aided LLR correc-
tion SOCA-LDPC scheme and the various benchmarkers, for the case
of Nt = 4 transmit antennas, Nr = 4 receive antennas, K′ = 1024
information bits, a coding rate of R = 1

2
, an LLR clipping level

of Lmax = 6, M = [M1, 1, 1, 1], K = [M1 M1 M1 M1],
ILDPC = 20 iterations inside the LDPC decoding, I = 3 iterations
between the SOCA detector and the LDPC decoder, and 16-QAM
modulation for communication over Rayleigh fading channel.

performance of the conventional SOCA detector by changing
the M1 parameter, an entirely new SOCA detector implemen-
tation would be required, which represents a substantial design
effort compared to training the proposed DL scheme.

Figure 13(c) characterizes the BLER performance of the
four schemes for the case of M = [16 1 1 1] and K =
[16 16 16 16]. When M1 = 16, the proposed DL-aided and

LUT-aided LLR correction assisted SOCA-LDPC schemes to
offer gains of about 0.4 and 0.25 dB, respectively, compared
to the conventional SOCA-LDPC scheme at a BLER of 10−3.
As the M1 value is increased to 16, more candidates are
considered for calculating the LLRs, and hence more self-
consistent raw extrinsic LLRs c̃′e are produced, As a result,
the LLR correction has a lower influence when M1 = 16. This
may also be demonstrated by comparing the gaps between the
claimed and measured MI values in Figure 3 and Figure 6.
In the absence of LLR correction, Figure 3 shows that as
the value of M1 is increased, the gap between the claimed
and measured MI values becomes small, which represents an
improved self-consistency of the LLRs. Figure 6 shows that
in the presence of LLR correction, the gap is also reduced
as the value of M1 is increased, but much less dramatically
than in Figure 3. Hence, LLR correction has less benefit,
when the value of M1 is high. As shown in Figure 13(c), the
FS-Net-aided SOCA-LDPC scheme still suffers from a per-
formance degradation compared to the conventional SOCA-
LDPC scheme, when M1 = 16.

VI. SUMMARY AND CONCLUSION

A DL-aided LLR correction scheme was proposed, which
is capable of correcting any inconsistency in the LLRs that
are generated by reduced-complexity decoders in an iterative
receiver. We have presented MI results, which show that
the proposed DL-aided LLR correction significantly improves
the self-consistency of the LLRs. The proposed technique
is characterized in the context of an iterative SOCA-LDPC
scheme, which is compared to three benchmarkers. The first
benchmarker is provided by a conventional SOCA-LDPC
scheme, which does not employ any LLR correction. The
second benchmarker is a LUT-aided LLR correction assisted
SOCA-LDPC scheme, which uses LUTs to correct the LLR
values. The final benchmarker is provided by a FS-Net-aided
SOCA-LDPC scheme, which employs the FS-Net of [20] to
estimate the most likely candidate during signal detection
using a trained DNN. More specifically, we adopt the most
likely candidate identified by the FS-Net in order to prune the
SOCA tree and reduce the complexity.

We have presented both BER and BLER results, which
demonstrate that improved performance is attained by adopt-
ing the proposed DL-aided LLR correction and by the LUT-
aided LLR correction assisted SOCA-LDPC schemes. The
corrected extrinsic LLRs c̄e are shown to significantly im-
prove the decoding performance using both the proposed DL-
aided LLR correction scheme and the LUT-aided LLR cor-
rection scheme. In the case, where the low complexity SOCA
detector is parameterized by M1 = 4, the proposed DL-aided
LLR correction assisted SOCA-LDPC scheme achieves about
0.9 dB gain over the conventional SOCA-LDPC scheme, at
the cost of 16% increased complexity. When the complexity of
the SOCA detector is increased using M1 = 8 and M1 = 16,
the proposed DL-aided LLR correction assisted SOCA-LDPC
scheme achieves about 0.5 dB and 0.4 dB of gain, at the
cost of increasing the complexity by 8% and by 4%, re-
spectively. The results show that the proposed DL-aided LLR
correction assisted SOCA-LDPC scheme always outperforms
the LUT-aided SOCA-LDPC LLR correction assisted scheme.
Furthermore, the memory requirement of the proposed DL-
aided LLR correction SOCA-LDPC scheme is about 97%
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lower than that of the LUT-aided LLR correction assisted
SOCA-LDPC scheme, which requires excessive memory to
store its LUTs. The complexity of the FS-Net-aided SOCA-
LDPC benchmarker is about 1% and 7% lower than that
of the conventional SOCA-LDPC scheme for M1 = 8 and
M1 = 16, respectively. However, our results show that
the FS-Net-aided scheme suffers from significant BER and
BLER performance degradation compared to the conventional
SOCA-LDPC scheme. In future work, the proposed DL-aided
LLR correction scheme may be combined with a soft-input
and soft-output DNN network, as a replacement for the SOCA
detector.
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