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ABSTRACT 
 

In this work, we describe the use of a combination of proton beam irradiation and electrochemical etching to 
fabricate high index-contrast waveguides directly in silicon without the need for silicon-on-insulator substrate. 
Various types of waveguides with air or porous silicon cladding have been demonstrated. We show that porous 
silicon (PS) is a flexible cladding material due to the tunability of its refractive index and thickness. The Si/PS 
waveguide system also possesses better transmittance in the ranges of 1.2-9 and 23-200 µm, compared to 
Si/SiO2 waveguides. This is potentially important for mid and far-IR applications. Since it is compatible with 
conventional CMOS technology, this process can be used for fabrication of integrated optoelectronics circuits. 
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1. INTRODUCTION 

 
Silicon photonics is experiencing a dramatic increase in interest due to emerging application areas and several 
breakthroughs in device and technology development. Most conventional waveguides in silicon photonics are 
fabricated on silicon-on-insulator (SOI) substrates due to its compatibility with microelectronics technologies 
and the high index contrast between silicon and silicon dioxide [1]. This means that ultra-compact optical 
devices with tight bends of a few micrometers can be densely packed and integrated with microelectronic 
circuits on a single chip. 
 
Conventional SOI substrates are fabricated using separation by implanted oxygen (SIMOX) or the Smart-Cut 
process [2,3]. A lesser used technique for SOI fabrication is by full isolation by oxidized porous silicon 
(FIPOS), which was first developed by Imai et. al.[4] for device isolation in microelectronics. The low cost and 
easy implementation of electrochemical etching has made it an attractive alternative to dry etching. Proton 
implantation converts p to n-type silicon islands, which are selectively inhibited from porous silicon formation. 
Compared to SIMOX, this process gives more freedom in controlling the thickness of the overlying silicon layer 
due to the well defined ion range with energy and higher penetration depth of protons. This means that widely 
varying thickness of the silicon overlayer can be obtained. The oxide thickness can also be tuned easily with the 
etching time. There has been much research on the optical properties of structures fabricated using SIMOX [5] 

and Smart-Cut [6], but not FIPOS.  
 
In this work, we investigate the possibilities of using FIPOS for low-loss waveguide applications. This is carried 
out either by direct proton beam writing (section 3.1 and 3.2), or broad proton beam irradiation through a mask 
(section 3.3). The flexibility of using porous silicon or air as cladding eliminates oxide absorption in the mid-IR 
and far-IR regimes suffered by SOI waveguides [7,8], making these systems viable for operations at such 
wavelengths.  
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2. EXPERIMENTAL 
 
2.1 Fabrication process 
 
Waveguide patterns are irradiated into bulk p-type silicon of medium resistivity of 0.5 ohm.cm resistivity using 
a highly focused beam of protons, produced from a Single-ended ultra-stable accelerator at the Centre for Ion 
Beam Applications at National University of Singapore. After irradiation, the sample is then electrochemically 
etched in hydrofluoric acid solution. Due to the increased resistivity caused by the ion irradiation, the migrating 
holes are deflected from the irradiated region, as shown by the arrows in figure 1b, inhibiting the rate of porous 
silicon formation [9,10]. By prolonged etching beyond the end of the ion-range, the resultant structure becomes 
completely isolated in porous silicon.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic diagram of the waveguide fabrication process. (a) Proton beam writing in p-type silicon followed by (b) 
electrochemical etching in HF. (c) Prolonged etching results in undercutting of the irradiated region and (d) finally it is 
surrounded by porous silicon. 

 
 

2.2 Optical characterization 
 
Optical characterization of the waveguides was carried out in both TE and TM polarizations at 1550 nm. A 
tunable diode laser is coupled into the waveguide using a 60× objective lens. A polarizing beam splitter and a 
half-wave plate were inserted into the beam path, enabling discrimination between the TE and TM polarizations. 
The scattered light from the top of the waveguides was monitored using a highly sensitive InGaAs infrared 
camera (Xeva-FPA-1.7-320), and the output light from the waveguide is imaged using an IR Vidicon camera 
(Model 7290A). Precise alignment of a piezoelectric stage is used to optimize the coupling of the laser beam to 
the waveguide, until the maximum power is detected on a power meter.  
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4. CONCLUSIONS 
 
We demonstrated an attractive alternative technique for producing low-loss high index contrast waveguides 
(Δn~2) in bulk Si without the need for SOI substrate using a combination of proton beam irradiation and 
electrochemical etching. We show the possibility of creating novel types of waveguides in the form of channel, 
strip or free-standing in air. SOPS waveguides show low losses of about 1-2 dB/cm after oxidation due to 
surface roughness reduction of both the sidewalls and bottom surfaces. This opens up new opportunities of using 
existing FIPOS technology for photonics applications. For SPS and free-standing waveguides, the lack of oxide 
cladding make them suitable systems for mid-IR applications.  
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